
Knowledge is not one man's Entity
 Book Hacked by VELOCIRAPTOR

Sed and Awk 101 Hacks

Table of Contents

Introduction .. 6

Chapter 1: Sed Syntax and Basic Commands 9
1. Sed Command Syntax ... 10

2. Sed Scripting Flow ... 12

3. Print Pattern Space (p command) 13

4. Delete Lines (d command) 17

5. Write Pattern Space to File (w command) 19

Chapter 2. Sed Substitute Command 23
6. Sed Substitute Command Syntax 23

7. Global Flag (g flag) .. 24

8. Number Flag (1,2,3.. flag) .. 25

9. Print Flag (p flag) .. 26

10. Write Flag (w flag) ... 26

11. Ignore Case Flag (i flag) ... 27

12. Execute Flag (e flag) .. 28

13. Combine Sed Substitution Flags 29

14. Sed Substitution Delimiter 29

15. Multiple Substitute Commands Affecting the Same
Line ... 30

16. Power of & - Get Matched Pattern 32

17. Substitution Grouping (Single Group) 32

18. Substitution Grouping (Multiple Group) 34

19. Gnu Sed Only Replacement String Flags 36

Chapter 3. Regular Expressions 39
20. Regular Expression Fundamentals 39

21. Additional Regular Expressions 42

22. Sed Substitution Using Regular Expression 45

2

Book Hacked by VELOCIRAPTOR

BOOK HACKED BY VELOCIRAPTOR

Sed and Awk 101 Hacks

Chapter 4. Sed Execution 47
23. Multiple Sed Commands in Command Line 47

24. Sed Script Files .. 48

25. Sed Comments ... 49

26. Sed as an Interpreter ... 49

27. Modifying the Input File Directly 51

Chapter 5. Additional Sed Commands 53
28. Append Line After (a command) 53

29. Insert Line Before (i command) 54

30. Change Line (c command) 55

31. Combine a, i, and c Commands 56

32. Print Hidden Characters (l command) 57

33. Print Line Numbers (= command) 58

34. Change Case (using the y 'transform' command) 59

35. Multiple Files in Command Line 60

36. Quit Sed (q command) ... 61

37. Read from File (r command) 62

38. Simulating Unix commands in sed (cat, grep, head) 62

39. Sed Command Line Options 64

40. Print Pattern Space (n command) 66

Chapter 6. Sed Hold and Pattern Space Commands
 ... 68

41. Swap Pattern Space with Hold Space (x command) . . 69

42. Copy Pattern Space to Hold Space (h command) 70

43. Append Pattern Space to Hold Space (H command) . 71

44. Copy Hold Space to Pattern Space (g command) 74

45. Append Hold Space to Pattern Space (G command) . . 75

Chapter 7. Sed Multi-Line Commands and loops . . 77
46. Append Next Line to Pattern Space (N command) . . . 77

47. Print 1st Line in MultiLine (P command) 79

48. Delete 1st Line in MultiLine (D command) 80

49. Loop and Branch (b command and :label) 82

50. Loop Using t command ... 84

3

Sed and Awk 101 Hacks

Chapter 8. Awk Syntax and Basic Commands 86
51. Awk Command Syntax ... 88

52. Awk Program Structure (BEGIN, body, END block) ... 90

53. Print Command .. 95

54. Pattern Matching ... 97

Chapter 9. Awk Built-in Variables 98
55. FS - Input Field Separator 98

56. OFS - Output Field Separator 99

57. RS - Record Separator .. 101

58. ORS - Output Record Separator 103

59. NR - Number of Records 105

60. FILENAME – Current File Name 105

61. FNR - File "Number of Record" 107

Chapter 10. Awk Variables and Operators 110
62. Variables ... 110

63. Unary Operators .. 111

64. Arithmetic Operators ... 115

65. String Operator ... 116

66. Assignment Operators ... 117

67. Comparison Operators ... 119

68. Regular Expression Operators 123

Chapter 11. Awk Conditional Statements and Loops
 ... 124

69. Simple If Statement ... 124

70. If Else Statement ... 125

71. While Loop .. 127

72. Do-While Loop ... 129

73. For Loop Statement ... 130

74. Break Statement .. 132

75. Continue Statement ... 134

76. Exit Statement .. 136

Chapter 12. Awk Associative Arrays 138
77. Assigning Array Elements 138

78. Referring to Array Elements 140

4

Sed and Awk 101 Hacks

79. Browse the Array using For Loop 141

80. Delete Array Element ... 143

81. Multi Dimensional Array 144

82. SUBSEP - Subscript Separator 147

83. Sort Array Values using asort 148

84. Sort Array Indexes using asorti 151

Chapter 13. Additional Awk Commands 153
85. Pretty Printing Using printf 153

86. Built-in Numeric Functions 165

87. Random Number Generator 168

88. Generic String Functions 171

89. GAWK/NAWK String Functions 174

90. GAWK String Functions .. 178

91. Argument Processing (ARGC, ARGV, ARGIND) 178

92. OFMT .. 182

93. GAWK Built-in Environment Variables 184

94. Awk Profiler - pgawk .. 187

95. Bit Manipulation .. 189

96. User Defined Functions .. 192

97. Language Independent Output (Internationalization)
 ... 195

98. Two Way Communication 199

99. System Function .. 201

100. Timestamp Functions ... 202

101. getline Command ... 206

5

Sed and Awk 101 Hacks

Introduction

If you are a developer, or system administrator, or database
administrator, or IT manager, or just someone who spends a
significant amount of time on UNIX / Linux, you should become
proficient in Sed and Awk.

Sed and Awk are two great utilities that can solve a lot of complex
tasks quickly with only a few lines of code--in most cases, with just a
single line of code.

This book explains the following:

• Chapters 1 – 7 cover sed. Chapters 8 – 13 cover awk.

• Chapters 1 - 5 explain various sed commands, including the
powerful sed substitute command, regular expressions, and
different methods to execute sed commands.

• Chapters 6 and 7 describe sed hold space and pattern space,
sed multi-line commands, and sed loops. Clear examples are
included.

• Chapters 8 – 11 cover various awk programming language
components, with examples and built-in variables.

• Chapters 12 and 13 explain the powerful awk associative
array, plus additional built-in awk functions and commands
with clear examples.

A note on the examples: Most examples are identified in the following
way.

Example Description

Lines of code for you to type, with the result you will
see on screen.

Any additional clarification or discussion will appear below the code
section in plain text.

Also please note that commands should be typed on one line. If you
copy and paste, be sure that command is pasted as a single line.

6

“Enhance Your UNIX and Linux Life with Sed and Awk”

Sed and Awk 101 Hacks

Chapter 1: Sed Syntax and Basic
Commands

For all sed examples, we'll be using the following employee.txt file.
Please create this text file to try out the commands given in this
book.

$ vi employee.txt

101,John Doe,CEO

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

The above employee database contains the following fields for every
record:

• Employee Id

• Employee Name

• Title

Sed stands for Stream Editor. It is very powerful tool to manipulate,
filter, and transform text. Sed can take input from a file, or from a
pipe. You might even have several sed one line commands in your
bash startup file that you use for various scenarios without exactly
understanding the sed scripts.

For beginners, sed script might look cryptic. Once you understand the
sed commands in detail, you'll be able to solve a lot of complex text
manipulation problems by writing a quick sed script.

In this book, I've explained all sed commands and provided easy-to-
understand examples.

9

airs-sec
高亮

Sed and Awk 101 Hacks

1. Sed Command Syntax

The purpose of this section is to get you familiarized with sed syntax
and command structure. This is not meant to explain the individual
sed commands, which are covered in detail later.

Basic sed syntax:

sed [options] {sed-commands} {input-file}

Sed reads one line at a time from the {input-file} and executes the
{sed-commands} on that particular line.

It reads the 1st line from the {input-file} and executes the {sed-
commands} on the 1st line. Then it reads the 2nd line from the
{input-file} and executes the {sed-commands} on the 2nd line. Sed
repeats this process until it reaches the end of the {input-file}.

There are also a few optional command line options that can be
passed to sed as indicated by [options].

The following example demonstrates the basic sed syntax. This
simple sed example prints all the lines from the /etc/passwd file.

sed -n 'p' /etc/passwd

The main focus here is on the {sed-commands}, which can be either
a single sed command or multiple sed commands. You can also
combine multiple sed-commands in a file and call the sed script file
using the -f option as shown below.

Basic sed syntax for use with sed-command file:

sed [options] -f {sed-commands-in-a-file} {input-file}

The following example demonstrates the basic syntax. This example
prints lines beginning with root and nobody from the /etc/passwd file.

10

Sed and Awk 101 Hacks

$ vi test-script.sed

/^root/ p

/^nobody/ p

$ sed -n -f test-script.sed /etc/passwd

While executing multiple sed commands, you can also directly specify
them in the command line using -e as shown below.

Basic sed syntax using -e:

sed [options] -e {sed-command-1} -e {sed-command-2}
{input-file}

The following example demonstrates the basic syntax. This prints
lines beginning with root and nobody from /etc/passwd file:

sed -n -e '/^root/ p' -e '/^nobody/ p' /etc/passwd

If you are executing a lot of commands in a single line using several
-e arguments, you can split them into multiple lines using a back
slash as shown below.

sed -n \

-e '/^root/ p' \

-e '/^nobody/ p' \

/etc/passwd

You can also execute multiple sed commands in the command line by
grouping them together using { }:

Basic sed syntax using { }:

sed [options] '{

sed-command-1

sed-command-2

11

Sed and Awk 101 Hacks

}' input-file

The following example demonstrates this version of the basic syntax.
This also prints lines beginning with root and nobody from
/etc/passwd file.

sed -n '{

/^root/ p

/^nobody/ p

}' /etc/passwd

Note: Sed never modifies the original file. It always prints the output
to stdout. If you want to save the changes, you should redirect the
output to a file by explicitly specifying > filename.txt.

2. Sed Scripting Flow

Sed scripting follows the easily remembered sequence Read,
Execute, Print, Repeat. Use the simple REPR acronym to remember
sed execution flow.

We look at the steps in this sequence. Sed will:

• Read a line into the pattern space (an internal temporary sed
buffer, where it places the line it reads from the input file).

• Execute the sed command on the line in the sed pattern
space. If there are more than one sed commands available,
either via a sed script, -e options, or { }, it executes all the
sed commands one by one in sequence on the line that is
currently in the pattern space.

• Print the line from the pattern space. After printing this line,
the sed pattern space will be empty.

• Repeat this again until the end of the input file is reached.

12

airs-sec
高亮

Sed and Awk 101 Hacks

Fig: Illustration of SED execution flow

3. Print Pattern Space (p command)

Using the sed p command, you can print the current pattern space.

You may wonder why you would need the p command, since by
default sed prints the pattern buffer after executing its commands.

There are reasons, as you will see; the command allows you to
specifically control what is printed to stdout. Usually when p is used
you will use the -n option to suppress the the default printing that
happens as part of the standard sed flow. Otherwise, when execute p
(print) as one of the commands, the line will be printed twice.

The following example prints every line of employee.txt twice:

$ sed 'p' employee.txt

101,John Doe,CEO

101,John Doe,CEO

102,Jason Smith,IT Manager

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

13

airs-sec
高亮

Sed and Awk 101 Hacks

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

105,Jane Miller,Sales Manager

Print each line once (functionally the same as 'cat
employee.txt'):

$ sed -n 'p' employee.txt

101,John Doe,CEO

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

Specifying an Address Range

If you don't specify an address range before the sed command, by
default it matches all the lines. The following are some examples of
specifying an address range before the sed command.

Print only the 2nd line:

$ sed -n '2 p' employee.txt

102,Jason Smith,IT Manager

Print from line 1 through line 4:

$ sed -n '1,4 p' employee.txt

101,John Doe,CEO

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

14

Sed and Awk 101 Hacks

Print from line 2 through the last line ($ represents the last
line):

$ sed -n '2,$ p' employee.txt

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

Modify Address Range

You can modify address range using comma, plus, and tilde.

In the examples above, we saw the use of the comma (,) as part of an
address range specification. Its meaning is clear: n,m indicates n
through m.

The plus (+) may be used in conjunction with the comma, to specify a
number of lines instead of an absolute line number. For example, n,
+m means the m lines starting with n.

The tilde (~) may also be used in an address range. Its special
meaning is to skip lines between commands. For example, address
range n~m indicates that sed should start at the nth line and pick up
every mth line from there.

• 1~2 matches 1,3,5,7, etc.

• 2~2 matches 2,4,6,8, etc.

• 1~3 matches 1,4,7,10, etc.

• 2~3 matches 2,5,8,11, etc.

Print only odd numbered lines:

$ sed -n '1~2 p' employee.txt

101,John Doe,CEO

103,Raj Reddy,Sysadmin

105,Jane Miller,Sales Manager

15

airs-sec
高亮

Sed and Awk 101 Hacks

Pattern Matching

Just as you can specify a numbered address (or address range), you
can also specify a pattern (or pattern range) to match, as shown in
the next few examples.

Print lines matching the pattern “Jane”:

$ sed -n '/Jane/ p' employee.txt

105,Jane Miller,Sales Manager

Print lines starting from the 1st match of "Jason" until the 4th
line:

$ sed -n '/Jason/,4 p' employee.txt

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

Note: If there were no matches for "Jason" in the 1st 4 lines, this
command would print the lines that match "Jason" after the 4th line.

Print lines starting from the 1st match of "Raj" until the last
line:

$ sed -n '/Raj/,$ p' employee.txt

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

Print lines starting from the line matching "Raj" until the line
matching "Jane":

$ sed -n '/Raj/,/Jane/ p' employee.txt

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

16

airs-sec
高亮

Sed and Awk 101 Hacks

Print the line matching "Jason" and 2 lines immediately after
that:

$ sed -n '/Jason/,+2 p' employee.txt

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

4. Delete Lines (d command)

Using the sed d command, you can delete lines. Please note that the
lines are only deleted from the output stream. Just like any other sed
command, the d command doesn't modify the content of the original
input file.

By default if you don't specify any address range before the sed
command, it matches all the lines. So, the following example will not
print anything, as it matches all the lines in the employee.txt and
deletes them.

sed 'd' employee.txt

It's more useful to specify an address range to be deleted. The
following are some examples:

Delete only the 2nd line:

$ sed '2 d' employee.txt

101,John Doe,CEO

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

Delete from line 1 through 4:

$ sed '1,4 d' employee.txt

105,Jane Miller,Sales Manager

17

Sed and Awk 101 Hacks

Delete from line 2 through the last line:

$ sed '2,$ d' employee.txt

101,John Doe,CEO

Delete only odd number of lines:

$ sed '1~2 d' employee.txt

102,Jason Smith,IT Manager

104,Anand Ram,Developer

Delete lines matching the pattern "Manager":

$ sed '/Manager/ d' employee.txt

101,John Doe,CEO

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

Delete lines starting from the 1st match of "Jason" until the 4th
line:

$ sed '/Jason/,4 d' employee.txt

101,John Doe,CEO

105,Jane Miller,Sales Manager

If there are no matches for "Jason" in the 1st 4 lines, this command
deletes only the lines that match "Jason" after the 4th line.

Delete lines starting from the 1st match of "Raj" until the last
line:

$ sed '/Raj/,$ d' employee.txt

101,John Doe,CEO

102,Jason Smith,IT Manager

Delete lines starting from the line matching "Raj" until the line
matching "Jane":

$ sed '/Raj/,/Jane/ d' employee.txt

101,John Doe,CEO

102,Jason Smith,IT Manager

18

Sed and Awk 101 Hacks

Delete lines starting from the line matching "Jason" and 2 lines
immediately after that:

$ sed '/Jason/,+2 d' employee.txt

101,John Doe,CEO

105,Jane Miller,Sales Manager

Useful Delete Examples

The following examples are very helpful in actual day-to-day
operations.

Delete all the empty lines from a file:

sed '/^$/ d' employee.txt

Delete all comment lines (assuming the comment starts with
#):

sed '/^#/ d' employee.txt

Note: When you have multiple sed commands, the moment sed
encounters the 'd' command, the whole line matching the pattern will
be deleted, and no further commands will be executed on the deleted
line.

5. Write Pattern Space to File (w command)

Using the sed w command, you can write the current pattern space to
a file. By default as per the sed standard flow, the pattern space will
be printed to stdout, so if you want output to file but not screen you
should also use the sed option -n.

The following are some examples.

Write the content of employee.txt file to file output.txt
(and display on screen):

$ sed 'w output.txt' employee.txt

101,John Doe,CEO

102,Jason Smith,IT Manager

19

airs-sec
高亮

Sed and Awk 101 Hacks

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

$ cat output.txt

101,John Doe,CEO

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

Write the content of employee.txt file to output.txt file but not
to screen:

$ sed -n 'w output.txt' employee.txt

$ cat output.txt

101,John Doe,CEO

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

Write only the 2nd line:

$ sed -n '2 w output.txt' employee.txt

$ cat output.txt

102,Jason Smith,IT Manager

Write lines 1 through 4:

$ sed -n '1,4 w output.txt' employee.txt

$ cat output.txt

101,John Doe,CEO

20

Sed and Awk 101 Hacks

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

Write from line 2 through the last line:

$ sed -n '2,$ w output.txt' employee.txt

$ cat output.txt

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

Write only odd numbered lines:

$ sed -n '1~2 w output.txt' employee.txt

$ cat output.txt

101,John Doe,CEO

103,Raj Reddy,Sysadmin

105,Jane Miller,Sales Manager

Write lines matching the pattern "Jane":

$ sed -n '/Jane/ w output.txt' employee.txt

$ cat output.txt

105,Jane Miller,Sales Manager

Write lines starting from the 1st match of "Jason" until the 4th
line:

$ sed -n '/Jason/,4 w output.txt' employee.txt

$ cat output.txt

102,Jason Smith,IT Manager

21

Sed and Awk 101 Hacks

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

If there are no matches for "Jason" in the 1st 4 lines, this command
writes only the lines that match "Jason" after the 4th line.

Write lines starting from the 1st match of "Raj" until the last
line:

$ sed -n '/Raj/,$ w output.txt' employee.txt

$ cat output.txt

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

Write lines starting from the line matching "Raj" until the line
matching "Jane":

$ sed -n '/Raj/,/Jane/ w output.txt' employee.txt

$ cat output.txt

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

Write the line matching "Jason" and the next 2 lines
immediately after that:

$ sed -n '/Jason/,+2 w output.txt' employee.txt

$ cat output.txt

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

Note: You might not use the w command frequently. Most people use
UNIX output redirection, instead, to store the output of sed to a file.
For example: sed 'p' employee.txt > output.txt

22

Sed and Awk 101 Hacks

Chapter 2. Sed Substitute
Command

The most powerful command in the stream editor is substitute. It has
such power and so many options that we give it a whole chapter.

6. Sed Substitute Command Syntax

sed '[address-range|pattern-range] s/original-
string/replacement-string/[substitute-flags]' inputfile

In the above sed substitute command syntax:

• address-range or pattern-range is optional. If you don't specify
one, sed will execute the substitute command on all lines.

• s – tells Sed to execute the substitute command

• original-string – this is the string to be searched for in the
input file. The original-string can also be a regular expression.

• replacement-string – Sed will replace original-string with this
string.

• substitute-flags are optional. More on this in the next section.

Remember that the original file is not changed; the substitution takes
place in the pattern space buffer which is then printed to stdout.

The following are couple of simple sed substitute examples (changes
shown in bold).

Replace all occurrences of Manager with Director:

$ sed 's/Manager/Director/' employee.txt

101,John Doe,CEO

102,Jason Smith,IT Director

103,Raj Reddy,Sysadmin

23

Sed and Awk 101 Hacks

104,Anand Ram,Developer

105,Jane Miller,Sales Director

Replace Manager with Director only on lines that contain the
keyword 'Sales':

$ sed '/Sales/s/Manager/Director/' employee.txt

101,John Doe,CEO

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Director

Note that the use of the address range caused just one change rather
than the two shown in the previous example.

7. Global Flag (g flag)

Sed substitute flag g stands for global. By default sed substitute
command will replace only the 1st occurrence of the {original-string}
on each line. If you want to change all the occurrences of the
{original-string} in the line to the {replacement-string}, you should
use the global flag g.

Replace the 1st occurrence of lower case a with upper case A:

$ sed 's/a/A/' employee.txt

101,John Doe,CEO

102,JAson Smith,IT Manager

103,RAj Reddy,Sysadmin

104,AnAnd Ram,Developer

105,JAne Miller,Sales Manager

Replace all occurrences of lower case a with upper case A:

$ sed 's/a/A/g' employee.txt

101,John Doe,CEO

102,JAson Smith,IT MAnAger

103,RAj Reddy,SysAdmin

24

Sed and Awk 101 Hacks

104,AnAnd RAm,Developer

105,JAne Miller,SAles MAnAger

Note: these examples were applied to the entire file because no
address range was specified.

8. Number Flag (1,2,3.. flag)

Use the number flag to specify a specific occurrence of the original-
string. Only the n-th instance of original-string will trigger the
substitution. Counting starts over on each line, and n can be anything
from 1 to 512.

For example, /11 will replace only the 11th occurrence of the original-
string in a line.

The following are few examples.

Replace the 2nd occurrence of lower case a to upper case A:

$ sed 's/a/A/2' employee.txt

101,John Doe,CEO

102,Jason Smith,IT MAnager

103,Raj Reddy,SysAdmin

104,Anand RAm,Developer

105,Jane Miller,SAles Manager

For this example, create the following file with three lines:

$ vi substitute-locate.txt

locate command is used to locate files

locate command uses database to locate files

locate command can also use regex for searching

In the file you just created, change only the 2nd occurrence of
locate to find:

$ sed 's/locate/find/2' substitute-locate.txt

locate command is used to find files

locate command uses database to find files

25

Sed and Awk 101 Hacks

locate command can also use regex for searching

Note: On line 3 in the above example, there is only one "locate" in the
original substitute-locate.txt file. So, nothing is changed on line 3.

9. Print Flag (p flag)

The sed substitute flag p stands for print. When the substitution is
successful, it prints the changed line. Like most print commands in
sed, it is most useful when combined with the -n option to suppress
default printing of all lines.

Print only the line that was changed by the substitute
command:

$ sed -n 's/John/Johnny/p' employee.txt

101,Johnny Doe,CEO

In our number flag example, we used /2 to change the 2nd
occurrence of "locate" to "find". On line 3 of locate.txt there is no 2nd
occurrence and substitution never happened on that line. Adding the
p flag to the command we used before will print the two lines that did
change.

Change the 2nd instance of “locate” to “find” and print the
result:

$ sed -n 's/locate/find/2p' substitute-locate.txt

locate command is used to find files

locate command uses database to find files

10. Write Flag (w flag)

The sed substitute flag w stands for write. When the substitution is
successful, it writes the changed line to a file. Most people use the p
flag instead, and redirect the output to a file. We include this
command for completeness.

26

Sed and Awk 101 Hacks

Write only the line that was changed by the substitute
command to output.txt:

$ sed -n 's/John/Johnny/w output.txt' employee.txt

$ cat output.txt

101,Johnny Doe,CEO

Just as we showed for the p command, adding w to our example with
the substitute-locate.txt file will send the two lines that were changed
to the output file.

Change the 2nd instance of “locate” to “find”,write the result to
a file, print all lines:

$ sed 's/locate/find/2w output.txt' substitute-
locate.txt

locate command is used to find files

locate command uses database to find files

locate command can also use regex for searching

$ cat output.txt

locate command is used to find files

locate command uses database to find files

11. Ignore Case Flag (i flag)

The sed substitute flag i stands for ignore case. You can use the i flag
to match the original-string in a case-insensitive manner. This is
available only in GNU Sed.

In the following example Sed will not replace "John" with "Johnny", as
the original-string was given in lower case "john".

Replace “john” with Johnny:

$ sed 's/john/Johnny/' employee.txt

101,John Doe,CEO

27

Sed and Awk 101 Hacks

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

Replace “john” or “John” with Johnny:

$ sed 's/john/Johnny/i' employee.txt

101,Johnny Doe,CEO

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

12. Execute Flag (e flag)

The sed substitute flag e stands for execute. Using the sed e flag, you
can execute whatever is available in the pattern space as a shell
command, and the output will be returned to the pattern space. This
is available only in the GNU sed.

The following are few examples.

For these examples create the following files.txt that contains a
list of filenames with their full path:

$ cat files.txt

/etc/passwd

/etc/group

Add the text "ls -l " in front of every line in the files.txt and
print the output:

$ sed 's/^/ls -l /' files.txt

ls -l /etc/passwd

ls -l /etc/group

28

Sed and Awk 101 Hacks

Add the text "ls -l " in front of every line in the files.txt and
execute the output:

$ sed 's/^/ls -l /e' files.txt

-rw-r--r-- 1 root root 1547 Oct 27 08:11 /etc/passwd

-rw-r--r-- 1 root root 651 Oct 27 08:11 /etc/group

13. Combine Sed Substitution Flags

You can combine one or more substitute flags as required.

The following example will replace all occurrences of "Manager" or
"manager" to "Director". This will also print only the line that was
changed by the substitute command to the screen, and write the
same information to the output.txt file.

Combine g,i,p and w flags:

$ sed -n 's/Manager/Director/gipw output.txt'
employee.txt

102,Jason Smith,IT Director

105,Jane Miller,Sales Director

$ cat output.txt

102,Jason Smith,IT Director

105,Jane Miller,Sales Director

14. Sed Substitution Delimiter

In all the above sed examples, we used the default sed delimiter /.
i.e. s/original-string/replacement-string/ When there is a slash / in the
original-string or the replacement-string, we need to escape it using \.
For this example create a path.txt file which contains a directory path
as shown below.

$ vi path.txt

reading /usr/local/bin directory

29

Sed and Awk 101 Hacks

Now, let us change /usr/local/bin to /usr/bin using the sed substitute
command. In this sed substitution example, the delimiter path
delimiter ‘/’ was escaped using back slash '\' in the original-string and
the replacement-string.

$ sed 's/\/usr\/local\/bin/\/usr\/bin/' path.txt

reading /usr/bin directory

Ugly isn't it? When you are trying to replace a long path name, it
might be very confusing to use all those escape characters '\'.
Fortunately, you can use any character as substitution delimiter. For
example, | or ^ or @ or !.

All of the following are valid and easy to read. I have not shown the
output of the commands since they all produce exactly the same
result. I prefer to use @ (or !) symbol when replacing a directory path
but it is your personal choice.

sed 's|/usr/local/bin|/usr/bin|' path.txt

sed 's^/usr/local/bin^/usr/bin^' path.txt

sed 's@/usr/local/bin@/usr/bin@' path.txt

sed 's!/usr/local/bin!/usr/bin!' path.txt

15. Multiple Substitute Commands Affecting the
Same Line

As we discussed earlier, the sed execution flow is Read, Execute,
Print, Repeat. The Execute portion, as we mentioned, may consist of
multiple sed commands, which sed will execute one-by-one.

