
QQ群：①群:1002342950、②群:826980895

HI，小伙伴你好~

我们在维护者全网最大的计算机相关编程书籍分享仓库，目前已有超过 1000本 的计算机经典书籍了。

其中涉及C/C++、Java、Python、Go语言等各种编程语言，还有数据结构与算法、操作系统、后端架
构、计算机系统知识、数据库、计算机网络、设计模式、前端、汇编以及校招社招各种面经等~

只有你想不到，没有我们没分享到的计算机学习书籍，如果真的有我们没能分享到的书籍或者是你所需
要的，欢迎添加下方联系方式来告诉我们，期待你的到来。

在此承诺本仓库永不收费，永远免费分享给有需要的人，希望自己的幸苦结晶能够帮助到曾经那些像我
一样的小白、新手、在校生们，为那些曾经像我一样迷茫的人指明一条路。

告诉他们，你是可以的！

本仓库无偿分享各种计算机书籍、各种专业PDF资料以及个人笔记资料等，所有权归仓库作者阿秀（公
众号【拓跋阿秀】）所有，如有疑问提请issue或者联系本人forthespada@foxmail.com，感谢~

衷心希望我以前踩过的坑，你们不要再踩，我走过的路，你们可以照着走下来。

因为从双非二本爬到字节跳动这种大厂来，太TMD难了。

https://github.com/forthespada/CS-Books
https://github.com/forthespada/CS-Books
https://github.com/forthespada/CS-Books
http://mp.weixin.qq.com/s?__biz=Mzg2MDU0ODM3MA==&mid=100000332&idx=1&sn=9dd24307b7e963174ee8429827542318&chksm=4e25fe3179527727ac563214c69fe6ac354ab4383c652d9b3e9e03d70dc48df4ad929e076ce3#rd
mailto:forthespada@foxmail.com

Core Java® Volume II—Advanced Features,

Tenth Edition

by Cay S. Horstmann

Publisher: Prentice Hall

Release Date: December 2016

ISBN: 9780134177878

Topic: Java

Book Description

This is the Rough Cut version of the printed book.

Fully updated to reflect Java SE 8 language changes, Core Java®, Volume II–Advanced
Features, Tenth Edition, is the definitive guide to Java’s most powerful features for

enterprise and desktop application development.

Designed for serious programmers, this reliable, unbiased, no-nonsense tutorial

illuminates advanced Java language and library features with thoroughly tested code

examples. As in previous editions, all code is easy to understand and displays modern

best-practice solutions to the real world challenges faced by professional developers.

Volume II quickly brings you up-to-speed on key Java SE 8 features and APIs. All code examples

are updated to reflect these enhancements. Complete descriptions of new language and

platform features are highlighted and integrated with insightful explanations of advanced

Java programming techniques. You’ll learn all you need to build robust production software

with

 Streams, files, and regular expressions

 XML

 Networking

 Database programming facilities

 JNDI/LDAP directory integration

 Internationalization

 Advanced Swing techniques

https://www.safaribooksonline.com/search/?query=author%3A%22Cay%20S.%20Horstmann%22&sort=relevance&highlight=true
https://www.safaribooksonline.com/library/publisher/prentice-hall/
https://www.safaribooksonline.com/topics/java

 JavaBeans components

 Web services

 Advanced platform security features

 Annotations

 Distributed objects

 Native methods, and more

Contents

Preface

About This Book

Conventions

Chapter 1: The Java SE 8 Stream Library

1.1 From Iterating to Stream Operations

1.2 Stream Creation

1.3 The filter, map, and flatMap Methods

1.4 Extracting Substreams and Combining Streams

1.5 Other Stream Transformations

1.6 Simple Reductions

1.7 The Optional Type

1.8 Collecting Results

1.9 Collecting into Maps

1.10 Grouping and Partitioning

1.11 Downstream Collectors

1.12 Reduction Operations

1.13 Primitive Type Streams

1.14 Parallel Streams

Chapter 2: Input and Output

2.1 Input/Output Streams

2.2 Text Input and Output

2.3 Reading and Writing Binary Data

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/preface.html#preface
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/preface.html#preflev1-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/preface.html#preflev1-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-6
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-7
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-8
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-9
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-10
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-11
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-12
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-13
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-14
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02lev2-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02lev2-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02lev2-3

2.4 Object Input/Output Streams and Serialization

2.5 Working with Files

2.6 Memory-Mapped Files

2.7 Regular Expressions

Chapter 3: XML

3.1 Introducing XML

3.2 Parsing an XML Document

3.3 Validating XML Documents

3.4 Locating Information with XPath

3.5 Using Namespaces

3.6 Streaming Parsers

3.7 Generating XML Documents

3.8 XSL Transformations

Chapter 4: Networking

4.1 Connecting to a Server

4.2 Implementing Servers

4.3 Interruptible Sockets

4.4 Getting Web Data

4.5 Sending E-Mail

Chapter 5: Database Programming

5.1 The Design of JDBC

5.2 The Structured Query Language

5.3 JDBC Configuration

5.4 Executing SQL Statements

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02lev2-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02lev2-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02lev2-6
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02lev2-7
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03lev3-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03lev3-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03lev3-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03lev3-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03lev3-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03lev3-6
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03lev3-7
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03lev3-8
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04lev4-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04lev4-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04lev4-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04lev4-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04lev4-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-4

5.5 Query Execution

5.6 Scrollable and Updatable Result Sets

5.7 Row Sets

5.8 Metadata

5.9 Transactions

5.10 Connection Management in Web and Enterprise Applications

Chapter 6: The Date and Time API

6.1 The Time Line

6.2 Local Dates

6.3 Date Adjusters

6.4 Local Time

6.5 Zoned Time

6.6 Formatting and Parsing

6.7 Interoperating with Legacy Code

Chapter 7: Internationalization

7.1 Locales

7.2 Number Formats

7.4 Date and Time

7.5 Collation and Normalization

7.6 Message Formatting

7.7 Text Input and Output

7.8 Resource Bundles

7.9 A Complete Example

Chapter 8: Scripting, Compiling, and Annotation Processing

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-6
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-7
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-8
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-9
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-10
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06lev6-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06lev6-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06lev6-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06lev6-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06lev6-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06lev6-6
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06lev6-7
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07lev7-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07lev7-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07lev7-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07lev7-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07lev7-6
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07lev7-7
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07lev7-8
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07lev7-9
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08

8.1 Scripting for the Java Platform

8.2 The Compiler API

8.3 Using Annotations

8.4 Annotation Syntax

8.5 Standard Annotations

8.6 Source-Level Annotation Processing

8.7 Bytecode Engineering

Chapter 9: Security

9.1 Class Loaders

9.2 Security Managers and Permissions

9.3 User Authentication

9.4 Digital Signatures

9.5 Encryption

Chapter 10: Advanced Swing

10.1 Lists

10.2 Tables

10.3 Trees

10.4 Text Components

10.5 Progress Indicators

10.6 Component Organizers and Decorators

Chapter 11: Advanced AWT

11.1 The Rendering Pipeline

11.2 Shapes

11.3 Areas

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08lev8-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08lev8-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08lev8-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08lev8-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08lev8-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08lev8-6
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08lev8-7
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09lev9-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09lev9-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09lev9-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09lev9-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09lev9-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10lev10-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10lev10-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10lev10-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10lev10-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10lev10-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10lev10-6
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-3

11.4 Strokes

11.5 Paint

11.6 Coordinate Transformations

11.7 Clipping

11.8 Transparency and Composition

11.9 Rendering Hints

11.10 Readers and Writers for Images

11.11 Image Manipulation

11.12 Printing

11.13 The Clipboard

11.14 Drag and Drop

11.15 Platform Integration

Chapter 12: Native Methods

12.1 Calling a C Function from a Java Program

12.2 Numeric Parameters and Return Values

12.3 String Parameters

12.4 Accessing Fields

12.5 Encoding Signatures

12.6 Calling Java Methods

12.7 Accessing Array Elements

12.8 Handling Errors

12.9 Using the Invocation API

12.10 A Complete Example: Accessing the Windows Registry

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-6
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-7
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-8
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-9
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-10
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-11
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-12
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-13
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-14
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-15
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12lev12-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12lev12-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12lev12-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12lev12-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12lev12-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12lev12-6
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12lev12-7
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12lev12-8
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12lev12-9
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12lev12-10

Preface

To the Reader:

The book you have in your hands is the second volume of the tenth edition of Core Java®,
fully updated for Java SE 8. The first volume covers the essential features of the language;

this volume deals with the advanced topics that a programmer needs to know for professional

software development. Thus, as with the first volume and the previous editions of this book,

we are still targeting programmers who want to put Java technology to work on real projects.

As is the case with any book, errors and inaccuracies are inevitable. Should you find any

in this book, we would very much like to hear about them. Of course, we would prefer to

hear about them only once. For this reason, we have put up a web site at

http://horstmann.com/corejava with a FAQ, bug fixes, and workarounds. Strategically placed

at the end of the bug report web page (to encourage you to read the previous reports) is

a form that you can use to report bugs or problems and to send suggestions for improvements

to future editions.

About This Book

The chapters in this book are, for the most part, independent of each other. You should

be able to delve into whatever topic interests you the most and read the chapters in any

order.

In Chapter 1, you will learn all about the Java 8 stream library that brings a modern flavor

to processing data, by specifying what you want without describing in detail how the result

should be obtained. This allows the stream library to focus on an optimal evaluation strategy,

which is particularly advantageous for optimizing concurrent computations.

The topic of Chapter 2 is input and output handling (I/O). In Java, all input and output

is handled through input/output streams. These streams (not to be confused with the ones

in Chapter 1) let you deal, in a uniform manner, with communications among various sources

of data, such as files, network connections, or memory blocks. We include detailed coverage

of the reader and writer classes that make it easy to deal with Unicode. We show you what

goes on under the hood when you use the object serialization mechanism, which makes saving

and loading objects easy and convenient. We then move on to regular expressions and working

with files and paths.

Chapter 3 covers XML. We show you how to parse XML files, how to generate XML, and how to

use XSL transformations. As a useful example, we show you how to specify the layout of a

Swing form in XML. We also discuss the XPath API, which makes “finding needles in XML

haystacks” much easier.

http://horstmann.com/corejava
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html

Chapter 4 covers the networking API. Java makes it phenomenally easy to do complex network

programming. We show you how to make network connections to servers, how to implement your

own servers, and how to make HTTP connections.

Chapter 5 covers database programming. The main focus is on JDBC, the Java database

connectivity API that lets Java programs connect to relational databases. We show you how

to write useful programs to handle realistic database chores, using a core subset of the

JDBC API. (A complete treatment of the JDBC API would require a book almost as long as this

one.) We finish the chapter with a brief introduction into hierarchical databases and

discuss JNDI (the Java Naming and Directory Interface) and LDAP (the Lightweight Directory

Access Protocol).

Java had two prior attempts at libraries for handling date and time. The third time is the

charm in Java 8. In Chapter 6, you will learn how to deal with the complexities of calendars

and time zones, using the new date and time library.

Chapter 7 discusses a feature that we believe can only grow in importance:

internationalization. The Java programming language is one of the few languages designed

from the start to handle Unicode, but the internationalization support in the Java platform

goes much further. As a result, you can internationalize Java applications so that they

not only cross platforms but cross country boundaries as well. For example, we show you

how to write a retirement calculator that uses either English, German, or Chinese languages.

Chapter 8 discusses three techniques for processing code. The scripting and compiler APIs

allow your program to call code in scripting languages such as JavaScript or Groovy, and

to compile Java code. Annotations allow you to add arbitrary information (sometimes called

metadata) to a Java program. We show you how annotation processors can harvest these

annotations at the source or class file level, and how annotations can be used to influence

the behavior of classes at runtime. Annotations are only useful with tools, and we hope

that our discussion will help you select useful annotation processing tools for your needs.

Chapter 9 takes up the Java security model. The Java platform was designed from the ground

up to be secure, and this chapter takes you under the hood to see how this design is

implemented. We show you how to write your own class loaders and security managers for

special-purpose applications. Then, we take up the security API that allows for such

important features as message and code signing, authorization and authentication, and

encryption. We conclude with examples that use the AES and RSA encryption algorithms.

Chapter 10 contains all the Swing material that didn’t make it into Volume I, especially

the important but complex tree and table components. We show the basic uses of editor panes,

the Java implementation of a “multiple document” interface, progress indicators used in

multithreaded programs, and “desktop integration features” such as splash screens and

support for the system tray. Again, we focus on the most useful constructs that you are

likely to encounter in practical programming because an encyclopedic coverage of the entire

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html

Swing library would fill several volumes and would only be of interest to dedicated

taxonomists.

Chapter 11 covers the Java 2D API, which you can use to create realistic drawings and special

effects. The chapter also covers some advanced features of the AWT (Abstract Windowing

Toolkit) that seemed too specialized for coverage in Volume I but should, nonetheless, be

part of every programmer's toolkit. These features include printing and the APIs for

cut-and-paste and drag-and-drop.

Chapter 12 takes up native methods, which let you call methods written for a specific machine

such as the Microsoft Windows API. Obviously, this feature is controversial: Use native

methods and the cross-platform nature of the Java platform vanishes. Nonetheless, every

serious programmer writing Java applications for specific platforms needs to know these

techniques. At times, you need to turn to the operating system’s API for your target

platform when you interact with a device or service that is not supported by Java. We

illustrate this by showing you how to access the registry API in Windows from a Java program.

As always, all chapters have been completely revised for the latest version of Java. Outdated

material has been removed, and the new APIs of Java SE 8 are covered in detail.

Conventions

As is common in many computer books, we use monospace type to represent computer code.

NOTE:

Notes are tagged with “note” icons that look like this.

TIP:

Tips are tagged with “tip” icons that look like this.

CAUTION:

When there is danger ahead, we warn you with a “caution” icon.

C++ NOTE:

There are a number of C++ notes that explain the difference between the Java programming

language and C++. You can skip them if you aren’t interested in C++.

Java comes with a large programming library, or Application Programming Interface (API).

When using an API call for the first time, we add a short summary description at the end

of the section. These descriptions are a bit more informal but, we hope, also a little more

informative than those in the official online API documentation. The names of interfaces

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html

are in italics, just like in the official documentation. The number after a class, interface,

or method name is the JDK version in which the feature was introduced.

Application Programming Interface 1.2

Programs whose source code is included in the companion code for this book are listed as

examples; for instance,

Listing 1.1 ScriptTest.java

You can download the companion code from http://horstmann.com/corejava.

http://horstmann.com/corejava

Chapter 1. The Java SE 8 Stream Library

In this chapter

• 1.1 From Iterating to Stream Operations

• 1-2 Stream Creation

• 1-3 The filter, map, and flatMap Methods

• 1-4 Extracting Substreams and Combining Streams

• 1-5 Other Stream Transformations

• 1-6 Simple Reductions

• 1-7 The Optional Type

• 1-8 Collecting Results

• 1-9 Collecting into Maps

• 1-10 Grouping and Partitioning

• 1-11 Downstream Collectors

• 1-12 Reduction Operations

• 1-13 Primitive Type Streams

• 1-14 Parallel Streams

Streams provide a view of data that lets you specify computations at a higher conceptual

level than with collections. With a stream, you specify what you want to have done, not

how to do it. You leave the scheduling of operations to the implementation. For example,

suppose you want to compute the average of a certain property. You specify the source of

data and the property, and the stream library can then optimize the computation, for example

by using multiple threads for computing sums and counts and combining the results.

In this chapter, you will learn how to use the Java streams library, which was introduced

in Java SE 8, to process collections in a “what, not how” style.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-6
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-7
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-8
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-9
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-10
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-11
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-12
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-13
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-14

1.1. From Iterating to Stream Operations

When you process a collection, you usually iterate over its elements and do some work with

each of them. For example, suppose we want to count all long words in a book. First, let’s

put them into a list:

String contents = new String(Files.readAllBytes(

 Paths.get("alice.txt")), StandardCharsets.UTF_8); // Read file into string
List<String> words = Arrays.asList(contents.split("[\\P{L}]+"));

 // Split into words; nonletters are delimiters

Now we are ready to iterate:

int count = 0;

for (String w : words)

{

 if (w.length() > 12) count++;

}

With streams, the same operation looks like this:

long count = words.stream()

 .filter(w -> w.length() > 12)

 .count();

Now you don’t have to scan the loop for evidence of filtering and counting. The method

names tell you right away what the code intends to do. Moreover, where the loop prescribes

the order of operations in complete detail, a stream is able to schedule the operations

any way it wants, as long as the result is correct.

Simply changing stream into parallelStream allows the stream library to do the filtering

and counting in parallel.

long count = words.parallelStream()

 .filter(w -> w.length() > 12)

 .count();

Streams follow the “what, not how” principle. In our stream example, we describe what

needs to be done: get the long words and count them. We don’t specify in which order, or

in which thread, this should happen. In contrast, the loop at the beginning of this section

specifies exactly how the computation should work, and thereby forgoes any chances of

optimization.

A stream seems superficially similar to a collection, allowing you to transform and retrieve

data. But there are significant differences:

1. A stream does not store its elements. They may be stored in an underlying collection

or generated on demand.

2. Stream operations don’t mutate their source. For example, the filter method does not

remove elements from a new stream, but it yields a new stream in which they are not present.

3. Stream operations are lazy when possible. This means they are not executed until their
result is needed. For example, if you only ask for the first five long words instead of

all, the filter method will stop filtering after the fifth match. As a consequence, you

can even have infinite streams!

Let us have another look at the example. The stream and parallelStream methods yield a stream
for the words list. The filter method returns another stream that contains only the words

of length greater than twelve. The count method reduces that stream to a result.

This workflow is typical when you work with streams. You set up a pipeline of operations

in three stages:

1. Create a stream.

2. Specify intermediate operations for transforming the initial stream into others,
possibly in multiple steps.

3. Apply a terminal operation to produce a result. This operation forces the execution of
the lazy operations that precede it. Afterwards, the stream can no longer be used.

In the example in Listing 1.1, the stream is created with the stream or parallelStream method.

The filter method transforms it, and count is the terminal operation.

In the next section, you will see how to create a stream. The subsequent three sections

deal with stream transformations. They are followed by five sections on terminal operations.

Listing 1.1 streams/CountLongWords.java

 1 package streams;

 2

 3 import java.io.IOException;

 4 import java.nio.charset.StandardCharsets;

 5 import java.nio.file.Files;

 6 import java.nio.file.Paths;

 7 import java.util.Arrays;

 8 import java.util.List;

 9

10 public class CountLongWords

11 {

12 public static void main(String[] args) throws IOException

13 {

14 String contents = new String(Files.readAllBytes(

15 Paths.get("../gutenberg/alice30.txt")),

StandardCharsets.UTF_8);

16 List<String> words = Arrays.asList(contents.split("\\PL+"));

17

18 long count = 0;

19 for (String w : words)

20 {

21 if (w.length() > 12) count++;

22 }

23 System.out.println(count);

24

25 count = words.stream().filter(w -> w.length() > 12).count();

26 System.out.println(count);

27

28 count = words.parallelStream().filter(w -> w.length() > 12).count();

29 System.out.println(count);

30 }

31 }

java.util.stream.Stream<T> 8

• Stream<T> filter(Predicate<T> p)

Yields a stream containing all elements of this stream fulfilling p.

• long count()

Yields the number of elements of this stream. This is a terminal operation.

java.util.Collection<E> 1.2

• default Stream<E> stream()

• default Stream<E> parallelStream()

Yields a sequential or parallel stream of the elements in this collection.

1.2. Stream Creation

You have already seen that you can turn any collection into a stream with the stream method

of the Collection interface. If you have an array, use the static Stream.of method instead.

Stream<String> words = Stream.of(contents.split("[\\P{L}]+"));

 // split returns a String[] array

The of method has a varargs parameter, so you can construct a stream from any number of

arguments:

Stream<String> song = Stream.of("gently", "down", "the", "stream");

Use Arrays.stream(array, from, to) to make a stream from a part of an array.

To make a stream with no elements, use the static Stream.empty method:

Stream<String> silence = Stream.empty();

 // Generic type <String> is inferred; same as Stream.<String>empty()

The Stream interface has two static methods for making infinite streams. The generate method

takes a function with no arguments (or, technically, an object of the Supplier<T>

interface—see [Missing XREF!]). Whenever a stream value is needed, that function is called

to produce a value. You can get a stream of constant values as

Stream<String> echos = Stream.generate(() -> "Echo");

or a stream of random numbers as

Stream<Double> randoms = Stream.generate(Math::random);

To produce infinite sequences, such as 0 1 2 3 ..., use the iterate method instead. It takes

a “seed” value and a function (technically, a UnaryOperator<T>) and repeatedly applies

the function to the previous result. For example,

Stream<BigInteger> integers

 = Stream.iterate(BigInteger.ZERO, n -> n.add(BigInteger.ONE));

The first element in the sequence is the seed BigInteger.ZERO. The second element is f(seed),

or 1 (as a big integer). The next element is f(f(seed)), or 2, and so on.

Note

A number of methods in the Java API yield streams. For example, the Pattern class has a

method splitAsStream that splits a CharSequence by a regular expression. You can use the

following statement to split a string into words:

Stream<String> words = Pattern.compile("[\\P{L}]+").splitAsStream(contents);

The static Files.lines method returns a Stream of all lines in a file:

try (Stream<String> lines = Files.lines(path))

{

 Process lines
}

The example program in Listing 1.2 shows the various ways of creating a stream.

Listing 1.2 streams/CreatingStreams.java

 1 package streams;

 2

 3 import java.io.IOException;

 4 import java.math.BigInteger;

 5 import java.nio.charset.StandardCharsets;

 6 import java.nio.file.Files;

 7 import java.nio.file.Path;

 8 import java.nio.file.Paths;

 9 import java.util.List;

10 import java.util.regex.Pattern;

11 import java.util.stream.Collectors;

12 import java.util.stream.Stream;

13

14 public class CreatingStreams

15 {

16 public static <T> void show(String title, Stream<T> stream)

17 {

18 final int SIZE = 10;

19 List<T> firstElements = stream

20 .limit(SIZE + 1)

21 .collect(Collectors.toList());

22 System.out.print(title + ": ");

23 if (firstElements.size() <= SIZE)

24 System.out.println(firstElements);

25 else

26 {

27 firstElements.remove(SIZE);

28 String out = firstElements.toString();

29 System.out.println(out.substring(0, out.length() - 1) +

", ...]");

30 }

31 }

32

33 public static void main(String[] args) throws IOException

34 {

35 Path path = Paths.get("../gutenberg/alice30.txt");

36 String contents = new String(Files.readAllBytes(path),

37 StandardCharsets.UTF_8);

38

39 Stream<String> words = Stream.of(contents.split("\\PL+"));

40 show("words", words);

41 Stream<String> song = Stream.of("gently", "down", "the", "stream");

42 show("song", song);

43 Stream<String> silence = Stream.empty();

44 show("silence", silence);

45

46 Stream<String> echos = Stream.generate(() -> "Echo");

47 show("echos", echos);

48

49 Stream<Double> randoms = Stream.generate(Math::random);

50 show("randoms", randoms);

51

52 Stream<BigInteger> integers = Stream.iterate(BigInteger.ONE,

53 n -> n.add(BigInteger.ONE));

54 show("integers", integers);

55

56 Stream<String> wordsAnotherWay =

Pattern.compile("\\PL+").splitAsStream(

57 contents);

58 show("wordsAnotherWay", wordsAnotherWay);

59

60 try (Stream<String> lines = Files.lines(path,

StandardCharsets.UTF_8))

61 {

62 show("lines", lines);

63 }

64 }

65 }

java.util.stream.Stream 8

• static <T> Stream<T> of(T... values)

Yields a stream whose elements are the given values.

• static <T> Stream<T> empty()

Yields a stream with no elements.

• static <T> Stream<T> generate(Supplier<T> s)

Yields an infinite stream whose elements are constructed by repeatedly invoking the function

s

• static <T> Stream<T> iterate(T seed, UnaryOperator<T> f)

Yields an infinite stream whose elements are seed, f invoked on seed, f invoked on the

preceding element, and so on.

java.util.Arrays 1.2

• static <T> Stream<T> stream(T[] array, int startInclusive, int endExclusive) 8

Yields a stream whose elements are the specified range of the array.

java.util.regex.Pattern 1.4

• Stream<String> splitAsStream(CharSequence input) 8

Yields a stream whose elements are the parts of the input that are delimited by this pattern.

java.nio.file.Files 7

• static Stream<String> lines(Path path) 8

• static Stream<String> lines(Path path, Charset cs) 8

Yields a stream whose elements are the lines of the specified file, with the UTF-8 charset

or the given charset.

1.3. The filter, map, and flatMap Methods

A stream transformation produces a stream whose elements are derived from those of another

stream. You have already seen the filter transformation that yields a new stream with those

elements that match a certain condition. Here, we transform a stream of strings into another

stream containing only long words:

List<String> words = ...;

Stream<String> longWords = words.stream().filter(w -> w.length() > 12);

The argument of filter is a Predicate<T>—that is, a function from T to boolean.

Often, you want to transform the values in a stream in some way. Use the map method and

pass the function that carries out the transformation. For example, you can transform all

words to lowercase like this:

Stream<String> lowercaseWords = words.stream().map(String::toLowerCase);

Here, we used map with a method reference. Often, you will use a lambda expression instead:

Stream<String> firstLetters = words.stream().map(s -> s.substring(0, 1));

The resulting stream contains the first letter of each word.

When you use map, a function is applied to each element, and the result is a new stream

with the results. Now, suppose you have a function that returns not just one value but a

stream of values, such as this one:

public static Stream<String> letters(String s)

{

 List<String> result = new ArrayList<>();

 for (int i = 0; i < s.length(); i++)

 result.add(s.substring(i, i + 1));

 return result.stream();

}

For example, letters("boat") is the stream ["b", "o", "a", "t"].

Note

With the IntStream.range method in Section 1.13, “Primitive Type Streams,” on p. 35, you

can implement this method much more elegantly.

Suppose you map the letters method on a stream of strings:

Stream<Stream<String>> result = words.stream().map(w -> letters(w));

You will get a stream of streams, like [... ["y", "o", "u", "r"], ["b", "o", "a", "t"], ...]

To flatten it out to a stream of letters [... "y", "o", "u", "r", "b", "o", "a", "t", ...],

use the flatMap method instead of map:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-3

Stream<String> flatResult = words.stream().flatMap(w -> letters(w))

 // Calls letters on each word and flattens the results

Note

You will find a flatMap method in classes other than streams. It is a general concept in

computer science. Suppose you have a generic type G (such as Stream) and functions f from

some type T to G<U> and g from U to G<V>. Then you can compose them—that is, first apply

f and then g, by using flatMap. This is a key idea in the theory of monads. But don’t

worry—you can use flatMap without knowing anything about monads.

java.util.stream.Stream 8

• Stream<T> filter(Predicate<? super T> predicate)

Yields a stream containing the elements of this stream that fulfill the predicate.

• <R> Stream<R> map(Function<? super T,? extends R> mapper)

Yields a stream containing the results of applying mapper to the elements of this stream.

• <R> Stream<R> flatMap(Function<? super T,? extends Stream<? extends R>> mapper)

Yields a stream that is obtained by concatening the results of applying mapper to the

elements of this stream. (Note that each result is a stream.)

1.4. Extracting Substreams and Combining Streams

The call stream.limit(n) returns a new stream that ends after n elements (or when the
original stream ends if it is shorter). This method is particularly useful for cutting

infinite streams down to size. For example,

Stream<Double> randoms = Stream.generate(Math::random).limit(100);

yields a stream with 100 random numbers.

The call stream.skip(n) does the exact opposite. It discards the first n elements. This
is handy in our book reading example where, due to the way the split method works, the first

element is an unwanted empty string. We can make it go away by calling skip:

Stream<String> words = Stream.of(contents.split("[\\P{L}]+")).skip(1);

You can concatenate two streams with the static concat method of the Stream class:

Stream<String> combined = Stream.concat(

 letters("Hello"), letters("World"));

 // Yields the stream ["H", "e", "l", "l", "o", "W", "o", "r", "l", "d"]

Of course, the first stream should not be infinite—otherwise the second wouldn’t ever

get a chance.

java.util.stream.Stream 8

• Stream<T> limit(long maxSize)

Yields a stream with up to maxSize of the initial elements from this stream.

• Stream<T> skip(long n)

Yields a stream whose elements are all but the initial n elements of this stream.

• static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b)

Yields a stream whose elements are the elements of a followed by the elements of b.

1.5. Other Stream Transformations

The distinct method returns a stream that yields elements from the original stream, in the

same order, except that duplicates are suppressed. The stream must obviously remember the

elements that it has already seen.

Stream<String> uniqueWords

 = Stream.of("merrily", "merrily", "merrily", "gently").distinct();

 // Only one "merrily" is retained

For sorting a stream, there are several variations of the sorted method. One works for

streams of Comparable elements, and another accepts a Comparator. Here, we sort strings

so that the longest ones come first:

Stream<String> longestFirst =

 words.stream().sorted(Comparator.comparing(String::length).reversed());

As with all stream transformations, the sorted method yields a new stream whose elements

are the elements of the original stream in sorted order.

Of course, you can sort a collection without using streams. The sorted method is useful

when the sorting process is part of a stream pipeline.

Finally, the peek method yields another stream with the same elements as the original, but

a function is invoked every time an element is retrieved. That is handy for debugging:

Object[] powers = Stream.iterate(1.0, p -> p * 2)

 .peek(e -> System.out.println("Fetching " + e))

 .limit(20).toArray();

When an element is actually accessed, a message is printed. This way you can verify that

the infinite stream returned by iterate is processed lazily.

For debugging, you can have peek call a method into which you set a breakpoint.

java.util.stream.Stream 8

• Stream<T> distinct()

Yields a stream of the distinct elements of this stream.

• Stream<T> sorted()

• Stream<T> sorted(Comparator<? super T> comparator)

Yields as stream whose elements are the elements of this stream in sorted order. The first

method requires that the elements are instances of a class implementing Comparable.

• Stream<T> peek(Consumer<? super T> action)

Yields a stream with the same elements as this stream, passing each element to action as

it is consumed.

1.6. Simple Reductions

Now that you have seen how to create and transform streams, we will finally get to the most

important point—getting answers from the stream data. The methods that we cover in this

section are called reductions. Reductions are terminal operations. They reduce the stream
to a non-stream value that can be used in your program.

You have already seen a simple reduction: the count method that returns the number of

elements of a stream.

Other simple reductions are max and min that return the largest or smallest value. There

is a twist—these methods return an Optional<T> value that either wraps the answer or

indicates that there is none (because the stream happened to be empty). In the olden days,

it was common to return null in such a situation. But that can lead to null pointer exceptions

when it happens in an incompletely tested program. The Optional type is a better way of

indicating a missing return value. We discuss the Optional type in detail in the next section.

Here is how you can get the maximum of a stream:

Optional<String> largest = words.max(String::compareToIgnoreCase);

System.out.println("largest: " + largest.orElse(""));

The findFirst returns the first value in a nonempty collection. It is often useful when

combined with filter. For example, here we find the first word that starts with the letter

Q, if it exists:

Optional<String> startsWithQ

 = words.filter(s -> s.startsWith("Q")).findFirst();

If you are OK with any match, not just the first one, use the findAny method. This is effective

when you parallelize the stream, since the stream can report any match that it finds instead

of being constrained to the first one.

Optional<String> startsWithQ

 = words.parallel().filter(s -> s.startsWith("Q")).findAny();

If you just want to know if there is a match, use anyMatch. That method takes a predicate

argument, so you won’t need to use filter.

boolean aWordStartsWithQ

 = words.parallel().anyMatch(s -> s.startsWith("Q"));

There are methods allMatch and noneMatch that return true if all or no elements match a

predicate. These methods also benefit from being run in parallel.

java.util.stream.Stream 8

• Optional<T> max(Comparator<? super T> comparator)

• Optional<T> min(Comparator<? super T> comparator)

Yields a maximum or minimum element of this stream, using the ordering defined by the given

comparator, or an empty Optional if this stream is empty. These are terminal operations.

• Optional<T> findFirst()

• Optional<T> findAny()

Yields the first, or any, element of this stream, or an empty Optional if this stream is

empty. These are terminal operations.

• boolean anyMatch(Predicate<? super T> predicate)

• boolean allMatch(Predicate<? super T> predicate)

• boolean noneMatch(Predicate<? super T> predicate)

Returns true if any, all, or, none of the elements of this stream match the given predicate.

These are terminal operations.

1.7. The Optional Type

An Optional<T> object is a wrapper for either an object of type T or no object. In the former

case, we say that the value is present. The Optional<T> type is intended as a safer
alternative for a reference of type T that either refers to an object or is null. But it

is only safer if you use it right. The next section shows you how.

1.7.1. How to Work With Optional Values

The key to using Optional effectively is to use a method that either produces an alternative
if the value is not present, or consumes the value only if it is present.

Let us look at the first strategy. Often, there is a default that you want to use when there

was no match, perhaps the empty string:

String result = optionalString.orElse("");

 // The wrapped string, or "" if none

You can also invoke code to compute the default,

String result = optionalString.orElseGet(() -> System.getProperty("user.dir"));

 // The function is only called when needed

Or you can throw an exception if there is no value,

String result = optionalString.orElseThrow(IllegalStateException::new);

 // Supply a method that yields an exception object

You have just seen how to produce an alternative if no value is present. The other strategy

for working with optional values is to consume the value only if it is present.

The ifPresent method accepts a function. If the optional value exists, it is passed to that

function. Otherwise, nothing happens.

optionalValue.ifPresent(v -> Process v);

For example, if you want to add the value to a set if it is present, call

optionalValue.ifPresent(v -> results.add(v));

or simply

optionalValue.ifPresent(results::add);

When calling ifPresent, no value is returned from the function. If you want to process the

function result, use map instead:

Optional<Boolean> added = optionalValue.map(results::add);

Now added has one of three values: true or false wrapped into an Optional, if optionalValue

was present, or an empty Optional otherwise.

Note

This map method is the analog of the map method of the Stream interface that you have seen

in Section 1.3, “The filter, map, and flatMap Methods,” on p. 8. Simply imagine an optional

value as a stream of size zero or one. The result again has size zero or one, and in the

latter case, the function has been applied.

ava.util.Optional 8

• T orElse(T other)

Yields the value of this Optional, or other if this Optional is empty.

