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Reinforcement learning

1. Learning agent tries a sequence of actions (at).

2. Observes outcomes (state st+1, rewards rt) of 
those actions.
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Reinforcement learning

1. Learning agent tries a sequence of actions (at).

2. Observes outcomes (state st+1, rewards rt) of 
those actions.

3. Statistically estimates relationship between 
action choice and outcomes, Pr(st|st-1,at).

After some time...  learns action selection policy, 
π(s), that optimizes selected outcomes.

argmaxπ Eπ [ r0 + r1 + … + rT | s0 ]

[Bellman, 1957; Sutton, 1988; Sutton&Barto, 1998.] http://en.wikipedia.org/wiki/Animal_training
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Many applications of RL

• Robotics
• Medicine
• Advertisement
• Resource management
• Game playing …
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RL system circa 1990’s: TD-Gammon

Reward function:
+100 if win
- 100 if lose
0 for all other states

Trained by playing 1.5x106

million games against itself.

Enough to beat the 
best human player.
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Human-level Atari agent (2015)
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DeepMind’s AlphaGo (2016)
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Adaptive neurostimulation for epilepsy suppression
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When to use RL?

• Data in the form of trajectories.

• Need to make a sequence of (related) decisions.

• Observe (partial, noisy) feedback to state or choice of actions.

• There is a gain when optimizing action choice over a portion of 
the trajectory.
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RL vs supervised learning

Supervised 
Learning

Inputs Outputs

Training signal = desired (target outputs), e.g. class
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RL vs supervised learning

Challenges:

Jointly learning
AND planning 
from correlated

samples.

Data distribution 
changes with 
action choice.

Need access to 
the environment.

Supervised 
Learning

Inputs Outputs

Training signal = desired (target outputs), e.g. class

Reinforcement
Learning

Inputs Outputs (“actions”)

Training signal = “rewards” Environment
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Markov Decision Process (MDP)
Defined by:
S:  Set of states
A:  Set of actions
Pr(st|st-1,at):  Probabilistic effects
rt : Reward function
μt : Initial state distribution 

MDPs as Decision Graphs
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• The graph may be infinite

• But it has a very regular structure!

• At each time slice the structure and parameters are shared

• We will exploit this property to get e�cient inference

COMP-652 and ECSE-608, March 29, 2016 28
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The Markov property

The distribution over future states depends only on the present 
state, not on any previous events.

Pr(st | st-1, …, s0) = Pr(st | st-1)
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Maximizing utility 

• Define: Ut , the utility for a trajectory, starting from step t.

• Episodic tasks (e.g. games, trips through a maze, etc.)

Ut = rt + rt+1 + rt+2 + … + rT

• Continuing tasks (e.g. tasks which may go on forever)

Ut = rt + γrt+1 + γ2rt+2 + γ3rt+3 … = ∑k=0: ∞ γkrt+k
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The discount factor, γ

• Discount factor, γ ∊ [0, 1)   (usually close to 1).

• Two interpretations:

– At each time step, there is a 1- γ chance that the agent dies, 
and does not receive rewards afterwards.

– Inflation rate: receiving an amount of money tomorrow, is 
worth less than today by a factor of γ.
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The policy

A policy defines the action-selection strategy at every state:

π(s,a) = P(at=a | st=s)

(Can be stochastic as above, or deterministic, S→A.)

Goal:  Find the policy that maximizes expected total reward.
(But there are many policies!)

argmaxπ Eπ [ r0 + r1 + … + rT | s0 ]
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Example:  Career Options

Example: Career Options

a = Apply to academia

Grad School

  (G)

Academia

    (A)
r=+1

0.9

0.1

Unemployed

(U)

Industry

   (I)

0.8 0.2

r=+10r=!0.1

0.9

0.1

0.5

0.5

r=!1

0.6

0.4

i

a

ig

n

n=Do Nothing

i = Apply to industry

g = Apply to grad school

What is the best policy?
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Value functions

• If we want to find a policy that maximizes the expected return, 
it is useful to estimate the expected return.

• Then we can search through the space of policies for a good 
policy.

• Value functions represent the expected return, for every state, 
given a certain policy.

