Reinforcement Learning:

From basic concepts to deep Q-networks

Joelle Pineau
McGill University

Deep Learning Summer School
August 2016

Reinforcement learning

1. Learning agent tries a sequence of actions (a;). Dynamic
‘ System
2. Observes outcomes (state s;, 4, rewards r;) of
those actions. @ @
Learning
Agent

Reinforcement learning

1. Learning agent tries a sequence of actions (a;). Dynamic

‘ System
2. Observes outcomes (state s;..,, rewards r;) of
those actions. @ Reward @

3. Statistically estimates relationship between Learning
action choice and outcomes, Pr(s;|s;.;,a;). Agent

Reinforcement learning

1. Learning agent tries a sequence of actions (a;). Dynamic

‘ | System
2. Observes outcomes (state s;,,, rewards r;) of
those actions. @ Reward @

3. Statistically estimates relationship between Learning
action choice and outcomes, Pr(s;|s.,ay). Agent

After some time... learns action selection policy,
17(s), that optimizes selected outcomes.

argmax, E_[ro+r;+...+r;|Sy]

[Bellman, 1957; Sutton, 1988; Sutton&Barto, 1998.]

Many applications of RL

Robotics
Medicine

Advertisement
Resource management
Game playing ...

RL system circa 1990’s: TD-Gammon

predicted probability
of winning, V,

TD error, V1= VY —>'

\'

6" O Q 7~ hidden units (40-80)

50 6.0 .. 50

backgammon position (198 input units)

Wg%h

8833_@

white pieces move

counterclockwise

black pieces
move clockwise

Reward function:

+100 if win
- 100 if lose
O for all other states

Trained by playing 1.5x10°
million games against itself.

Enough to beat the
best human player.

Human-level Atari agent (2015)

Human-level control

through deep reinforcement
learning

DeepMind’s AlphaGo (2016)

00:05:30

"‘° Google DeepMind

Challenge Match

Adaptive neurostimulation for epilepsy suppression

Sim. Field Potential (mV)
-0.5

Complex PIcyD Approx fedply02 0.4 Hz

[T] H Il \H L

Simulation Tlme (|ntegrat|ons)

Action

8_.

When to use RL?

« Data in the form of trajectories.

* Need to make a sequence of (related) decisions.

« Observe (partial, noisy) feedback to state or choice of actions.

« There is a gain when optimizing action choice over a portion of
the trajectory.

I RL vs supervised learning |

Training signal = desired (target outputs), e.g. class

Inputs Outputs

11

I RL vs supervised learning |

Training signal = desired (target outputs), e.g. class

Inputs Outputs

Training signal = “rewards”

Inputs Outputs (“actions™)

| RL vs supervised learning |

Training signal = desired (target outputs), e.g. class

Inputs Outputs

Training signal = “rewards”

Outputs (“actions™)

I RL vs supervised learning |

Training signal = desired (target outputs), e.g. class

Challenges:

Inputs Outputs Jointly learning

AND planning
from correlated
samples.

Data distribution
Training signal = “rewards” changes with
action choice.

Need access to
the environment.

Outputs (“actions™)

Markov Decision Process (MDP)

Defined by:
S: Set of states
A: Set of actions

Pr(s/s:s,ay). Probabilistic effects

r,: Reward function
M, : Initial state distribution

SO

A0

The Markov property

The distribution over future states depends only on the present
state, not on any previous events.

Pr(s;| st .4, ..., So) =Pr(s;| s¢.4)

A0 A1l

SO

Maximizing utility

« Define: U;, the utility for a trajectory, starting from step f.

« Episodic tasks (e.g. games, trips through a maze, etc.)

U=r+r,,+tro+..+try

« Continuing tasks (e.g. tasks which may go on forever)

_ 2 _
Up=ri+ yri + voruo + V3rt+3 ree T Zk=0:oo Vkrt+k

The discount factor, y

« Discount factor, y € [0, 1) (usually close to 1).

* Two interpretations:

— At each time step, there is a 7- y chance that the agent dies,
and does not receive rewards afterwards.

— Inflation rate: receiving an amount of money tomorrow, is
worth less than today by a factor of y.

The policy

A policy defines the action-selection strategy at every state:

a(s,a) = P(a=a | s&~s)

(Can be stochastic as above, or deterministic, S—A.)

