
Reinforcement Learning:
From basic concepts to deep Q-networks

Joelle Pineau
McGill University

Deep Learning Summer School
August 2016

Reinforcement learning

1. Learning agent tries a sequence of actions (at).

2. Observes outcomes (state st+1, rewards rt) of
those actions.

2

Reinforcement learning

1. Learning agent tries a sequence of actions (at).

2. Observes outcomes (state st+1, rewards rt) of
those actions.

3. Statistically estimates relationship between
action choice and outcomes, Pr(st|st-1,at).

3

Reinforcement learning

1. Learning agent tries a sequence of actions (at).

2. Observes outcomes (state st+1, rewards rt) of
those actions.

3. Statistically estimates relationship between
action choice and outcomes, Pr(st|st-1,at).

After some time... learns action selection policy,
π(s), that optimizes selected outcomes.

argmaxπ Eπ [r0 + r1 + … + rT | s0]

[Bellman, 1957; Sutton, 1988; Sutton&Barto, 1998.] http://en.wikipedia.org/wiki/Animal_training

4

Many applications of RL

• Robotics
• Medicine
• Advertisement
• Resource management
• Game playing …

5

RL system circa 1990’s: TD-Gammon

Reward function:
+100 if win
- 100 if lose
0 for all other states

Trained by playing 1.5x106

million games against itself.

Enough to beat the
best human player.

6

Human-level Atari agent (2015)

7

DeepMind’s AlphaGo (2016)

8

Adaptive neurostimulation for epilepsy suppression

9

When to use RL?

• Data in the form of trajectories.

• Need to make a sequence of (related) decisions.

• Observe (partial, noisy) feedback to state or choice of actions.

• There is a gain when optimizing action choice over a portion of
the trajectory.

10

RL vs supervised learning

Supervised
Learning

Inputs Outputs

Training signal = desired (target outputs), e.g. class

11

RL vs supervised learning

Supervised
Learning

Inputs Outputs

Training signal = desired (target outputs), e.g. class

Reinforcement
Learning

Inputs Outputs (“actions”)

Training signal = “rewards”

12

RL vs supervised learning

Supervised
Learning

Inputs Outputs

Training signal = desired (target outputs), e.g. class

Reinforcement
Learning

Inputs Outputs (“actions”)

Training signal = “rewards” Environment

13

RL vs supervised learning

Challenges:

Jointly learning
AND planning
from correlated

samples.

Data distribution
changes with
action choice.

Need access to
the environment.

Supervised
Learning

Inputs Outputs

Training signal = desired (target outputs), e.g. class

Reinforcement
Learning

Inputs Outputs (“actions”)

Training signal = “rewards” Environment

14

Markov Decision Process (MDP)
Defined by:
S: Set of states
A: Set of actions
Pr(st|st-1,at): Probabilistic effects
rt : Reward function
μt : Initial state distribution

MDPs as Decision Graphs

!" !# !$

%# %$

&" &#

'''

• The graph may be infinite

• But it has a very regular structure!

• At each time slice the structure and parameters are shared

• We will exploit this property to get e�cient inference

COMP-652 and ECSE-608, March 29, 2016 28

15

The Markov property

The distribution over future states depends only on the present
state, not on any previous events.

Pr(st | st-1, …, s0) = Pr(st | st-1)

16

MDPs as Decision Graphs

!" !# !$

%# %$

&" &#

'''

• The graph may be infinite

• But it has a very regular structure!

• At each time slice the structure and parameters are shared

• We will exploit this property to get e�cient inference

COMP-652 and ECSE-608, March 29, 2016 28

Maximizing utility

• Define: Ut , the utility for a trajectory, starting from step t.

• Episodic tasks (e.g. games, trips through a maze, etc.)

Ut = rt + rt+1 + rt+2 + … + rT

• Continuing tasks (e.g. tasks which may go on forever)

Ut = rt + γrt+1 + γ2rt+2 + γ3rt+3 … = ∑k=0: ∞ γkrt+k

17

The discount factor, γ

• Discount factor, γ ∊ [0, 1) (usually close to 1).

• Two interpretations:

– At each time step, there is a 1- γ chance that the agent dies,
and does not receive rewards afterwards.

– Inflation rate: receiving an amount of money tomorrow, is
worth less than today by a factor of γ.

18

The policy

A policy defines the action-selection strategy at every state:

π(s,a) = P(at=a | st=s)

(Can be stochastic as above, or deterministic, S→A.)

