

Andrey Kovalev (@L1kvID)

Introduction into browser
hacking

› Security Engineer at Yandex

› Browser security enthusiast

› Public speaker (every ZeroNights since 2015)

› Author of @br0wsec channel (https://t.me/br0wsec)

Who am I

!3

https://t.me/br0wsec

Agenda

1 What?

2 Where?

3 How?

4 Summary

What?
Browser threat model

Introduction into browser hacking

Browser vulns in 2018 (Chromium)

!6

16 %

84 %

Binary Web / extensions

Threre are lot of binary
vulns, so lots of people
and robots are in game

Typical attack scheme

!8

 Browser

evilsiteEvilsite

Data leakage

Privilege escalation

1

2

3

Browser security threat model (basic)

!9

Sandbox escape

Renderer RCE

Url Spoofing

SOP bypass

Security weakness

System privilege escalation

Data leakage

Аttack mechanic is
almost independent of
the type of vulnerability

Memory corruption example (CVE-2018-6060)

!11

WebKit CVE-2018-6128 (841105) by Tomasz Bojarski

SOP bypass (Universal XSS)

!12

https://bugs.chromium.org/p/chromium/issues/detail?id=841105

Chromium RCE 746946 (fixed not because the report)

Binary vs Web (part 1)

!13

https://bugs.chromium.org/p/chromium/issues/detail?id=746946

Web case ITW unicode example

Binary vs Web (part 2)

!14

› Universal XSS

› WebWorker data leakage or full bypass

› Url parsers

› Object data storages: canvas, caches etc.

SOP bypass vulnerabilities

!15

› Site Isolation bypass (Chromium only): CORB-read cases or 2
different origins in one process: more info

› CSP bypass

› SafeBrowsing bypass

Vulnerabilities in security features

!16

https://www.google.com/about/appsecurity/chrome-rewards/#special

CVE-2018-5175 (1432358) by Masato Kinugawa

CSP bypass in Firefox via internal files

!17

https://bugzilla.mozilla.org/show_bug.cgi?id=1432358

WebKit CVE-2018-6114 (811691) by Lnyas Zhang

WebKit CSP bypass example

!18

https://bugs.chromium.org/p/chromium/issues/detail?id=811691

Chromium bypass via WebSocket (644744) by L1kvID

Safebrowsing bypass

!19

https://bugs.chromium.org/p/chromium/issues/detail?id=644744

› Permissions vulnerabilities

› Extensions API

Extensions API vulnerabilities

!20

Web features are fun

Where?
Various vulns sources

Introduction into browser hacking

› JIT-compillers or WebAssembly: Attacking Client-Side JIT
Compilers, pwn2own safari exploitation

› DOM based approaches

› IPC: Chromium IPC essentails by NedWilliamson

› Good old parsers like PDfium

› New parsers: parts of autofill, cardata detectors, etc

Memory corruptions trends

!23

https://saelo.github.io/presentations/blackhat_us_18_attacking_client_side_jit_compilers.pdf
https://saelo.github.io/presentations/blackhat_us_18_attacking_client_side_jit_compilers.pdf
https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-t2-big-game-fuzzing-pwn2own-safari-final.pdf
https://googleprojectzero.blogspot.com/2017/09/the-great-dom-fuzz-off-of-2017.html
https://drive.google.com/file/d/0Bz3-6TIs-C7zY2RUX3V2RWdjSkF6Sy1sdy1HNklUOEdXcjdZ/view

› WebWorkers

› Different protocols and formats

› Url parsers

› Extensions

› Plugins

SOP / Security features

!24

› IDN Spoofing is accepted at Google VPR (see several reports
by Khalil Zhani in 2018)

› Firefox thinks about IDN protection but accept as security issue
(see report by L1kvID)

› IDN Spoofing Apple - TBD

› Location tricks are good especially in mobile versions

IDN and Url Spoofing

!25

https://bugzilla.mozilla.org/show_bug.cgi?id=1507582

Not all bugs are
accepted by different
VRPs

How?
Some approaches

Introduction into browser hacking

› Study other 1-day vulnerabilities and find typical popular vectors

› Check out the code and try to find out the nature of the fix

› Try to find similar patterns which lack the fix

› Find regressions for bugs, new fix can break an older one

General way

!28

Using source code (approximate way):

› Checkout sources (10 GB)

› git log --all —grep=<bug_id>

Using my online chromium_bug_search tool

Chromium 1-day fix search

!29

https://github.com/andreyka/chromium_bug_search

Commit analysis approach

!30

Commit 1

Commit with fix

Commit 2

file1 Diff

file2 Diff

file3 Test

Universal XSS PoC for CVE-2017-5124 by Bo0oM

PoC with https://web-platform-tests.org/writing-tests/testharness-
api.html for CVE-2018-6032 by L1kvID

Example of 1-day mining using just commits

!31

https://github.com/Bo0oM/CVE-2017-5124
https://github.com/andreyka/PoCs/tree/master/CVE-2018-6032
https://web-platform-tests.org/writing-tests/testharness-api.html
https://web-platform-tests.org/writing-tests/testharness-api.html

CVE-2018-6032 test fragment

!32

› If you want to fuzz parsers or components - use AFL + LibFuzzer

› For DOM-based fuzzing use grammar-based generation like
Domato or some concepts

› Use extensions to fuzz some WebApi

› Write custom fuzzers for custom API: APP Cache fuzzer by Ned
Williamson

What about Fuzzing?

!33

https://github.com/googleprojectzero/domato
https://cs.chromium.org/chromium/src/content/browser/appcache/appcache_fuzzer.cc
https://cs.chromium.org/chromium/src/content/browser/appcache/appcache_fuzzer.cc

› Scalable infrastructure for fuzzing: more info

› You can send own buzzer and own some money

Clusterfuzz

!34

https://github.com/google/oss-fuzz/blob/master/docs/clusterfuzz.md

Read code, check tests
and think about patterns

Summary

Introduction into browser hacking

› Learn threat model of your target, different browsers accept
different types of bug (for example IDN Spoofing is not accepted
in Firefox)

› Don’t be blind researcher: read the code of the fixes and check
their tests

› Study the most clear and simple types of 1-days: WebWorkers
SOP bypass or URL spoofing are very good for start

› Recheck 1-days at canaries or night builds and also at other
browsers

General advices: find the nutshell

!37

› If you want do memory corruption fuzzing for parsers find your
targets (how discussed before) and go to Cluster Fuzz

› If you want to fuzz DOM, you need some automatization around
several web browsers, (for example simple small Bfuzz or
similar)

› Code diffing can help to understand SOP restrictions
mechanism: Origins, SecureContext and so on

Technical features

!38

Andrey Kovalev
Yandex Security Team

@L1kvID
avkov@yandex-team.ru

Thank you! Questions?