• T orElseGet(Supplier<? extends T> other)

Yields the value of this Optional, or the result of invoking other if this Optional is empty.

• <X extends Throwable> T orElseThrow(Supplier<? extends X> exceptionSupplier)

Yields the value of this Optional, or throws the result of invoking exceptionSupplier if

this Optional is empty.

• void ifPresent(Consumer<? super T> consumer)

If this Optional is non-empty, passes its value to consumer.

• <U> Optional<U> map(Function<? super T,? extends U> mapper)

Yields the result of passing the value of this Optional to mapper, provided this Optional

is nonempty and the result is not null, or an empty Optional otherwise.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-3

1.7.2. How Not to Work With Optional Values

If you don’t use Optional values correctly, you have no benefit over the “something or

null” approach of the past.

The get method gets the wrapped element of an Optional value if it exists, or throws a

NoSuchElementException if it doesn’t. Therefore,

Optional<T> optionalValue = ...;

optionalValue.get().someMethod()

is no safer than

T value = ...;

value.someMethod();

The isPresent method reports whether an Optional<T> object has a value. But

if (optionalValue.isPresent()) optionalValue.get().someMethod();

is no easier than

if (value != null) value.someMethod();

java.util.Optional 8

• T get()

Yields the value of this Optional, or throws a NoSuchElementException if it is empty.

• boolean isPresent()

Returns true if this Optional is not empty.

1.7.3. Creating Optional Values

So far, we have discussed how to consume an Optional object someone else created. If you

want to write a method that creates an Optional object, there are several static methods

for that purpose, including Optional.of(result) and Optional.empty(). For example,

public static Optional<Double> inverse(Double x)

{

 return x == 0 ? Optional.empty() : Optional.of(1 / x);

}

The ofNullable method is intended as a bridge from possibly null values to optional values.

Optional.ofNullable(obj) returns Optional.of(obj) if obj is not null and Optional.empty()

otherwise.

java.util.Optional 8

• static <T> Optional<T> of(T value)

• static <T> Optional<T> ofNullable(T value)

Yields an Optional with the given value. If value is null, the first method throws a

NullPointerException and the second method yields an empty Optional.

• static <T> Optional<T> empty()

Yields an empty Optional.

1.7.4. Composing Optional Value Functions with flatMap

Suppose you have a method f yielding an Optional<T>, and the target type T has a method

g yielding an Optional<U>. If they were normal methods, you could compose them by calling

s.f().g(). But that composition doesn’t work since s.f() has type Optional<T>, not T.

Instead, call

Optional<U> result = s.f().flatMap(T::g);

If s.f() is present, then g is applied to it. Otherwise, an empty Optional<U> is returned.

Clearly, you can repeat that process if you have more methods or lambdas that yield Optional

values. You can then build a pipeline of steps, simply by chaining calls to flatMap, that

will succeed only when all parts do.

For example, consider the safe inverse method of the preceding section. Suppose we also

have a safe square root:

public static Optional<Double> squareRoot(Double x)

{

 return x < 0 ? Optional.empty() : Optional.of(Math.sqrt(x));

}

Then you can compute the square root of the inverse as

Optional<Double> result = inverse(x).flatMap(MyMath::squareRoot);

or, if you prefer,

Optional<Double> result =

Optional.of(-4.0).flatMap(Test::inverse).flatMap(Test::squareRoot);

If either the inverse method or the squareRoot returns Optional.empty(), the result is

empty.

Note

You have already seen a flatMap method in the Stream interface (see Section 1.3, “The filter,

map, and flatMap Methods,” on p. 8). That method was used to compose two methods that yield

streams, by flattening out the resulting stream of streams. The Optional.flatMap method

works in the same way if you interpret an optional value as a stream of size zero or one.

The example program in Listing 1.3 demonstrates the Optional API.

Listing 1.3 optional/OptionalTest.java

 1 package optional;

 2

 3 import java.io.*;

 4 import java.nio.charset.*;

 5 import java.nio.file.*;

 6 import java.util.*;

 7

 8 public class OptionalTest

 9 {

10 public static void main(String[] args) throws IOException

11 {

12 String contents = new String(Files.readAllBytes(

13 Paths.get("../gutenberg/alice30.txt")),

StandardCharsets.UTF_8);

14 List<String> wordList = Arrays.asList(contents.split("\\PL+"));

15

16 Optional<String> optionalValue = wordList.stream()

17 .filter(s -> s.contains("fred"))

18 .findFirst();

19 System.out.print(optionalValue.orElse("No word") + " contains fred");

20

21 Optional<String> optionalString = Optional.empty();

22 String result = optionalString.orElse("N/A");

23 System.out.println("result: " + result);

24 result = optionalString.orElseGet(() ->

System.getProperty("user.dir"));

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-3

25 System.out.println("result: " + result);

26 try

27 {

28 result =

optionalString.orElseThrow(IllegalStateException::new);

29 System.out.println("result: " + result);

30 }

31 catch (Throwable t)

32 {

33 t.printStackTrace();

34 }

35

36 optionalValue = wordList.stream()

37 .filter(s -> s.contains("red"))

38 .findFirst();

39 optionalValue.ifPresent(s -> System.out.println(s + " contains red"));

40

41 Set<String> results = new HashSet<>();

42 optionalValue.ifPresent(results::add);

43 Optional<Boolean> added = optionalValue.map(results::add);

44 System.out.println(added);

45

46 System.out.println(inverse(4.0).flatMap(OptionalTest::squareRoot));

47 System.out.println(inverse(-1.0).flatMap(OptionalTest::squareRoot)

);

48 System.out.println(inverse(0.0).flatMap(OptionalTest::squareRoot));

49 Optional<Double> result2 = Optional.of(-4.0)

50 .flatMap(OptionalTest::inverse).flatMap(OptionalTest::square

Root);

51 System.out.println(result2);

52 }

53

54 public static Optional<Double> inverse(Double x)

55 {

56 return x == 0 ? Optional.empty() : Optional.of(1 / x);

57 }

58

59 public static Optional<Double> squareRoot(Double x)

60 {

61 return x < 0 ? Optional.empty() : Optional.of(Math.sqrt(x));

62 }

63 }

java.util.Optional 8

• <U> Optional<U> flatMap(Function<? super T,Optional<U>> mapper)

Yields the result of applying mapper to the value of this Optional, or an empty Optional

if this Optional is empty.

1.8. Collecting Results

When you are done with a stream, you will often want to look at its elements. You can call

the iterator method, which yields an old-fashioned iterator that you can use to visit the

elements.

Alternatively, you can call the forEach method to apply a function to each element:

stream.forEach(System.out::println);

On a parallel stream, the forEach method traverses elements in arbitrary order. If you want

to process them in stream order, call forEachOrdered instead. Of course, you might then

give up some or all of the benefits of parallelism.

But more often than not, you will want to collect the result in a data structure. You can

call toArray and get an array of the stream elements.

Since it is not possible to create a generic array at runtime, the expression stream.toArray()

returns an Object[] array. If you want an array of the correct type, pass in the array

constructor:

String[] result = stream.toArray(String[]::new);

 // stream.toArray() has type Object[]

For collecting stream elements to another target, there is a convenient collect method that

takes an instance of the Collector interface. The Collectors class provides a large number

of factory methods for common collectors. To collect a stream into a list or set, simply

call

List<String> result = stream.collect(Collectors.toList());

or

Set<String> result = stream.collect(Collectors.toSet());

If you want to control which kind of set you get, use the following call instead:

TreeSet<String> result = stream.collect(Collectors.toCollection(TreeSet::new));

Suppose you want to collect all strings in a stream by concatenating them. You can call

String result = stream.collect(Collectors.joining());

If you want a delimiter between elements, pass it to the joining method:

String result = stream.collect(Collectors.joining(", "));

If your stream contains objects other than strings, you need to first convert them to strings,

like this:

String result = stream.map(Object::toString).collect(Collectors.joining(", "));

If you want to reduce the stream results to a sum, average, maximum, or minimum, use one

of the summarizing(Int|Long|Double) methods. These methods take a function that maps the

stream objects to a number and yield a result of type (Int|Long|Double)SummaryStatistics,

simultaneously computing the sum, average, maximum, and minimum.

IntSummaryStatistics summary = stream.collect(

 Collectors.summarizingInt(String::length));

double averageWordLength = summary.getAverage();

double maxWordLength = summary.getMax();

java.util.stream.BaseStream 8

• Iterator<T> iterator()

Yields an iterator for obtaining the elements of this stream. This is a terminal operation.

The example program in Listing 1.4 shows how to collect elements from a stream.

Listing 1.4 collecting/CollectingResults.java

 1 package collecting;

 2

 3 import java.io.*;

 4 import java.nio.charset.*;

 5 import java.nio.file.*;

 6 import java.util.*;

 7 import java.util.stream.*;

 8

 9 public class CollectingResults

10 {

11 public static Stream<String> noVowels() throws IOException

12 {

13 String contents = new String(Files.readAllBytes(

14 Paths.get("../gutenberg/alice30.txt")),

15 StandardCharsets.UTF_8);

16 List<String> wordList = Arrays.asList(contents.split("\\PL+"));

17 Stream<String> words = wordList.stream();

18 return words.map(s -> s.replaceAll("[aeiouAEIOU]", ""));

19 }

20

21 public static <T> void show(String label, Set<T> set)

22 {

23 System.out.print(label + ": " + set.getClass().getName());

24 System.out.println("["

25 + set.stream().limit(10).map(Object::toString)

26 .collect(Collectors.joining(", ")) +

"]");

27 }

28

29 public static void main(String[] args) throws IOException

30 {

31 Iterator<Integer> iter = Stream.iterate(0, n -> n + 1).limit(10)

32 .iterator();

33 while (iter.hasNext())

34 System.out.println(iter.next());

35

36 Object[] numbers = Stream.iterate(0, n -> n + 1).limit(10).toArray();

37 System.out.println("Object array:" + numbers); // Note it's an Object[]

array

38

39 try

40 {

41 Integer number = (Integer) numbers[0]; // OK

42 System.out.println("number: " + number);

43 System.out.println("The following statement throws an

exception:");

44 Integer[] numbers2 = (Integer[]) numbers; // Throws exception

45 }

46 catch (ClassCastException ex)

47 {

48 System.out.println(ex);

49 }

50

51 Integer[] numbers3 = Stream.iterate(0, n -> n + 1).limit(10)

52 .toArray(Integer[]::new);

53 System.out.println("Integer array: " + numbers3); // Note it's an

Integer[] array

54

55 HashSet<String> noVowelHashSet = noVowels().collect(

56 HashSet::new, HashSet::add, HashSet::addAll);

57 show("noVowelHashSet", noVowelHashSet);

58

59 Set<String> noVowelSet = noVowels()

60 .collect(Collectors.toSet());

61 show("noVowelSet", noVowelSet);

62

63 TreeSet<String> noVowelTreeSet = noVowels().collect(

64 Collectors.toCollection(TreeSet::new));

65 show("noVowelTreeSet", noVowelTreeSet);

66

67 String result = noVowels().limit(10).collect(

68 Collectors.joining());

69 System.out.println("Joining: " + result);

70 result = noVowels().limit(10)

71 .collect(Collectors.joining(", "));

72 System.out.println("Joining with commas: " + result);

73

74 IntSummaryStatistics summary = noVowels().collect(

75 Collectors.summarizingInt(String::length));

76 double averageWordLength = summary.getAverage();

77 double maxWordLength = summary.getMax();

78 System.out.println("Average word length: " + averageWordLength);

79 System.out.println("Max word length: " + maxWordLength);

80 System.out.println("forEach:");

81 noVowels().limit(10).forEach(System.out::println);

82 }

83 }

java.util.stream.Stream 8

• void forEach(Consumer<? super T> action)

Invokes action on each element of the stream. This is a terminal operation.

• Object[] toArray()

• <A> A[] toArray(IntFunction<A[]> generator)

Yields an array of objects, or of type A when passed a constructor reference A[]::new. These

are terminal operations.

• <R,A> R collect(Collector<? super T,A,R> collector)

Collects the elements in this stream, using the given collector. The Collectors class has

factory methods for many collectors.

java.util.stream.Collectors 8

• static <T> Collector<T,?,List<T>> toList()

• static <T> Collector<T,?,Set<T>> toSet()

Yield collectors that collect elements in a list or set.

• static <T,C extends Collection<T>> Collector<T,?,C> toCollection(Supplier<C>

collectionFactory)

Yields a collector that collects elements into an arbitrary collection. Pass a constructor

reference such as TreeSet::new.

• static Collector<CharSequence,?,String> joining()

• static Collector<CharSequence,?,String> joining(CharSequence delimiter)

• static Collector<CharSequence,?,String> joining(CharSequence delimiter, CharSequence

prefix, CharSequence suffix)

Yields a collector that joins strings.The delimiter is placed between strings, and the

prefix and suffix before the first and after the last string. When not specified, these

are empty.

• static <T> Collector<T,?,IntSummaryStatistics> summarizingInt(ToIntFunction<? super T>

mapper)

• static <T> Collector<T,?,LongSummaryStatistics> summarizingLong(ToLongFunction<? super

T> mapper)

• static <T> Collector<T,?,DoubleSummaryStatistics> summarizingDouble(ToDoubleFunction<?

super T> mapper)

Yield collectors that produce an (Int|Long|Double)SummaryStatistics object, from which you

can obtain the count, sum, average, maximum, and minimum of the results of applying mapper

to each element.

IntSummaryStatistics 8

LongSummaryStatistics 8

DoubleSummaryStatistics 8

• long getCount()

Yields the count of the summarized elements.

• long|long|double getSum()

• double getAverage()

Yields the sum or average of the summarized elements, or zero if there are no elements.

• int|long|double getMax()

• int|long|double getMin()

Yields the maximum or minimum of the summarized elements, or

(Integer|Long|Double).(MAX|MIN)_VALUE if there are no elements.

1.9. Collecting into Maps

Suppose you have a Stream<Person> and want to collect the elements into a map so that later

you can look up people by their ID. The Collectors.toMap method has two function arguments

that produce the map’s keys and values. For example,

Map<Integer, String> idToName = people.collect(

 Collectors.toMap(Person::getId, Person::getName));

In the common case when the values should be the actual elements, use Function.identity()

for the second function.

Map<Integer, Person> idToPerson = people.collect(

 Collectors.toMap(Person::getId, Function.identity()));

If there is more than one element with the same key, there is a conflict, and the collector

will throw an IllegalStateException. You can override that behavior by supplying a third

function argument that resolves the conflict and determines the value for the key, given

the existing and the new value. Your function could return the existing value, the new value,

or a combination of them.

Here, we construct a map that contains, for each language in the available locales, as key

its name in your default locale (such as "German"), and as value its localized name (such

as "Deutsch").

Stream<Locale> locales = Stream.of(Locale.getAvailableLocales());

Map<String, String> languageNames = locales.collect(

 Collectors.toMap(

 Locale::getDisplayLanguage,

 Locale::getDisplayLanguage,

 (existingValue, newValue) -> existingValue));

We don’t care that the same language might occur twice (for example, German in Germany

and in Switzerland), so we just keep the first entry.

Note

In this chapter, we use the Locale class as a source of an interesting data set. See Chapter

XREF for more information about working with locales.

Now suppose we want to know all languages in a given country. Then we need a Map<String,

Set<String>>. For example, the value for "Switzerland" is the set [French, German, Italian].

At first, we store a singleton set for each language. Whenever a new language is found for

a given country, we form the union of the existing and the new set.

Map<String, Set<String>> countryLanguageSets = locales.collect(

 Collectors.toMap(

 Locale::getDisplayCountry,

 l -> Collections.singleton(l.getDisplayLanguage()),

 (a, b) ->

 { // Union of a and b
 Set<String> union = new HashSet<>(a);

 union.addAll(b);

 return union;

 }));

You will see a simpler way of obtaining this map in the next section.

If you want a TreeMap, supply the constructor as the fourth argument. You must provide a

merge function. Here is one of the examples from the beginning of the section, now yielding

a TreeMap:

Map<Integer, Person> idToPerson = people.collect(

 Collectors.toMap(

 Person::getId,

 Function.identity(),

 (existingValue, newValue) -> { throw new IllegalStateException(); },

 TreeMap::new));

Note

For each of the toMap methods, there is an equivalent toConcurrentMap method that yields

a concurrent map. A single concurrent map is used in the parallel collection process. When

used with a parallel stream, a shared map is more efficient than merging maps. Note that

elements are no longer collected in stream order, but that doesn’t usually make a

difference.

The example program in Listing 1.5 gives examples of collecting stream results into maps.

Listing 1.5 collecting/CollectingIntoMaps.java

 1 package collecting;

 2

 3 import java.io.*;

 4 import java.util.*;

 5 import java.util.function.*;

 6 import java.util.stream.*;

 7

 8 public class CollectingIntoMaps

 9 {

10

11 public static class Person

12 {

13 private int id;

14 private String name;

15

16 public Person(int id, String name)

17 {

18 this.id = id;

19 this.name = name;

20 }

21

22 public int getId()

23 {

24 return id;

25 }

26

27 public String getName()

28 {

29 return name;

30 }

31

32 public String toString()

33 {

34 return getClass().getName() + "[id=" + id + ",name=" + name

+ "]";

35 }

36 }

37

38 public static Stream<Person> people()

39 {

40 return Stream.of(new Person(1001, "Peter"), new Person(1002, "Paul"),

41 new Person(1003, "Mary"));

42 }

43

44 public static void main(String[] args) throws IOException

45 {

46 Map<Integer, String> idToName = people().collect(

47 Collectors.toMap(Person::getId, Person::getName));

48 System.out.println("idToName: " + idToName);

49

50 Map<Integer, Person> idToPerson = people().collect(

51 Collectors.toMap(Person::getId, Function.identity()));

52 System.out.println("idToPerson: " + idToPerson.getClass().getName()

53 + idToPerson);

54

55 idToPerson = people().collect(

56 Collectors.toMap(Person::getId, Function.identity(), (

57 existingValue, newValue) -> {

58 throw new IllegalStateException();

59 }, TreeMap::new));

60

61 System.out.println("idToPerson: " + idToPerson.getClass().getName()

62 + idToPerson);

63

64 Stream<Locale> locales = Stream.of(Locale.getAvailableLocales());

65 Map<String, String> languageNames = locales.collect(

66 Collectors.toMap(

67 Locale::getDisplayLanguage,

68 Locale::getDisplayLanguage,

69 (existingValue, newValue) -> existingValue));

70 System.out.println("languageNames: " + languageNames);

71

72 locales = Stream.of(Locale.getAvailableLocales());

73 Map<String, Set<String>> countryLanguageSets = locales.collect(

74 Collectors.toMap(

75 Locale::getDisplayCountry,

76 l -> Collections.singleton(l.getDisplayLanguage()),

77 (a, b) -> { // union of a and b

78 Set<String> union = new HashSet<>(a);

79 union.addAll(b);

80 return union;

81 }));

82 System.out.println("countryLanguageSets: " + countryLanguageSets);

83 }

84 }

java.util.stream.Collectors 8

• static <T,K,U> Collector<T,?,Map<K,U>> toMap(Function<? super T,? extends K> keyMapper,

Function<? super T,? extends U> valueMapper)

• static <T,K,U> Collector<T,?,Map<K,U>> toMap(Function<? super T,? extends K> keyMapper,

Function<? super T,? extends U> valueMapper, BinaryOperator<U> mergeFunction)

• static <T,K,U,M extends Map<K,U>> Collector<T,?,M> toMap(Function<? super T,? extends

K> keyMapper, Function<? super T,? extends U> valueMapper, BinaryOperator<U> mergeFunction,

Supplier<M> mapSupplier)

• static <T,K,U> Collector<T,?,ConcurrentMap<K,U>> toConcurrentMap(Function<? super T,?

extends K> keyMapper, Function<? super T,? extends U> valueMapper)

• static <T,K,U> Collector<T,?,ConcurrentMap<K,U>> toConcurrentMap(Function<? super T,?

extends K> keyMapper, Function<? super T,? extends U> valueMapper, BinaryOperator<U>

mergeFunction)

• static <T,K,U,M extends ConcurrentMap<K,U>> Collector<T,?,M> toConcurrentMap(Function<?

super T,? extends K> keyMapper, Function<? super T,? extends U> valueMapper,

BinaryOperator<U> mergeFunction, Supplier<M> mapSupplier)

Yields a collector that produces a map or concurrent map. The keyMapper and valueMapper

functions are applied to each collected element, yielding a (key/value) entry of the

resulting map. By default, an IllegalStateException is thrown when two elements give rise

to the same key.You can instead supply a mergeFunction that merges values with the same

key. By default, the result is a HashMap or ConcurrentHashMap. You can instead supply a

mapSupplier that yields the desired map instance.

1.10. Grouping and Partitioning

In the preceding section, you saw how to collect all languages in a given country. But the

process was a bit tedious. You had to generate a singleton set for each map value and then

specify how to merge the existing and new values. Forming groups of values with the same

characteristic is very common, and the groupingBy method supports it directly.

Let’s look at the problem of grouping locales by country. First, form this map:

Map<String, List<Locale>> countryToLocales = locales.collect(

 Collectors.groupingBy(Locale::getCountry));

The function Locale::getCountry is the classifier function of the grouping. You can now
look up all locales for a given country code, for example

List<Locale> swissLocales = countryToLocales.get("CH");

 // Yields locales [it_CH, de_CH, fr_CH]

Note

A quick refresher on locales: Each locale has a language code (such as en for English) and

a country code (such as US for the United States). The locale en_US describes English in

the United States, and en_IE is English in Ireland. Some countries have multiple locales.

For example, ga_IE is Gaelic in Ireland, and, as the preceding example shows, my JVM knows

three locales in Switzerland.

When the classifier function is a predicate function (that is, a function returning a boolean

value), the stream elements are partitioned into two lists: those where the function returns

true and the complement. In this case, it is more efficient to use partitioningBy instead

of groupingBy. For example, here we split all locales into those that use English and all

others:

Map<Boolean, List<Locale>> englishAndOtherLocales = locales.collect(

 Collectors.partitioningBy(l -> l.getLanguage().equals("en")));

List<Locale> englishLocales = englishAndOtherLocales.get(true);

Note

If you call the groupingByConcurrent method, you get a concurrent map that, when used with

a parallel stream, is concurrently populated. This is entirely analogous to the

toConcurrentMap method.

java.util.stream.Collectors 8

• static <T,K> Collector<T,?,Map<K,List<T>>> groupingBy(Function<? super T,? extends K>

classifier)

• static <T,K> Collector<T,?,ConcurrentMap<K,List<T>>> groupingByConcurrent(Function<?

super T,? extends K> classifier)

Yields a collector that produces a map or concurrent map whose keys are the results of

applying classifier to all collected elements, and whose values are lists of elements with

the same key.

• static <T> Collector<T,?,Map<Boolean,List<T>>> partitioningBy(Predicate<? super T>

predicate)

Yields a collector that produces a map whose keys are true/false, and whose values are lists

of the elements that fulfill/do not fulfill the predicate.

1.11. Downstream Collectors

The groupingBy method yields a map whose values are lists. If you want to process those

lists in some way, supply a “downstream collector.” For example, if you want sets instead

of lists, you can use the Collectors.toSet collector that you saw in the preceding section:

Map<String, Set<Locale>> countryToLocaleSet = locales.collect(

 groupingBy(Locale::getCountry, toSet()));

Note

In this example, as well as the remaining examples of this section, we assume a static import

of java.util.stream.Collectors.* to make the expressions easier to read.

Several collectors are provided for reducing grouped elements to numbers:

• counting produces a count of the collected elements. For example,

Map<String, Long> countryToLocaleCounts = locales.collect(

 groupingBy(Locale::getCountry, counting()));

counts how many locales there are for each country.

• summing(Int|Long|Double) takes a function argument, applies the function to the

downstream elements, and produces their sum. For example,

Map<String, Integer> stateToCityPopulation = cities.collect(

 groupingBy(City::getState, summingInt(City::getPopulation)));

computes the sum of populations per state in a stream of cities.

• maxBy and minBy take a comparator and produce maximum and minimum of the downstream

elements. For example,

Map<String, Optional<City>> stateToLargestCity = cities.collect(

 groupingBy(City::getState,

 maxBy(Comparator.comparing(City::getPopulation))));

produces the largest city per state.

The mapping method yields a collector that applies a function to downstream results, and

it requires yet another collector for processing its results. For example,

Map<String, Optional<String>> stateToLongestCityName = cities.collect(

 groupingBy(City::getState,

 mapping(City::getName,

 maxBy(Comparator.comparing(String::length)))));

Here, we group cities by state. Within each state, we produce the names of the cities and

reduce by maximum length.

The mapping method also yields a nicer solution to a problem from the preceding

section—gathering a set of all languages in a country.

Map<String, Set<String>> countryToLanguages = locales.collect(

 groupingBy(Locale::getDisplayCountry,

 mapping(Locale::getDisplayLanguage,

 toSet())));

In the preceding section, we used toMap instead of groupingBy. In this form, you don’t

need to worry about combining the individual sets.

If the grouping or mapping function has return type int, long, or double, you can collect

elements into a summary statistics object, as discussed in Section 1.8, “Collecting

Results,” on p. 19. For example,

Map<String, IntSummaryStatistics> stateToCityPopulationSummary = cities.collect(

 groupingBy(City::getState,

 summarizingInt(City::getPopulation)));

Then you can get the sum, count, average, minimum, and maximum of the function values from

the summary statistics objects of each group.

Note

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-8

There are also three versions of a reducing method that apply general reductions, as

described in Section 1.12, “Reduction Operations,” on p. 33.

Composing collectors is powerful, but it can also lead to very convoluted expressions. The

best use is with groupingBy or partitioningBy to process the “downstream” map values.

Otherwise, simply apply methods such as map, reduce, count, max, or min directly on streams.

The example program in Listing 1.6 demonstrates downstream collectors.

Listing 1.6 collecting/DownstreamCollectors.java

 1 package collecting;

 2

 3 import static java.util.stream.Collectors.*;

 4

 5 import java.io.*;

 6 import java.nio.file.*;

 7 import java.util.*;

 8 import java.util.stream.*;

 9

10 public class DownstreamCollectors

11 {

12

13 public static class City

14 {

15 private String name;

16 private String state;

17 private int population;

18

19 public City(String name, String state, int population)

20 {

21 this.name = name;

22 this.state = state;

23 this.population = population;

24 }

25

26 public String getName()

27 {

28 return name;

29 }

30

31 public String getState()

32 {

33 return state;

34 }

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-12

35

36 public int getPopulation()

37 {

38 return population;

39 }

40 }

41

42 public static Stream<City> readCities(String filename) throws IOException

43 {

44 return Files.lines(Paths.get(filename)).map(l -> l.split(", "))

45 .map(a -> new City(a[0], a[1], Integer.parseInt(a[2])));

46 }

47

48 public static void main(String[] args) throws IOException

49 {

50 Stream<Locale> locales = Stream.of(Locale.getAvailableLocales());

51 locales = Stream.of(Locale.getAvailableLocales());

52 Map<String, Set<Locale>> countryToLocaleSet =

locales.collect(groupingBy(

53 Locale::getCountry, toSet()));

54 System.out.println("countryToLocaleSet: " + countryToLocaleSet);

55

56 locales = Stream.of(Locale.getAvailableLocales());

57 Map<String, Long> countryToLocaleCounts =

locales.collect(groupingBy(

58 Locale::getCountry, counting()));

59 System.out.println("countryToLocaleCounts: " +

countryToLocaleCounts);

60

61 Stream<City> cities = readCities("cities.txt");

62 Map<String, Integer> stateToCityPopulation =

cities.collect(groupingBy(

63 City::getState, summingInt(City::getPopulation)));

64 System.out.println("stateToCityPopulation: " +

stateToCityPopulation);

65

66 cities = readCities("cities.txt");

67 Map<String, Optional<String>> stateToLongestCityName = cities

68 .collect(groupingBy(

69 City::getState,

70 mapping(City::getName,

71 maxBy(Comparator.comparing(Str

ing::length)))));

72

73 System.out.println("stateToLongestCityName: " +

stateToLongestCityName);

74

75 locales = Stream.of(Locale.getAvailableLocales());

76 Map<String, Set<String>> countryToLanguages =

locales.collect(groupingBy(

77 Locale::getDisplayCountry,

78 mapping(Locale::getDisplayLanguage, toSet())));

79 System.out.println("countryToLanguages: " + countryToLanguages);

80

81 cities = readCities("cities.txt");

82 Map<String, IntSummaryStatistics> stateToCityPopulationSummary =

cities

83 .collect(groupingBy(City::getState,

84 summarizingInt(City::getPopulation)));

85 System.out.println(stateToCityPopulationSummary.get("NY"));

86

87 cities = readCities("cities.txt");

88 Map<String, String> stateToCityNames = cities.collect(groupingBy(

89 City::getState,

90 reducing("", City::getName, (s, t) -> s.length() == 0 ?

t : s

91 + ", " + t)));

92

93 cities = readCities("cities.txt");

94 stateToCityNames = cities.collect(groupingBy(City::getState,

95 mapping(City::getName, joining(", "))));

96 System.out.println("stateToCityNames: " + stateToCityNames);

97 }

98 }

java.util.stream.Collectors 8

• static <T> Collector<T,?,Long> counting()

Yields a collector that counts the collected elements

• static <T> Collector<T,?,Integer> summingInt(ToIntFunction<? super T> mapper)

• <T> Collector<T,?,Long> summingLong(ToLongFunction<? super T> mapper)</T,?,Long>

• static <T> Collector<T,?,Double> summingDouble(ToDoubleFunction<? super T> mapper)

Yields a collector that computes the sum of the values of applying mapper to the collected

elements

• static <T> Collector<T,?,Optional<T>> maxBy(Comparator<? super T> comparator)

• static <T> Collector<T,?,Optional<T>> minBy(Comparator<? super T> comparator)

Yields a collector that computes the maximum or minimum of the collected elements, using

the ordering specified by comparator

• static <T,U,A,R> Collector<T,?,R> mapping(Function<? super T,? extends U> mapper,

Collector<? super U,A,R> downstream)

Yields a collector that produces a map whose keys are mapper applied to the collected

elements, and whose values are the result of collecting the elements with the same key using

the downstream collector

1.12. Reduction Operations

The reduce method is a general mechanism for computing a value from a stream. The simplest

form takes a binary function and keeps applying it, starting with the first two elements.

It’s easy to explain this if the function is the sum:

List<Integer> values = ...;

Optional<Integer> sum = values.stream().reduce((x, y) -> x + y);

In this case, the reduce method computes v0 + v1 + v2 + . . . , where the Vj are the stream
elements. The method returns an Optional because there is no valid result if the stream

is empty.

Note

In this case, you can write reduce(Integer::sum) instead of reduce((x, y) -> x + y).

In general, if the reduce method has a reduction operation op, the reduction yields v0 op
v1 op v2 op . . . , where we write vi, op vi, + 1 for the function call op(vi;, vi, + 1). The operation

should be associative: It shouldn’t matter in which order you combine the elements. In

math notation, (x op y) op z must be equal to x op (y op z). This allows efficient reduction
with parallel streams.

There are many associative operations that might be useful in practice, such as sum, product,

string concatenation, maximum and minimum, set union and intersection. An example of an

operation that is not associative is subtraction. For example, (6 − 3) − 2 ≠ 6 − (3 − 2).

Often, there is an identity e such that e op x = x, and you can use that element as the
start of the computation. For example, 0 is the identity for addition. Then call the second

form of reduce:

List<Integer> values = ...;

Integer sum = values.stream().reduce(0, (x, y) -> x + y)

 // Computes 0 + v0 + v1 + v2 + . . .

The identity value is returned if the stream is empty, and you no longer need to deal with

the Optional class.

Now suppose you have a stream of objects and want to form the sum of some property, such

as all lengths in a stream of strings. You can’t use the simple form of reduce. It requires

a function (T, T) -> T, with the same types for the arguments and the result. But in this

situation, you have two types: The stream elements have type String, and the accumulated

result is an integer. There is a form of reduce that can deal with this situation.

First, you supply an “accumulator” function (total, word) -> total + word.length(). That

function is called repeatedly, forming the cumulative total. But when the computation is

parallelized, there will be multiple computations of this kind, and you need to combine

their results. You supply a second function for that purpose. The complete call is

int result = words.reduce(0,

 (total, word) -> total + word.length(),

 (total1, total2) -> total1 + total2);

Note

In practice, you probably won’t use the reduce method a lot. It is usually easier to map

to a stream of numbers and use one of its methods to compute sum, max, or min. (We discuss

streams of numbers in Section 1.13, “Primitive Type Streams,” on p. 35.) In this particular

example, you could have called words.mapToInt(String::length).sum(), which is both simpler

and more efficient since it doesn’t involve boxing.

Note

There are times when reduce is not general enough. For example, suppose you want to collect

the results in a BitSet. If the collection is parallelized, you can’t put the elements

directly into a single BitSet because a BitSet object is not threadsafe. For that reason,

you can’t use reduce. Each segment needs to start out with its own empty set, and reduce

only lets you supply one identity value. Instead, use collect. It takes three arguments:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-13

1. A supplier to make new instances of the target object, for example a constructor for
a hash set

2. An accumulator that adds an element to the target, such as an add method

3. A combiner that merges two objects into one, such as addAll

Here is how the collect method works for a bit set:

BitSet result = stream.collect(BitSet::new, BitSet::set, BitSet::or);

java.util.Stream 8

• Optional<T> reduce(BinaryOperator<T> accumulator)

• T reduce(T identity, BinaryOperator<T> accumulator)

• <U> U reduce(U identity, BiFunction<U,? super T,U> accumulator, BinaryOperator<U>

combiner)

Forms a cumulative total of the stream elements with the given accumulator function. If

identity is provided, then it is the first value to be accumulated. If combiner is provided,

it can be used to combine totals of segments that are accumulated separately.

• <R> R collect(Supplier<R> supplier, BiConsumer<R,? super T> accumulator, BiConsumer<R,R>

combiner)

Collects elements in a result of type R. On each segment, supplier is called to provide

an initial result, accumulator is called to mutably add elements to it, and combiner is

called to combine two results.

