
 ON ESP32:
TIME TO RELEASE HW
EXPLOITS

LimitedResults
ZeroNights 2019
12-13 November, St. Petersburg

$ whoami

• Limited
• By Time, $$$, Skills too…

• Results
• www.LimitedResults.com

• Offensive Side
• Focus on HW, Low-Level Vulns…

• No Affiliation
• Time to play!

2

http://www.LimitedResults.com

POWER ON

INTRODUCTION

3

The Entry Point

• Last April, I decide to break investigate into
the ESP32
• System-on-Chip (SoC) released in 2016 by Espressif
• Widely-deployed (> 100M of devices) [1]
• Wireless MCU/SoC Market leader
• Claim to have ‘State-of-the-Art’ Security
• 12 years-longevity commitment

• General Use
• IoT
• Wireless peripheral

4

The target

• ESP32
• Techno 40nm node
• QFN 6*6, 48 pins

• Overview
• Wi-FI (2.4GHz) & BT v4.2
• Ultra Low-Power
• Xtensa Dual-Core LX6

• up to 240MHz

• ROM, SRAM, no CPU caches

• GPIOs, Touch sensor, ADC…
• 4 SPI, 3 UART, Ethernet…
• No USB

5

ESP32 Form Factor

• ESP32 SiP module (ESP32-WROOM-32)
• Easy to integrate in any design
• Flash storage 4MB
• FCC certified

• ESP32 Dev-Kit (Lolin ESP32)
• Micro-USB

• Power
• ttyUSB0 port
• Pin headers

• Limited Cost
• 15$

6

ESP32 Software

• Esp-idf Dev. Framework on Github
• xtensa-esp32-elf toolchain
• Set of Python Tools (esptool)

• Good Quality of Documentation
• Datasheet and TRM available [2]

• Arduino core supported
• I don’t like pre-compiled libraries, I don’t use it

• Official Amazon AWS IoT Platform
• FreeRTOS, Mongoose OS…

7

Agenda Today

• Focus on Built-in Security
• Just Grep the Datasheet

• Four Points
• Crypto HW accelerator
• Secure Boot
• Flash Encryption
• OTP

• Let’s start!

8

OPTIONS MENU

SETTINGS

9

The Limited Plan

• The Context
• 3 months to investigate (spare time)

• My Objective
• Break one by one the Security Features

• Physical Access Required (plausible attack scenario nowadays)

• So, I will probably use HW Techniques
• Fault Injection, Side Channel maybe?
• Micro-soldering, PCB modification
• Reverse
• And Code Review ☺

10

Fault Injection

• Voltage glitching
• Well-known, still efficient and Low-cost FI technique nowadays

• Public ressources about voltage glitching [3][4][…]

• Goal
• Perturb the Power of the chip to induce a fault during critical
SW/HW operations

• Expected effects
• Skip instruction

• Checks…

• Data/Code modification
• Branch conditions…

• Sometimes difficult to predict/understand
• especially with complex CPU architecture (cache effects?, pipeline?…)

11

Power domains inside ESP32

• 3 separate Power domains
• CPU domain shares two Power Signals

• VDD3P3_CPU && VDD3P3_RTC (not common)

• Low Drop-out regulators (LDO)
• Stabilize internal voltages

• Filter effect against glitches?

• Brownout Detector (BOD)
• « If the BOD detects a voltage drop, it

will trigger a signal shutdown and even
send a message on UART »
• Able to detect glitches?

• BoD only effective on VDD_RTC
• So, I will Glitch on VDD3P3_CPU

12

Target Preparation

• ESP-WROOM-32 Module
• Shield is removed

• No silkscreen but Schematic available
• I remove Capacitors connected to VDD_CPU and VDD_RTC

13

PCB Modification

• Three steps
• Expose the VDD_CPU trace (Pin 37)
• Cut the trace
• Solder the glitch output to VDD_CPU pin and GND

14

HW Setup

•Home-made Glitcher (10$)
• Based on MAX4619
• Add passive components
• SMA connectors

•Synchronised by a Scope
•Triggered by Signal Generator

• USB commands to set parameters
• Delay

• Width

• Voltage

•Python scripts for full-control
• Can run during days…

15

Voltage Glitching effect

• Effect Looks good

16

 UART
(powered by VDD_CPU)

 glitch effect

GPIO

 cmd

LEVEL 1

THE CRYPTO-CORE

17

Crypto-Core/
Crypto-Accelerator

•Just a peripheral to speed-up the computation
• AES, SHA, RSA…

•Why is it interesting to pwn?
• Espressif Crypto-Lib
• HW accel. used by default in MBedTLS