Goal: Find the policy that maximizes expected total reward.
(But there are many policies!)

argmaxπ Eπ [r0 + r1 + … + rT | s0]

19

Example: Career Options

Example: Career Options

a = Apply to academia

Grad School

 (G)

Academia

 (A)
r=+1

0.9

0.1

Unemployed

(U)

Industry

 (I)

0.8 0.2

r=+10r=!0.1

0.9

0.1

0.5

0.5

r=!1

0.6

0.4

i

a

ig

n

n=Do Nothing

i = Apply to industry

g = Apply to grad school

What is the best policy?

COMP-652 and ECSE-608, March 29, 2016 39

20

Value functions

• If we want to find a policy that maximizes the expected return,
it is useful to estimate the expected return.

• Then we can search through the space of policies for a good
policy.

• Value functions represent the expected return, for every state,
given a certain policy.

Vπ(s) = Eπ [rt + rt+t + … + rT | st = s]

21

The value of a policy

Vπ(s) = Eπ [rt + rt+t + … + rT | st = s]

Vπ(s) = Eπ [rt] + Eπ [rt+t + … + rT | st = s]

Vπ(s) = ∑a∈Aπ(s,a)r(s,a) + Eπ [rt+t + … + rT | st = s]

Immediate reward Future expected sum of rewards

22

The value of a policy

Vπ(s) = Eπ [rt + rt+t + … + rT | st = s]

Vπ(s) = Eπ [rt] + Eπ [rt+t + … + rT | st = s]

Vπ(s) = ∑a∈Aπ(s,a)r(s,a) + Eπ [rt+t + … + rT | st = s]

Vπ(s) = ∑a∈A π(s,a)r(s,a) + ∑a∈Aπ(s,a)∑s’∈ST(s,a,s’)Eπ [rt+t+…+ rT | st+1=s’]

Expectation over 1-step transition

23

The value of a policy

Vπ(s) = Eπ [rt + rt+t + … + rT | st = s]

Vπ(s) = Eπ [rt] + Eπ [rt+t + … + rT | st = s]

Vπ(s) = ∑a∈Aπ(s,a)r(s,a) + Eπ [rt+t + … + rT | st = s]

Vπ(s) = ∑a∈A π(s,a)r(s,a) + ∑a∈Aπ(s,a)∑s’∈ST(s,a,s’)Eπ [rt+t+…+ rT | st+1=s’]

Vπ(s) = ∑a∈Aπ(s,a)r(s,a) + ∑a∈Aπ(s,a)∑s’∈ST(s,a,s’) Vπ(s’)

By definition

This is a dynamic programming algorithm.
24

The value of a policy

State value function (for a fixed policy):

Vπ(s) = ∑a∈Aπ(s,a) (r(s,a) + γ ∑s’∈ST(s,a,s’)Vπ(s’))

Immediate Future expected sum of rewards

State-action value function:

Qπ(s,a) = r(s,a) + γ ∑s’ P(s’|s,a) maxa’ Qπ (s’,a’)

These are (two forms of) Bellman’s equation.

25

The value of a policy

State value function:

Vπ(s) = ∑a∈Aπ(s,a) (r(s,a) + γ ∑s’∈S T(s,a,s’)Vπ(s’))

When S is a finite set of states, this is a system of linear equations
(one per state) with a unique solution Vπ.

Bellman’s equation in matrix form: Vπ = Rπ + γ Tπ Vπ

Which can solved exactly: Vπ = (I - γ Tπ)-1 Rπ

26

Iterative Policy Evaluation

Main idea: turn Bellman equations into update rules.

1. Start with some initial guess V0(s),∀s. (Can be 0, or r(s,·).)

27

Iterative Policy Evaluation

Main idea: turn Bellman equations into update rules.

1. Start with some initial guess V0(s),∀s. (Can be 0, or r(s,·).)

2. During every iteration k, update the value function for all states:

Vk+1(s) ← (R(s, π(s)) + γ ∑s’∈S T(s, π(s), s’)Vk(s’))

28

Iterative Policy Evaluation

Main idea: turn Bellman equations into update rules.

1. Start with some initial guess V0(s),∀s. (Can be 0, or r(s,·).)

2. During every iteration k, update the value function for all states:

Vk+1(s) ← (R(s, π(s)) + γ ∑s’∈S T(s, π(s), s’)Vk(s’))

3. Stop when the maximum changes between two iterations is smaller

than a desired threshold (the values stop changing.)

29

Convergence of Iterative Policy Evaluation

• Consider the absolute error in our estimate Vk+1(s):

• As long as γ<1, the error contracts and eventually goes to 0.