1.13. Primitive Type Streams

So far, we have collected integers in a Stream<Integer>, even though it is clearly

inefficient to wrap each integer into a wrapper object. The same is true for the other

primitive types double, float, long, short, char, byte, and boolean. The stream library

has specialized types IntStream, LongStream, and DoubleStream that store primitive values

directly, without using wrappers. If you want to store short, char, byte, and boolean, use

an IntStream, and for float, use a DoubleStream.

To create an IntStream, call the IntStream.of and Arrays.stream methods:

IntStream stream = IntStream.of(1, 1, 2, 3, 5);

stream = Arrays.stream(values, from, to); // values is an int[] array

As with object streams, you can also use the static generate and iterate methods. In addition,

IntStream and LongStream have static methods range and rangeClosed that generate integer

ranges with step size one:

IntStream zeroToNinetyNine = IntStream.range(0, 100); // Upper bound is excluded
IntStream zeroToHundred = IntStream.rangeClosed(0, 100); // Upper bound is included

The CharSequence interface has methods codePoints and chars that yield an IntStream of the

Unicode codes of the characters or of the code units in the UTF-16 encoding. (See Chapter

1 for the sordid details.)

String sentence = "\uD835\uDD46 is the set of octonions.";

 // \uD835\uDD46 is the UTF-16 encoding of the letter , unicode U+1D546

IntStream codes = sentence.codePoints();

 // The stream with hex values 1D546 20 69 73 20 . . .

When you have a stream of objects, you can transform it to a primitive type stream with

the mapToInt, mapToLong, or mapToDouble methods. For example, if you have a stream of strings

and want to process their lengths as integers, you might as well do it in an IntStream:

Stream<String> words = ...;

IntStream lengths = words.mapToInt(String::length);

To convert a primitive type stream to an object stream, use the boxed method:

Stream<Integer> integers = IntStream.range(0, 100).boxed();

Generally, the methods on primitive type streams are analogous to those on object streams.

Here are the most notable differences:

• The toArray methods return primitive type arrays.

• Methods that yield an optional result return an OptionalInt, OptionalLong, or

OptionalDouble. These classes are analogous to the Optional class, but they have methods

getAsInt, getAsLong, and getAsDouble instead of the get method.

• There are methods sum, average, max, and min that return the sum, average, maximum, and

minimum. These methods are not defined for object streams.

• The summaryStatistics method yields an object of type IntSummaryStatistics,

LongSummaryStatistics, or DoubleSummaryStatistics that can simultaneously report the sum,

average, maximum, and minimum of the stream.

Note

The Random class has methods ints, longs, and doubles that return primitive type streams

of random numbers.

The program in Listing 1.7 gives examples for the API of primitive type streams.

Listing 1.7 streams/PrimitiveTypeStreams.java

 1 package streams;

 2

 3 import java.io.IOException;

 4 import java.nio.charset.StandardCharsets;

 5 import java.nio.file.Files;

 6 import java.nio.file.Path;

 7 import java.nio.file.Paths;

 8 import java.util.stream.Collectors;

 9 import java.util.stream.IntStream;

10 import java.util.stream.Stream;

11

12 public class PrimitiveTypeStreams {

13 public static void show(String title, IntStream stream) {

14 final int SIZE = 10;

15 int[] firstElements = stream.limit(SIZE + 1).toArray();

16 System.out.print(title + ": [");

17 int i;

18 for (i = 0; i < SIZE && i < firstElements.length; i++) {

19 System.out.print(firstElements[i]);

20 if (i < firstElements.length - 1)

21 System.out.print(", ");

22 }

23 if (i < firstElements.length)

24 System.out.print("...");

25 System.out.println("]");

26 }

27

28 public static void main(String[] args) throws IOException {

29 IntStream is1 = IntStream.generate(() -> (int) (Math.random() *

100));

30 show("is1", is1);

31 IntStream is2 = IntStream.range(5, 10);

32 show("is2", is2);

33 IntStream is3 = IntStream.rangeClosed(5, 10);

34 show("is3", is3);

35

36 Path path = Paths.get("../alice.txt");

37 String contents = new String(Files.readAllBytes(path),

StandardCharsets.UTF_8);

38

39 Stream<String> words = Stream.of(contents.split("\\PL+"));

40 IntStream is4 = words.mapToInt(String::length);

41 show("is4", is4);

42 String sentence = "\uD835\uDD46 is the set of octonions.";

43 System.out.println(sentence);

44 IntStream codes = sentence.codePoints();

45 System.out.println(codes.mapToObj(c -> String.format("%X ",

c)).collect(

46 Collectors.joining()));

47

48 Stream<Integer> integers = IntStream.range(0, 100).boxed();

49 IntStream is5 = integers.mapToInt(Integer::intValue);

50 show("is5", is5);

51 }

52 }

java.util.stream.IntStream 8

• static IntStream range(int startInclusive, int endExclusive)

• static IntStream rangeClosed(int startInclusive, int endInclusive)

Yield an IntStream with the integers in the given range

• static IntStream of(int... values)

Yields an IntStream with the given elements

• int[] toArray()

Yields an array with the elements of this stream.

• int sum()

• OptionalDouble average()

• OptionalInt max()

• OptionalInt min()

• IntSummaryStatistics summaryStatistics()

Yields the sum, average, maximum, or minimum of the elements in this stream, or an object

from which all four of these results can be obtained.

• Stream<Integer> boxed()

Yields a stream of wrapper objects for the elements in this stream.

java.util.stream.LongStream 8

• static LongStream of(long... values)

Yields a LongStream with the given elements

• long[] toArray()

Yields an array with the elements of this stream.

• long sum()

• OptionalDouble average()

• OptionalLong max()

• OptionalLong min()

• LongSummaryStatistics summaryStatistics()

Yields the sum, average, maximum, or minimum of the elements in this stream, or an object

from which all four of these results can be obtained.

• Stream<Long> boxed()

Yields a stream of wrapper objects for the elements in this stream.

java.util.stream.DoubleStream 8

• static DoubleStream of(double... values)

Yields a DoubleStream with the given elements

• double[] toArray()

Yields an array with the elements of this stream.

• double sum()

• OptionalDouble average()

• OptionalDouble max()

• OptionalDouble min()

• DoubleSummaryStatistics summaryStatistics()

Yields the sum, average, maximum, or minimum of the elements in this stream, or an object

from which all four of these results can be obtained.

• Stream<Double> boxed()

Yields a stream of wrapper objects for the elements in this stream.

java.lang.String 1.0

• IntStream codePoints() 8

Yields a stream of all Unicode code points of this string.

java.util.Random 1.0

• IntStream ints()

• IntStream ints(int randomNumberOrigin, int randomNumberBound) 8

• IntStream ints(long streamSize) 8

• IntStream ints(long streamSize, int randomNumberOrigin, int randomNumberBound) 8

• LongStream longs() 8

• LongStream longs(long randomNumberOrigin, long randomNumberBound) 8

• LongStream longs(long streamSize) 8

• LongStream longs(long streamSize, long randomNumberOrigin, long randomNumberBound) 8

• DoubleStream doubles() 8

• DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) 8

• DoubleStream doubles(long streamSize) 8

• DoubleStream doubles(long streamSize, double randomNumberOrigin, double

randomNumberBound) 8

Yield streams of random numbers. If streamSize is provided, the stream is finite with the

given number of elements.When bounds are provided, the elements are between

randomNumberOrigin (inclusive) and randomNumberBound (exclusive).

java.util.Optional(Int |Long |Double) 8

• static Optional(Int|Long|Double) of((int|long|double) value)

Yields an optional object with the supplied primitive type value.

• (int|long|double) getAs(Int|Long|Double)()

Yields the value of this optional object, or throws a NoSuchElementException if it is empty

• (int|long|double) orElse((int|long|double) other)

• (int|long|double) orElseGet((Int|Long|Double)Supplier other)

Yields the value of this optional object, or the alternative value if this object is empty.

• void ifPresent((Int|Long|Double)Consumer consumer)

If this optional object is not empty, passes its value to consumer.

java.util.(Int |Long |Double)SummaryStatistics 8

• long getCount()

• (long|long|double) getSum()

• double getAverage()

• (int|long|double) getMax()

• (int|long|double) getMin()

• Yield the count, sum, average, maximum, and minimum of the collected elements.

1.14. Parallel Streams

Streams make it easy to parallelize bulk operations. The process is mostly automatic, but

you need to follow a few rules. First of all, you must have a parallel stream. You can get

a parallel stream from any collection with the Collection.parallelStream() method:

Stream<String> parallelWords = words.parallelStream();

Moreover, the parallel method converts any sequential stream into a parallel one.

Stream<String> parallelWords = Stream.of(wordArray).parallel();

As long as the stream is in parallel mode when the terminal method executes, all intermediate

stream operations will be parallelized.

When stream operations run in parallel, the intent is that the same result is returned as

if they had run serially. It is important that the operations are stateless and can be
executed in an arbitrary order.

Here is an example of something you cannot do. Suppose you want to count all short words

in a stream of strings:

int[] shortWords = new int[12];

words.parallelStream().forEach(

 s -> { if (s.length() < 12) shortWords[s.length()]++; });

 // Error—race condition!
System.out.println(Arrays.toString(shortWords));

This is very, very bad code. The function passed to forEach runs concurrently in multiple

threads, each updating a shared array. As you will see in Chapter 10, that’s a classic

race condition. If you run this program multiple times, you are quite likely to get a
different sequence of counts in each run—each of them wrong.

It is your responsibility to ensure that any functions you pass to parallel stream operations

are safe to execute in parallel. The best way to do that is to use stay away from mutable

state. In this example, you can safely parallelize the computation if you group strings

by length and count them.

Map<Integer, Long> shortWordCounts =

 words.parallelStream()

 .filter(s -> s.length() < 10)

 .collect(groupingBy(

 String::length,

 counting()));

Caution

The functions that you pass to parallel stream operations should not block. Parallel streams

use a fork-join pool for operating on segments of the stream. If multiple stream operations

block, the pool may not be able to do any work.

By default, streams that arise from ordered collections (arrays and lists), from ranges,

generators, and iterators, or from calling Stream.sorted, are ordered. Results are
accumulated in the order of the original elements, and are entirely predictable. If you

run the same operations twice, you will get exactly the same results.

Ordering does not preclude efficient parallelization. For example, when computing

stream.map(fun), the stream can be partitioned into n segments, each of which is
concurrently processed. Then the results are reassembled in order.

Some operations can be more effectively parallelized when the ordering requirement is

dropped. By calling the unordered method on a stream, you indicate that you are not

interested in ordering. One operation that can benefit from this is Stream.distinct. On

an ordered stream, distinct retains the first of all equal elements. That impedes

parallelization—the thread processing a segment can’t know which elements to discard

until the preceding segment has been processed. If it is acceptable to retain any of the
unique elements, all segments can be processed concurrently (using a shared set to track

duplicates).

You can also speed up the limit method by dropping ordering. If you just want any n elements

from a stream and you don’t care which ones you get, call

Stream<String> sample = words.parallelStream().unordered().limit(n);

As discussed in Section 1.9, “Collecting into Maps,” on p. 23, merging maps is expensive.

For that reason, the Collectors.groupingByConcurrent method uses a shared concurrent map.

To benefit from parallelism, the order of the map values will not be the same as the stream

order.

Map<Integer, List<String>> result = words.parallelStream().collect(

 Collectors.groupingByConcurrent(String::length));

 // Values aren't collected in stream order

Of course, you won’t care if you use a downstream collector that is independent of the

ordering, such as

Map<Integer, Long> wordCounts =

 words.parallelStream()

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch01.html#ch01lev1-9

 .collect(

 groupingByConcurrent(

 String::length,

 counting()));

Caution

It is very important that you don’t modify the collection that is backing a stream while

carrying out a stream operation (even if the modification is threadsafe). Remember that

streams don’t collect their data—that data is always in a separate collection. If you

were to modify that collection, the outcome of the stream operations would be undefined.

The JDK documentation refers to this requirement as noninterference. It applies both to
sequential and parallel streams.

To be exact, since intermediate stream operations are lazy, it is possible to mutate the

collection up to the point when the terminal operation executes. For example, the following,

while certainly not recommended, will work:

List<String> wordList = ...;

Stream<String> words = wordList.stream();

wordList.add("END");

long n = words.distinct().count();

But this code is wrong:

Stream<String> words = wordList.stream();

words.forEach(s -> if (s.length() < 12) wordList.remove(s));

 // Error—interference

For parallel streams to work well, a number of conditions need to be fulfilled:

• The data should be in memory. It would be inefficient to have to wait for the data to

arrive.

• The stream should be efficiently splittable into subregions. A stream backed by an array

or a balanced binary tree works well, but the result of Stream.iterate does not.

• The stream operations should do a substantial amount of work. If the total work load is

not large, it does not make sense to pay for the cost of setting up the parallel computation.

• The stream operations should not block.

In other words, don’t turn all your streams into parallel streams. Use parallel streams

only when you do a substantial amount of sustained computational work on data that is already

in memory.

The example program in Listing 1.8 demonstrates how to work with parallel streams.

Listing 1.8 parallel/ParallelStreams.java

 1 package parallel;

 2

 3 import static java.util.stream.Collectors.*;

 4

 5 import java.io.*;

 6 import java.nio.charset.*;

 7 import java.nio.file.*;

 8 import java.util.*;

 9 import java.util.stream.*;

10

11 public class ParallelStreams

12 {

13 public static void main(String[] args) throws IOException

14 {

15 String contents = new String(Files.readAllBytes(

16 Paths.get("../gutenberg/alice30.txt")),

StandardCharsets.UTF_8);

17 List<String> words = Arrays.asList(contents.split("\\PL+"));

18

19 // Very bad code ahead

20 int[] shortWords = new int[10];

21 words.parallelStream().forEach(s ->

22 {

23 if (s.length() < 10) shortWords[s.length()]++;

24 });

25 System.out.println(Arrays.toString(shortWords));

26

27 // Try again--the result will likely be different (and also wrong)

28 Arrays.fill(shortWords, 0);

29 words.parallelStream().forEach(s ->

30 {

31 if (s.length() < 10) shortWords[s.length()]++;

32 });

33 System.out.println(Arrays.toString(shortWords));

34

35 // Remedy: Group and count

36 Map<Integer, Long> shortWordCounts = words.parallelStream()

37 .filter(s -> s.length() < 10)

38 .collect(groupingBy(String::length, counting()));

39

40 System.out.println(shortWordCounts);

41

42 // Downstream order not deterministic

43 Map<Integer, List<String>> result = words.parallelStream().collect(

44 Collectors.groupingByConcurrent(String::length));

45

46 System.out.println(result.get(14));

47

48 result = words.parallelStream().collect(

49 Collectors.groupingByConcurrent(String::length));

50

51 System.out.println(result.get(14));

52

53 Map<Integer, Long> wordCounts = words.parallelStream().collect(

54 groupingByConcurrent(String::length, counting()));

55

56 System.out.println(wordCounts);

57 }

58 }

BaseStream<T,S extends BaseStream<T,S>> 8

• S parallel()

Yields a parallel stream with the same elements as this stream.

• S unordered()

Yields an unordered stream with the same elements as this stream.

java.util.Collection<E> 1.2

• Stream<E> parallelStream() 8

Yields a parallel stream with the elements of this collection.

Chapter 2. Input and Output

In this chapter

• 2.1 Input/Output Streams,

• 2.2 Text Input and Output,

• 2.3 Reading and Writing Binary Data,

• 2.3.3 ZIP Archives,

• 2.4 Object Input/Output Streams and Serialization,

• 2.5 Working with Files,

• 2.6 Memory-Mapped Files,

• 2.7 Regular Expressions,

In this chapter, we will cover the Java Application Programming Interfaces (APIs) for input

and output. You will learn how to access files and directories and how to read and write

data in binary and text format. This chapter also shows you the object serialization

mechanism that lets you store objects as easily as you can store text or numeric data. Next,

we will turn to working with files and directories. We finish the chapter with a discussion

of regular expressions, even though they are not actually related to input and output. We

couldn’t find a better place to handle that topic, and apparently neither could the Java

team—the regular expression API specification was attached to a specification request for

“new I/O” features.

2.1 Input/Output Streams

In the Java API, an object from which we can read a sequence of bytes is called an input
stream. An object to which we can write a sequence of bytes is called an output stream.
These sources and destinations of byte sequences can be—and often are—files, but they

can also be network connections and even blocks of memory. The abstract classes InputStream

and OutputStream form the basis for a hierarchy of input/output (I/O) classes.

NOTE:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02lev2-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02lev2-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02lev2-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02lev2-3-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02lev2-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02lev2-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02lev2-6
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02lev2-7

These input/output streams are unreated to the streams that you saw in the preceding chapter.

For clarity, we will use the terms input stream, output stream, or input/output stream

whenever we discuss streams that are used for input and output.

Byte-oriented input/output streams are inconvenient for processing information stored in

Unicode (recall that Unicode uses multiple bytes per character). Therefore, a separate

hierarchy provides classes for processing Unicode characters that inherit from the abstract

Reader and Writer classes. These classes have read and write operations that are based on

two-byte Unicode code units rather than on single-byte characters.

2.1.1 Reading and Writing Bytes

The InputStream class has an abstract method:

 abstract int read()

This method reads one byte and returns the byte that was read, or -1 if it encounters the

end of the input source. The designer of a concrete input stream class overrides this method

to provide useful functionality. For example, in the FileInputStream class, this method

reads one byte from a file. System.in is a predefined object of a subclass of InputStream

that allows you to read information from the keyboard.

The InputStream class also has nonabstract methods to read an array of bytes or to skip

a number of bytes. These methods call the abstract read method, so subclasses need to

override only one method.

Similarly, the OutputStream class defines the abstract method

 abstract void write(int b)

which writes one byte to an output location.

Both the read and write methods block until the byte is actually read or written. This means
that if the input stream cannot immediately be accessed (usually because of a busy network

connection), the current thread blocks. This gives other threads the chance to do useful

work while the method is waiting for the input stream to become available again.

The available method lets you check the number of bytes that are currently available for

reading. This means a fragment like the following is unlikely to block:

 int bytesAvailable = in.available();

 if (bytesAvailable 0)

 {

 byte[] data = new byte[bytesAvailable];

 in.read(data);

 }

When you have finished reading or writing to an input/output stream, close it by calling

the close method. This call frees up the operating system resources that are in limited

supply. If an application opens too many input/output streams without closing them, system

resources can become depleted. Closing an output stream also flushes the buffer used for
the output stream: Any characters that were temporarily placed in a buffer so that they

could be delivered as a larger packet are sent off. In particular, if you do not close a

file, the last packet of bytes might never be delivered. You can also manually flush the

output with the flush method.

Even if an input/output stream class provides concrete methods to work with the raw read

and write functions, application programmers rarely use them. The data that you are

interested in probably contain numbers, strings, and objects, not raw bytes.

Java gives you many input/output stream classes derived from the basic InputStream and

OutputStream classes that let you work with data in the forms that you usually use, not

with bytes.

java.io.InputStream 1.0

• abstract int read()

reads a byte of data and returns the byte read; returns -1 at the end of the input stream.

• int read(byte[] b)

reads into an array of bytes and returns the actual number of bytes read, or -1 at the end

of the input stream; this method reads at most b.length bytes.

• int read(byte[] b, int off, int len)

reads into an array of bytes and returns the actual number of bytes read, or -1 at the end

of the input stream.

• long skip(long n)

skips n bytes in the input stream, returns the actual number of bytes skipped (which may

be less than n if the end of the input stream was encountered).

• int available()

returns the number of bytes available, without blocking (recall that blocking means that

the current thread loses its turn).

• void close()

closes the input stream.

• void mark(int readlimit)

puts a marker at the current position in the input stream (not all streams support this

feature). If more than readlimit bytes have been read from the input stream, the stream

is allowed to forget the marker.

• void reset()

returns to the last marker. Subsequent calls to read reread the bytes. If there is no current

marker, the input stream is not reset.

• boolean markSupported()

returns true if the input stream supports marking.

java.io.OutputStream 1.0

• abstract void write(int n)

writes a byte of data.

• void write(byte[] b)

• void write(byte[] b, int off, int len)

writes all bytes or a range of bytes in the array b.

• void close()

flushes and closes the output stream.

• void flush()

flushes the output stream—that is, sends any buffered data to its destination.

2.1.2 The Complete Stream Zoo

Unlike C, which gets by just fine with a single type FILE*, Java has a whole zoo of more

than 60 (!) different input/output stream types (see Figures 2.1 and 2.2).

Figure 2.1 Input and output stream hierarchy

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02fig01
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02fig02

Figure 2.2 Reader and writer hierarchy

Let’s divide the animals in the input/output stream zoo by how they are used. There are

separate hierarchies for classes that process bytes and characters. As you saw, the

InputStream and OutputStream classes let you read and write individual bytes and arrays

of bytes. These classes form the basis of the hierarchy shown in Figure 2.1. To read and

write strings and numbers, you need more capable subclasses. For example, DataInputStream

and DataOutputStream let you read and write all the primitive Java types in binary format.

Finally, there are input/output streams that do useful stuff; for example, the

ZipInputStream and ZipOutputStream let you read and write files in the familiar ZIP

compression format.

For Unicode text, on the other hand, you can use subclasses of the abstract classes Reader

and Writer (see Figure 2.2). The basic methods of the Reader and Writer classes are similar

to those for InputStream and OutputStream.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02fig01
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02fig02

 abstract int read() abstract void write(int c)

The read method returns either a Unicode code unit (as an integer between 0 and 65535) or

-1 when you have reached the end of the file. The write method is called with a Unicode

code unit. (See Volume I, Chapter 3 for a discussion of Unicode code units.)

There are four additional interfaces: Closeable, Flushable, Readable, and Appendable (see

Figure 2.3). The first two interfaces are very simple, with methods

 void close() throws IOException

and

 void flush()

respectively. The classes InputStream, OutputStream, Reader, and Writer all implement the

Closeable interface.

NOTE:

The java.io.Closeable interface extends the java.lang.AutoCloseable interface. Therefore,

you can use the try-with-resources statement with any Closeable. Why have two interfaces?

The close method of the Closeable interface only throws an IOException, whereas the

AutoCloseable.close method may throw any exception.

OutputStream and Writer implement the Flushable interface.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02fig03

Figure 2.3 The Closeable, Flushable, Readable, and Appendable interfaces

The Readable interface has a single method

 int read(CharBuffer cb)

The CharBuffer class has methods for sequential and random read/write access. It represents

an in-memory buffer or a memory-mapped file. (See Section 2.6.9, “The Buffer Data

Structure,” on p. for details.)

The Appendable interface has two methods for appending single characters and character

sequences:

 Appendable append(char c) Appendable append(CharSequence s)

The CharSequence interface describes basic properties of a sequence of char values. It is

implemented by String, CharBuffer, StringBuilder, and StringBuffer.

Of the input/output stream classes, only Writer implements Appendable.

java.io.Closeable 5.0

• void close()

closes this Closeable. This method may throw an IOException.

java.io.Flushable 5.0

• void flush()

flushes this Flushable.

java.lang.Readable 5.0

• int read(CharBuffer cb)

attempts to read as many char values into cb as it can hold. Returns the number of values

read, or -1 if no further values are available from this Readable.

java.lang.Appendable 5.0

• Appendable append(char c)

• Appendable append(CharSequence cs)

appends the given code unit, or all code units in the given sequence, to this Appendable;

returns this.

java.lang.CharSequence 1.4

• char charAt(int index)

returns the code unit at the given index.

• int length()

returns the number of code units in this sequence.

• CharSequence subSequence(int startIndex, int endIndex)

returns a CharSequence consisting of the code units stored at index startIndex to endIndex

- 1.

• String toString()

returns a string consisting of the code units of this sequence.

2.1.3 Combining Input/Output Stream Filters

FileInputStream and FileOutputStream give you input and output streams attached to a disk

file. You need to pass the file name or full path name of the file to the constructor. For

example,

 FileInputStream fin = new FileInputStream("employee.dat");

looks in the user directory for a file named employee.dat.

TIP:

All the classes in java.io interpret relative path names as starting from the user’s working

directory. You can get this directory by a call to System.getProperty("user.dir").

Caution

Since the backslash character is the escape character in Java strings, be sure to use \\

for Windows-style path names (for example, C:\\Windows\\win.ini). In Windows, you can also

use a single forward slash (C:/Windows/win.ini) because most Windows file-handling system

calls will interpret forward slashes as file separators. However, this is not

recommended—the behavior of the Windows system functions is subject to change. Instead,

for portable programs, use the file separator character for the platform on which your

program runs. It is available as the constant string java.io.File.separator.

Like the abstract InputStream and OutputStream classes, these classes support only reading

and writing at the byte level. That is, we can only read bytes and byte arrays from the

object fin.

 byte b = (byte) fin.read();

As you will see in the next section, if we just had a DataInputStream, we could read numeric

types:

 DataInputStream din = . . .;

 double s = din.readDouble();

But just as the FileInputStream has no methods to read numeric types, the DataInputStream

has no method to get data from a file.

Java uses a clever mechanism to separate two kinds of responsibilities. Some input streams

(such as the FileInputStream and the input stream returned by the openStream method of the

URL class) can retrieve bytes from files and other more exotic locations. Other input streams

(such as the DataInputStream) can assemble bytes into more useful data types. The Java

programmer has to combine the two. For example, to be able to read numbers from a file,

first create a FileInputStream and then pass it to the constructor of a DataInputStream.

 FileInputStream fin = new FileInputStream("employee.dat");

 DataInputStream din = new DataInputStream(fin);

 double s = din.readDouble();

If you look at Figure 2.1 again, you can see the classes FilterInputStream and

FilterOutputStream. The subclasses of these classes are used to add capabilities to

input/output streams that process bytes.

You can add multiple capabilities by nesting the filters. For example, by default, input

streams are not buffered. That is, every call to read asks the operating system to dole

out yet another byte. It is more efficient to request blocks of data instead and store them

in a buffer. If you want buffering and the data input methods for a file, you need to use
the following rather monstrous sequence of constructors:

 DataInputStream din = new DataInputStream(

 new BufferedInputStream(

 new FileInputStream("employee.dat")));

Notice that we put the DataInputStream last in the chain of constructors because we want
to use the DataInputStream methods, and we want them to use the buffered read method.

Sometimes you’ll need to keep track of the intermediate input streams when chaining them

together. For example, when reading input, you often need to peek at the next byte to see

if it is the value that you expect. Java provides the PushbackInputStream for this purpose.

 PushbackInputStream pbin = new PushbackInputStream(

 new BufferedInputStream(

 new FileInputStream("employee.dat")));

Now you can speculatively read the next byte

 int b = pbin.read();

and throw it back if it isn’t what you wanted.

 if (b != '<') pbin.unread(b);

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02fig01

However, reading and unreading are the only methods that apply to a pushback input stream.
If you want to look ahead and also read numbers, then you need both a pushback input stream

and a data input stream reference.

 DataInputStream din = new DataInputStream(

 pbin = new PushbackInputStream(

 new BufferedInputStream(

 new FileInputStream("employee.dat"))));

Of course, in the input/output libraries of other programming languages, niceties such as

buffering and lookahead are automatically taken care of, so it is a bit of a hassle to resort,

in Java, to combining stream filters. However, the ability to mix and match filter classes

to construct truly useful sequences of input/output streams does give you an immense amount

of flexibility. For example, you can read numbers from a compressed ZIP file by using the

following sequence of input streams (see Figure 2.4):

 ZipInputStream zin = new ZipInputStream(new FileInputStream("employee.zip"));

 DataInputStream din = new DataInputStream(zin);

Figure 2.4 A sequence of filtered input streams

(See Section 2.3.3, “ZIP Archives,” on p. 77 for more on Java’s handling of ZIP files.)

java.io.FileInputStream 1.0

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02fig04
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02lev2-3-3

• FileInputStream(String name)

• FileInputStream(File file)

creates a new file input stream using the file whose path name is specified by the name

string or the file object. (The File class is described at the end of this chapter.) Path

names that are not absolute are resolved relative to the working directory that was set

when the VM started.

java.io.FileOutputStream 1.0

• FileOutputStream(String name)

• FileOutputStream(String name, boolean append)

• FileOutputStream(File file)

• FileOutputStream(File file, boolean append)

creates a new file output stream specified by the name string or the file object. (The File

class is described at the end of this chapter.) If the append parameter is true, an existing

file with the same name will not be deleted and data will be added at the end of the file.

Otherwise, this method deletes any existing file with the same name.

java.io.BufferedInputStream 1.0

• BufferedInputStream(InputStream in)

creates a buffered input stream. A buffered input stream reads bytes from a stream without

causing a device access every time. When the buffer is empty, a new block of data is read

into the buffer.

java.io.BufferedOutputStream 1.0

• BufferedOutputStream(OutputStream out)

creates a buffered output stream. A buffered output stream collects bytes to be written

without causing a device access every time.When the buffer fills up or when the stream is

flushed, the data are written.

java.io.PushbackInputStream 1.0

• PushbackInputStream(InputStream in)

• PushbackInputStream(InputStream in, int size)

constructs an input stream with one-byte lookahead or a pushback buffer of specified size.

• void unread(int b)

pushes back a byte, which is retrieved again by the next call to read.

Parameters: b The byte to be read again

2.2 Text Input and Output

When saving data, you have the choice between binary and text formats. For example, if the

integer 1234 is saved in binary, it is written as the sequence of bytes 00 00 04 D2 (in

hexadecimal notation). In text format, it is saved as the string "1234". Although binary

I/O is fast and efficient, it is not easily readable by humans. We first discuss text I/O

and cover binary I/O in Section 2.3, “Reading and Writing Binary Data,” on p. 69.

When saving text strings, you need to consider the character encoding. In the UTF-16 encoding
that Java uses internally, the string "José" is encoded as 00 4A 00 6F 00 73 00 E9 (in hex).

However, many programs expect that text files are encoded in a different encoding. In UTF-8,

the encoding most commonly used on the Internet, the string would be written as 4A 6F 73

C3 A9, without the zero bytes for the first three letters and with two bytes for the é

character.

The OutputStreamWriter class turns an output stream of Unicode code units into a stream

of bytes, using a chosen character encoding. Conversely, the InputStreamReader class turns

an input stream that contains bytes (specifying characters in some character encoding) into

a reader that emits Unicode code units.

For example, here is how you make an input reader that reads keystrokes from the console

and converts them to Unicode:

 InputStreamReader in = new InputStreamReader(System.in);

This input stream reader assumes the default character encoding used by the host system.

On desktop operating systems, that can be an archaic encoding such as Windows 1252 or

MacRoman. You should always choose a specific encoding by in the constructor for the

InputStreamReader, for example:

 InputStreamReader in = new InputStreamReader(new FileInputStream("data.txt"),

"UTF-8");

See Section 2.2.4, “Character Encodings,” on p. 67 for more information on character

encodings.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02lev2-2-4

2.2.1 How to Write Text Output

For text output, use a PrintWriter. That class has methods to print strings and numbers

in text format. There is a convenience constructor for printing to a file. The statement

 PrintWriter out = new PrintWriter("employee.txt", "UTF-8");

is equivalent to

 PrintWriter out = new PrintWriter(

 new FileOutputStream("employee.txt"), "UTF-8");

To write to a print writer, use the same print, println, and printf methods that you used

with System.out. You can use these methods to print numbers (int, short, long, float, double),

characters, boolean values, strings, and objects.

For example, consider this code:

 String name = "Harry Hacker";

 double salary = 75000;

 out.print(name);

 out.print(' ');

 out.println(salary);

This writes the characters

 Harry Hacker 75000.0

to the writer out. The characters are then converted to bytes and end up in the file

employee.txt.

The println method adds the correct end-of-line character for the target system ("\r\n"

on Windows, "\n" on UNIX) to the line. This is the string obtained by the call

System.getProperty("line.separator").

If the writer is set to autoflush mode, all characters in the buffer are sent to their
destination whenever println is called. (Print writers are always buffered.) By default,

autoflushing is not enabled. You can enable or disable autoflushing by using the
PrintWriter(Writer writer, boolean autoFlush) constructor:

 PrintWriter out = new PrintWriter(

 new OutputStreamWriter(

 new FileOutputStream("employee.txt"), "UTF-8"),

 true); // autoflush

The print methods don’t throw exceptions. You can call the checkError method to see if

something went wrong with the output stream.

NOTE:

Java veterans might wonder whatever happened to the PrintStream class and to System.out.

In Java 1.0, the PrintStream class simply truncated all Unicode characters to ASCII

characters by dropping the top byte. (At the time, Unicode was still a 16-bit encoding.)

Clearly, that was not a clean or portable approach, and it was fixed with the introduction

of readers and writers in Java 1.1. For compatibility with existing code, System.in,

System.out, and System.err are still input/output streams, not readers and writers. But

now the PrintStream class internally converts Unicode characters to the default host

encoding in the same way as the PrintWriter does. Objects of type PrintStream act exactly

like print writers when you use the print and println methods, but unlike print writers

they allow you to output raw bytes with the write(int) and write(byte[]) methods.

java.io.PrintWriter 1.1

• PrintWriter(Writer out)

• PrintWriter(Writer writer)

creates a new PrintWriter that writes to the given writer.

• PrintWriter(String filename, String encoding)

• PrintWriter(File file, String encoding)

creates a new PrintWriter that writes to the given file, using the given character encoding.

• void print(Object obj)

prints an object by printing the string resulting from toString.

Parameters: obj The object to be printed

• void print(String s)

prints a string containing Unicode code units.

• void println(String s)

prints a string followed by a line terminator. Flushes the output stream if it is in autoflush

mode.

• void print(char[] s)

prints all Unicode code units in the given array.

• void print(char c)

prints a Unicode code unit.

• void print(int i)

• void print(long l)

• void print(float f)

• void print(double d)

• void print(boolean b)

prints the given value in text format.

• void printf(String format, Object... args)

prints the given values as specified by the format string. See Volume I, Chapter 3 for the

specification of the format string.

• boolean checkError()

returns true if a formatting or output error occurred. Once the output stream has encountered

an error, it is tainted and all calls to checkError return true.