Vπ(s) = Eπ [rt + rt+t + … + rT | st = s ]
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The value of a policy

Vπ(s) = Eπ [rt + rt+t + … + rT | st = s ]

Vπ(s) = Eπ [rt ] + Eπ [ rt+t + … + rT | st = s ]

Vπ(s) = ∑a∈Aπ(s,a)r(s,a) + Eπ [ rt+t + … + rT | st = s ]

Immediate reward Future expected sum of rewards
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The value of a policy

Vπ(s) = Eπ [rt + rt+t + … + rT | st = s ]

Vπ(s) = Eπ [rt ] + Eπ [ rt+t + … + rT | st = s ]

Vπ(s) = ∑a∈Aπ(s,a)r(s,a) + Eπ [ rt+t + … + rT | st = s ]

Vπ(s) = ∑a∈A π(s,a)r(s,a) + ∑a∈Aπ(s,a)∑s’∈ST(s,a,s’)Eπ [rt+t+…+ rT | st+1=s’ ]

Expectation over 1-step transition
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The value of a policy

Vπ(s) = Eπ [rt + rt+t + … + rT | st = s ]

Vπ(s) = Eπ [rt ] + Eπ [ rt+t + … + rT | st = s ]

Vπ(s) = ∑a∈Aπ(s,a)r(s,a) + Eπ [ rt+t + … + rT | st = s ]

Vπ(s) = ∑a∈A π(s,a)r(s,a) + ∑a∈Aπ(s,a)∑s’∈ST(s,a,s’)Eπ [rt+t+…+ rT | st+1=s’ ]

Vπ(s) = ∑a∈Aπ(s,a)r(s,a) + ∑a∈Aπ(s,a)∑s’∈ST(s,a,s’) Vπ(s’)

By definition

This is a dynamic programming algorithm.
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The value of a policy

State value function (for a fixed policy):

Vπ(s) = ∑a∈Aπ(s,a) ( r(s,a) + γ ∑s’∈ST(s,a,s’)Vπ(s’) )

Immediate Future expected sum of rewards

State-action value function:

Qπ(s,a) =  r(s,a) + γ ∑s’ P(s’|s,a) maxa’ Qπ (s’,a’)

These are (two forms of)  Bellman’s equation.
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The value of a policy

State value function:

Vπ(s) = ∑a∈Aπ(s,a) ( r(s,a) + γ ∑s’∈S T(s,a,s’)Vπ(s’) )

When S is a finite set of states, this is a system of linear equations 
(one per state) with a unique solution Vπ.

Bellman’s equation in matrix form: Vπ = Rπ + γ Tπ Vπ

Which can solved exactly: Vπ = ( I - γ Tπ )-1 Rπ
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Iterative Policy Evaluation

Main idea: turn Bellman equations into update rules.

1. Start with some initial guess V0(s),∀s.   (Can be 0, or r(s,·).)
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Iterative Policy Evaluation

Main idea: turn Bellman equations into update rules.

1. Start with some initial guess V0(s),∀s.   (Can be 0, or r(s,·).)

2. During every iteration k, update the value function for all states:

Vk+1(s) ← ( R(s, π(s)) + γ ∑s’∈S T(s, π(s), s’)Vk(s’) )

3. Stop when the maximum changes between two iterations is smaller 

than a desired threshold (the values stop changing.)
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Convergence of Iterative Policy Evaluation

• Consider the absolute error in our estimate Vk+1(s):

• As long as γ<1, the error contracts and eventually goes to 0.
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Optimal policies and optimal value functions

• The optimal value function V* is defined as the best value that 

can be achieved at any state:

V*(s) = maxπ Vπ(s)

• Any policy that achieves the optimal value function is called an 

optimal policy, denoted π*. 

• There exists a unique optimal value function (Bellman, 1957).