30

Optimal policies and optimal value functions

• The optimal value function V* is defined as the best value that

can be achieved at any state:

V*(s) = maxπ Vπ(s)

• Any policy that achieves the optimal value function is called an

optimal policy, denoted π*.

• There exists a unique optimal value function (Bellman, 1957).

• The optimal policy is not necessarily unique.

31

Optimal policies and optimal value functions

• If we know V* (and R, T, γ), then we can compute π* easily:
π*(s) = argmaxa∈A (r(s,a) + γ ∑s’∈S T(s,a,s’)V*(s’))

• If we know π* (and R, T, γ), then we can compute V* easily:
V*(s) = ∑a∈Aπ*(s,a) (r(s,a) + γ ∑s’∈S T(s,a,s’)V*(s’))

V*(s) = r(s, π(s)) + γ ∑s’∈S T(s, π(s),s’)V*(s’)

32

Finding a good policy: Policy Iteration

• Start with an initial policy π0 (e.g. random)

• Repeat:
– Compute Vπ, using policy evaluation.
– Compute a new policy π’ that is greedy with respect to Vπ

• Terminate when π = π’

33

Finding a good policy: Value iteration

Main idea: Turn the Bellman optimality equation into an iterative update
rule (same as done in policy evaluation):

1. Start with an arbitrary initial approximation V0(s)

2. On each iteration, update the value function estimate:
Vk(s) = maxa∈A (R(s,a) + γ ∑s’∈S T(s,a,s’)Vk-1(s’))

3. Stop when max value change between iterations is below threshold.

The algorithm converges (in the limit) to the true V*.

34

Questions?

• Policy evaluation

• Policy iteration

• Value iteration

35

A 4x3 gridworld example

• 11 discrete states, 4 motion actions (N, S, E, W) in each state.

• Transitions are mildly stochastic.

• Reward is +1 in top right state, -10 in state directly below, -0 elsewhere.

• Episode terminates when the agent reaches +1 or -10 state.

• Discount factor γ = 0.99.

S +1

-10

0.1

0.1

0.10.7
Intended
direction

36

Value Iteration (1)

0 0 0 +1

0 0 -10

0 0 0 0

37

Value Iteration (2)

0 0 0.69 +1

0 -0.99 -10

0 0 0 -0.99

Bellman residual: |V2(s) - V1(s)| = 0.99

38

Value Iteration (5)

0.48 0.70 0.76 +1

0.23 -0.55 -10

0 -0.20 -0.23 -1.40

Bellman residual: |V5(s) - V4(s)| = 0.23

39

Value Iteration (20)

0.78 0.80 0.81 +1

0.77 -0.44 -10

0.75 0.69 0.37 -0.92

Bellman residual: |V5(s) - V4(s)| = 0.008

40

Another example: Four Rooms

• Four actions, fail 30% of the time.
• No rewards until the goal is reached, γ = 0.9.
• Values propagate backwards from the goal.

41

Asynchronous value iteration

• Instead of updating all states on every iteration, focus on
important states.
– E.g., board positions that occur on every game, rather than

just once in 100 games.

• Asynchronous dynamic programming algorithm:
– Generate trajectories through the MDP.
– Update states whenever they appear on such a trajectory.

• Focuses the updates on states that are actually possible.

42

Want to know more?

43

Sutton & Barto, 1998 Szepesvari, 2010

Key challenges in RL

• Designing the problem domain
– State representation
– Action choice
– Cost/reward signal

• Acquiring data for training
– Exploration / exploitation
– High cost actions
– Time-delayed cost/reward signal

• Function approximation

• Validation / confidence measures

44

The RL lingo

• Episodic / Continuing task

• Tabular / Function approximation

• Batch / Online

• On-policy / Off-policy

• Exploration / Exploitation

• Model-based / Model-free

• Policy optimization / Value function methods

45

Episodic / Continuing

• Let Ut be the utility for a trajectory, starting from step t.

• Episodic tasks: e.g. games, trips through a maze, etc.

Ut = rt + rt+1 + rt+2 + … + rT

* Some subtleties about value iteration, e.g. need to keep Vt(s), t=0..T

• Continuing tasks: e.g. tasks which may go on forever

Ut = rt + γrt+1 + γ2rt+2 + γ3rt+3 … = ∑k=0: ∞ γkrt+k

* Need to use a discount factor. Interesting new ideas on how to set.

46

Tabular / Function approximation

• Tabular: Can store in memory a list of the states and their value.

• Function approximation: Too many states, continuous state spaces.

