
ROBOTROBOT

Return of Bleichenbacher's OracleReturn of Bleichenbacher's Oracle
ThreatThreat

1

Let's look at the TLS handshakeLet's look at the TLS handshake

2

Client and Server want to get aClient and Server want to get a
Shared SecretShared Secret

3

Two waysTwo ways
RSA Encryption
Diffie Hellman (DHE or ECDHE) with Signatures
(usually RSA), provides forward secrecy

4

Let's look at RSA EncryptionLet's look at RSA Encryption

5

6

ClientKeyExchangeClientKeyExchange
RSA-Encrypted Pre-Master Secret (random data)

7

Naive RSA encryptionNaive RSA encryption
Message M · public key e, N · private key d

Encrypt: E = Me mod N

Decrypt: M = Ed mod N

8

This naive variant is called Textbook RSA and totally
insecure.

9

Why?Why?
Encrypting the messages "0" and "1":

E = 0d mod N = 0
E = 1d mod N = 1

10

PaddingPadding

11

PKCS #1 1.5PKCS #1 1.5

12

Padding in TLS RSA EncryptionPadding in TLS RSA Encryption
00 | 02 | [random] | 00 | 03 | 03 | [secret]

13

Block type (encryption)

00 | 02 | [random] | 00 | 03 | 03 | [secret]
^^^^^^^

14

Random bytes without zeros

00 | 02 | [random] | 00 | 03 | 03 | [secret]
 ^^^^^^^^

15

End of padding

00 | 02 | [random] | 00 | 03 | 03 | [secret]
 ^^

16

TLS Version from ClientHello
03 03 stands for TLS 1.2

(Don't ask, other story...)

00 | 02 | [random] | 00 | 03 | 03 | [secret]
 ^^^^^^^

17

Random bytes

00 | 02 | [random] | 00 | 03 | 03 | [secret]
 ^^^^^^^^

18

Bleichenbacher 1998

19

http://archiv.infsec.ethz.ch/education/fs08/secsem/bleichenbacher98.pdf

Decrypted RSA block must always start with 00 02.
What should the server do if it doesn't?

20

Idea: Just reject the message with an error.
(e. g. "wrong block type prefix")

21

We just gave an attacker some information about
encrypted data.

Correct prefix:

Bad prefix:

00 02 00 [...] 00 <= M < 00 03 00 [...] 00

M < 00 02 00 [...] 00 or M >= 00 03 00 [...] 00

22

RSA MalleabilityRSA Malleability
2e * RSAEnc(M) = RSAEnc(2*M)

3e * RSAEnc(M) = RSAEnc(3*M)

ne * RSAEnc(M) = RSAEnc(n*M)

23

RSA operates on numbers

24

Valid padding implies m*s starts with 0x0002

25

So what?

26

Let's consider a basic example...

27

28

29

30

Each "conforming" value narrows the range

31

This works for RSA too...

32

...but it's a little more complicated

33

TL;DR is that each positive response from the oracle
narrows in on the decrypted value

34

A�er enough oracle queries, the range is small enough
to brute force search

35

VariationsVariations

Depending on the checks done by the server (block
prefix, padding length, TLS version) we get different

oracles.

00 | 02 | [random] | 00 | 03 | 03 | [secret]

36

The "strength" of an oracle depends on which checks
are revealed by the server.

37

How to fix?How to fix?
Server must not give the client any information about

the decrypted data.

38

The best way to avoid vulnerability to this attack is to treat
incorrectly formatted messages in a manner indistinguishable from
correctly formatted RSA blocks. Thus, when it receives an
incorrectly formatted RSA block, a server should generate a
random 48-byte value and proceed using it as the premaster
secret. Thus, the server will act identically whether the
received RSA block is correctly encoded or not.

TLS 1.0 / RFC 2246, 1999

39

https://www.ietf.org/rfc/rfc2246.txt

In case of a bad padding a server should pretend
everything is alright and replace the decrypted data

with a random value.

40

As described by Klima [KPR03], these vulnerabilities can be avoided
by treating incorrectly formatted message blocks and/or mismatched
version numbers in a manner indistinguishable from correctly
formatted RSA blocks. In other words:

 1. Generate a string R of 46 random bytes

 2. Decrypt the message to recover the plaintext M

 3. If the PKCS#1 padding is not correct, or the length of message
 M is not exactly 48 bytes:
 pre_master_secret = ClientHello.client_version || R
 else If ClientHello.client_version <= TLS 1.0, and version
 number check is explicitly disabled:
 pre_master_secret = M
 else:
 pre_master_secret = ClientHello.client_version || M[2..47]

Note that explicitly constructing the pre_master_secret with the
ClientHello.client_version produces an invalid master_secret if the
client has sent the wrong version in the original pre_master_secret.

TLS 1.2 / RFC 5246, 2008

41

https://www.ietf.org/rfc/rfc2246.txt

An alternative approach is to treat a version number mismatch as a
PKCS-1 formatting error and randomize the premaster secret
completely:

 1. Generate a string R of 48 random bytes

 2. Decrypt the message to recover the plaintext M

 3. If the PKCS#1 padding is not correct, or the length of message
 M is not exactly 48 bytes:
 pre_master_secret = R
 else If ClientHello.client_version <= TLS 1.0, and version
 number check is explicitly disabled:
 premaster secret = M
 else If M[0..1] != ClientHello.client_version:
 premaster secret = R
 else:
 premaster secret = M

Although no practical attacks against this construction are known,
Klima et al. [KPR03] describe some theoretical attacks, and therefore
the first construction described is RECOMMENDED.

