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Abstract

In 1998 Bleichenbacher presented an adaptive chosen-ciphertext attack
on the RSA PKCS #1 v1.5 padding scheme. The attack exploits the
availability of a server which responds with different messages based on
the ciphertext validity. This server is used as an oracle and allows the
attacker to decrypt RSA ciphertexts. Given the importance of this attack,
countermeasures were defined in TLS and other cryptographic standards
using RSA PKCS #1 v1.5.

We perform the first large-scale evaluation of Bleichenbacher’s RSA
vulnerability. We show that this vulnerability is still very prevalent in the
Internet and affected almost a third of the top 100 domains in the Alexa
Top 1 Million list, including Facebook and Paypal.

We identified vulnerable products from nine different vendors and open
source projects, among them F5, Citrix, Radware, Palo Alto Networks,
IBM, Cisco, Symantec, Cavium, and Unisys. These implementations pro-
vide novel side-channels for constructing Bleichenbacher oracles: TCP
resets, TCP timeouts, or duplicated alert messages. In order to prove the
importance of this attack, we have demonstrated practical exploitation by
signing a message with the private key of facebook.com’s HTTPS certifi-
cate. Finally, we discuss countermeasures against Bleichenbacher attacks
in TLS and recommend to deprecate the RSA encryption key exchange
in TLS and the RSA PKCS #1 v1.5 standard.
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1 Introduction

In 1998 Daniel Bleichenbacher published an adaptive chosen-ciphertext attack
on RSA PKCS #1 v1.5 encryption as used in SSL [11]. In his attack the
attacker uses a vulnerable server as an oracle and queries it with successively
modified ciphertexts. The oracle answers each query with true or false according
to the validity of the ciphertext. This allows the attacker to decrypt arbitrary
ciphertext without access to the private key by using Bleichenbacher’s algorithm
for exploiting the PKCS #1 v1.5 format.

Instead of upgrading to RSA-OAEP [29], TLS designers decided to use
RSA PKCS #1 v1.5 in further TLS versions and apply specific countermea-
sures [2, 17, 34]. These countermeasures prescribe that servers must always
respond with generic alert messages. The intention is to prevent the attack by
making it impossible to distinguish valid from invalid ciphertexts. Improper
implementation of Bleichenbacher attack countermeasures can have severe con-
sequences and can endanger further protocols or protocol versions. For ex-
ample, Jager, Schwenk, and Somorovsky showed that the mere existence of a
vulnerable implementation can be used cross-protocol to attack modern proto-
cols like QUIC and TLS 1.3 that do not support RSA encryption based key
exchanges [23]. Aviram et al. published DROWN, a protocol-level variant of
Bleichenbacher’s attack on SSLv2 [6].

Due to the high relevance of this attack, the evaluation of countermeasures
applied in TLS libraries is of high importance. There were several researchers
concentrating on the evaluation of Bleichenbacher attacks in the context of
TLS. However, these evaluations mostly concentrated on the evaluation of the
attacks in open source TLS implementations. Meyer et al. showed that some
modern TLS stacks are vulnerable to variations of Bleichenbacher’s attack [28].
For example, the Java TLS implementation was vulnerable due to handling of
encoding errors and other implementations were demonstrated as vulnerable
through time based oracles. In 2015 Somorovsky discovered that MatrixSSL
was vulnerable as well [36].

While Bleichenbacher attacks have been found on multiple occasions and in
many variations, we are not aware of any recent research trying to identify vul-
nerable TLS implementations in the wild. Given the fact that most of the open
source implementations are secure according to the latest evaluations [28, 36],
one would think that such an evaluation would not reveal many new vulnerable
implementations. But this is not the case. We developed a systematic scanning
tool that allowed us to identify multiple vulnerable TLS hosts. Many of the
findings are interesting from the research perspective since they uncover differ-
ent server behaviors or show new side-channels which were specifically triggered



by changing TLS protocol flows or observing TCP connection state. These be-
haviors are of particular importance for the analyses of different vulnerabilities
relying on server responses, for example, padding oracle [37] or invalid curve
attacks [24].

Contributions. Our work makes the following contributions:

• We performed the first large-scale analysis of Bleichenbacher’s attack and
identified vulnerabilities in high profile servers from F5, Citrix, Radware,
Palo Alto Networks, IBM, Cisco, Symantec, Cavium, and Unisys, as well
as in the open source implementations Bouncy Castle, Erlang, and Wolf-
SSL.

• We present new techniques to construct Bleichenbacher oracles which are
of particular interest for developing related attacks. These involve chang-
ing TLS protocol flows or observing TCP connection states.

• We implemented a proof of concept attack that allowed us to sign a mes-
sage with the private key of Facebook’s web page certificate.

• Finally, we discuss the countermeasures proposed in TLS 1.2 [34] and
whether it is feasible to deprecate RSA encryption based key exchanges.

Responsible disclosure and ethical considerations. In collaboration
with affected web site owners we responsibly disclosed our findings to vulner-
able vendors. We collaborated with them on mitigations and re-evaluated the
patches with our scripts. Several vendors and web site owners awarded us with
bug bounties.

To raise the awareness of these attacks, we also collaborated with different
TLS evaluation tool developers. The Bleichenbacher vulnerability check was
afterwards included in SSL Labs and testssl.sh.

As a result of a successful attack, the attacker is able to obtain the decrypted
RSA ciphertext or sign an arbitrary message with server’s private key. There-
fore, by performing our proof of concept attacks we were not able to reconstruct
the RSA private key. We performed our attacks with dummy data and never
attempted to decrypt real user traffic. Since the complete attack requires tens
of thousands of queries, we performed it only against servers with a large user
base such as Facebook.

2 TLS-RSA key exchange

Bleichenbacher’s attack is applicable to the TLS-RSA key exchange. This key
exchange is used in all cipher suites having names starting with TLS RSA (e.g.
TLS RSA WITH AES 128 CBC SHA). The message flow of an RSA key exchange as
implemented in TLS [34] is illustrated in Figure 1.
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Figure 1: TLS-RSA handshake.

The TLS handshake is initiated by a TLS client with a ClientHello mes-
sage. This message contains information about the TLS version and a list of
supported cipher suites. If the server shares cipher and protocol support with
the client, it responds with a ServerHello message indicating the selected ci-
pher suite and other connection parameters. The server continues by sending its
certificate in the Certificate message and signals the end of transmission with
the ServerHelloDone message. The client then sends a ClientKeyExchange

message containing a premaster secret that was RSA encrypted using the key
included in the server’s certificate. All further connection keys are derived
from this premaster secret. The handshake concludes with both parties send-
ing the ChangeCipherSpec and Finished messages. The ChangeCipherSpec

indicates that the peer will send further messages protected with the negotiated
cryptographic keys and algorithms. The Finished message authenticates the
exchanged protocol messages.

3 Bleichenbacher’s attack

Bleichenbacher’s attack on SSL relies on two ingredients. The first is the mal-
leability of RSA which allows anybody with an RSA public key to multiply en-
crypted plaintexts. The second is the tolerant nature of the RSA PKCS #1 v1.5
padding format that allows an attacker to create valid messages with a high
probability.