0.1

0.1

0.10.7
Intended
direction

47

* Can prove many more
theoretical properties
in this case, about
convergence, sample
complexity.

Batch / Online

• Learning from a batch (more on this later).
* Get all data at once, collected from a fixed (unknown?) policy.

• Learning online from repeated interactions:
* Can vary the collection policy. Non-stationary data distribution.

st =>a rt, st+1

Q, π
at

48

Online learning

• Monte-Carlo value estimate: Use the empirical return, U(st) as
a target estimate for the actual value function:

– Here 𝛼 is the learning rate (a parameter).
– Need to wait until the end of the trajectory to compute U(st).

• Temporal difference learning: Use an estimate of the return.

V (st)←V (st)+α U(st)−V (st)()

V (st)←V (st)+α rt +γV (st+1)−V (st)()

49

* Not a Bellman
equation. More like
a gradient equation.

Temporal-Difference with function approx.

• Tabular TD(0):

• Gradient-descent TD(0):

Use the TD-error, instead of the “supervised” error.

Temporal-Di↵erence (TD) Learning (Sutton, 1988)

We want to update the prediction for the value function based on its
change, i.e. temporal di↵erence from one moment to the next

• Tabular TD(0):

V (st) V (st) + ↵ (rt+1 + �V (st+1)� V (st)) 8t = 0, 1, 2, . . .

• Gradient-descent TD(0):

If V is represented using a parametric function approximator, e..g a
neural network, with parameter ✓:

✓ ✓ + ↵ (rt+1 + �V (st+1)� V (st))r✓V (st), 8t = 0, 1, 2, . . .

In other words, we used the TD-error instead of the “supervised” error

COMP-652 and ECSE-608, March 29, 2016 69

Temporal-Di↵erence (TD) Learning (Sutton, 1988)

We want to update the prediction for the value function based on its
change, i.e. temporal di↵erence from one moment to the next

• Tabular TD(0):

V (st) V (st) + ↵ (rt+1 + �V (st+1)� V (st)) 8t = 0, 1, 2, . . .

• Gradient-descent TD(0):

If V is represented using a parametric function approximator, e..g a
neural network, with parameter ✓:

✓ ✓ + ↵ (rt+1 + �V (st+1)� V (st))r✓V (st), 8t = 0, 1, 2, . . .

In other words, we used the TD-error instead of the “supervised” error

COMP-652 and ECSE-608, March 29, 2016 69

50

Online learning with eligibility: TD(λ)

• On every time step t, we compute the TD error:

δt = rt+1 + γV(st+1) - V(st)

• Update all states V(st) ⃪ V(st) + 𝛼 δt e(st)

• Decrease eligibility e(st) ⃪ 𝛾𝜆e(s), where 𝜆 ∊ [0, 1] is a parameter.

51

TD-Gammon (Tesauro, 1992)

52

Reward function:
+100 if win
- 100 if lose
0 for all other states

Trained by playing 1.5x106

million games against itself.

Enough to beat the
best human player.

The RL lingo

• Episodic / Continuing task

• Tabular / Function approximation

• Batch / Online

• On-policy / Off-policy

• Exploration / Exploitation

• Model-based / Model-free

• Policy optimization / Value function methods

53

On-policy / Off-policy

• Policy induces a distribution over the states (data).
– Data distribution changes every time you change the policy!

54

On-policy / Off-policy

• Policy induces a distribution over the states (data).
– Data distribution changes every time you change the policy!

• Evaluating several policies with the same batch:
– Need very big batch!
– Need policy to adequately cover all (s,a) pairs.

55

On-policy / Off-policy

• Policy induces a distribution over the states (data).
– Data distribution changes every time you change the policy!

• Evaluating several policies with the same batch:
– Need very big batch!
– Need policy to adequately cover all (s,a) pairs.

• Use importance sampling to reweigh data samples to compute
unbiased estimates of a new policy.

56

Exploration / Exploitation

57

Exploration / Exploitation

Exploitation: Leverage current knowledge
to maximize short-term gain

Exploration: Increase knowledge
for long-term gain, possibly at the
expense of short-term gain

58

Model-based vs Model-free RL

• Option #1: Collect large amounts of observed trajectories.
Learn an approximate model of the dynamics (e.g. with
supervised learning). Pretend the model is correct and apply
value iteration.

• Option #2: Use data to directly learn the value function or
optimal policy.

59

Policy Optimization / Value FunctionApproaches to RL

Policy Optimization Dynamic Programming

DFO / Evolution Policy Gradients Policy Iteration Value Iteration

Actor-Critic
Methods

modified
policy iteration

Q-Learning

60

TD-Learning

The RL lingo – done!