Goal: Find the policy that maximizes expected total reward.)
(But there are many policies!)

argmax_E_[ro+r,+...+r;| sp]

o J

19

Example: Career Options

n=Do Nothing
U loyed W 1 0.6_ | Indust 1= Apply to industry
n a = Apply to academia
r:_l \/:)5

g

0.1
Grad School 09 >{Academia
G) O 4 (A) r=+1

0.1

What is the best policy?

20

Value functions

« If we want to find a policy that maximizes the expected return,
it is useful to estimate the expected return.

 Then we can search through the space of policies for a good
policy.

« Value functions represent the expected return, for every state,
given a certain policy.

Vi) =E [ri+ ryet ... vrr|sg=s]

21

The value of a policy

Vi(s) = Eqlre+ g+ .. 1| Sp= 8]
Vi(s) = E]l + Ex[et .. v 1| 5= 8]

V7(s) =lZaEA”(S’a)r(Sfa) ,+‘Efr[rt+t+ Ltrr|si=s]

Immediate reward Future expected sum of rewards

22

The value of a policy

Vi(s) = Eqlre+ g+ .. 1| Sp= 8]
Vi(s) = E]l + Ex[et .. v 1| 5= 8]
VA(S) = 2aean(S,@)r(s,@) + E [g+ ...+ 17| 8= 8]

V(S) = Sacaa(s,a)r(s,a) + \ZaEA ﬂ(s,a)Zs’esT(S,a,S’),En [Feagt .t 17| Spq=S"]

|
Expectation over 1-step transition

23

The value of a policy

Vi(s) = E lri+ ruet ... +relsg=s]

Va(s) = E]l + Exl ruet o v | sp= 8]

VA(s) = 2 aea(S,@)r(s,@) + E [et ...+ rr| 8¢ =]

V(S) = Yacna(s,a)r(s,8) + ¥ e ﬂ(S,a)Zs’esT(S,a,S’)lEn (Mgt * 17| St+1=S’]'

V(S) = 2 aca (S,8)(S,8) + 3 aca’(S,8) sesT(S,8,8) V(S)

By definition

This is a dynamic programming algorithm.

24

The value of a policy

State value function (for a fixed policy):

Vi(S) = Sacani(s,8) (1(5,8) + 7 Socs T(52,5)V(s))

Y
Immediate Future expected sum of rewards

State-action value function:

Q7(s,a) = r(s,a) +y > P(s’|s,a) max, Q*(s’,a’)

These are (two forms of) Bellman’s equation.

25

The value of a policy

State value function:

VI(S) = 2 acant(S,8) (1(S,8) + v 2 ses 1(5,8,5)V(S))

When S is a finite set of states, this is a system of linear equations
(one per state) with a unique solution V7~

Bellman’s equation in matrix form: Vi=R7+y [T V"

Which can solved exactly: Ve=(l-yT7)"R™

26

Iterative Policy Evaluation

Main idea: turn Bellman equations into update rules.

1. Start with some initial guess V,(s), Vs. (Canbe 0, or r(s,-).)

27

Iterative Policy Evaluation

Main idea: turn Bellman equations into update rules.
1. Start with some initial guess V,(s), VVs. (Canbe 0, or r(s,-).)

2. During every iteration k, update the value function for all states:

Vier(s) < (R(s, () + 7 Ses T(S, a(S), S)Vi(s))

28

Iterative Policy Evaluation

Main idea: turn Bellman equations into update rules.
1. Start with some initial guess V,(s), VVs. (Canbe 0, or r(s,-).)

2. During every iteration k, update the value function for all states:

Vier(s) < (R(s, () + 7 Ses T(S, a(S), S)Vi(s))

3. Stop when the maximum changes between two iterations is smaller

than a desired threshold (the values stop changing.)

29

Convergence of lterative Policy Evaluation

« Consider the absolute error in our estimate V,,(s):

[Vi+1(s) = V7 (s)| =

Z (s, a)(R(s,a) + v Z T(s,a,s')Vi(s"))
_ Z m(s,a)(R(s,a) + v Z T(s,a,s')V(s")

=

> m(s,a) Y T(s,a,8)(Vi(s) — V7 (s"))
<Y w(s,a)> T(s,a,s)|Vi(s') — V(5]

 Aslong as y<17, the error contracts and eventually goes to 0.