• The optimal policy is not necessarily unique.
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Optimal policies and optimal value functions

• If we know V* (and R, T, γ), then we can compute π* easily:
π*(s) =  argmaxa∈A ( r(s,a) + γ ∑s’∈S T(s,a,s’)V*(s’) )

• If we know π* (and R, T, γ), then we can compute V* easily:
V*(s) = ∑a∈Aπ*(s,a) ( r(s,a) + γ ∑s’∈S T(s,a,s’)V*(s’) )

V*(s) = r(s, π(s)) + γ ∑s’∈S T(s, π(s),s’)V*(s’)
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Finding a good policy:  Policy Iteration

• Start with an initial policy π0 (e.g. random)

• Repeat:
– Compute Vπ, using policy evaluation.
– Compute a new policy π’ that is greedy with respect to Vπ

• Terminate when π = π’
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Finding a good policy:  Value iteration

Main idea: Turn the Bellman optimality equation into an iterative update 
rule (same as done in policy evaluation):

1. Start with an arbitrary initial approximation V0(s)

2. On each iteration, update the value function estimate:
Vk(s) =  maxa∈A ( R(s,a) + γ ∑s’∈S T(s,a,s’)Vk-1(s’) )

3. Stop when max value change between iterations is below threshold.

The algorithm converges (in the limit) to the true V*.
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Questions?

• Policy evaluation

• Policy iteration

• Value iteration
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A 4x3 gridworld example

• 11 discrete states, 4 motion actions (N, S, E, W) in each state.

• Transitions are mildly stochastic. 

• Reward is +1 in top right state, -10 in state directly below, -0 elsewhere.

• Episode terminates when the agent reaches +1 or -10 state.

• Discount factor γ = 0.99.

S +1

-10

0.1

0.1

0.10.7
Intended
direction
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Value Iteration (1)

0 0 0 +1

0 0 -10

0 0 0 0
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Value Iteration (2)

0 0 0.69 +1

0 -0.99 -10

0 0 0 -0.99

Bellman residual:  |V2(s) - V1(s)| = 0.99
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Value Iteration (5)

0.48 0.70 0.76 +1

0.23 -0.55 -10

0 -0.20 -0.23 -1.40

Bellman residual:  |V5(s) - V4(s)| = 0.23
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Value Iteration (20)

0.78 0.80 0.81 +1

0.77 -0.44 -10

0.75 0.69 0.37 -0.92

Bellman residual:  |V5(s) - V4(s)| = 0.008
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Another example: Four Rooms

• Four actions, fail 30% of the time.
• No rewards until the goal is reached, γ = 0.9.
• Values propagate backwards from the goal.
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Asynchronous value iteration

• Instead of updating all states on every iteration, focus on 
important states.
– E.g., board positions that occur on every game, rather than 

just once in 100 games.

• Asynchronous dynamic programming algorithm:
– Generate trajectories through the MDP.
– Update states whenever they appear on such a trajectory.

• Focuses the updates on states that are actually possible.
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Want to know more?

43

Sutton & Barto, 1998 Szepesvari, 2010



Key challenges in RL

• Designing the problem domain
– State representation
– Action choice
– Cost/reward signal

• Acquiring data for training
– Exploration / exploitation
– High cost actions
– Time-delayed cost/reward signal 

• Function approximation 

• Validation / confidence measures
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The RL lingo

• Episodic / Continuing task

• Tabular / Function approximation

• Batch / Online

• On-policy / Off-policy

• Exploration / Exploitation

• Model-based / Model-free

• Policy optimization / Value function methods

45



Episodic / Continuing

• Let Ut be the utility for a trajectory, starting from step t.

• Episodic tasks:  e.g. games, trips through a maze, etc.

Ut = rt + rt+1 + rt+2 + … + rT

* Some subtleties about value iteration, e.g. need to keep Vt(s), t=0..T 

• Continuing tasks:  e.g. tasks which may go on forever

Ut = rt + γrt+1 + γ2rt+2 + γ3rt+3 … = ∑k=0: ∞ γkrt+k

* Need to use a discount factor. Interesting new ideas on how to set.
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Tabular / Function approximation

• Tabular:   Can store in memory a list of the states and their value.

• Function approximation: Too many states, continuous state spaces.

0.1

0.1

0.10.7
Intended
direction

47

* Can prove many more
theoretical properties
in this case, about
convergence, sample 
complexity.



Batch / Online

• Learning from a batch (more on this later).
* Get all data at once, collected from a fixed (unknown?) policy.