We assume (N, e) to be an RSA public key, where N has byte-length `



(|N | = `), with corresponding secret key d = 1/e mod φ(N). || denotes byte
concatenation.

3.1 RSA PKCS #1 v1.5

RSA PKCS #1 v1.5 describes how to generate a randomized padding string PS
for a message k before encrypting it with RSA [25]:

1. The encryptor generates a random padding string PS, where |PS| > 8,
|PS| = `− 3− |k|, and 0x00 6∈ {PS1, . . . , PS|PS|}.

2. It computes the message block as follows: m = 00||02||PS||00||k.

3. Finally, it computes the ciphertext as c = me mod N .

The decryption process reverts these steps in an obvious way. The decryptor
uses its private key to perform RSA decryption, checks the PKCS #1 v1.5
padding, and extracts message k.

3.2 Attack intuition

Bleichenbacher’s attack allows an attacker to recover the encrypted plaintext
m from the ciphertext c. For the attack execution, the attacker uses an oracle
that decrypts c and responds with 1 if the plaintext starts with 0x0002 or 0
otherwise:

O(c) =

{
1 if m = cd mod N starts with 0x0002

0 otherwise.

Such an oracle can be constructed from a server decrypting RSA PKCS #1 v1.5
ciphertexts.

Bleichenbacher’s algorithm is based on the malleability of the RSA encryp-
tion scheme. In general, this property allows an attacker to use an integer value
s and perform plaintext multiplications:

c′ = (c · se) mod N = (ms)e mod N,

Now assume a PKCS #1 v1.5 conforming message c = me mod N . The
attacker starts with a small value s. He iteratively increments s, computes c′,
and queries the oracle. Once the oracle responds with 1, he learns that

2B ≤ ms− rN < 3B,

for some computed r, where B = 28(`−2). This allows him to reduce the set
of possible solutions. By iteratively choosing new s, querying the oracle, and
computing new r values, the attacker reduces the possible solutions m, until
only one is left or the interval is small enough to accommodate a brute force
search. We refer to the original paper for more details [11].
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Figure 2: A vulnerable server would respond with different alert messages based
on the PKCS #1 v1.5 validity. To mitigate the attack it is important that the
server always responds with the same alert message and does not provide any
information about the PKCS #1 v1.5 validity.

3.3 Countermeasures

In general the attack is always applicable if the attacker is able to distinguish
valid from invalid RSA PKCS #1 v1.5 ciphertexts. To mitigate the attack,
the TLS standard has defined the following countermeasure. Once the server
receives a ClientKeyExchange message, it proceeds as follows (see Figure 2).
It generates a random premaster secret and attempts to decrypt the ciphertext
located in the ClientKeyExchange message. If the ciphertext was valid, it
proceeds with the decrypted premaster secret. Otherwise, it proceeds with the
random value. Since the attacker does not know the premaster secret value, he is
not able to compute a valid Finished message. Therefore, the client Finished
message is always responded with an alert message and the attacker cannot
determine PKCS #1 v1.5 validity. See Section 9.1 for more details.

3.4 Attack performance and oracle types

In his original publication Bleichenbacher estimated that it takes about one
million queries to decrypt an arbitrary ciphertext. Therefore, the attack was
also named “million message attack”. The attack performance varies however
depending on the “strength” of the provided oracle. In general, the attack
algorithm finds a new interval with every new valid oracle response. This hap-
pens if the decrypted ciphertext starts with 0x0002. The oracle is considered
“weaker” if it responds with a negative response for some decrypted ciphertexts



which start with 0x0002. In this scenario, the new interval is not found and
the attacker needs to issue more queries. This can happen, for example, if the
implementation strictly checks the PKCS #1 v1.5 format which prescribes that
the first 8 bytes following 0x0002 are non-zero, or if the implementation strictly
checks the length of the unpadded key.

Bardou et al. improved the original attack and analyzed the impact of differ-
ent implementations on the attack performance [7]. For example, the improved
Bleichenbacher attack algorithm needs about 10,000 queries on average when
using the “strongest” oracle. On the other hand, it needs about 18,000,000
queries using the “weakest” oracle.

For simplicity, in our paper we just assume two oracle types: weak and
strong. The strong oracle allows one to decrypt arbitrary ciphertext in less than
one million queries on average. Such an oracle can be provided by an imple-
mentation which returns true if the decrypted ciphertext starts with 0x0002

and contains a 0x00 at any position. The weak oracle results in an attack with
several millions of queries and can be provided by an implementation which
checks whether the 0x00 byte is located on the correct position. We use the
original Bleichenbacher algorithm [11].

3.5 Creating a signature with Bleichenbacher’s attack

In most of the studies, Bleichenbacher’s attack is referred to as a decryption
attack. A lesser noted point is that the attack allows one to perform arbitrary
RSA private key operations. Given access to an oracle, the attacker is not only
able to decrypt ciphertexts but also to sign arbitrary messages with server’s
private RSA key.

In order to create a signature with the server’s private key, the attacker first
uses a proper hash function and encoding to process the message. For example,
when creating a PKCS #1 v1.5 signature for message M, the encoded result will
have the following format [29]:

EM = 0x0001 ‖ 0xFF...FF ‖ 0x00 ‖ ASN.1(hash(M))

hash() denotes a cryptographic hash function. The output of the hash function
has to be encoded using ASN.1. The attacker then sets EM as an input into the
Bleichenbacher algorithm. In a sense, he uses the to be signed message as if
it were an eavesdropped ciphertext. The end result of this operation is a valid
signature for M.

It is also important to mention that creating a signature is typically more
time consuming than decrypting a PKCS #1 v1.5 ciphertext. The reason is
that an attacker with a PKCS #1 v1.5 ciphertext can already assume that the
first message is PKCS #1 v1.5 conforming. This allows him to skip the very
first step from the original algorithm [11]. On the other hand, by decrypting a
random ciphertext or creating a signature, the attacker cannot assume the first
query is PKCS #1 v1.5 conforming. To make this first message PKCS #1 v1.5
conforming, the attacker has to apply a blinding step [11]. Since this step



requires many oracle requests, creating a signature is much more time consuming
and is only practical if a strong oracle is available.

4 Scanning methodology

The challenge of our research was to perform an effective scan using as few
requests as possible, but allowing us to trigger all known vulnerabilities and
potentially find new ones. For this purpose we closely modeled our first scanner
after the techniques in Bleichenbacher’s original publication [11] and the follow-
ing research results [26, 7, 28]. This scanner performed a basic TLS-RSA hand-
shake (see Figure 1) containing differently formatted PKCS #1 v1.5 messages
located in ClientKeyExchange. With this approach, we were able to identify
our first vulnerable TLS implementations. Further analysis was conducted to
identify possible false positives before reporting the behavior to vendors and
site operators. This manual analysis allowed us to find new issues and extend
further TLS scans which we applied to the Alexa Top 1 Million list.

In the following sections we give an overview of our final scanning methodol-
ogy. If possible we highlight general recommendations, which are of importance
for performing related vulnerability scans.