For example, if you have two sed commands, sed will execute
command-1 on the pattern space, then execute command-2 on the
pattern space. If command-1 changed something in the pattern
space, command-2 will be executed on the newly changed pattern
space (and not the original line that was Read).

The following example demonstrates the execution of two sed
substitute commands on the pattern space.

30

Sed and Awk 101 Hacks

Change Developer to IT Manager, then change Manager to
Director:

$ sed '{

s/Developer/IT Manager/

s/Manager/Director/

}' employee.txt

101,John Doe,CEO

102,Jason Smith,IT Director

103,Raj Reddy,Sysadmin

104,Anand Ram,IT Director

105,Jane Miller,Sales Director

Let us analyze the sed execution flow for line 4 in the example.

1. Read: At this stage, Sed reads the line and puts it in the pattern
space. So, the following is the content of the pattern space.

104,Anand Ram,Developer

2. Execute: Sed executes the 1st sed command on the pattern
space, which is s/Developer/IT Manager/. So, after this command, the
following is the content of the pattern space.

104,Anand Ram,IT Manager

Now, sed executes the 2nd sed command on the pattern space,
which is s/Manager/Director/. After this command, the following is the
content of the pattern space.

104,Anand Ram,IT Director

Remember: Sed executes the 2nd command on the content of the
current pattern space after execution of the first command.

31

Sed and Awk 101 Hacks

3. Print: It prints the content of the current pattern space, which is
the following.

104,Anand Ram,IT Director

4. Repeat: It moves on to the next line and repeats from step#1.

16. Power of & - Get Matched Pattern

When & is used in the replacement-string, it replaces it with whatever
text matched the original-string or the regular-expression. This is
very powerful and useful.

The following are few examples.

Enclose the employee id (the 1st three numbers) between [and
], i.e. 101 becomes [101], 102 becomes [102], etc.

$ sed 's/^[0-9][0-9][0-9]/[&]/g' employee.txt

[101],John Doe,CEO

[102],Jason Smith,IT Manager

[103],Raj Reddy,Sysadmin

[104],Anand Ram,Developer

[105],Jane Miller,Sales Manager

 Enclose the whole input line between < and >

$ sed 's/^.*/<&>/' employee.txt

<101,John Doe,CEO>

<102,Jason Smith,IT Manager>

<103,Raj Reddy,Sysadmin>

<104,Anand Ram,Developer>

<105,Jane Miller,Sales Manager>

17. Substitution Grouping (Single Group)

Grouping can be used in sed just like in a normal regular expression.
A group is opened with “\(” and closed with “\)”. Grouping can be
used in combination with back-referencing.

32

Sed and Awk 101 Hacks

A back-reference is the re-use of a part of a regular expression
selected by grouping. Back-references in sed can be used in both a
regular expression and in the replacement part of the substitute
command.

Single grouping:

$ sed 's/\([^,]*\).*/\1/g' employee.txt

101

102

103

104

105

In the above example:

• Regular expression \([^,]*\) matches the string up to the 1st
comma.

• \1 in the replacement-string replaces the first matched group.

• g is the global substitute flag.

This sed example displays only the first field from the
/etc/passwd file, i.e. it displays only the username:

sed 's/\([^:]*\).*/\1/' /etc/passwd

The following example encloses the 1st letter in every word
inside (), if the 1st character is upper case.

$ echo "The Geek Stuff" | sed 's/\(\b[A-Z]\)/\(\1\)/g'

(T)he (G)eek (S)tuff

For the next example create a numbers.txt sample file as shown
below.

$ vi numbers.txt

1

12

123

33

Sed and Awk 101 Hacks

1234

12345

123456

Commify numbers, i.e. insert commas to make them more
readable:

$ sed 's/\(^\|[^0-9.]\)\([0-9]\+\)\([0-9]\
{3\}\)/\1\2,\3/g' numbers.txt

1

12

123

1,234

12,345

123,456

The above command should be executed in a single line as shown
below.

sed 's/\(^\|[^0-9.]\)\([0-9]\+\)\([0-9]\{3\}\)/\1\2,\3/g' numbers.txt

18. Substitution Grouping (Multiple Group)

In multi grouping, you can have multiple groups enclosed in multiple
“\(” and “\)”. When you have multiple groups in the substitute regular
expression, you can use \n to specify the nth group in the sed
replacement string. An example is shown below.

Get only the 1st column (employee id) and the 3rd column
(title):

$ sed 's/\([^,]*\),\([^,]*\),\([^,]*\).*/\1,\3/g'
employee.txt

101,CEO

102,IT Manager

103,Sysadmin

104,Developer

105,Sales Manager

The above command should be executed in a single line as shown
below.

34

Sed and Awk 101 Hacks

sed 's/\([^,]*\),\([^,]*\),\([^,]*\).*/\1,\3/g' employee.txt

In the above example, you can see three groups mentioned in the
original-string (reg-ex). These three groups are separated by
commas.

• ([^,]*\) is group 1 that matches the employee id

• , is the field separator after group 1

• ([^,]*\) is group 2 that matches the employee name

• , is the field separator after group 2

• ([^,]*\) is group 3 that matches the employee title

• , is the field separator after group 3 The replacement-string
section of the above example indicates how these groups
should be used.

• \1 is to print group 1 (employee id)

• , is to print a comma after printing group 1

• \3 is to print group 1 (title)

Note: Sed can hold a maximum of 9 groups referenced using \1
through \9

Swap field 1 (employee id) with field 2 (employee name); print
the employee.txt file:

$ sed 's/\([^,]*\),\([^,]*\),\(.*\).*/\2,\1,\3/g'
employee.txt

John Doe,101,CEO

Jason Smith,102,IT Manager

Raj Reddy,103,Sysadmin

Anand Ram,104,Developer

Jane Miller,105,Sales Manager

The above command should be executed in a single line as shown
below.

sed 's/\([^,]*\),\([^,]*\),\(.*\).*/\2,\1,\3/g' employee.txt

35

Sed and Awk 101 Hacks

19. Gnu Sed Only Replacement String Flags

These flags are available only in GNU version of sed. They can be
used in the replacement-string part of the sed substitute command.

\l replacement string flag

When you specify \l in the replacement-string part, it treats the
character that immediately follows \l as lower case. You already know
the following simple example will change John to JOHNNY.

sed 's/John/JOHNNY/' employee.txt

The following example contains \l before H in the replacement-string
(i.e. JO\lHNNY). This will change only the character h in JOHNNY to
lower case.

Change John to JOhNNY:

$ sed -n 's/John/JO\lHNNY/p' employee.txt

101,JOhNNY Doe,CEO

\L replacement string flag

When you specify \L in the replacement-string part, it treats the rest
of the characters as lower case.

The following example contains \L before H in the replacement-string
(i.e. JO\lHNNY). This will change the rest of the characters from h to
lower case.

Change Johnny to JOhnny:

$ sed -n 's/John/JO\LHNNY/p' employee.txt

101,JOhnny Doe,CEO

\u replacement string flag

Just like \l, but for upper case. When you specify \l in the
replacement-string part, it treats the character that immediately

36

Sed and Awk 101 Hacks

follows \u as upper case. The following example contains \u before h
in the replacement-string (i.e. jo\uhnny). This will change only the
character h in johnny to upper case.

Change John to joHnny:

$ sed -n 's/John/jo\uhnny/p' employee.txt

101,joHnny Doe,CEO

\U replacement string flag

When you specify \U in the replacement-string part, it treats the rest
of the characters as upper case. The following example contains \U
before h in the replacement-string (i.e. jo\Uhnny). This will change the
rest of the characters from h in johnny to upper case.

Change John to joHNNY:

$ sed -n 's/John/jo\Uhnny/p' employee.txt

101,joHNNY Doe,CEO

\E replacement string flag

This should be used in conjunction with either \L or \U. This stops the
conversion initiated by either \L or \U. The following example prints
the whole replacement string "Johnny Boy" in upper case, as we have
\U at the beginning of the replacement-string.

Change John to JOHNNY BOY:

$ sed -n 's/John/\UJohnny Boy/p' employee.txt

101,JOHNNY BOY Doe,CEO

Change John to JOHNNY Boy:

$ sed -n 's/John/\UJohnny\E Boy/p' employee.txt

101,JOHNNY Boy Doe,CEO

The above example prints only "Johnny" in the upper case, as we
have \E immediately after "Johnny" in the replacement-string.

37

Sed and Awk 101 Hacks

Replacement String Flag Usages

The above static examples are shown only to understand how these
switches works. However, the flags don't have much value when used
with static values, as you can just type the static values in the exact
case needed.

The flags are quite useful when combined with grouping. In the
previous example we learned how to swap field 1 with field 3 using
grouping. You can convert a whole grouping to either upper or lower
case using these switches.

Employee name in all upper case, and title in all lower case:

$ sed 's/\([^,]*\),\([^,]*\),\(.*\).*/\U\2\E,\1,\L\3/g'
employee.txt

JOHN DOE,101,ceo

JASON SMITH,102,it manager

RAJ REDDY,103,sysadmin

ANAND RAM,104,developer

JANE MILLER,105,sales manager

The above command should be executed in a single line as shown
below.

sed 's/\([^,]*\),\([^,]*\),\(.*\).*/\U\2\E,\1,\L\3/g' employee.txt

In the above example, in the replacement-string, we have the
following:

• \U\2\E - This indicates that this field, which is the 2nd group
(employee name), should be converted to upper case. \U start
the upper case conversion, and \E stops it.

• \L\3 - This indicates that this field, which is 3rd group (title),
should be converted to lower case. \L starts the lower case
conversion for rest of the characters.

38

Sed and Awk 101 Hacks

Chapter 3. Regular Expressions

20. Regular Expression Fundamentals

Regular expressions (or regex) are used in many *nix commands,
including sed.

Beginning of line (^)

 The Caret Symbol ^ matches at the start of a line.

Display lines which start with 103:

$ sed -n '/^103/ p' employee.txt

103,Raj Reddy,Sysadmin

Note that ^ matches the expression at the beginning of a line, only if
it is the first character in a regular expression. In this example, ^N
matches all the lines that begins with N.

End of line ($)

The dollar symbol $ matches the end of a line.

Display lines which end with the letter r:

$ sed -n '/r$/ p' employee.txt

102,Jason Smith,IT Manager

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

Single Character (.)

The special meta-character “.” (dot) matches any character except
the end of the line character.

• . matches single character

• .. matches two characters

39

Sed and Awk 101 Hacks

• ... matches three characters

• etc.

In the following example, the pattern "J followed by three characters
and a space" will be replaced with "Jason followed by a space".

So, "J... " matches both "John " and "Jane " from employee.txt, and
these two lines are replaced accordingly as shown below.

$ sed -n 's/J... /Jason /p' employee.txt

101,Jason Doe,CEO

105,Jason Miller,Sales Manager

Zero or more Occurrences (*)

The special character “*” (star) matches zero or more occurrences of
the previous character. For example, the pattern ’1*’ matches zero or
more ’1'.

For this example create the following log.txt file:

$ vi log.txt

log: Input Validated

log:

log: testing resumed

log:

log:output created

Suppose you would like to view only the lines that contain "log:"
followed by a message. The message might immediately follow the
log: or might have some spaces. You don't want to view the lines that
contain "log:" without anything.

Display all the lines that contain "log:" followed by one or more
spaces followed by a character:

$ sed -n '/log: *./ p' log.txt

log: Input Validated

log: testing resumed

40

airs-sec
高亮

Sed and Awk 101 Hacks

log:output created

Note: In the above example the dot at the end is necessary. If not
included, sed will also print all the lines containing "log:" only.

One or more Occurrence (\+)

The special character “\+” matches one or more occurrence of the
previous character. For example, a space before “\+”, i.e ” \+”
matches at least one or more space character.

Let us use the same log.txt as an example file.

Display all the lines that contain "log:" followed by one or more
spaces:

$ sed -n '/log: \+/ p' log.txt

log: Input Validated

log: testing resumed

Note: In addition to not matching the "log:" only lines, the above
example also didn't match the line "log:output created", as there is
no space after "log:" in this line.

Zero or one Occurrence (\?)

The special character “?” matches zero or one occurrences of the
previous character as shown below.

$ sed -n '/log: \?/ p' log.txt

log: Input Validated

log:

log: testing resumed

log:

log:output created

Escaping the Special Character (\)

If you want to search for special characters (for example: * , dot) in
the content you have to escape the special character in the regular
expression.

41

Sed and Awk 101 Hacks

$ sed -n '/127\.0\.0\.1/ p' /etc/hosts

127.0.0.1 localhost.localdomain localhost

Character Class ([0-9])

The character class is nothing but a list of characters mentioned
within a square bracket; this is used to match only one out of several
characters.

Match any line that contains 2 or 3 or 4:

$ sed -n '/[234]/ p' employee.txt

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

Within the square bracket, you can use a hyphen you can specify a
range of characters. For example, [0123456789] can be represented
by [0-9], and alphabetic ranges can be specified such as [a-z],[A-Z]
etc.

Match any line that contains 2 or 3 or 4 (alternate form):

$ sed -n '/[2-4]/ p' employee.txt

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

21. Additional Regular Expressions

OR Operation (|)

The pipe character (|) is used to specify that either of two whole
subexpressions could occur in a position. “subexpression1|
subexpression2” matches either subexpression1 or subexpression2.

42

Sed and Awk 101 Hacks

Print lines containing either 101 or 102:

$ sed -n '/101\|102/ p' employee.txt

101,John Doe,CEO

102,Jason Smith,IT Manager

Please note that the | symbol is escaped with a /.

Print lines that contain a character from 2 to 3 or that contain
the string 105:

$ sed -n '/[2-3]\|105/ p' employee.txt

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

105,Jane Miller,Sales Manager

Exactly M Occurrences ({m})

A Regular expression followed by {m} matches exactly m
occurrences of the preceding expression.

For this example create the following numbers.txt file.

$ vi numbers.txt

1

12

123

1234

12345

123456

Print lines that contain any digit (will print all lines):

$ sed -n '/[0-9]/ p' numbers.txt

1

12

123

1234

12345

43

Sed and Awk 101 Hacks

123456

Print lines consisting of exactly 5 digits:

$ sed -n '/^[0-9]\{5\}$/ p' numbers.txt

12345

M to N Occurrences ({m,n})

A regular expression followed by {m,n} indicates that the preceding
item must match at least m times, but not more than n times. The
values of m and n must be non-negative and smaller than 255.

Print lines consisting of at least 3 but not more than 5 digits:

$ sed -n '/^[0-9]\{3,5\}$/ p' numbers.txt

123

1234

12345

A Regular expression followed by {m,} is a special case that matches
m or more occurrences of the preceding expression.

Word Boundary (\b)

\b is used to match a word boundary. \b matches any character(s) at
the beginning (\bxx) and/or end (xx\b) of a word, thus \bthe\b will find
the but not they. \bthe will find the or they.

Create the following sample file for testing.

$ cat words.txt

word matching using: the

word matching using: thethe

word matching using: they

Match lines containing the whole word "the":

$ sed -n '/\bthe\b/ p' words.txt

word matching using: the

44

Sed and Awk 101 Hacks

Please note that if you don't specify the \b at the end, it will match all
lines.

Match lines containing words that start with “the”:

$ sed -n '/\bthe/ p' words.txt

word matching using: the

word matching using: thethe

word matching using: they

Back References (\n)

Back references let you group expressions for further use.

Match only the line that has the word "the" repeated twice:

$ sed -n '/\(the\)\1/ p' words.txt

Using the same logic, the regular expression "\([0-9]\)\1" matches two
digit number in which both the digits are same number—like 11,22,33
...

22. Sed Substitution Using Regular Expression

The following are few sed substitution examples that uses regular
expressions.

Replace the last two characters in every line of employee.txt
with ",Not Defined":

$ sed 's/..$/,Not Defined/' employee.txt

101,John Doe,C,Not Defined

102,Jason Smith,IT Manag,Not Defined

103,Raj Reddy,Sysadm,Not Defined

104,Anand Ram,Develop,Not Defined

105,Jane Miller,Sales Manag,Not Defined

45

Sed and Awk 101 Hacks

Delete the rest of the line starting from “Manager”:

$ sed 's/Manager.*//' employee.txt

101,John Doe,CEO

102,Jason Smith,IT

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales

Delete all lines that start with "#" :

sed -e 's/#.*// ; /^$/ d' employee.txt

Create the following test.html for the next example:

$ vi test.html

<html><body><h1>Hello World!</h1></body></html>

Strip all html tags from test.html:

$ sed -e 's/<[^>]*>//g' test.html

Hello World!

Remove all comments and blank lines:

sed -e 's/#.*//' -e '/^$/ d' /etc/profile

Remove only the comments. Leave the blank lines:

sed -e '/^#.*/ d' /etc/profile

You can convert DOS newlines (CR/LF) to Unix format Using sed.
When you copy the DOS file to Unix, you could find \r\n in the end of
each line.

Convert the DOS file format to Unix file format using sed:

sed 's/.$//' filename

46

Sed and Awk 101 Hacks

Chapter 4. Sed Execution

23. Multiple Sed Commands in Command Line

As we showed in Chapter 1, there are several methods to execute
multiple sed commands from the command line.

1. Use multiple -e option in the command line

Use multiple sed commands using -e sed command line option as
shown below:

sed -e 'command1' -e 'command2' -e 'command3'

Search for root, or nobody, or mail in the /etc/passwd file:

sed -n -e '/^root/ p' -e '/^nobody/ p' -e '/^mail/
p' /etc/passwd

The above command should be executed in a single line as shown
below.

sed -n -e '/^root/ p' -e '/^nobody/ p' -e '/^mail/ p' /etc/passwd

2. Break-up several sed commands using \

When you have a very long command, such as when executing
several sed commands in the command line using -e, you can break it
up using \

sed -n -e '/^root/ p' \

-e '/^nobody/ p' \

-e '/^mail/ p' \

/etc/passwd

47

Sed and Awk 101 Hacks

3. Group multiple commands using { }

When you have a lot of sed commands to be executed, you can group
them together using { } as shown below.

sed -n '{

/^root/ p

/^nobody/ p

/^mail/ p

}' /etc/passwd

24. Sed Script Files

If you want to reuse a set of sed commands, create a sed script file
with all the sed commands and execute it using -f command line
option as shown below.

First, create a file that contains all the sed commands as shown
below. You already know what these individual sed commands do, as
we explained it in the previous sections.

$ vi mycommands.sed

s/\([^,]*\),\([^,]*\),\(.*\).*/\2,\1,\3/g

s/^.*/<&>/

s/Developer/IT Manager/

s/Manager/Director/

Next, execute this sed command file on the input file.

$ sed -f mycommands.sed employee.txt

<John Doe,101,CEO>

<Jason Smith,102,IT Director>

<Raj Reddy,103,Sysadmin>

<Anand Ram,104,IT Director>

<Jane Miller,105,Sales Director>

48

Sed and Awk 101 Hacks

25. Sed Comments

Sed comments start with a #. We all understand that sed uses very
cryptic language. The sed commands that you write today might look
unfamiliar if you view them after a long time. So, it is recommended
to document what you mean inside the sed script file using sed
comments, as shown below.

$ vi mycommands.sed

Swap field 1 (employee id) with field 2 (employee
name)

s/\([^,]*\),\([^,]*\),\(.*\).*/\2,\1,\3/g

Enclose the whole line within < and >

s/^.*/<&>/

Replace Developer with IT Manager

s/Developer/IT Manager/

Replace Manager with Director

s/Manager/Director/

Note: If the 1st 2 characters of the 1st line in the *.sed script are #n,
sed will automatically use the -n (don't print the pattern buffer)
option.

26. Sed as an Interpreter

Just as you write shell scripts and execute them from the command
line just by calling the file name, you can set up sed scripts for
execution from the command line, i.e. Sed can be involved as an
interpreter. To do this, add "#!/bin/sed -f" as the 1st line to your sed-
script.sh file as shown below.

$ vi myscript.sed

#!/bin/sed -f

Swap field 1 (employee id) with field 2 (employee
name)

s/\([^,]*\),\([^,]*\),\(.*\).*/\2,\1,\3/g

Enclose the whole line within < and >

s/^.*/<&>/

Replace Developer with IT Manager

49

Sed and Awk 101 Hacks

s/Developer/IT Manager/

Replace Manager with Director

s/Manager/Director/

Now, execute the sed script directly by invoking it from the command
line.

chmod u+x myscript.sed

./myscript.sed employee.txt

You can also specify -n in the 1st line of the sed script to suppress
output.

$ vi testscript.sed

#!/bin/sed -nf

/root/ p

/nobody/ p

Now, execute the above test script as shown below.

chmod u+x testscript.sed

./testscript.sed /etc/passwd

Just for testing purposes, remove the -n from the 1st line of
testscript.sed and execute it again to see how it works.

Important note: you must use -nf (and not -fn). If you specify -fn,
you'll get the following error message when you execute the sed
script.

$./testscript.sed /etc/passwd

/bin/sed: couldn't open file n: No such file or
directory

50

Sed and Awk 101 Hacks

27. Modifying the Input File Directly

As you know already, sed doesn't modify the input files by default.
Sed writes the output to standard output. When you want to store
that in a file, you redirect it to a file (or use the w command.

Before we continue with this example, take a backup of employee.txt:

cp employee.txt employee.txt.orig

To make a modification directly on the input-file, you typically
redirect the output to a temporary file, and then rename the
temporary file to a new file.

sed 's/John/Johnny/' employee.txt > new-employee.txt

mv new-employee.txt employee.txt

Instead, you can use the sed command line option -i, which lets sed
directly modify the input file.

Replace John with Johnny in the original employee.txt file itself:

$ sed -i 's/John/Johnny/' employee.txt

$ cat employee.txt

101,Johnny Doe,CEO

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

Again, please pay attention that -i modifies the input-file. Probably
you will want to do this sometimes, but be very careful. One thing
you can do to protect yourself is to add a file extension whenever you
use -i. Sed will make a backup of the original file before writing the
new content.

51

Sed and Awk 101 Hacks

Replace John with Johnny in the original employee.txt file but
save a backup copy:

$ sed -ibak 's/John/Johnny/' employee.txt

This takes the backup of the original file as shown below.

$ cat employee.txtbak

101,John Doe,CEO

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

The original input file was modified by the above sed command.

$ cat employee.txt

101,Johnny Doe,CEO

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

Instead of -i, you can also use the longer form, --in-place. Both of the
following commands are the same.

sed -ibak 's/John/Johnny/' employee.txt

sed --in-place=bak 's/John/Johnny/' employee.txt

Finally, restore the original employee.txt file, as we need that for the
rest of our examples:

cp employee.txt.orig employee.txt

52

Sed and Awk 101 Hacks

Chapter 5. Additional Sed
Commands

28. Append Line After (a command)

You can insert a new line after a specific location by using the sed
append command (a).

Syntax:

$ sed '[address] a the-line-to-append' input-file

Add a new record to the employee.txt file after line number:

$ sed '2 a 203,Jack Johnson,Engineer' employee.txt

101,John Doe,CEO

102,Jason Smith,IT Manager

203,Jack Johnson,Engineer

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

Add a new record to the end of the employee.txt file:

$ sed '$ a 106,Jack Johnson,Engineer' employee.txt

101,John Doe,CEO

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

106,Jack Johnson,Engineer

You can also append multiple lines using the sed a command.

53

Sed and Awk 101 Hacks

Add two lines after the line that matches 'Jason':

$ sed '/Jason/a\

203,Jack Johnson,Engineer\

204,Mark Smith,Sales Engineer' employee.txt

101,John Doe,CEO

102,Jason Smith,IT Manager

203,Jack Johnson,Engineer

204,Mark Smith,Sales Engineer

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

29. Insert Line Before (i command)

The sed insert command (i) works just like the append command
except that it inserts a line before a specific location instead of after
the location.

Syntax:

$ sed '[address] i the-line-to-insert' input-file

Insert a new record before line number 2 of the employee.txt
file:

$ sed '2 i 203,Jack Johnson,Engineer' employee.txt

101,John Doe,CEO

203,Jack Johnson,Engineer

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

Insert a new record before the last line of the employee.txt file:

$ sed '$ i 108,Jack Johnson,Engineer' employee.txt

101,John Doe,CEO

54

Sed and Awk 101 Hacks

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

108,Jack Johnson,Engineer

105,Jane Miller,Sales Manager

You can also insert multiple lines using the sed i command.

Insert two lines before the line that matches 'Jason':

$ sed '/Jason/i\

203,Jack Johnson,Engineer\

204,Mark Smith,Sales Engineer' employee.txt

101,John Doe,CEO

203,Jack Johnson,Engineer

204,Mark Smith,Sales Engineer

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

30. Change Line (c command)

The sed change command (c) lets you replace an existing line with
new text.

Syntax:

$ sed '[address] c the-line-to-insert' input-file

Delete the record at line number 2 and replace it with a new
record:

$ sed '2 c 202,Jack Johnson,Engineer' employee.txt

101,John Doe,CEO

202,Jack Johnson,Engineer

103,Raj Reddy,Sysadmin

55

Sed and Awk 101 Hacks

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

You can also replace a single line with multiple lines.

Delete the line that matches 'Raj' and replaces it with two new
lines:

$ sed '/Raj/c\

203,Jack Johnson,Engineer\

204,Mark Smith,Sales Engineer' employee.txt

101,John Doe,CEO

102,Jason Smith,IT Manager

203,Jack Johnson,Engineer

204,Mark Smith,Sales Engineer

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

31. Combine a, i, and c Commands

You can also combine the a, i, and c commands. the following sed
example does all these three things:

• a - Append 'Jack Johnson' after 'Jason'

• i - Insert 'Mark Smith' before 'Jason'

• c - Change 'Jason' to 'Joe Mason'

$ sed '/Jason/ {

a\

204,Jack Johnson,Engineer

i\

202,Mark Smith,Sales Engineer

c\

203,Joe Mason,Sysadmin

56

Sed and Awk 101 Hacks

}' employee.txt

101,John Doe,CEO

202,Mark Smith,Sales Engineer

203,Joe Mason,Sysadmin

204,Jack Johnson,Engineer

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

32. Print Hidden Characters (l command)

The sed l command prints the hidden characters, for example, \t for
tab, and $ for end of the line.

For testing, create a test file with the following content. Make sure to
use the tab key between the fields in this file.

$ cat tabfile.txt

fname First Name

lname Last Name

mname Middle Name

Executing the sed l command will display \t for tab, and $ for
EOL:

$ sed -n l tabfile.txt

fname\tFirst Name$

lname\tLast Name$

mname\tMiddle Name$

When you specify a number followed by the l command, the output
line is wrapped at the nth number using a non printable character as
shown in the example below. This works only on GNU sed.