2.2.2 How to Read Text Input

The easiest way to process arbitrary text is the Scanner class that we used extensively

in Volume I. You can construct a Scanner from any input stream.

Alternatively, you can read a short text file into a string like this:

 String content = new String(Files.readAllBytes(path), charset);

But if you want the file as a sequence of lines, call

 List<String> lines = Files.readAllLines(path, charset);

If the file is large, process the lines lazily as a Stream<String>:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03

 try (Stream<String> lines = Files.lines(path, charset)) {

 ...

 }

In early versions of Java, the only game in town for processing text input was the

BufferedReader class. Its readLine method yields a line of text, or null when no more input

is available. A typical input loop looks like this:

 InputStream inputStream = . . .;

 try (BufferedReader in = new BufferedReader(new InputStreamReader(inputStream)))

 {

 String line;

 while ((line = in.readLine()) != null)

 {

 do something with line
 }

 }

Nowadays, the BufferedReader class also has a lines method that yields a Stream<String>.

However, unlike a Scanner, a BufferedReader has no methods for reading numbers.

2.2.3 Saving Objects in Text Format

In this section, we walk you through an example program that stores an array of Employee

records in a text file. Each record is stored in a separate line. Instance fields are

separated from each other by delimiters. We use a vertical bar (|) as our delimiter. (A

colon (:) is another popular choice. Part of the fun is that everyone uses a different

delimiter.) Naturally, we punt on the issue of what might happen if a | actually occurred

in one of the strings we save.

Here is a sample set of records:

 Harry Hacker|35500|1989|10|1

 Carl Cracker|75000|1987|12|15

 Tony Tester|38000|1990|3|15

Writing records is simple. Since we write to a text file, we use the PrintWriter class.

We simply write all fields, followed by either a | or, for the last field, a \n. This work

is done in the following writeData method that we add to our Employee class:

public void writeData(PrintWriter out) throws IOException

 {

 GregorianCalendar calendar = new GregorianCalendar();

 calendar.setTime(hireDay);

 out.println(name + "|"

 + salary + "|"

 + calendar.get(Calendar.YEAR) + "|"

 + (calendar.get(Calendar.MONTH) + 1) + "|"

 + calendar.get(Calendar.DAY_OF_MONTH));

 }

To read records, we read in a line at a time and separate the fields. We use a scanner to

read each line and then split the line into tokens with the String.split method.

 public void readData(Scanner in)

 {

 String line = in.nextLine();

 String[] tokens = line.split("\\|");

 name = tokens[0];

 salary = Double.parseDouble(tokens[1]);

 int y = Integer.parseInt(tokens[2]);

 int m = Integer.parseInt(tokens[3]);

 int d = Integer.parseInt(tokens[4]);

 GregorianCalendar calendar = new GregorianCalendar(y, m - 1, d);

 hireDay = calendar.getTime();

 }

The parameter of the split method is a regular expression describing the separator. We

discuss regular expressions in more detail at the end of this chapter. As it happens, the

vertical bar character has a special meaning in regular expressions, so it needs to be

escaped with a \ character. That character needs to be escaped by another \, yielding the

"\\|" expression.

The complete program is in Listing 2.1. The static method

 void writeData(Employee[] e, PrintWriter out)

first writes the length of the array, then writes each record. The static method

 Employee[] readData(BufferedReader in)

first reads in the length of the array, then reads in each record. This turns out to be

a bit tricky:

 int n = in.nextInt();

 in.nextLine(); // consume newline

 Employee[] employees = new Employee[n];

 for (int i = 0; i < n; i++)

 {

 employees[i] = new Employee();

 employees[i].readData(in);

 }

The call to nextInt reads the array length but not the trailing newline character. We must

consume the newline so that the readData method can get the next input line when it calls

the nextLine method.

Listing 2.1 textFile/TextFileTest.java

 1 package textFile;

 2

 3 import java.io.*;

 4 import java.util.*;

 5

 6 /**

 7 * @version 1.13 2012-05-30

 8 * @author Cay Horstmann

 9 */

10 public class TextFileTest

11 {

12 public static void main(String[] args) throws IOException

13 {

14 Employee[] staff = new Employee[3];

15

16 staff[0] = new Employee("Carl Cracker", 75000, 1987, 12, 15);

17 staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);

18 staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

19

20 // save all employee records to the file employee.dat

21 try (PrintWriter out = new PrintWriter("employee.dat", "UTF-8"))

22 {

23 writeData(staff, out);

24 }

25

26 // retrieve all records into a new array

27 try (Scanner in = new Scanner(

28 new FileInputStream("employee.dat"), "UTF-8"))

29 {

30 Employee[] newStaff = readData(in);

31

32 // print the newly read employee records

33 for (Employee e : newStaff)

34 System.out.println(e);

35 }

36 }

37

38 /**

39 * Writes all employees in an array to a print writer

40 * @param employees an array of employees

41 * @param out a print writer

42 */

43 private static void writeData(Employee[] employees, PrintWriter out) throws

IOException

44 {

45 // write number of employees

46 out.println(employees.length);

47

48 for (Employee e : employees)

49 writeEmployee(out, e);

50 }

51

52 /**

53 * Reads an array of employees from a scanner

54 * @param in the scanner

55 * @return the array of employees

56 */

57 private static Employee[] readData(Scanner in)

58 {

59 // retrieve the array size

60 int n = in.nextInt();

61 in.nextLine(); // consume newline

62

63 Employee[] employees = new Employee[n];

64 for (int i = 0; i < n; i++)

65 {

66 employees[i] = readEmployee(in);

67 }

68 return employees;

69 }

70

71 /**

72 * Writes employee data to a print writer

73 * @param out the print writer

74 */

75 public static void writeEmployee(PrintWriter out, Employee e)

76 {

77 GregorianCalendar calendar = new GregorianCalendar();

78 calendar.setTime(e.getHireDay());

79 out.println(e.getName() + "|" + e.getSalary() + "|" +

calendar.get(Calendar.YEAR) + "|"

80 + (calendar.get(Calendar.MONTH) + 1) + "|" +

calendar.get(Calendar.DAY_OF_MONTH));

81 }

82

83 /**

84 * Reads employee data from a buffered reader

85 * @param in the scanner

86 */

87 public static Employee readEmployee(Scanner in)

88 {

89 String line = in.nextLine();

90 String[] tokens = line.split("\\|");

91 String name = tokens[0];

92 double salary = Double.parseDouble(tokens[1]);

93 int year = Integer.parseInt(tokens[2]);

94 int month = Integer.parseInt(tokens[3]);

95 int day = Integer.parseInt(tokens[4]);

96 return new Employee(name, salary, year, month, day);

97 }

98 }

2.2.4 Character Encodings

Input and output streams are for sequences of bytes, but in many cases you will work with

texts—that, is, sequences of characters. It then matters how characters are encoded into

bytes.

Java uses the Unicode standard for characters. Each character or “code point” has a 21-bit

integer number. There are different character encodings—methods for packaging those 21-bit

numbers into bytes.

The most common encoding is UTF-8, which encodes each Unicode code point into a sequence

of one to four bytes (see Table 2.1). UTF-8 has the advantage that the characters of the

traditional ASCII character set, which contains all characters used in English, only take

up one byte each.

Table 2.1 UTF-8 Encoding

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02tab01

Table 2.2 UTF-16 Encoding

Another common encoding is UTF-16, which encodes each Unicode code point into one or two

16-bit values (see Table 2.2). This is the encoding used in Java strings. Actually, there

are two forms of UTF-16, called “big-endian” and “little-endian.” Consider the 16-bit

value 0x2122. In big-endian format, the more significant byte comes first: 0x21 followed

by 0x22. In little-endian format, it is the other way around: 0x22 0x21. To indicate which

of the two is used, a file can start with the “byte order mark,” the 16-bit quantity 0xFEFF.

A reader can use this value to determine the byte order and discard it.

Caution

Some programs, including Microsoft Notepad, add a byte order mark at the beginning of UTF-8

encoded files. Clearly, this is unnecessary since there are no byte ordering issues in UTF-8.

But the Unicode standard allows it, and even suggests that it’s a pretty good idea since

it leaves little doubt about the encoding. It is supposed to be removed when reading a UTF-8

encoded file. Sadly, Java does not do that, and bug reports against this issue are closed

as “will not fix.” Your best bet is to strip out any leading \uFEFF that you find in your

input.

In addition to the UTF encodings, there are partial encodings that cover a character range

suitable for a given user population. For example, ISO 8859-1 is a one-byte code that

includes accented characters used in Western European languages. Shift-JIS is a

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02tab02

variable-length code for Japanese characters. A large number of these encodings are still

in widespread use.

There is no reliable way to automatically detect the character encoding from a stream of

bytes. Some API methods let you use the “default charset”—the character encoding that

is preferred by the operating system of the computer. Is that the same encoding that is

used by your source of bytes? These bytes may well originate from a different part of the

world. Therefore, you should always explicitly specify the encoding. For example, when

reading a web page, check the Content-Type header.

NOTE:

The platform encoding is returned by the static method Charset.defaultCharset.The static

method CharSet.availableCharsets returns all available Charset instances, as a map from

canonical names to CharSet objects.

Caution

The Oracle implementation of Java has a system property file.encoding for overriding the

platform default. This is not an officially supported property, and it is not consistently

followed by all parts of Oracle’s implementation of the Java library. You should not set

it.

The StandardCharsets class has static variables of type Charset for the character encodings

that every Java virtual machine must support:

 StandardCharsets.UTF_8

 StandardCharsets.UTF_16

 StandardCharsets.UTF_16BE

 StandardCharsets.UTF_16LE

 StandardCharsets.ISO_8859_1

 StandardCharsets.US_ASCII

To obtain the Charset for another encoding, use the static forName method:

 Charset shiftJIS = Charset.forName("Shift-JIS");

Use the Charset object when reading or writing text. For example, you can turn an array

of bytes into a string as

 String str = new String(bytes, StandardCharsets.UTF_8);

TIP:

Some methods allow you to specify a character encoding with a Charset object or a string.

Choose the StandardCharsets constants, so you don’t have to worry about the correct

spelling. For example, new String(bytes, "UTF 8") is not acceptable and will cause a runtime

error.

Caution

Some methods (such as the String(byte[]) constructor) use the default platform encoding

if you don’t specify any; others (such as Files.readAllLines) use UTF-8.

2.3 Reading and Writing Binary Data

Text format is convenient for testing and debugging because it is humanly readable, but

it is not as efficient as transmitting data in binary format. In the following sections,

you will learn how to perform input and output with binary data.

2.3.1 The DataInput and DataOutput interfaces

The DataOutput interface defines the following methods for writing a number, a character,

a boolean value, or a string in binary format:

 writeChars

 writeByte

 writeInt

 writeShort

 writeLong

 writeFloat

 writeDouble

 writeChar

 writeBoolean

 writeUTF

For example, writeInt always writes an integer as a 4-byte binary quantity regardless of

the number of digits, and writeDouble always writes a double as an 8-byte binary quantity.

The resulting output is not human-readable, but the space needed will be the same for each

value of a given type and reading it back in will be faster than parsing text.

NOTE:

There are two different methods of storing integers and floating-point numbers in memory,

depending on the processor you are using. Suppose, for example, you are working with a 4-byte

int, say the decimal number 1234, or 4D2 in hexadecimal (1234 = 4 × 256 + 13 × 16 + 2).

This value can be stored in such a way that the first of the four bytes in memory holds

the most significant byte (MSB) of the value: 00 00 04 D2. This is the so-called big-endian

method. Or, we can start with the least significant byte (LSB) first: D2 04 00 00. This

is called, naturally enough, the little-endian method. For example, the SPARC uses bigendian;

the Pentium, little-endian. This can lead to problems. When a C or C++ file is saved, the

data are saved exactly as the processor stores them. That makes it challenging to move even

the simplest data files from one platform to another. In Java, all values are written in

the big-endian fashion, regardless of the processor. That makes Java data files

platform-independent.

The writeUTF method writes string data using a modified version of 8-bit Unicode

Transformation Format. Instead of simply using the standard UTF-8 encoding, sequences of

Unicode code units are first represented in UTF-16, and then the result is encoded using

the UTF-8 rules. This modified encoding is different for characters with codes higher than

0xFFFF. It is used for backward compatibility with virtual machines that were built when

Unicode had not yet grown beyond 16 bits.

Since nobody else uses this modification of UTF-8, you should only use the writeUTF method

to write strings intended for a Java virtual machine—for example, in a program that

generates bytecodes. Use the writeChars method for other purposes.

To read the data back in, use the following methods defined in the DataInput inter-face:

 readInt

 readShort

 readLong

 readFloat

 readDouble

 readChar

 readBoolean

 readUTF

The DataInputStream class implements the DataInput interface. To read binary data from a

file, combine a DataInputStream with a source of bytes such as a FileInputStream:

 DataInputStream in = new DataInputStream(new FileInputStream("employee.dat"));

Similarly, to write binary data, use the DataOutputStream class that implements the

DataOutput interface:

 DataOutputStream out = new DataOutputStream(new FileOutputStream("employee.dat"));

java.io.DataInput 1.0

• boolean readBoolean()

• byte readByte()

• char readChar()

• double readDouble()

• float readFloat()

• int readInt()

• long readLong()

• short readShort()

reads in a value of the given type.

• void readFully(byte[] b)

reads bytes into the array b, blocking until all bytes are read.

Parameters: b The buffer into which the data are read

• void readFully(byte[] b, int off, int len)

reads bytes into the array b, blocking until all bytes are read.

len The maximum number of bytes to read

• String readUTF()

reads a string of characters in the “modified UTF-8” format.

• int skipBytes(int n)

skips n bytes, blocking until all bytes are skipped.

Parameters: n The number of bytes to be skipped

java.io.DataOutput 1.0

• void writeBoolean(boolean b)

• void writeByte(int b)

• void writeChar(int c)

• void writeDouble(double d)

• void writeFloat(float f)

• void writeInt(int i)

• void writeLong(long l)

• void writeShort(int s)

writes a value of the given type.

• void writeChars(String s)

writes all characters in the string.

• void writeUTF(String s)

writes a string of characters in the “modified UTF-8” format.

2.3.2 Random-Access Files

The RandomAccessFile class lets you read or write data anywhere in a file. Disk files are

random-access, but input/output streams that communicate with a network socket are not.

You can open a random-access file either for reading only or for both reading and writing;

specify the option by using the string "r" (for read access) or "rw" (for read/write access)

as the second argument in the constructor.

 RandomAccessFile in = new RandomAccessFile("employee.dat", "r");

 RandomAccessFile inOut = new RandomAccessFile("employee.dat", "rw");

When you open an existing file as a RandomAccessFile, it does not get deleted.

A random-access file has a file pointer that indicates the position of the next byte to
be read or written. The seek method sets the file pointer to an arbitrary byte position

within the file. The argument to seek is a long integer between zero and the length of the

file in bytes.

The getFilePointer method returns the current position of the file pointer.

The RandomAccessFile class implements both the DataInput and DataOutput interfaces. To read

and write from a random-access file, use methods such as readInt/writeInt and

readChar/writeChar that we discussed in the preceding section.

Let’s walk through an example program that stores employee records in a random-access file.

Each record will have the same size. This makes it easy to read an arbitrary record. Suppose

you want to position the file pointer to the third record. Simply set the file pointer to

the appropriate byte position and start reading.

 long n = 3;

 in.seek((n - 1) * RECORD_SIZE);

 Employee e = new Employee();

 e.readData(in);

If you want to modify the record and save it back into the same location, remember to set

the file pointer back to the beginning of the record:

 in.seek((n - 1) * RECORD_SIZE);

 e.writeData(out);

To determine the total number of bytes in a file, use the length method. The total number

of records is the length divided by the size of each record.

 long nbytes = in.length(); // length in bytes

 int nrecords = (int) (nbytes / RECORD_SIZE);

Integers and floating-point values have a fixed size in binary format, but we have to work

harder for strings. We provide two helper methods to write and read strings of a fixed size.

The writeFixedString writes the specified number of code units, starting at the beginning

of the string. If there are too few code units, the method pads the string, using zero values.

 public static void writeFixedString(String s, int size, DataOutput out)

 throws IOException

 {

 for (int i = 0; i < size; i++)

 {

 char ch = 0;

 if (i < s.length()) ch = s.charAt(i);

 out.writeChar(ch);

 }

 }

The readFixedString method reads characters from the input stream until it has consumed

size code units or until it encounters a character with a zero value. Then, it skips past

the remaining zero values in the input field. For added efficiency, this method uses the

StringBuilder class to read in a string.

 public static String readFixedString(int size, DataInput in)

 throws IOException

 {

 StringBuilder b = new StringBuilder(size);

 int i = 0;

 boolean more = true;

 while (more && i < size)

 {

 char ch = in.readChar();

 i++;

 if (ch == 0) more = false;

 else b.append(ch);

 }

 in.skipBytes(2 * (size - i));

 return b.toString();

 }

We placed the writeFixedString and readFixedString methods inside the DataIO helper class.

To write a fixed-size record, we simply write all fields in binary.

 DataIO.writeFixedString(e.getName(), Employee.NAME_SIZE, out);

 out.writeDouble(e.getSalary());

 GregorianCalendar calendar = new GregorianCalendar();

 calendar.setTime(e.getHireDay());

 out.writeInt(calendar.get(Calendar.YEAR));

 out.writeInt(calendar.get(Calendar.MONTH) + 1);

 out.writeInt(calendar.get(Calendar.DAY_OF_MONTH));

Reading the data back is just as simple.

 String name = DataIO.readFixedString(Employee.NAME_SIZE, in);

 double salary = in.readDouble();

 int y = in.readInt();

 int m = in.readInt();

 int d = in.readInt();

Let us compute the size of each record. We will use 40 characters for the name strings.

Therefore, each record contains 100 bytes:

• 40 characters = 80 bytes for the name

• 1 double = 8 bytes for the salary

• 3 int = 12 bytes for the date

The program shown in Listing 2.2 writes three records into a data file and then reads them

from the file in reverse order. To do this efficiently requires random access—we need to

get at the last record first.

Listing 2.2 randomAccess/RandomAccessTest.java

 1 package randomAccess;

 2

 3 import java.io.*;

 4 import java.util.*;

 5

 6 /**

 7 * @version 1.12 2012-05-30

 8 * @author Cay Horstmann

 9 */

10 public class RandomAccessTest

11 {

12 public static void main(String[] args) throws IOException

13 {

14 Employee[] staff = new Employee[3];

15

16 staff[0] = new Employee("Carl Cracker", 75000, 1987, 12, 15);

17 staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);

18 staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

19

20 try (DataOutputStream out = new DataOutputStream(new

FileOutputStream("employee.dat")))

21 {

22 // save all employee records to the file employee.dat

23 for (Employee e : staff)

24 writeData(out, e);

25 }

26

27 try (RandomAccessFile in = new RandomAccessFile("employee.dat", "r"))

28 {

29 // retrieve all records into a new array

30

31 // compute the array size

32 int n = (int)(in.length() / Employee.RECORD_SIZE);

33 Employee[] newStaff = new Employee[n];

34

35 // read employees in reverse order

36 for (int i = n - 1; i >= 0; i--)

37 {

38 newStaff[i] = new Employee();

39 in.seek(i * Employee.RECORD_SIZE);

40 newStaff[i] = readData(in);

41 }

42

43 // print the newly read employee records

44 for (Employee e : newStaff)

45 System.out.println(e);

46 }

47 }

48

 49

50 /**

51 Writes employee data to a data output

52 @param out the data output

53 @param e the employee

54 */

55 public static void writeData(DataOutput out, Employee e) throws

IOException

56 {

57 DataIO.writeFixedString(e.getName(), Employee.NAME_SIZE, out);

58 out.writeDouble(e.getSalary());

59

60 GregorianCalendar calendar = new GregorianCalendar();

61 calendar.setTime(e.getHireDay());

62 out.writeInt(calendar.get(Calendar.YEAR));

63 out.writeInt(calendar.get(Calendar.MONTH) + 1);

64 out.writeInt(calendar.get(Calendar.DAY_OF_MONTH));

65 }

66

67 /**

68 Reads employee data from a data input

69 @param in the data input

70 @return the employee

71 */

72 public static Employee readData(DataInput in) throws IOException

73 {

74 String name = DataIO.readFixedString(Employee.NAME_SIZE, in);

75 double salary = in.readDouble();

76 int y = in.readInt();

77 int m = in.readInt();

78 int d = in.readInt();

79 return new Employee(name, salary, y, m - 1, d);

80 }

81 }

java.io.RandomAccessFile 1.0

• RandomAccessFile(String file, String mode)

• RandomAccessFile(File file, String mode)

Parameters: file The file to be opened

• long getFilePointer()

returns the current location of the file pointer.

• void seek(long pos)

sets the file pointer to pos bytes from the beginning of the file.

• long length()

returns the length of the file in bytes.

2.3.3 ZIP Archives

ZIP archives store one or more files in (usually) compressed format. Each ZIP archive has

a header with information such as the name of each file and the compression method that

was used. In Java, you can use a ZipInputStream to read a ZIP archive. You need to look

at the individual entries in the archive. The getNextEntry method returns an object of type
ZipEntry that describes the entry. Pass the entry to the getInputStream method of the

ZipInputStream to obtain an input stream for reading the entry. Then call closeEntry to

read the next entry. Here is a typical code sequence to read through a ZIP file:

 ZipInputStream zin = new ZipInputStream(new FileInputStream(zipname));

 ZipEntry entry;

 while ((entry = zin.getNextEntry()) != null)

 {

 InputStream in = zin.getInputStream(entry);

 read the contents of in
 zin.closeEntry();

 }

 zin.close();

To write a ZIP file, use a ZipOutputStream. For each entry that you want to place into the

ZIP file, create a ZipEntry object. Pass the file name to the ZipEntry constructor; it sets

the other parameters such as file date and decompression method. You can override these

settings if you like. Then, call the putNextEntry method of the ZipOutputStream to begin

writing a new file. Send the file data to the ZIP output stream. When you are done, call

closeEntry. Repeat for all the files you want to store. Here is a code skeleton:

 FileOutputStream fout = new FileOutputStream("test.zip");

 ZipOutputStream zout = new ZipOutputStream(fout);

 for all files
 {

 ZipEntry ze = new ZipEntry(filename);
 zout.putNextEntry(ze);

 send data to zout
 zout.closeEntry();

 }

 zout.close();

NOTE:

JAR files (which were discussed in Volume I, Chapter 10) are simply ZIP files with a special

entry, the so-called manifest. Use the JarInputStream and JarOutputStream classes to read

and write the manifest entry.

ZIP input streams are a good example of the power of the stream abstraction. When you read

data stored in compressed form, you don’t need to worry that the data are being decompressed

as they are being requested. Moreover, the source of the bytes in a ZIP stream need not

be a file—the ZIP data can come from a network connection. In fact, whenever the class

loader of an applet reads a JAR file, it reads and decompresses data from the network.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10

NOTE:

Section 2.5.8, “ZIP File Systems,” on p. 115 shows how to access a ZIP archive without

a special API, using the FileSystem class of Java SE 7.

java.util.zip.ZipInputStream 1.1

• ZipInputStream(InputStream in)

creates a ZipInputStream that allows you to inflate data from the given InputStream.

• ZipEntry getNextEntry()

returns a ZipEntry object for the next entry, or null if there are no more entries.

• void closeEntry()

closes the current open entry in the ZIP file. You can then read the next entry by using

getNextEntry().

java.util.zip.ZipOutputStream 1.1

• ZipOutputStream(OutputStream out)

creates a ZipOutputStream that you can use to write compressed data to the specified

OutputStream.

• void putNextEntry(ZipEntry ze)

writes the information in the given ZipEntry to the output stream and positions the stream

for the data. The data can then be written by calling the write() method.

• void closeEntry()

closes the currently open entry in the ZIP file. Use the putNextEntry method to start the

next entry.

• void setLevel(int level)

sets the default compression level of subsequent DEFLATED entries. The default value is

Deflater.DEFAULT_COMPRESSION.Throws an IllegalArgumentException if the level is not valid.

• void setMethod(int method)

sets the default compression method for this ZipOutputStream for any entries that do not

specify a method.

Parameters: method The compression method, either DEFLATED or STORED

java.util.zip.ZipEntry 1.1

• ZipEntry(String name)

constructs a zip entry with a given name.

Parameters: name The name of the entry

• long getCrc()

returns the CRC32 checksum value for this ZipEntry.

• String getName()

returns the name of this entry.

• long getSize()

returns the uncompressed size of this entry, or -1 if the uncompressed size is not known.

• boolean isDirectory()

returns true if this entry is a directory.

• void setMethod(int method)

• void setSize(long size)

sets the size of this entry. Only required if the compression method is STORED.

Parameters: size The uncompressed size of this entry

• void setCrc(long crc)

sets the CRC32 checksum of this entry. Use the CRC32 class to compute this checksum. Only

required if the compression method is STORED.

Parameters: crc The checksum of this entry

java.util.zip.ZipFile 1.1

• ZipFile(String name)

• ZipFile(File file)

creates a ZipFile for reading from the given string or File object.

• Enumeration entries()

returns an Enumeration object that enumerates the ZipEntry objects that describe the entries

of the ZipFile.

• ZipEntry getEntry(String name)

returns the entry corresponding to the given name, or null if there is no such entry.

Parameters: name The entry name

• InputStream getInputStream(ZipEntry ze)

returns an InputStream for the given entry.

Parameters: ze A ZipEntry in the ZIP file

• String getName()

returns the path of this ZIP file.

2.4 Object Input/Output Streams and Serialization

Using a fixed-length record format is a good choice if you need to store data of the same

type. However, objects that you create in an object-oriented program are rarely all of the

same type. For example, you might have an array called staff that is nominally an array

of Employee records but contains objects that are actually instances of a subclass such

as Manager.

It is certainly possible to come up with a data format that allows you to store such

polymorphic collections—but fortunately, we don’t have to. The Java language supports

a very general mechanism, called object serialization, that makes it possible to write any
object to an output stream and read it again later. (You will see later in this chapter

where the term “serialization” comes from.)

To save object data, you first need to open an ObjectOutputStream object:

 ObjectOutputStream out = new ObjectOutputStream(new

FileOutputStream("employee.dat"));

Now, to save an object, simply use the writeObject method of the ObjectOutputStream class

as in the following fragment:

 Employee harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);

 Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);

 out.writeObject(harry);

 out.writeObject(boss);

To read the objects back in, first get an ObjectInputStream object:

 ObjectInputStream in = new ObjectInputStream(new FileInputStream("employee.dat"));

Then, retrieve the objects in the same order in which they were written, using the readObject

method.

 Employee e1 = (Employee) in.readObject();

 Employee e2 = (Employee) in.readObject();

There is, however, one change you need to make to any class that you want to save to an

output stream and restore from an object input stream. The class must implement the

Serializable interface:

 class Employee implements Serializable { . . . }

The Serializable interface has no methods, so you don’t need to change your classes in

any way. In this regard, it is similar to the Cloneable interface that we discussed in Volume

I, Chapter 6. However, to make a class cloneable, you still had to override the clone method

of the Object class. To make a class serializable, you do not need to do anything else.

NOTE:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06

You can write and read only objects with the writeObject/readObject methods. For primitive
type values, use methods such as writeInt/readInt or writeDouble/readDouble. (The object

input/output stream classes implement the DataInput/DataOutput interfaces.)

Behind the scenes, an ObjectOutputStream looks at all the fields of the objects and saves

their contents. For example, when writing an Employee object, the name, date, and salary

fields are written to the output stream.

However, there is one important situation that we need to consider: What happens when one

object is shared by several objects as part of its state?

To illustrate the problem, let us make a slight modification to the Manager class. Let’s

assume that each manager has a secretary:

 class Manager extends Employee

 {

 private Employee secretary;

 ...

 }

Each Manager object now contains a reference to the Employee object that describes the

secretary. Of course, two managers can share the same secretary, as is the case in Figure

2.5 and the following code:

 harry = new Employee("Harry Hacker", . . .);

 Manager carl = new Manager("Carl Cracker", . . .);

 carl.setSecretary(harry);

 Manager tony = new Manager("Tony Tester", . . .);

 tony.setSecretary(harry);

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02fig05
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02fig05

Figure 2.5 Two managers can share a mutual employee.

Saving such a network of objects is a challenge. Of course, we cannot save and restore the

memory addresses for the secretary objects. When an object is reloaded, it will likely occupy

a completely different memory address than it originally did.

Instead, each object is saved with a serial number, hence the name object serialization
for this mechanism. Here is the algorithm:

1. Associate a serial number with each object reference that you encounter (as shown in

Figure 2.6).

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02fig06

Figure 2.6 An example of object serialization

2. When encountering an object reference for the first time, save the object data to the

output stream.

3. If it has been saved previously, just write “same as the previously saved object with

serial number x.”

When reading back the objects, the procedure is reversed.

1. When an object is specified in an object input stream for the first time, construct it,

initialize it with the stream data, and remember the association between the serial number

and the object reference.

2. When the tag “same as the previously saved object with serial number x” is encountered,

retrieve the object reference for the sequence number.

NOTE:

In this chapter, we will use serialization to save a collection of objects to a disk file

and retrieve it exactly as we stored it.Another very important application is the

transmittal of a collection of objects across a network connection to another computer.

Just as raw memory addresses are meaningless in a file, they are also meaningless when

communicating with a different processor. By replacing memory addresses with serial numbers,

serialization permits the transport of object collections from one machine to another. We

study that use of serialization when discussing remote method invocation in [Missing XREF!].

Listing 2.3 is a program that saves and reloads a network of Employee and Manager objects

(some of which share the same employee as a secretary). Note that the secretary object is

unique after reloading—when newStaff[1] gets a raise, that is reflected in the secretary

fields of the managers.

Listing 2.3 objectStream/ObjectStreamTest.java

 1 package objectStream;

 2

 3 import java.io.*;

 4

 5 /**

 6 * @version 1.10 17 Aug 1998

 7 * @author Cay Horstmann

 8 */

 9 class ObjectStreamTest

10 {

11 public static void main(String[] args) throws IOException,

ClassNotFoundException

12 {

13 Employee harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);

14 Manager carl = new Manager("Carl Cracker", 80000, 1987, 12, 15);

15 carl.setSecretary(harry);

16 Manager tony = new Manager("Tony Tester", 40000, 1990, 3, 15);

17 tony.setSecretary(harry);

18

19 Employee[] staff = new Employee[3];

20

21 staff[0] = carl;

22 staff[1] = harry;

23 staff[2] = tony;

24

25 // save all employee records to the file employee.dat

26 try (ObjectOutputStream out = new ObjectOutputStream(new

FileOutputStream("employee.dat")))

27 {

28 out.writeObject(staff);

29 }

30

31 try (ObjectInputStream in = new ObjectInputStream(new

FileInputStream("employee.dat")))

32 {

33 // retrieve all records into a new array

34

35 Employee[] newStaff = (Employee[]) in.readObject();

36

37 // raise secretary's salary

38 newStaff[1].raiseSalary(10);

39

40 // print the newly read employee records

41 for (Employee e : newStaff)

42 System.out.println(e);

43 }

44 }

45 }

java.io.ObjectOutputStream 1.1

• ObjectOutputStream(OutputStream out)

creates an ObjectOutputStream so that you can write objects to the specified OutputStream.

• void writeObject(Object obj)

writes the specified object to the ObjectOutputStream. This method saves the class of the

object, the signature of the class, and the values of any nonstatic, nontransient fields

of the class and its superclasses.

java.io.ObjectInputStream 1.1

• ObjectInputStream(InputStream in)

creates an ObjectInputStream to read back object information from the specified

InputStream.

• Object readObject()

reads an object from the ObjectInputStream. In particular, this method reads back the class

of the object, the signature of the class, and the values of the nontransient and nonstatic

fields of the class and all its superclasses. It does deserializing to allow multiple object

references to be recovered.

2.4.1 Understanding the Object Serialization File Format

Object serialization saves object data in a particular file format. Of course, you can use

the writeObject/readObject methods without having to know the exact sequence of bytes that

represents objects in a file. Nonetheless, we found studying the data format extremely

helpful for gaining insight into the object serialization process. As the details are

somewhat technical, feel free to skip this section if you are not interested in the

implementation.

Every file begins with the two-byte “magic number”

 AC ED

followed by the version number of the object serialization format, which is currently

 00 05

(We use hexadecimal numbers throughout this section to denote bytes.) Then, it contains

a sequence of objects, in the order in which they were saved.

String objects are saved as

For example, the string “Harry” is saved as

 74 00 05 Harry

The Unicode characters of the string are saved in the “modified UTF-8” format.

When an object is saved, the class of that object must be saved as well. The class description

contains

• The name of the class

• The serial version unique ID, which is a fingerprint of the data field types and method
signatures

• A set of flags describing the serialization method

• A description of the data fields

The fingerprint is obtained by ordering the descriptions of the class, superclass,

interfaces, field types, and method signatures in a canonical way, and then applying the

so-called Secure Hash Algorithm (SHA) to that data.

SHA is a fast algorithm that gives a “fingerprint” to a larger block of information. This

fingerprint is always a 20-byte data packet, regardless of the size of the original data.

It is created by a clever sequence of bit operations on the data that makes it essentially

100 percent certain that the fingerprint will change if the information is altered in any

way. (For more details on SHA, see, for example, Cryptography and Network Security, Fifth
Edition, by William Stallings, Prentice Hall, 2011.) However, the serialization mechanism
uses only the first eight bytes of the SHA code as a class fingerprint. It is still very

likely that the class fingerprint will change if the data fields or methods change.

When reading an object, its fingerprint is compared against the current fingerprint of the

class. If they don’t match, it means the class definition has changed after the object

was written, and an exception is generated. Of course, in practice, classes do evolve, and

it might be necessary for a program to read in older versions of objects. We will discuss

this in Section 2.4.7, “Versioning,” on p. .

Here is how a class identifier is stored:

• 72

• 2-byte length of class name

• Class name

• 8-byte fingerprint

• 1-byte flag

• 2-byte count of data field descriptors

• Data field descriptors

• 78 (end marker)

• Superclass type (70 if none)

The flag byte is composed of three bit masks, defined in java.io.ObjectStreamConstants:

 static final byte SC_WRITE_METHOD = 1;

 // class has a writeObject method that writes additional data

 static final byte SC_SERIALIZABLE = 2;

 // class implements the Serializable interface

 static final byte SC_EXTERNALIZABLE = 4;

 // class implements the Externalizable interface

We discuss the Externalizable interface later in this chapter. Externalizable classes

supply custom read and write methods that take over the output of their instance fields.