4.1 Differently formatted PKCS #1 v1.5 messages

To trigger different server behaviors, our ClientKeyExchange messages con-
tained differently formatted PKCS #1 v1.5 messages. For their description,
consider the following notation. ‖ denotes byte concatenation, version rep-
resents two TLS version bytes, rnd[x] denotes a non-zero random string of
length x, and pad() denotes a function which generates a non-zero padding
string whose inclusion fills the message to achieve the RSA key length.

Given the performance prerequisites for our scan, we carefully selected five
PKCS #1 v1.5 vectors based on the previous research on Bleichenbacher at-
tacks [11, 7, 28, 36]. Every message should trigger a different vulnerability:

1. Correctly formatted TLS message. This message contains a correctly for-
matted PKCS #1 v1.5 padding with 0x00 at a correct position and correct
TLS version located in the premaster secret:

M1 = 0x0002 ‖ pad() ‖ 0x00 ‖ version ‖ rnd[46]

M1 should simulate an attacker who correctly guessed the PKCS #1 v1.5
padding as well as TLS version. Even though this case is hard to trigger
(because of a low probability of constructing such a message), it is needed
to evaluate the server correctness.

2. Incorrect PKCS #1 v1.5 padding. This message starts with incorrect
PKCS #1 v1.5 padding bytes:

M2 = 0x4117 ‖ pad()



The invalid first byte in the PKCS #1 v1.5 padding should trigger an
invalid server behavior as described, for example, in the original paper [11].

3. 0x00 at wrong position. This message contains a correct PKCS #1 v1.5
format, but has 0x00 at a wrong position so that the unpadded premaster
secret will have an invalid length:

M3 = 0x0002 ‖ pad() ‖ 0x0011

Many implementations assume that the unpadded value has a correct
length. If the unpadded is shorter or longer, it could trigger a buffer over-
flow or specific internal exceptions, and lead to a different server behavior.
For example, Meyer et al. showed that such a message resulted in different
TLS alerts in JSSE (Java Secure Socket Extension) [28].

4. Missing 0x00. This message starts with 0x0002 but misses the 0x00 byte:

M4 = 0x0002 ‖ pad()

The PKCS #1 v1.5 standard prescribes that the decrypted message always
contains a 0x00 byte. If this byte is missing, the PKCS #1 v1.5 imple-
mentation cannot unpad the encrypted value, which can again result in a
different server behavior.

5. Wrong TLS version. This message contains an invalid TLS version in the
premaster secret:

M5 = 0x0002 ‖ pad() ‖ 0x00 ‖ 0x0202 ‖ rnd[46]

M5 should trigger an invalid behavior as described by Kĺıma, Pokorný
and Rosa [26]. A practical example of such behavior was recently found
in MatrixSSL [36]. The vulnerable MatrixSSL version responded these
types of messages with an illegal parameter alert. Other messages were
responded with a decryption error.

A server behaves correctly if it responds with the same alert message to
any of the above messages. Otherwise, it is vulnerable to Bleichenbacher’s
attack. As described in Section 3.4, we say that the oracle is weak if the attacker
can only identify valid messages starting with 0x0002 with a validly padded
PKCS #1 v1.5 message with the 0x00 byte at the correct position (i.e., message
M1 or M5). This is because of a low probability of triggering such a case during
the attack. Otherwise, if the server allows the attacker to identify messages
with, for example, message M3 or M4, the server provides a strong oracle and the
attack can be practically exploited.

4.2 Different TLS protocol flows

We observed that several implementations responded differently based on the
constructed TLS protocol flow. More specifically, we observed differences on



some servers when processing a ClientKeyExchange message sent by itself ver-
sus when it was sent in conjunction with ChangeCipherSpec and Finished. We
will refer to sending ClientKeyExchange alone as ”shortened message flow” in
the rest of the paper.

The primary example of this is F5 BIG-IP. Under certain configurations,
when this device received an invalid ClientKeyExchange without further mes-
sages, it immediately aborted the handshake and closed the connection. Oth-
erwise, when processing properly formatted ClientKeyExchange, the device
waited for subsequent ChangeCipherSpec and Finished messages.

Our scans also confirmed that it is insufficient to consider only TLS alert
numbers or timing as a suitable side-channel. It is also necessary to monitor
connection state and timeout issues.

4.3 Cipher suites

Our initial tool implementation was trying to connect with a single AES-CBC
cipher suite. During our scans we observed some servers with a limited set of
cipher suites which, for example, only supported AES-GCM cipher suites. We
therefore changed our tool to offer additional cipher suites by default. This
increased the number of detected vulnerable servers.

In addition to new vulnerable servers, additional cipher suites allowed us
to observe an interesting behavior. In some cases, the responses to various
ClientKeyExchange messages varied depending on the used symmetric ciphers.
For example, one of our target servers reset the TCP connection after accepting
a valid PKCS #1 v1.5 formatted message when using AES-CBC cipher suites.
When using AES-GCM cipher suites, the server responded with a TLS alert 51
(decrypt error). Invalid PKCS #1 v1.5 messages always led to a connection
timeout, independently of the used cipher suite.

4.4 Monitoring different server responses

According to the TLS standard [34], servers receiving invalid
ClientKeyExchange messages should continue the TLS handshake and
always respond with an identical TLS alert. In our analyses, we observed
several servers which always responded with identical TLS alerts. Some however
returned an extra TLS alert when processing an invalid ClientKeyExchange.

In a server scan it is therefore important to not only monitor the last re-
ceived TLS alert but also the content and count of received messages and socket
behavior.

4.5 More variations

During our research we discovered that with slight variations like changing the
cipher suite or using the shortened TLS message flow we were able to discover
more vulnerable servers. A more exhaustive scan may reveal more vulnerable
implementations. However, there is a very large number of potential variations
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Figure 3: Our final scan considered different cipher suites, connection state,
TLS alerts, and shortened protocol flow. The PKCS #1 v1.5 messages were
selected precisely based on previous research [11, 7, 36].

to try. For example, one could try to connect with exotic cipher suites (like
Camellia), extensions or new variations of message flows.

With our scan tool we attempted to find all vulnerabilities we are aware of
while at the same time avoiding excessively long scans.

4.6 Performing a server scan

In summary, our server evaluation is primarily differentiated from other pub-
lished techniques we are familiar with [11, 28, 36] in that we consider connection
state as a side-channel signal and that we test with a non-standard message flow.
Furthermore, we can detect duplicated alert messages and we enforce usage of
different cipher suites to trigger invalid behavior. See Figure 3.

The oracle detection of our scanner works by first downloading a target
server’s certificate and using it to encrypt five ClientKeyExchange messages
(M1,...M5). Each value is then sent as part of a standard handshake with a
hardcoded Finished value. If the response was not the same for each test case,
the target is presumed to be vulnerable. If the responses are identical, the
server is retested using the same ClientKeyExchange but with an abbreviated
message flow that omits ChangeCipherSpec and Finished. The responses are
again compared and if any differences are spotted, the target is presumed to



be vulnerable. In order to minimize false positive results due to network condi-
tions or unreliable servers, all servers presumed to be vulnerable are retested to
confirm the oracle prior to reporting the target as vulnerable. This is especially
important when detecting timeout based oracles.