$ sed -n 'l 20' employee.txt

101,John Doe,CEO$

57

Sed and Awk 101 Hacks

102,Jason Smith,IT \

Manager$

103,Raj Reddy,Sysad\

min$

104,Anand Ram,Devel\

oper$

105,Jane Miller,Sal\

es Manager$

33. Print Line Numbers (= command)

The sed = command prints line numbers followed by the line content
from the input-file.

Print all line numbers:

$ sed = employee.txt

1

101,John Doe,CEO

2

102,Jason Smith,IT Manager

3

103,Raj Reddy,Sysadmin

4

104,Anand Ram,Developer

5

105,Jane Miller,Sales Manager

Note: You can print the line number and the line content in the same
line by combining = command with N command (more on this later).

Print line numbers only for lines 1,2 and 3:

$ sed '1,3 =' employee.txt

1

101,John Doe,CEO

2

58

Sed and Awk 101 Hacks

102,Jason Smith,IT Manager

3

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

Print the line number only for those lines that contain the keyword
Jane. This still prints the original line content from the intput-file:

$ sed '/Jane/ =' employee.txt

101,John Doe,CEO

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

5

105,Jane Miller,Sales Manager

If you want to know only the line numbers of lines that contains the
keyword (i.e. without printing the original lines from the file), use -n
option along with = as shown below.

$ sed -n '/Raj/ =' employee.txt

3

Print the total number of lines in a file:

$ sed -n '$ =' employee.txt

5

34. Change Case (using the y 'transform'
command)

The sed y command transforms characters by position. A convenient
use for this is to convert upper case to lower case and vice versa.

59

Sed and Awk 101 Hacks

In this example character "a" will be transformed to A, b to B, c
to C, etc.:

$ sed 'y/abcde/ABCDE/' employee.txt

101,John DoE,CEO

102,JAson Smith,IT MAnAgEr

103,RAj REDDy,SysADmin

104,AnAnD RAm,DEvElopEr

105,JAnE MillEr,SAlEs MAnAgEr

Transform all lower-case letters to upper-case:

$ sed
'y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXY
Z/' employee.txt

101,JOHN DOE,CEO

102,JASON SMITH,IT MANAGER

103,RAJ REDDY,SYSADMIN

104,ANAND RAM,DEVELOPER

105,JANE MILLER,SALES MANAGER

The above command should be executed in a single line as shown
below.

sed 'y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/' employee.txt

35. Multiple Files in Command Line

In all our previous sed examples, we passed only one input file. You
can also pass multiple input files as shown below.

The following example searches for root in the /etc/passwd file and
prints it:

$ sed -n '/root/ p' /etc/passwd

root:x:0:0:root:/root:/bin/bash

The following example searches for root in the /etc/group and prints
it:

60

Sed and Awk 101 Hacks

$ sed -n '/root/ p' /etc/group

root:x:0:

Search for root in both the /etc/passwd and /etc/group file:

$ sed -n '/root/ p' /etc/passwd /etc/group

root:x:0:0:root:/root:/bin/bash

root:x:0:

36. Quit Sed (q command)

The sed q command causes sed to quit executing commands.

As we discussed earlier, the normal sed execution flow is Read,
Execute, Print, Repeat.

When sed executes the q command, it simply quits without executing
the rest of the sed commands, and without repeating the rest of the
lines from the input-file.

Quit after printing the 1st line:

$ sed 'q' employee.txt

101,John Doe,CEO

Quit after the 5th line. So, this prints the 1st 5 lines:

$ sed '5 q' employee.txt

101,John Doe,CEO

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

Print all the lines until the 1st line that contains the keyword
'Manager':

$ sed '/Manager/q' employee.txt

101,John Doe,CEO

61

Sed and Awk 101 Hacks

102,Jason Smith,IT Manager

Note: q command doesn't take range of address. It works only on a
single address. (or a single pattern)

37. Read from File (r command)

The sed r command will read the content of another file and print it at
a specified location while processing the input-file. The following
example will read the content of log.txt file and print it after printing
the last line of employee.txt. Basically this combines both
employee.txt and log.txt and prints the result.

$ sed '$ r log.txt' employee.txt

You can also specify a pattern with the r command. The following
example will read the content of log.txt and print it after the line that
matches 'Raj' in the employee.txt.

Insert the log.txt file after the 'Raj' keyword in the
employee.txt file:

$ sed '/Raj/ r log.txt' employee.txt

38. Simulating Unix commands in sed (cat, grep,
head)

We have already seen examples that worked very much like other
standard UNIX commands. Using sed you can simulate many
commands. Do this just to learn how sed works.

Cat in sed

cat employee.txt

Each of the following sed commands produces the same output as
the cat command above.

62

Sed and Awk 101 Hacks

sed 's/JUNK/&/p' employee.txt

sed -n 'p' employee.txt

sed 'n' employee.txt

sed 'N' employee.txt

Grep in sed

Simple grep:

grep Jane employee.txt

Each of the following sed commands produces the same output as
the grep command above.

sed -n 's/Jane/&/p' employee.txt

sed -n '/Jane/ p' employee.txt

grep -v (print non-matching lines):

grep -v Jane employee.txt

The following sed command is equivalent to the above "grep -v"
command.

sed -n '/Jane/ !p' employee.txt

Head in sed

head -10 /etc/passwd

Each of the following sed commands produces the same output as
the head command above.

sed '11,$ d' /etc/passwd

sed -n '1,10 p' /etc/passwd

sed '10 q' /etc/passwd

63

Sed and Awk 101 Hacks

39. Sed Command Line Options

 -n option

We already discussed this option and we have used it in many
examples. The sed option -n suppresses the default printing that
happens as part of the standard sed flow.

You can also use --quiet, or –-silent instead of -n. They are identical in
function.

All of the following commands are the same:

sed -n 'p' employee.txt

sed --quiet 'p' employee.txt

sed --silent 'p' employee.txt

-f option

You can also combine multiple sed-commands in a file and call the
sed script file using the -f option. We demonstrated this earlier. You
can also use -–file.

All of the following commands are the same:

sed -n -f test-script.sed /etc/passwd

sed -n --file=test-script.sed /etc/passwd

-e option

Use -e to execute a sed command script from the command line. You
can use multiple -e options from the command line. You can also use
–-expression.

All of the following commands are the same:

sed -n -e '/root/ p' /etc/passwd

sed -n --expression '/root/ p' /etc/passwd

64

Sed and Awk 101 Hacks

-i option

As we already discussed sed doesn't touch the input file. It always
prints to standard output, Or you can use the w command to write
the output to a different file. We also showed how sed can use the -i
option to modify the input file directly.

Replace John with Johnny in the original employee.txt file:

sed -i 's/John/Johnny/' employee.txt

Perform the same command but take a backup by passing an
extension to -i.

sed -ibak 's/John/Johnny/' employee.txt

Instead of -i, you can also use –-in-place.

Both of the following commands are the same:

sed -ibak 's/John/Johnny/' employee.txt

sed --in-place=bak 's/John/Johnny/' employee.txt

-c option

This should be used in conjunction with sed option -i. Sed option -i
typically uses a temporary file to create the changes and renames it
to the original input-file when the operation is completed. This might
cause file ownership to change. When you use -c along with -i, the
input file ownership will not change. You can also use –-copy.

Both of the following commands are the same:

sed -ibak -c 's/John/Johnny/' employee.txt

sed --in-place=bak --copy 's/John/Johnny/' employee.txt

65

Sed and Awk 101 Hacks

-l option

Specify the line length. This needs to be used in conjunction with the
sed l command. The value you specify in the -l option will be used as
the line size. You can also use –-line-length.

All the following commands are the same.

sed -n -l 20 'l' employee.txt

sed -n --line-length=20 employee.txt

Please note that you can also achieve the same output without
specifying -n option as shown below.

sed -n 'l 20' employee.txt --posix option

40. Print Pattern Space (n command)

The sed n command prints the current pattern space and fetches the
next line from the input-file. This happens in the middle of command
execution, and so it can change the normal flow if it occurs between
other commands.

Print the pattern space for each line:

$ sed n employee.txt

101,John Doe,CEO

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

If you specify -n flag when you are using the n command, sed will not
print anything.

$ sed -n n employee.txt

66

Sed and Awk 101 Hacks

As we discussed earlier, normal sed execution flow is Read, Execute
(all available sed commands), Print, Repeat.

The sed n command lets you change that flow. The sed n command
will print the current pattern space, clear the current pattern space,
read the next line from the input-file, and continue the command
flow.

Let us assume that you have 2 sed commands before and 2 after the
n command as shown below.

sed-command-1

sed-command-2

n

sed-command-3

sed-command-4

In this case, sed-command-1 and sed-command-2 will be applied to
the current line in the pattern space; when sed encounters the n
command, it will clear the current line from the pattern space, read
the next line from the input-file, and apply sed-command-3 and sed-
command-4 to this newly read line in the sed pattern space.

Note: The sed n command by itself is relatively useless as you see in
the above examples. However, it is extremely powerful when
combined with the sed hold pattern commands that are discussed in
the following hacks.

67

Sed and Awk 101 Hacks

Chapter 6. Sed Hold and Pattern
Space Commands

Sed has two types of internal storage space:

• Pattern space: You already know about pattern space, which
is used as part of the typical sed execution flow. Pattern space
is the internal sed buffer where sed places, and modifies, the
line it reads from the input file.

• Hold space: This is an additional buffer available where sed
can hold temporary data. Sed allows you to move data back
and forth between pattern space and hold space, but you
cannot execute the typical sed commands on the hold space.
As we already discussed, pattern space gets deleted at the
end of every cycle in a typical sed execution flow. However,
the content of the hold space will is retained from one cycle to
the next; it is not deleted between cycles.

Please create a new text file to be used for the sed hold space
examples:

$ vi empnametitle.txt

John Doe

CEO

Jason Smith

IT Manager

Raj Reddy

Sysadmin

Anand Ram

Developer

Jane Miller

Sales Manager

As you can see, for each employee this file contains name and title on
two consecutive lines.

68

Sed and Awk 101 Hacks

41. Swap Pattern Space with Hold Space (x
command)

The sed Exchange (x) command swaps pattern space with hold
space. This command in itself is not that helpful, unless it is combined
with other sed commands; however, in conjunction with other
commands, it is quite powerful.

Suppose that pattern space contains "line 1" and hold space contains
"line 2". After the x command is executed, pattern space will have
"line 2", and hold space will have "line 1".

The following example prints the names of the managers. It looks for
the keyword 'Manager' and prints the previous line.

Print manager names from empnametitle.txt:

$ sed -n -e 'x;n' -e '/Manager/{x;p}' empnametitle.txt

Jason Smith

Jane Miller

In the above example:

• {x;n} - x swaps pattern space to the hold space; n reads the
next line into the pattern space. So, this command saves the
current line in hold space and reads the next line into pattern
space. For the example file, it is saving employee name to
hold space and fetching employee title into pattern space.

• /Manager/{x;p} - If the content of the pattern space contains
the keyword 'Manager', this command swaps pattern space
with hold space and then prints pattern space. This means
that if the employee title contains 'Manager' the employee
name will be printed.

You can also save this in a sed script file and execute it as shown
below.

$ vi x.sed

#!/bin/sed -nf

69

Sed and Awk 101 Hacks

x;n

/Manager/{x;p}

$ chmod u+x empnametitle.txt

$./x.sed empnametitle.txt

Jason Smith

Jane Miller

42. Copy Pattern Space to Hold Space (h
command)

The hold command (h) copies pattern space to hold space. Unlike the
x command, the h command does not change the content of pattern
space. The previous content of the hold space is overwritten with the
content from the pattern space.

Suppose pattern space contains "line 1" and hold space contains "line
2"; after the h command is executed, pattern space is not changed
and will still have "line 1", but hold space will also have "line 1".

Print the names of the managers:

$ sed -n -e '/Manager/!h' -e '/Manager/{x;p}'
empnametitle.txt

Jason Smith

Jane Miller

The above command should be executed in a single line as shown
below.

sed -n -e '/Manager/!h' -e '/Manager/{x;p}' empnametitle.txt

In the above example:

• /Manager/!h - If the content of the pattern space doesn't
contain Manager (the ! after the pattern means "not equal to"
the pattern), copy the content of the pattern space to the hold
space. (In this case, this might be employee name (or) a title
that is not "Manager".) Note that, unlike the previous example,

70

Sed and Awk 101 Hacks

this one does not use the 'n' command to get the next line;
instead, the next line is fetched via normal execution flow.

• /Manager/{x;p} - If the content of the pattern space contains
the keyword 'Manager', this command swaps pattern space
with hold space and prints. This is identical to the command
we used for printing in the example for the x command.

You can also save this in a sed script file and execute it as shown
below.

$ vi h.sed

#!/bin/sed -nf

/Manager/!h

/Manager/{x;p}

$ chmod u+x empnametitle.txt

$./h.sed empnametitle.txt

Jason Smith

Jane Miller

43. Append Pattern Space to Hold Space (H
command)

Capital H is the command to append pattern space to hold space with
a new line. The previous content of hold space is not overwritten;
instead the content of pattern space is appended to the existing
content of hold space by adding a new line at the end.

Suppose pattern space contains "line 1" and hold space contains "line
2"; after the H command is executed, pattern space is not changed
and will still have "line 1", but hold space will have "line 2\nline 1".

Print the name and title (in separate lines) of the managers:

$ sed -n -e '/Manager/!h' -e '/Manager/{H;x;p}'
empnametitle.txt

Jason Smith

71

Sed and Awk 101 Hacks

IT Manager

Jane Miller

Sales Manager

The above command should be executed in a single line as shown
below.

sed -n -e '/Manager/!h' -e '/Manager/{H;x;p}' empnametitle.txt

In the above example:

• /Manager/!h - If the content of the pattern space doesn't
contain Manager (the ! after the pattern means "not equal
to" the pattern), copy the content of the pattern space to the
hold space. (In this case, this might employee name (or) a
title that is not "Manager".) This is the same command we
used in the h command example.

• /Manager/{H;x;p} - If the content of the pattern space
contains the keyword 'Manager', the H command appends
pattern space (which is Manager) to hold space with a new
line. So, the hold space at this stage will have "Employee
Name\nTitle" (which contains the keyword manager). The x
command swaps hold space back into pattern space, and p
prints the pattern space.

You can also save this in a sed script file and execute it as shown
below.

$ vi H-upper.sed

#!/bin/sed -nf

/Manager/!h

/Manager/{H;x;p}

$ chmod u+x H-upper.sed

$./H-upper.sed empnametitle.txt

Jason Smith

IT Manager

Jane Miller

72

Sed and Awk 101 Hacks

Sales Manager

The above example can be slightly modified, if you want the
employee name and title to be printed on the same line with colon :
as a delimiter:

$ sed -n -e '/Manager/!h' -e '/Manager/{H;x;s/\n/:/;p}'
empnametitle.txt

Jason Smith:IT Manager

Jane Miller:Sales Manager

The above command should be executed in a single line as shown
below.

sed -n -e '/Manager/!h' -e '/Manager/{H;x;s/\n/:/;p}' empnametitle.txt

In the second example everything is same as the previous example
except for the substitute command added to the 2nd -e option. The
H, x, and p commands do the same thing as before; the s command
replaces \n with : after swapping but before printing. Therefore the
name and title are printed on one line, separated by a colon.

You can also save this in a sed script file and execute it as shown
below.

$ vi H1-upper.sed

#!/bin/sed -nf

/Manager/!h

/Manager/{H;x;s/\n/:/;p}

$ chmod u+x H1-upper.sed

$./H1-upper.sed empnametitle.txt

Jason Smith:IT Manager

Jane Miller:Sales Manager

73

Sed and Awk 101 Hacks

44. Copy Hold Space to Pattern Space (g
command)

The sed get (g) command copies the content of hold space to pattern
space.

Think of it this way: h command "holds" it in the hold space, g
command "gets" it from the hold space.

Suppose pattern space contains "line 1" and hold space contains "line
2"; after the g command is executed, pattern space is changed and
now contains "line 2", while hold space is not changed and still
contains "line 2".

Print the names of the managers:

$ sed -n -e '/Manager/!h' -e '/Manager/{g;p}'
empnametitle.txt

Jason Smith

Jane Miller

The above command should be executed in a single line as shown
below.

sed -n -e '/Manager/!h' -e '/Manager/{g;p}' empnametitle.txt

In the above example:

• /Manager/!h – we've been using this one for the last few
examples. If the content of the pattern space doesn't contain
Manager, copy the content of pattern space to hold space.

• /Manager/{g;p} – g gets the line from hold space and puts
it in pattern space, then prints it.

You can also save this in a sed script file and execute it as shown
below.

$ vi g.sed

#!/bin/sed -nf

/Manager/!h

/Manager/{g;p}

74

Sed and Awk 101 Hacks

$ chmod u+x g.sed

$./g.sed empnametitle.txt

Jason Smith

Jane Miller

45. Append Hold Space to Pattern Space (G
command)

Upper case G appends the content of hold space to pattern space
with a new line. The previous content in the pattern space is not
overwritten; instead the content from hold space is appended to the
existing content in pattern space by adding a new line at the end.

G and g are related in the same way as H and h; the lower case
version replaces the content while the upper case one appends to it.

Suppose pattern space contains "line 1" and hold space contains "line
2"; after the G command is executed, pattern space is changed to
contain "line 1\nline 2" while hold space is not changed and still
contains "line 2".

Prints the employee name and title of the managers separated
by colon.

$ sed -n -e '/Manager/!h' -e '/Manager/{x;G;s/\n/:/;p}'
empnametitle.txt

Jason Smith:IT Manager

Jane Miller:Sales Manager

The above command should be executed in a single line as shown
below.

sed -n -e '/Manager/!h' -e '/Manager/{x;G;s/\n/:/;p}' empnametitle.txt

In the above example:

75

Sed and Awk 101 Hacks

• /Manager/!h – As in previous examples, if the content of
pattern space doesn't contain Manager, copy pattern space
to hold space.

• /Manager/{x;G;s/\n/:/;p} - If the content of the pattern
space contains Manager, do the following:

• x - Swap the content of pattern space with hold space.
So, the employee name stored in hold space will now
be in pattern space, while the title will be in hold space.

• G - Appends the content of hold space (title) to pattern
space (employee name). So, the pattern space at this
stage will have "Employee Name\nTitle"

• s/\n/:/ This replaces the \n that separates the
"Employee Name\nTitle" with a colon :

• p prints the result (i.e. the content of pattern space).

• Note that if we left out the x command, i.e. if we
used /Manager/{G;s/\n/:/;p}, we would print the
title:name instead of name:title for each manager.

You can also save this in a sed script file and execute it as shown
below.

$ vi G-upper.sed

#!/bin/sed -nf

/Manager/!h

/Manager/{x;G;s/\n/:/;p}

$ chmod u+x G-upper.sed

$./G-upper.sed empnametitle.txt

Jason Smith:IT Manager

Jane Miller:Sales Manager

76

Sed and Awk 101 Hacks

Chapter 7. Sed Multi-Line
Commands and loops

Sed by default always handles one line at a time, unless we use the
H, G, or N command to create multiple lines separated by new line.

This chapter will describe sed commands applicable to such multi-line
buffers.

Note: When we have multiple lines, please keep in mind that ^
matches only the 1st character of the buffer, i.e. of all the multiple
lines combined together, and $ matches only the last character in the
buffer, i.e. the newline of the last line.

46. Append Next Line to Pattern Space (N
command)

Just as upper case H and G append rather than replacing, the N
command appends the next line from input-file to the pattern buffer,
rather than replacing the current line.

As we discussed earlier the lower case n command prints the current
pattern space, clears the pattern space, reads the next line from the
input-file into pattern space and resumes command execution where
it left off.

The upper case N command does not print the current pattern space
and does not clear the pattern space. Instead, it adds a newline (\n)
at the end of the current pattern space, appends the next line from
the input-file to the current pattern space, and continues with the sed
standard flow by executing the rest of the sed commands.

Print employee names and titles separated by colon:

$ sed -e '{N;s/\n/:/}' empnametitle.txt

John Doe:CEO

Jason Smith:IT Manager

77

Sed and Awk 101 Hacks

Raj Reddy:Sysadmin

Anand Ram:Developer

Jane Miller:Sales Manager

In the above example:

• N appends new line to current pattern space (which has
employee name) and appends the next line from input-file to
the current pattern space. So, the pattern space will contain
(employee name\ntitle).

• s/\n/:/ This replaces the \n that separates the "Employee
Name\nTitle" with a colon :

Fig: Illustration of the above example

78

Sed and Awk 101 Hacks

The following example demonstrates the use of the N command to
print the line number on the same line as the text, while printing each
line from employee.txt.

Print line numbers:

$ sed -e '=' employee.txt | sed -e '{N;s/\n/ /}'

1 101,John Doe,CEO

2 102,Jason Smith,IT Manager

3 103,Raj Reddy,Sysadmin

4 104,Anand Ram,Developer

5 105,Jane Miller,Sales Manager

As we saw in our previous examples, the sed = command prints the
line number first, and the original line next.

In this example, the N command adds \n to the current pattern space
(which contains the line number), then reads the next line and
appends it. So, the pattern space will contain "line-number\nOriginal-
line-content". Then we execute s/\n/ / to change the newline (\n) to a
space.

47. Print 1st Line in MultiLine (P command)

We have seen three upper case commands so far, each of which
appended to rather than replacing the content of a buffer. We will
now see that upper case P and D operate in a fashion similar to their
lower case equivalents, but that they also do something special
related to MultiLine buffers.

As we discussed earlier the lower case p command prints the pattern
space. Upper case P command also prints the pattern space, but only
until it encounters a new line (\n). The following example prints all the
managers names from the empnametitle.txt file

$ sed -n -e 'N' -e '/Manager/P' empnametitle.txt

Jason Smith

Jane Miller

79

Sed and Awk 101 Hacks

48. Delete 1st Line in MultiLine (D command)

As we discussed earlier the lower case d command deletes the
current pattern space, reads the next line from the input-file to the
pattern space, aborts the rest of the sed commands and starts the
loop again.

The upper case D command does not read the next line to the
pattern space after deleting it, nor does it completely clear the
pattern buffer (unless it only has one line). Instead, it does the
following:

• Deletes part of the pattern space until it encounters new line
(\n).

• Aborts the rest of the sed commands and starts command
execution from the beginning on the remaining content in the
pattern buffer.

Consider the following file, which has comments enclosed between @
and @ for every title. Note that this comment also spans across the
lines in some cases. For example @Information Technology officer@
spans across two rows. Create the following sample file.

$ vi empnametitle-with-comment.txt

John Doe

CEO @Chief Executive Officer@

Jason Smith

IT Manager @Information Technology

Officer@

Raj Reddy

Sysadmin @System Administrator@

Anand Ram

Developer @Senior

Programmer@

Jane Miller

Sales Manager @Sales

Manager@

80

Sed and Awk 101 Hacks

Our goal is to remove these comments from this file. This can be
done as shown below.

$ sed -e '/@/{N;/@.*@/{s/@.*@//;P;D}}' empnametitle-
with-comment.txt

John Doe

CEO

Jason Smith

IT Manager

Raj Reddy

Sysadmin

Anand Ram

Developer

Jane Miller

Sales Manager

The above command should be executed in a single line as shown
below.

sed -e '/@/{N;/@.*@/{s/@.*@//;P;D}}' empnametitle-with-comment.txt

You can also save this in a sed script file and execute it as shown
below.

$ vi D-upper.sed

#!/bin/sed -f

/@/ {

N

/@.*@/ {s/@.*@//;P;D }

}

$ chmod u+x D-upper.sed

$./D-upper.sed empnametitle-with-comment.txt

81

Sed and Awk 101 Hacks

In the above example:

• /@/ { - This is the outer loop. Sed looks for any line that
contains @ symbol. If it finds one, it executes the rest of the
logic. If not, it reads the next line. For example, let us take line
4, which is "@Information Technology" (the comment spans to
multiple column and goes to line 5 also). There is an @ symbol
on line 4, so the rest of the commands are executed.

• N - Get the next line from the input file and append it to the
pattern space. For example, this will read line 5 "Officer@",
and append it to pattern space. So, pattern space will contain
"@Information Technology\nOfficer@".

• /@.*@/ - Searches whether pattern space has the pattern
"@.*@", which means anything enclosed between @ and @.
The expression is true for the current pattern space, so, it
goes to the next step.

• s/@.*@//;P;D - This substitutes the whole text "@Information
Technology\nOfficer@" with nothing (basically it deletes the
text). P prints the 1st portion of the line. D deletes the rest of
the content of pattern space. And the logic continues from the
top again.

49. Loop and Branch (b command and :label)

You can change the execution flow of the sed commands by using
label and branch (b command).

• :label defines the label.

• b label branches the execution flow to the label. Sed jumps to
the line marked by the label and continues executing the rest
of the commands from there.

• Note: You can also execute just the b command (without any
label name). In this case, sed jumps to the end of the sed
script file.

The following example combines the employee name and title (from
the empnametitle.txt file) to a single line separated by : between the
fields, and also adds a "*" in front of the employee name, when that
employee's title contains the keyword "Manager".

82

Sed and Awk 101 Hacks

$ vi label.sed

#!/bin/sed -nf

h;n;H;x

s/\n/:/

/Manager/!b end

s/^/*/

:end

p

In the above example, you already know what "h;n;H;x" and "s/\n/:/"
does, as we discussed those in our previous examples. Following are
the branching related lines in this file.

• /Manager/!b end - If the lines doesn't contain the keyword
"Manager", it goes to the label called "end". Please note that
the name of the label can be anything you want. So, this
executes "s/^/*/" (add a * in the front), only for the Managers.

• :end - This is the label.

Execute the above label.sed script:

$ chmod u+x label.sed

$./label.sed empnametitle.txt

John Doe:CEO

*Jason Smith:IT Manager

Raj Reddy:Sysadmin

Anand Ram:Developer

*Jane Miller:Sales Manager

83

Sed and Awk 101 Hacks

50. Loop Using t command

The sed command t label branches the execution flow to the label
only if the previous substitute command was successful. That is,
when the previous substitution was successful, sed jumps to the line
marked by the label and continues executing the rest of the
commands from there, otherwise it continues normal execution flow.

The following example combines the employee name and title (from
the empnametitle.txt file) to a single line separated by : between the
fields, and also adds three "*" in front of the employee name, when
that employee's title contains the keyword "Manager".

Note: We could've just changed the substitute command in the
previous example to "s/^/***/" (instead of s/^/*/) to achieve the same
result. This example is given only to explain how the sed t command
works.