• MBedTLS is the ARM crypto-library (all IoT are using it)

•My Goal
• Focus on the CPU/Crypto interface (crypto-driver)

• Do not expect to find ‘pure’ Software Vulns

• Looking for vulns triggered by Fault Injection
•It is Time for Code Review

18

Design Weakness

•AES operation
• Datasheet

•Design Weakness
• AES_TEXT_m_REG registers used to store plaintext and also
ciphertext

•Encrypt-In-Place can be risky
• If something goes wrong during AES call, pretty sure I can
retrieve the plaintext
• Pretty cool & simple to exploit as first PoC

19

Vuln n*1 = AES Bypass

• Previous Weakness is confirmed
• Multiple spots to trigger

• AES call
• The while condition
• The For loop

• PoC
• Output = Input

20

Vuln n*2 = AES SetKey

• Vuln to trigger
• Unprotected loop for to
load the key into the
crypto-core

• PoC
• Key ZEROized
• Persistent key value
until the next setkey()

• Nice for attacking AES
Cipher Block Chaining
Mode

21

Crypto-Core Conclusion

• Crypto-core does not improve security
• Six Vulns with PoCs in AES and SHA

• Espressif HwCrypto in esp-idf 4.0
• ARM MbedTLS v2.13.1

• Resp. disclosure
• No answer from Espressif & ARM during 1 month ☹
• BugBounty Program from ARM MBedTLS is Fake ☹
• Silent Patch attempt ☹

• I am (a little bit) in a FURY now…
• …and I am going to pwn HARDer

22

LEVEL 2

SECURE BOOT

23

Role of Secure Boot

• Protector of FW Authenticity
• Avoid FW modification
• Easy to flash new Firmware in SPI Flash
• CRC? Not sufficient sorry…

• It will Create a Chain of Trust
• BootROM to Bootloader until the App

• It Guarantees the code running on the device is
Genuine
• Will not boot if images are not properly signed

24

ESP32 SecBoot during
Production

• Secure Boot Key (SBK)
• SBK burned into E-Fuses BLK2
• This SBK cannot be readout or modified (R/W protected)
• Used by bootROM to perform AES-256 ECB

• ECDSA key pair
• Created by the App developer
• Priv. Key used to sign the App
• Public Key integrated to bootloader.img

• The Bootloader Signature
• 192 bytes header = 128 bytes of random + 64 bytes digest

• Digest = SHA-512(AES-256((bootloader.bin + ECDSA PK), SBK))

• Random at 0x0 in Flash Memory layout, digest at 0x80

25

Sec. Boot on the Field

• Boot process

• Verification Mechanisms
• BootROM (Stage 0)

• Compute Digest with SBK and compare with 64-bytes Digest at 0x80

• ECDSA verification by the Bootloader (Stage 1)
• Micro-ECC is used

• I will Focus on Stage 0
• Signature based on Symmetric Crypto
• SBK = AES-Key used to sign the bootloader (CRITICAL ASSET)

• Stored in E-Fuses, R/W protected

26

Set the Secure Boot

•Can be done automatically by ESP-IDF Framework…
•But I prefer to do it manually

• Burn the Secure Boot Key into BLK2
• $ espefuse.py burn_key secure_boot ./secure-bootloader-key-256.bin

• Burn the ABS_DONE fuse to activate the sec boot
• $ espefuse.py burn_efuse ABS_DONE_0

•E-Fuses Map
• espefuse.py summary

•Look JTAG fuse ☺

27

Secure boot in Action

• Signed App (using SBK)

• make flash, then it runs

28

• Unsigned App (no Key)

• Flash it then Fail

• Stuck in stage0 (perfect)

Bypass the Secure Boot

•Why?
• To have code exec

•How?
• Force ESP32 to execute my unsigned bootloader to load
my unsigned app

•Focus on BootROM
• Always Nice to exploit BootROM vulns
• Always Difficult to Fix BootROM vulns

•So, I need to reverse the BootROM image
•But first, I need to dump it…

29

Dump the BootROM

• Memory map

• Remember I didn’t burn
JTAG DISABLE E-Fuse?
• FT2232H board (20$)
• OpenOCD + xtensa-esp32-gdb

• Full Debug Access
• Reset Vector 0x40000400

• BootROM dumped
30

BootROM Reverse

• Xtensa is ‘exotic’ arch
• registers windowing, lengths of instr…
• ISA [5]

• IDA
• ida-xtensa plugin from @themadinventor

• Secure_boot.h
• List all the ROM functions

• They deprecated since…

• Call my ‘little bro’ to check my mess
• @wiskitki

• At the end, not perfect but doable
• _start at 0x40000704 (as expected)