When testing with the shortened message flow, we found it necessary to set
an appropriate socket timeout for the network path between scanner and target.
Tests can be performed faster with shorter timeouts but it can come at the cost
of inconsistent behavior when dealing with slower hosts or network latency. In
our testing, 5 seconds proved to be a reliable socket timeout for scanning over
the Internet without exceeding handshake timeouts. In some environments, it
may also be desirable to increase the socket timeout but setting it too high will
lead to unreliable results.

5 Vulnerable implementations

The following sections present our findings and detailed behaviors of vulnerable
implementations. The results are summarized in Table 1. For each vulnerable
implementation the table provides information about different server responses
triggered by valid and invalid ClientKeyExchange messages, the TLS protocol
flow (full / shortened), the oracle type (strong / weak), and a CVE ID.

5.1 Facebook

During our first scans, we discovered that the main Facebook host –
www.facebook.com – was vulnerable. The server responded with a TLS alert 20
(bad record mac) to an error in the padded premaster secret. An error in the
PKCS #1 v1.5 prefix or in the padding resulted in an immediate TCP reset. We
could observe a similar behavior on multiple other hosts belonging to Facebook
like instagram.com and fbcdn.com.

We created a proof of concept signature using this oracle and sent it to
Facebook along with an explanation of the problem. Facebook deployed patches
within a week to close the oracle. The signature can be found in Appendix A.
However, after further testing with different message flows we found that the fix
was not completely effective at preventing us from distinguishing between error
types. If the ChangeCipherSpec and Finished were withheld, the server would
wait for these messages only if the ClientKeyExchange decrypted properly.
Certain padding errors on the other hand would trigger a TCP FIN from the
server. Facebook also fixed this behavior within a week of being notified. We
extended our scan tool to consider this changed strategy.

Facebook informed us that they use a patched version of OpenSSL for the
affected hosts and that the bug was in one of their custom patches. We thus
believe this particular variant of the vulnerability does not affect any hosts not
owned by Facebook.

We have furthermore discovered other vulnerable hosts belonging to Face-
book that behaved in a different way. These were running TLS stacks by F5



and Erlang. To our knowledge all vulnerable hosts owned by Facebook have
been patched.

5.2 F5

Based on Facebook’s encouraging responses to the first reports, we continued
scanning their infrastructure and found yet another vulnerable behavior. This
time, the vulnerable behavior was observed on a server related to corporate mail
which identified with a server banner indicating BIG-IP. Further scans uncovered
similar behavior on other domains whose owners confirmed the devices as being
from F5. Over the course of the research we discovered that F5 products could
exhibit a variety of oracles depending on the specific product and configuration.
Most commonly, F5 products would respond to malformed ClientKeyExchange

with a TLS alert 40 (handshake failure) but allow connections to timeout if
the decryption was successful. Close analysis of F5 TLS stacks also revealed
that some product configurations would send an extra TLS alert depending on
the error type.

Overall, we discovered five different variations of behavior on F5 hosts. Some
of these variations are weak oracles. These weak oracles still allow attacks, but
they take significantly more oracle queries. With the strong variants of the F5
oracle we were again able to create proof of concept signatures.

We informed F5 and they issued a security advisory on Novem-
ber 17th [18]. They released patches for all supported products that were
affected. CVE-2017-6168 was assigned.

5.3 Citrix

By contacting web page owners we learned that many of the implementations
we identified as vulnerable were run by Citrix Netscaler devices. The Netscaler
vulnerability is behaving slightly different depending on whether the connection
uses a CBC or a GCM cipher suite.

For this vulnerability the signal for a malformed decryption block is a time-
out. This makes practical attacks more challenging, as one needs to send a lot
of messages and detect timeouts. It likely requires parallelizing the attack.

CVE-2017-17382 was assigned to this vulnerability. Citrix has published an
advisory and updates for affected devices [15].

5.4 Radware

We discovered that the server used by Radware’s web page – radware.com –
was vulnerable. Messages not starting with 0x0002 were answered with a TCP
reset. Other messages were answered with a TLS alert 51 (decrypt error).
We discovered the same issue on a host that we knew was served by a Radware
Alteon device due to previous research.



We informed Radware about the issue and they released a fix with the Al-
teon firmware versions 30.2.9.0, 30.5.7.0 and 31.0.4.0 [32]. CVE-2017-17427 was
assigned to this vulnerability.

5.5 Cisco ACE

We found that Cisco ACE load balancers were vulnerable. Different er-
ror types were answered with either TLS alert 20 (bad record mac) or 47
(illegal parameter).

Cisco stopped selling and supporting ACE devices in 2013 [13]. They in-
formed us that they will not issue a fix for this flaw. CVE-2017-17428 was
assigned. Based on our scans we assume that despite being out of support for
several years ACE devices are still in widespread use.

We also observed that the host cisco.com and several of its subdomains are
vulnerable to Bleichenbacher attacks in the exact same way as the vulnerable
ACE devices. Although Cisco did not reveal to us what products are used for
these domains, our belief is that they are likely running out of support ACE
devices within their network infrastructure.

All cipher suites supported by these devices use the RSA encryption key
exchange [14], making it impossible to mitigate this vulnerability by disabling
it. Users of Cisco ACE devices that need TLS support therefore cannot run
these devices with a secure TLS configuration.

5.6 Erlang

We tested multiple TLS stacks in free and open source software to find further
reasons for the vulnerabilities detected in our scans. We discovered that the
TLS implementation in the Erlang programming language answered to different
RSA decryption errors with different TLS alerts. Messages that did not start
with 0x0002 were answered with a TLS alert 51 (decrypt error), other errors
were answered with a TLS alert 10 (unexpected message).

Independently of that, we discovered several hosts used by WhatsApp
(owned by Facebook) that were vulnerable in a similar way except that they
answered with TLS alert 20 (bad record mac) rather than 51 in response to
certain padding errors. We later learned from Facebook that these hosts were
also operated using Erlang. Our assessment that these differences were due to
different versions of Erlang was later confirmed by the Erlang developers. Their
tests found that versions 19 and 20 answered with TLS alert 10/51 while version
18 answered with TLS alert 20/51 as observed on the WhatsApp domain.

The Erlang developers released fixes in the versions 18.3.4.7 [3], 19.3.6.4 [4]
and 20.1.7 [5]. CVE-2017-1000385 was assigned for this bug.

5.7 Bouncy Castle

We shared our test tool with CERT/CC and they shared it with developers
of various TLS implementations. We learned that the Java TLS implemen-



tation of Bouncy Castle was vulnerable to a variant of ROBOT. Sending a
ClientKeyExchange where the zero terminator of the padding was not at the
right position led to a TLS alert 80 (internal error). Other errors made the
server send a ChangeCipherSpec message.

The vulnerability only appears if Bouncy Castle is using the JCE API
in Java for cryptographic operations. Bouncy Castle offers an old API
(org.bouncycastle.crypto.tls) and a new API (org.bouncycastle.tls). The vul-
nerability appears only if the new API is used in combination with the JCE
API. The old API does not support the JCE API.

Bouncy Castle plans to fix this vulnerability in version 1.59.
CVE-2017-13098 was assigned.