$ vi label-t.sed

#!/bin/sed -nf

h;n;H;x

s/\n/:/

:repeat

/Manager/s/^/*/

/***/!t repeat

p

$ chmod u+x label-t.sed

$./label-t.sed empnametitle.txt

John Doe:CEO

***Jason Smith:IT Manager

Raj Reddy:Sysadmin

Anand Ram:Developer

***Jane Miller:Sales Manager

84

Sed and Awk 101 Hacks

In the above example:

• The following code snippet does the looping.

:repeat

/Manager/s/^/*/

/***/!t repeat

• /Manager/s/^/*/ - If it is Manager, it adds a single * in front of
the line.

• /***/!t repeat - If the line doesn't contain three *s
(represented by /***/!), and if the previous substitute
command is successful by adding a single star in front of the
line, sed jumps to the label called repeat (this is represented
by t repeat)

• :repeat - This is just the label

85

Sed and Awk 101 Hacks

Chapter 8. Awk Syntax and Basic
Commands

Awk is a powerful language to manipulate and process text files. It is
especially helpful when the lines in a text files are in a record format,
i.e, when each line (record) contains multiple fields separated by a
delimiter. Even when the input file is not in a record format, you can
still use awk to do some basic file and data processing. You can also
write programming logic using awk even when there are no input files
that needs to be processed. In short, AWK is a powerful language that
can come in handy to do daily routine jobs.

The learning curve on AWK is much smaller than the learning curve
on any other language. If you know C programming already, you'll
appreciate how simple and easy it is to learn AWK.

AWK was originally written by three developers -- A. Aho, B. W.
Kernighan and P. Weinberger. So, the name AWK came from the
initials of those three developers.

The following are the three variations of AWK:

• AWK is original AWK.

• NAWK is new AWK.

• GAWK is GNU AWK. All Linux distributions comes with GAWK.
This is fully compatible with AWK and NAWK.

This book covers all the fundamentals of original AWK, and some
advanced features available only in GAWK. On the systems that have
either NAWK, or GAWK installed, you can still type awk, which will
invoke nawk or gawk correspondingly.

For example, on Linux, you'll see that awk is a symbolic link to gawk.
So, executing awk (or) gawk on Linux system will invoke gawk.

$ ls -l /bin/awk /bin/gawk

86

Sed and Awk 101 Hacks

lrwxrwxrwx 1 root root 4 Sep 1 07:38 /bin/awk -> gawk

-rwxr-xr-x 1 root root 320416 Mar 14 2007 /bin/gawk

For most of the awk examples in this book, the following three
sample files are used. Please create these sample files in your home
directory, and use them to try out all the awk examples shown in this
book.

employee.txt sample file

employee.txt is a comma delimited file that contains 5 employee
records in the following format:

employee-number,employee-name,employee-title

Create the file:

$ vi employee.txt

101,John Doe,CEO

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

items.txt sample file

items.txt is a comma delimited text file that contains 5 item records
in the following format:

item-number,item-description,item-category,cost,quantity-
available

Create the file:

$ vi items.txt

101,HD Camcorder,Video,210,10

102,Refrigerator,Appliance,850,2

103,MP3 Player,Audio,270,15

87

Sed and Awk 101 Hacks

104,Tennis Racket,Sports,190,20

105,Laser Printer,Office,475,5

items-sold.txt sample file

items-sold.txt is a space delimited text file that contains 5 item
records. Each record is for one particular item that contains the item
number followed by number of items sold for that month (during the
last 6 months). So, you'll see 7 fields in every record. Field 1 is the
item-number. Field 2 through Field 7 are the total number of items
sold in every month during the last 6 months.

Following is the format of the items-sold.txt file.

item-number qty-sold-month1 qty-sold-month2 qty-sold-month3
qty-sold-month4 qty-sold-month5 qty-sold-month6

Create the file:

$ vi items-sold.txt

101 2 10 5 8 10 12

102 0 1 4 3 0 2

103 10 6 11 20 5 13

104 2 3 4 0 6 5

105 10 2 5 7 12 6

51. Awk Command Syntax

Basic Awk Syntax:

awk -Fs '/pattern/ {action}' input-file

(or)

awk -Fs '{action}' intput-file

In the above syntax:

• -F is the field separator. If you don't specify, it will use an
empty space as field delimiter.

• The /pattern/ and the {action} should be enclosed inside
single quotes.

88

Sed and Awk 101 Hacks

• /pattern/ is optional. If you don't provide it, awk will process all
the records from the input-file. If you specify a pattern, it will
process only those records from the input-file that match the
given pattern.

• {action} - These are the awk programming commands, which
can be one or multiple awk commands. The whole action block
(including all the awk commands together) should be closed
between { and }

• input-file - The input file that needs to be processed.

Following is a very simple example demonstrating the awk
syntax:

$ awk -F: '/mail/ {print $1}' /etc/passwd

mail

mailnull

In the above simple example:

• -F: This indicates that the field separator in the input-file is
colon :, i.e. the fields are separated by a colon. Please note
that you can also enclose the field separator within double
quotes. -F ":" is also valid.

• /mail/ - This is the pattern. awk will process only the records
that contains the keyword mail.

• {print $1} - This is the action. This action block contains only
one awk command, that prints the 1st field of the record that
matches the pattern "mail"

• /etc/passwd - This is the input file.

Awk Commands in a Separate File

When you have to process a lot of awk commands, you can specify
the '/pattern/ {action}' inside an awk script file and invoke it as
shown below.

awk -Fs -f myscript.awk input-file

The myscript.awk can have any file extension (or no extension). But,
it is easier to keep the extension as .awk for easy maintenance. You

89

Sed and Awk 101 Hacks

can also specify the field separator in script file itself (more on this
later), and just invoke it as shown below.

awk -f myscript.awk input-file

52. Awk Program Structure (BEGIN, body, END
block)

A typical awk program has following three blocks.

1. BEGIN Block

Syntax of begin block:

BEGIN { awk-commands }

The begin block gets executed only once at the beginning, before
awk starts executing the body block for all the lines in the input file.

• The begin block is a good place to print report headers, and
initialize variables.

• You can have one or more awk commands in the begin block.

• The keyword BEGIN should be specified in upper case.

• Begin block is optional.

2. Body Block

Syntax of body block:

/pattern/ {action}

The body block gets executed once for every line in the input file.

• If the input file has 10 records, the commands in the body
block will be executed 10 times (once for each record in the
input file).

• There is no keyword for the body block. We discussed pattern
and action previously.

90

Sed and Awk 101 Hacks

3. END Block

Syntax of end block:

END { awk-commands }

The end block gets executed only once at the end, after awk
completes executing the body block for all the lines in the input-file.

• The end block is a good place to print a report footer and do
any clean-up activities.

• You can have one or more awk commands in the end block.

• The keyword END should be specified in upper case.

• End block is optional.

Fig: Awk Workflow

91

Sed and Awk 101 Hacks

The following simple example shows the three awk blocks in action.

$ awk 'BEGIN { FS=":";print "---header---" } \

/mail/ {print $1} \

END { print "---footer---"}' /etc/passwd

---header---

mail

mailnull

---footer---

Note: When you have a very long command, you can either type is on
a single line, or split it to multiple lines by specifying a \ at the end of
each line. The above example is typed in 3 lines with a \ at the end of
line 1 and line 2.

In the above example:

• BEGIN { FS=":";print "---header---" } is the begin block, that
sets the field separator variable FS (more on this later), and
prints the header. This gets executed only once before the
body loop.

• /mail/ {print $1} is the body loop, that contains a pattern and
an action. i.e. This searches for the keyword "mail" in the input
file and prints the 1st field.

• END { print "---footer---"}' is the end block, that prints the
footer.

• /etc/passwd is the input file. The body loop gets executed for
every records in this file.

Instead of executing the above simple example from the command
line, you can also execute it from a file.

First, create the following myscript.awk file that contains the begin,
body, and end loop:

$ vi myscript.awk

BEGIN {

 FS=":"

92

Sed and Awk 101 Hacks

 print "---header---"

}

/mail/ {

 print $1

}

END {

 print "---footer---"

}

Next, execute the myscript.awk as shown below for the input file
/etc/passwd:

$ awk -f myscript.awk /etc/passwd

---header---

mail

mailnull

---footer---

Please note that a comment inside a awk script starts with #. If you
are writing a complex awk script, follow the best practice: write
enough comments inside the *.awk file so that it will be easier for you
to understand when you look at the file later.

Following are some random simple examples that show you various
combinations of awk blocks.

Only the body block:

awk -F: '{ print $1 }' /etc/passwd

Begin, body, and end block:

awk -F: 'BEGIN { printf "username\n------\n"} \

{ print $1 } \

END { print "------" }' /etc/passwd

93

Sed and Awk 101 Hacks

Begin, and body block:

awk -F: 'BEGIN { print "UID"} { print $3 }' /etc/passwd

A Note on using only a BEGIN Block:

Specifying only the begin block is valid awk syntax. When you don't
specify a body loop, there is no point in specifying a input file, since
only the body loop gets executed for the lines in the input file. So, use
only the BEGIN block when you want to use an awk program to do
things not related to file processing. In many of our examples below,
we'll have only the BEGIN block, to explain how some of the awk
programming components work. You can use this idea for anything
that you see fit.

A simple begin only example:

$ awk 'BEGIN { print "Hello World!" }'

Hello World!

Multiple Input Files

Please note that you can specify multiple input files. If you specify
two input files, first the body block will be executed for all the lines in
input-file1, next the body block will be executed for all the lines in
input-file2.

Multiple input file example:

$ awk 'BEGIN { FS=":";print "---header---" } \

/mail/ {print $1} \

END { print "---footer---"}' /etc/passwd /etc/group

---header---

mail

mailnull

mail

mailnull

---footer---

Please note that the BEGIN block and the END block will be executed
only once, even when you specify multiple input-files.

94

Sed and Awk 101 Hacks

53. Print Command

By default, the awk print command (without any argument) prints the
full record as shown. The following example is equivalent to "cat
employee.txt" command.

$ awk '{print}' employee.txt

101,John Doe,CEO

102,Jason Smith,IT Manager

103,Raj Reddy,Sysadmin

104,Anand Ram,Developer

105,Jane Miller,Sales Manager

You can also print specific fields in a record by passing $field-number
as a print command argument. The following example is supposed to
print only the employee name (field number 2) of every record.

$ awk '{print $2}' employee.txt

Doe,CEO

Smith,IT

Reddy,Sysadmin

Ram,Developer

Miller,Sales

Wait. It didn't work as expected. It printed from the last name until
the end of the record. This is because the default field delimiter in
Awk is space. Awk did exactly what we asked; it did print the 2nd
field considering space as a delimiter. When the default space is used
as delimiter, "101,John" became field-1 and "Doe,CEO" became field-
2 of the 1st record. So, the above awk example printed "Doe,CEO" as
field-2.

To solve this issue, we should instruct Awk to use comma (,) as field
delimiter. Use option -F to indicate the field separator.

95

Sed and Awk 101 Hacks

$ awk -F ',' '{print $2}' employee.txt

John Doe

Jason Smith

Raj Reddy

Anand Ram

Jane Miller

When there is only one character used for delimiter, any of the
following forms works, i.e. you can specify the field delimiter within
single quotes, or double quotes, or without any quotes as shown
below.

awk -F ',' '{print $2}' employee.txt

awk -F "," '{print $2}' employee.txt

awk -F, '{print $2}' employee.txt

Note: You can also use the FS variable for this purpose. We'll review
that in the awk built-in variables section.

A simple report that prints employee name and title with a header
and footer:

$ awk -F ',' 'BEGIN \

{ print "-------------\nName\tTitle\n-------------"} \

{ print $2,"\t",$3;} \

END { print "-------------"; }' employee.txt

Name Title

John Doe CEO

Jason Smith IT Manager

Raj Reddy Sysadmin

Anand Ram Developer

Jane Miller Sales Manager

96

Sed and Awk 101 Hacks

In the above report the fields are not aligned properly. We'll look at
how to do that in later sections. The above example does show how
you can use BEGIN to print a header, and END to print a footer.

Please note that field $0 represents the whole record. Both of the
following examples are the same; each prints the whole lines from
employee.txt.

awk '{print}' employee.txt

awk '{print $0}' employee.txt

54. Pattern Matching

You can execute awk commands only for lines that match a particular
pattern.

For example, the following prints the names and titles of the
Managers:

$ awk -F ',' '/Manager/ {print $2, $3}' employee.txt

Jason Smith IT Manager

Jane Miller Sales Manager

The following example prints the employee name whose Emp id
is 102:

$ awk -F ',' '/^102/ {print "Emp id 102 is", $2}' \

employee.txt

Emp id 102 is Jason Smith

97

Sed and Awk 101 Hacks

Chapter 9. Awk Built-in Variables

55. FS - Input Field Separator

The default field separator recognized by awk is space. If the records
in your input file are delimited by anything other than space, you
already know that you can specify the input field separator in the awk
command line using option -F as shown below.

awk -F ',' '{print $2, $3}' employee.txt

You can also do the same using the FS (field separator) Awk built-in
variable. You have to specify the FS in the BEGIN block as shown
below.

awk 'BEGIN {FS=","} {print $2, $3}' employee.txt

You can have multiple awk statements in the BEGIN block. In the
following example, we have both FS and a print command to print the
headers inside the BEGIN block. Multiple commands inside the BEGIN
or END block are separated by semi-colon.

awk 'BEGIN { FS=","; \

print "-------------\nName\tTitle\n-------------" } \

{ print $2,"\t",$3; } \

END {print "-------------"}' employee.txt

Please note that the default field separator is not just a single space.
It actually matches one or more whitespace characters.

The following employee-multiple-fs.txt file contains three different
field separators in each record:

• , Comma is the field separator after emp id

• : Colon is the field separator after name

• % Percentage is the field separator after title

98

Sed and Awk 101 Hacks

Create the file:

$ vi employee-multiple-fs.txt

101,John Doe:CEO%10000

102,Jason Smith:IT Manager%5000

103,Raj Reddy:Sysadmin%4500

104,Anand Ram:Developer%4500

105,Jane Miller:Sales Manager%3000

When you encounter a file that contains different field separators,
don't worry, FS can come to your rescue. You can specify MULTIPLE
field separators using a regular expression. For example FS = "[,:%]"
indicates that the field separator can be , or : or %

So, the following example will print the name and the title from the
employee-multiple-fs.txt file that contains different field separators.

$ awk 'BEGIN {FS="[,:%]"} {print $2, $3}' \

employee-multiple-fs.txt

John Doe CEO

Jason Smith IT Manager

Raj Reddy Sysadmin

Anand Ram Developer

Jane Miller Sales Manager

56. OFS - Output Field Separator

FS is for input field separator. OFS is for output field separator. OFS is
printed between consecutive fields in the output. By default, awk
prints the output fields with space between the fields.

Please note that we don't specify IFS for input field separator, we
simply refer to it as FS.

The following example prints the name and the salary with space
between them. When you use a single print statement to print two

99

Sed and Awk 101 Hacks

variables by separating them with comma (as shown below), it will
print the values of those two variables separated by space.

$ awk -F ',' '{print $2, $3}' employee.txt

John Doe CEO

Jason Smith IT Manager

Raj Reddy Sysadmin

Anand Ram Developer

Jane Miller Sales Manager

If you try to include a colon manually in the print statement between
the fields, following will the output. Please note how there is an
additional space before and after the colon. That is because, awk is
still using space as the output field separator.

The following print statement really printing three values (that are
separated by comma) -- $2, :, and $4. As you already know when you
use one print statement to print multiple values, the output will
contain space in between them.

$ awk -F ',' '{print $2, ":", $3}' employee.txt

John Doe : CEO

Jason Smith : IT Manager

Raj Reddy : Sysadmin

Anand Ram : Developer

Jane Miller : Sales Manager

The right way to do is use the awk built-in variable OFS (output field
separator), as shown below. Please note that there is no space before
and after the colon in this example, as OFS replaces the default awk
OFS (which is space) with the colon.

The following print statement is printing two variables ($2 and $4)
separated by comma, however the output will have colon separating
them (instead of space), as our OFS is set to colon.

$ awk -F ',' 'BEGIN { OFS=":" } \

{ print $2, $3 }' employee.txt

100

Sed and Awk 101 Hacks

John Doe:CEO

Jason Smith:IT Manager

Raj Reddy:Sysadmin

Anand Ram:Developer

Jane Miller:Sales Manager

Please also note the subtle difference between including a comma vs
not including a comma in the print statement (when printing multiple
variables). When you specify a comma in the print statement
between different print values, awk will use the OFS. In the following
example, the default OFS is used, so you'll see a space between the
values in the output.

$ awk 'BEGIN { print "test1","test2" }'

test1 test2

When you don't separate values with a comma in the print statement,
awk will not use the OFS; instead it will print the values with nothing
in between.

$ awk 'BEGIN { print "test1" "test2" }'

test1test2

57. RS - Record Separator

Let us assume that you have the following text file which contains the
employee ids and names in a single line.

$ vi employee-one-line.txt

101,John Doe:102,Jason Smith:103,Raj Reddy:104,Anand
Ram:105,Jane Miller

In the above example, every record contains two fields (empid and
name), and every record is separated by : (instead of a new line). The
individual fields (empid and name) in the records are separated by
comma.

101

Sed and Awk 101 Hacks

The default record separator used by awk is new line. If you are trying
to print only the employee name, the following will not work for this
example.

$ awk -F, '{print $2}' employee-one-line.txt

John Doe:102

In the above example, it is treating employee-one-line.txt as one
single record, and comma as field delimiter. So, it prints "John
Doe:102", as the 2nd field.

If you want awk to treat this as 5 different lines (instead of a single
line), and print employee name from each record, then you must
specify the record separator as colon : as shown below.

$ awk -F, 'BEGIN { RS=":" } \

{ print $2 }' employee-one-line.txt

John Doe

Jason Smith

Raj Reddy

Anand Ram

Jane Miller

Let us assume that you have the following input file, where the
records are separated by a "-" on it's own line. All the fields are on a
separate line.

$ vi employee-change-fs-ofs.txt

101

John Doe

CEO

-

102

Jason Smith

IT Manager

-

102

Sed and Awk 101 Hacks

103

Raj Reddy

Sysadmin

-

104

Anand Ram

Developer

-

105

Jane Miller

Sales Manager

In the above example, the field separator FS is new line, the record
separator RS is "-" followed by a new line. So, if you want to print
employee name and salary, you should do the following.

$ awk 'BEGIN { FS="\n"; RS="-\n"; OFS=":" } \

{print $2, $3}' employee-change-fs-ofs.txt

John Doe:CEO

Jason Smith:IT Manager

Raj Reddy:Sysadmin

Anand Ram:Developer

Jane Miller:Sales Manager

58. ORS - Output Record Separator

RS is for input record separator. ORS is for output record separator.

Please note that we don't specify IRS for input record separator, we
simply refer to it as RS.

The following example adds a new line with "---" after each and every
line output that is printed. By default, awk uses "\n" as ORS. In this
example, we are using "\n---\n" as ORS to get the output as shown
below.

103

Sed and Awk 101 Hacks

$ awk 'BEGIN { FS=","; ORS="\n---\n" } \

{print $2, $3}' employee.txt

John Doe CEO

Jason Smith IT Manager

Raj Reddy Sysadmin

Anand Ram Developer

Jane Miller Sales Manager

The following example takes the records in employee.txt, and prints
every field in its own line, separating each record with a separate line
with "---".

$ awk 'BEGIN { FS=","; OFS="\n";ORS="\n---\n" } \

{print $1,$2,$3}' employee.txt

101

John Doe

CEO

102

Jason Smith

IT Manager

103

Raj Reddy

Sysadmin

104

Anand Ram

Developer

104

Sed and Awk 101 Hacks

105

Jane Miller

Sales Manager

59. NR - Number of Records

NR is very helpful. When used inside the loop, this gives the line
number. When used in the END block, this gives the total number of
records in the file.

Even thought NR stands for "Number of Records", it might be
appropriate to call this as "Number of the Record", as it really gives
you the line number of the current record.

The following example shows how NR works in the body block,
and in the END block:

$ awk 'BEGIN {FS=","} \

{print "Emp Id of record number",NR,"is",$1;} \

END {print "Total number of records:",NR}' employee.txt

Emp Id of record number 1 is 101

Emp Id of record number 2 is 102

Emp Id of record number 3 is 103

Emp Id of record number 4 is 104

Emp Id of record number 5 is 105

Total number of records: 5

60. FILENAME – Current File Name

FILENAME is helpful when you are specifying multiple input-files to
the awk program. This will give you the name of the file Awk is
currently processing.

105

Sed and Awk 101 Hacks

$ awk '{ print FILENAME }' \

employee.txt employee-multiple-fs.txt

employee.txt

employee.txt

employee.txt

employee.txt

employee.txt

employee-multiple-fs.txt

employee-multiple-fs.txt

employee-multiple-fs.txt

employee-multiple-fs.txt

employee-multiple-fs.txt

When you read the values from the standard input, FILENAME
variable will be set to the value of "-" as shown below. In the following
example, since we didn't give any input-file, you should type the
record in the standard input.

In this example, I typed the 1st line "John Doe", and awk printed the
last two lines. You have to press “Ctrl-C” to stop reading from stdin.

$ awk '{print "Last name:", $2; \

print "Filename:", FILENAME}'

John Doe

Last name: Doe

Filename: -

The above is also true when you pipe the input to awk from another
program, as shown below. The following also will print FILENAME as
"-".

$ echo "John Doe" | awk '{print "Last name:", $2; \

print "Filename:", FILENAME}'

Last name: Doe

Filename: -

106

Sed and Awk 101 Hacks

Note: FILENAME inside the BEGIN block will return empty value "", as
the BEGIN block is for the whole awk program, and not for any
specific file.

61. FNR - File "Number of Record"

We already know that "NR" is "Number of Records" (or "Number of
the Record"), which prints the current line number of the file that is
getting processed.

How will NR behave when we give have two input files? NR keeps
growing between multiple files. When the body block starts
processing the 2nd file, NR will not be reset to 1, instead it will
continue from the last NR number value of the previous file.

In the following example 1st file has 5 records, 2nd file has 5 records.
As you see below, when the body loop is processing the 2nd file, NR
starts from 6 (instead of 1). Finally, in the END block, NR gives the
total number of records of both the files combined.

$ awk 'BEGIN {FS=","} \

{print FILENAME ": record number",NR,"is",$1;} \

END {print "Total number of records:",NR}' \

employee.txt employee-multiple-fs.txt

employee.txt: record number 1 is 101

employee.txt: record number 2 is 102

employee.txt: record number 3 is 103

employee.txt: record number 4 is 104

employee.txt: record number 5 is 105

employee-multiple-fs.txt: record number 6 is 101

employee-multiple-fs.txt: record number 7 is 102

employee-multiple-fs.txt: record number 8 is 103

employee-multiple-fs.txt: record number 9 is 104

employee-multiple-fs.txt: record number 10 is 105

Total number of records: 10

107

Sed and Awk 101 Hacks

In the above example, we have two input files (employee.txt and
employee-multiple-fs.txt). Each file has 5 records each. So, NR
continued incrementing after the 1st file is processed.

FNR will give you record number within the current file. So, when awk
finishes executing the body block for the 1st file and starts the body
block the next file, FNR will start from 1 again.

$ awk 'BEGIN {FS=","} \

{print FILENAME ": record number",FNR,"is",$1;} \

END {print "Total number of records:",NR}' \

employee.txt employee-multiple-fs.txt

employee.txt: record number 1 is 101

employee.txt: record number 2 is 102

employee.txt: record number 3 is 103

employee.txt: record number 4 is 104

employee.txt: record number 5 is 105

employee-multiple-fs.txt: record number 1 is 101

employee-multiple-fs.txt: record number 2 is 102

employee-multiple-fs.txt: record number 3 is 103

employee-multiple-fs.txt: record number 4 is 104

employee-multiple-fs.txt: record number 5 is 105

Total number of records: 10

The following example shows both NR and FNR:

$ vi fnr.awk

BEGIN {

 FS=","

}

{

 printf "FILENAME=%s NR=%s FNR=%s\n", FILENAME, NR,
FNR;

}

END {

108

Sed and Awk 101 Hacks

 printf "END Block: NR=%s FNR=%s\n", NR, FNR

}

$ awk -f fnr.awk employee.txt employee-multiple-fs.txt

FILENAME=employee.txt NR=1 FNR=1

FILENAME=employee.txt NR=2 FNR=2

FILENAME=employee.txt NR=3 FNR=3

FILENAME=employee.txt NR=4 FNR=4

FILENAME=employee.txt NR=5 FNR=5

FILENAME=employee-multiple-fs.txt NR=6 FNR=1

FILENAME=employee-multiple-fs.txt NR=7 FNR=2

FILENAME=employee-multiple-fs.txt NR=8 FNR=3

FILENAME=employee-multiple-fs.txt NR=9 FNR=4

FILENAME=employee-multiple-fs.txt NR=10 FNR=5

END Block: NR=10 FNR=5

109

Sed and Awk 101 Hacks

Chapter 10. Awk Variables and
Operators

62. Variables

Awk variables should begin with an alphabetic character; the rest of
the characters can be numbers, or letters, or underscore. Keywords
cannot be used as an awk variable name.

Unlike other programming languages, you don't need to declare an
variable to use it. If you wish to initialize an awk variable, it is better
to do it in the BEGIN section, which will be executed only once.

There are no data types in Awk. Whether an awk variable is a number
or a string depends on the context in which the variable is used in.

employee-sal.txt sample file

employee-sal.txt is a comma delimited file that contains 5 employee
records in the following format:

employee-number,employee-name,employee-title,salary

Create the file:

$ vi employee-sal.txt

101,John Doe,CEO,10000

102,Jason Smith,IT Manager,5000

103,Raj Reddy,Sysadmin,4500

104,Anand Ram,Developer,4500

105,Jane Miller,Sales Manager,3000

The following example shows how to create and use your own
variable inside an awk script. In this example, "total" is the user
defined Awk variable that is used to calculate the total salary of all
the employees in the company.

110

Sed and Awk 101 Hacks

$ cat total-company-salary.awk

BEGIN {

 FS=",";

 total=0;

}

{

 print $2 "'s salary is: " $4;

 total=total+$4

}

END {

 print "---\nTotal company salary = $"total;

}

$ awk -f total-company-salary.awk employee-sal.txt

John Doe's salary is: 10000

Jason Smith's salary is: 5000

Raj Reddy's salary is: 4500

Anand Ram's salary is: 4500

Jane Miller's salary is: 3000

Total company salary = $27000

63. Unary Operators

An operator which accepts a single operand is called a unary
operator.