31

The BootROM Vuln

• After ets_secure_boot_check_finish()

• Bnei (Branch if not equal immediate)
• Depends on a10 Register value (storing sec_boot_check() retvalue)

• I want PC jump to 0x400075C5 to execute the bootloader

32

Jtag Exploit Validation

• Set a10 register = 0 via JTAG to bypass secboot

33

Time to Pwn (for Real)

• Real Life
• JTAG is disabled
• I could not find a way to
exploit this Vuln by SW

• So, Fault Injection is
my only way here
• Simultaneous glitch on
VDD_CPU && VDD_RTC

• SPI MOSI is probed to
have a timing information

34

First attempts during
BootROM

• Previous BootROM Reverse is helpful
• to determine Fault injection Timing

35

ZOOM
Serial

 glitch effect

 Failed
SPI

Successful Sec.Boot Bypass

• CPU is jumping to the entry point, Bootloader
is executed. Done

36

ZOOM
Serial

 glitch effect

 Validated
SPI

PoC Secure Boot

• Sorry for the tilt

37

Secure Boot Conclusion

• Secure Boot Bypass exploit
• Stage 0 (bootROM Vuln)
• Triggered by Fault Injection
• Not persistent if Reset occurs
• No way to Fix this without ROM revision

• Resp. disclosure
• PoC sent on June 4
• Security Advisory on Sept. 2

• CVE-2019-15894 (requested by Vendor)

• Patched by Flash Encryption always enabled

• A security lab, called Riscure, found the same vuln

• No silent patch attempt this time…

38

LEVEL 3

FLASH ENCRYPTION

39

Role of Flash Encryption

•Protector of FW Confidentiality
• Protect against Binary extraction and
Reverse

•Without FE, it is easy to extract
sensitive data
• Ex: LIFX Wi-Fi lightbulbs [6]

•Firmware Encryption more and more
present Today
• Security by obscurity…

•Espressif recommends Secure Boot +
Flash Encryption for maximum
Security
40

Flash Encryption Review

• HW AES Enc./Dec. Block in
Flash Memory Controller
• Fetch Key from E-Fuses and other
parameters

• Decrypt/Encrypt I/D into a Cache
• SW cannot access

• Flash Encryption Key (FEK)
• AES-Key used to decrypt the FW

• Stored in E-Fuses BLK1 (R/W
protected)

• CRITICAL ASSET (of course)

41

Set the Flash Encryption

• Burn the FEK into BLK1
• $ espefuse.py --port /dev/ttyUSB0
burn_key flash_encryption
my_flash_encryption_key.bin

• Activate the Flash Encryption
• $ $ espefuse.py burn_efuse
FLASH_CRYPT_CONFIG 0xf

• $ espefuse.py burn_efuse
FLASH_CRYPT_CNT

• Flash encrypted FW into ESP32
• Verify E-Fuses Map
• Verify encrypted FW

42

How to break Flash
Encryption?

•I did some tests (believe me…)
• Did not find particular Weakness to access
the Key by SW or to Attack by DFA

•My Last Hope is Side Channel Analysis
• to target the Bootloader decryption

•But my setup is too ‘limited’
• SPI bus producing a lot of Noise
• Cannot control the SPI frames

• Use a kind of SPI emulator but BIG FAIL

• I tried DPA, CPA…
• Low SNR, No good Leakage…

•8-9 NIGHTS, ZERO result…
•K.O

43

Flash Encryption Conclusion

• I lost…

44

EXTRA-COIN

OTP/E-FUSES: THE MOTHER OF
VULNS

45

Role of OTP/E-Fuses

•One-Time-Programmable (OTP) Memory based on E-Fuses
• Non-Volatile-Memory inside the ESP32
• An e-Fuse can be ‘programmed’ just ‘One-Time’ from 0 to 1
• Once burned, no possibility to rewrite it or to wipe it

•Organisation
• EFUSE_BLK0 = ESP32 configuration
• EFUSE_BLK1 = Flash Encryption Key (FEK)
• EFUSE_BLK2 = Secure Boot Key (SBK)
• EFUSE_BLK3 = reserved for User Application

•According to Espressif, these E-Fuses are R/W protected and
cannot be readout/modified once protection bits set
•E-Fuses are managed by the E-Fuses Controller, a dedicated piece
of HW inside the ESP32

46

ESP32 E-Fuses Reverse

• Only two identified functions
• Used during a ‘Special Boot
mode’
• interesting…

• BootROM never touch OTP
values
• It means only the E-Fuses
Controller has access to OTP
• Pure HW Process
• Has to be set before BootROM

47

Special Boot Mode

• Special Boot Mode (Download_Boot)
• Management mode to Flash FW, and Set E-Fuses
• IO0 connected to GND then Power-up

• Esptool is python utility to communicate with
the ROM functions
• Dedicated commands available from UART0 to deal with
E-Fuses
• dump, program,…

48

E-Fuses Protection

• Any attempt to read BLK1 or BLK2 returns 0x00
• $ espefuse.py --port /dev/ttyUSB0 dump

• Identification of R/W Protection bits in BLK0
• 00130180 = 00000000 00010011 00000001 1000 0000
• These two bits are the Read protection bits

49

Wait LR, where is the Vuln?

