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Introduction into browser 
hacking



› Security Engineer at Yandex 

› Browser security enthusiast 

› Public speaker (every ZeroNights since 2015) 

› Author of @br0wsec channel (https://t.me/br0wsec)

Who am I

!3

https://t.me/br0wsec


Agenda

1 What?

2 Where?

3 How?

4 Summary



What?  
Browser threat model
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Browser vulns in 2018 (Chromium)

!6

16 %

84 %

Binary Web / extensions



Threre are lot of binary  
vulns, so lots of people  
and robots are in game



Typical attack scheme
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        Browser

evilsiteEvilsite

Data leakage

Privilege escalation
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2
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Browser security threat model (basic)
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Sandbox escape

Renderer RCE

Url Spoofing

SOP bypass

Security weakness

System privilege escalation

Data leakage



Аttack mechanic is  
almost independent of  
the type of vulnerability



Memory corruption example (CVE-2018-6060)
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WebKit CVE-2018-6128 (841105) by Tomasz Bojarski  

SOP bypass (Universal XSS)
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https://bugs.chromium.org/p/chromium/issues/detail?id=841105


Chromium RCE 746946 (fixed not because the report ) 

Binary vs Web (part 1)
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https://bugs.chromium.org/p/chromium/issues/detail?id=746946


Web case ITW unicode example 

Binary vs Web (part 2)
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› Universal XSS 

› WebWorker data leakage or full bypass 

› Url parsers 

› Object data storages: canvas, caches etc.

SOP bypass vulnerabilities
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› Site Isolation bypass (Chromium only): CORB-read cases or 2 
different origins in one process: more info 

› CSP bypass 

› SafeBrowsing bypass

Vulnerabilities in security features
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https://www.google.com/about/appsecurity/chrome-rewards/#special


CVE-2018-5175 (1432358) by Masato Kinugawa 

CSP bypass in Firefox via internal files
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https://bugzilla.mozilla.org/show_bug.cgi?id=1432358


WebKit CVE-2018-6114 (811691) by Lnyas Zhang 

WebKit CSP bypass example
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https://bugs.chromium.org/p/chromium/issues/detail?id=811691


Chromium bypass via WebSocket (644744) by L1kvID 

Safebrowsing bypass
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https://bugs.chromium.org/p/chromium/issues/detail?id=644744


› Permissions vulnerabilities  

› Extensions API

Extensions API vulnerabilities
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Web features are fun



Where? 
Various vulns sources
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› JIT-compillers or WebAssembly: Attacking Client-Side JIT 
Compilers, pwn2own safari exploitation 

› DOM based approaches  

› IPC:  Chromium IPC essentails by NedWilliamson 

› Good old parsers like PDfium 

› New parsers: parts of autofill, cardata detectors, etc 

Memory corruptions trends
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https://saelo.github.io/presentations/blackhat_us_18_attacking_client_side_jit_compilers.pdf
https://saelo.github.io/presentations/blackhat_us_18_attacking_client_side_jit_compilers.pdf
https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-t2-big-game-fuzzing-pwn2own-safari-final.pdf
https://googleprojectzero.blogspot.com/2017/09/the-great-dom-fuzz-off-of-2017.html
https://drive.google.com/file/d/0Bz3-6TIs-C7zY2RUX3V2RWdjSkF6Sy1sdy1HNklUOEdXcjdZ/view


› WebWorkers 

› Different protocols and formats  

› Url parsers 

› Extensions 

› Plugins

SOP / Security features
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› IDN Spoofing is accepted at Google VPR (see several reports 
by Khalil Zhani in 2018) 

› Firefox thinks about IDN protection but accept as security issue 
(see report by L1kvID)  

› IDN Spoofing Apple - TBD 

› Location tricks are good especially in mobile versions

IDN and Url Spoofing
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https://bugzilla.mozilla.org/show_bug.cgi?id=1507582


Not all bugs are  
accepted by different  
VRPs



How? 
Some approaches
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› Study other 1-day vulnerabilities and find typical popular vectors 

› Check out the code and try to find out the nature of the fix  

› Try to find similar patterns which lack the fix 

› Find regressions for bugs, new fix can break an older one

General way
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Using source code (approximate way): 

› Checkout sources (10 GB) 

› git log --all —grep=<bug_id> 

Using my online chromium_bug_search tool 

Chromium 1-day fix search
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https://github.com/andreyka/chromium_bug_search


Commit analysis approach
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Commit 1

Commit with fix

Commit 2

file1 Diff  

file2 Diff 

file3 Test



Universal XSS PoC for CVE-2017-5124 by Bo0oM 

PoC with https://web-platform-tests.org/writing-tests/testharness-
api.html for CVE-2018-6032 by L1kvID

Example of 1-day mining using just commits
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https://github.com/Bo0oM/CVE-2017-5124
https://github.com/andreyka/PoCs/tree/master/CVE-2018-6032
https://web-platform-tests.org/writing-tests/testharness-api.html
https://web-platform-tests.org/writing-tests/testharness-api.html


CVE-2018-6032 test fragment
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› If you want to fuzz parsers or components - use AFL + LibFuzzer 

› For DOM-based fuzzing use grammar-based generation like 
Domato or some concepts  

› Use extensions to fuzz some WebApi 

› Write custom fuzzers for custom API: APP Cache fuzzer by Ned 
Williamson 

What about Fuzzing?
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https://github.com/googleprojectzero/domato
https://cs.chromium.org/chromium/src/content/browser/appcache/appcache_fuzzer.cc
https://cs.chromium.org/chromium/src/content/browser/appcache/appcache_fuzzer.cc


› Scalable infrastructure for fuzzing: more info  

› You can send own buzzer and own some money

Clusterfuzz
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https://github.com/google/oss-fuzz/blob/master/docs/clusterfuzz.md


Read code, check tests 
and think about patterns



Summary
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› Learn threat model of your target, different browsers accept 
different types of bug (for example IDN Spoofing is not accepted 
in Firefox ) 

› Don’t be blind researcher: read the code of the fixes and check 
their tests 

› Study the most clear and simple types of 1-days: WebWorkers 
SOP bypass or URL spoofing are very good for start 

› Recheck 1-days at canaries or night builds and also at other 
browsers

General advices: find the nutshell
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› If you want do memory corruption fuzzing for parsers find your 
targets (how discussed before) and go to Cluster Fuzz  

› If you want to fuzz DOM, you need some automatization around 
several web browsers, (for example simple small Bfuzz or 
similar) 

› Code diffing can help to understand SOP restrictions 
mechanism: Origins, SecureContext and so on

Technical features 
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Andrey Kovalev 
Yandex Security Team

@L1kvID
avkov@yandex-team.ru

Thank you! Questions?