The classes that we write implement the Serializable interface and will have a flag value

of 02. The serializable java.util.Date class defines its own readObject/writeObject methods

and has a flag of 03.

Each data field descriptor has the format:

• 1-byte type code

• 2-byte length of field name

• Field name

• Class name (if the field is an object)

The type code is one of the following:

When the type code is L, the field name is followed by the field type. Class and field name

strings do not start with the string code 74, but field types do. Field types use a slightly

different encoding of their names—namely, the format used by native methods.

For example, the salary field of the Employee class is encoded as:

 D 00 06 salary

Here is the complete class descriptor of the Employee class:

These descriptors are fairly long. If the same class descriptor is needed again in the file,
an abbreviated form is used:

71 4-byte serial number

The serial number refers to the previous explicit class descriptor. We discuss the numbering

scheme later.

An object is stored as

73 class descriptor object data

For example, here is how an Employee object is stored:

As you can see, the data file contains enough information to restore the Employee object.

Arrays are saved in the following format:

The array class name in the class descriptor is in the same format as that used by native

methods (which is slightly different from the format used by class names in other class

descriptors). In this format, class names start with an L and end with a semicolon.

For example, an array of three Employee objects starts out like this:

Note that the fingerprint for an array of Employee objects is different from a finger-print

of the Employee class itself.

All objects (including arrays and strings) and all class descriptors are given serial

numbers as they are saved in the output file. The numbers start at 00 7E 00 00.

We already saw that a full class descriptor for any given class occurs only once. Subsequent

descriptors refer to it. For example, in our previous example, a repeated reference to the

Date class was coded as

 71 00 7E 00 08

The same mechanism is used for objects. If a reference to a previously saved object is written,

it is saved in exactly the same way; that is, 71 followed by the serial number. It is always

clear from the context whether the particular serial reference denotes a class descriptor

or an object.

Finally, a null reference is stored as

 70

Here is the commented output of the ObjectRefTest program of the preceding section. Run

the program, look at a hex dump of its data file employee.dat, and compare it with the

commented listing. The important lines toward the end of the output show a reference to

a previously saved object.

Of course, studying these codes can be about as exciting as reading the average phone book.

It is not important to know the exact file format (unless you are trying to create an evil

effect by modifying the data), but it is still instructive to know that the serialized format

has a detailed description of all the objects that it contains, with sufficient detail to

allow reconstruction of both objects and arrays of objects.

What you should remember is this:

• The serialized format contains the types and data fields of all objects.

• Each object is assigned a serial number.

• Repeated occurrences of the same object are stored as references to that serial number.

2.4.2 Modifying the Default Serialization Mechanism

Certain data fields should never be serialized—for example, integer values that store file

handles or handles of windows that are only meaningful to native methods. Such information

is guaranteed to be useless when you reload an object at a later time or transport it to

a different machine. In fact, improper values for such fields can actually cause native

methods to crash. Java has an easy mechanism to prevent such fields from ever being

serialized. Mark them with the keyword transient. You also need to tag fields as transient

if they belong to nonserializable classes. Transient fields are always skipped when objects

are serialized.

The serialization mechanism provides a way for individual classes to add validation or any

other desired action to the default read and write behavior. A serializable class can define

methods with the signature

 private void readObject(ObjectInputStream in)

 throws IOException, ClassNotFoundException;

 private void writeObject(ObjectOutputStream out)

 throws IOException;

Then, the data fields are no longer automatically serialized, and these methods are called

instead.

Here is a typical example. A number of classes in the java.awt.geom package, such as

Point2D.Double, are not serializable. Now, suppose you want to serialize a class

LabeledPoint that stores a String and a Point2D.Double. First, you need to mark the

Point2D.Double field as transient to avoid a NotSerializableException.

 public class LabeledPoint implements Serializable

 {

 private String label;

 private transient Point2D.Double point;

 ...

 }

In the writeObject method, we first write the object descriptor and the String field, label,

by calling the defaultWriteObject method. This is a special method of the ObjectOutputStream

class that can only be called from within a writeObject method of a serializable class.

Then we write the point coordinates, using the standard DataOutput calls.

 private void writeObject(ObjectOutputStream out)

 throws IOException

 {

 out.defaultWriteObject();

 out.writeDouble(point.getX());

 out.writeDouble(point.getY());

 }

In the readObject method, we reverse the process:

 private void readObject(ObjectInputStream in)

 throws IOException

 {

 in.defaultReadObject();

 double x = in.readDouble();

 double y = in.readDouble();

 point = new Point2D.Double(x, y);

 }

Another example is the java.util.Date class that supplies its own readObject and writeObject

methods. These methods write the date as a number of milliseconds from the epoch (January

1, 1970, midnight UTC). The Date class has a complex internal representation that stores

both a Calendar object and a millisecond count to optimize lookups. The state of the Calendar

is redundant and does not have to be saved.

The readObject and writeObject methods only need to save and load their data fields. They

should not concern themselves with superclass data or any other class information.

Instead of letting the serialization mechanism save and restore object data, a class can

define its own mechanism. To do this, a class must implement the Externalizable interface.

This, in turn, requires it to define two methods:

 public void readExternal(ObjectInputStream in)

 throws IOException, ClassNotFoundException;

 public void writeExternal(ObjectOutputStream out)

 throws IOException;

Unlike the readObject and writeObject methods that were described in the preceding section,

these methods are fully responsible for saving and restoring the entire object, including
the superclass data. When writing an object, the serialization mechanism merely records
the class of the object in the output stream. When reading an externalizable object, the

object input stream creates an object with the no-argument constructor and then calls the

readExternal method. Here is how you can implement these methods for the Employee class:

 public void readExternal(ObjectInput s)

 throws IOException

 {

 name = s.readUTF();

 salary = s.readDouble();

 hireDay = new Date(s.readLong());

 }

 public void writeExternal(ObjectOutput s)

 throws IOException

 {

 s.writeUTF(name);

 s.writeDouble(salary);

 s.writeLong(hireDay.getTime());

 }

Caution

Unlike the readObject and writeObject methods, which are private and can only be called

by the serialization mechanism, the readExternal and writeExternal methods are public. In

particular, readExternal potentially permits modification of the state of an existing

object.

2.4.3 Serializing Singletons and Typesafe Enumerations

You have to pay particular attention to serializing and deserializing objects that are

assumed to be unique. This commonly happens when you are implementing singletons and

typesafe enumerations.

If you use the enum construct of the Java language, you need not worry about

serialization—it just works. However, suppose you maintain legacy code that contains an

enumerated type such as

 public class Orientation

 {

 public static final Orientation HORIZONTAL = new Orientation(1);

 public static final Orientation VERTICAL = new Orientation(2);

 private int value;

 private Orientation(int v) { value = v; }

 }

This idiom was common before enumerations were added to the Java language. Note that the

constructor is private. Thus, no objects can be created beyond Orientation.HORIZONTAL and

Orientation.VERTICAL. In particular, you can use the == operator to test for object

equality:

 if (orientation == Orientation.HORIZONTAL)

There is an important twist that you need to remember when a typesafe enumeration implements

the Serializable interface. The default serialization mechanism is not appropriate. Suppose

we write a value of type Orientation and read it in again:

 Orientation original = Orientation.HORIZONTAL;

 ObjectOutputStream out = . . .;

 out.write(original);

 out.close();

 ObjectInputStream in = . . .;

 Orientation saved = (Orientation) in.read();

Now the test

 if (saved == Orientation.HORIZONTAL) . . .

will fail. In fact, the saved value is a completely new object of the Orientation type that

is not equal to any of the predefined constants. Even though the constructor is private,

the serialization mechanism can create new objects!

To solve this problem, you need to define another special serialization method, called

readResolve. If the readResolve method is defined, it is called after the object is

deserialized. It must return an object which then becomes the return value of the readObject

method. In our case, the readResolve method will inspect the value field and return the

appropriate enumerated constant:

 protected Object readResolve() throws ObjectStreamException

 {

 if (value == 1) return Orientation.HORIZONTAL;

 if (value == 2) return Orientation.VERTICAL;

 return null; // this shouldn't happen

 }

Remember to add a readResolve method to all typesafe enumerations in your legacy code and

to all classes that follow the singleton design pattern.

2.4.4 Versioning

If you use serialization to save objects, you will need to consider what happens when your

program evolves. Can version 1.1 read the old files? Can the users who still use 1.0 read

the files that the new version is producing? Clearly, it would be desirable if object files

could cope with the evolution of classes.

At first glance, it seems that this would not be possible. When a class definition changes

in any way, its SHA fingerprint also changes, and you know that object input streams will

refuse to read in objects with different fingerprints. However, a class can indicate that

it is compatible with an earlier version of itself. To do this, you must first obtain the
fingerprint of the earlier version of the class. Use the stand-alone serialver program that
is part of the JDK to obtain this number. For example, running

 serialver Employee

prints

 Employee: static final long serialVersionUID = -1814239825517340645L;

If you start the serialver program with the -show option, the program brings up a graphical

dialog box (see Figure 2.7).

Figure 2.7 The graphical version of the serialver program

All later versions of the class must define the serialVersionUID constant to the same
fingerprint as the original.

 class Employee implements Serializable // version 1.1

 {

 ...

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02fig07

 public static final long serialVersionUID = -1814239825517340645L;

 }

When a class has a static data member named serialVersionUID, it will not compute the

fingerprint manually but will use that value instead.

Once that static data member has been placed inside a class, the serialization system is

now willing to read in different versions of objects of that class.

If only the methods of the class change, there is no problem with reading the new object

data. However, if the data fields change, you may have problems. For example, the old file

object may have more or fewer data fields than the one in the program, or the types of the

data fields may be different. In that case, the object input stream makes an effort to convert

the serialized object to the current version of the class.

The object input stream compares the data fields of the current version of the class with

those of the version in the serialized object. Of course, the object input stream considers

only the nontransient and nonstatic data fields. If two fields have matching names but

different types, the object input stream makes no effort to convert one type to the

other—the objects are incompatible. If the serialized object has data fields that are not

present in the current version, the object input stream ignores the additional data. If

the current version has data fields that are not present in the serialized object, the added

fields are set to their default (null for objects, zero for numbers, and false for boolean

values).

Here is an example. Suppose we have saved a number of employee records on disk, using the

original version (1.0) of the class. Now we change the Employee class to version 2.0 by

adding a data field called department. Figure 2.8 shows what happens when a 1.0 object is

read into a program that uses 2.0 objects. The department field is set to null. Figure 2.9

shows the opposite scenario: A program using 1.0 objects reads a 2.0 object. The additional

department field is ignored.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02fig08
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02fig09

Figure 2.8 Reading an object with fewer data fields

Figure 2.9 Reading an object with more data fields

Is this process safe? It depends. Dropping a data field seems harmless—the recipient still

has all the data that it knew how to manipulate. Setting a data field to null might not

be so safe. Many classes work hard to initialize all data fields in all constructors to

non-null values, so that the methods don’t have to be prepared to handle null data. It

is up to the class designer to implement additional code in the readObject method to fix

version incompatibilities or to make sure the methods are robust enough to handle null data.

2.4.5 Using Serialization for Cloning

There is an amusing use for the serialization mechanism: It gives you an easy way to clone

an object, provided the class is serializable. Simply serialize it to an output stream and

then read it back in. The result is a new object that is a deep copy of the existing object.

You don’t have to write the object to a file—you can use a ByteArrayOutputStream to save

the data into a byte array.

As Listing 2.4 shows, to get clone for free, simply extend the SerialCloneable class, and

you are done.

You should be aware that this method, although clever, will usually be much slower than

a clone method that explicitly constructs a new object and copies or clones the data fields.

Listing 2.4 serialClone/SerialCloneTest.java

 1 package serialClone;

 2

 3 /**

 4 @version 1.20 17 Aug 1998

 5 @author Cay Horstmann

 6 */

 7

 8 import java.io.*;

 9 import java.util.*;

10

11 public class SerialCloneTest

12 {

13 public static void main(String[] args)

14 {

15 Employee harry = new Employee("Harry Hacker", 35000, 1989, 10, 1);

16 // clone harry

17 Employee harry2 = (Employee) harry.clone();

18

19 // mutate harry

20 harry.raiseSalary(10);

21

22 // now harry and the clone are different

23 System.out.println(harry);

24 System.out.println(harry2);

25 }

26 }

27

28 /**

29 A class whose clone method uses serialization.

30 */

31 class SerialCloneable implements Cloneable, Serializable

32 {

33 public Object clone()

34 {

35 try

36 {

37 // save the object to a byte array

38 ByteArrayOutputStream bout = new ByteArrayOutputStream();

39 ObjectOutputStream out = new ObjectOutputStream(bout);

40 out.writeObject(this);

41 out.close();

42

43 // read a clone of the object from the byte array

44 ByteArrayInputStream bin = new

ByteArrayInputStream(bout.toByteArray());

45 ObjectInputStream in = new ObjectInputStream(bin);

46 Object ret = in.readObject();

47 in.close();

48

49 return ret;

50 }

51 catch (Exception e)

52 {

53 return null;

54 }

55 }

56 }

57

58 /**

59 The familiar Employee class, redefined to extend the

60 SerialCloneable class.

61 */

62 class Employee extends SerialCloneable

63 {

64 private String name;

65 private double salary;

66 private Date hireDay;

67

68 public Employee(String n, double s, int year, int month, int day)

69 {

70 name = n;

71 salary = s;

72 GregorianCalendar calendar = new GregorianCalendar(year, month

- 1, day);

73 hireDay = calendar.getTime();

74 }

75

76 public String getName()

77 {

78 return name;

79 }

80

81 public double getSalary()

82 {

83 return salary;

84 }

85

86 public Date getHireDay()

87 {

88 return hireDay;

89 }

90

91 public void raiseSalary(double byPercent)

92 {

93 double raise = salary * byPercent / 100;

94 salary += raise;

95 }

96

97 public String toString()

98 {

99 return getClass().getName()

100 + "[name=" + name

101 + ",salary=" + salary

102 + ",hireDay=" + hireDay

103 + "]";

104 }

105 }

2.5 Working with Files

You have learned how to read and write data from a file. However, there is more to file

management than reading and writing. The Path and Files classes encapsulate the

functionality required to work with the file system on the user’s machine. For example,

use the Files class to remove or rename the file, or to find out when a file was last modified.

In other words, the input/output stream classes are concerned with the contents of files,

whereas the classes that we discuss here are concerned with the storage of files on a disk.

The Path and Files classes were added in Java SE 7. They are much more convenient to use

than the File class which dates back all the way to JDK 1.0. We expect them to be very popular

with Java programmers and discuss them in-depth.

2.5.1 Paths

A Path is a sequence of directory names, optionally followed by a file name. The first

component of a path may be a root component such as / or C:\. The permissible root components
depend on the file system. A path that starts with a root component is absolute. Otherwise,
it is relative. For example, here we construct an absolute and a relative path. For the
absolute path, we assume a computer running a UNIX-like file system.

 Path absolute = Paths.get("/home", "harry");

 Path relative = Paths.get("myprog", "conf", "user.properties");

The static Paths.get method receives one or more strings, which it joins with the path

separator of the default file system (/ for a UNIX-like file system, \ for Windows). It

then parses the result, throwing an InvalidPathException if the result is not a valid path

in the given file system. The result is a Path object.

The get method can get a single string containing multiple components. For example, you

can read a path from a configuration file like this:

 String baseDir = props.getProperty("base.dir")

 // May be a string such as /opt/myprog or c:\Program Files\myprog

 Path basePath = Paths.get(baseDir); // OK that baseDir has separators

NOTE:

A path does not have to correspond to a file that actually exists. It is merely an abstract

sequence of names.As you will see in the next section, when you want to create a file, you

first make a path and then call a method to create the corresponding file.

It is very common to combine or resolve paths. The call p.resolve(q) returns a path according
to these rules:

• If q is absolute, then the result is q.

• Otherwise, the result is “p then q”, according to the rules of the file system.

For example, suppose your application needs to find its working directory relative to a

given base directory that is read from a configuration file, as in the preceding example.

 Path workRelative = Paths.get("work");

 Path workPath = basePath.resolve(workRelative);

There is a shortcut for the resolve method that takes a string instead of a path:

 Path workPath = basePath.resolve("work");

There is a convenience method resolveSibling that resolves against a path’s parent,

yielding a sibling path. For example, if workPath is /opt/myapp/work, the call

 Path tempPath = workPath.resolveSibling("temp")

creates /opt/myXapp/temp.

The opposite of resolve is relativize. The call p.relativize(r) yields the path q which,

when resolved with p, yields r. For example, relativizing "/home/harry" against

"/home/fred/input.txt" yields "../fred/input.txt". Here, we assume that .. denotes the

parent directory in the file system.

The normalize method removes any redundant . and .. components (or whatever the file system

may deem redundant). For example, normalizing the path /home/harry/../fred/./input.txt

yields /home/fred/input.txt.

The toAbsolutePath method yields the absolute path of a given path, starting at a root

component, such as /home/fred/input.txt or c:\Users\fred\input.txt.

The Path class has many useful methods for taking paths apart. This code sample shows some

of the most useful ones:

 Path p = Paths.get("/home", "fred", "myprog.properties");

 Path parent = p.getParent(); // the path /home/fred

 Path file = p.getFileName(); // the path myprog.properties

 Path root = p.getRoot(); // the path /

As you have already seen in Volume I, you can construct a Scannner from a Path object:

 Scanner in = new Scanner(Paths.get("/home/fred/input.txt"));

NOTE:

Occasionally, you may need to interoperate with legacy APIs that use the File class instead

of the Path class. The Path class has a toFile method, and the File class has a toPath method.

java.nio.file.Paths 7

• static Path get(String first, String... more) makes a path by joining the given strings.

java.nio.file.Path 7

• Path resolve(Path other)

• Path resolve(String other) if other is absolute, returns other; otherwise, returns the

path obtained from joining this and other.

• Path resolveSibling(Path other)

• Path resolveSibling(String other) if other is absolute, returns other; otherwise, returns

the path obtained from joining the parent of this and other.

• Path relativize(Path other) returns the relative path that, when resolved with this,

yields other.

• Path normalize() removes redundant path elements such as . and ..

• Path toAbsolutePath() returns an absolute path that is equivalent to this path.

• Path getParent() returns the parent, or null if this path has no parent.

• Path getFileName() returns the last component of this path, or null if this path has no

components.

• Path getRoot() returns the root component of this path, or null if this path has no root

components.

• toFile() makes a File from this path.

java.io.File 1.0

• Path toPath() 7 makes a Path from this file.

2.5.2 Reading and Writing Files

The Files class makes quick work of common file operations. For example, you can easily

read the entire contents of a file:

 byte[] bytes = Files.readAllBytes(path);

If you want to read the file as a string, call readAllBytes followed by

 String content = new String(bytes, charset);

But if you want the file as a sequence of lines, call

 List<String> lines = Files.readAllLines(path, charset);

Conversely, if you want to write a string, call

 Files.write(path, content.getBytes(charset));

To append to a given file, use

 Files.write(path, content.getBytes(charset), StandardOpenOption.APPEND);

You can also write a collection of lines with

 Files.write(path, lines);

These simple methods are intended for dealing with text files of moderate length. If your

files are large or binary, you can still use the familiar input/output streams or

readers/writers:

 InputStream in = Files.newInputStream(path);

 OutputStream out = Files.newOutputStream(path);

 Reader in = Files.newBufferedReader(path, charset);

 Writer out = Files.newBufferedWriter(path, charset);

These convenience methods save you from dealing with FileInputStream, FileOutputStream,

BufferedReader, or BufferedWriter.

java.nio.file.Files 7

• static byte[] readAllBytes(Path path)

• static List<String> readAllLines(Path path, Charset charset) reads the contents of a file.

• static Path write(Path path, byte[] contents, OpenOption... options)

• static Path write(Path path, Iterable<? extends CharSequence> contents, OpenOption

options) writes the given contents to a file and returns path.

• static InputStream newInputStream(Path path, OpenOption... options)

• static OutputStream newOutputStream(Path path, OpenOption... options)

• static BufferedReader newBufferedReader(Path path, Charset charset)

• static BufferedWriter newBufferedWriter(Path path, Charset charset, OpenOption...

options) opens a file for reading or writing.

2.5.3 Creating Files and Directories

To create a new directory, call

 Files.createDirectory(path);

All but the last component in the path must already exist. To create intermediate directories

as well, use

 Files.createDirectories(path);

You can create an empty file with

 Files.createFile(path);

The call throws an exception if the file already exists. The check for existence and creation

are atomic. If the file doesn’t exist, it is created before anyone else has a chance to

do the same.

There are convenience methods for creating a temporary file or directory in a given or

system-specific location.

 Path newPath = Files.createTempFile(dir, prefix, suffix);

 Path newPath = Files.createTempFile(prefix, suffix);

 Path newPath = Files.createTempDirectory(dir, prefix);

 Path newPath = Files.createTempDirectory(prefix);

Here, dir is a Path, and prefix/suffix are strings which may be null. For example, the call

Files.createTempFile(null, ".txt") might return a path such as

/tmp/1234405522364837194.txt.

When you create a file or directory, you can specify attributes, such as owners or

permissions. However, the details depend on the file system, and we won’t cover them here.

java.nio.file.Files 7

• static Path createFile(Path path, FileAttribute<?>... attrs)

• static Path createDirectory(Path path, FileAttribute<?>... attrs)

• static Path createDirectories(Path path, FileAttribute<?>... attrs) creates a file or

directory. The createDirectories method creates any intermediate directories as well.

• static Path createTempFile(String prefix, String suffix, FileAttribute<?>... attrs)

• static Path createTempFile(Path parentDir, String prefix, String suffix,

FileAttribute<?>... attrs)

• static Path createTempDirectory(String prefix, FileAttribute<?>... attrs)

• static Path createTempDirectory(Path parentDir, String prefix, FileAttribute<?>... attrs)

creates a temporary file or directory, in a location suitable for temporary files or in

the given parent directory. Returns the path to the created file or directory.

2.5.4 Copying, Moving, and Deleting Files

To copy a file from one location to another, simply call

 Files.copy(fromPath, toPath);

To move the file (that is, copy and delete the original), call

 Files.move(fromPath, toPath);

The copy or move will fail if the target exists. If you want to overwrite an existing target,

use the REPLACE_EXISTING option. If you want to copy all file attributes, use the

COPY_ATTRIBUTES option. You can supply both like this:

 Files.copy(fromPath, toPath, StandardCopyOption.REPLACE_EXISTING,

 StandardCopyOption.COPY_ATTRIBUTES);

You can specify that a move should be atomic. Then you are assured that either the move

completed successfully, or the source continues to be present. Use the ATOMIC_MOVE option:

 Files.move(fromPath, toPath, StandardCopyOption.ATOMIC_MOVE);

You can also copy an input stream to a Path, which just means saving the input stream to

disk. Similarly, you can copy a Path to an output stream. Use the following calls:

 Files.copy(inputStream, toPath);

 Files.copy(fromPath, outputStream);

As with the other calls to copy, you can supply copy options as needed.

Finally, to delete a file, simply call

 Files.delete(path);

This method throws an exception if the file doesn’t exist, so instead you may want to use

 boolean deleted = Files.deleteIfExists(path);

The deletion methods can also be used to remove an empty directory.

See Table 2.3 for a summary of the options that are available for file operations.

Table 2.3 Standard Options for File Operations

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02tab03

java.nio.file.Files 7

• static Path copy(Path from, Path to, CopyOption... options)

• staticPath move(Path from, Path to, CopyOption... options) copies or moves from to the

given target location and returns to.

• static long copy(InputStream from, Path to, CopyOption... options)

• static long copy(Path from, OutputStream to, CopyOption... options) copies from an input

stream to a file, or from a file to an output stream, returning the number of bytes copied.

• static void delete(Path path)

• static boolean deleteIfExists(Path path) deletes the given file or empty directory. The

first method throws an exception if the file or directory doesn’t exist. The second method

returns false in that case.

2.5.5 Getting File Information

The following static methods return a boolean value to check a property of a path:

• exists

• isHidden

• isReadable, isWritable, isExecutable

• isRegularFile, isDirectory, isSymbolicLink

The size method returns the number of bytes in a file.

 long fileSize = Files.size(path);

The getOwner method returns the owner of the file, as an instance of

java.nio.file.attribute.UserPrincipal.

All file systems report a set of basic attributes, encapsulated by the BasicFileAttributes

interface, which partially overlaps with that information. The basic file attributes are

• The times at which the file was created, last accessed, and last modified, as instances

of the class java.nio.file.attribute.FileTime

• Whether the file is a regular file, a directory, a symbolic link, or none of these

• The file size

• The file key—an object of some class, specific to the file system, that may or may not

uniquely identify a file

To get these attributes, call

 BasicFileAttributes attributes = Files.readAttributes(path,

BasicFileAttributes.class);

If you know that the user’s file system is POSIX-compliant, you can instead get an instance

of PosixFileAttributes:

 PosixFileAttributes attributes = Files.readAttributes(path,

PosixFileAttributes.class);

Then you can find out the group owner and the owner, group, and world access permissions.

We won’t dwell on the details since so much of this information is not portable across

operating systems.

java.nio.file.Files 7

• static boolean exists(Path path)

• static boolean isHidden(Path path)

• static boolean isReadable(Path path)

• static boolean isWritable(Path path)

• static boolean isExecutable(Path path)

• static boolean isRegularFile(Path path)

• static boolean isDirectory(Path path)

• static boolean isSymbolicLink(Path path) checks for the given property of the file given

by the path.

• static long size(Path path) gets the size of the file in bytes.

• A readAttributes(Path path, Class<A> type, LinkOption... options) reads the file

attributes of type A.

java.nio.file.attribute.BasicFileAttributes 7

• FileTime creationTime()

• FileTime lastAccessTime()

• FileTime lastModifiedTime()

• boolean isRegularFile()

• boolean isDirectory()

• boolean isSymbolicLink()

• long size()

• Object fileKey() gets the requested attribute.

2.5.6 Visiting Directory Entries

The static Files.list method returns a Stream<Path> that reads the entries of a directory.

The directory is read lazily, making it possible to efficiently process directories with

huge numbers of entries.

Since reading a directory involves a system resource that needs to be closed, you should

use a try block:

 try (Stream<Path> entries = Files.list(pathToDirectory)) {

 ...

 }

The list method does not enter subdirectories. To process all descendants of a directory,

use the Files.walk method instead.

 try (Stream<Path> entries = Files.walk(pathToRoot)) {

 // Contains all descendants, visited in depth-first order

 }

Here is a sample traversal of the unzipped src.zip tree:

 java

 java/nio

 java/nio/DirectCharBufferU.java

 java/nio/ByteBufferAsShortBufferRL.java

 java/nio/MappedByteBuffer.java

 ...

 java/nio/ByteBufferAsDoubleBufferB.java

 java/nio/charset

 java/nio/charset/CoderMalfunctionError.java

 java/nio/charset/CharsetDecoder.java

 java/nio/charset/UnsupportedCharsetException.java

 java/nio/charset/spi

 java/nio/charset/spi/CharsetProvider.java

 java/nio/charset/StandardCharsets.java

 java/nio/charset/Charset.java

 ...

 java/nio/charset/CoderResult.java

 java/nio/HeapFloatBufferR.java

 ...

As you can see, whenever the traversal yields a directory, it is entered before continuing

with its siblings.

You can limit the depth of the tree that you want to visit by calling Files.walk(pathToRoot,

depth). Both walk methods have a varargs parameter of type FileVisitOption..., but there

is only one option you can supply: FOLLOW_LINKS to follow symbolic links.

NOTE:

If you filter the paths returned by walk and your filter criterion involves the file

attributes stored with a directory, such as size, creation time, or type (file, directory,

symbolic link), then use the find method instead of walk. Call that method with a predicate

function that accepts a path and a BasicFileAttributes object.The only advantage is

efficiency. Since the directory is being read anyway, the attributes are readily available.

This code fragment uses the Files.walk method to copy one directory to another:

 Files.walk(source).forEach(p -> {

 try {

 Path q = target.resolve(source.relativize(p));

 if (Files.isDirectory(p))

 Files.createDirectory(q);

 else

 Files.copy(p, q);

 } catch (IOException ex) {

 throw new UncheckedIOException(ex);

 }

 });

Unfortunately, you cannot easily use the Files.walk method to delete a tree of directories

since you need to first visit the children before deleting the parent. The next section

shows you how to overcome that problem.

2.5.7 Using Directory Streams

As you saw in the preceding section, the Files.walk method produces a Stream<Path> that

traverses the descendants of a directory. Sometimes, you need more fine-grained control

over the traversal process. In that case, use the Files.newDirectoryStream object instead.

It yields a DirectoryStream. Note that this is not a subinterface of java.util.stream.Stream

but an interface that is specialized for directory traversal. It is a subinterface of

Iterable so that you can use directory stream in an enhanced for loop. Here is the usage

pattern:

 try (DirectoryStream<Path> entries = Files.newDirectoryStream(dir))

 {

 for (Path entry : entries)

 Process entries

 }

The try-with-resources block ensures that the directory stream is properly closed.

There is no specific order in which the directory entries are visited.

You can filter the files with a glob pattern:

 try (DirectoryStream<Path> entries = Files.newDirectoryStream(dir, "*.java"))

Table 2.4 shows all glob patterns.

Table 2.4 Glob Patterns

Caution

If you use the glob syntax on Windows, you have to escape backslashes twice: once for the
glob syntax, and once for the Java string syntax: Files.newDirectoryStream(dir, "C:\\\\")

If you want to visit all descendants of a directory, call the walkFileTree method instead

and supply an object of type FileVisitor. That object gets notified

• When a file is encountered: FileVisitResult visitFile(T path, BasicFileAttributes attrs)

• Before a directory is processed: FileVisitResult preVisitDirectory(T dir, IOException

ex)

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02tab04

• After a directory is processed: FileVisitResult postVisitDirectory(T dir, IOException

ex)

• When an error occurred trying to visit a file or directory, such as trying to open a

directory without the necessary permissions: FileVisitResult visitFileFailed(T path,

IOException ex)

In each case, you can specify whether you want to

• Continue visiting the next file: FileVisitResult.CONTINUE

• Continue the walk, but without visiting the entries in this directory:

FileVisitResult.SKIP_SUBTREE

• Continue the walk, but without visiting the siblings of this file:

FileVisitResult.SKIP_SIBLINGS

• Terminate the walk: FileVisitResult.TERMINATE

If any of the methods throws an exception, the walk is also terminated, and that exception

is thrown from the walkFileTree method.

NOTE:

The FileVisitor interface is a generic type, but it isn’t likely that you’ll ever want

something other than a FileVisitor<Path>. The walkFileTree method is willing to accept a

FileVisitor<? super Path>, but Path does not have an abundance of supertypes.

A convenience class SimpleFileVisitor implements the FileVisitor interface. All but the

visitFileFailed method do nothing and continue. The visitFileFailed method throws the

exception that caused the failure, thereby terminating the visit.

For example, here is how you can print out all subdirectories of a given directory.

 Files.walkFileTree(Paths.get("/"), new SimpleFileVisitor<Path>()

 {

 public FileVisitResult preVisitDirectory(Path path,

BasicFileAttributes attrs) throws IOException

 {

 System.out.println(path);

 return FileVisitResult.CONTINUE;

 }

 public FileVisitResult postVisitDirectory(Path dir, IOException exc)

 {

 return FileVisitResult.CONTINUE;

 }

 public FileVisitResult visitFileFailed(Path path, IOException exc) throws

IOException

 {

 return FileVisitResult.SKIP_SUBTREE;

 }

 });

Note that we need to override postVisitDirectory and visitFileFailed. Otherwise, the visit

would fail as soon as it encounters a directory that it’s not allowed to open or a file

that it is not allowed to access.

Also note that the attributes of the path are passed as a parameter to the preVisitDirectory

and visitFile method. The visitor already had to make an OS call to get the attributes,

since it needs to distinguish between files and directories. This way, you don’t need to

make another call.

The other methods of the FileVisitor interface are useful if you need to do some work when

entering or leaving a directory. For example, when you delete a directory tree, you need

to remove the current directory after you have removed all of its files. Here is the complete

code for deleting a directory tree:

 // Delete the directory tree starting at root

 Files.walkFileTree(root, new SimpleFileVisitor<Path>()

 {

 public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) throws

IOException

 {

 Files.delete(file);

 return FileVisitResult.CONTINUE;

 }

 public FileVisitResult postVisitDirectory(Path dir, IOException e) throws

IOException

 {

 if (e != null) throw e;

 Files.delete(dir);

 return FileVisitResult.CONTINUE;

 }

 });

java.nio.file.Files 7

• DirectoryStream<Path> newDirectoryStream(Path path)

• DirectoryStream<Path> newDirectoryStream(Path path, String glob)

gets an iterator over the files and directories in a given directory.The second method only

accepts those entries matching the given glob pattern.

• Path walkFileTree(Path start, FileVisitor<? super Path> visitor) walks all descendants

of the given path, applying the visitor to all descendants.

java.nio.file.SimpleFileVisitor<T> 7

• FileVisitResult visitFile(T path, BasicFileAttributes attrs)

is called when a file or directory is visited, returns one of CONTINUE, SKIP_SUBTREE,

SKIP_SIBLINGS, or TERMINATE. The default implementation does nothing and continues.

• FileVisitResult preVisitDirectory(T dir, BasicFileAttributes attrs)

• FileVisitResult postVisitDirectory(T dir, BasicFileAttributes attrs) are called before

and after visiting a directory. The default implementation does nothing and continues.

• FileVisitResult visitFileFailed(T path, IOException exc) is called if an exception was

thrown in an attempt to get information about the given file. The default implementation

rethrows the exception, which causes the visit to terminate with that exception. Override

the method if you want to continue.