5.8 WolfSSL

WolfSSL is a TLS stack for embedded devices. With the shortened message flow,
we got a timeout for a correctly formatted message and errors for all messages
that had any flaw in their structure (wrong PKCS #1 v1.5 prefix, zeros in the
non-zero padding, missing padding zero terminator).

This only gives a weak oracle and attacks would take very long. However,
it should still be considered a security flaw. WolfSSL developers fixed this issue
in version 3.13.0 [20]. CVE-2017-13099 has been assigned to this flaw.

5.9 Cavium, Symantec and Unisys

We learned through public security advisories that after the initial publication
of our work vendors we were not aware of published security fixes. These in-
clude Cavium, Symantec and Unisys. We have no detailed knowledge of these
vulnerabilities.

5.10 Old vulnerabilities in MatrixSSL and JSSE

We are aware of two already known vulnerabilities in TLS stacks that have
been discovered in recent years. Meyer et al. [28] have identified a vulnerabil-
ity in Java / JSSE (CVE-2012-5081) that affects Oracle Java SE 7 Update 7
and earlier, 6 Update 35 and earlier, 5.0 Update 36 and earlier, and 1.4.2 38
(CVE-2012-5081). Somorovsky [36] has identified a vulnerability in MatrixSSL
before 3.8.3 (CVE-2016-6883).

We found a small number of vulnerable hosts that we assume are these
vulnerabilities, indicating that individuals or organizations still use unpatched
versions of JSSE and MatrixSSL. In particular, one embedded device vendor
was identified as using an older release of MatrixSSL in the latest firmware of
some products.



5.11 Further vulnerabilities

We have identified a weak oracle in IBM Lotus Domino, distinguishable by TLS
alerts 20 (bad record mac) and 47 (illegal parameter). We have initially
not disclosed this as IBM has not fixed this yet, after our initial disclosure it
was independently discovered by others.1 IBM released a security advisory for
WebSphere MQ [21]. Due to the lack of communication from IBM we have no
further information, but we believe this is a separate vulnerability.

We also learned after our disclosure that devices from Palo Alto Networks
were vulnerable (CVE-2017-17841). A fix for PAN-OS is available in versions
7.1.5 and 8.0.7 [30].

Furthermore, we have identified vulnerable servers whose behavior we could
not link to a specific implementation. It is often challenging to find out what
products are used on hosts on the public Internet. Attempts to ask the opera-
tors usually remain unanswered and many products do not expose product or
version information via the appropriate HTTP headers. The “Server” header is
unreliable, as in many cases load balancers or security appliances are terminat-
ing TLS connections while the header information is generated by the HTTP
server itself. The “X-Forwarded-For” header that is supposed to be used by
such products is hardly used, as many developers of security appliances think
that this information should be hidden.

Based on our findings we must assume that more vulnerable products exist.
If we learn about them we will also add them to our web page.2

6 Statistics about affected hosts

We performed several scans over the Alexa Top 1 Million list for vulnerable
hosts. We incrementally improved our scan strategy while at the same time
informing affected web pages and vendors who started to patch their servers.
Therefore there was no single point in time where we were able to identify all
vulnerabilities. We want to stress that all our numbers should be considered
rough estimates, as they are both over- and undercounting vulnerabilities.

We believe that two scans we performed on November 11th and November
12th give us the closest estimate for the number of vulnerable servers before our
research. We did scans for all domains in the Alexa Top 1 Million both with
and without a www prefix on HTTPS / port 443. It is very common that the
hosts with and without www prefix are served by different TLS stacks.

We already had the shortened message flow. Apart from Facebook, none
of the affected vendors had started shipping fixes at this point. Of particular
importance is that this was prior to the availability of updated software for F5
appliances.

However these scans did not test with varied cipher suites and therefore
missed some vulnerable hosts which do not present with vulnerable behavior

1https://twitter.com/drwetter/status/943785632672907264
2https://robotattack.org/
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when a CBC cipher is negotiated. These scans were also made after Facebook
had already started deploying fixes among its infrastructure. Furthermore our
scan tool did not yet contain a test to identify the JSSE issue (CVE-2012-5081).

While our scan tool attempts to minimize inaccuracies by validating vulner-
able responses, we have observed that certain non-deterministic behavior can
still be falsely identified as vulnerable.

According to these scans 22,854 hosts (2.3 %) were vulnerable among the
www hosts. 17,463 hosts (1.7 %) were vulnerable among the non-www hosts.
If we combine the results 27,965 hosts (2.8 %) were vulnerable on either the
www or the non-www host. We assume that the reason for this low number of
vulnerabilities overall is the correct mitigation implementation in OpenSSL, the
most widely used TLS library.

Among the top 100 domains according to Alexa 27 (thus 27 %) were vulner-
able if we combine our best scan result with previous scans of hosts that were
already fixed at that point. This indicates that among high profile hosts the
number of vulnerable systems is higher. The reason is a common usage of F5
products in high profile servers.

Based on the exact vulnerability we can also estimate affected vendors. We
would like to stress that there’s further potential for errors here, as it is possible
that different vendors have the vulnerability in the same way making it difficult
to accurately distinguish between vulnerable products. If we combine these two
scans 21,194 hosts were vulnerable to one of the F5 variants we have seen. 5,856
hosts were vulnerable to the Citrix variant, 521 Cisco ACE, 336 Radware, 118
IBM, 6 MatrixSSL, and 5 Erlang. We also identified three additional behavior
profiles which could not be attributed to any specific vendor. These behaviors
were found on 923, 793, and 763 hosts, respectively.

7 Proof of concept attack

We developed a proof of concept attack that allows decrypting and signing
messages with the key of a vulnerable server. The attack is implemented in
Python 3. Our proof of concept is based on Tibor Jager’s implementation of
the Bleichenbacher algorithm.

The implementation uses the simple algorithm as described by Bleichen-
bacher’s original work [11]. Our attack thus does not use the optimized algo-
rithms that have been developed over the years [7]. We also did not parallelize
the attack, all connections and oracle queries happen sequentially. Despite these
limitations we were still able to practically perform the attack over the Internet
both for decryptions and for signatures.

Our code first scans the host for Bleichenbacher vulnerabilities. We try to
detect a variety of signals given by the server and automatically adapt our oracle
to it.

For a successful attack we need many subsequent connections to a server.
Our attack code utilizes TCP NODELAY flag and TCP Fast Open where available
to make these connections faster. This reduces latency and connection overhead



allowing for more oracle queries per second.
We have published our proof of concept attack under a free license (CC0).

8 Impact analysis

A vulnerable host allows an attacker to perform operations with the server’s
private key. However, given that the attack usually takes several tens of thou-
sands of connections it takes some time to perform. This has consequences for
the impact of the attack.

TLS supports different kinds of key exchanges with RSA: Static RSA key
exchanges where a secret value is encrypted by the client and forward-secrecy en-
abled key exchanges using Diffie Hellman or elliptic curve Diffie Hellman where
RSA is only used for signing. Modern configurations tend to favor the Elliptic
Curve Diffie Hellman key exchange. In a correct TLS implementation, it should
not be possible for an attacker to force a specific key exchange mechanism,
however other bugs may allow this.