30

Optimal policies and optimal value functions

« The optimal value function V" is defined as the best value that

can be achieved at any state:

V*(s) = max, V*(S)

« Any policy that achieves the optimal value function is called an

optimal policy, denoted 7~

« There exists a unique optimal value function (Bellman, 1957).

« The optimal policy is not necessarily unique.

Optimal policies and optimal value functions

 Ifwe know V*(and R, T, y), then we can compute 7* easily:

() = argmaXsea (1(S,8) *y 2ses 1(S,a,8)V(S))

« |fwe know 7*(and R, T, y), then we can compute V* easily:
V¥s) =3.aam'(sa)(r(sa) +y¥sesT(s,a8)V(s))
V¥s) =1(s, a(s)) + v Yees T(S, 7(S),S)V(S)

32

Finding a good policy: Policy Iteration

« Start with an initial policy 7, (e.g. random)

 Repeat:
— Compute V7, using policy evaluation.

— Compute a new policy 7’ that is greedy with respect to \/»

 Terminate when 7 =#’

Finding a good policy: Value iteration

Main idea: Turn the Bellman optimality equation into an iterative update
rule (same as done in policy evaluation):

1. Start with an arbitrary initial approximation V(s)

2. On each iteration, update the value function estimate:
Vi(s) = max,ea (R(s,a) + v 2 ses 1(5,8,5)Vi.4(S))

3. Stop when max value change between iterations is below threshold.

The algorithm converges (in the limit) to the true V*.

Questions?

* Policy evaluation

* Policy iteration

 Value iteration

35

A 4x3 gridworld example

« 11 discrete states, 4 motion actions (N, S, E, W) in each state.

« Transitions are mildly stochastic.

 Reward is +1 in top right state, -10 in state directly below, -0 elsewhere.
« Episode terminates when the agent reaches +1 or -10 state.

« Discount factor y = 0.99.

0.7 -10

Intended
direction

A

Value lteration (1)

37

Value lteration (2)

-10

0 0 0 [-0.99

Bellman residual: |V,(s) - V,(s)| = 0.99

38

Value lteration (5)

048 | 0.70 | 0.76 | +1

0.23 -0.55| -10

0 |-0.20|-0.23 |-1.40

Bellman residual: |[V(s) - V(s)| = 0.23

39

Value lteration (20)

0.78 | 0.80 | 0.81 | +1

0.77 -0.44 | -10

0.75 | 0.69 | 0.37 |-0.92

Bellman residual: |Vi(s) - V,(s)| = 0.008

40

Another example: Four Rooms

|

* Four actions, fail 30% of the time.
* No rewards until the goal is reached, y = 0.9.
« Values propagate backwards from the goal.

lteration #1 [teration #2 lteration #3

41

Asynchronous value iteration

» Instead of updating all states on every iteration, focus on
iImportant states.

— E.g., board positions that occur on every game, rather than
just once in 100 games.

 Asynchronous dynamic programming algorithm:

— Generate trajectories through the MDP.

— Update states whenever they appear on such a trajectory.

* Focuses the updates on states that are actually possible.

Want to know more?

Reinforcement .
Learning

k\i\é‘ MORGANKCLAYPOOL MUBLISHERS

’Algorithms for
Reinforcement
l,carning

Csaba Szepesviri
\

SYNTHESIS LECTURES ON ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING

Sutton & Barto, 1998 Szepesvari, 2010

43

Key challenges in RL

* Designing the problem domain
— State representation

— Action choice

— Cost/reward signal

« Acquiring data for training
— Exploration / exploitation
— High cost actions

— Time-delayed cost/reward signal

* Function approximation
 Validation / confidence measures

44

The RL lingo

« Episodic / Continuing task

« Tabular / Function approximation

« Batch/ Online

* On-policy / Off-policy

« Exploration / Exploitation

 Model-based / Model-free

« Policy optimization / Value function methods

45

Episodic / Continuing

« Let U; be the utility for a trajectory, starting from step t.

 Episodic tasks: e.g. games, trips through a maze, etc.

U=r+rg,+rho+t..+r7

* Some subtleties about value iteration, e.g. need to keep V,(s), t=0.. T

« Continuing tasks: e.g. tasks which may go on forever

Ur =1+ Ylieg + Phao + Pz oo = 2 k=000 Vg

* Need to use a discount factor. Interesting new ideas on how to set.

46

Tabular / Function approximation

« Tabular: Can store in memory a list of the states and their value.