Operator Description

+ The number (returns the number itself)

- Negate the number

++ Auto Increment

-- Auto Decrement

111

Sed and Awk 101 Hacks

The following example negates the number using unary operator
minus:

$ awk -F, '{print -$4}' employee-sal.txt

-10000

-5000

-4500

-4500

-3000

The following example demonstrates how plus and minus unary
operators affect negative numbers stored in a text file:

$ vi negative.txt

-1

-2

-3

$ awk '{print +$1}' negative.txt

-1

-2

-3

$ awk '{print -$1}' negative.txt

1

2

3

Auto Increment and Auto Decrement

Auto increment and auto decrement operators change the associated
variable's value; when used inside an expression their interpreted
value can be either 'pre' or 'post' the change of value.

112

Sed and Awk 101 Hacks

Pre means you'll add ++ (or --) before the variable name. This will
first increase (or decrease) the value of the variable by one, and then
execute the rest of the statement in which it is used.

Post means you'll add ++ (or --) after the variable name. This will first
execute the containing statement and then increase (or decrease)
the value of the variable by one.

Example of pre-auto-increment:

$ awk -F, '{print ++$4}' employee-sal.txt

10001

5001

4501

4501

3001

Example of pre-auto-decrement:

$ awk -F, '{print --$4}' employee-sal.txt

9999

4999

4499

4499

2999

Example of post-auto-increment:

 (since ++ is in the print statement the original value is printed):

$ awk -F ',' '{print $4++}' employee-sal.txt

10000

5000

4500

4500

3000

113

Sed and Awk 101 Hacks

Example of post-auto-increment:

 (since ++ is in a separate statement the resulting value is printed):

$ awk -F ',' '{$4++; print $4}' employee-sal.txt

10001

5001

4501

4501

3001

Example of post-auto-decrement:

 (since -- is in the print statement the original value is printed):

$ awk -F ',' '{print $4--}' employee-sal.txt

10000

5000

4500

4500

3000

Example of post-auto-decrement:

 (since -- is in a separate statement the resulting value is printed):

$ awk -F ',' '{$4--; print $4}' employee-sal.txt

9999

4999

4499

4499

2999

The following useful example displays the total number of users who
have a login shell, i.e. who can log in to the system and reach a
command prompt.

• This uses the post-increment unary operator (although since
the variable is not printed till the END block pre-increment
would produce the same result).

114

Sed and Awk 101 Hacks

• The body block of this script includes a pattern match so that
the contained code executes only if the last field of the line
contains the pattern /bin/bash.

• Note: Regular expressions should be enclosed between // but
that means that the frontslash (/) character must be escaped
in the regular expression so that it is not interpreted as the
end-of-expression.

• When a line matches, variable ‘n’ gets incremented by one.
The final value is printed from the END block.

Example: Print number of shell users.

$ awk -F ':' '$NF ~ /\/bin\/bash/ { n++ }; END { print
n }' /etc/passwd

2

64. Arithmetic Operators

An operator that accepts two operands is called a binary operator.
There are different kinds of binary operators that are classified based
on usage. (arithmetic, string, assignment, etc.)

The following operators are used for performing arithmetic
calculations.

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo Division

The following example shows the usage of the binary operators +, -, *
and /

This examples does two things:

1. Reduces the price of every single item by 20%

2. Reduces the quantity of every single item by 1.

115

Sed and Awk 101 Hacks

Create and run awk arithmetic example:

$ vi arithmetic.awk

BEGIN {

 FS=",";

 OFS=",";

 item_discount=0;

}

{

 item_discount=$4*20/100;

 print $1,$2,$3,$4-item_discount,$5-1

}

$ awk -f arithmetic.awk items.txt

101,HD Camcorder,Video,168,9

102,Refrigerator,Appliance,680,1

103,MP3 Player,Audio,216,14

104,Tennis Racket,Sports,152,19

105,Laser Printer,Office,380,4

The following example prints all the even numbered lines from the
input file. The row number of each line is checked to see if it is a
multiple of 2, and if so the default operation (print the whole line) is
executed.

Demonstrate modulo division:

$ awk 'NR % 2 == 0' items.txt

102,Refrigerator,Appliance,850,2

104,Tennis Racket,Sports,190,20

65. String Operator

(space) is a string operator that does string concatenation.

116

Sed and Awk 101 Hacks

In the following example, string concatenation happens at three
locations. In the statement "string3=string1 string2", string3 contains
the concatenated value of string1 and string2. Each print statement
does a string concatenation with a static string and an awk variable.

Note: This operator is why you must separate the values in a print
statement with a comma if you want to print the OFS in between. If
you do not include a comma to separate the values, the values are
concatenated instead.

$ cat string.awk

BEGIN {

 FS=",";

 OFS=",";

 string1="Audio";

 string2="Video";

 numberstring="100";

 string3=string1 string2;

 print "Concatenate string is:" string3;

 numberstring=numberstring+1;

 print "String to number:" numberstring;

}

$ awk -f string.awk items.txt

Concatenate string is:AudioVideo

String to number:101

66. Assignment Operators

Just like most other programming languages, awk uses = as the
assignment operator. Like C, awk also supports shortcut assignment
operators that modify a variable rather than replacing its value.

Operator Description

= Assignment

+= Shortcut addition assignment

117

Sed and Awk 101 Hacks

-= Shortcut subtraction assignment

*= Shortcut multiplication assignment

/= Shortcut division assignment

%= Shortcut modulo division assignment

The following example shows how to use the assignment operators:

$ cat assignment.awk

BEGIN {

 FS=",";

 OFS=",";

 total1 = total2 = total3 = total4 = total5 = 10;

 total1 += 5; print total1;

 total2 -= 5; print total2;

 total3 *= 5; print total3;

 total4 /= 5; print total4;

 total5 %= 5; print total5;

}

$ awk -f assignment.awk

15

5

50

2

0

The following example uses the += shortcut assignment operator.

Display the total amount of inventory available across all items:

$ awk -F ',' 'BEGIN { total=0 } { total+=$5 } END
{print "Total Quantity: " total}' items.txt

Total Quantity: 52

118

Sed and Awk 101 Hacks

The next example counts the total number of fields in a file. The awk
script matches all lines and keeps adding the number of fields in each
line using the shortcut addition assignment operator. The number of
fields seen so far is kept in a variable named ‘total’. Once the input
file is processed, the END block is executed, which prints the total
number of fields.

Count total number of fields in items.txt:

$ awk -F ',' 'BEGIN { total=0 } { total += NF }; END
{ print total }' items.txt

25

67. Comparison Operators

Awk supports the standard comparison operators that are listed
below.

Operator Description

> Is greater than

>= Is greater than or equal to

< Is less than

<= Is less than or equal to

== Is equal to

!= Is not equal to

&& Both the conditional expressions are true

|| Either one of the conditional expressions is
true

A note on the following examples: If you don't specify any action, awk
will print the whole record if it matches the conditional comparison.

The following example uses <= condition. This displays all the items
that are under the critical inventory level of 5:

119

Sed and Awk 101 Hacks

$ awk -F "," '$5 <= 5' items.txt

102,Refrigerator,Appliance,850,2

105,Laser Printer,Office,475,5

The following example uses == condition. This displays the record
with the item number 103:

$ awk -F "," '$1 == 103' items.txt

103,MP3 Player,Audio,270,15

Note: don't confuse the == (exact match) operator with =
(Assignment).

Print only the description of the item with number 103:

$ awk -F "," '$1 == 103 {print $2}' items.txt

MP3 Player

The following example uses != condition. This prints all items except
those in the category Video:

$ awk -F "," '$3 != "Video"' items.txt

102,Refrigerator,Appliance,850,2

103,MP3 Player,Audio,270,15

104,Tennis Racket,Sports,190,20

105,Laser Printer,Office,475,5

Same as above, but prints only the item description:

$ awk -F "," '$3 != "Video" {print $2}' items.txt

Refrigerator

MP3 Player

Tennis Racket

Laser Printer

120

Sed and Awk 101 Hacks

The following example uses && (AND operator) to check two
conditions. This prints the record where the cost is under 900 AND
the quantity is less than or equal to the critical inventory level of 5.

$ awk -F "," '$4 < 900 && $5 <= 5' items.txt

102,Refrigerator,Appliance,850,2

105,Laser Printer,Office,475,5

Same as above, but prints only the item description:

$ awk -F "," '$4 < 900 && $5 <= 5 {print $2}' items.txt

Refrigerator

Laser Printer

The following example uses || (OR operator) to check two conditions.
This prints records where the cost is less than 900 OR the quantity is
at or under the critical inventory level of 5.

$ awk -F "," '$4 < 900 || $5 <= 5' items.txt

101,HD Camcorder,Video,210,10

102,Refrigerator,Appliance,850,2

103,MP3 Player,Audio,270,15

104,Tennis Racket,Sports,190,20

105,Laser Printer,Office,475,5

Same as above. But prints only the item description:

$ awk -F "," '$4 < 900 || $5 <= 5 {print $2}' items.txt

HD Camcorder

Refrigerator

MP3 Player

Tennis Racket

Laser Printer

121

Sed and Awk 101 Hacks

The following example uses > (Greater than) condition. This example
displays the uid (and the full line) from the /etc/passwd that has the
highest USER ID value. This awk script keeps track of the largest
number (of field3) in the variable ‘maxuid’ and keeps a copy of the
corresponding line in the variable ‘maxline’. Once it has looped over
all the lines, it prints the uid and the line.

$ awk -F ':' '$3 > maxuid { maxuid=$3; maxline=$0 }; \

 END { print maxuid, maxline }' /etc/passwd

112 gdm:x:112:119:Gnome Display
Manager:/var/lib/gdm:/bin/false

The following example uses == condition. This example prints every
line from the /etc/passwd file that has the same USER ID and GROUP
ID. This awk script prints the line only if $3 (USER ID) and $4 (GROUP
ID) are equal.

$ awk -F ':' '$3==$4' /etc/passwd

gnats:x:41:41:Gnats Bug-Reporting System
(admin):/var/lib/gnats:/bin/sh

The following example uses >= and && conditions. This example
prints any line from /etc/passwd where the USER ID >= 100 AND the
user's shell is /bin/sh.

$ awk -F ':' '$3>=100 && $NF ~ /\/bin\/sh/' /etc/passwd

libuuid:x:100:101::/var/lib/libuuid:/bin/sh

The following example uses == condition. This example prints all the
lines from /etc/passwd that doesn't have a comment (field 5).

$ awk -F ':' '$5 == "" ' /etc/passwd

libuuid:x:100:101::/var/lib/libuuid:/bin/sh

syslog:x:101:102::/home/syslog:/bin/false

saned:x:110:116::/home/saned:/bin/false

122

Sed and Awk 101 Hacks

68. Regular Expression Operators

Operator Description

~ Match operator

!~ No Match operator

When you use the == condition, awk looks for a full match. The
following example doesn't print anything, as none of the 2nd fields in
the items.txt file exactly matches the keyword "Tennis". "Tennis
Racket" is not a full match.

Print lines where field two is “Tennis”:

awk -F "," '$2 == "Tennis"' items.txt

When you use the match operator ~, awk looks for a partial match,
i.e. it looks for a field that “contains” the match string.

Print lines where field two contains “Tennis”:

$ awk -F "," '$2 ~ "Tennis"' items.txt

104,Tennis Racket,Sports,190,20

The !~ operator is the opposite of ~, i.e. “does not contain”.

Print lines where field two does not contain “Tennis”:

$ awk -F "," '$2 !~ "Tennis"' items.txt

101,HD Camcorder,Video,210,10

102,Refrigerator,Appliance,850,2

103,MP3 Player,Audio,270,15

105,Laser Printer,Office,475,5

The next example prints the total number of users who use /bin/bash
as their shell. In this awk script, when the last field of a line contains
the pattern "/bin/bash", the awk variable ‘n’ gets incremented by one.

$ awk -F ':' '$NF ~ /\/bin\/sh/ { n++ }; END { print
n }' /etc/passwd

2

123

Sed and Awk 101 Hacks

Chapter 11. Awk Conditional
Statements and Loops

Awk supports conditional statements to control the flow of the
program. Most of the Awk conditional statement syntax is similar to
the ‘C’ programming language conditional statements.

Awk supports the following three kinds of if statements.

• Awk Simple If statement

• Awk If-Else statement

• Awk If-ElseIf-Ladder

69. Simple If Statement

The simple if statement tests a condition, and if the condition returns
true, performs the corresponding action(s).

Single Action

Syntax:

if (conditional-expression)

action

• if is a keyword

• conditional-expression represents the condition to be tested

• action is an awk statement to perform

Multiple Actions

If more than one action needs to be performed when the condition is
true, those actions should be enclosed in curly braces. The individual
actions (awk statements) should be separated by new line or
semicolon as shown below.

124

Sed and Awk 101 Hacks

Syntax:

if (conditional-expression)

{

action1;

action2;

}

If the condition is true, all the actions enclosed in braces will be
performed in the given order. After all the actions are performed, awk
continues to execute the next statement.

Print all the items with quantity <=5:

$ awk -F "," '{ if ($5 <= 5) \

print "Only",$5,"qty of",$2, "is available"; }' \

items.txt

Only 2 qty of Refrigerator is available

Only 5 qty of Laser Printer is available

You can also have multiple conditional operators in an if statement as
shown below. This example prints all the items with price between
500 and 1000, and the total quantity <= 5

$ awk -F "," \

'{ if (($4 >= 500 && $4 <= 1000) && ($5 <= 5)) \

print "Only",$5,"qty of",$2,"is available";}' items.txt

Only 2 qty of Refrigerator is available

70. If Else Statement

In the awk "If Else" statement you can also provide list of actions to
perform if the condition is false. In the following syntax, if the
condition is true action1 will be performed, if the condition is false
action 2 will be performed.

Syntax:

if (conditional-expression)

125

Sed and Awk 101 Hacks

action1

else

action2

Awk also has a conditional operator, the 'ternary operator' (?:) which
works like the equivalent one in C.

Just like in the if-else statement, if the conditional-expression is true
action1 will be performed, and if the conditional-expression is false
action2 will be performed.

Ternary Operator Syntax:

conditional-expression ? action1 : action2 ;

The following example displays the message "Buy More" when the
total quantity is <= 5, and prints "Sell More" when the total quantity
is not <=5.

$ cat if-else.awk

BEGIN {

 FS=",";

}

{

 if ($5 <= 5)

 print "Buy More: Order", $2, "immediately!"

 else

 print "Sell More: Give discount on", $2,
"immediately!"

}

$ awk -f if-else.awk items.txt

Sell More: Give discount on HD Camcorder immediately!

Buy More: Order Refrigerator immediately!

Sell More: Give discount on MP3 Player immediately!

Sell More: Give discount on Tennis Racket immediately!

126

Sed and Awk 101 Hacks

Buy More: Order Laser Printer immediately!

The following example uses the ternary operator to concatenate
every 2 lines from the items.txt file, with a comma in between.

We discussed the awk ORS (output record separator) built-in variable
earlier. In this example, the value of ORS is changed back and forth
between comma and newline. When the line number modulo 2 (NR
%2) produces a remainder (i.e. for odd lines) ORS is set to comma;
otherwise it's a newline. So, lines 1 and 2 combine and print as a
single line, lines 3 and 4 combine and print as a single line, and line 5
prints by itself, with a comma and no newline character.

Print concatenated pairs of records:

$ awk 'ORS=NR%2?",":"\n"' items.txt

101,HD Camcorder,Video,210,10,102,Refrigerator,Appliance,850,2

103,MP3 Player,Audio,270,15,104,Tennis Racket,Sports,190,20

105,Laser Printer,Office,475,5,

71. While Loop

Awk looping statements are used to perform a set of actions again
and again in succession. Awk keeps executing a statement as long as
the loop condition is true. Just like a C program, awk supports various
looping statements.

First, let us look at the While loop statement.

Syntax:

while(condition)

actions

• while is awk keyword.

• condition is conditional expression.

• actions are the body of the while loop. If there are more than
one action, the actions must be enclosed within curly braces.

127

Sed and Awk 101 Hacks

The awk while loop checks the condition first; if the condition is true,
it executes the actions. After executing all the actions, the condition
is checked again, and if it is true, the actions are performed again.
This process is repeated until the condition becomes false.

Please note that if the condition returns false in the first iteration, the
actions are never executed.

The example below uses the BEGIN block that gets executed before
anything else in an Awk program. The awk while loop appends the
character ‘x’ to the variable ‘string’ 50 times. The variable count is
post-incremented each time it is checked, and the actions are
performed if it was less than 50 before being incremented. So the
loop executes exactly 50 times. After the loop, the value of the
‘string’ variable is printed.

$ awk 'BEGIN \

{ while (count++<50) string=string "x"; print string }'

xx

The following awk program prints the total number of items sold from
the items-sold.txt file for each item.

For each line, the program has to add the values of field 2 through
field 7. (Field 1 is the item number so its value is not added to the
total). So, the while condition starts from 2nd field (as i=2 before
while), and checks whether it has reached the last field in the record
(i <= NF). N represents the total number of fields in the record.

$ cat while.awk

{

 i=2; total=0;

 while (i <= NF) {

 total = total + $i;

 i++;

 }

128

Sed and Awk 101 Hacks

 print "Item", $1, ":", total, "quantities sold";

}

$ awk -f while.awk items-sold.txt

Item 101 : 47 quantities sold

Item 102 : 10 quantities sold

Item 103 : 65 quantities sold

Item 104 : 20 quantities sold

Item 105 : 42 quantities sold

72. Do-While Loop

The awk while loop is an entry-controlled loop, as the condition is
checked at the entry. The do-while loop is an exit-controlled loop; the
condition is checked at exit. The do-while loop always executes at
least once; it repeats as long as the condition is true.

Syntax:

do

action

while(condition)

In the example below, the print statement is executed exactly once
because we ensure that the condition will be false. If this were a while
statement, with the same initialization and condition, the actions
would not be executed at all.

$ awk 'BEGIN{

count=1;

do

print "This gets printed at least once";

while(count!=1)

}'

This gets printed at least once

129

Sed and Awk 101 Hacks

The following awk program prints the total number of quantities sold
from the items-sold.txt file for each item. The output of this program
is exactly the same as the while.awk program, but this uses do-while.

$ cat dowhile.awk

{

 i=2; total=0;

 do

 {

 total = total + $i;

 i++;

 } while (i <= NF)

 print "Item", $1, ":", total, "quantities sold";

}

$ awk -f dowhile.awk items-sold.txt

Item 101 : 47 quantities sold

Item 102 : 10 quantities sold

Item 103 : 65 quantities sold

Item 104 : 20 quantities sold

Item 105 : 42 quantities sold

73. For Loop Statement

The awk for statement is functionally the same as the awk while loop,
but the for statement syntax is much easier to use.

Syntax:

for(initialization;condition;increment/decrement)

actions

The awk for statement starts by executing initialization, then checks
the condition; if the condition is true, it executes the actions, then
does the increment or decrement. As long as the condition is true,
awk repeatedly executes the action and then the
increment/decrement.

130

Sed and Awk 101 Hacks

The following example prints the sum of fields in a line. Initially the
variable i is initialized to 1; if i is less than or equal to the total
number of fields, the current field is added to the total; I is
incremented and the test is repeated.

$ echo "1 2 3 4" | awk \

'{ for (i = 1; i <= NF; i++) total = total+$i }; \

END { print total }'

10

The following example prints all the fields in the file in the reverse
order using a for loop. Please note that this uses decrement rather
than increment in the for loop.

Note: After reading in each line, Awk sets the NF variable to the
number of fields found on that line.

This example loops in reverse order starting from NF to 1 and outputs
the fields one by one. It starts with field $NF, then $(NF-1),…, $1.
After that it prints a newline character.

Reverse For Example:

$ cat forreverse.awk

BEGIN {

 ORS="";

}

{

 for (i=NF; i >0; i--)

 print $i," "

 print "\n";

}

$ awk -f forreverse.awk items-sold.txt

12 10 8 5 10 2 101

2 0 3 4 1 0 102

13 5 20 11 6 10 103

5 6 0 4 3 2 104

131

Sed and Awk 101 Hacks

6 12 7 5 2 10 105

Now we will present the for-loop version of the program we used to
print the total quantity sold for each item in the items-sold.txt file. We
previously showed a while-loop and do-while-loop version.

$ cat for.awk

{

 total=0;

 for (i=2; i <= NF; i++)

 total = total + $i;

 print "Item", $1, ":", total, "quantities sold";

}

$ awk -f for.awk items-sold.txt

Item 101 : 47 quantities sold

Item 102 : 10 quantities sold

Item 103 : 65 quantities sold

Item 104 : 20 quantities sold

Item 105 : 42 quantities sold

74. Break Statement

The break statement is used for jumping out of the innermost loop
(while, do-while, or for loop) that encloses it. Please note that the
break statement has meaning only if you use it with in the loop.

The following example prints any item number that has a month with
no sold items, i.e. that has 0 for any one of the values field2 through
field7.

$ cat break.awk

{

 i=2; total=0;

 while (i++ <= NF)

132

Sed and Awk 101 Hacks

 if ($i == 0) {

 print "Item", $1, "had a month with no item sold"

 break;

 }

}

$ awk -f break.awk items-sold.txt

Item 102 had a month with no item sold

Item 104 had a month with no item sold

If you execute the following command, press Ctrl-C to stop the script
and break out of it.

$ awk 'BEGIN{while(1) print "forever"}'

The above awk while loop prints the string “forever” forever, because
the condition never fails. Usually this is not a good thing—although
forever loops are used in process control or operating system
applications!

Let us modify the loop so that it executes exactly ten times and is
terminated by a break statement.

$ awk 'BEGIN{

x=1;

while(1)

{

print "Iteration";

if (x==10)

break;

x++;

}}'

The above command produces the following output:

Iteration

133

Sed and Awk 101 Hacks

Iteration

Iteration

Iteration

Iteration

Iteration

Iteration

Iteration

Iteration

Iteration

75. Continue Statement

The continue statement skips over the rest of the loop body causing
the next cycle around the loop to begin immediately. Please note that
the continue statement has meaning only if you use it with in the
loop.

The following awk program prints the total number of quantities sold
from the items-sold.txt file for each item. The output of this program
is exactly same as the while.awk, dowhile.awk, and for.awk program,
but this uses the while loop with continue instead of starting the loop
at 2.

$ cat continue.awk

{

 i=1;

 total=0;

 while (i++ <= NF) {

 if (i == 1) continue;

 total = total + $i;

 }

 print "Item", $1, ":", total, "quantities sold";

}

$ awk -f continue.awk items-sold.txt

134

Sed and Awk 101 Hacks

Item 101 : 47 quantities sold

Item 102 : 10 quantities sold

Item 103 : 65 quantities sold

Item 104 : 20 quantities sold

Item 105 : 42 quantities sold

The following awk script prints the value of x at each iteration except
the 5th, where a continue statement skips the printing.

$ awk 'BEGIN{

x=1;

while(x<=10)

{

if(x==5){

x++;

continue;

}

print "Value of x",x;x++;

}

}'

The above command produces the following output.

Value of x 1

Value of x 2

Value of x 3

Value of x 4

Value of x 6

Value of x 7

Value of x 8

Value of x 9

Value of x 10

135

Sed and Awk 101 Hacks

76. Exit Statement

The exit statement causes the script to immediately stop executing
the current commands, and also ignores the remaining lines from the
input file.

Exit accepts any integer as an argument which will be the exit status
code for the awk process. If no argument is supplied, exit returns
status zero.

The following awk script exits during the 5th iteration. Since the print
statement is after the exit statement, the value of x is printed only till
4, and once it reaches 5 awk exits.

$ awk 'BEGIN{

x=1;

while(x<=10)

{

if(x==5){

exit;}

print "Value of x",x;x++;

}

}'

The above command produces the following output.

Value of x 1

Value of x 2

Value of x 3

Value of x 4

The following example prints the first item number that has a month
when no items were sold. This is similar to the break.awk example,
except that it exits when it finds a month with no sales for an item,
rather than going on to look at the other items.

136

Sed and Awk 101 Hacks

$ cat exit.awk

{

 i=2; total=0;

 while (i++ <= NF)

 if ($i == 0) {

 print "Item", $1, "had a month with no item sold"

 exit;

 }

}

$ awk -f exit.awk items-sold.txt

Item 102 had a month with no item sold

Note: Item 104 also had a month with no item sold. But, it was not
displayed above, as we used exit in the while loop.

137

Sed and Awk 101 Hacks

Chapter 12. Awk Associative
Arrays

77. Assigning Array Elements

Arrays in awk are extremely powerful when compared to the
traditional arrays that you might have used in other programming
languages.

In Awk, arrays are associative, i.e. an array contains multiple
index/value pairs. The index doesn't need to be a continuous set of
numbers; in fact it can be a string or a number, and you don't need to
specify the size of the array.

Syntax:

arrayname[string]=value

• arrayname is the name of the array.

• string is the index of an array.

• value is any value assigning to the element of the array.

Accessing elements of the AWK array

If you want to access a particular element in an array, you use the
format arrayname[index], which gives you the value assigned to that
index.

The following is a simple array assignment example:

$ cat array-assign.awk

BEGIN {

 item[101]="HD Camcorder";

 item[102]="Refrigerator";

 item[103]="MP3 Player";

 item[104]="Tennis Racket";

 item[105]="Laser Printer";

138

Sed and Awk 101 Hacks

 item[1001]="Tennis Ball";

 item[55]="Laptop";

 item["na"]="Not Available";

 print item["101"];

 print item[102];

 print item["103"];

 print item[104];

 print item["105"];

 print item[1001];

 print item[55];

 print item["na"];

}

$ awk -f array-assign.awk

HD Camcorder

Refrigerator

MP3 Player

Tennis Racket

Laser Printer

Tennis Ball

Laptop

Not Available

Please note the following in the above example:

• Array indexes are not in sequence. It didn't even have to start
from 0 or 1. It really started from 101 .. 105, then jumped to
1001, then came down to 55, then it had a string index "na".

• Array indexes can be string. The last item in this array has an
index string. i.e. "na" is the index.

• You don't need to initialize or even define the array in awk;
you don't need to specify the total array size before you have
to use it.

• The naming convention of an awk array is same as the naming
convention of an awk variable.

139

Sed and Awk 101 Hacks

From awk's point of view, the index of the array is always a string.
Even when you pass a number for the index, awk will treat it as string
index. Both of the following are the same.

item[101]="HD Camcorder"

item["101"]="HD Camcorder"

78. Referring to Array Elements

You can directly print an array element using print command as
shown below, or you can assign the array item to another variable for
additional manipulation inside awk program.

print item[101]

x=item[105]

If you refer to an array element that doesn't exist, awk will
automatically create that array element with the given index, and
assign null value to it. If you want to avoid this, check if the index is
valid before accessing the array element.