If a static RSA key exchange is used, the attack has devastating conse-
quences. An attacker can passively record traffic and later decrypt it with the
Bleichenbacher oracle. Servers that only support static RSA key exchanges are
therefore at the highest risk. We observed devices and configurations where this
is the case, notably the Cisco ACE load balancers and the host paypal.com.

In this section we describe general applications of Bleichenbacher attacks to
servers that do not support static RSA key exchange.

8.1 Attacks when server and client do not use RSA en-
cryption

To attack a key exchange where RSA is only used for signatures, the attacker
faces a problem: He could impersonate a server to a client, but in order to do this
he has to be able to perform an RSA signature operation during the handshake.
A TLS handshake usually takes less than a second. An attacker can delay this
up to a few seconds, but not much more. Therefore, the attack needs to happen
really fast. Creating a signature with a Bleichenbacher attack takes longer than
decrypting a ciphertext, therefore this is particularly challenging.

However, if the client still supports RSA encryption, the attacker has another
option: He can downgrade the connection to an RSA key exchange. This has
previously been described by Aviram et al. [6]. We believe that in realistic
scenarios it is possible to optimize the attack enough to be able to perform
this, particularly for large targets that have a lot of servers. An attacker could
parallelize and distribute the attack over multiple servers himself and attack
multiple servers of the target. However, we have not practically tried to perform
such an attack.



8.2 Attack on old QUIC

The QUIC protocol allowed a special attack scenario. Older versions of QUIC
had the possibility to sign a static X25519 key with RSA. This key could then
be used to run a server without the need of using the private RSA key during
the handshake. This scenario has previously been discussed by Jager et al. [23]
and in the context of the DROWN attack by Aviram et al. [6]. In response to
the DROWN attack Google has first disabled QUIC for non-Google hosts and
later changed the QUIC handshake to prevent this attack [12].

8.3 Cross-protocol and cross-server attacks

It should be noted that with Bleichenbacher attacks the attack target can be
independent from the vulnerable server as long as they share the same RSA
key. As shown by Aviram et al. [6] this has several practical implications. Let’s
assume a web service under www.example.com is served by a safe TLS stack
that is not vulnerable. This server can still be attacked if the same RSA keys
are used elsewhere by a vulnerable stack. This is possible because an attacker
can use the oracle from the vulnerable server to sign messages or decrypt static
RSA key exchanges with www.example.com. Impersonation attacks are also
possible against www.example.com provided there is some vulnerable service
using an HTTPS certificate valid for www.example.com and the attacker is fast
enough. The most common scenario for this would be if a *.example.com

certificate is used on the vulnerable target. We have actually observed such an
example in the wild. The main WhatsApp web page – www.whatsapp.com – was
not vulnerable. Several subdomains of whatsapp.com were however vulnerable
and used a wildcard certificate that was also valid for *.whatsapp.com. These
servers provided very good performance, thus we believe a parallelized attack
would have allowed impersonation of www.whatsapp.com.

Similar attack scenarios can be imagined if different services share a cer-
tificate, a key, or have certificates that are also valid for other services. For
example, a vulnerable e-mail server could allow attacks on HTTPS connections.

These scenarios show the risk of sharing keys between different services or
using certificates with an unnecessarily large scope. We believe it would be
good cryptographic practice to avoid these scenarios. Each service should have
its own certificates and certificates that are valid for a large number of hosts -
particularly wildcard certificates – should be avoided. Also private keys should
not be shared between different certificates.

8.4 Attack on ACME revocation

Apart from attacks against TLS an attack may be possible if the private key of
a TLS server is also used in different contexts.

An example for this is the ACME protocol [8] for certificate issuance that
is used by Let’s Encrypt. It allows revoking certificates if one is able to sign a
special revocation message with the private key belonging to a certificate.



While this does not impact the security of TLS connections, it allows causing
problems for web page operators that may see unexpected certificate validation
errors.

9 Discussion

9.1 Countermeasures in TLS 1.0, 1.1 and 1.2

Bleichenbacher’s original attack was published in 1998. At that time SSL version
3 was the current version of the SSL protocol. SSL version 3 was replaced with
TLS version 1.0 in 1999 and this was thus the first standard that included
countermeasures to Bleichenbacher’s attack.

TLS 1.0 [2] proposed that when receiving an incorrectly formatted RSA
block an implementation should generate a random value and proceed using
this random value as the premaster secret. This will subsequently lead to a fail-
ure in the Finished message that should be indistinguishable from a correctly
formatted RSA block for an attacker.

TLS 1.0 did not define clearly what a server should do if the ClientHello

version in the premaster secret is wrong. This allowed Kĺıma, Pokorný and
Rosa to develop a bad version oracle [26]. Also the countermeasures open up a
timing variant of the Bleichenbacher oracle. Given that the random value is only
created in case of an incorrectly formatted message an attacker may be able to
measure the time it takes to call the random number generator. In TLS 1.1 [17]
it was attempted to consider these attacks and adapt the countermeasures.

In TLS 1.2 [34] two potential algorithms are provided that implementers
should follow to avoid Bleichenbacher attacks. These two variations contain
further sub-variations, describing proposals for how to maintain compatibility
with broken old implementations. However these should only be applied if a
version number check is explicitly disabled. Furthermore TLS 1.2 states that
the first algorithm is recommended, as it has theoretical advantages, referring
again to the work of Kĺıma, Pokorný and Rosa [26]. It is not clear why the TLS
designers decided to propose two different algorithms while also claiming that
one of them is preferable. This needlessly increases the complexity even more.

The difference between the two algorithms in TLS 1.2 is the handling of
wrong ClientHello versions. The first algorithm proposes that servers fix
ClientHello version errors in the premaster secret and calculate the Finished

message with it. The second algorithm proposes to always treat a wrong version
number in the premaster secret as an error.

The TLS standards mention that the OAEP protocol provides better security
against Bleichenbacher attacks. It was always decided however to keep the old
PKCS #1 v1.5 standard for compatibility reasons.

To summarize, it can be seen that the designers of the TLS protocol decided
to counter Bleichenbacher attacks by introducing increasingly complicated coun-
termeasures. With each new TLS version the chapter about Bleichenbacher
countermeasures got larger and more complex. As our research shows, these



countermeasures often do not work in practice and many implementations re-
main vulnerable. In our opinion this shows that it is a bad strategy to counter
cryptographic attacks with workarounds. The PKCS #1 v1.5 encoding should
have been deprecated after the discovery of Bleichenbacher’s attack.

We would like to point out that something very similar happened in TLS
in terms of symmetric encryption. In 2002 Vaudenay demonstrated a potential
padding oracle attack against CBC in TLS [37]. Instead of removing these prob-
lematic modes or redesigning them to be resilient against padding oracle attacks
the TLS designers decided to propose countermeasures. TLS 1.2 explicitly men-
tions that these countermeasures still leave a timing side-channel. AlFardan and
Paterson were subsequently able to show that this timing side-channel could be
exploited [1].

9.2 Timing attacks

In this research we focused on Bleichenbacher vulnerabilities that can be per-
formed without using timing attacks. We therefore point out that hosts that
show up as safe in our scans are not necessarily safe from all variations of Ble-
ichenbacher attacks. It is challenging to test and perform timing attacks over the
public Internet due to random time differences based on network fluctuations.