TO.I * Can prove many more
' theoretical properties
. 07 0l , in this case, about
Intended ° convergence, sample
direction complexity.

lo. 1

* Function approximation: Too many states, continuous state spaces.

Batch / Online

« Learning from a batch (more on this later).
* Get all data at once, collected from a fixed (unknown?) policy.

* Learning online from repeated interactions:
* Can vary the collection policy. Non-stationary data distribution.

Act

O

Adjust Q-function New transition

48

Online learning

« Monte-Carlo value estimate: Use the empirical return, U(s,) as
a target estimate for the actual value function:

* Not a Bellman

V(St) < V(St) + O{(U(St) - V(St)) equation. More like

a gradient equation.

— Here a is the learning rate (a parameter).

— Need to wait until the end of the trajectory to compute U(s,).

« Temporal difference learning: Use an estimate of the return.

V(is)<=V(s,)+a (1; +yV(s,)-V(s,))

Temporal-Difference with function approx.

Tabular TD(0):
V(St) — V(St) + o (7“15_|_1 + ’YV(St_H) — V(St)) Vt = O, 1, 2, ce

Gradient-descent TD(0):
0«0 + « (Tt_|_1 -+ ’}/V(St_|_1) — V(St)) VQV<St),Vt = O, 1, 2, ce

Use the TD-error, instead of the “supervised” error.

50

Online learning with eligibility: TD(A)

Ot
" ¥
* € Q €
L s C’r \ L :::'/
i 7 L —
- 5.) -

—! > |'>’\.
Time ~ “{.,S‘ 1)
— _ .

* On every time step f, we compute the TD error:
O = Iter T YV(Stss) - V(Sy)
« Update all states V(s) « V(sy) + a 6;e(s))

* Decrease eligibility e(s;) < yle(s), where /1 € [0, 1]is a parameter.

TD-Gammon (Tesauro, 1992)

predicted probability
of winning, V,

TD error, Vg, =V, —= Reward function:
D +100if win
Q.+ D) -+ nhidden units (40-80) - 100 if lose
NP/ 0 for all other states

o O‘.O O o
backgammon position (128 input units) . .
6
- Trained by playing 1.5x10

hite pieces move

o 17 16 15 h counterclockwise million games against itself.

3

24 23 22 ?

ik

o Enough to beat the

§ best human player.

P8 9 10112 black pieces
move clockwise

ot |

P

—

52

The RL lingo

« Episodic / Continuing task

« Tabular / Function approximation

« Batch/ Online

* On-policy / Off-policy

« Exploration / Exploitation

 Model-based / Model-free

« Policy optimization / Value function methods

53

On-policy / Off-policy

« Policy induces a distribution over the states (data).
— Data distribution changes every time you change the policy!

54

On-policy / Off-policy

« Policy induces a distribution over the states (data).
— Data distribution changes every time you change the policy!

« Evaluating several policies with the same batch:

— Need very big batch!

— Need policy to adequately cover all (s,a) pairs.

55

On-policy / Off-policy

« Policy induces a distribution over the states (data).
— Data distribution changes every time you change the policy!

« Evaluating several policies with the same batch:
— Need very big batch!

— Need policy to adequately cover all (s,a) pairs.

« Use importance sampling to reweigh data samples to compute
unbiased estimates of a new policy.

m(s¢,a¢)

’Ot — b(St ,at)

56

Exploration / Exploitation

Exploration / Exploitation

Exploration: Increase knowledge
for long-term gain, possibly at the
expense of short-term gain

Exploitation: Leverage current knowledge
to maximize short-term gain

58

Model-based vs Model-free RL

« Option #1: Collect large amounts of observed trajectories.
Learn an approximate model of the dynamics (e.g. with
supervised learning). Pretend the model is correct and apply
value iteration.

« Option #2: Use data to directly learn the value function or
optimal policy.

59

Policy Optimization / Value Function

Policy Optimization Dynamic Programming
DFO / Evolution Policy Gradients Policy lteration Value lteration

\ / Q-Learning TD-Learning
Actor-Critic

Methods

60

The RL lingo — done!

« Episodic / Continuing task

« Tabular / Function approximation

« Batch/ Online

* On-policy / Off-policy

« Exploration / Exploitation

 Model-based / Model-free

« Policy optimization / Value function methods

61

In large state spaces: Need approximation

feature vector

62

Fitted Q-iteration

« Use supervised learning to estimate the Q-function from a batch
of training data.