You can check whether a particular array index exists by using the
following if condition syntax. This will return true, if the index exists in
the array.

if (index in array-name)

The following is a simple array reference example:

$ cat array-refer.awk

BEGIN {

 x = item[55];

 if (55 in item)

 print "Array index 55 contains",item[55];

 item[101]="HD Camcorder";

 if (101 in item)

140

Sed and Awk 101 Hacks

 print "Array index 101 contains",item[101];

 if (1010 in item)

 print "Array index 1010 contains",item[1010];

}

$ awk -f array-refer.awk

Array index 55 contains

Array index 101 contains HD Camcorder

In the above example:

• item[55] is not assigned with any value earlier. But it is
referred in "x = item[55]", so awk will automatically create
this array element with null value.

• item[101] is assigned a value. So, when you check for index
101, it is present.

• item[1010] does not exist. So, when you check for index 1010,
it is not present.

79. Browse the Array using For Loop

If you want to access all the array elements, you can use a special
instance of the for loop to go through all the indexes of an array:

Syntax:

for (var in arrayname)

actions

• var is any variable name

• in is a keyword

• arrayname is the name of the array.

• actions are list of awk statements to be executed. If you want
to execute more than one action, it has to be enclosed within
braces. The loop executes list of actions for each element in
the array, by setting the variable var to the index of the
corresponding element.

141

Sed and Awk 101 Hacks

In the following example:

In "for (x in item)", x can be any variable, which holds the index.

Please note that we don't have any conditions to verify how many
times the condition should loop through. We really don't care how
many items are there in the array, as the awk for loop will
automatically take care of it, and loop through all the items before
exiting the for loop.

The following is a simple for loop example that loops through all the
elements in the item array and prints it.

$ cat array-for-loop.awk

BEGIN {

 item[101]="HD Camcorder";

 item[102]="Refrigerator";

 item[103]="MP3 Player";

 item[104]="Tennis Racket";

 item[105]="Laser Printer";

 item[1001]="Tennis Ball";

 item[55]="Laptop";

 item["na"]="Not Available";

 for (x in item)

 print item[x];

}

$ awk -f array-for-loop.awk

Laptop

HD Camcorder

Refrigerator

MP3 Player

Tennis Racket

Laser Printer

Not Available

Tennis Ball

142

Sed and Awk 101 Hacks

80. Delete Array Element

If you want to remove an element from a particular index of an array,
use awk delete statement. Once you delete an element from an awk
array, you can no longer obtain its value.

Syntax:

delete arrayname[index];

The loop command below removes all elements from an array.

for (var in array)

 delete array[var]

In GAWK, you can specify the following single command to delete all
the elements from an array.

delete array

Also, as shown in the example below, item[103]="" does not delete
the array element. It just stores null values in it.

$ cat array-delete.awk

BEGIN {

 item[101]="HD Camcorder";

 item[102]="Refrigerator";

 item[103]="MP3 Player";

 item[104]="Tennis Racket";

 item[105]="Laser Printer";

 item[1001]="Tennis Ball";

 item[55]="Laptop";

 item["na"]="Not Available";

 delete item[102];

 item[103]="";

143

Sed and Awk 101 Hacks

 delete item[104];

 delete item[1001];

 delete item["na"];

 for (x in item)

 print "Index",x,"contains",item[x];

}

$ awk -f array-delete.awk

Index 55 contains Laptop

Index 101 contains HD Camcorder

Index 103 contains

Index 105 contains Laser Printer

81. Multi Dimensional Array

Awk has only one dimensional array. But, the beauty of awk is that
you can simulate a multi dimensional array using the single
dimensional array itself.

Suppose you want to create the following 2 x 2 multi dimensional
array.

10 20

30 40

In the above example, item at location "1,1" is 10, item at location
"1,2" is 20, etc. Do the following to assign 10 to location "1,1".

item["1,1"]=10

Even though you've given "1,1" as index, it is not two indexes. It is
just one index with the string "1,1". So, in the above example, you
are really storing the value 10 at a single dimensional array with
index "1,1".

$ cat array-multi.awk

BEGIN {

144

Sed and Awk 101 Hacks

 item["1,1"]=10;

 item["1,2"]=20;

 item["2,1"]=30;

 item["2,2"]=40;

 for (x in item)

 print item[x];

}

$ awk -f array-multi.awk

10

20

30

40

Now, what happens when you don't enclose the indexes within
quotes? i.e. item[1,1] (instead of item["1,1"]), as shown in the
example below.

$ cat array-multi2.awk

BEGIN {

 item[1,1]=10;

 item[1,2]=20;

 item[2,1]=30;

 item[2,2]=40;

 for (x in item)

 print item[x];

}

$ awk -f array-multi2.awk

30

40

10

20

145

Sed and Awk 101 Hacks

The above sample program will still work. But, there is a difference. In
a multi-dimensional awk array, when you don't enclose the indexes
within quotes, awk uses a subscript separator with default value of
"\034".

When you specify item[1,2], it will be translated to item["1\0342"].
Awk will combine both the subscripts using \034 in between and
convert them to string.

When you specify item["1,2"], it will not be translated, as it will be
treated just as a one dimensional array with no subscripts.

This is demonstrated in the example below.

$ cat array-multi3.awk

BEGIN {

 item["1,1"]=10;

 item["1,2"]=20;

 item[2,1]=30;

 item[2,2]=40;

 for (x in item)

 print "Index",x,"contains",item[x];

}

$ awk -f array-multi3.awk

Index 1,1 contains 10

Index 1,2 contains 20

Index 2#1 contains 30

Index 2#2 contains 40

In the above example:

146

Sed and Awk 101 Hacks

• Indexes "1,1" and "1,2" are enclosed in quotes. So, this is
treated as a one dimensional array index, no subscript
separator is used by awk. So, the index gets printed as is.

• Indexes 2,1 and 2,2 are not enclosed in quotes. So, this is
treated as a multi-dimensional array index, and awk uses a
subscript separator. So, the index is "2\0341" and "2\0342",
which is printed with the non-printable character "\034"
between the subscripts.

82. SUBSEP - Subscript Separator

You can change the default subscript separator to anything you like
using the SUBSEP variable. In the following example, SUBSEP is set to
colon.

$ cat array-multi4.awk

BEGIN {

 SUBSEP=":";

 item["1,1"]=10;

 item["1,2"]=20;

 item[2,1]=30;

 item[2,2]=40;

 for (x in item)

 print "Index",x,"contains",item[x];

}

$ awk -f array-multi4.awk

Index 1,1 contains 10

Index 1,2 contains 20

Index 2:1 contains 30

Index 2:2 contains 40

In the above example, indexes "1,1" and "1,2" didn't use the SUBSEP
because they were enclosed in quotes.

147

Sed and Awk 101 Hacks

So, for a multi-dimensional awk array, the best practice is not to
enclose any of the indexes within quotes, as shown below.

$ cat array-multi5.awk

BEGIN {

 SUBSEP=":";

 item[1,1]=10;

 item[1,2]=20;

 item[2,1]=30;

 item[2,2]=40;

 for (x in item)

 print "Index",x,"contains",item[x];

}

$ awk -f array-multi5.awk

Index 1:1 contains 10

Index 1:2 contains 20

Index 2:1 contains 30

Index 2:2 contains 40

83. Sort Array Values using asort

The asort function sorts the array values and stores them in indexes
from 1 through n. Where n is the total number of elements in the
array.

Suppose you have two elements in the array: item["something"]="B -
I'm big b" and item["notsure"]="A - I'm big a". After an asort function
call, the array will be sorted based on the values to: item[1]="A - I'm
big a" and item[2]="B - I'm big b".

In the following example, we have array indexes with various non-
consecutive numbers and strings. After the asort, the array values

148

Sed and Awk 101 Hacks

will be sorted and stored in the indexes 1,2,3,4,... Please note that
asort returns the total number of items in the array.

$ cat asort.awk

BEGIN {

 item[101]="HD Camcorder";

 item[102]="Refrigerator";

 item[103]="MP3 Player";

 item[104]="Tennis Racket";

 item[105]="Laser Printer";

 item[1001]="Tennis Ball";

 item[55]="Laptop";

 item["na"]="Not Available";

 print "------Before asort------"

 for (x in item)

 print "Index",x,"contains",item[x];

 total = asort(item);

 print "------After asort------"

 for (x in item)

 print "Index",x,"contains",item[x];

 print "Return value from asort:", total;

}

$ awk -f asort.awk

------Before asort------

Index 55 contains Laptop

Index 101 contains HD Camcorder

Index 102 contains Refrigerator

Index 103 contains MP3 Player

Index 104 contains Tennis Racket

Index 105 contains Laser Printer

Index na contains Not Available

149

Sed and Awk 101 Hacks

Index 1001 contains Tennis Ball

------After asort------

Index 4 contains MP3 Player

Index 5 contains Not Available

Index 6 contains Refrigerator

Index 7 contains Tennis Ball

Index 8 contains Tennis Racket

Index 1 contains HD Camcorder

Index 2 contains Laptop

Index 3 contains Laser Printer

Return value from asort: 8

In the above example, after the asort, the array elements are not
printed from indexes 1 through 8. Instead, it is random. You can print
them from 1 through 8 as shown in the example below.

$ cat asort1.awk

BEGIN {

 item[101]="HD Camcorder";

 item[102]="Refrigerator";

 item[103]="MP3 Player";

 item[104]="Tennis Racket";

 item[105]="Laser Printer";

 item[1001]="Tennis Ball";

 item[55]="Laptop";

 item["na"]="Not Available";

 total = asort(item);

 for (i=1; i<= total; i++)

 print "Index",i,"contains",item[i];

}

$ awk -f asort1.awk

Index 1 contains HD Camcorder

150

Sed and Awk 101 Hacks

Index 2 contains Laptop

Index 3 contains Laser Printer

Index 4 contains MP3 Player

Index 5 contains Not Available

Index 6 contains Refrigerator

Index 7 contains Tennis Ball

Index 8 contains Tennis Racket

As you may have noticed in the above examples, once asort is
executed, you'll lose the original indexes forever. So, instead of
overwriting the original array with the new indexes, you might want
to create a new array with the new indexes.

In the following example, the original array "item" is not modified.
Instead, the "itemnew" array will contain the new indexes. i.e.
itemnew[1], itemnew[2], itemnew[3], etc.

total = asort(item, itemnew);

Again, remember that asort sorts the array values. But, instead of
using the original indexes, it uses new indexes from 1 through n.
Original indexes are lost.

84. Sort Array Indexes using asorti

Just like sorting array values, you can take all the array indexes, sort
them, and store them in a new array using asorti.

The following example shows how asorti differs from asort. Keep the
following in mind:

• asorti sorts the indexes (not the values) and stores them as
values.

• If you specify asorti(state), you'll lose the original values. i.e.
the indexes will now become the values. So, to be on safe
side, always specify two parameters to the asorti function. i.e.
asorti(state,stateabbr). This way, the original array (state), it
not overwritten.

151

Sed and Awk 101 Hacks

$ cat asorti.awk

BEGIN {

 state["TX"]="Texas";

 state["PA"]="Pennsylvania";

 state["NV"]="Nevada";

 state["CA"]="California";

 state["AL"]="Alabama";

 print "----- Function: asort -----"

 total = asort(state,statedesc);

 for (i=1; i<= total; i++)

 print "Index",i,"contains",statedesc[i];

 print "----- Function: asorti -----"

 total = asorti(state,stateabbr);

 for (i=1; i<= total; i++)

 print "Index",i,"contains",stateabbr[i];

}

$ awk -f asorti.awk

----- Function: asort -----

Index 1 contains Alabama

Index 2 contains California

Index 3 contains Nevada

Index 4 contains Pennsylvania

Index 5 contains Texas

----- Function: asorti -----

Index 1 contains AL

Index 2 contains CA

Index 3 contains NV

Index 4 contains PA

Index 5 contains TX

152

Sed and Awk 101 Hacks

Chapter 13. Additional Awk
Commands

85. Pretty Printing Using printf

Printf is very flexible and makes report printing job relatively easier
by allowing you to print the output in the way you want it.

Syntax:

printf "print format", variable1, variable2, etc.

Special Characters in the printf Format

Following are some of the special characters that can be used inside
a printf.

Special Character Description

\n New Line

\t Tab

\v Vertical Tab

\b Backspace

\r Carriage Return

\f Form Feed

The following prints "Line 1" and "Line 2" in separate lines using
newline:

$ awk 'BEGIN { printf "Line 1\nLine 2\n" }'

Line 1

Line 2

153

Sed and Awk 101 Hacks

The following prints different fields separated by tabs, with 2 tabs
after "Field 1":

$ awk 'BEGIN \

{ printf "Field 1\t\tField 2\tField 3\tField 4\n" }'

Field 1 Field 2 Field 3 Field 4

The following prints vertical tabs after every field:

$ awk 'BEGIN \

{ printf "Field 1\vField 2\vField 3\vField 4\n" }'

Field 1

 Field 2

 Field 3

 Field 4

The following prints a backspace after every field except Field4. This
erases the last number in each of the first three fields. For example
"Field 1" is displayed as "Field ", because the last character is erased
with backspace. However the last field "Field 4" is displayed as it is,
as we didn't have a \b after "Field 4".

$ awk 'BEGIN \

{ printf "Field 1\bField 2\bField 3\bField 4\n" }'

Field Field Field Field 4

In the following example, after printing every field, we do a "Carriage
Return" and print the next value on top of the current printed value.
This means, in the final output you see is only "Field 4", as it was the
last thing to be printed on top of all the previous fields.

$ awk 'BEGIN \

{ printf "Field 1\rField 2\rField 3\rField 4\n" }'

Field 4

154

Sed and Awk 101 Hacks

Print Uses OFS, ORS Values

When you print multiple values separated by comma using print
command (not printf), it uses the OFS and RS built-in variable values
to decide how to print the fields.

The following example show how the simple print statement "print
$2,$3" gets affected by using OFS and ORS values.

$ cat print.awk

BEGIN {

 FS=",";

 OFS=":";

 ORS="\n--\n";

}

{

 print $2,$3

}

$ awk -f print.awk items.txt

HD Camcorder:Video

--

Refrigerator:Appliance

--

MP3 Player:Audio

--

Tennis Racket:Sports

--

Laser Printer:Office

--

Printf doesn't Use OFS, ORS Values

Printf doesn't use the OFS and ORS values. It uses only what is
specified in the "format" field of the printf command as shown in the
example below.

155

Sed and Awk 101 Hacks

$ cat printf1.awk

BEGIN {

 FS=",";

 OFS=":";

 ORS="\n--\n";

}

{

 printf "%s^^%s\n\n", $2, $3

}

$ awk -f printf1.awk items.txt

HD Camcorder^^Video

Refrigerator^^Appliance

MP3 Player^^Audio

Tennis Racket^^Sports

Laser Printer^^Office

Printf Format Specifiers

Format Specifier Description

s String

c Single Character

d Decimal

e Exponential Floating point

f Fixed Floating point

g Uses either e or f depending on which is
smaller for the given input

o Octal

x Hexadecimal

% Prints the percentage symbol

156

Sed and Awk 101 Hacks

The following example shows the basic usage of the format specifiers:

$ cat printf-format.awk

BEGIN {

 printf "s--> %s\n", "String"

 printf "c--> %c\n", "String"

 printf "s--> %s\n", 101.23

 printf "d--> %d\n", 101.23

 printf "e--> %e\n", 101.23

 printf "f--> %f\n", 101.23

 printf "g--> %g\n", 101.23

 printf "o--> %o\n", 0x8

 printf "x--> %x\n", 16

 printf "percentage--> %%\n", 17

}

$ awk -f printf-format.awk

s--> String

c--> S

s--> 101.23

d--> 101

e--> 1.012300e+02

f--> 101.230000

g--> 101.23

o--> 10

x--> 10

percentage--> %

Print with Fixed Column Width (Basic)

To create a fixed column width report, you have to specify a number
immediately after the % in the format specifier. This number
indicates the minimum number of character to be printed. When the
input-string is smaller than the specified number, spaces are added
to the left to make it fixed width.

157

Sed and Awk 101 Hacks

The following example displays the basic use of the printf statement
with number specified immediately after %

$ cat printf-width.awk

BEGIN {

 FS=","

 printf "%3s\t%10s\t%10s\t%5s\t%3s\n",
"Num","Description","Type","Price","Qty"

 printf
"---\
n"

}

{

 printf "%3d\t%10s\t%10s\t%g\t%d\n", $1,$2,$3,$4,$5

}

$ awk -f printf-width.awk items.txt

Num Description Type Price Qty

--

101 HD Camcorder Video 210 10

102 Refrigerator Appliance 850 2

103 MP3 Player Audio 270 15

104 Tennis Racket Sports 190 20

105 Laser Printer Office 475 5

Notice that the output is a bit ragged, even though we specified the
exact width. That's because the width we specify is actually the
minimum width, not the absolute size; if the input string has more
characters than that, the whole string will be printed. So, you should
really pay attention to how many characters you want to print.

If you want to print a fixed column width even when the input string
is longer than the number specified, you should use the substr
function (or) add a decimal before the number in the format identifier
(as explained later).

In the previous example, the second field was wider than the 10
character width specified, so the result was not what was intended.

158

Sed and Awk 101 Hacks

Spaces are added to the left to print “Good” as a 6 character string:

$ awk 'BEGIN { printf "%6s\n", "Good" }'

 Good

The whole string is printed here even though you specified 6
character width:

$ awk 'BEGIN { printf "%6s\n", "Good Boy!" }'

Good Boy!

Print with Fixed Width (Left Justified)

When the input-string is less than the number of characters specified,
and you would like it to be left justified (by adding spaces to the
right), use a minus symbol (-) immediately after the % and before the
number.

"%6s" is right justified as shown below:

$ awk 'BEGIN { printf "|%6s|\n", "Good" }'

| Good|

"%-6s" is left justified as shown below:

$ awk 'BEGIN { printf "|%-6s|\n", "Good" }'

|Good |

Print with Dollar Amount

To add a dollar symbol before the price value, just add the dollar
symbol before the identifier in the printf as shown below.

$ cat printf-width2.awk

BEGIN {

 FS=","

 printf "%-3s\t%-10s\t%-10s\t%-5s\t%-3s\n",
"Num","Description","Type","Price","Qty"

159

Sed and Awk 101 Hacks

 printf
"---\
n"

}

{

 printf "%-3d\t%-10s\t%-10s\t$%-.2f\t%-d\n",
$1,$2,$3,$4,$5

}

$ awk -f printf-width2.awk items.txt

Num Description Type Price Qty

101 HD Camcorder Video $210.00 10

102 Refrigerator Appliance $850.00 2

103 MP3 Player Audio $270.00 15

104 Tennis Racket Sports $190.00 20

105 Laser Printer Office $475.00 5

Print with Leading Zeros

By default values are right justified with space added to the left

$ awk 'BEGIN { printf "|%5s|\n", "100" }'

| 100|

For right justified with 0's in front of the number (instead of the
space), add a zero (0) before the number. i.e. Instead of "%5s", use
"%05s" as the format identifier.

$ awk 'BEGIN { printf "|%05s|\n", "100" }'

|00100|

The following example uses the leading zero format identifier for the
Qty field.

160

Sed and Awk 101 Hacks

$ cat printf-width3.awk

BEGIN {

 FS=","

 printf "%-3s\t%-10s\t%-10s\t%-5s\t%-3s\n",
"Num","Description","Type","Price","Qty"

 printf
"---\
n"

}

{

 printf "%-3d\t%-10s\t%-10s\t$%-.2f\t%03d\n",
$1,$2,$3,$4,$5

}

$ awk -f printf-width3.awk items.txt

Num Description Type Price Qty

101 HD Camcorder Video $210.00 010

102 Refrigerator Appliance $850.00 002

103 MP3 Player Audio $270.00 015

104 Tennis Racket Sports $190.00 020

105 Laser Printer Office $475.00 005

Print Absolute Fixed Width String Value

As we already shown you, when the input string contains more
characters than what is specified in the format specifier it prints the
whole thing as shown below.

$ awk 'BEGIN { printf "%6s\n", "Good Boy!" }'

Good Boy!

To print maximum of ONLY 6 characters, add a decimal before the
number. i.e. Instead of "%6s", give "%.6s", which will print only 6
characters from the input string, even when the input string is longer
than that as shown below.

161

Sed and Awk 101 Hacks

$ awk 'BEGIN { printf "%.6s\n", "Good Boy!" }'

Good B

The above doesn't work on all versions of awk. On GAWK 3.1.5 it
worked. But on GAWK 3.1.7 it didn't work.

So, the reliable way to print a fixed character might be to use the
substr function as shown below.

$ awk 'BEGIN \

{ printf "%6s\n", substr("Good Boy!",1,6) }'

Good B

Dot . Precision

A dot before the number in format identifier indicates the precision.

The following example shows how a dot before a number for the
numeric format identifier works. This example shows how the number
"101.23" is printed differently when using using .1 and .4 (using d, e,
f, and g format specifier).

$ cat dot.awk

BEGIN {

 print "----Using .1----"

 printf ".1d--> %.1d\n", 101.23

 printf ".1e--> %.1e\n", 101.23

 printf ".1f--> %.1f\n", 101.23

 printf ".1g--> %.1g\n", 101.23

 print "----Using .4----"

 printf ".4d--> %.4d\n", 101.23

 printf ".4e--> %.4e\n", 101.23

 printf ".4f--> %.4f\n", 101.23

 printf ".4g--> %.4g\n", 101.23

}

$ awk -f dot.awk

162

Sed and Awk 101 Hacks

----Using .1----

.1d--> 101

.1e--> 1.0e+02

.1f--> 101.2

.1g--> 1e+02

----Using .4----

.4d--> 0101

.4e--> 1.0123e+02

.4f--> 101.2300

.4g--> 101.2

Print Report to File

You can redirect the output of a print statement to a specific output
file inside the awk script. In the following example the 1st print
statement has "> report.txt", which creates the report.txt file and
sends the output of the prints statement to it. All the subsequent
print statements have ">> report.txt", which appends the output to
the existing report.txt file.

$ cat printf-width4.awk

BEGIN {

 FS=","

 printf "%-3s\t%-10s\t%-10s\t%-5s\t%-3s\n",
"Num","Description","Type","Price","Qty" > "report.txt"

 printf
"---\
n" >> "report.txt"

}

{

 if ($5 > 10)

 printf "%-3d\t%-10s\t%-10s\t$%-.2f\t%03d\n",
$1,$2,$3,$4,$5 >> "report.txt"

}

$ awk -f printf-width4.awk items.txt

163

Sed and Awk 101 Hacks

$ cat report.txt

Num Description Type Price Qty

103 MP3 Player Audio $270.00 015

104 Tennis Racket Sports $190.00 020

The other method is not to specify the "> report.txt" or ">>
report.txt" in the print statement. Instead, while executing the awk
script, redirect the output to the report.xt as shown below.

$ cat printf-width5.awk

BEGIN {

 FS=","

 printf "%-3s\t%-10s\t%-10s\t%-5s\t%-3s\n",
"Num","Description","Type","Price","Qty"

 printf
"---\
n"

}

{

 if ($5 > 10)

 printf "%-3d\t%-10s\t%-10s\t$%-.2f\t%03d\n",
$1,$2,$3,$4,$5

}

$ awk -f printf-width5.awk items.txt > report.txt

$ cat report.txt

Num Description Type Price Qty

103 MP3 Player Audio $270.00 015

104 Tennis Racket Sports $190.00 020

164

Sed and Awk 101 Hacks

86. Built-in Numeric Functions

Awk has built-in functions for several numeric, string, input, and
output operations. We discuss some of them here.

Awk int(n) Function

int() function gives you the integer part of the given argument. This
produces the lowest integer part of given n. n is any number with or
with out floating point. If you give a whole number as an argument,
this function returns the same number; for a floating point number, it
truncates.

Init Function Example:

$ awk 'BEGIN{

print int(3.534);

print int(4);

print int(-5.223);

print int(-5);

}'

The above command produces the following output.

3

4

-5

-5

Awk log(n) Function

The log(n) function provides the natural logarithm of given argument
n. The number n must be positive, or an error will be thrown.

Log Function Example:

$ awk 'BEGIN{

print log(12);

print log(0);

print log(1);

165

Sed and Awk 101 Hacks

print log(-1);

}'

2.48491

-inf

0

nan

In the above output you can identify that log(0) is infinity which was
shown as -inf, and log(-1) gives you the error nan (Not a Number).

Note: You might also get the following warning message for the log(-
1): awk: cmd. line:4: warning: log: received negative argument -1

Awk sqrt(n) Function

sqrt function gives the positive square root for the given integer n.
This function also requires a positive number, and it returns nan error
if you give the negative number as an argument.

Sqrt Function Example:

$ awk 'BEGIN{

print sqrt(16);

print sqrt(0);

print sqrt(-12);

}'

4

0

nan

Awk exp(n) Function

The exp(n) function provides e to the power of n.

Exp Function Example:

$ awk 'BEGIN{

print exp(123434346);

print exp(0);

166

Sed and Awk 101 Hacks

print exp(-12);

}'

inf

1

6.14421e-06

In the above output, for exp(1234346), it gives you the output
infinity, because this is out of range.

Awk sin(n) Function

The sin(n) function gives the sine of n, with n in radians.

Sine Function Example:

$ awk 'BEGIN {

print sin(90);

print sin(45);

}'

0.893997

0.850904

Awk cos(n) Function

The cos(n) returns the cosine of n, with n in radians.

Cosine Function Example:

$ awk 'BEGIN {

print cos(90);

print cos(45);

}'

-0.448074

0.525322

167

Sed and Awk 101 Hacks

Awk atan2(m,n) Function

This function gives you the arc-tangent of m/n in radians.

Atan2 Function Example:

$ awk 'BEGIN { print atan2(30,45) }'

0.588003

87. Random Number Generator

Awk rand() Function

rand() is used to generate a random number between 0 and 1. It
never returns 0 or 1, always a value between 0 and 1. Numbers are
random within one awk run, but predictable from run to run.

Awk uses an algorithm to generate the random numbers, and since
this algorithm is fixed, the numbers are repeatable.

The following example generates 1000 random numbers between 0
and 100, and shows how often each number was generated.

Generate 1000 random numbers (between 0 and 100):

$ cat rand.awk

BEGIN {

while(i<1000)

{

n = int(rand()*100);

rnd[n]++;

i++;

}

for(i=0;i<=100;i++) {

print i,"Occured", rnd[i], "times";

}

}

168

Sed and Awk 101 Hacks

$ awk -f rand.awk

0 Occured 6 times

1 Occured 16 times

2 Occured 12 times

3 Occured 6 times

4 Occured 13 times

5 Occured 13 times

6 Occured 8 times

7 Occured 7 times

8 Occured 16 times

9 Occured 9 times

10 Occured 6 times

11 Occured 9 times

12 Occured 17 times

13 Occured 12 times

From the above output, we can see that the rand() function can
generate repeatable numbers very often.

Awk srand(n) Function

srand(n) is used to initialize the random number generation with a
given argument n. Whenever program execution starts, awk starts
generating its random numbers from n. If no argument were given,
awk would use the time of the day to generate the seed.