Meyer et al. have described some timing-based Bleichenbacher vulnerabili-
ties [28]. Given the complexity of the countermeasures in the TLS standard it
is very likely that yet unknown timing variants of Bleichenbacher vulnerabilities
exist in many TLS stacks.

We learned from Adam Langley that various TLS implementations may be
vulnerable to timing attacks due to the use of variable-size bignum implementa-
tions. In OpenSSL the result of the RSA decryption is handled with the internal
BN (bignum) functions. If the decrypted value has one or several leading zeros
the operation will be slightly faster. If an attacker is able to measure that tim-
ing signal he may be able to use this as an oracle and perform an attack very
similar to a Bleichenbacher attack. Other TLS libraries have similar issues.

The timing signal is very small and it is unclear whether this would be
exploitable in practice. However, AlFardan and Paterson have shown in the
Lucky Thirteen attack [1] that even very small timing side-channels can be
exploitable.

9.3 PKCS #1 v1.5 deprecation in TLS

TLS protocol designers reacted to Bleichenbacher’s research and followup re-
search by adding increasingly complex workarounds. Our research shows that
this strategy has not worked. The workarounds are not implemented correctly
on a large number of hosts.

For the upcoming TLS 1.3 version the RSA encryption key exchange has
been deprecated early in the design process [33]. However, as shown by Jager
et al. this is not sufficient, as attacks can be performed across protocol ver-
sions [23]. If we assume that countermeasures are unlikely to be implemented



correctly everywhere then the only safe option is to fully disable support for
RSA encryption key exchanges.

This comes with some challenges. The alternatives to the RSA key exchange
are finite field Diffie Hellman and Elliptic Curve Diffie Hellman key exchanges.
There has also been a push to deprecate finite field Diffie Hellman, because
clients cannot practically require safe parameters from a server. The Chrome
browser developers have thus decided to disable support for finite field Diffie
Hellman [10]. This leaves Elliptic Curve Diffie Hellman as the only remaining
option, however, deployment of those ciphers has been delayed by patent con-
cerns. Thus RSA encryption based key exchanges have been considered as a
compatibility fallback to support old clients.

The deprecation of finite field Diffie Hellman is not necessarily a problem
here. Bleichenbacher vulnerabilities affect the server side of TLS. There is no
added risks if clients still support RSA encryption based key exchanges. There-
fore server operators can disable RSA encryption based key exchanges and sup-
port Elliptic Curve Diffie Hellman exchanges for modern clients and finite field
Diffie Hellman for old clients.

Cloudflare informed us that on their hosts only around one percent of client
connections use an RSA encryption key exchange. One of the authors of this
paper operates HTTPS servers and was able to disable RSA encryption without
any notable problems.

There is some indication that disabling RSA encryption on E-Mail servers is
more problematic. We were able to log TLS ciphers on a mail server operated
by one of this paper’s authors. We identified legitimate connections to IMAP
and POP3 with an RSA key exchange. By asking the affected users we learned
that they all used the “Mail” app that came preinstalled on old Android 4 or
in one case even Android 2 phones.

The algorithm choices on Android depend on the app. On an An-
droid 4.3 phone we were able to observe that the Mail app connected via
TLS RSA WITH AES 128 CBC SHA. However using the free K9Mail app a connec-
tion with an Elliptic Curve Diffie Hellman key exchange was used. Therefore
in order to reduce the need to support the RSA encryption based key exchange
users can switch to alternative apps that support more modern cryptographic
algorithms.

Despite these challenges we believe that the risk of incorrectly implemented
countermeasures to Bleichenbacher attacks is so high that RSA encryption based
key exchanges should be deprecated. Considering the compatibility issues and
risks we recommend that first support on the server side should be disabled.
For HTTPS servers we believe that this can be done today and will only cause
minor compatibility issues.

9.4 OAEP, PKCS #1 v1.5 for signatures and PSS

RSA-OAEP is an alternative to the padding provided by PKCS #1 v1.5 and
provides better security for encrypted RSA. It is standardized in the newer



PKCS #1 standards, the latest being version 2.2 [29]. However it was never
used for TLS and it is unlikely that this is going to change.

Independent of the padding mode RSA encryption does not provide forward
secrecy. Given the clear advantage of ciphers with forward secrecy enabled
we believe the way forward is to use neither PKCS #1 v1.5 encryption nor
RSA-OAEP in TLS. This is also the decision that has been made for TLS
1.3 [33]. RSA-OAEP may however be a better alternative for other protocols.
We would like to point out that OAEP is not fully resilient to padding attacks,
see Manger [27] and Meyer et al. [28] for details.

When using forward secrecy RSA can be used as a signature algorithm. This
is still the most common setting in TLS, as alternatives like ECDSA have not
seen widespread adoption yet. RSA signature implementations do not suffer
from Bleichenbacher’s attack from 1998, but the PKCS #1 v1.5 padding has
another problem. In 2006, Bleichenbacher discovered a common implementation
flaw in the parsing of those signatures [19]. A variation of this attack, named
BERserk, was independently discovered by Delignat-Lavaud and Intel as affect-
ing the Mozilla NSS library in 2014 [35]. While these attacks are completely
independent of the RSA encryption attack from 1998, they are a good reason
to deprecate PKCS #1 v1.5 both for encryption and for signatures.

RSA-PSS provides resilience against this attack and is also standardized
in the latest PKCS #1 v2.2 standard [29]. TLS 1.3 will use RSA-PSS for
signatures [33].

9.5 Bleichenbacher attacks in other protocols

In this research we focused on Bleichenbacher attacks against TLS. However
these attacks are not limited to TLS. Jager et al. [22] have shown Bleichen-
bacher vulnerabilities in XML encryption, Detering et al. have shown vulner-
abilities in JSON / JOSE [16] and Nestlerode has discovered vulnerabilities in
the Cryptographic Message Syntax (CMS) code of OpenSSL [31].

All protocols that make use of PKCS #1 v1.5 encryption and potentially
allow an attacker to see error messages are potential targets for Bleichenbacher
attacks. Our recommendation to deprecate PKCS #1 v1.5 is therefore not
limited to TLS – it should be avoided in other protocols as well.

9.6 Vendor responsibility

Perhaps the most surprising fact about our research is that it was very straight-
forward. We took a very old and widely known attack and were able to perform
it with very minor modifications on current implementations. One might as-
sume that vendors test their TLS stacks for known vulnerabilities. However, as
our research shows in the case of Bleichenbacher attacks, several vendors have
not done this.

There were several warnings that indicated such problems. The work from
Meyer et al. in 2014 has already shown some vulnerable modern-day implemen-
tations [28]. Jager et al. have warned about the risk of Bleichenbacher attacks



for TLS 1.3 [23], and were awarded with the best paper award at the “TLS
1.3 Ready Or Not” (TRON) workshop [9]. Aviram et al. have used the idea
of Bleichenbacher’s attack to construct their DROWN attack [6]. It is notable
that none of these publications have caused the affected vendors to test their
product for such vulnerabilities.