— Input: x;,:=<s, a>, I=1..N
— Qutput: vy, .=r, + ymax,Qy(s;/,a)

— Loss: 3, || ri+ ymax,Q.(s/,a) - Qu(s;a) ||2

« Regression with linear function, neural network, efc.
(Can use other functions, e.g. random forests.)

63

Fitted Q-iteration

« Use supervised learning to estimate the Q-function from a batch
of training data.

— Input: x;:=<s,a> I=1..N
— Output: vy, :=r + ymax,Q,(s/,a)

— Loss: .|| r+ymax,Qu(s/,a) - Qu(s,a) ||?

* Regression with linear function, neural network, efc.
(Can use other functions, e.g. random forests.)

* Important note: Q,appears twice in the loss => Hard to learn!
— And in addition, r can be very sparse.

64

The Arcade Learning Environment

o Several Atari 2600 Games @]
o
e States:
— 210x160 colour video at 60Hz 1l
 Actions: by | p)
]

— Discrete, small set

www.arcadelearningenvironment.org

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

65

Learning representations for RL

Qols.a)
o(s)? m—)

Original state

Deep Q-network (DQN)

& [

Qols,a)

| @ &
a

O

©
©
HBRERAERCRARRARAE

Convolutional Neural Net

Original state

Trained with stochastic gradient descent.

[DeepMind: Mnih et al., 2015].

Train / Test protocol for RL

« Choose an exploration policy. Run it. Get a batch of data.
« Train your Q-function. (Stop training, fix Q().)

« Use your learned Q-function to generate new trajectories.
Measure the utility on these new trajectories.

 Repeat.

(Never report results for a hold-out test set.)

Training score

Average score per episode

200

2,200
2,000t
1,800+
1,600¢
1,400+
1,200+
1,000+

800

600 |

400 +

Space Invaders

0 1 L 1 1 L 1 1 1 1]
0 20 40 60 80 100 120 140 160 180 200

Training epochs

o
o
S
o

Average score per episode

69

5,000
4,000}
3,000t
2,000t

1,000+

Seaquest

0 L 1 1 L 1 L L L L]
0 20 40 60 80 100 120 140 160 180 200

Training epochs

[DeepMind: Mnih et al., 2015].

[DeepMind: Mnih et al., 2015].

At human-level or above
Below human-level
Best linear learner

|

T

&

¥

_—t l M
‘__‘____._.‘.._..E,E......._mmm (ol

Y m U m”mmmm 185 §152
M i wm 1 mmmmm it Mmmm &m MW :

;

fo%
Jox

Fros!blte

Video
Montezuma's Revenge

DQN: Useful tips for stability

« EXxperience replay [Mnih et al., 2015]
— Store large batch of observed experiences: <s;, a;, 1, Si.1>.

— Update Q-function by randomly drawing mini-batch of experiences.

« Prioritized experience replay [Schaul et al., 2016]
— Replay important transitions more frequently.

— Higher TD error => higher probability of being sampled.

DQN: Useful tips for stability

« Periodic updates to target value [Mnih et al., 2015]
— Use a fixed target network Q, () to calculate the error.

— Apply updates to a separate network Q;() .
— Every k iterations substitute Qg () <= Q;*() .

« Gradient clipping

72

DQN: Useful tips for stability

« Periodic updates to target value [Mnih et al., 2015]
— Use a fixed target network Q, () to calculate the error.

— Apply updates to a separate network Q;() .
— Every k iterations substitute Qg () <= Q;*() .

« Gradient clipping

 Double DQN /van Hasselt et al., 2016]
— Q-values are biased (over-estimated) due to max operator.
— Useoutput: vy, :=r. +y Q,(s/, argmax,Q,.(s;,a))
» Q,, is used to select the action

» Q,.is used to calculate the error.

73

Double DQN: Avoiding positive bias

Wizard of Wor

‘DQN

Value estimates
(log scale)
=

Double DQN
0 50 100 150 200
Wizard of Wor

Double' DQN

DQN

0 50 100 150 200
Training steps (in millions)

6000 -
4000 -

2000 -

74

_ . Double DQN
50 100 150 200

Astgrix

 Double DQN

50 100 150 200
Training steps (in millions)

[DeepMind: van Hasselt et al., 2015].