• Learning online from repeated interactions:
* Can vary the collection policy.  Non-stationary data distribution.

st =>a rt, st+1

Q, π
at

48



Online learning

• Monte-Carlo value estimate:  Use the empirical return, U(st) as 
a target estimate for the actual value function:

– Here 𝛼 is the learning rate (a parameter).
– Need to wait until the end of the trajectory to compute U(st).

• Temporal difference learning:  Use an estimate of the return.

V (st )←V (st )+α U(st )−V (st )( )

V (st )←V (st )+α rt +γV (st+1)−V (st )( )

49

* Not a Bellman 
equation. More like 
a gradient equation.



Temporal-Difference with function approx.

• Tabular TD(0):

• Gradient-descent TD(0):

Use the TD-error, instead of the “supervised” error.

Temporal-Di↵erence (TD) Learning (Sutton, 1988)

We want to update the prediction for the value function based on its
change, i.e. temporal di↵erence from one moment to the next

• Tabular TD(0):

V (st) V (st) + ↵ (rt+1 + �V (st+1)� V (st)) 8t = 0, 1, 2, . . .

• Gradient-descent TD(0):

If V is represented using a parametric function approximator, e..g a
neural network, with parameter ✓:

✓  ✓ + ↵ (rt+1 + �V (st+1)� V (st))r✓V (st), 8t = 0, 1, 2, . . .

In other words, we used the TD-error instead of the “supervised” error

COMP-652 and ECSE-608, March 29, 2016 69
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Online learning with eligibility: TD(λ)

• On every time step t, we compute the TD error:

δt = rt+1 + γV(st+1) - V(st)

• Update all states V(st) ⃪ V(st) + 𝛼 δt e(st)

• Decrease eligibility e(st) ⃪ 𝛾𝜆e(s), where 𝜆 ∊ [0, 1] is a parameter.
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TD-Gammon (Tesauro, 1992)

52

Reward function:
+100 if win
- 100 if lose
0 for all other states

Trained by playing 1.5x106

million games against itself.

Enough to beat the 
best human player.



The RL lingo

• Episodic / Continuing task

• Tabular / Function approximation

• Batch / Online

• On-policy / Off-policy

• Exploration / Exploitation

• Model-based / Model-free

• Policy optimization / Value function methods
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On-policy / Off-policy

• Policy induces a distribution over the states (data).
– Data distribution changes every time you change the policy!
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On-policy / Off-policy

• Policy induces a distribution over the states (data).
– Data distribution changes every time you change the policy!

• Evaluating several policies with the same batch:
– Need very big batch!
– Need policy to adequately cover all (s,a) pairs.
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On-policy / Off-policy

• Policy induces a distribution over the states (data).
– Data distribution changes every time you change the policy!

• Evaluating several policies with the same batch:
– Need very big batch!
– Need policy to adequately cover all (s,a) pairs.

• Use importance sampling to reweigh data samples to compute 
unbiased estimates of a new policy.
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Exploration / Exploitation
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Exploration / Exploitation

Exploitation:  Leverage current knowledge
to maximize short-term gain

Exploration:  Increase knowledge 
for long-term gain, possibly at the 
expense of short-term gain
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Model-based vs Model-free RL

• Option #1:   Collect large amounts of observed trajectories.  
Learn an approximate model of the dynamics (e.g. with 
supervised learning).  Pretend the model is correct and apply 
value iteration.

• Option #2:  Use data to directly learn the value function or 
optimal policy.  

59



Policy Optimization / Value FunctionApproaches to RL

Policy Optimization Dynamic Programming

DFO / Evolution Policy Gradients Policy Iteration Value Iteration

Actor-Critic 
Methods

modified 
policy iteration

Q-Learning

60
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The RL lingo – done!

• Episodic / Continuing task

• Tabular / Function approximation

• Batch / Online

• On-policy / Off-policy

• Exploration / Exploitation

• Model-based / Model-free

• Policy optimization / Value function methods
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In large state spaces:  Need approximation
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Fitted Q-iteration

• Use supervised learning to estimate the Q-function from a batch 
of training data.