2.5.8 ZIP File Systems

The Paths class looks up paths in the default file system—the files on the user’s local

disk. You can have other file systems. One of the more useful ones is a ZIP file system.
If zipname is the name of a ZIP file, then the call

 FileSystem fs = FileSystems.newFileSystem(Paths.get(zipname), null);

establishes a file system that contains all files in the ZIP archive. It’s an easy matter

to copy a file out of that archive if you know its name:

 FileSystem fs = FileSystems.newFileSystem(Paths.get(zipname), null);

Here, fs.getPath is the analog of Paths.get for an arbitrary file system.

To list all files in a ZIP archive, walk the file tree:

 FileSystem fs = FileSystems.newFileSystem(Paths.get(zipname), null);

 Files.walkFileTree(fs.getPath("/"), new SimpleFileVisitor<Path>()

 {

 public FileVisitResult visitFile(Path file, BasicFileAttributes attrs)

throws IOException

 {

 System.out.println(file);

 return FileVisitResult.CONTINUE;

 }

 });

That is nicer than the API described in Section 2.3.3, “ZIP Archives,” on p. 77 which

required a set of new classes just to deal with ZIP archives.

java.nio.file.FileSystems 7

• static FileSystem newFileSystem(Path path, ClassLoader loader) iterates over the

installed file system providers and, provided that loader is not null, the file systems

that the given class loader can load. Returns the file system that is created by the first

file system provider that accepts the given path. By default, there is a provider for ZIP

file systems that accepts files whose names end in .zip or .jar.

java.nio.file.FileSystem 7

• static Path getPath(String first, String... more) makes a path by joining the given

strings.

2.6 Memory-Mapped Files

Most operating systems can take advantage of the virtual memory implementation to “map”

a file, or a region of a file, into memory. Then the file can be accessed as if it were

an in-memory array, which is much faster than the traditional file operations.

At the end of this section, you can find a program that computes the CRC32 checksum of a

file using traditional file input and a memory-mapped file. On one machine, we got the timing

data shown in Table 2.5 when computing the checksum of the 37MB file rt.jar in the jre/lib

directory of the JDK.

Table 2.5 Timing Data for File Operations

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02lev2-3-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02tab05

As you can see, on this particular machine, memory mapping is a bit faster than using buffered

sequential input and dramatically faster than using a RandomAccessFile.

Of course, the exact values will differ greatly from one machine to another, but it is obvious

that the performance gain, compared to random access, can be substantial. For sequential

reading of files of moderate size, on the other hand, there is no reason to use memory

mapping.

The java.nio package makes memory mapping quite simple. Here is what you do.

First, get a channel for the file. A channel is an abstraction for a disk file that lets
you access operating system features such as memory mapping, file locking, and fast data

transfers between files.

 FileChannel channel = FileChannel.open(path, options);

Then, get a ByteBuffer from the channel by calling the map method of the FileChannel class.

Specify the area of the file that you want to map and a mapping mode. Three modes are
supported:

• FileChannel.MapMode.READ_ONLY: The resulting buffer is read-only. Any attempt to write

to the buffer results in a ReadOnlyBufferException.

• FileChannel.MapMode.READ_WRITE: The resulting buffer is writable, and the changes will

be written back to the file at some time. Note that other programs that have mapped the

same file might not see those changes immediately. The exact behavior of simultaneous file

mapping by multiple programs depends on the operating system.

• FileChannel.MapMode.PRIVATE: The resulting buffer is writable, but any changes are

private to this buffer and not propagated to the file.

Once you have the buffer, you can read and write data using the methods of the ByteBuffer

class and the Buffer superclass.

Buffers support both sequential and random data access. A buffer has a position that is
advanced by get and put operations. For example, you can sequentially traverse all bytes

in the buffer as

 while (buffer.hasRemaining())

 {

 byte b = buffer.get();

 ...

 }

Alternatively, you can use random access:

 for (int i = 0; i < buffer.limit(); i++)

 {

 byte b = buffer.get(i);

 ...

 }

You can also read and write arrays of bytes with the methods

 get(byte[] bytes)

 get(byte[], int offset, int length)

Finally, there are methods

 getInt

 getLong

 getShort

 getChar

 getFloat

 getDouble

to read primitive type values that are stored as binary values in the file. As we already
mentioned, Java uses big-endian ordering for binary data. However, if you need to process

a file containing binary numbers in little-endian order, simply call

 buffer.order(ByteOrder.LITTLE_ENDIAN);

To find out the current byte order of a buffer, call

 ByteOrder b = buffer.order()

Caution

This pair of methods does not use the set/get naming convention.

To write numbers to a buffer, use one of the methods

 putInt

 putLong

 putShort

 putChar

 putFloat

 putDouble

At some point, and certainly when the channel is closed, these changes are written back

to the file.

Listing 2.5 computes the 32-bit cyclic redundancy checksum (CRC32) of a file. That quantity

is a checksum that is often used to determine whether a file has been corrupted. Corruption

of a file makes it very likely that the checksum has changed. The java.util.zip package

contains a class CRC32 that computes the checksum of a sequence of bytes, using the following

loop:

 CRC32 crc = new CRC32();

 while (more bytes)

 crc.update(next byte)

 long checksum = crc.getValue();

NOTE:

For a nice explanation of the CRC algorithm, see www.relisoft.com/Science/CrcMath.html.

The details of the CRC computation are not important. We just use it as an example of a

useful file operation.

Run the program as

 java memoryMap.MemoryMapTest filename

Listing 2.5 memoryMap/MemoryMapTest.java

 1 package memoryMap;

 2

 3 import java.io.*;

 4 import java.nio.*;

 5 import java.nio.channels.*;

http://www.relisoft.com/Science/CrcMath.html

 6 import java.nio.file.*;

 7 import java.util.zip.*;

 8

 9 /**

10 * This program computes the CRC checksum of a file in four ways.

11 * Usage: java memoryMap.MemoryMapTest filename

12 * @version 1.01 2012-05-30

13 * @author Cay Horstmann

14 */

15 public class MemoryMapTest

16 {

17 public static long checksumInputStream(Path filename) throws IOException

18 {

19 try (InputStream in = Files.newInputStream(filename))

20 {

21 CRC32 crc = new CRC32();

22

23 int c;

24 while ((c = in.read()) != -1)

25 crc.update(c);

26 return crc.getValue();

27 }

28 }

29

30 public static long checksumBufferedInputStream(Path filename) throws

IOException

31 {

32 try (InputStream in = new

BufferedInputStream(Files.newInputStream(filename)))

33 {

34 CRC32 crc = new CRC32();

35

36 int c;

37 while ((c = in.read()) != -1)

38 crc.update(c);

39 return crc.getValue();

40 }

41 }

42

43 public static long checksumRandomAccessFile(Path filename) throws IOException

44 {

45 try (RandomAccessFile file = new RandomAccessFile(filename.toFile(),

"r"))

46 {

47 long length = file.length();

48 CRC32 crc = new CRC32();

49

50 for (long p = 0; p < length; p++)

51 {

52 file.seek(p);

53 int c = file.readByte();

54 crc.update(c);

55 }

56 return crc.getValue();

57 }

58 }

59

60 public static long checksumMappedFile(Path filename) throws IOException

61 {

62 try (FileChannel channel = FileChannel.open(filename))

63 {

64 CRC32 crc = new CRC32();

65 int length = (int) channel.size();

66 MappedByteBuffer buffer =

channel.map(FileChannel.MapMode.READ_ONLY, 0, length);

67

68 for (int p = 0; p < length; p++)

69 {

70 int c = buffer.get(p);

71 crc.update(c);

72 }

73 return crc.getValue();

74 }

75 }

76

77 public static void main(String[] args) throws IOException

78 {

79 System.out.println("Input Stream:");

80 long start = System.currentTimeMillis();

81 Path filename = Paths.get(args[0]);

82 long crcValue = checksumInputStream(filename);

83 long end = System.currentTimeMillis();

84 System.out.println(Long.toHexString(crcValue));

85 System.out.println((end - start) + " milliseconds");

86

87 System.out.println("Buffered Input Stream:");

88 start = System.currentTimeMillis();

89 crcValue = checksumBufferedInputStream(filename);

90 end = System.currentTimeMillis();

91 System.out.println(Long.toHexString(crcValue));

92 System.out.println((end - start) + " milliseconds");

93

94 System.out.println("Random Access File:");

95 start = System.currentTimeMillis();

96 crcValue = checksumRandomAccessFile(filename);

97 end = System.currentTimeMillis();

98 System.out.println(Long.toHexString(crcValue));

99 System.out.println((end - start) + " milliseconds");

100

101 System.out.println("Mapped File:");

102 start = System.currentTimeMillis();

103 crcValue = checksumMappedFile(filename);

104 end = System.currentTimeMillis();

105 System.out.println(Long.toHexString(crcValue));

106 System.out.println((end - start) + " milliseconds");

107 }

108 }

java.io.FileInputStream 1.0

• FileChannel getChannel() 1.4

returns a channel for accessing this input stream.

java.io.FileOutputStream 1.0

• FileChannel getChannel() 1.4

returns a channel for accessing this output stream.

java.io.RandomAccessFile 1.0

• FileChannel getChannel() 1.4

returns a channel for accessing this file.

java.nio.channels.FileChannel 1.4

• static FileChannel open(Path path, OpenOption... options) 7 opens a file channel for the

given path. By default, the channel is opened for reading.

• MappedByteBuffer map(FileChannel.MapMode mode, long position, long size) maps a region

of the file to memory.

java.nio.Buffer 1.4

• boolean hasRemaining()

returns true if the current buffer position has not yet reached the buffer’s limit position.

• int limit()

returns the limit position of the buffer—that is, the first position at which no more values

are available.

java.nio.ByteBuffer 1.4

• byte get()

gets a byte from the current position and advances the current position to the next byte.

• byte get(int index)

gets a byte from the specified index.

• ByteBuffer put(byte b)

puts a byte at the current position and advances the current position to the next byte.

Returns a reference to this buffer.

• ByteBuffer put(int index, byte b)

puts a byte at the specified index. Returns a reference to this buffer.

• ByteBuffer get(byte[] destination)

• ByteBuffer get(byte[] destination, int offset, int length)

fills a byte array, or a region of a byte array, with bytes from the buffer, and advances

the current position by the number of bytes read. If not enough bytes remain in the buffer,

then no bytes are read, and a BufferUnderflowException is thrown. Returns a reference to

this buffer.

• ByteBuffer put(byte[] source)

• ByteBuffer put(byte[] source, int offset, int length)

puts all bytes from a byte array, or the bytes from a region of a byte array, into the buffer,

and advances the current position by the number of bytes read. If not enough bytes remain

in the buffer, then no bytes are written, and a BufferOverflowException is thrown. Returns

a reference to this buffer.

• Xxx getXxx()

• Xxx getXxx(int index)

• ByteBuffer putXxx(Xxx value)

• ByteBuffer putXxx(int index, Xxx value)

gets or puts a binary number. Xxx is one of Int, Long, Short, Char, Float, or Double.

• ByteBuffer order(ByteOrder order)

• ByteOrder order()

sets or gets the byte order. The value for order is one of the constants BIG_ENDIAN or

LITTLE_ENDIAN of the ByteOrder class.

• static ByteBuffer allocate(int capacity)

constructs a buffer with the given capacity.

• static ByteBuffer wrap(byte[] values)

constructs a buffer that is backed by the given array.

• CharBuffer asCharBuffer() constructs a character buffer that is backed by this buffer.

Changes to the character buffer will show up in this buffer, but the character buffer has

its own position, limit, and mark.

java.nio.CharBuffer 1.4

• char get()

• CharBuffer get(char[] destination)

• CharBuffer get(char[] destination, int offset, int length) gets one char value, or a range

of char values, starting at the buffer’s position and moving the position past the

characters that were read.The last two methods return this.

• CharBuffer put(char c)

• CharBuffer put(char[] source)

• CharBuffer put(char[] source, int offset, int length)

• CharBuffer put(String source)

• CharBuffer put(CharBuffer source) puts one char value, or a range of char values, starting

at the buffer’s position and advancing the position past the characters that were written.

When reading from a CharBuffer, all remaining characters are read. All methods return this.

2.6.1 The Buffer Data Structure

When you use memory mapping, you make a single buffer that spans the entire file or the

area of the file that you’re interested in. You can also use buffers to read and write

more modest chunks of information.

In this section, we briefly describe the basic operations on Buffer objects. A buffer is

an array of values of the same type. The Buffer class is an abstract class with concrete

subclasses ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer, LongBuffer, and

ShortBuffer.

NOTE:

The StringBuffer class is not related to these buffers.

In practice, you will most commonly use ByteBuffer and CharBuffer. As shown in Figure 2.10,

a buffer has

• A capacity that never changes

• A position at which the next value is read or written

• A limit beyond which reading and writing is meaningless

• Optionally, a mark for repeating a read or write operation

Figure 2.10 A buffer

These values fulfill the condition

The principal purpose of a buffer is a “write, then read” cycle. At the outset, the

buffer’s position is 0 and the limit is the capacity. Keep calling put to add values to

the buffer. When you run out of data or reach the capacity, it is time to switch to reading.

Call flip to set the limit to the current position and the position to 0. Now keep calling

get while the remaining method (which returns limit – position) is positive. When you have
read all values in the buffer, call clear to prepare the buffer for the next writing cycle.

The clear method resets the position to 0 and the limit to the capacity.

If you want to reread the buffer, use rewind or mark/reset (see the API notes for details).

To get a buffer, call a static method such as ByteBuffer.allocate or ByteBuffer.wrap.

Then, you can fill a buffer from a channel, or write its contents to a channel. For example,

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02fig010

 ByteBuffer buffer = ByteBuffer.allocate(RECORD_SIZE);

 channel.read(buffer);

 channel.position(newpos);

 buffer.flip();

 channel.write(buffer);

This can be a useful alternative to using a random-access file.

java.nio.Buffer 1.4

• Buffer clear()

prepares this buffer for writing by setting the position to 0 and the limit to the capacity;

returns this.

• Buffer flip()

prepares this buffer for reading after writing, by setting the limit to the position and

the position to 0; returns this.

• Buffer rewind()

prepares this buffer for rereading the same values by setting the position to 0 and leaving

the limit unchanged; returns this.

• Buffer mark()

sets the mark of this buffer to the position; returns this.

• Buffer reset()

sets the position of this buffer to the mark, thus allowing the marked portion to be read

or written again; returns this.

• int remaining()

returns the remaining number of readable or writable values—that is, the difference between

the limit and position.

• int position()

• void position(int newValue) gets and sets the position of this buffer.

• int capacity()

returns the capacity of this buffer.

2.6.2 File Locking

When multiple simultaneously executing programs need to modify the same file, they need

to communicate in some way, or the file can easily become damaged. File locks can solve

this problem. A file lock controls access to a file or a range of bytes within a file.

Suppose your application saves a configuration file with user preferences. If a user invokes

two instances of the application, it could happen that both of them want to write the

configuration file at the same time. In that situation, the first instance should lock the

file. When the second instance finds the file locked, it can decide to wait until the file

is unlocked or simply skip the writing process.

To lock a file, call either the lock or tryLock methods of the FileChannel class.

 FileChannel = FileChannel.open(path);

 FileLock lock = channel.lock();

or

 FileLock lock = channel.tryLock();

The first call blocks until the lock becomes available. The second call returns immediately,

either with the lock or with null if the lock is not available. The file remains locked

until the channel is closed or the release method is invoked on the lock.

You can also lock a portion of the file with the call

 FileLock lock(long start, long size, boolean shared)

or

 FileLock tryLock(long start, long size, boolean shared)

The shared flag is false to lock the file for both reading and writing. It is true for a

shared lock, which allows multiple processes to read from the file, while preventing any
process from acquiring an exclusive lock. Not all operating systems support shared locks.

You may get an exclusive lock even if you just asked for a shared one. Call the isShared

method of the FileLock class to find out which kind you have.

NOTE:

If you lock the tail portion of a file and the file subsequently grows beyond the locked

portion, the additional area is not locked. To lock all bytes, use a size of Long.MAX_VALUE.

Be sure to unlock the lock when you are done. As always, this is best done with a

try-with-resources statement:

 try (FileLock lock = channel.lock())

 {

 access the locked file or segment

 }

Keep in mind that file locking is system-dependent. Here are some points to watch for:

• On some systems, file locking is merely advisory. If an application fails to get a lock,
it may still write to a file that another application has currently locked.

• On some systems, you cannot simultaneously lock a file and map it into memory.

• File locks are held by the entire Java virtual machine. If two programs are launched by

the same virtual machine (such as an applet or application launcher), they can’t each

acquire a lock on the same file. The lock and tryLock methods will throw an

OverlappingFileLockException if the virtual machine already holds another overlapping lock

on the same file.

• On some systems, closing a channel releases all locks on the underlying file held by the

Java virtual machine. You should therefore avoid multiple channels on the same locked file.

• Locking files on a networked file system is highly system-dependent and should probably

be avoided.

java.nio.channels.FileChannel 1.4

• FileLock lock() acquires an exclusive lock on the entire file. This method blocks until

the lock is acquired.

• FileLock tryLock() acquires an exclusive lock on the entire file, or returns null if the

lock cannot be acquired.

• FileLock lock(long position, long size, boolean shared)

• FileLock tryLock(long position, long size, boolean shared) acquires a lock on a region

of the file. The first method blocks until the lock is acquired, and the second method returns

null if the lock cannot be acquired.

java.nio.channels.FileLock 1.4

• void close() 1.7

releases this lock.

2.7 Regular Expressions

Regular expressions are used to specify string patterns. You can use regular expressions

whenever you need to locate strings that match a particular pattern. For example, one of

our sample programs locates all hyperlinks in an HTML file by looking for strings of the

pattern .

Of course, for specifying a pattern, the ... notation is not precise enough. You need to

specify exactly what sequence of characters is a legal match, using a special syntax to

describe a pattern.

Here is a simple example. The regular expression

 [Jj]ava.+

matches any string of the following form:

• The first letter is a J or j.

• The next three letters are ava.

• The remainder of the string consists of one or more arbitrary characters.

For example, the string "javanese" matches this particular regular expression, but the

string "Core Java" does not.

As you can see, you need to know a bit of syntax to understand the meaning of a regular

expression. Fortunately, for most purposes, a few straightforward constructs are

sufficient.

• A character class is a set of character alternatives, enclosed in brackets, such as [Jj],
[0-9], [A-Za-z], or [^0-9]. Here the - denotes a range (all characters whose Unicode values

fall between the two bounds), and ^ denotes the complement (all characters except those

specified).

• To include a - inside a character class, make it the first or last item. To include a],

make it the first item. To include a ^, put it anywhere but the beginning. You only need

to escape [and \.

• There are many predefined character classes such as \d (digits) or \p{Sc} (Uni-code

currency symbol). See Tables 2.6 and 2.7.

Table 2.6 Regular Expression Syntax

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02tab06
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02tab07

Table 2.7 Predefined Character Class Names Used with \p

• Most characters match themselves, such as the ava characters in the preceding example.

• The . symbol matches any character (except possibly line terminators, depending on flag

settings).

• Use \ as an escape character, for example, \. matches a period and \\ matches a backslash.

• ^ and $ match the beginning and end of a line, respectively.

• If X and Y are regular expressions, then XY means “any match for X followed by a match
for Y”. X | Y means “any match for X or Y”.

• You can apply quantifiers X+ (1 or more), X* (0 or more), and X? (0 or 1) to an expression
X.

• By default, a quantifier matches the largest possible repetition that makes the overall

match succeed. You can modify that behavior with suffixes ? (reluctant, or stingy, match:

match the smallest repetition count) and + (possessive, or greedy, match: match the largest

count even if that makes the overall match fail).

For example, the string cab matches [a-z]*ab but not [a-z]*+ab. In the first case, the

expression [a-z]* only matches the character c, so that the characters ab match the remainder

of the pattern. But the greedy version [a-z]*+ matches the characters cab, leaving the

remainder of the pattern unmatched.

• You can use groups to define subexpressions. Enclose the groups in (), for example,
([+-]?)([0-9]+). You can then ask the pattern matcher to return the match of each group

or to refer back to a group with \n where n is the group number, starting with \1.

For example, here is a somewhat complex but potentially useful regular expression that

describes decimal or hexadecimal integers:

 [+-]?[0-9]+|0[Xx][0-9A-Fa-f]+

Unfortunately, the regular expression syntax is not completely standardized between various

programs and libraries; there is a consensus on the basic constructs but many maddening

differences in the details. The Java regular expression classes use a syntax that is similar

to, but not quite the same as, the one used in the Perl language. Table 2.6 shows all

constructs of the Java syntax. For more information on the regular expression syntax,

consult the API documentation for the Pattern class or the book Mastering Regular
Expressions by Jeffrey E. F. Friedl (O’Reilly and Associates, 2006).

The simplest use for a regular expression is to test whether a particular string matches

it. Here is how you program that test in Java. First, construct a Pattern object from a

string containing the regular expression. Then, get a Matcher object from the pattern and

call its matches method:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02tab06

 Pattern pattern = Pattern.compile(patternString);

 Matcher matcher = pattern.matcher(input);

 if (matcher.matches()) . . .

The input of the matcher is an object of any class that implements the CharSequence interface,

such as a String, StringBuilder, or CharBuffer.

When compiling the pattern, you can set one or more flags, for example:

 Pattern pattern = Pattern.compile(expression,

 Pattern.CASE_INSENSITIVE + Pattern.UNICODE_CASE);

Or you can specify them inside the pattern:

 String regex = "(?iU:expression)";

Here are the flags:

• Pattern.CASE_INSENSITIVE or i: Match characters independently of the letter case. By

default, this flag takes only US ASCII characters into account.

• Pattern.UNICODE_CASE or u: When used in combination with CASE_INSENSITIVE, use Uni-code

letter case for matching.

• Pattern.UNICODE_CHARACTER_CLASS or U: Select Unicode character classes instead of POSIX.

Implies UNICODE_CASE.

• Pattern.MULTILINE or m: Make ̂ and $ match the beginning and end of a line, not the entire

input.

• Pattern.UNIX_LINES or d: Only '\n' is a line terminator when matching ̂ and $ in multiline

mode.

• Pattern.DOTALL or s: Make the . symbol match all characters, including line terminators.

• Pattern.COMMENTS or x: Whitespace and comments (from # to the end of a line) are ignored.

• Pattern.LITERAL: The pattern is taking literally and must be matched exactly, except

possibly for letter case.

• Pattern.CANON_EQ: Take canonical equivalence of Unicode characters into account. For

example, u followed by ¨ (diaeresis) matches ü.

The last two flags cannot be specified inside a regular expression.

If you want to match elements in a collection or stream, turn the pattern into a predicate:

 Stream<String> strings = ...;

 Stream<String> result = strings.filter(pattern.asPredicate());

The result contains all strings that match the regular expression.

If the regular expression contains groups, the Matcher object can reveal the group

boundaries. The methods

 int start(int groupIndex)

 int end(int groupIndex)

yield the starting index and the past-the-end index of a particular group.

You can simply extract the matched string by calling

 String group(int groupIndex)

Group 0 is the entire input; the group index for the first actual group is 1. Call the

groupCount method to get the total group count.

Nested groups are ordered by the opening parentheses. For example, given the pattern

 (([1-9]|1[0-2]):([0-5][0-9]))[ap]m

and the input

 11:59am

the matcher reports the following groups

Listing 2.6 prompts for a pattern, then for strings to match. It prints out whether or not

the input matches the pattern. If the input matches and the pattern contains groups, the

program prints the group boundaries as parentheses, such as

 ((11):(59))am

Listing 2.6 regex/RegexTest.java

 1 package regex;

 2

 3 import java.util.*;

 4 import java.util.regex.*;

 5

 6 /**

 7 This program tests regular expression matching. Enter a pattern and

strings to match,

 8 or hit Cancel to exit. If the pattern contains groups, the group boundaries

are displayed

 9 in the match.

10 @version 1.02 2012-06-02

11 @author Cay Horstmann

12 */

13 public class RegexTest

14 {

15 public static void main(String[] args) throws PatternSyntaxException

16 {

17 Scanner in = new Scanner(System.in);

18 System.out.println("Enter pattern: ");

19 String patternString = in.nextLine();

20

21 Pattern pattern = Pattern.compile(patternString);

22

23 while (true)

24 {

25 System.out.println("Enter string to match: ");

26 String input = in.nextLine();

27 if (input == null || input.equals("")) return;

28 Matcher matcher = pattern.matcher(input);

29 if (matcher.matches())

30 {

31 System.out.println("Match");

32 int g = matcher.groupCount();

33 if (g > 0)

34 {

35 for (int i = 0; i < input.length(); i++)

36 {

37 // Print any empty groups

38 for (int j = 1; j <= g; j++)

39 if (i == matcher.start(j) && i ==

matcher.end(j))

40 System.out.print("()");

41 // Print (for non-empty groups starting

here

42 for (int j = 1; j <= g; j++)

43 if (i == matcher.start(j) && i !=

matcher.end(j))

44 System.out.print('(');

45 System.out.print(input.charAt(i));

46 // Print) for non-empty groups ending

here

47 for (int j = 1; j <= g; j++)

48 if (i + 1 != matcher.start(j) && i

+ 1 == matcher.end(j))

49 System.out.print(')');

50 }

51 System.out.println();

52 }

53 }

54 else

55 System.out.println("No match");

56 }

57 }

58 }

Usually, you don’t want to match the entire input against a regular expression, but to

find one or more matching substrings in the input. Use the find method of the Matcher class

to find the next match. If it returns true, use the start and end methods to find the extent

of the match.

 while (matcher.find())

 {

 int start = matcher.start();

 int end = matcher.end();

 String match = input.substring(start, end);

 ...

 }

Listing 2.7 puts this mechanism to work. It locates all hypertext references in a web page

and prints them. To run the program, supply a URL on the command line, such as

 java HrefMatch http://www.horstmann.com

Listing 2.7 match/HrefMatch.java

 1 package match;

 2

 3 import java.io.*;

http://www.horstmann.com/

 4 import java.net.*;

 5 import java.util.regex.*;

 6

 7 /**

 8 * This program displays all URLs in a web page by matching a regular expression

that describes the

 9 * HTML tag. Start the program as

10 * java match.HrefMatch URL

11 * @version 1.01 2004-06-04

12 * @author Cay Horstmann

13 */

14 public class HrefMatch

15 {

16 public static void main(String[] args)

17 {

18 try

19 {

20 // get URL string from command line or use default

21 String urlString;

22 if (args.length > 0) urlString = args[0];

23 else urlString = "http://java.sun.com";

24

25 // open reader for URL

26 InputStreamReader in = new InputStreamReader(new

URL(urlString).openStream());

27

28 // read contents into string builder

29 StringBuilder input = new StringBuilder();

30 int ch;

31 while ((ch = in.read()) != -1)

32 input.append((char) ch);

33

34 // search for all occurrences of pattern

35 String patternString =

"<a\\s+href\\s*=\\s*(\"[^\"]*\"|[^\\s>]*)\\s*>";

36 Pattern pattern = Pattern.compile(patternString,

Pattern.CASE_INSENSITIVE);

37 Matcher matcher = pattern.matcher(input);

38

39 while (matcher.find())

40 {

41 int start = matcher.start();

42 int end = matcher.end();

43 String match = input.substring(start, end);

44 System.out.println(match);

45 }

46 }

47 catch (IOException e)

48 {

49 e.printStackTrace();

50 }

51 catch (PatternSyntaxException e)

52 {

53 e.printStackTrace();

54 }

55 }

56 }

The replaceAll method of the Matcher class replaces all occurrences of a regular expression

with a replacement string. For example, the following instructions replace all sequences

of digits with a # character.

 Pattern pattern = Pattern.compile("[0-9]+");

 Matcher matcher = pattern.matcher(input);

 String output = matcher.replaceAll("#");

The replacement string can contain references to the groups in the pattern: $n is replaced

with the nth group. Use \$ to include a $ character in the replacement text.

If you have a string that may contain $ and \, and you don’t want them to be interpreted

as group replacements, call matcher.replaceAll(Matcher.quoteReplacement(str)).

The replaceFirst method replaces only the first occurrence of the pattern.

Finally, the Pattern class has a split method that splits an input into an array of strings,

using the regular expression matches as boundaries. For example, the following instructions

split the input into tokens, where the delimiters are punctuation marks surrounded by

optional whitespace.

 Pattern pattern = Pattern.compile("\\s*\\p{Punct}\\s*");

 String[] tokens = pattern.split(input);

If there are many tokens , you can fetch them lazily:

 Stream<String> tokens = commas.splitAsStream(input);

If you don’t care about precompiling the pattern or lazy fetching, you can just use the

String.split method:

 String[] tokens = input.split("\\s*,\\s*");

java.util.regex.Pattern 1.4

• static Pattern compile(String expression)

• static Pattern compile(String expression, int flags)

compiles the regular expression string into a pattern object for fast processing of matches.

• Matcher matcher(CharSequence input)

returns a matcher object that you can use to locate the matches of the pattern in the input.

• String[] split(CharSequence input)

• String[] split(CharSequence input, int limit)

Stream<String> splitAsStream(CharSequence input) 8

splits the input string into tokens, where the pattern specifies the form of the delimiters.

Returns an array or stream of tokens.The delimiters are not part of the tokens.

java.util.regex.Matcher 1.4

• boolean matches()

returns true if the input matches the pattern.

• boolean lookingAt()

returns true if the beginning of the input matches the pattern.

• boolean find()

• boolean find(int start)

attempts to find the next match and returns true if another match is found.

Parameters: start The index at which to start searching

• int start()

• int end()

returns the start or past-the-end position of the current match.

• String group()

returns the current match.

• int groupCount()

returns the number of groups in the input pattern.

• int start(int groupIndex)

• int end(int groupIndex)

returns the start or past-the-end position of a given group in the current match.

• String group(int groupIndex)

returns the string matching a given group.

• String replaceAll(String replacement)

• String replaceFirst(String replacement)

returns a string obtained from the matcher input by replacing all matches, or the first

match, with the replacement string.

• static String quoteReplacement(String str) 5.0

quotes all \ and $ in str.

• Matcher reset()

• Matcher reset(CharSequence input)

resets the matcher state.The second method makes the matcher work on a different input.

Both methods return this.

You have now seen how to carry out input and output operations in Java, and had an overview

of the regular expression package that was a part of the “new I/O” specification. In the

next chapter, we turn to the processing of XML data.

Chapter 3. XML

In this chapter

• 3.1 Introducing XML,

• 3.2 Parsing an XML Document,

• 3.3 Validating XML Documents,

• 3.4 Locating Information with XPath,

• 3.5 Using Namespaces,

• 3.6 Streaming Parsers,

• 3.7 Generating XML Documents,

• 3.8 XSL Transformations,

The preface of the book Essential XML by Don Box et al. (Addison-Wesley, 2000) states only
half-jokingly: “The Extensible Markup Language (XML) has replaced Java, Design Patterns,

and Object Technology as the software industry’s solution to world hunger.” Indeed, as

you will see in this chapter, XML is a very useful technology for describing structured

information. XML tools make it easy to process and transform that information. However,

XML is not a silver bullet. You need domain-specific standards and code libraries to use

it effectively. Moreover, far from making Java technology obsolete, XML works very well

with Java. Since the late 1990s, IBM, Apache, and others have been instrumental in producing

high-quality Java libraries for XML processing. Many of these libraries have now been

integrated into the Java platform.

This chapter introduces XML and covers the XML features of the Java library. As always,

we’ll point out along the way when the hype surrounding XML is justified—and when you

have to take it with a grain of salt and try solving your problems the old-fashioned way,

through good design and code.

3.1 Introducing XML

In Chapter 10 of Volume I, you have seen the use of property files to describe the
configuration of a program. A property file contains a set of name/value pairs, such as

 fontname=Times Roman

 fontsize=12

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03lev3-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03lev3-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03lev3-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03lev3-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03lev3-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03lev3-6
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03lev3-7
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03lev3-8
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10

 windowsize=400 200

 color=0 50 100

You can use the Properties class to read in such a file with a single method call. That’s

a nice feature, but it doesn’t really go far enough. In many cases, the information you

want to describe has more structure than the property file format can comfortably handle.

Consider the fontname/fontsize entries in the example. It would be more object-oriented

to have a single entry:

 font=Times Roman 12

But then, parsing the font description gets ugly as you have to figure out when the font

name ends and the font size starts.

Property files have a single flat hierarchy. You can often see programmers work around that

limitation with key names, such as

 title.fontname=Helvetica

 title.fontsize=36

 body.fontname=Times Roman

 body.fontsize=12

Another shortcoming of the property file format is the requirement that keys must be unique.

To store a sequence of values, you need another workaround, such as

 menu.item.1=Times Roman

 menu.item.2=Helvetica

 menu.item.3=Goudy Old Style

The XML format solves these problems. It can express hierarchical structures and is thus

more flexible than the flat table structure of a property file.

An XML file for describing a program configuration might look like this:

<<configuration>

 <title>

 <name>Helvetica</name>

 <size>36</size>

 </title>

 <body>

 <name>Times Roman</name>

 <size>12</size>

 </body>

 <window>

 <width>400</width>

 <height>200</height>

 </window>

 <color>

 <red>0</red>

 <green>50</green>

 <blue>100</blue>

 </color>

 <menu>

 <item>Times Roman</item>

 <item>Helvetica</item>

 <item>Goudy Old Style</item>

 </menu>

 </configuration>

The XML format allows you to express the hierarchy and record repeated elements without

contortions.

The format of an XML file is straightforward. It looks similar to an HTML file. There is

a good reason for that—both the XML and HTML formats are descendants of the venerable

Standard Generalized Markup Language (SGML).

SGML has been around since the 1970s for describing the structure of complex documents.

It has been used with success in some industries that require ongoing maintenance of massive

documentation—in particular, the aircraft industry. However, SGML is quite complex, so

it has never caught on in a big way. Much of that complexity arises because SGML has two

conflicting goals. SGML wants to make sure that documents are formed according to the rules

for their document type, but it also wants to make data entry easy by allowing shortcuts

that reduce typing. XML was designed as a simplified version of SGML for use on the Internet.

As is often true, simpler is better, and XML has enjoyed the immediate and enthusiastic

reception that has eluded SGML for so long.

NOTE:

You can find a very nice version of the XML standard, with annotations by Tim Bray, at

www.xml.com/axml/axml.html.

