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• Research and open source project initiated by UC 
Berkeley AMPLab

• Intel is closely collaborating with AMPLab and 
the community on open source development
- One of the earliest adopters of Spark* (since 2012)

 Many key contributions (Netty shuffle, FairScheduler, “yarn-
client” mode, …)

- Collaborating on other components in BDAS (e.g., 
Tachyon*, SparkR, …)

• Intel is partnering with many “web-scale” 
companies
- Free! No commercial solution or Consultations 

- Online-LDA, Word2Vec (Merged)

- SparseML (Separated package)

- E.g., Tencent, PayPal*, Alibaba*, Baidu*/iQiyi, JD.com, 
Youku*, etc.

Project Overview
BDAS: Berkeley Data Analytics Stack

(Ref: https://amplab.cs.berkeley.edu/software/)

Spark
Streaming

Spark Core

Sample
Clean

G-OLA

BlinkDB

SparkSQL

Velox*

SparkR GraphX Splash

MLBase

MLlib

MLPipelines

Mesos* Hadoop* Yarn

HDFS, S3, Ceph*

AMPLab Developed Spark Community In Development3rd Party

Tachyon*

Succinct

https://amplab.cs.berkeley.edu/software/
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Distributed ML on Spark

• Fraud Detection: End-to-End Solution for Top Payments Company 

• Large-scale, Sparse Logistic Regression for Click-through and Purchase 
Rate Predictions

• Deep (Convolutional) neural network

Infrastructure support for distributed ML

• Parameter server

Large-Scale Distributed ML on Apache Spark
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Goal:

 Given transaction details, classify if it’s fraud or normal

Evaluation Matrices

 Recall = predicted fraud / all real fraud transaction.

 Precision = predicted fraud correctly  / predicted fraud

Fraud Detection on Apache Spark

Fraud can mean:

Buying with stolen credit cards
Abusing promotional programs
Account takeover
Spamming other users
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Intel Customer Story
Problem statement and Pain points

- An old rule-based system that needs significant improvement

- Turn to Spark for data statistics and model training

- Need Neural Network for Fraud Detection on their Spark 1.4 cluster

Intel Solution

- Implement Neural Network on Spark and help integrate 

Business Result

- Neural network model performs better than other algorithm

- Machine Learning system overtakes rule-based system and exceeds expectation

- Improve precision by 15%, improve recall by 30%
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Solution Architecture Overview
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Application

Tool Stack Overview
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Distributed ML on Spark
• Fraud Detection: End-to-End Solution for Top Payments Company 

• Large-scale, Sparse Logistic Regression for Click-through and Purchase RatePredictions

• Deep (Convolutional) neural network

Infrastructure support for distributed ML
• Parameter server

Large-Scale Distributed ML on Apache Spark

10
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Logistic Regression on Spark* with Mini-Batch SGD

11

“Canonical” implementation
Repeat {

Driver broadcasts W to each worker

Workers compute gradient for the next batch of B records from the 
training set

Each task (running on workers) samples records from its data 
partition

Each task computes local gradient 

Aggregates gradient   (possibly through tree aggregation)

Driver updates weight

}

1

2

3 

4

…

Partition 1

Partition 2

Partition n

Training 
Set

Sample

Sample

Sample

Worker

Worker

Worker

Driver

2

2
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1

1

1

3

3

3

4

*Other names and brands may be claimed as the property of others.
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Network and Memory Bottlenecks
• Click-through and purchase rate predictions

 Adopted by top internet companies

- Model size: 100s of millions ~ billions unique features

 Weight (W) and gradient (G) are both double vector, one entry for each 
unique feature

- Training data: billions ~ trillions training samples

 Partitioned & cached across workers

12

…

Partition 1
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Set
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Broadcast W 
(>800MB) to each 
worker in each 
iteration

Each task 
computes G 
(>800MB) in each 
iteration

Each task sends G 
(>800MB) for 
aggregation in each 
iteration

Training samples 
cached in worker 
memory
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Click-through and purchase rate predictions

• Adopted by top internet companies

• Model size: 100s of millions ~ billions unique 
features

• Training data: billions ~ trillions training samples

Solution

• Cached using sparse format

• Using float16 (instead of double values)