•I Have no vuln here…
•But I know

• BootROM does not manage the E-Fuses
• Obviously, E-Fuses Controller does the job before
• Special boot mode called ‘Download_Boot’
• Read protection bits have been identified

•The idea
• Glitch the E-Fuses Controller initialization to modify the
R/W protections

• Then send Dump command in Special Mode
• And get back BLK1 (FEK) and BLK2 (SBK)

50

FATAL Attack

• Simple Power Analysis on VDD_CPU to identify
• Glitch during this identified HW process

51

ZOOM Serial
 glitch effect

Current

 3V3

 cmd

FATAL Results

• PoC sent to vendor (on July 24)

52

One more step

•Sadly, the dumped Keys are
not exactly True values
• Remember I burned the keys ☺

•Offline Statistical Analysis
on 30-50 dumped key values
• just Keep the most recurrent
Bytes (here SBK analysis)

•1 Byte still unknown and has
to be Brute Forced (worst
case)
• Same for FEK

53

FATAL Exploit step 1:
Decrypt FW

• Dump the encrypted FW
• By Download Mode or by dumping the Flash Content

• Perform FATAL Glitch to extract FEK/SBK values
• Run Statistical analysis

• Confirm the True FEK (by decrypting FW)

• IMPORTANT to respect this byte order in key.bin

54

FATAL Exploit step 2:
Sign Your Code

• Firmware is now decrypted
• dd ivt.bin (the first 128
random bytes at 0x00 in
decrypted.bin)
• dd Bootloader.bin at 0x1000
• Confirm the true SBK

• digest computation command
• Write your Code

• a little FW backdoor maybe? ☺
• Compile images

• using FEK and SBK
• Flash new FW

55

OTP/EFuses FATAL Conclusion

•FATAL exploit leading to SBK & FEK extraction
• Breaking Secure Boot and Flash Encryption

•An attacker can decrypt the Firmware (access IP
and sensitive data)
•An attacker can sign & run his own (encrypted)
code PERSISTENTLY
•Low Cost, Low Complexity
•Easy to reproduce
•No Way to fix
•All ESP32 versions vulnerable
56

Vendor Reaction

•Resp. disclosure
• PoC sent on July 24
• CVE-2019-17391 (req. by Vendor)
• Disclosure Today

•Security Advisory on November 1 [7]
•No way to Fix but…

• They propose to buy their new chip version ☺ ☺ ☺
•Millions of vulnerable Devices on the field for
the coming years
•What about devices offered for sales? Who want
broken platforms?

57

Final Conclusion

•Developers are Now aware
• Attacker with physical access can
compromise ESP32 security badly

•Fix?
• No fix on current ESP32 version
• Chip is broken FOREVER

•I identified several companies
using Esp32 security features in
their products…
•General Message for Vendors

• Don’t patch silently, Reward instead
•New Results coming soon

• Stay tuned ;)

58

End of the game

References & Credits

•Fatal Fury Animations
• www.fightersgeneration.com

•Espressif
• [1] Espressif 100-Millions chip shipments

•ESP32
• [2] Datasheet, TRM

•Fault injection references
• [3] Chris Gerlinsky (@akacastor)
• [4] Colin O’Flynn (@colinoflynn)

•Xtensa
• [5] ISA Manual

•LIFX Pwn
• [6] LIFX Pwn

•Security Advisory
• [7] CVE-2019-17391

59

http://www.fightersgeneration.com
https://www.espressif.com/en/media_overview/news/espressif-achieves-100-million-target-iot-chip-shipments
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://recon.cx/2017/brussels/resources/slides/RECON-BRX-2017-Breaking_CRP_on_NXP_LPC_Microcontrollers_slides.pdf
https://newae.com/tools/chipwhisperer/
https://0x04.net/~mwk/doc/xtensa.pdf
https://limitedresults.com/2019/01/pwn-the-lifx-mini-white/
https://www.espressif.com/en/news/Security_Advisory_Concerning_Fault_Injection_and_eFuse_Protections

@LimitedResults

Thank you!