Even though XML and HTML have common roots, there are important differences between the

two.

http://www.xml.com/axml/axml.html

• Unlike HTML, XML is case-sensitive. For example, <H1> and <h1> are different XML tags.

• In HTML, you can omit end tags, such as </p> or , if it is clear from the context

where a paragraph or list item ends. In XML, you can never omit an end tag.

• In XML, elements that have a single tag without a matching end tag must end in a /, as

in . That way, the parser knows not to look for a tag.

• In XML, attribute values must be enclosed in quotation marks. In HTML, quotation marks

are optional. For example, <applet code="MyApplet.class" width=300 height=300> is legal

HTML but not legal XML. In XML, you have to use quotation marks: width="300".

• In HTML, you can have attribute names without values, such as <input type="radio"

name="language" value="Java" checked>. In XML, all attributes must have values, such as

checked="true" or (ugh) checked="checked".

3.1.1 The Structure of an XML Document

An XML document should start with a header such as

 <?xml version="1.0"?>

or

 <?xml version="1.0" encoding="UTF-8"?>

Strictly speaking, a header is optional, but it is highly recommended.

NOTE:

Since SGML was created for processing of real documents, XML files are called documents
even though many of them describe data sets that one would not normally call documents.

The header can be followed by a document type definition (DTD), such as

 <!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

DTDs are an important mechanism to ensure the correctness of a document, but they are not

required. We will discuss them later in this chapter.

Finally, the body of the XML document contains the root element, which can contain other
elements. For example,

 <?xml version="1.0"?>

 <!DOCTYPE configuration . . .>

 <configuration>

 <title>

 <name>Helvetica</name>

 <size>36</size>

 </title>

 ...

 </configuration>

An element can contain child elements, text, or both. In the preceding example, the font
element has two child elements, name and size. The name element contains the text

"Helvetica".

TIP:

It is best to structure your XML documents so that an element contains either child elements
or text. In other words, you should avoid situations such as

 Helvetica

 <size>36</size>

This is called mixed content in the XML specification. As you will see later in this chapter,
you can simplify parsing if you avoid mixed content.

XML elements can contain attributes, such as

 <size unit="pt">36</size>

There is some disagreement among XML designers about when to use elements and when to use

attributes. For example, it would seem easier to describe a font as

than

 <name>Helvetica</name>

 <size>36</size>

However, attributes are much less flexible. Suppose you want to add units to the size value.

If you use attributes, you will have to add the unit to the attribute value:

Ugh! Now you have to parse the string "36 pt", just the kind of hassle that XML was designed

to avoid. Adding an attribute to the size element is much cleaner:

 <name>Helvetica</name>

 <size unit="pt">36</size>

A commonly used rule of thumb is that attributes should be used only to modify the

interpretation of a value, not to specify values. If you find yourself engaged in

metaphysical discussions about whether a particular setting is a modification of the

interpretation of a value or not, just say “no” to attributes and use elements throughout.

Many useful XML documents don’t use attributes at all.

NOTE:

In HTML, the rule for attribute usage is simple: If it isn’t displayed on the web page,

it’s an attribute. For example, consider the hyperlink

 Java Technology

The string Java Technology is displayed on the web page, but the URL of the link is not

a part of the displayed page. However, the rule isn’t all that helpful for most XML files

because the data in an XML file aren’t normally meant to be viewed by humans.

Elements and text are the “bread and butter” of XML documents. Here are a few other markup

instructions that you might encounter:

• Character references have the form &#decimalValue; or &#xhexValue;. For example, the
character can be denoted with either of the following:

 é é

• Entity references have the form &name;. The entity references

 < > & " '

have predefined meanings: the less-than, greater-than, ampersand, quotation mark, and

apostrophe characters. You can define other entity references in a DTD.

• CDATA sections are delimited by <![CDATA[and]]>. They are a special form of character
data. You can use them to include strings that contain characters such as < > & without

having them interpreted as markup, for example:

 <![CDATA[< & > are my favorite delimiters]]>

CDATA sections cannot contain the string]]>. Use this feature with caution! It is too often

used as a back door for smuggling legacy data into XML documents.

• Processing instructions are instructions for applications that process XML documents.
They are delimited by <? and ?>, for example

 <![CDATA[< & > are my favorite delimiters]]>

Every XML document starts with a processing instruction

 <?xml version="1.0"?>

• Comments are delimited by <!-- and -->, for example

 <!-- This is a comment. -->

Comments should not contain the string --. Comments should only be information for human

readers. They should never contain hidden commands; use processing instructions for

commands.

3.2 Parsing an XML Document

To process an XML document, you need to parse it. A parser is a program that reads a file,
confirms that the file has the correct format, breaks it up into the constituent elements,

and lets a programmer access those elements. The Java library supplies two kinds of XML

parsers:

• Tree parsers, such as the Document Object Model (DOM) parser, that read an XML document

into a tree structure.

• Streaming parsers, such as the Simple API for XML (SAX) parser, that generate events as

they read an XML document.

The DOM parser is easier to use for most purposes, and we explain it first. You may consider

a streaming parser if you process very long documents whose tree structures would use up

a lot of memory, or if you are only interested in a few elements and don’t care about their

context. For more information, see Section 3.6, “Streaming Parsers,” on p. 199.

The DOM parser interface is standardized by the World Wide Web Consortium (W3C). The

org.w3c.dom package contains the definitions of interface types such as Document and Element.

Different suppliers, such as the Apache Organization and IBM, have written DOM parsers whose

classes implement these interfaces. The Java API for XML Processing (JAXP) library actually

makes it possible to plug in any of these parsers. But the JDK also comes with a DOM parser.

We will use that parser in this chapter.

To read an XML document, you need a DocumentBuilder object that you get from a

DocumentBuilderFactory like this:

 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = factory.newDocumentBuilder();

You can now read a document from a file:

 File f = . . .

 Document doc = builder.parse(f);

Alternatively, you can use a URL:

 URL u = . . .

 Document doc = builder.parse(u);

You can even specify an arbitrary input stream:

 InputStream in = . . .

 Document doc = builder.parse(in);

NOTE:

If you use an input stream as an input source, the parser will not be able to locate other

files that are referenced relative to the location of the document, such as a DTD in the

same directory. You can install an “entity resolver” to overcome that problem. See

http://www.xml.com/pub/a/2004/03/03/catalogs.html or

http://www.ibm.com/developerworks/xml/library/x-mxd3.html for more information.

http://www.xml.com/pub/a/2004/03/03/catalogs.html
http://www.ibm.com/developerworks/xml/library/x-mxd3.html

The Document object is an in-memory representation of the tree structure of the XML document.

It is composed of objects whose classes implement the Node interface and its various

subinterfaces. Figure 3.1 shows the inheritance hierarchy of the subinterfaces.

Figure 3.1 The Node interface and its subinterfaces

Start analyzing the contents of a document by calling the getDocumentElement method. It

returns the root element.

 Element root = doc.getDocumentElement();

For example, if you are processing a document

 <?xml version="1.0"?>

 ...

then calling getDocumentElement returns the font element.

The getTagName method returns the tag name of an element. In the preceding example,

root.getTagName() returns the string "font".

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03fig01

To get the element’s children (which may be subelements, text, comments, or other nodes),

use the getChildNodes method. That method returns a collection of type NodeList. That type

was invented before the standard Java collections, and it has a different access protocol.

The item method gets the item with a given index, and the getLength method gives the total

count of the items. Therefore, you can enumerate all children like this:

 NodeList children = root.getChildNodes();

 for (int i = 0; i < children.getLength(); i++)

 {

 Node child = children.item(i);

 ...

 }

Be careful when analyzing the children. Suppose, for example, that you are processing the

document

 <name>Helvetica</name>

 <size>36</size>

You would expect the font element to have two children, but the parser reports five:

• The whitespace between and <name>

• The name element

• The whitespace between </name> and <size>

• The size element

• The whitespace between </size> and

Figure 3.2 shows the DOM tree.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03fig02

Figure 3.2 A simple DOM tree

If you expect only subelements, you can ignore the whitespace:

 for (int i = 0; i < children.getLength(); i++)

 {

 Node child = children.item(i);

 if (child instanceof Element)

 {

 Element childElement = (Element) child;

 ...

 }

 }

Now you look at only two elements, with tag names name and size.

As you will see in the next section, you can do even better if your document has a DTD.

Then the parser knows which elements don’t have text nodes as children, and it can suppress

the whitespace for you.

When analyzing the name and size elements, you want to retrieve the text strings that they

contain. Those text strings are themselves contained in child nodes of type Text. You know

that these Text nodes are the only children, so you can use the getFirstChild method without

having to traverse another NodeList. Then, use the getData method to retrieve the string

stored in the Text node.

 for (int i = 0; i < children.getLength(); i++)

 {

 Node child = children.item(i);

 if (child instanceof Element)

 {

 Element childElement = (Element) child;

 Text textNode = (Text) childElement.getFirstChild();

 String text = textNode.getData().trim();

 if (childElement.getTagName().equals("name"))

 name = text;

 else if (childElement.getTagName().equals("size"))

 size = Integer.parseInt(text);

 }

 }

TIP:

It is a good idea to call trim on the return value of the getData method. If the author

of an XML file puts the beginning and the ending tags on separate lines, such as then

 <size>

 36

 </size>

the parser includes all line breaks and spaces in the text node data. Calling the trim method

removes the whitespace surrounding the actual data.

You can also get the last child with the getLastChild method, and the next sibling of a

node with getNextSibling. Therefore, another way of traversing a set of child nodes is

 for (Node childNode = element.getFirstChild();

 childNode != null;

 childNode = childNode.getNextSibling())

 {

 ...

 }

To enumerate the attributes of a node, call the getAttributes method. It returns a

NamedNodeMap object that contains Node objects describing the attributes. You can traverse

the nodes in a NamedNodeMap in the same way as a NodeList. Then, call the getNodeName and

getNodeValue methods to get the attribute names and values.

 NamedNodeMap attributes = element.getAttributes();

 for (int i = 0; i < attributes.getLength(); i++)

 {

 Node attribute = attributes.item(i);

 String name = attribute.getNodeName();

 String value = attribute.getNodeValue();

 ...

 }

Alternatively, if you know the name of an attribute, you can retrieve the corresponding

value directly:

 String unit = element.getAttribute("unit");

You have now seen how to analyze a DOM tree. The program in Listing 3.1 puts these techniques

to work. You can use the File Open menu option to r ead in an XML file. A DocumentBuilder

object parses the XML file and produces a Document object. The program displays the Document

object as a tree (see Figure 3.3).

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03fig03

Figure 3.3 A parse tree of an XML document

The tree display shows clearly how child elements are surrounded by text containing

whitespace and comments. For greater clarity, the program displays newline and return

characters as \n and \r. (Otherwise, they would show up as hollow boxes—the default symbol

for a character that Swing cannot draw in a string.)

In [Missing XREF!], you will learn the techniques that this program uses to display the

tree and the attribute tables. The DOMTreeModel class implements the TreeModel inter-face.

The getRoot method returns the root element of the document. The getChild method gets the

node list of children and returns the item with the requested index. The tree cell renderer

displays the following:

• For elements, the element tag name and a table of all attributes

• For character data, the interface (Text, Comment, or CDATASection), followed by the data,

with newline and return characters replaced by \n and \r

• For all other node types, the class name followed by the result of toString

Listing 3.1 dom/TreeViewer.java

 1 package dom;

 2

 3 import java.awt.*;

 4 import java.awt.event.*;

 5 import java.io.*;

 6 import javax.swing.*;

 7 import javax.swing.event.*;

 8 import javax.swing.table.*;

 9 import javax.swing.tree.*;

10 import javax.xml.parsers.*;

11 import org.w3c.dom.*;

12 import org.w3c.dom.CharacterData; 13

14 /**

15 * This program displays an XML document as a tree.

16 * @version 1.12 2012-06-03

17 * @author Cay Horstmann

18 */

19 public class TreeViewer

20 {

21 public static void main(String[] args)

22 {

23 EventQueue.invokeLater(new Runnable()

24 {

25 public void run()

26 {

27 JFrame frame = new DOMTreeFrame();

28 frame.setTitle("TreeViewer");

29 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CL

OSE);

30 frame.setVisible(true);

31 }

32 });

33 }

34 }

35

36 /**

37 * This frame contains a tree that displays the contents of an XML document.

38 */

39 class DOMTreeFrame extends JFrame

40 {

41 private static final int DEFAULT_WIDTH = 400;

42 private static final int DEFAULT_HEIGHT = 400;

43

44 private DocumentBuilder builder;

45

46 public DOMTreeFrame()

47 {

48 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

49

50 JMenu fileMenu = new JMenu("File");

51 JMenuItem openItem = new JMenuItem("Open");

52 openItem.addActionListener(new ActionListener()

53 {

54 public void actionPerformed(ActionEvent event)

55 {

56 openFile();

57 }

58 });

59 fileMenu.add(openItem);

60

61 JMenuItem exitItem = new JMenuItem("Exit");

62 exitItem.addActionListener(new ActionListener()

63 {

64 public void actionPerformed(ActionEvent event)

65 {

66 System.exit(0);

67 }

68 });

69 fileMenu.add(exitItem);

70

71 JMenuBar menuBar = new JMenuBar();

72 menuBar.add(fileMenu);

73 setJMenuBar(menuBar);

74 }

75

76 /**

77 * Open a file and load the document.

78 */

79 public void openFile()

80 {

81 JFileChooser chooser = new JFileChooser();

82 chooser.setCurrentDirectory(new File("dom"));

83

84 chooser.setFileFilter(new

javax.swing.filechooser.FileFilter()

85 {

86 public boolean accept(File f)

87 {

88 return f.isDirectory() ||

f.getName().toLowerCase().endsWith(".xml");

89 }

90

91 public String getDescription()

92 {

93 return "XML files";

94 }

95 });

96 int r = chooser.showOpenDialog(this);

97 if (r != JFileChooser.APPROVE_OPTION) return;

98 final File file = chooser.getSelectedFile();

99

100 new SwingWorker<Document, Void>()

101 {

102 protected Document doInBackground() throws

Exception

103 {

104 if (builder == null)

105 {

106 DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

107 builder = factory.newDocumentBuilder();

108 }

109 return builder.parse(file);

110 }

111

112 protected void done()

113 {

114 try

115 {

116 Document doc = get();

117 JTree tree = new JTree(new

DOMTreeModel(doc));

118 tree.setCellRenderer(new

DOMTreeCellRenderer());

119

120 setContentPane(new JScrollPane(tree));

121 validate();

122 }

123 catch (Exception e)

124 {

125 JOptionPane.showMessageDialog(DOMTree

Frame.this, e);

126 }

127 }

128 }.execute();

129 }

130

131 }

132

133 /**

134 * This tree model describes the tree structure of an XML document.

135 */

136 class DOMTreeModel implements TreeModel

137 {

138 private Document doc;

139

140 /**

141 * Constructs a document tree model.

142 * @param doc the document

143 */

144 public DOMTreeModel(Document doc)

145 {

146 this.doc = doc;

147 }

148

149 public Object getRoot()

150 {

151 return doc.getDocumentElement();

152 }

153

154 public int getChildCount(Object parent)

155 {

156 Node node = (Node) parent;

157 NodeList list = node.getChildNodes();

158 return list.getLength();

159 }

160

161 public Object getChild(Object parent, int index)

162 {

163 Node node = (Node) parent;

164 NodeList list = node.getChildNodes();

165 return list.item(index);

166 }

167

168 public int getIndexOfChild(Object parent, Object child)

169 {

170 Node node = (Node) parent;

171 NodeList list = node.getChildNodes();

172 for (int i = 0; i < list.getLength(); i++)

173 if (getChild(node, i) == child) return i;

174 return -1;

175 }

176

177 public boolean isLeaf(Object node)

178 {

179 return getChildCount(node) == 0;

180 }

181

182 public void valueForPathChanged(TreePath path, Object newValue)

183 {

184 }

185

186 public void addTreeModelListener(TreeModelListener l)

187 {

188 }

189

190 public void removeTreeModelListener(TreeModelListener l)

191 {

192 }

193

194 }

195

196 /**

197 * This class renders an XML node.

198 */

199 class DOMTreeCellRenderer extends DefaultTreeCellRenderer

200 {

201 public Component getTreeCellRendererComponent(JTree tree, Object value,

boolean selected,

202 boolean expanded, boolean leaf, int row, boolean hasFocus)

203 {

204 Node node = (Node) value;

205 if (node instanceof Element) return elementPanel((Element) node);

206

207 super.getTreeCellRendererComponent(tree, value, selected,

expanded, leaf, row, hasFocus);

208 if (node instanceof CharacterData)

setText(characterString((CharacterData) node));

209 else setText(node.getClass() + ": " + node.toString());

210 return this;

211 }

212

213 public static JPanel elementPanel(Element e)

214 {

215 JPanel panel = new JPanel();

216 panel.add(new JLabel("Element: " + e.getTagName()));

217 final NamedNodeMap map = e.getAttributes();

218 panel.add(new JTable(new AbstractTableModel()

219 {

220 public int getRowCount()

221 {

222 return map.getLength();

223 }

224

225 public int getColumnCount()

226 {

227 return 2;

228 }

229

230 public Object getValueAt(int r, int c)

231 {

232 return c == 0 ? map.item(r).getNodeName() :

map.item(r).getNodeValue();

233 }

234 }));

235 return panel;

236 }

237

238 public static String characterString(CharacterData node)

239 {

240 StringBuilder builder = new StringBuilder(node.getData());

241 for (int i = 0; i < builder.length(); i++)

242 {

243 if (builder.charAt(i) == '\r')

244 {

245 builder.replace(i, i + 1, "\\r");

246 i++;

247 }

248 else if (builder.charAt(i) == '\n')

249 {

250 builder.replace(i, i + 1, "\\n");

251 i++;

252 }

253 else if (builder.charAt(i) == '\t')

254 {

255 builder.replace(i, i + 1, "\\t");

256 i++;

257 }

258 }

259 if (node instanceof CDATASection) builder.insert(0, "CDATASection:

");

260 else if (node instanceof Text) builder.insert(0, "Text: ");

261 else if (node instanceof Comment) builder.insert(0, "Comment: ");

262

263 return builder.toString();

264 }

265 }

266

javax.xml.parsers.DocumentBuilderFactory 1.4

• static DocumentBuilderFactory newInstance()

returns an instance of the DocumentBuilderFactory class.

• DocumentBuilder newDocumentBuilder()

returns an instance of the DocumentBuilder class.

javax.xml.parsers.DocumentBuilder 1.4

• Document parse(File f)

• Document parse(String url)

• Document parse(InputStream in)

parses an XML document from the given file, URL, or input stream and returns the parsed

document.

org.w3c.dom.Document 1.4

• Element getDocumentElement()

returns the root element of the document.

org.w3c.dom.Element 1.4

• String getTagName()

returns the name of the element.

• String getAttribute(String name)

returns the value of the attribute with the given name, or the empty string if there is

no such attribute.

org.w3c.dom.Node 1.4

• NodeList getChildNodes()

returns a node list that contains all children of this node.

• Node getFirstChild()

• Node getLastChild()

gets the first or last child node of this node, or null if this node has no children.

• Node getNextSibling()

• Node getPreviousSibling()

gets the next or previous sibling of this node, or null if this node has no siblings.

• Node getParentNode()

gets the parent of this node, or null if this node is the document node.

• NamedNodeMap getAttributes()

returns a node map that contains Attr nodes that describe all attributes of this node.

• String getNodeName()

returns the name of this node. If the node is an Attr node, the name is the attribute name.

• String getNodeValue()

returns the value of this node. If the node is an Attr node, the value is the attribute

value.

org.w3c.dom.CharacterData 1.4

• String getData()

returns the text stored in this node.

org.w3c.dom.NodeList 1.4

• int getLength()

returns the number of nodes in this list.

• Node item(int index)

returns the node with the given index. The index is between 0 and getLength() - 1.

org.w3c.dom.NamedNodeMap 1.4

• int getLength()

returns the number of nodes in this map.

• Node item(int index)

returns the node with the given index. The index is between 0 and getLength() - 1.

3.3 Validating XML Documents

In the preceding section, you saw how to traverse the tree structure of a DOM document.

However, if you simply follow that approach, you’ll find that you will have to perform

quite a bit of tedious programming and error checking. Not only do you have to deal with

whitespace between elements, but you also need to

check whether the document contains the nodes that you expect. For example, suppose you

are reading an element:

 <name>Helvetica</name>

 <size>36</size>

You get the first child. Oops . . . it is a text node containing whitespace "\n ". You skip

text nodes and find the first element node. Then, you need to check that its tag name is

"name" and that it has one child node of type Text. You move on to the next nonwhitespace

child and make the same check. What if the author of the document switched the order of

the children or added another child element? It is tedious to code all this error checking,

but reckless to skip the checks.

Fortunately, one of the major benefits of an XML parser is that it can automatically verify

that a document has the correct structure. Then, parsing becomes much simpler. For example,

if you know that the font fragment has passed validation, you can simply get the two

grandchildren, cast them as Text nodes, and get the text data, without any further checking.

To specify the document structure, you can supply a DTD or an XML Schema definition. A DTD

or schema contains rules that explain how a document should be formed, by specifying the

legal child elements and attributes for each element. For example, a DTD might contain a

rule:

 <!ELEMENT font (name,size)>

This rule expresses that a font element must always have two children, which are name and

size elements. The XML Schema language expresses the same constraint as

 <xsd:element name="font">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="size" type="xsd:int"/>

 </xsd:sequence>

 </xsd:element>

XML Schema can express more sophisticated validation conditions (such as the fact that the

size element must contain an integer) than can DTDs. Unlike the DTD syntax, the XML Schema

syntax uses XML, which is a benefit if you need to process schema files.

In the next section, we will discuss DTDs in detail, then briefly cover the basics of XML

Schema support. Finally, we will present a complete application that demonstrates how

validation simplifies XML programming.

3.3.1 Document Type Definitions

There are several methods for supplying a DTD. You can include a DTD in an XML document

like this:

 <?xml version="1.0"?>

 <!DOCTYPE configuration [

 <!ELEMENT configuration . . .>

 more rules

 ...

]>

 <configuration>

 ...

 </configuration>

As you can see, the rules are included inside a DOCTYPE declaration, in a block delimited

by [. . .]. The document type must match the name of the root element, such as configuration

in our example.

Supplying a DTD inside an XML document is somewhat uncommon because DTDs can grow lengthy.

It makes more sense to store the DTD externally. The SYSTEM declaration can be used for

that purpose; specify a URL that contains the DTD, for example:

 <!DOCTYPE configuration SYSTEM "config.dtd">

or

 <!DOCTYPE configuration SYSTEM "http://myserver.com/config.dtd">

Caution

If you use a relative URL for the DTD (such as "config.dtd"), give the parser a File or

URL object, not an InputStream. If you must parse from an input stream, supply an entity

resolver (see the following note).

Finally, the mechanism for identifying well-known DTDs has its origin in SGML. Here is an

example:

 <!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

If an XML processor knows how to locate the DTD with the public identifier, it need not

go to the URL.

NOTE:

If you use a DOM parser and would like to support a PUBLIC identifier, call the

setEntityResolver method of the DocumentBuilder class to install an object of a class that

implements the EntityResolver interface. That interface has a single method, resolveEntity.

Here is the outline of a typical implementation:

 class MyEntityResolver implements EntityResolver

 {

 public InputSource resolveEntity(String

publicID,

 String systemID)

 {

 if (publicID.equals(a known ID))

 return new InputSource(DTD data);

 else

 return null; // use default

behavior

 }

 }

You can construct the input source from an InputStream, a Reader, or a string.

Now that you have seen how the parser locates the DTD, let us consider the various kinds

of rules.

The ELEMENT rule specifies what children an element can have. Specify a regular expression,

made up of the components shown in Table 3.1.

Table 3.1 Rules for Element Content

Here are several simple but typical examples. The following rule states that a menu element

contains 0 or more item elements:

 <!ELEMENT menu (item)*>

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03tab01

This set of rules states that a font is described by a name followed by a size, each of

which contain text:

 <!ELEMENT font (name,size)>

 <!ELEMENT name (#PCDATA)>

 <!ELEMENT size (#PCDATA)>

The abbreviation PCDATA denotes parsed character data. It is “parsed” because the parser

interprets the text string, looking for < characters that denote the start of a new tag,

or & characters that denote the start of an entity.

An element specification can contain regular expressions that are nested and complex. For

example, here is a rule that describes the makeup of a chapter in this book:

 <!ELEMENT chapter (intro,(heading,(para|image|table|note)+)+)

Each chapter starts with an introduction, which is followed by one or more sections

consisting of a heading and one or more paragraphs, images, tables, or notes.

However, in one common case you can’t define the rules to be as flexible as you might like.

Whenever an element can contain text, there are only two valid cases. Either the element

contains nothing but text, such as

 <!ELEMENT name (#PCDATA)>

or the element contains any combination of text and tags in any order, such as

 <!ELEMENT para (#PCDATA|em|strong|code)*>

It is not legal to specify any other types of rules that contain #PCDATA. For example, the

following is illegal:

 <!ELEMENT captionedImage (image,#PCDATA)>

You have to rewrite such a rule, either by introducing another caption element or by allowing

any combination of image elements and text.

This restriction simplifies the job of the XML parser when parsing mixed content (a mixture
of tags and text). Since you lose some control by allowing mixed content, it is best to

design DTDs so that all elements contain either other elements or nothing but text.

NOTE:

Actually, it isn’t quite true that you can specify arbitrary regular expressions of

elements in a DTD rule. An XML parser may reject certain complex rule sets that lead to

nondeterministic parsing. For example, a regular expression ((x,y)|(x,z)) is

nondeterministic. When the parser sees x, it doesn’t know which of the two alternatives

to take.This expression can be rewritten in a deterministic form as (x,(y|z)). However,

some expressions can’t be reformulated, such as ((x,y)*|x?).The Sun parser gives no

warnings when presented with an ambiguous DTD; it simply picks the first matching

alternative when parsing, which causes it to reject some correct inputs. Of course, the

parser is well within its rights to do so because the XML standard allows a parser to assume

that the DTD is unambiguous.

In practice, this isn’t an issue over which you should lose sleep, because most DTDs are

so simple that you will never run into ambiguity problems.

You can also specify rules to describe the legal attributes of elements. The general syntax

is

 <!ATTLIST element attribute type default>

Table 3.2 shows the legal attribute types, and Table 3.3 shows the syntax for the defaults.

Table 3.2 Attribute Types

Table 3.3 Attribute Defaults

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03tab02
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03tab03

Here are two typical attribute specifications:

 <!ATTLIST font style (plain|bold|italic|bold-italic) "plain">

 <!ATTLIST size unit CDATA #IMPLIED>

The first specification describes the style attribute of a font element. There are four

legal attribute values, and the default value is plain. The second specification expresses

that the unit attribute of the size element can contain any character data sequence.

NOTE:

We generally recommend the use of elements, not attributes, to describe data. Following

that recommendation, the font style should be a separate element, such as

<style>plain</style>. . .. However, attributes have an undeniable advantage

for enumerated types because the parser can verify that the values are legal. For example,

if the font style is an attribute, the parser checks that it is one of the four allowed

values, and supplies a default if no value was given.

The handling of a CDATA attribute value is subtly different from the processing of #PCDATA

that you have seen before, and quite unrelated to the <![CDATA[...]]> sections. The

attribute value is first normalized—that is, the parser processes character and entity

references (such as é or <) and replaces whitespace with spaces.

An NMTOKEN (or name token) is similar to CDATA, but most nonalphanumeric characters and

internal whitespace are disallowed, and the parser removes leading and trailing whitespace.

NMTOKENS is a whitespace-separated list of name tokens.

The ID construct is quite useful. An ID is a name token that must be unique in the

document—the parser checks the uniqueness. You will see an application in the next sample

program. An IDREF is a reference to an ID that exists in the same document, which the parser

also checks. IDREFS is a whitespace-separated list of ID references.

An ENTITY attribute value refers to an “unparsed external entity.” That is a holdover

from SGML that is rarely used in practice. The annotated XML specification at

www.xml.com/axml/axml.html has an example.

A DTD can also define entities, or abbreviations that are replaced during parsing. You can
find a good example for the use of entities in the user interface descriptions for the

Mozilla/Netscape 6 browser. Those descriptions are formatted in XML and contain entity

definitions such as

 <!ENTITY back.label "Back">

Elsewhere, text can contain an entity reference, for example:

 <menuitem label="&back.label;"/>

The parser replaces the entity reference with the replacement string. To internationalize

the application, only the string in the entity definition needs to be changed. Other uses

of entities are more complex and less commonly used; look at the XML specification for

details.

This concludes the introduction to DTDs. Now that you have seen how to use DTDs, you can

configure your parser to take advantage of them. First, tell the document builder factory

to turn on validation:

 factory.setValidating(true);

All builders produced by this factory validate their input against a DTD. The most useful

benefit of validation is ignoring whitespace in element content. For example, consider the

XML fragment

 <name>Helvetica</name>

 <size>36</size>

A nonvalidating parser reports the whitespace between the font, name, and size elements

because it has no way of knowing if the children of font are

 (name,size)

 (#PCDATA,name,size)*

or perhaps

 ANY

http://www.xml.com/axml/axml.html

Once the DTD specifies that the children are (name,size), the parser knows that the

whitespace between them is not text. Call

 factory.setIgnoringElementContentWhitespace(true);

and the builder will stop reporting the whitespace in text nodes. That means you can now

rely on the fact that a font node has two children. You no longer need to program a tedious
loop:

 for (int i = 0; i < children.getLength(); i++)

 {

 Node child = children.item(i);

 if (child instanceof Element)

 {

 Element childElement = (Element) child;

 if (childElement.getTagName().equals("name")) . . .

 else if (childElement.getTagName().equals("size")) . . .

 }

 }

Instead, you can simply access the first and second child:

 Element nameElement = (Element) children.item(0);

 Element sizeElement = (Element) children.item(1);

That is why DTDs are so useful. You don’t overload your program with rule checking code—the

parser has already done that work by the time you get the document.

TIP:

Many programmers who start using XML are uncomfortable with validation and end up analyzing

the DOM tree on the fly. If you need to convince colleagues of the benefit of using validated

documents, show them the two coding alternatives—it should win them over.

When the parser reports an error, your application will want to do something about it—log

it, show it to the user, or throw an exception to abandon the parsing. Therefore, you should

install an error handler whenever you use validation. Supply an object that implements the

ErrorHandler interface. That interface has three methods:

 void warning(SAXParseException exception)

 void error(SAXParseException exception)

 void fatalError(SAXParseException exception)

Install the error handler with the setErrorHandler method of the DocumentBuilder class:

 builder.setErrorHandler(handler);

javax.xml.parsers.DocumentBuilder 1.4

• void setEntityResolver(EntityResolver resolver)

sets the resolver to locate entities that are referenced in the XML documents to be parsed.

• void setErrorHandler(ErrorHandler handler)

sets the handler to report errors and warnings that occur during parsing.

org.xml.sax.EntityResolver 1.4

• public InputSource resolveEntity(String publicID, String systemID)

returns an input source that contains the data referenced by the given ID(s), or null to

indicate that this resolver doesn’t know how to resolve the particular name. The publicID

parameter may be null if no public ID was supplied.

org.xml.sax.InputSource 1.4

• InputSource(InputStream in)

• InputSource(Reader in)

• InputSource(String systemID)

constructs an input source from a stream, reader, or system ID (usually a relative or

absolute URL).

org.xml.sax.ErrorHandler 1.4

• void fatalError(SAXParseException exception)

• void error(SAXParseException exception)

• void warning(SAXParseException exception)

Override these methods to provide handlers for fatal errors, nonfatal errors, and warnings.

org.xml.sax.SAXParseException 1.4

• int getLineNumber()

• int getColumnNumber()

returns the line and column number of the end of the processed input that caused the

exception.

javax.xml.parsers.DocumentBuilderFactory 1.4

• boolean isValidating()

• void setValidating(boolean value)

gets or sets the validating property of the factory. If set to true, the parsers that this

factory generates validate their input.

• boolean isIgnoringElementContentWhitespace()

• void setIgnoringElementContentWhitespace(boolean value)

gets or sets the ignoringElementContentWhitespace property of the factory. If set to true,

the parsers that this factory generates ignore whitespace between element nodes that don’t

have mixed content (i.e., a mixture of elements and #PCDATA).

3.3.2 XML Schema

XML Schema is quite a bit more complex than the DTD syntax, so we will only cover the basics.

For more information, we recommend the tutorial at www.w3.org/TR/xmlschema-0.

To reference a Schema file in a document, add attributes to the root element, for example:

 <?xml version="1.0"?>

 <configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="config.xsd">

 ...

 </configuration>

This declaration states that the schema file config.xsd should be used to validate the

document. If your document uses namespaces, the syntax is a bit more complex—see the XML

Schema tutorial for details. (The prefix xsi is a namespace alias; see Section 3.5, “Using

Namespaces,” on p. 196 for more information.)

A schema defines a type for each element. The type can be a simple type—a string with

formatting restrictions—or a complex type. Some simple types are built into XML Schema,
including

http://www.w3.org/TR/xmlschema-0
http://www.w3.org/2001/XMLSchema-instance

 xsd:string

 xsd:int

 xsd:boolean

NOTE:

We use the prefix xsd: to denote the XML Schema Definition namespace. Some authors use the

prefix xs: instead.

You can define your own simple types. For example, here is an enumerated type:

 <xsd:simpleType name="StyleType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="PLAIN" />

 <xsd:enumeration value="BOLD" />

 <xsd:enumeration value="ITALIC" />

 <xsd:enumeration value="BOLD_ITALIC" />

 </xsd:restriction>

 </xsd:simpleType>

When you define an element, you specify its type:

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="size" type="xsd:int"/>

 <xsd:element name="style" type="StyleType"/>

The type constrains the element content. For example, the elements

 <size>10</size>

 <style>PLAIN</style>

will validate correctly, but the elements

 <size>default</size>

 <style>SLANTED</style>

will be rejected by the parser.