9.7 Vulnerability detection tools

Many existing TLS vulnerability testing tools did not have tests for Bleichen-
bacher vulnerabilities in the past. This is likely one reason why such an old vul-
nerability is still so prevalent. To our knowledge TLS-Attacker3 and tlsfuzzer4

had tests for Bleichenbacher vulnerabilities before our research started. How-
ever, both tools are not yet optimized for usability and are likely only used
by a small audience. None of the existing tools we know of had tests for the
shortened message flow attacks.

We reached out to developers of several TLS testing tools prior to this pub-
lication. The developers of testssl.sh5 developed a test that is similar to our
own test tool. Kario implemented additional checks in tlsfuzzer. The test in
tlsfuzzer is different to our test as it also checks for protocol violations that are
not vulnerabilities. A strict interpretation of the TLS standard demands that
all RSA decryption failures are answered with a TLS alert 20 (bad record mac)
after the Finished message.

Tripwire IP360 added detection6 for vulnerable F5 devices in ASPL-753
which was released in coordination with F5’s public advisory. Generic detection
of Bleichenbacher oracles will be released in coordination with this publication.
SSLLabs added detection for Bleichenbacher oracles in their development ver-
sion with a test similar to our own.7

Before our research, TLS-Attacker had implemented a basic Bleichenbacher
attack evaluation with full TLS protocol flows. We extended this evaluation
with shortened protocol flows with missing ChangeCipherSpec and Finished

messages, and implemented an oracle detection based on TCP timeouts and
duplicated TLS alerts. These new features are available in TLS-Attacker 2.2.

We encourage developers of other TLS or security test tools to include tests
for Bleichenbacher attacks and for other old vulnerabilities. We hope that better
test tools will detect any remaining vulnerable implementations that we have
not identified during our research.

We are offering the code of our own scan tool under a CC0 (public domain)
license. 8 This allows developers of other tools – both free and proprietary – to
use our code with no restrictions.

3https://github.com/RUB-NDS/TLS-Attacker
4https://github.com/tomato42/tlsfuzzer
5http://testssl.sh/
6https://www.tripwire.com/state-of-security/vert/return-bleichenbachers-oracle-threat-robot
7https://dev.ssllabs.com/
8https://github.com/robotattackorg/robot-detect

https://github.com/RUB-NDS/TLS-Attacker
https://github.com/tomato42/tlsfuzzer
http://testssl.sh/
https://www.tripwire.com/state-of-security/vert/return-bleichenbachers-oracle-threat-robot
https://dev.ssllabs.com/
https://github.com/robotattackorg/robot-detect


10 Summary and conclusion

We were able to identify nine vendors and open source projects and a significant
number of hosts that were vulnerable to minor variations of Bleichenbacher’s
adaptive-chosen ciphertext attack from 1998. The most notable fact about this
is how little effort it took us to do so. We can therefore conclude that there is
insufficient testing of modern TLS implementations for old vulnerabilities.

The countermeasures in the TLS standard to Bleichenbacher’s attack are
incredibly complicated and grew more complex over time. It should be clear
that this was not a viable strategy to avoid these vulnerabilities.

The designers of TLS 1.3 have already decided to deprecate the RSA en-
cryption key exchange. However, as long as compatibility with RSA encryption
cipher suites is kept on older TLS versions these attacks remain a problem. To
make sure Bleichenbacher attacks are finally resolved we recommend to fully
deprecate RSA encryption based key exchanges in TLS. For HTTPS we believe
this can be done today.

We hope that our research will help to end the use of PKCS #1 v1.5.
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A Generated signature for Facebook

We provide a signature that signs the following text:
We hacked Facebook with a Bleichenbacher Oracle (JS/HB).

The text is PKCS #1 v1.5 encoded and signed with the certificate with the
certificate that was used on www.facebook.com at the time of this research.

We provide example commands using curl, xxd and openssl that will verify
this signature. We download the certificate from the crt.sh search engine in order
to have a stable URL. We could alternatively get it directly from Facebook’s
servers via TLS, but that would stop working once the certificate expires and
Facebook changes it.

This signature is using the format of OpenSSL’s rsautl command. This
command signs the raw input message and does not use the hashing that is part
of PKCS #1 v1.5.

echo 799e43535a4da70980fada33d0fbf51ae60d32c1115c87ab29b716b49ab0

637733f92fc985f280fa569e41e2847b09e8d028c0c2a42ce5beeb640c101

d5cf486cdffc5be116a2d5ba36e52f4195498a78427982d50bb7d9d938ab9

05407565358b1637d46fbb60a9f4f093fe58dbd2512cca70ce842e74da078

550d84e6abc83ef2d7e72ec79d7cb2014e7bd8debbd1e313188b63a2a6aec

55de6f56ad49d32a1201f18082afe3b4edf02ad2a1bce2f57104f387f3b84

01c5a7a8336c80525b0b83ec96589c367685205623d2dcdbe1466701dffc6

e768fb8af1afdbe0a1a62654f3fd08175069b7b198c47195b630839c66332

1dc5ca39abfb45216db7ef837 | xxd -r -p > sig

curl https://crt.sh/?d=F709E83727385F514321D9B2A64E26B1A195751BBC

AB16BE2F2F34EBB084F6A9|openssl x509 -noout -pubkey > pubkey.k

ey

openssl rsautl -verify -pubin -inkey pubkey.key -in sig



Implementation Server response TLS flow Oracle Reference / ID

Valid message Invalid message

Facebook

1st vulnerability 20 47 full strong -

2nd vulnerability 20 TCP FIN shortened strong -

F5

Variant 1 TCP timeout 40 shortened strong CVE-2017-6168

Variant 2 One alert (40) Two alerts (40) full strong CVE-2017-6168

Variant 3 TCP timeout 40 shortened weak CVE-2017-6168

Variant 4 One alert (40) Two alerts (40) full weak CVE-2017-6168

Variant 5 20 80 full strong CVE-2017-6168

Citrix Netscaler

with CBC cipher suites Connection reset TCP timeout full strong CVE-2017-17382

with GCM cipher suites 51 TCP timeout full strong CVE-2017-17382

Radware

Radware Alteon 51 TCP reset full strong CVE-2017-17427

Cisco

Cisco ACE 20 47 full strong CVE-2017-17428

Cisco ASA TCP timeout TCP reset full weak CVE-2017-12373

Erlang

Erlang version 19 and 20 10 51 full strong CVE-2017-1000385

Erlang version 18 20 51 full strong CVE-2017-1000385

Palo Alto Networks

PAN-OS One alert (40) Two Alerts (40) full weak CVE-2017-17841

IBM

IBM Domino 20 47 full weak (unfixed)

IBM WebSphere MQ ? ? ? ? CVE-2018-1388

WolfSSL

WolfSSL prior to 3.12.2 TCP timeout Alert 0 shortened weak CVE-2017-13099

Bouncy Castle

Bouncy Castle 1.58 ChangeCipherSpec 80 shortened weak CVE-2017-13098

Table 1: Overview of vulnerable implementations and affected servers
found in our research. TLS alerts are referenced by their numbers: 10
(unexpected message) 20 (bad record mac), 40 (handshake failure), 47
(illegal parameter), 51 (decrypt error), and 80 (internal error).
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