I Dueling Q-networks |

Standard DOQN

=

Dueli_ng (Q-network

4
i
V/

=

-~
J/ Cae
’ -~
/
/ ’
r ,
’
;
’
’
;
/
-

75

"
Qoap=Vopt Ay

A: The advantage function

[DeepMind: Wang et al., 2016].

Dueling Q-networks

Dueling vs simple DQN

Atlantis -
Tennis -

Space Invaders -
Up and Down -
Phoenix -
Enduro -
Chopper Command -
Seaquest -

Yars' Revenge -
Frostbite -

Time Pilot -
Asterix -

Road Runner -
Bank Heist -

Krull

Ms. Pac-Man -
Star Gunner -
Surround -
Double Dunk -
River Raid -
Venture .

midar -
Fishin Derb .
9o Bey '

Zaxxon -

Ice Hockey -

Cra Chmber .
entipede -
Defender -
Name This Game -
Battle Zone -
Kung-Fu Master -
Kangaroo -

lien -

Berzerk -

Boxing

Gopher -
Gravitar -
Wizard Of Wor -
Demon Attack -
Asteroids -
H.E.R.O. -

Skiinﬁ .

Pitfall! -
Robotank -

Pong -
ontezuma's Revenge -
Private Eye -

wiing

Tutankham -

Assault :
Breakout -

Video Pinball -

Freeway | -100.00%

180.00%

1%

Dueling vs prioritized DDQN

Asterix -

Space Invaders -
Phoenix -

her .

Wizard Of Wor -
Up and Down -
Yars' Revenge -
Star Gunner -
Berzerk -
Frostbite -

ch V»dé:o Plnbacljl .
0 ommand -
PR Assault -
Bank Heist -
River Raid -
Defender -

Name This Game -
Zaxxon -
Centipede -
Beam Rider .
Amidar -
Kung-Fu Master .
utankham -

Crazy Climber -
Q*Bert -

Battle Zone -
Atlantis -
Enduro -

Krull -
Road Runner -
Pitfall! .

Boxin
Demon Attac

Fishing Derby !

Pong -

Private Eye -

Montezuma's Reveng 2 |
1

Venture :
Bowling -

Freewa
Breakou

Asteroids -
Alien -
H.E.R.O. -
Gravitar -

Ice Hockey -
Time Pniot .
Solaris -
Surround -
Ms. Pac-Man .
Robotank -

Seaquest -
kiin
Double Dun

James Bond -

Kangaroo

76

10¢
457.93%

I 49 22%

Deep RL in Minecraft

First-Person
View

ann aEnn ann

B ER(JEEEE | B ECONEEN |'D ENEEEEE
IHI
a

Top-Down
View

Q Q Q
Q Q [Memory | || Memory | || Memory |
[Context | | Context:D Context | ContextD Context:D
CNN CNN CNN CNN |{_|CNN
Xt—M Xt Xt Xt Xt Xt

() DQN (b) DRQN (c) MQN

(d) RMQN (e) FRMQN

(a) t=3 (b) t=10 (c) t=11 (d) =19

Figure 1. Example task in Minecraft. In this task, the agent should
visit the red block if the indicator (next to the start location) is
yellow. Otherwise, if the indicator is green, it should visit the blue
block. The top row shows the agent’s first-person observation.

Many possible architectures,
Incl. memory and context

Online videos: https://sites.google.com/a/umich.edu/junhyuk-oh/icm{2016-minecraft

[U.Michigan: Oh et al., 2016].

77

IDeep Q-learning in the real world? |

[l

 More work on Mario, Starcraft, Doom,
» All these results make extensive use of a simulator.
 Domain is often (near-)deterministic.

« Relative small set of actions (=small policy space).

78

Dialogue systems

N-best list of
user utterances

AUTOMATIC
SPEECH
RECOGNISER

N-best list of
user dialogue acts

\

—

SEMANTIC
DECODER

N

DIALOGUE
MANAGER

TEXTTO
SPEECH

SYNTHESISER

NATURAL
LANGUAGE

GENERATOR

DIALOGUE
STATE
MAINTAINING

ACTION
SELECTION

System utterance

System dialogue act

http://mi.eng.cam.ac.uk/research/dialogue/epsrc/

79

Neural interpretation machine

Geural translation machine\

(trained offline)
y(n-1) y‘_\n \
Pec?der S
Encoder = |
1]
2)

| T~

— DQN

/

80

¥ O

81