Generate 5 random numbers starting from 5 to 50:

$ cat srand.awk

BEGIN {

 # Initialize the seed with 5.

 srand(5);

 # Totally I want to generate 5 numbers.

 total=5;

 #maximum number is 50.

169

Sed and Awk 101 Hacks

 max=50;

 count=0;

 while(count < total) {

rnd = int(rand() * max);

if (array[rnd] == 0) {

count++;

array[rnd]++;

}

 }

 for (i=5; i<=max; i++) {

if (array[i])

print i;

 }

}

$ awk -f srand.awk

9

15

26

37

39

The above srand.awk does the following:

• Uses rand() function to generate a random number that is
multiplied with the maximum desired value to produce a
number < 50.

• Checks if the generated random number already exists in the
array. If it does not exist, it increments the index and loop
count. It generates 5 numbers using this logic.

• Finally in the for loop, it loops from minimum to maximum,
and prints each index that contains any value.

170

Sed and Awk 101 Hacks

88. Generic String Functions

Following are the common awk string functions that are available on
all flavors of awk.

Index Function

The index function can be used to get the index (location) of the
given string (or character) in an input string.

In the following example, string "Cali" is located in the string "CA is
California" at location number 7.

You can also use index to check whether a given string (or character)
is present in an input string. If the given string is not present, it will
return the location as 0, which means the given string doesn't exist,
as shown below.

$ cat index.awk

BEGIN {

 state="CA is California"

 print "String CA starts at
location",index(state,"CA");

 print "String Cali starts at
location",index(state,"Cali");

 if (index(state,"NY")==0)

 print "String NY is not found in:", state

}

$ awk -f index.awk

String CA starts at location 1

String Cali starts at location 7

String NY is not found in: CA is California

Length Function

The length function returns the length of a string. In the following
example, we print the total number of characters in each record of
the items.txt file.

171

Sed and Awk 101 Hacks

$ awk '{print length($0)}' items.txt

29

32

27

31

30

Split Function

Syntax:

split(input-string,output-array,separator)

This split function splits a string into individual array elements. It
takes following three arguments.

• input-string: This is the input string that needs to be split into
multiple strings.

• output-array: This array will contain the split strings as
individual elements.

• separator: The separator that should be used to split the
input-string.

For this example, the original items-sold.txt file is slightly changed to
have different field delimiters, i.e. a colon to separate the item
number and the quantity sold. Within quantity sold, the individual
quantities are separated by comma.

So, in order for us to calculate the total number of items sold for a
particular item, we should take the 2nd field (which is all the
quantities sold delimited by comma), split them using comma
separator and store the substrings in an array, then loop through the
array to add the quantities.

$ cat items-sold1.txt

101:2,10,5,8,10,12

102:0,1,4,3,0,2

103:10,6,11,20,5,13

104:2,3,4,0,6,5

172

Sed and Awk 101 Hacks

105:10,2,5,7,12,6

$ cat split.awk

BEGIN {

 FS=":"

}

{

 split($2,quantity,",");

 total=0;

 for (x in quantity)

 total=total+quantity[x];

 print "Item", $1, ":", total, "quantities sold";

}

$ awk -f split.awk items-sold1.txt

Item 101 : 47 quantities sold

Item 102 : 10 quantities sold

Item 103 : 65 quantities sold

Item 104 : 20 quantities sold

Item 105 : 42 quantities sold

Substr Function

Syntax:

substr(input-string, location, length)

The substr function extracts a portion of a given string. In the above
syntax:

• input-string: The input string containing the substring.

• location: The starting location of the substring.

• length: The total number of characters to extract from the
starting location. This parameter is optional. When you don't
specify it extracts the rest of the characters from the starting
location.

173

Sed and Awk 101 Hacks

The following example starts extracting the string from 5th the
character and prints the rest of the line. The 1st 3 characters are the
item number, 4th character is the comma delimiter. So, this skips the
item number and prints the rest.

$ awk '{print substr($0,5)}' items.txt

HD Camcorder,Video,210,10

Refrigerator,Appliance,850,2

MP3 Player,Audio,270,15

Tennis Racket,Sports,190,20

Laser Printer,Office,475,5

Start from the 1st character (of the 2nd field) and prints 5
characters:

$ awk -F"," '{print substr($2,1,5)}' items.txt

HD Ca

Refri

MP3 P

Tenni

Laser

89. GAWK/NAWK String Functions

These string functions are available only in GAWK and NAWK flavors.

Sub Function

syntax:

sub(original-string,replacement-string,string-variable)

• sub stands for substitution.

• original-string: This is the original string that needs to be
replaced. This can also be a regular expression.

• replacement-string: This is the replacement string.

174

Sed and Awk 101 Hacks

• string-variable: This acts as both input and output string
variable. You have to be careful with this, as after the
successful substitution, you lose the original value in this
string-variable.

In the following example:

• original-string: This is the regular expression C[Aa], which
matches either "CA" or "Ca"

• replacement-string: When the original-string is found, replace
it with "KA"

• string-variable: Before executing the sub, the variable
contains the input string. Once the replacement is done, the
variable contains the output string.

Please note that sub replaces only the 1st occurrence of the match.

$ cat sub.awk

BEGIN {

 state="CA is California"

 sub("C[Aa]","KA",state);

 print state;

}

$ awk -f sub.awk

KA is California

The 3rd parameter string-variable is optional. When it is not specified,
awk will use $0 (the current line), as shown below. This example
changes the first 2 characters of the record from "10" to "20". So, the
item number 101 becomes 201, 102 becomes 202, etc.

$ awk '{ sub("10","20"); print $0; }' items.txt

201,HD Camcorder,Video,210,10

202,Refrigerator,Appliance,850,2

203,MP3 Player,Audio,270,15

204,Tennis Racket,Sports,190,20

205,Laser Printer,Office,475,5

175

Sed and Awk 101 Hacks

When a successful substitution happens, the sub function returns 1,
otherwise it returns 0.

Print the record only when a successful substitution occurs:

$ awk '{ if (sub("HD","High-Def")) print $0; }' \

items.txt

101,High-Def Camcorder,Video,210,10

Gsub Function

gsub stands for global substitution. gsub is exactly same as sub,
except that all occurrences of original-string are changed to
replacement-string.

In the following example, both "CA" and "Ca" are changed to
"KA":

$ cat gsub.awk

BEGIN {

 state="CA is California"

 gsub("C[Aa]","KA",state);

 print state;

}

$ awk -f gsub.awk

KA is KAlifornia

As with sub, the 3rd parameter is optional. When it is not specified,
awk will use $0 as shown below.

The following example replaces all the occurrences of "10" in the line
with "20". So, other than changing the item-number, it also changes
other numeric fields in the record, if it contains "10".

$ awk '{ gsub("10","20"); print $0; }' items.txt

201,HD Camcorder,Video,220,20

176

Sed and Awk 101 Hacks

202,Refrigerator,Appliance,850,2

203,MP3 Player,Audio,270,15

204,Tennis Racket,Sports,190,20

205,Laser Printer,Office,475,5

Match Function () and RSTART, RLENGTH variables

Match function searches for a given string (or regular expression) in
the input-string, and returns a positive value when a successful
match occurs.

Syntax:

match(input-string,search-string)

• input-string: This is the input-string that needs to be searched.

• search-string: This is the search-string, that needs to be
search in the input-string. This can also be a regular
expression.

The following example searches for the string "Cali" in the state string
variable. If present, it prints a successful message.

$ cat match.awk

BEGIN {

 state="CA is California"

 if (match(state,"Cali")) {

 print substr(state,RSTART,RLENGTH),"is present in:",
state;

 }

}

$ awk -f match.awk

Cali is present in: CA is California

177

Sed and Awk 101 Hacks

Match sets the following two special variables. The above example
uses these in the substring function call, to print the pattern in the
success message.

• RSTART - The starting location of the search-string

• RLENGTH - The length of the search-string.

90. GAWK String Functions

tolower and toupper are available only in Gawk. As the name
suggests the function converts the given string to lower case or upper
case as shown below.

$ awk '{print tolower($0)}' items.txt

101,hd camcorder,video,210,10

102,refrigerator,appliance,850,2

103,mp3 player,audio,270,15

104,tennis racket,sports,190,20

105,laser printer,office,475,5

$ awk '{print toupper($0)}' items.txt

101,HD CAMCORDER,VIDEO,210,10

102,REFRIGERATOR,APPLIANCE,850,2

103,MP3 PLAYER,AUDIO,270,15

104,TENNIS RACKET,SPORTS,190,20

105,LASER PRINTER,OFFICE,475,5

91. Argument Processing (ARGC, ARGV, ARGIND)

The built-in variables we discussed earlier, FS, NFS, RS, NR,
FILENAME, OFS, and ORS, are all available on all versions of awk
(including nawk, and gawk).

• The environment variables discussed in this hack are available
only on nawk and gawk.

• Use ARGC and ARGV to pass some parameters to the awk
script from the command line.

178

Sed and Awk 101 Hacks

• ARGC contains the total number of arguments passed to the
awk script.

• ARGV is an array contains all the arguments passed to the
awk script in the index from 0 through ARGC

• When you pass 5 arguments, ARGC will contain the value of 6.

• ARGV[0] will always contain awk.

The following simple arguments.awk shows how ARGC and
ARGV behave:

$ cat arguments.awk

BEGIN {

 print "ARGC=",ARGC

 for (i = 0; i < ARGC; i++)

 print ARGV[i]

}

$ awk -f arguments.awk arg1 arg2 arg3 arg4 arg5

ARGC= 6

awk

arg1

arg2

arg3

arg4

arg5

In the following example:

• We are passing parameters to the script in the format "--
paramname paramvalue".

• The awk script can take item number and the quantity as
arguments.

• if you use "--item 104 --qty 25" as argument to the awk script,
it will set quantity as 25 for the item number 104.

179

Sed and Awk 101 Hacks

• if you use "--item 105 --qty 3" as argument to the awk script, it
will set quantity as 3 for the item number 105.

$ cat argc-argv.awk

BEGIN {

 FS=",";

 OFS=",";

 for (i=0; i<ARGC; i++) {

 if (ARGV[i]=="--item") {

 itemnumber=ARGV[i+1];

 delete ARGV[i]

 i++;

 delete ARGV[i]

 } else if (ARGV[i]=="--qty") {

 quantity=ARGV[i+1];

 delete ARGV[i]

 i++;

 delete ARGV[i]

 }

 }

}

{

 if ($1==itemnumber)

 print $1,$2,$3,$4,quantity

 else

 print $0;

}

$ awk -f argc-argv.awk --item 104 --qty 25 items.txt

101,HD Camcorder,Video,210,10

102,Refrigerator,Appliance,850,2

103,MP3 Player,Audio,270,15

104,Tennis Racket,Sports,190,25

105,Laser Printer,Office,475,5

180

Sed and Awk 101 Hacks

In gawk the file that is currently getting processed is stored in the
ARGV array that is accessed from the body loop. The ARGIND is the
index to this ARGV array to retrieve the current file.

When you are processing only one file in an awk script, the ARGIND
will be 1, and ARGV[ARGIND] will give the file name that is currently
getting processed.

The following example contains only the body block, that prints the
value of the ARGIND, and the current file name from the
ARGV[ARGIND]

$ cat argind.awk

{

 print "ARGIND:", ARGIND

 print "Current file:", ARGV[ARGIND]

}

When you call the above example with two files, while processing
each and every line of the input-file, it will print the two lines. This
just gives you the idea of what is getting stored in the ARGIND and
ARGV[ARGIND].

$ awk -f argind.awk items.txt items-sold.txt

ARGIND: 1

Current file: items.txt

ARGIND: 1

Current file: items.txt

ARGIND: 1

Current file: items.txt

ARGIND: 1

Current file: items.txt

ARGIND: 1

Current file: items.txt

ARGIND: 2

Current file: items-sold.txt

181

Sed and Awk 101 Hacks

ARGIND: 2

Current file: items-sold.txt

ARGIND: 2

Current file: items-sold.txt

ARGIND: 2

Current file: items-sold.txt

ARGIND: 2

Current file: items-sold.txt

92. OFMT

The OFMT built-in variable is available only in NAWK and GAWK.

When a number is converted to a string for printing, awk uses the
OFMT format to decide how to print the values. The default value is
"%.6g", which will print a total of 6 characters including both sides of
the dot in a number.

When using g, you have to count all the characters on both sides of
the dot. For example, "%.4g" means total of 4 characters will be
printed including characters on both sides of the dot.

When using f, you are counting ONLY the characters on the right side
of the dot. For example, "%.4f" means 4 characters will be printed on
the right side of the dot. The total number of characters on the left
side of the dot doesn't matter here.

The following ofmt.awk example shows how the output will be printed
when using various OFMT values (for both g and f).

$ cat ofmt.awk

BEGIN {

 total=143.123456789;

 print "---using g----"

 print "Default OFMT:", total;

 OFMT="%.3g";

182

Sed and Awk 101 Hacks

 print "%.3g OFMT:", total;

 OFMT="%.4g";

 print "%.4g OFMT:", total;

 OFMT="%.5g";

 print "%.5g OFMT:", total;

 OFMT="%.6g";

 print "%.6g OFMT:", total;

 print "---using f----"

 OFMT="%.0f";

 print "%.0f OFMT:", total;

 OFMT="%.1f";

 print "%.1f OFMT:", total;

 OFMT="%.2f";

 print "%.2f OFMT:", total;

 OFMT="%.3f";

 print "%.3f OFMT:", total;

}

$ awk -f ofmt.awk

---using g----

Default OFMT: 143.123

%.3g OFMT: 143

%.4g OFMT: 143.1

%.5g OFMT: 143.12

%.6g OFMT: 143.123

---using f----

%.0f OFMT: 143

%.1f OFMT: 143.1

%.2f OFMT: 143.12

%.3f OFMT: 143.123

183

Sed and Awk 101 Hacks

93. GAWK Built-in Environment Variables

The built-in variables discussed in this section are available only in
GAWK.

ENVIRON

This is very helpful when you want to access the shell environment
variable in your awk script. ENVIRON is an array that contains all the
environment values. The index to the ENVIRON array is the
environment variable name.

For example, the array element ENVIRON["PATH"] will contain the
value of the PATH environment variable.

The following example prints all the available environment variables
and their values.

$ cat environ.awk

BEGIN {

 OFS="="

 for(x in ENVIRON)

 print x,ENVIRON[x];

}

Partial output is shown below.

$ awk -f environ.awk

SHELL=/bin/bash

PATH=/home/ramesh/bin:/usr/local/sbin:/usr/local/bin:/u
sr/sbin:/usr/bin:/sbin:/bin:/usr/games

HOME=/home/ramesh

TERM=xterm

USERNAME=ramesh

DISPLAY=:0.0

AWKPATH=.:/usr/share/awk

184

Sed and Awk 101 Hacks

IGNORECASE

By default IGNORECASE is set to 0. So, the awk program is case
sensitive.

When you set IGNORECASE to 1, the awk program becomes case
insensitive. This will affect regular expression and string comparisons.

The following will not print anything, as it is looking for "video" with
lower case "v". But, the items.txt file contains only "Video" with upper
case "V".

awk '/video/ {print}' items.txt

However when you set IGNORECASE to 1, and search for "video", it
will print the line containing "Video", as it will not do a case sensitive
pattern match.

$ awk 'BEGIN{IGNORECASE=1} /video/ {print}' items.txt

101,HD Camcorder,Video,210,10

As you see in the example below, this works for both string and
regular expression comparisons.

$ cat ignorecase.awk

BEGIN {

 FS=",";

 IGNORECASE=1;

}

{

 if ($3 == "video") print $0;

 if ($2 ~ "TENNIS") print $0;

}

$ awk -f ignorecase.awk items.txt

101,HD Camcorder,Video,210,10

104,Tennis Racket,Sports,190,20

185

Sed and Awk 101 Hacks

ERRNO

When there is an error while using I/O operations (for example:
getline), the ERRNO variable will contain the corresponding error
message.

The following example is trying to read a file that doesn't exist using
getline. In this case the ERRNO variable will contain "No such file or
directory" message.

$ vi errno.awk

{

 print $0;

 x = getline < "dummy-file.txt"

 if (x == -1)

 print ERRNO

 else

 print $0;

}

$ awk -f errno.awk items.txt

101,HD Camcorder,Video,210,10

No such file or directory

102,Refrigerator,Appliance,850,2

No such file or directory

103,MP3 Player,Audio,270,15

No such file or directory

104,Tennis Racket,Sports,190,20

No such file or directory

105,Laser Printer,Office,475,5

No such file or directory

186

Sed and Awk 101 Hacks

94. Awk Profiler - pgawk

The pgawk program is used to create an execution profile of your awk
program. Using pgawk you can view how many time each awk
statement (and custom user defined functions) were executed.

First, create a sample awk program that we'll run through the pgawk
to see how the profiler output looks like.

$ cat profiler.awk

BEGIN {

 FS=",";

 print "Report Generated On:" strftime("%a %b %d %H:%M:
%S %Z %Y",systime());

}

{

 if ($5 <= 5)

 print "Buy More: Order", $2, "immediately!"

 else

 print "Sell More: Give discount on", $2,
"immediately!"

}

END {

 print "----"

}

Next, execute the sample awk program using pgawk (instead of just
calling awk).

$ pgawk -f profiler.awk items.txt

Report Generated On:Mon Jan 31 08:35:59 PST 2011

Sell More: Give discount on HD Camcorder immediately!

Buy More: Order Refrigerator immediately!

Sell More: Give discount on MP3 Player immediately!

Sell More: Give discount on Tennis Racket immediately!

Buy More: Order Laser Printer immediately!

187

Sed and Awk 101 Hacks

By default pgawk creates a file called profiler.out (or awkprof.out).
You can specify your own profiler output file name using --profiler
option as shown below.

$ pgawk --profile=myprofiler.out -f profiler.awk
items.txt

View the default awkprof.out to understand the execution counts of
the individual awk statements.

$ cat awkprof.out

 # gawk profile, created Mon Jan 31 08:35:59 2011

 # BEGIN block(s)

 BEGIN {

 1 FS = ","

 1 print ("Report Generated On:" strftime("%a %b
%d %H:%M:%S %Z %Y", systime()))

 }

 # Rule(s)

 5 {

 5 if ($5 <= 5) { # 2

 2 print "Buy More: Order", $2,
"immediately!"

 3 } else {

 3 print "Sell More: Give discount on", $2,
"immediately!"

 }

 }

 # END block(s)

 END {

 1 print "----"

 }

While reading the awkprof.out, please keep the following in mind:

188

Sed and Awk 101 Hacks

• The column on the left contains a number. This indicates how
many times that particular awk command has executed. For
example, the print statement in begin executed only once
(duh!). The while lop executed 6 times.

• For any condition checking, one on the left side, another on
the right side after the parenthesis. The left side indicates how
many times the pattern was checked. The right side indicate
how many times it was successful. In the above example, if
was executed 5 times, but it was successful 2 times as
indicated by (# 2) next to the if statement.

95. Bit Manipulation

Just like C, awk can manipulate bits. You might not need this on your
day to day awk programming. But, this goes to show how much you
can do with the awk program.

Following table shows the single digit decimal number and its binary
equivalent.

Decimal Binary

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

AND

For an AND output to be 1, both the bits should be 1.

• 0 and 0 = 0

• 0 and 1 = 0

189

Sed and Awk 101 Hacks

• 1 and 0 = 0

• 1 and 1 = 1

For example, let us do AND between the decimal 15 and 25. The and
output of 15 and 25 is binary 01001, which is decimal 9.

• 15 = 01111

• 25 = 11001

• 15 and 25 = 01001

OR

For an OR output to be 1, either one of the bits should be 1.

• 0 or 0 = 0

• 0 or 1 = 1

• 1 or 0 = 1

• 1 or 1 = 1

For example, let us do OR between the decimal 15 and 25. The or
output of 15 and 25 is binary 11111, which is decimal 31.

• 15 = 01111

• 25 = 11001

• 15 or 25 = 11111

XOR

For XOR output to be 1, only one of the bits should be 1. When both
the bits are 1, xor will return 0.

• 0 xor 0 = 0

• 0 xor 1 = 1

• 1 xor 0 = 1

• 1 xor 1 = 0

190

Sed and Awk 101 Hacks

For example, let us do XOR between the decimal 15 and 25. The xor
output of 15 and 25 is binary 10110, which is decimal 22.

• 15 = 01111

• 25 = 11001

• 15 xor 25 = 10110

Complement

Complement Makes 0 as 1, and 1 as 0.

For example, let us complement decimal 15.

• 15 = 01111

• 15 compl = 10000

Left Shift

This function shifts the bits to the left side; you can specify how many
times it should do the shift. 0s are shifted in from the right side.

For example, let us left shift (two times) decimal 15. The lshift twice
output of 15 is binary 111100, which is decimal 60.

• 15 = 1111

• lshift twice = 111100

Right Shift

This function shifts the bits to the right side; you can specify how
many times it should do the shift. 0s are shifted in from the left side.

For example, let us right shift (two times) decimal 15. The lshift twice
output of 15 is binary 0011, which is decimal 3.

• 15 = 1111

• lshift twice = 0011

191

Sed and Awk 101 Hacks

Awk Example using Bit Functions

$ cat bits.awk

BEGIN {

 number1=15

 number2=25

 print "AND: " and(number1,number2);

 print "OR: " or(number1,number2)

 print "XOR: " xor(number1,number2)

 print "LSHIFT: " lshift(number1,2)

 print "RSHIFT: " rshift(number1,2)

}

$ awk -f bits.awk

AND: 9

OR: 31

XOR: 22

LSHIFT: 60

RSHIFT: 3

96. User Defined Functions

Awk allows you to define user defined functions. This is extremely
helpful when you are writing a lot of awk code and end-up repeating
certain pieces of code every time. Those pieces could be fit into a
user defined function.

Syntax:

function fn-name(parameters)

{

 function-body

}

In the above syntax:

192

Sed and Awk 101 Hacks

• fn-name is the function name: Just like an awk variable, an
awk user defined function name should begin with a letter.
The rest of the characters can be numbers, or alphabetic
characters, or underscore. Keywords cannot be used as
function name.

• parameters: Multiple parameters are separated by comma.
You can also create a user defined function without any
parameter.

• function-body: One or more awk statements.

If you've already used a name for a variable inside the awk program,
you cannot use the same name for your user defined function.

The following example creates a simple user defined function called
discount that gives a discount in the prices for the specified
percentage. For example, discount(10) gives 10% discount on the
price.

For any items where the quantity is <= 10, it gives 10% discount,
otherwise it gives 50% discount.

$ cat function.awk

BEGIN {

 FS=","

 OFS=","

}

{

 if ($5 <= 10)

 print $1,$2,$3,discount(10),$5

 else

 print $1,$2,$3,discount(50),$5

}

function discount(percentage)

{

 return $4 - ($4*percentage/100)

}

193

Sed and Awk 101 Hacks

$ awk -f function.awk items.txt

101,HD Camcorder,Video,189,10

102,Refrigerator,Appliance,765,2

103,MP3 Player,Audio,135,15

104,Tennis Racket,Sports,95,20

105,Laser Printer,Office,427.5,5

Another good use of creating a custom function is to print debug
messages.

Following is a simple mydebug function:

$ cat function-debug.awk

{

 i=2; total=0;

 while (i <= NF) {

 mydebug("quantity is " $i);

 total = total + $i;

 i++;

 }

 print "Item", $1, ":", total, "quantities sold";

}

function mydebug (message) {

 printf("DEBUG[%d]>%s\n", NR, message)

}

Partial output is shown below.

$ awk -f function-debug.awk items-sold.txt

DEBUG[1]>quantity is 2

DEBUG[1]>quantity is 10

DEBUG[1]>quantity is 5

DEBUG[1]>quantity is 8

194

Sed and Awk 101 Hacks

DEBUG[1]>quantity is 10

DEBUG[1]>quantity is 12

Item 101 : 47 quantities sold

DEBUG[2]>quantity is 0

DEBUG[2]>quantity is 1

DEBUG[2]>quantity is 4

DEBUG[2]>quantity is 3

DEBUG[2]>quantity is 0

DEBUG[2]>quantity is 2

Item 102 : 10 quantities sold

97. Language Independent Output
(Internationalization)

When you write an awk script to print a report, you might specify the
report header and footer information using the print command. You
might define the header and footer static values in English. What if
you want to execute the report output for some other language? You
might end-up copying this awk script to another awk script and
modify all the print statements to have the static values displayed in
appropriate values.

Probably an easier way is to use internationalization where you can
use the same awk script, but change the static values of the output
during run time.

This technique is also helpful when you have a huge program, but
you end-up changing the printed static output frequently for some
reason. Or you might want the users to customize the awk output by
changing the static displayed text to something of their own.

This simple example shows the 4 high level steps to implement
internalization in awk.

195

Sed and Awk 101 Hacks

Step 1 - Create text domain

Create a text domain and bind it to the directory where the awk
program should look for the text domain. In this example it is set to
the current directory.

$ cat iteminfo.awk

BEGIN {

 FS=","

 TEXTDOMAIN = "item"

 bindtextdomain(".")

 print _"START_TIME:" strftime("%a %b %d %H:%M:%S %Z
%Y",systime());

 printf "%-3s\t", _"Num";

 printf "%-10s\t", _"Description"

 printf "%-10s\t", _"Type"

 printf "%-5s\t", _"Price"

 printf "%-3s\n", _"Qty"

 printf
_"---
\n"

}

{

 printf "%-3d\t%-10s\t%-10s\t$%-.2f\t%03d\n",
$1,$2,$3,$4,$5

}

Note: The above example has _ in front of all the strings that are
allowed to be customized. Having _ (underscore) in front of a string
doesn't change the way how it is printed, i.e. it will print without any
issues as shown below.

$ awk -f iteminfo.awk items.txt

START_TIME:Sat Mar 05 09:15:13 PST 2011

Num Description Type Price Qty

196

Sed and Awk 101 Hacks

101 HD Camcorder Video $210.00 010

102 Refrigerator Appliance $850.00 002

103 MP3 Player Audio $270.00 015

104 Tennis Racket Sports $190.00 020

105 Laser Printer Office $475.00 005

Step 2: Generate .po

Generate portable object file (extension .po) as shown below. Please
note that instead of --gen-po, you can also use "-W gen-po"

$ gawk --gen-po -f iteminfo.awk > iteminfo.po

$ cat iteminfo.po

#: iteminfo.awk:5

msgid "START_TIME:"

msgstr ""

#: iteminfo.awk:6

msgid "Num"

msgstr ""

#: iteminfo.awk:7

msgid "Description"

msgstr ""

#: iteminfo.awk:8

msgid "Type"

msgstr ""

#: iteminfo.awk:9

msgid "Price"

msgstr ""

#: iteminfo.awk:10

msgid "Qty"

msgstr ""

197

Sed and Awk 101 Hacks

#: iteminfo.awk:11

msgid
"---\
n"

""

msgstr ""

Now, modify this portable object file and change the message string
accordingly. For example, if you want to call "Report Generated on:"
(Instead of the "START_TIME:"), edit the iteminfo.po file and change
the msgstr right below the msgid for "START_TIME:"

$ cat iteminfo.po

#: iteminfo.awk:5

msgid "START_TIME:"

msgstr "Report Generated On:"

Note: In this example, the rest of the msgstr strings are left empty.