• Extra Support for binary (0 or 1) values

• Only Calc & sync gradient with non-zero 
data

• Better Communication

Sparse Logistic Regression

…

Partition 1

Partition 2

Partition n

Training Set

Sample

Sample

Sample

Worker

Worker

Worker

Driver

2

2

2

1

1

1

3

3

3

4
Gradient :
sparse vector

Compacted network 
communicationData cached 

using advanced 
encoding

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks. 
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Distributed ML on Spark
• Fraud Detection: End-to-End Solution for Top Payments Company 

• Large-scale, Sparse Logistic Regression for Click-through and Purchase RatePredictions

• Deep (Convolutional) neural network

Infrastructure support for distributed ML
• Parameter server

Large-Scale Distributed ML on Apache Spark

14
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Multi-Layer Perceptron (MLP)

• Fully connected, feed-forward

Deep learning

• CNN, autoencoder, RBM, etc.

Distributed Neural Network

Repeat {
Driver broadcasts parameters (weights & biases) to each worker

Workers process the next batch of B records from the training set
Each task (running on workers) samples records from its data 

partition
Each task computes the forward and backpropagation pass

Driver aggregates gradient  

Driver updates parameters (weights & biases) 

}
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Training A Neural Network
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Built on top of standard Big Data platforms
• Easily utilize your existing clusters

Engaging industry users and community early
• Evolving with feedback from real-world use cases

• Community version compatible with Spark* MLP

Targeting Full function coverage:
• Auto Encoder, Sparse Encoder

• Convolution with max and avg pooling

• RBM and DBN

Benchmark with popular dataset / models
• GoogleNet, AlexNet on ImageNet

Easy MKL† integration for Intel® Architecture 
acceleration

Better communication: All-to-one, All-reduce 
on spark(CaffeOnSpark), ParameterServer

†Free community license (https://software.intel.com/
en-us/articles/free_mkl)

Deep (Convolutional) Neural Network

Intuitive API with layer-based interface

val trainData = loadData()
val model = new Sequential(…)
model += new Convolution(…)
model += new maxPooling(…)
…
val criterion = new ClassNLLCriterion()
val optimizer = new ParallelOptimizer (model, new SGD)
optimizer.setCrossValidation(evaluator.accuracy)
optimizer.setPath("./model_save.obj")
optimizer.optimize(trainData)

https://software.intel.com/en-us/articles/free_mkl
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Flaw detection in steel product  

10/1 1

Convolutionn（5，5）
Maxpooling（2，2，2，2）

Convolution（5，5）

Maxpooling（2，2，2，2）

300

100 5

FC
FC
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Pipeline

10/1 1

Proposal

Defect Proposal Algorithm 1

Classification

Model

Defect

Normal

Normal

Pre-
process

Defect Proposal Algorithm 2
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Distributed ML on Spark
• Fraud Detection: End-to-End Solution for Top Payments Company 

• Large-scale, Sparse Logistic Regression for Click-through and Purchase Rate 
Predictions

• Deep (Convolutional) neural network

Infrastructure support for distributed ML
• Parameter server

Large-Scale Distributed ML on Apache Spark
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Communication Model

20
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“Parameter Server” support?

- Very large scale model/graph (billions of unique features)

- Leveraging further data sparsity in each worker (only a 
subset of weight vector needed)

- Possible weakly-synchronized model （BSP vs. SSP vs.ASP, 
etc.）

- Distributed parameter aggregation & update in Parallel

- Easily integration with Apache Spark *.

- Fault Torrance 

- Co-partitioning

21

*Other names and brands may be claimed as the property of others.

Source: Dean J, Corrado G, Monga R, et al. Large scale distributed deep networks[C]//Advances in neural information processing systems. 2012: 1223-1231.
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Reference & Resources
Intel packages

- https://github.com/intel-analytics/SparseML

- https://github.com/intel-analytics/FraudDetection

Intel Analytics:

- https://github.com/intel-analytics

Contact

- zhichao.li@intel.com

https://github.com/intel-analytics/FraudDetection
https://github.com/intel-analytics
mailto:yuhao.yang@intel.com
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Legal Notices and Disclaimers
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at 
intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. 