– Input:  xi := <si, ai>,  i=1..N

– Output:  yi := ri + γ maxaQ𝛳(si’,a)

– Loss: ∑i || ri + γ maxaQ𝛳(si’,a) - Q𝛳(si,ai) ||2

• Regression with linear function, neural network, etc.
(Can use other functions, e.g. random forests.)
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Fitted Q-iteration

• Use supervised learning to estimate the Q-function from a batch 
of training data.

– Input:  xi := <si, ai>,  i=1..N

– Output:  yi := ri + γ maxaQ𝛳(si’,a)

– Loss: ∑i || ri + γ maxaQ𝛳(si’,a) - Q𝛳(si,ai) ||2

• Regression with linear function, neural network, etc.
(Can use other functions, e.g. random forests.)

• Important note:  Q𝛳 appears twice in the loss  =>  Hard to learn!
– And in addition, r can be very sparse.
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The Arcade Learning Environment

www.arcadelearningenvironment.org

• Several Atari 2600 Games
• States:

– 210x160 colour video at 60Hz
• Actions:

– Discrete, small set
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Learning representations for RL

s

ϕ(s)?

Original state

Q𝛳(s,a)
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Deep Q-network (DQN)

Q𝛳(s,a)

s

Original state
Convolutional Neural Net

[DeepMind: Mnih et al., 2015].

Trained with stochastic gradient descent.
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Train / Test protocol for RL

• Choose an exploration policy. Run it. Get a batch of data.

• Train your Q-function.   (Stop training, fix Q().)

• Use your learned Q-function to generate new trajectories. 
Measure the utility on these new trajectories.

• Repeat.

(Never report results for a hold-out test set.)
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Training score

Space Invaders Seaquest

[DeepMind: Mnih et al., 2015].
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[DeepMind: Mnih et al., 2015].
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DQN:  Useful tips for stability

• Experience replay  [Mnih et al., 2015]
– Store large batch of observed experiences: <st, at, rt, st+1>.
– Update Q-function by randomly drawing mini-batch of experiences.

• Prioritized experience replay  [Schaul et al., 2016]
– Replay important transitions more frequently.
– Higher TD error => higher probability of being sampled.
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DQN:  Useful tips for stability

• Periodic updates to target value  [Mnih et al., 2015]
– Use a fixed target network Qθ

-() to calculate the error.
– Apply updates to a separate network Qθ

+() .
– Every k iterations substitute Qθ

-() <= Qθ
+() .

• Gradient clipping

72



DQN:  Useful tips for stability

• Periodic updates to target value  [Mnih et al., 2015]
– Use a fixed target network Qθ

-() to calculate the error.
– Apply updates to a separate network Qθ

+() .
– Every k iterations substitute Qθ

-() <= Qθ
+() .

• Gradient clipping

• Double DQN [van Hasselt et al., 2016]
– Q-values are biased (over-estimated) due to max operator.
– Use output:  yi := ri + γ Q𝛳-(si’, argmaxaQ𝛳+(si’,a))

» Q𝛳+ is used to select the action
» Q𝛳- is used to calculate the error.
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Double DQN: Avoiding positive bias

[DeepMind: van Hasselt et al., 2015].
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Dueling Q-networks

[DeepMind: Wang et al., 2016].

Q

A:  The advantage function

V

Qθ,α,β= Vθ,β + Aθ,α

75

Standard DQN

Dueling Q-network



Dueling Q-networks
Dueling vs simple DQN Dueling vs prioritized DDQN
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Deep RL in Minecraft

[U.Michigan: Oh et al., 2016].

Many possible architectures,
Incl. memory and context

Online videos: https://sites.google.com/a/umich.edu/junhyuk-oh/icml2016-minecraft
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Deep Q-learning in the real world?

• More work on Mario, Starcraft, Doom, ….
• All these results make extensive use of a simulator.

• Domain is often (near-)deterministic.

• Relative small set of actions (=small policy space).

Learning     PlanningRL
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Dialogue systems

http://mi.eng.cam.ac.uk/research/dialogue/epsrc/
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Neural interpretation machine

Encoder

Decoder DQN

Neural translation machine
(trained offline)
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Questions?
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