Step 3: Create message object

Create message Object file (from the portable object file) using
msgfmt command.

If the iteminfo.po has all the msgstr empty, it will not produce any
message object file, as shown below.

$ msgfmt -v iteminfo.po

0 translated messages, 7 untranslated messages.

Since we created one message translation, it will create the
messages.mo file.

$ msgfmt -v iteminfo.po

1 translated message, 6 untranslated messages.

$ ls -1 messages.mo

messages.mo

198

Sed and Awk 101 Hacks

Copy this message object file to the message directory that you
should create under current directory.

$ mkdir -p en_US/LC_MESSAGES

$ mv messages.mo en_US/LC_MESSAGES/item.mo

Note: The destination file name should match the name we gave in
the TEXTDOMAIN variable of the original awk file. TEXTDOMAIN =
"item"

Step 4: Verify the message

Now you see that it doesn't display "START TIME:" anymore. It should
the translated string "Report Generated On:" in the output.

$ gawk -f iteminfo.awk items.txt

Report Generated On:Sat Mar 05 09:19:19 PST 2011

Num Description Type Price Qty

101 HD Camcorder Video $210.00 010

102 Refrigerator Appliance $850.00 002

103 MP3 Player Audio $270.00 015

104 Tennis Racket Sports $190.00 020

105 Laser Printer Office $475.00 005

98. Two Way Communication

Awk can communication to an external process using "|&", which is
two way communication.

The following simple sed example substitutes the word "Awk" with
"Sed and Awk".

$ echo "Awk is great" | sed 's/Awk/Sed and Awk/'

Sed and Awk is great

199

Sed and Awk 101 Hacks

To understand how the two way communication from Awk works, the
following awk script simulates the above simple example using "|&"

$ cat two-way.awk

BEGIN {

 command = "sed 's/Awk/Sed and Awk/'"

 print "Awk is Great!" |& command

 close(command,"to");

 command |& getline tmp

 print tmp;

 close(command);

}

$ awk -f two-way.awk

Sed and Awk is Great!

In the above example:

• command = "sed 's/Awk/Sed and Awk/'" -- This is the
command to which we are going to establish the two way
communication from awk. This is a simple sed substitute
command, that will replace "Awk" with "Sed and Awk".

• print "Awk is Great!" |& command -- The input to the
command. i.e. The input to the sed substitute command is
"Awk is Great!". The "|&" indicates that it is a two way
communication. The input to the command on the right side
to the "|&" comes from the left side.

• close(command,"to") - Once the process is executed, you
should close the "to" process.

• command |& getline tmp - Now that the process is
completed, it is time to get the output of the process using
the getline. The output of the previously executed command
will now be stored in the variable "tmp".

• print tmp - This prints the output.

• close(command) - Finally, close the command.

Two way communication can come-in handy when you rely heavily on
output from external programs.

200

Sed and Awk 101 Hacks

99. System Function

You can use the system built-in function to execute system
commands. Please note that there is a difference between two way
communication and system command.

In "|&", you can pass the output of any awk command as input to an
external command, and you can receive the output from the external
command in your awk program (basically it is two way
communication).

Using the system command, you can pass any string as a parameter,
which will get executed exactly as given in the OS command line, and
the output will be returned (which is not same as the two way
communication).

The following are some simple examples of calling pwd and date
command from awk:

$ awk 'BEGIN { system("pwd") }'

/home/ramesh

$ awk 'BEGIN { system("date") }'

Sat Mar 5 09:19:47 PST 2011

When you are executing a long awk program, you might want it to
send an email when the program starts and when it ends. The
following example shows how you can use system command in the
BEGIN and END block to send you an email when it starts and
completes.

$ cat system.awk

BEGIN {

 system("echo 'Started' | mail -s 'Program system.awk
started..' ramesh@thegeekstuff.com");

}

{

 split($2,quantity,",");

201

Sed and Awk 101 Hacks

 total=0;

 for (x in quantity)

 total=total+quantity[x];

 print "Item", $1, ":", total, "quantities sold";

}

END {

 system("echo 'Completed' | mail -s 'Program system.awk
completed..' ramesh@thegeekstuff.com");

}

$ awk -f system.awk items-sold.txt

Item 101 : 2 quantities sold

Item 102 : 0 quantities sold

Item 103 : 10 quantities sold

Item 104 : 2 quantities sold

Item 105 : 10 quantities sold

100. Timestamp Functions

These are available only in GAWK.

As you see from the example below, systime() returns the time in
POSIX epoch time, i.e. the number of seconds elapsed since January
1, 1970.

$ awk 'BEGIN { print systime() }'

1299345651

The systime function becomes more useful when you use the strftime
function to convert the epoch time to a readable format.

The following example displays the current timestamp in a readable
format using systime and strftime function.

$ awk 'BEGIN { print strftime("%c",systime()) }'

202

Sed and Awk 101 Hacks

Sat 05 Mar 2011 09:21:10 AM PST

The following awk script shows various possible date formats.

$ cat strftime.awk

BEGIN {

 print "--- basic formats --"

 print strftime("Format 1: %m/%d/%Y %H:%M:
%S",systime())

 print strftime("Format 2: %m/%d/%y %I:%M:%S
%p",systime())

 print strftime("Format 3: %m-%b-%Y %H:%M:
%S",systime())

 print strftime("Format 4: %m-%b-%Y %H:%M:%S
%Z",systime())

 print strftime("Format 5: %a %b %d %H:%M:%S %Z
%Y",systime())

 print strftime("Format 6: %A %B %d %H:%M:%S %Z
%Y",systime())

 print "--- quick formats --"

 print strftime("Format 7: %c",systime())

 print strftime("Format 8: %D",systime())

 print strftime("Format 8: %F",systime())

 print strftime("Format 9: %T",systime())

 print strftime("Format 10: %x",systime())

 print strftime("Format 11: %X",systime())

 print "--- single line format with %t--"

 print strftime("%Y %t%B %t%d",systime())

 print "--- multi line format with %n --"

 print strftime("%Y%n%B%n%d",systime())

}

$ awk -f strftime.awk

--- basic formats --

Format 1: 03/05/2011 09:26:03

203

Sed and Awk 101 Hacks

Format 2: 03/05/11 09:26:03 AM

Format 3: 03-Mar-2011 09:26:03

Format 4: 03-Mar-2011 09:26:03 PST

Format 5: Sat Mar 05 09:26:03 PST 2011

Format 6: Saturday March 05 09:26:03 PST 2011

--- quick formats --

Format 7: Sat 05 Mar 2011 09:26:03 AM PST

Format 8: 03/05/11

Format 8: 2011-03-05

Format 9: 09:26:03

Format 10: 03/05/2011

Format 11: 09:26:03 AM

--- single line format with %t--

2011 March 05

--- multi line format with %n --

2011

March

05

Following are the various time format identifiers you can use in the
strftime function. Please note that all the abbreviations shown below
depend on your locale setting. These examples are shown for English
(en).

Basic Time Formats:

Format
Identifier Description

%m Month in two number format. January is shown as 01

%b Month abbreviated. January is shown as Jan

%B Month displayed fully. January is shown as January.

%d Day in two number format. 4th of the month is shown
as 04.

204

Sed and Awk 101 Hacks

%Y Year in four number format. For example: 2011

%y Year in two number format. 2011 is shown as 11.

%H Hour in 24 hour format. 1 p.m is shown as 13

%I Hour in 12 hour format. 1 p.m is shown as 01.

%p Displays AM or PM. Use this along with %I 12 hour
format.

%M Minute in two character format. 9 minute is shown as
09.

%S Seconds in two character format. 5 seconds is shown
as 05

%a Day of the week shown in three character format.
Monday is shown as Mon.

%A Day of the week shown fully. Monday is shown as
Monday.

%Z Time zone. Pacific standard time is shown as PST.

%n Displays a new line character

%t Displays a tab character

Quick Time Formats:

Format Identifier Description

%c Displays the date in current locale full
format. For example: Fri 11 Feb 2011
02:45:03 AM PST

%D Quick date format. Same as %m/%d/%y

%F Quick date format. Same as %Y-%m-%d

%T Quick time format. Same as %H:%M:%S

%x Date format based on your locale.

%X Time format based on your locale.

205

Sed and Awk 101 Hacks

101. getline Command

As you already know, the body block of an awk script gets executed
once for every line in the input file. You don't have any control over it,
as awk does it automatically.

However using the getline command, you can control the reading of
lines from the input-file (or from some other file). Note that after
getline is executed, the awk script sets the value of NF, NR, FNR, and
$0 built-in variables appropriately.

Simple getline

$ awk -F"," '{getline; print $0;}' items.txt

102,Refrigerator,Appliance,850,2

104,Tennis Racket,Sports,190,20

105,Laser Printer,Office,475,5

When you just specify getline in the body block, awk reads the next
line from the input-file. In this example, the 1st statement in the body
block is getline. So, even though awk already read the 1st line from
the input-file, getline reads the next line, as we are explicitly
requesting the next line from the input-file. So, executing 'print $0'
after getline makes awk print the 2nd line.

Here is how it works:

• At the beginning of the body block, before executing any
statement, awk reads the 1st line of the items.txt and stores it
in $0

• getline - we are forcing awk to read the next line from the
input file and store it in the built-in $0 variable.

• print $0 - since the 2nd line is read into $0, print $0 will print
the 2nd line (And not the 1st line).

• The body block continues in the same way for rest of the lines
in the items.txt and prints only the even numbered lines.

206

Sed and Awk 101 Hacks

getline to a variable

You can also get the next line from the input file into a variable
(instead of reading it to $0).

The following example prints only the odd numbered lines.

$ awk -F"," '{getline tmp; print $0;}' items.txt

101,HD Camcorder,Video,210,10

103,MP3 Player,Audio,270,15

105,Laser Printer,Office,475,5

Here is how it works:

• At the beginning of the body block, before executing any
statement, awk reads the 1st line of the items.txt and stores it
in $0

• getline tmp - We are forcing awk to read the next line from the
input file and store it in the tmp variable.

• print $0 - $0 still contains the 1st line, as "getline tmp" didn't
overwrite the value of $0. So, print $0 will print the 1st line
(and not the 2nd line).

• The body block continues in the same way for rest of the lines
in the items.txt and prints only the odd numbered lines.

The following example prints both $0 and tmp. As you see below, $0
contains the odd numbered lines and tmp contains the even
numbered lines.

$ awk -F"," '{getline tmp; print "$0->", $0; print
"tmp->", tmp;}' items.txt

$0-> 101,HD Camcorder,Video,210,10

tmp-> 102,Refrigerator,Appliance,850,2

$0-> 103,MP3 Player,Audio,270,15

tmp-> 104,Tennis Racket,Sports,190,20

$0-> 105,Laser Printer,Office,475,5

tmp-> 104,Tennis Racket,Sports,190,20

207

Sed and Awk 101 Hacks

getline from a different file

The previous two examples read the line from the given input-file
itself. Using getline you can also read lines from a different file (than
the current input-file) as shown below.

Switch back and forth between two files, printing lines from each.

$ awk -F"," '{print $0; getline < "items-sold.txt";
print $0;}' items.txt

101,HD Camcorder,Video,210,10

101 2 10 5 8 10 12

102,Refrigerator,Appliance,850,2

102 0 1 4 3 0 2

103,MP3 Player,Audio,270,15

103 10 6 11 20 5 13

104,Tennis Racket,Sports,190,20

104 2 3 4 0 6 5

105,Laser Printer,Office,475,5

105 10 2 5 7 12 6

Here is how it works:

• At the beginning of the body block, before executing any
statement, awk reads the 1st line of items.txt and stores it in
$0

• print $0 - Prints the 1st line from items.txt

• getline < "items-sold.txt" - Reads the 1st line from items-
sold.txt and stores it in $0.

• print $0 - Prints the 1st line from items-sold.txt (not from
items.txt)

• The body block continues in the same way for the rest of the
lines in items.txt and items-sold.txt

208

Sed and Awk 101 Hacks

getline from a different file to a variable

Rather than reading both files into $0, you can also use the "getline
var" format to read lines from a different file into a variable.

Switch back and forth between two files, printing lines from each
(using tmp var).

$ awk -F"," '{print $0; getline tmp < "items-sold.txt";
print tmp;}' items.txt

101,HD Camcorder,Video,210,10

101 2 10 5 8 10 12

102,Refrigerator,Appliance,850,2

102 0 1 4 3 0 2

103,MP3 Player,Audio,270,15

103 10 6 11 20 5 13

104,Tennis Racket,Sports,190,20

104 2 3 4 0 6 5

105,Laser Printer,Office,475,5

105 10 2 5 7 12 6

This is identical to the previous example except that it stores the
lines from the second file in the variable tmp.

getline to execute external command

You can also use getline to execute a UNIX command and get its
output.

The following example gets the output of the date command and
prints it. Please note that you should also close the command that
you just executed as shown below. The output of the date command
is stored in the $0 variable.

Use this method to print timestamp on your report's header or footer.

209

Sed and Awk 101 Hacks

$ cat getline1.awk

BEGIN {

 FS=",";

 "date" | getline

 close("date")

 print "Timestamp:" $0

}

{

 if ($5 <= 5)

 print "Buy More: Order", $2, "immediately!"

 else

 print "Sell More: Give discount on", $2,
"immediately!"

}

$ awk -f getline1.awk items.txt

Timestamp:Sat Mar 5 09:29:22 PST 2011

Sell More: Give discount on HD Camcorder immediately!

Buy More: Order Refrigerator immediately!

Sell More: Give discount on MP3 Player immediately!

Sell More: Give discount on Tennis Racket immediately!

Buy More: Order Laser Printer immediately!

Instead of storing the output in the $0 variable, you can also store it
in any awk variable (for example: timestamp) as shown below.

$ cat getline2.awk

BEGIN {

 FS=",";

 "date" | getline timestamp

 close("date")

 print "Timestamp:" timestamp

}

{

210

Sed and Awk 101 Hacks

 if ($5 <= 5)

 print "Buy More: Order", $2, "immediately!"

 else

 print "Sell More: Give discount on", $2,
"immediately!"

}

$ awk -f getline2.awk items.txt

Timestamp:Sat Mar 5 09:38:22 PST 2011

Sell More: Give discount on HD Camcorder immediately!

Buy More: Order Refrigerator immediately!

Sell More: Give discount on MP3 Player immediately!

Sell More: Give discount on Tennis Racket immediately!

Buy More: Order Laser Printer immediately!

211

212

Knowledge is not one man's Entity
 Book Hacked by VELOCIRAPTOR

mailto:ramesh@thegeekstuff.com
http://www.thegeekstuff.com/contact/
http://www.thegeekstuff.com/

	Table of Contents
	Introduction
	Example Description

	Chapter 1: Sed Syntax and Basic Commands
	1. Sed Command Syntax
	Basic sed syntax:
	Basic sed syntax for use with sed-command file:
	Basic sed syntax using -e:
	Basic sed syntax using { }:

	2. Sed Scripting Flow
	3. Print Pattern Space (p command)
	The following example prints every line of employee.txt twice:
	Specifying an Address Range
	Print only the 2nd line:
	Print from line 1 through line 4:
	Print from line 2 through the last line ($ represents the last line):

	Modify Address Range
	Print only odd numbered lines:

	Pattern Matching
	Print lines matching the pattern “Jane”:
	Print lines starting from the 1st match of "Jason" until the 4th line:
	Print lines starting from the 1st match of "Raj" until the last line:
	Print lines starting from the line matching "Raj" until the line matching "Jane":
	Print the line matching "Jason" and 2 lines immediately after that:

	4. Delete Lines (d command)
	Delete only the 2nd line:
	Delete from line 1 through 4:
	Delete from line 2 through the last line:
	Delete only odd number of lines:
	Delete lines matching the pattern "Manager":
	Delete lines starting from the 1st match of "Jason" until the 4th line:
	Delete lines starting from the 1st match of "Raj" until the last line:
	Delete lines starting from the line matching "Raj" until the line matching "Jane":
	Delete lines starting from the line matching "Jason" and 2 lines immediately after that:
	Useful Delete Examples
	Delete all the empty lines from a file:
	Delete all comment lines (assuming the comment starts with #):

	5. Write Pattern Space to File (w command)
	Write the content of employee.txt file to file output.txt
(and display on screen):
	Write the content of employee.txt file to output.txt file but not to screen:
	Write only the 2nd line:
	Write lines 1 through 4:
	Write from line 2 through the last line:
	Write only odd numbered lines:
	Write lines matching the pattern "Jane":
	Write lines starting from the 1st match of "Jason" until the 4th line:
	Write lines starting from the 1st match of "Raj" until the last line:
	Write lines starting from the line matching "Raj" until the line matching "Jane":
	Write the line matching "Jason" and the next 2 lines immediately after that:

	Chapter 2. Sed Substitute Command
	6. Sed Substitute Command Syntax
	Replace all occurrences of Manager with Director:
	Replace Manager with Director only on lines that contain the keyword 'Sales':

	7. Global Flag (g flag)
	Replace the 1st occurrence of lower case a with upper case A:
	Replace all occurrences of lower case a with upper case A:

	8. Number Flag (1,2,3.. flag)
	Replace the 2nd occurrence of lower case a to upper case A:
	In the file you just created, change only the 2nd occurrence of locate to find:

	9. Print Flag (p flag)
	Print only the line that was changed by the substitute command:
	Change the 2nd instance of “locate” to “find” and print the result:

	10. Write Flag (w flag)
	Change the 2nd instance of “locate” to “find”,write the result to a file, print all lines:

	11. Ignore Case Flag (i flag)
	Replace “john” with Johnny:
	Replace “john” or “John” with Johnny:

	12. Execute Flag (e flag)
	Add the text "ls -l " in front of every line in the files.txt and print the output:
	Add the text "ls -l " in front of every line in the files.txt and execute the output:
	$ sed 's/^/ls -l /e' files.txt
	-rw-r--r-- 1 root root 1547 Oct 27 08:11 /etc/passwd
	-rw-r--r-- 1 root root 651 Oct 27 08:11 /etc/group

	13. Combine Sed Substitution Flags
	14. Sed Substitution Delimiter
	15. Multiple Substitute Commands Affecting the Same Line
	Change Developer to IT Manager, then change Manager to Director:

	16. Power of & - Get Matched Pattern
	Enclose the employee id (the 1st three numbers) between [and], i.e. 101 becomes [101], 102 becomes [102], etc.
	 Enclose the whole input line between < and >

	17. Substitution Grouping (Single Group)
	Single grouping:

	18. Substitution Grouping (Multiple Group)
	19. Gnu Sed Only Replacement String Flags
	\l replacement string flag
	Change John to JOhNNY:

	\L replacement string flag
	Change Johnny to JOhnny:

	\u replacement string flag
	Change John to joHnny:

	\U replacement string flag
	Change John to joHNNY:

	\E replacement string flag
	Change John to JOHNNY BOY:

	Replacement String Flag Usages
	Employee name in all upper case, and title in all lower case:

	Chapter 3. Regular Expressions
	20. Regular Expression Fundamentals
	
	Beginning of line (^)
	Display lines which start with 103:

	End of line ($)
	Display lines which end with the letter r:

	Single Character (.)
	Zero or more Occurrences (*)
	One or more Occurrence (\+)
	Display all the lines that contain "log:" followed by one or more spaces:

	Zero or one Occurrence (\?)
	Escaping the Special Character (\)
	Character Class ([0-9])
	Match any line that contains 2 or 3 or 4:

	21. Additional Regular Expressions
	OR Operation (|)
	Print lines containing either 101 or 102:
	Please note that the | symbol is escaped with a /.

	Exactly M Occurrences ({m})
	Print lines that contain any digit (will print all lines):

	M to N Occurrences ({m,n})
	Word Boundary (\b)
	Match lines containing the whole word "the":
	Match lines containing words that start with “the”:

	Back References (\n)

	22. Sed Substitution Using Regular Expression
	Replace the last two characters in every line of employee.txt with ",Not Defined":
	Strip all html tags from test.html:
	Remove all comments and blank lines:

	Chapter 4. Sed Execution
	23. Multiple Sed Commands in Command Line
	1. Use multiple -e option in the command line
	2. Break-up several sed commands using \
	3. Group multiple commands using { }

	24. Sed Script Files
	25. Sed Comments
	26. Sed as an Interpreter
	27. Modifying the Input File Directly
	Replace John with Johnny in the original employee.txt file itself:
	Replace John with Johnny in the original employee.txt file but save a backup copy:

	Chapter 5. Additional Sed Commands
	28. Append Line After (a command)
	Add a new record to the employee.txt file after line number:
	Add two lines after the line that matches 'Jason':

	29. Insert Line Before (i command)
	Insert a new record before line number 2 of the employee.txt file:
	Insert a new record before the last line of the employee.txt file:
	Insert two lines before the line that matches 'Jason':

	30. Change Line (c command)
	Delete the record at line number 2 and replace it with a new record:
	Delete the line that matches 'Raj' and replaces it with two new lines:

	31. Combine a, i, and c Commands
	32. Print Hidden Characters (l command)
	33. Print Line Numbers (= command)
	Print all line numbers:

	34. Change Case (using the y 'transform' command)
	In this example character "a" will be transformed to A, b to B, c to C, etc.:
	Transform all lower-case letters to upper-case:

	35. Multiple Files in Command Line
	36. Quit Sed (q command)
	Quit after printing the 1st line:
	Quit after the 5th line. So, this prints the 1st 5 lines:
	Print all the lines until the 1st line that contains the keyword 'Manager':

	37. Read from File (r command)
	38. Simulating Unix commands in sed (cat, grep, head)
	Cat in sed
	Grep in sed
	Simple grep:
	grep -v (print non-matching lines):

	Head in sed

	39. Sed Command Line Options
	 -n option
	All of the following commands are the same:

	-f option
	All of the following commands are the same:

	-e option
	All of the following commands are the same:

	-i option
	Replace John with Johnny in the original employee.txt file:
	Perform the same command but take a backup by passing an extension to -i.
	Both of the following commands are the same:

	-c option
	Both of the following commands are the same:

	-l option

	40. Print Pattern Space (n command)
	Print the pattern space for each line:

	Chapter 6. Sed Hold and Pattern Space Commands
	41. Swap Pattern Space with Hold Space (x command)
	42. Copy Pattern Space to Hold Space (h command)
	43. Append Pattern Space to Hold Space (H command)
	44. Copy Hold Space to Pattern Space (g command)
	45. Append Hold Space to Pattern Space (G command)

	Chapter 7. Sed Multi-Line Commands and loops
	46. Append Next Line to Pattern Space (N command)
	47. Print 1st Line in MultiLine (P command)
	48. Delete 1st Line in MultiLine (D command)
	49. Loop and Branch (b command and :label)
	50. Loop Using t command

	Chapter 8. Awk Syntax and Basic Commands
	employee.txt sample file
	items.txt sample file
	items-sold.txt sample file
	51. Awk Command Syntax
	Awk Commands in a Separate File

	52. Awk Program Structure (BEGIN, body, END block)
	1. BEGIN Block
	2. Body Block
	3. END Block
	A Note on using only a BEGIN Block:
	Multiple Input Files

	53. Print Command
	54. Pattern Matching

	Chapter 9. Awk Built-in Variables
	55. FS - Input Field Separator
	Create the file:

	56. OFS - Output Field Separator
	57. RS - Record Separator
	58. ORS - Output Record Separator
	59. NR - Number of Records
	60. FILENAME – Current File Name
	61. FNR - File "Number of Record"

	Chapter 10. Awk Variables and Operators
	62. Variables
	employee-sal.txt sample file

	63. Unary Operators
	Auto Increment and Auto Decrement

	64. Arithmetic Operators
	65. String Operator
	66. Assignment Operators
	67. Comparison Operators
	68. Regular Expression Operators

	Chapter 11. Awk Conditional Statements and Loops
	69. Simple If Statement
	Single Action
	Multiple Actions

	70. If Else Statement
	71. While Loop
	72. Do-While Loop
	73. For Loop Statement
	74. Break Statement
	75. Continue Statement
	76. Exit Statement

	Chapter 12. Awk Associative Arrays
	77. Assigning Array Elements
	Accessing elements of the AWK array

	78. Referring to Array Elements
	79. Browse the Array using For Loop
	80. Delete Array Element
	81. Multi Dimensional Array
	82. SUBSEP - Subscript Separator
	83. Sort Array Values using asort
	84. Sort Array Indexes using asorti

	Chapter 13. Additional Awk Commands
	85. Pretty Printing Using printf
	Special Characters in the printf Format
	Print Uses OFS, ORS Values
	Printf doesn't Use OFS, ORS Values
	Printf Format Specifiers
	Print with Fixed Column Width (Basic)
	Print with Fixed Width (Left Justified)
	Print with Dollar Amount
	Print with Leading Zeros
	Print Absolute Fixed Width String Value
	Dot . Precision
	Print Report to File

	86. Built-in Numeric Functions
	Awk int(n) Function
	Awk log(n) Function
	Awk sqrt(n) Function
	Awk exp(n) Function
	Awk sin(n) Function
	Awk cos(n) Function
	Awk atan2(m,n) Function

	87. Random Number Generator
	Awk rand() Function
	Awk srand(n) Function

	88. Generic String Functions
	Index Function
	Length Function
	Split Function
	Substr Function

	89. GAWK/NAWK String Functions
	Sub Function
	Gsub Function
	Match Function () and RSTART, RLENGTH variables

	90. GAWK String Functions
	91. Argument Processing (ARGC, ARGV, ARGIND)
	92. OFMT
	93. GAWK Built-in Environment Variables
	ENVIRON
	IGNORECASE
	ERRNO

	94. Awk Profiler - pgawk
	95. Bit Manipulation
	AND
	OR
	XOR
	Complement
	Left Shift
	Right Shift
	Awk Example using Bit Functions

	96. User Defined Functions
	97. Language Independent Output (Internationalization)
	Step 1 - Create text domain
	Step 2: Generate .po
	Step 3: Create message object
	Step 4: Verify the message

	98. Two Way Communication
	99. System Function
	100. Timestamp Functions
	Basic Time Formats:
	Quick Time Formats:

	101. getline Command
	Simple getline
	getline to a variable
	getline from a different file
	getline from a different file to a variable
	getline to execute external command

	Thank You