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual 
performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about 
performance and benchmark results, visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may 
affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without 
notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

Statements in this document that refer to Intel’s plans and expectations for the quarter, the year, and the future, are forward-looking statements that 
involve a number of risks and uncertainties. A detailed discussion of the factors that could affect Intel’s results and plans is included in Intel’s SEC filings, 
including the annual report on Form 10-K.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current 
characterized errata are available on request.  

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and 
confirm whether referenced data are accurate. 

Intel, and the Intel logo are trademarks of Intel Corporation in the United States and other countries. 

*Other names and brands may be claimed as the property of others. 

© 2016 Intel Corporation. 

http://www.intel.com/performance
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Optimization  Notice
Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors 
for optimizations that are not unique to Intel microprocessors. These optimizations include 
SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the 
availability, functionality, or effectiveness of any optimization on microprocessors not 
manufactured by Intel. 

Microprocessor-dependent optimizations in this product are intended for use with Intel 
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for 
Intel microprocessors. Please refer to the applicable product User and Reference Guides for 
more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804 
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Risk Factors
The above statements and any others in this document that refer to future plans and expectations are forward-looking statements that involve a number 
of risks and uncertainties. Words such as "anticipates," "expects," "intends," "goals," "plans," "believes," "seeks," "estimates," "continues," "may," "will," 
"should," and variations of such words and similar expressions are intended to identify such forward-looking statements. Statements that refer to or are 
based on projections, uncertain events or assumptions also identify forward-looking statements. Many factors could affect Intel's actual results, and 
variances from Intel's current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-
looking statements. Intel presently considers the following to be important factors that could cause actual results to differ materially from the company's 
expectations. Demand for Intel's products is highly variable and could differ from expectations due to factors including changes in business and economic 
conditions; consumer confidence or income levels; the introduction, availability and market acceptance of Intel's products, products used together with 
Intel products and competitors' products; competitive and pricing pressures, including actions taken by competitors; supply constraints and other 
disruptions affecting customers; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. 
Intel's gross margin percentage could vary significantly from expectations based on capacity utilization; variations in inventory valuation, including 
variations related to the timing of qualifying products for sale; changes in revenue levels; segment product mix; the timing and execution of the 
manufacturing ramp and associated costs; excess or obsolete inventory; changes in unit costs; defects or disruptions in the supply of materials or 
resources; and product manufacturing quality/yields. Variations in gross margin may also be caused by the timing of Intel product introductions and 
related expenses, including marketing expenses, and Intel's ability to respond quickly to technological developments and to introduce new products or 
incorporate new features into existing products, which may result in restructuring and asset impairment charges. Intel's results could be affected by 
adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate, including military 
conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Results may also 
be affected by the formal or informal imposition by countries of new or revised export and/or import and doing-business regulations, which could be 
changed without prior notice. Intel operates in highly competitive industries and its operations have high costs that are either fixed or difficult to reduce in 
the short term. The amount, timing and execution of Intel's stock repurchase program could be affected by changes in Intel's priorities for the use of cash, 
such as operational spending, capital spending, acquisitions, and as a result of changes to Intel's cash flows or changes in tax laws. Product defects or 
errata (deviations from published specifications) may adversely impact our expenses, revenues and reputation. Intel's results could be affected by litigation 
or regulatory matters involving intellectual property, stockholder, consumer, antitrust, disclosure and other issues. An unfavorable ruling could include 
monetary damages or an injunction prohibiting Intel from manufacturing or selling one or more products, precluding particular business practices, 
impacting Intel's ability to design its products, or requiring other remedies such as compulsory licensing of intellectual property. Intel's results may be 
affected by the timing of closing of acquisitions, divestitures and other significant transactions. We completed our acquisition of Altera on December 28, 
2015 and risks associated with that acquisition are described in the “Forward Looking Statements” paragraph of Intel’s press release dated June 1, 
2015, which risk factors are incorporated by reference herein. A detailed discussion of these and other factors that could affect Intel's results is included in 
Intel's SEC filings, including the company's most recent reports on Form 10-Q, Form 10-K and earnings release.

Rev. 1/14/16



26