• Episodic / Continuing task

• Tabular / Function approximation

• Batch / Online

• On-policy / Off-policy

• Exploration / Exploitation

• Model-based / Model-free

• Policy optimization / Value function methods

61

In large state spaces: Need approximation

62

Fitted Q-iteration

• Use supervised learning to estimate the Q-function from a batch
of training data.

– Input: xi := <si, ai>, i=1..N

– Output: yi := ri + γ maxaQ𝛳(si’,a)

– Loss: ∑i || ri + γ maxaQ𝛳(si’,a) - Q𝛳(si,ai) ||2

• Regression with linear function, neural network, etc.
(Can use other functions, e.g. random forests.)

63

Fitted Q-iteration

• Use supervised learning to estimate the Q-function from a batch
of training data.

– Input: xi := <si, ai>, i=1..N

– Output: yi := ri + γ maxaQ𝛳(si’,a)

– Loss: ∑i || ri + γ maxaQ𝛳(si’,a) - Q𝛳(si,ai) ||2

• Regression with linear function, neural network, etc.
(Can use other functions, e.g. random forests.)

• Important note: Q𝛳 appears twice in the loss => Hard to learn!
– And in addition, r can be very sparse.

64

The Arcade Learning Environment

www.arcadelearningenvironment.org

• Several Atari 2600 Games
• States:

– 210x160 colour video at 60Hz
• Actions:

– Discrete, small set

65

Learning representations for RL

s

ϕ(s)?

Original state

Q𝛳(s,a)

66

Deep Q-network (DQN)

Q𝛳(s,a)

s

Original state
Convolutional Neural Net

[DeepMind: Mnih et al., 2015].

Trained with stochastic gradient descent.

67

Train / Test protocol for RL

• Choose an exploration policy. Run it. Get a batch of data.

• Train your Q-function. (Stop training, fix Q().)

• Use your learned Q-function to generate new trajectories.
Measure the utility on these new trajectories.

• Repeat.

(Never report results for a hold-out test set.)

68

Training score

Space Invaders Seaquest

[DeepMind: Mnih et al., 2015].

69

[DeepMind: Mnih et al., 2015].
70

DQN: Useful tips for stability

• Experience replay [Mnih et al., 2015]
– Store large batch of observed experiences: <st, at, rt, st+1>.
– Update Q-function by randomly drawing mini-batch of experiences.

• Prioritized experience replay [Schaul et al., 2016]
– Replay important transitions more frequently.
– Higher TD error => higher probability of being sampled.

71

DQN: Useful tips for stability

• Periodic updates to target value [Mnih et al., 2015]
– Use a fixed target network Qθ

-() to calculate the error.
– Apply updates to a separate network Qθ

+() .
– Every k iterations substitute Qθ

-() <= Qθ
+() .

• Gradient clipping

72

DQN: Useful tips for stability

• Periodic updates to target value [Mnih et al., 2015]
– Use a fixed target network Qθ

-() to calculate the error.
– Apply updates to a separate network Qθ

+() .
– Every k iterations substitute Qθ

-() <= Qθ
+() .

• Gradient clipping

• Double DQN [van Hasselt et al., 2016]
– Q-values are biased (over-estimated) due to max operator.
– Use output: yi := ri + γ Q𝛳-(si’, argmaxaQ𝛳+(si’,a))

» Q𝛳+ is used to select the action
» Q𝛳- is used to calculate the error.

73

Double DQN: Avoiding positive bias

[DeepMind: van Hasselt et al., 2015].

74

Dueling Q-networks

[DeepMind: Wang et al., 2016].

Q

A: The advantage function

V

Qθ,α,β= Vθ,β + Aθ,α

75

Standard DQN

Dueling Q-network

Dueling Q-networks
Dueling vs simple DQN Dueling vs prioritized DDQN

76

Deep RL in Minecraft

[U.Michigan: Oh et al., 2016].

Many possible architectures,
Incl. memory and context

Online videos: https://sites.google.com/a/umich.edu/junhyuk-oh/icml2016-minecraft

77

Deep Q-learning in the real world?

• More work on Mario, Starcraft, Doom, ….
• All these results make extensive use of a simulator.

• Domain is often (near-)deterministic.

• Relative small set of actions (=small policy space).

Learning PlanningRL

78

Dialogue systems

http://mi.eng.cam.ac.uk/research/dialogue/epsrc/

79

Neural interpretation machine

Encoder

Decoder DQN

Neural translation machine
(trained offline)

80

Questions?

81