TLS 1.2 / RFC 5246, 2008
42

https://www.ietf.org/rfc/rfc2246.txt

In any case, a TLS server MUST NOT generate an alert if processing an
RSA-encrypted premaster secret message fails, or the version number
is not as expected. Instead, it MUST continue the handshake with a
randomly generated premaster secret. It may be useful to log the
real cause of failure for troubleshooting purposes; however, care
must be taken to avoid leaking the information to an attacker
(through, e.g., timing, log files, or other channels.)

TLS 1.2 / RFC 5246, 2008

43

https://www.ietf.org/rfc/rfc2246.txt

A server generates a random value before parsing the
message, just in case.

44

If the message has a bad padding then the server is
supposed to replace it with the random value.

45

If the message has a bad version then the server can
choose whether to replace it with a random value or to

fix the version.

46

The second variant is better, but we like to make the
standard longer, therefore we describe both and let

the implementor choose.

47

By the way: Everything must be timing-safe. Please
figure out how to do that.

48

Totally easy!Totally easy!

49

Of course everyone will get this right.

50

This attack has been known since 1998 and is well
documented, so everyone has a regression test for it,

right?

51

Maybe not...

52

Let's testLet's test
Send different broken RSA-encrypted

ClientKeyExchange packages.

If replies differ we have an oracle.

TLS alerts, Duplicate TLS alerts, TCP connection resets,
Timeouts

53

First hit: facebook.comFirst hit: facebook.com

54

We have to attack Facebook!We have to attack Facebook!
Goal: We would like to sign a message with the private

key from facebook.com.

55

This attack needs tens of thousands of connections, so
we want to be fast.

56

We tried all AWS locations, on some we got ping times
to facebook around 2-3 ms.

57

Eventually we figured out that our attack ran much
faster with TCP_NODELAY set.

58

A�er several tries we did it! We successfully signed a
message with Facebook's private key.

59

We reported it to Facebook. They fixed it.

60

Facebook.com now sends a generic TLS alert...

61

But what happens if we alter the message flow?

62

63

Facebook's Shortflow OracleFacebook's Shortflow Oracle

64

And Facebook was not alone...

65

F5 BigIP OracleF5 BigIP Oracle

66

Citrix NetScaler OracleCitrix NetScaler Oracle

67

IBM GSKIT OracleIBM GSKIT Oracle

68

MatrixSSL OracleMatrixSSL Oracle

69

WolfSSL OracleWolfSSL Oracle

70

Erlang OracleErlang Oracle

71

ImpactImpact

72

If server or client only supports TLS_RSA modes then
one can use Bleichenbacher attacks to directly decrypt

traffic.

However RSA encryption modes aren't very popular
any more, so this is o�en not the case.

73

If server and client support forward secrecy modes
Man in the Middle attack may be possible, but requires

performing attack very fast.

We have not tried this practically.

74

facebook.com wasn't the onlyfacebook.com wasn't the only
vulnerable hostvulnerable host

75

apple.comapple.com
cisco.comcisco.com
ebay.comebay.com

paypal.compaypal.com
accountservices.microso�.comaccountservices.microso�.com

76

Tracking down vendors is hardTracking down vendors is hard

77

Vendors / ProductsVendors / Products
F5, Citrix, Radware, Cisco ACE and ASA, Bouncy Castle,
Erlang, WolfSSL, Palo Alto Networks, IBM, Symantec,

Unisys, Cavium

78

Cisco ACECisco ACE
Vulnerability is particularly severe, because these

devices support no other cipher modes.

Cisco: We won't fix it, it's out of support for several
years.

79

But there were plenty of webpages still running with
these devices.

Like cisco.com

80

Apart from informing vendors and affected sites we
also contacted developers of test tools (SSL Labs,

testssl.sh, TLS Attacker, tlsfuzzer).

Before ROBOT no easily usable test tool for
Bleichenbacher attacks was available.

81

CTFCTF
1. Decrypt message with vulnerable host.
2. Find second host based on public key with

Certificate Transparency
3. Sign message with server key.

82

TimingTiming
We did not consider timing based side-channels as

part of this research.

It's known that some stacks don't implement the
timing countermeasures (NSS has an open bug).

83

But even if you implement PKCSBut even if you implement PKCS
#1 1.5 according to the TLS 1.2#1 1.5 according to the TLS 1.2

spec...spec...

84

Crypto is math.

Cryptographic keys, signatures etc. are just large
numbers.

85

BignumsBignums
Cryptographic implementations use bignum libraries

that allow numbers of arbitrary size.

Smaller numbers take less memory than larger
numbers.

86

RSARSA
RSA decryption: M = C^d mod N

Result of this function with standard keysize (2048 bit)
is 256 bytes large - usually.

87

RSA resultRSA result
Or 255 bytes, or 254, depending on how many leading

zeros the result has.

88

RSA bignum size sidechannelRSA bignum size sidechannel
Operating with smaller result leaves a small timing

difference.

89

Practical?Practical?
We don't know.

90

This affects all major TLS libraries.

David Benjamin has fixed this in BoringSSL and
submitted a pullrequest to OpenSSL.

OpenSSL PR #6640

91

https://github.com/openssl/openssl/issues/6640

Inconsistent OraclesInconsistent Oracles
Some servers send certificates or "garbage bytes" in

response to a bad ClientKeyExchange.

92

Communigate Pro is the only product we could
identify with this behavior but there are others

93

Bleedinbacher anyone?Bleedinbacher anyone?
There could be a Heartbleed-style memory disclosure

waiting to be found.

94

ConclusionConclusion

95

The most surprising thing about ROBOT is how
straightforward this was.

96

Stop using PKCS #1 1.5Stop using PKCS #1 1.5

97

Thanks for listening!Thanks for listening!

98