You can compose types into complex types, for example:

 <xsd:complexType name="FontType">

 <xsd:sequence>

 <xsd:element ref="name"/>

 <xsd:element ref="size"/>

 <xsd:element ref="style"/>

 </xsd:sequence>

 </xsd:complexType>

A FontType is a sequence of name, size, and style elements. In this type definition, we

use the ref attribute and refer to definitions that are located elsewhere in the schema.

You can also nest definitions, like this:

 <xsd:complexType name="FontType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="size" type="xsd:int"/>

 <xsd:element name="style" type="StyleType">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="PLAIN" />

 <xsd:enumeration value="BOLD" />

 <xsd:enumeration value="ITALIC" />

 <xsd:enumeration value="BOLD_ITALIC" />

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

Note the anonymous type definition of the style element.

The xsd:sequence construct is the equivalent of the concatenation notation in DTDs. The

xsd:choice construct is the equivalent of the | operator. For example,

 <xsd:complexType name="contactinfo">

 <xsd:choice>

 <xsd:element ref="email"/>

 <xsd:element ref="phone"/>

 </xsd:choice>

 </xsd:complexType>

This is the equivalent of the DTD type email|phone.

To allow repeated elements, use the minoccurs and maxoccurs attributes. For example, the

equivalent of the DTD type item* is

 <xsd:element name="item" type=". . ." minoccurs="0" maxoccurs="unbounded">

To specify attributes, add xsd:attribute elements to complexType definitions:

 <xsd:element name="size">

 <xsd:complexType>

 ...

 <xsd:attribute name="unit" type="xsd:string" use="optional"

default="cm"/>

 </xsd:complexType>

 </xsd:element>

This is the equivalent of the DTD statement

 <!ATTLIST size unit CDATA #IMPLIED "cm">

Enclose element and type definitions of your schema inside an xsd:schema element:

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 ...

 </xsd:schema>

Parsing an XML file with a schema is similar to parsing a file with a DTD, but with three

differences:

1. You need to turn on support for namespaces, even if you don’t use them in your XML files.

 factory.setNamespaceAware(true);

2. You need to prepare the factory for handling schemas, with the following magic

incantation:

 final String JAXP_SCHEMA_LANGUAGE =

"http://java.sun.com/xml/jaxp/properties/schemaLanguage";

 final String W3C_XML_SCHEMA =

"http://www.w3.org/2001/XMLSchema";

 factory.setAttribute(JAXP_SCHEMA_LANGUAGE,

W3C_XML_SCHEMA);

3. The parser does not discard element content whitespace. This is a definite annoyance,
and there is disagreement whether or not it is an actual bug. See the code in Listing 3.4

for a workaround.

3.3.3 A Practical Example

In this section, we work through a practical example that shows the use of XML in a realistic

setting. Recall from Volume I, Chapter 9 that the GridBagLayout is the most useful layout

manager for Swing components. However, it is feared not just for its complexity but also

http://www.w3.org/2001/XMLSchema
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09

for the programming tedium. It would be much more convenient to put the layout description

into a text file instead of producing large amounts of repetitive code. In this section,

you will see how to use XML to describe a grid bag layout and how to parse the layout files.

A grid bag is made up of rows and columns, very similar to an HTML table. Similar to an

HTML table, we describe it as a sequence of rows, each of which contains cells:

 <gridbag>

 <row>

 <cell>. . .</cell>

 <cell>. . .</cell>

 ...

 </row>

 <row>

 <cell>. . .</cell>

 <cell>. . .</cell>

 ...

 </row>

 ...

 </gridbag>

The gridbag.dtd specifies these rules:

 <!ELEMENT gridbag (row)*>

 <!ELEMENT row (cell)*>

Some cells can span multiple rows and columns. In the grid bag layout, that is achieved

by setting the gridwidth and gridheight constraints to values larger than 1. We will use

attributes of the same name:

 <cell gridwidth="2" gridheight="2">

Similarly, we can use attributes for the other grid bag constraints fill, anchor, gridx,

gridy, weightx, weighty, ipadx, and ipady. (We don’t handle the insets constraint because

its value is not a simple type, but it would be straightforward to support it.) For example,

 <cell fill="HORIZONTAL" anchor="NORTH">

For most of these attributes, we provide the same defaults as the no-argument constructor

of the GridBagConstraints class:

 <!ATTLIST cell gridwidth CDATA "1">

 <!ATTLIST cell gridheight CDATA "1">

 <!ATTLIST cell fill (NONE|BOTH|HORIZONTAL|VERTICAL) "NONE">

 <!ATTLIST cell anchor (CENTER|NORTH|NORTHEAST|EAST

 |SOUTHEAST|SOUTH|SOUTHWEST|WEST|NORTHWEST) "CENTER">

 ...

The gridx and gridy values get special treatment because it would be tedious and somewhat

error-prone to specify them by hand. Supplying them is optional:

 <!ATTLIST cell gridx CDATA #IMPLIED>

 <!ATTLIST cell gridy CDATA #IMPLIED>

If they are not supplied, the program determines them according to the following heuristic:

In column 0, the default gridx is 0. Otherwise, it is the preceding gridx plus the preceding

gridwidth. The default gridy is always the same as the row number. Thus, you don’t have

to specify gridx and gridy in the most common cases where a component spans multiple rows.

However, if a component spans multiple columns, you must specify gridx whenever you skip

over that component.

NOTE:

Grid bag experts might wonder why we don’t use the RELATIVE and REMAINDER mechanism to

let the grid bag layout automatically determine the gridx and gridy positions. We tried,

but no amount of fussing would produce the layout of the font dialog example of Figure 3.4.

Reading through the GridBagLayout source code, it is apparent that the algorithm just won’t

do the heavy lifting required to recover the absolute positions.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03fig04

Figure 3.4 A font dialog defined by an XML layout

The program parses the attributes and sets the grid bag constraints. For example, to read

the grid width, the program contains a single statement:

 constraints.gridwidth = Integer.parseInt(e.getAttribute("gridwidth"));

The program need not worry about a missing attribute because the parser automatically

supplies the default value if no other value was specified in the document.

To test whether a gridx or gridy attribute was specified, we call the getAttribute method

and check if it returns the empty string:

 String value = e.getAttribute("gridy");

 if (value.length() == 0) // use default

 constraints.gridy = r;

 else

 constraints.gridy = Integer.parseInt(value);

We found it convenient to allow arbitrary objects inside cells. That lets us specify

noncomponent types such as borders. We only require that the objects belong to a class that

follows the JavaBeans convention to have a no-argument constructor and to have properties

that are given by getter/setter pairs. (We will discuss JavaBeans in more detail in [Missing

XREF!].)

A bean is defined by a class name and zero or more properties:

 <!ELEMENT bean (class, property*)>

 <!ELEMENT class (#PCDATA)>

A property contains a name and a value:

 <!ELEMENT property (name, value)>

 <!ELEMENT name (#PCDATA)>

The value is an integer, boolean, string, or another bean:

 <!ELEMENT value (int|string|boolean|bean)>

 <!ELEMENT int (#PCDATA)>

 <!ELEMENT string (#PCDATA)>

 <!ELEMENT boolean (#PCDATA)>

Here is a typical example, a JLabel whose text property is set to the string "Face: ":

 <bean>

 <class>javax.swing.JLabel</class>

 <property>

 <name>text</name>

 <value><string>Face: </string></value>

 </property>

 </bean>

It seems like a bother to surround a string with the <string> tag. Why not just use #PCDATA

for strings and leave the tags for the other types? Because then we would need to use mixed

content and weaken the rule for the value element to

 <!ELEMENT value (#PCDATA|int|boolean|bean)*>

However, that rule would allow an arbitrary mixture of text and tags.

The program sets a property by using the BeanInfo class. BeanInfo enumerates the property

descriptors of the bean. We search for the property with the matching name, and then call

its setter method with the supplied value.

When our program reads in a user interface description, it has enough information to

construct and arrange the user interface components. But, of course, the interface is not

alive—no event listeners have been attached. To add event listeners, we have to locate

the components. For that reason, we support an optional attribute of type ID for each bean:

 <!ATTLIST bean id ID #IMPLIED>

For example, here is a combo box with an ID:

 <bean id="face">

 <class>javax.swing.JComboBox</class>

 </bean>

Recall that the parser checks that IDs are unique.

A programmer can attach event handlers like this:

 gridbag = new GridBagPane("fontdialog.xml");

 setContentPane(gridbag);

 JComboBox face = (JComboBox) gridbag.get("face");

 face.addListener(listener);

NOTE:

In this example, we only use XML to describe the component layout and leave it to programmers

to attach the event handlers in the Java code.You could go a step further and add the code

to the XML description. The most promising approach is to use a scripting language such

as JavaScript for the code. If you want to add that enhancement, check out the Rhino

interpreter at www.mozilla.org/rhino.

The program in Listing 3.2 shows how to use the GridBagPane class to do all the boring work

of setting up the grid bag layout. The layout is defined in Listing 3.4; Figure 3.4 shows

the result. The program only initializes the combo boxes (which are too complex for the

bean property-setting mechanism that the GridBagPane supports) and attaches event listeners.

http://www.mozilla.org/rhino
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03fig04

The GridBagPane class in Listing 3.3 parses the XML file, constructs the components, and

lays them out. Listing 3.5 shows the DTD.

The program can also process a schema instead of a DTD if you choose a file that contains

the string -schema.

Listing 3.6 contains the schema.

This example is a typical use of XML. The XML format is robust enough to express complex

relationships. The XML parser adds value by taking over the routine job of validity checking

and supplying defaults.

Listing 3.2 read/GridBagTest.java

 1 package read;

 2

 3 import java.awt.*;

 4 import java.awt.event.*;

 5 import java.io.*;

 6 import javax.swing.*;

 7

 8 /**

 9 * This program shows how to use an XML file to describe a gridbag layout

10 * @version 1.11 2012-06-03

11 * @author Cay Horstmann

12 */

13 public class GridBagTest

14 {

15 public static void main(String[] args)

16 {

17 EventQueue.invokeLater(new Runnable()

18 {

19 public void run()

20 {

21 JFileChooser chooser = new JFileChooser(".");

22 chooser.showOpenDialog(null);

23 File file = chooser.getSelectedFile();

24 JFrame frame = new FontFrame(file);

25 frame.setTitle("GridBagTest");

26 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CL

OSE);

27 frame.setVisible(true);

28 }

29 });

30 }

31 }

32

33 /**

34 * This frame contains a font selection dialog that is described by an XML file.

35 * @param filename the file containing the user interface components for the dialog.

36 */

37 class FontFrame extends JFrame

38 {

39 private GridBagPane gridbag;

40 private JComboBox<String> face;

41 private JComboBox<String> size;

42 private JCheckBox bold;

43 private JCheckBox italic;

44

45 @SuppressWarnings("unchecked")

46 public FontFrame(File file)

47 {

48 gridbag = new GridBagPane(file);

49 add(gridbag);

50

51 face = (JComboBox<String>) gridbag.get("face");

52 size = (JComboBox<String>) gridbag.get("size");

53 bold = (JCheckBox) gridbag.get("bold");

54 italic = (JCheckBox) gridbag.get("italic");

55

56 face.setModel(new DefaultComboBoxModel<String>(new String[]

{ "Serif",

57 "SansSerif", "Monospaced", "Dialog",

"DialogInput" }));

58

59 size.setModel(new DefaultComboBoxModel<String>(new String[]

{ "8",

60 "10", "12", "15", "18", "24", "36", "48" }));

61

62 ActionListener listener = new ActionListener()

63 {

64 public void actionPerformed(ActionEvent event)

65 {

66 setSample();

67 }

68 };

69

70 face.addActionListener(listener);

71 size.addActionListener(listener);

72 bold.addActionListener(listener);

73 italic.addActionListener(listener);

74

75 setSample();

76 pack();

77 }

78

79 /**

80 * This method sets the text sample to the selected font.

81 */

82 public void setSample()

83 {

84 String fontFace = face.getItemAt(face.getSelectedIndex());

85 int fontSize =

Integer.parseInt(size.getItemAt(size.getSelectedIndex()));

86 JTextArea sample = (JTextArea) gridbag.get("sample");

87 int fontStyle = (bold.isSelected() ? Font.BOLD : 0)

88 + (italic.isSelected() ? Font.ITALIC : 0);

89

90 sample.setFont(new Font(fontFace, fontStyle, fontSize));

91 sample.repaint();

92 }

93 }

Listing 3.3 read/GridBagPane.java

 1 package read;

 2

 3 import java.awt.*;

 4 import java.beans.*;

 5 import java.io.*;

 6 import java.lang.reflect.*;

 7 import javax.swing.*;

 8 import javax.xml.parsers.*;

 9 import org.w3c.dom.*;

10

11 /**

12 * This panel uses an XML file to describe its components and their grid bag layout

positions.

13 */

14 public class GridBagPane extends JPanel

15 {

16 private GridBagConstraints constraints;

17

18 /**

19 * Constructs a grid bag pane.

20 * @param filename the name of the XML file that describes the pane's

components and their

21 * positions

22 */

23 public GridBagPane(File file)

24 {

25 setLayout(new GridBagLayout());

26 constraints = new GridBagConstraints();

27

28 try

29 {

30 DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

31 factory.setValidating(true);

32

33 if (file.toString().contains("-schema"))

34 {

35 factory.setNamespaceAware(true);

36 final String JAXP_SCHEMA_LANGUAGE =

37 "http://java.sun.com/xml/jaxp/properties/schemaL

anguage";

38 final String W3C_XML_SCHEMA =

"http://www.w3.org/2001/XMLSchema";

39 factory.setAttribute(JAXP_SCHEMA_LANGUAGE,

W3C_XML_SCHEMA);

40 }

41

42 factory.setIgnoringElementContentWhitespace(true);

43

44 DocumentBuilder builder = factory.newDocumentBuilder();

45 Document doc = builder.parse(file);

46 parseGridbag(doc.getDocumentElement());

47 }

48 catch (Exception e)

49 {

50 e.printStackTrace();

51 }

52 }

53

54 /**

55 * Gets a component with a given name

http://java.sun.com/xml/jaxp/properties/schemaLanguage
http://java.sun.com/xml/jaxp/properties/schemaLanguage

56 * @param name a component name

57 * @return the component with the given name, or null if no component in

this grid bag pane has

58 * the given name

59 */

60 public Component get(String name)

61 {

62 Component[] components = getComponents();

63 for (int i = 0; i < components.length; i++)

64 {

65 if (components[i].getName().equals(name)) return

components[i];

66 }

67 return null;

68 }

69

70 /**

71 * Parses a gridbag element.

72 * @param e a gridbag element

73 */

74 private void parseGridbag(Element e)

75 {

76 NodeList rows = e.getChildNodes();

77 for (int i = 0; i < rows.getLength(); i++)

78 {

79 Element row = (Element) rows.item(i);

80 NodeList cells = row.getChildNodes();

81 for (int j = 0; j < cells.getLength(); j++)

82 {

83 Element cell = (Element) cells.item(j);

84 parseCell(cell, i, j);

85 }

86 }

87 }

88

89 /**

90 * Parses a cell element.

91 * @param e a cell element

92 * @param r the row of the cell

93 * @param c the column of the cell

94 */

95 private void parseCell(Element e, int r, int c)

96 {

97 // get attributes

98

99 String value = e.getAttribute("gridx");

100 if (value.length() == 0) // use default

101 {

102 if (c == 0) constraints.gridx = 0;

103 else constraints.gridx += constraints.gridwidth;

104 }

105 else constraints.gridx = Integer.parseInt(value);

106

107 value = e.getAttribute("gridy");

108 if (value.length() == 0) // use default

109 constraints.gridy = r;

110 else constraints.gridy = Integer.parseInt(value);

111

112 constraints.gridwidth =

Integer.parseInt(e.getAttribute("gridwidth"));

113 constraints.gridheight =

Integer.parseInt(e.getAttribute("gridheight"));

114 constraints.weightx = Integer.parseInt(e.getAttribute("weightx"));

115 constraints.weighty = Integer.parseInt(e.getAttribute("weighty"));

116 constraints.ipadx = Integer.parseInt(e.getAttribute("ipadx"));

117 constraints.ipady = Integer.parseInt(e.getAttribute("ipady"));

118

119 // use reflection to get integer values of static fields

120 Class<GridBagConstraints> cl = GridBagConstraints.class;

121

122 try

123 {

124 String name = e.getAttribute("fill");

125 Field f = cl.getField(name);

126 constraints.fill = f.getInt(cl);

127

128 name = e.getAttribute("anchor");

129 f = cl.getField(name);

130 constraints.anchor = f.getInt(cl);

131 }

132 catch (Exception ex) // the reflection methods can throw various

exceptions

133 {

134 ex.printStackTrace();

135 }

136

137 Component comp = (Component) parseBean((Element) e.getFirstChild());

138 add(comp, constraints);

139 }

140

141 /**

142 * Parses a bean element.

143 * @param e a bean element

144 */

145 private Object parseBean(Element e)

146 {

147 try

148 {

149 NodeList children = e.getChildNodes();

150 Element classElement = (Element) children.item(0);

151 String className = ((Text)

classElement.getFirstChild()).getData();

152

153 Class<?> cl = Class.forName(className);

154

155 Object obj = cl.newInstance();

156

157 if (obj instanceof Component) ((Component)

obj).setName(e.getAttribute("id"));

158

159 for (int i = 1; i < children.getLength(); i++)

160 {

161 Node propertyElement = children.item(i);

162 Element nameElement = (Element)

propertyElement.getFirstChild();

163 String propertyName = ((Text)

nameElement.getFirstChild()).getData();

164

165 Element valueElement = (Element)

propertyElement.getLastChild();

166 Object value = parseValue(valueElement);

167 BeanInfo beanInfo = Introspector.getBeanInfo(cl);

168 PropertyDescriptor[] descriptors =

beanInfo.getPropertyDescriptors();

169 boolean done = false;

170 for (int j = 0; !done && j < descriptors.length; j++)

171 {

172 if

(descriptors[j].getName().equals(propertyName))

173 {

174 descriptors[j].getWriteMethod().invok

e(obj, value);

175 done = true;

176 }

177 }

178 }

179 return obj;

180 }

181 catch (Exception ex) // the reflection methods can throw various

exceptions

182 {

183 ex.printStackTrace();

184 return null;

185 }

186 }

187

188 /**

189 * Parses a value element.

190 * @param e a value element

191 */

192 private Object parseValue(Element e)

193 {

194 Element child = (Element) e.getFirstChild();

195 if (child.getTagName().equals("bean")) return parseBean(child);

196 String text = ((Text) child.getFirstChild()).getData();

197 if (child.getTagName().equals("int")) return new Integer(text);

198 else if (child.getTagName().equals("boolean")) return new

Boolean(text);

199 else if (child.getTagName().equals("string")) return text;

200 else return null;

201 }

201 }

Listing 3.4 read/fontdialog.xml

 1 <?xml version="1.0"?>

 2 <!DOCTYPE gridbag SYSTEM "gridbag.dtd">

 3 <gridbag>

 4 <row>

 5 <cell anchor="EAST">

 6 <bean>

 7 <class>javax.swing.JLabel</class>

 8 <property>

 9 <name>text</name>

10 <value><string>Face: </string></value>

11 </property>

12 </bean>

13 </cell>

14 <cell fill="HORIZONTAL" weightx="100">

15 <bean id="face">

16 <class>javax.swing.JComboBox</class>

17 </bean>

18 </cell>

19 <cell gridheight="4" fill="BOTH" weightx="100" weighty="100">

20 <bean id="sample">

21 <class>javax.swing.JTextArea</class>

22 <property>

23 <name>text</name>

24 <value><string>The quick brown fox jumps over the

lazy dog</string></value>

25 </property>

26 <property>

27 <name>editable</name>

28 <value><boolean>false</boolean></value>

29 </property>

30 <property>

31 <name>rows</name>

32 <value><int>8</int></value>

33 </property>

34 <property>

35 <name>columns</name>

36 <value><int>20</int></value>

37 </property>

38 <property>

39 <name>lineWrap</name>

40 <value><boolean>true</boolean></value>

41 </property>

42 <property>

43 <name>border</name>

44 <value>

45 <bean>

46 <class>javax.swing.border.EtchedBorder

</class>

47 </bean>

48 </value>

49 </property>

50 </bean>

51 </cell>

52 </row>

53 <row>

54 <cell anchor="EAST">

55 <bean>

56 <class>javax.swing.JLabel</class>

57 <property>

58 <name>text</name>

59 <value><string>Size: </string></value>

60 </property>

61 </bean>

62 </cell>

63 <cell fill="HORIZONTAL" weightx="100">

64 <bean id="size">

65 <class>javax.swing.JComboBox</class>

66 </bean>

67 </cell>

68 </row>

69 <row>

70 <cell gridwidth="2" weighty="100">

71 <bean id="bold">

72 <class>javax.swing.JCheckBox</class>

73 <property>

74 <name>text</name>

75 <value><string>Bold</string></value>

76 </property>

77 </bean>

78 </cell>

79 </row>

80 <row>

81 <cell gridwidth="2" weighty="100">

82 <bean id="italic">

83 <class>javax.swing.JCheckBox</class>

84 <property>

85 <name>text</name>

86 <value><string>Italic</string></value>

87 </property>

88 </bean>

89 </cell>

90 </row>

91 </gridbag>

92

93

Listing 3.5 read/gridbag.dtd

 1 <!ELEMENT gridbag (row)*>

 2 <!ELEMENT row (cell)*>

 3 <!ELEMENT cell (bean)>

 4 <!ATTLIST cell gridx CDATA #IMPLIED>

 5 <!ATTLIST cell gridy CDATA #IMPLIED>

 6 <!ATTLIST cell gridwidth CDATA "1">

 7 <!ATTLIST cell gridheight CDATA "1">

 8 <!ATTLIST cell weightx CDATA "0">

 9 <!ATTLIST cell weighty CDATA "0">

10 <!ATTLIST cell fill (NONE|BOTH|HORIZONTAL|VERTICAL) "NONE">

11 <!ATTLIST cell anchor

12 (CENTER|NORTH|NORTHEAST|EAST|SOUTHEAST|SOUTH|SOUTHWEST|WEST|NORTHWEST)

"CENTER">

13 <!ATTLIST cell ipadx CDATA "0">

14 <!ATTLIST cell ipady CDATA "0">

15

16 <!ELEMENT bean (class, property*)>

17 <!ATTLIST bean id ID #IMPLIED>

18

19 <!ELEMENT class (#PCDATA)>

20 <!ELEMENT property (name, value)>

21 <!ELEMENT name (#PCDATA)>

22 <!ELEMENT value (int|string|boolean|bean)>

23 <!ELEMENT int (#PCDATA)>

24 <!ELEMENT string (#PCDATA)>

25 <!ELEMENT boolean (#PCDATA)>

Listing 3.6 read/gridbag.xsd

 1 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 2

 3 <xsd:element name="gridbag" type="GridBagType"/>

 4

 5 <xsd:element name="bean" type="BeanType"/>

 6

 7 <xsd:complexType name="GridBagType">

 8 <xsd:sequence>

 9 <xsd:element name="row" type="RowType" minOccurs="0"

maxOccurs="unbounded"/>

10 </xsd:sequence>

11 </xsd:complexType>

12

http://www.w3.org/2001/XMLSchema

13 <xsd:complexType name="RowType">

14 <xsd:sequence>

15 <xsd:element name="cell" type="CellType" minOccurs="0"

maxOccurs="unbounded"/>

16 </xsd:sequence>

17 </xsd:complexType>

18

19 <xsd:complexType name="CellType">

20 <xsd:sequence>

21 <xsd:element ref="bean"/>

22 </xsd:sequence>

23 <xsd:attribute name="gridx" type="xsd:int" use="optional"/>

24 <xsd:attribute name="gridy" type="xsd:int" use="optional"/>

25 <xsd:attribute name="gridwidth" type="xsd:int" use="optional"

default="1" />

26 <xsd:attribute name="gridheight" type="xsd:int" use="optional"

default="1" />

27 <xsd:attribute name="weightx" type="xsd:int" use="optional"

default="0" />

28 <xsd:attribute name="weighty" type="xsd:int" use="optional"

default="0" />

29 <xsd:attribute name="fill" use="optional" default="NONE">

30 <xsd:simpleType>

31 <xsd:restriction base="xsd:string">

32 <xsd:enumeration value="NONE" />

33 <xsd:enumeration value="BOTH" />

34 <xsd:enumeration value="HORIZONTAL" />

35 <xsd:enumeration value="VERTICAL" />

36 </xsd:restriction>

37 </xsd:simpleType>

38 </xsd:attribute>

39 <xsd:attribute name="anchor" use="optional" default="CENTER">

40 <xsd:simpleType>

41 <xsd:restriction base="xsd:string">

42 <xsd:enumeration value="CENTER" />

43 <xsd:enumeration value="NORTH" />

44 <xsd:enumeration value="NORTHEAST" />

45 <xsd:enumeration value="EAST" />

46 <xsd:enumeration value="SOUTHEAST" />

47 <xsd:enumeration value="SOUTH" />

48 <xsd:enumeration value="SOUTHWEST" />

49 <xsd:enumeration value="WEST" />

50 <xsd:enumeration value="NORTHWEST" />

51 </xsd:restriction>

52 </xsd:simpleType>

53 </xsd:attribute>

54 <xsd:attribute name="ipady" type="xsd:int" use="optional" default="0"

/>

55 <xsd:attribute name="ipadx" type="xsd:int" use="optional" default="0"

/>

56 </xsd:complexType>

57

58 <xsd:complexType name="BeanType">

59 <xsd:sequence>

60 <xsd:element name="class" type="xsd:string"/>

61 <xsd:element name="property" type="PropertyType"

minOccurs="0" maxOccurs="unbounded"/>

62 </xsd:sequence>

63 <xsd:attribute name="id" type="xsd:ID" use="optional" />

64 </xsd:complexType>

65

66 <xsd:complexType name="PropertyType">

67 <xsd:sequence>

68 <xsd:element name="name" type="xsd:string"/>

69 <xsd:element name="value" type="ValueType"/>

70 </xsd:sequence>

71 </xsd:complexType>

72

73 <xsd:complexType name="ValueType">

74 <xsd:choice>

75 <xsd:element ref="bean"/>

76 <xsd:element name="int" type="xsd:int"/>

77 <xsd:element name="string" type="xsd:string"/>

78 <xsd:element name="boolean" type="xsd:boolean"/>

79 </xsd:choice>

80 </xsd:complexType>

81 </xsd:schema>

3.4 Locating Information with XPath

If you want to locate a specific piece of information in an XML document, it can be a bit

of a hassle to navigate the nodes of the DOM tree. The XPath language makes it simple to

access tree nodes. For example, suppose you have this XML document:

 <configuration>

 ...

 <database>

 <username>dbuser</username>

 <password>secret</password>

 ...

 </database>

 </configuration>

You can get the database user name by evaluating the XPath expression

 /configuration/database/username

That’s a lot simpler than the plain DOM approach:

1. Get the document node.

2. Enumerate its children.

3. Locate the database element.

4. Get its first child, the username element.

5. Get its first child, a text node.

6. Get its data.

An XPath can describe a set of nodes in an XML document. For example, the XPath

 /gridbag/row

describes the set of all row elements that are children of the gridbag root element. You

can select a particular element with the [] operator:

 /gridbag/row[1]

is the first row. (The index values start at 1.)

 /gridbag/row[1]/cell[1]/@anchor

Use the @ operator to get attribute values. The XPath expression

 /gridbag/row[1]/cell[1]/@anchor

describes the anchor attribute of the first cell in the first row. The XPath expression

 /gridbag/row/cell/@anchor

describes all anchor attribute nodes of cell elements within row elements that are children

of the gridbag root node.

There are a number of useful XPath functions. For example,

 count(/gridbag/row)

returns the number of row children of the gridbag root. There are many more elaborate XPath

expressions; see the specification at www.w3c.org/TR/xpath or the nifty online tutorial

at www.zvon.org/xxl/XPathTutorial/General/examples.html.

Java SE 5.0 added an API to evaluate XPath expressions. First, create an XPath object from

an XPathFactory:

 XPathFactory xpfactory = XPathFactory.newInstance();

 path = xpfactory.newXPath();

Then, call the evaluate method to evaluate XPath expressions:

 String username = path.evaluate("/configuration/database/username", doc);

You can use the same XPath object to evaluate multiple expressions.

This form of the evaluate method returns a string result. It is suitable for retrieving

text, such as the text of the username node in the preceding example. If an XPath expression

yields a node set, make a call such as the following:

 NodeList nodes = (NodeList) path.evaluate("/gridbag/row", doc,

XPathConstants.NODESET);

If the result is a single node, use XPathConstants.NODE instead:

 Node node = (Node) path.evaluate("/gridbag/row[1]", doc, XPathConstants.NODE);

If the result is a number, use XPathConstants.NUMBER:

 int count = ((Number) path.evaluate("count(/gridbag/row)", doc,

XPathConstants.NUMBER)).intValue();

You don’t have to start the search at the document root; you can start at any node or node

list. For example, if you have a node from a previous evaluation, you can call

 result = path.evaluate(expression, node);

The program in Listing 3.7 demonstrates the evaluation of XPath expressions. Load an XML

file and type an expression. Select the expression type and click the Evaluate button. The

result of the expression is displayed at the bottom of the frame (see Figure 3.5).

http://www.w3c.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/General/examples.html
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03fig05

Figure 3.5 Evaluating XPath expressions

Listing 3.7 xpath/XPathTester.java

 1 package xpath;

 2

 3 import java.awt.*;

 4 import java.awt.event.*;

 5 import java.io.*;

 6 import java.nio.file.*;

 7 import javax.swing.*;

 8 import javax.swing.border.*;

 9 import javax.xml.namespace.*;

10 import javax.xml.parsers.*;

11 import javax.xml.xpath.*;

12 import org.w3c.dom.*;

13 import org.xml.sax.*;

14

15 /**

16 * This program evaluates XPath expressions.

17 * @version 1.01 2007-06-25

18 * @author Cay Horstmann

19 */

20 public class XPathTester

21 {

22 public static void main(String[] args)

23 {

24 EventQueue.invokeLater(new Runnable()

25 {

26 public void run()

27 {

28 JFrame frame = new XPathFrame();

29 frame.setTitle("XPathTest");

30 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CL

OSE);

31 frame.setVisible(true);

32 }

33 });

34 }

35 }

36

37 /**

38 * This frame shows an XML document, a panel to type an XPath expression, and a

text field to

39 * display the result.

40 */

41 class XPathFrame extends JFrame

42 {

43 private DocumentBuilder builder;

44 private Document doc;

45 private XPath path;

46 private JTextField expression;

47 private JTextField result;

48 private JTextArea docText;

49 private JComboBox<String> typeCombo;

50

51 public XPathFrame()

52 {

53 JMenu fileMenu = new JMenu("File");

54 JMenuItem openItem = new JMenuItem("Open");

55 openItem.addActionListener(new ActionListener()

56 {

57 public void actionPerformed(ActionEvent event)

58 {

59 openFile();

60 }

61 });

62 fileMenu.add(openItem);

63

64 JMenuItem exitItem = new JMenuItem("Exit");

65 exitItem.addActionListener(new ActionListener()

66 {

67 public void actionPerformed(ActionEvent event)

68 {

69 System.exit(0);

70 }

71 });

72 fileMenu.add(exitItem);

73

74 JMenuBar menuBar = new JMenuBar();

75 menuBar.add(fileMenu);

76 setJMenuBar(menuBar);

77

78 ActionListener listener = new ActionListener()

79 {

80 public void actionPerformed(ActionEvent event)

81 {

82 evaluate();

83 }

84 };

85 expression = new JTextField(20);

86 expression.addActionListener(listener);

87 JButton evaluateButton = new JButton("Evaluate");

88 evaluateButton.addActionListener(listener);

89

90 typeCombo = new JComboBox<String>(new String[] {

91 "STRING", "NODE", "NODESET", "NUMBER", "BOOLEAN" });

92 typeCombo.setSelectedItem("STRING");

93

94 JPanel panel = new JPanel();

95 panel.add(expression);

96 panel.add(typeCombo);

97 panel.add(evaluateButton);

98 docText = new JTextArea(10, 40);

99 result = new JTextField();

100 result.setBorder(new TitledBorder("Result"));

101

102 add(panel, BorderLayout.NORTH);

103 add(new JScrollPane(docText), BorderLayout.CENTER);

104 add(result, BorderLayout.SOUTH);

105

106 try

107 {

108 DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

109 builder = factory.newDocumentBuilder();

110 }

111 catch (ParserConfigurationException e)

112 {

113 JOptionPane.showMessageDialog(this, e);

114 }

115

116 XPathFactory xpfactory = XPathFactory.newInstance();

117 path = xpfactory.newXPath();

118 pack();

119 }

120

121 /**

122 * Open a file and load the document.

123 */

124 public void openFile()

125 {

126 JFileChooser chooser = new JFileChooser();

127 chooser.setCurrentDirectory(new File("xpath"));

128

129 chooser.setFileFilter(new javax.swing.filechooser.FileFilter()

130 {

131 public boolean accept(File f)

132 {

133 return f.isDirectory() ||

f.getName().toLowerCase().endsWith(".xml");

134 }

135

136 public String getDescription()

137 {

138 return "XML files";

139 }

140 });

141 int r = chooser.showOpenDialog(this);

142 if (r != JFileChooser.APPROVE_OPTION) return;

143 File file = chooser.getSelectedFile();

144 try

145 {

146 docText.setText(new

String(Files.readAllBytes(file.toPath())));

147 doc = builder.parse(file);

148 }

149 catch (IOException e)

150 {

151 JOptionPane.showMessageDialog(this, e);

152 }

153 catch (SAXException e)

154 {

155 JOptionPane.showMessageDialog(this, e);

156 }

157 }

158

159 public void evaluate()

160 {

161 try

162 {

163 String typeName = (String) typeCombo.getSelectedItem();

164 QName returnType = (QName)

XPathConstants.class.getField(typeName).get(null);

165 Object evalResult = path.evaluate(expression.getText(), doc,

returnType);

166 if (typeName.equals("NODESET"))

167 {

168 NodeList list = (NodeList) evalResult;

169 StringBuilder builder = new StringBuilder();

170 builder.append("{");

171 for (int i = 0; i < list.getLength(); i++)

172 {

173 if (i > 0) builder.append(", ");

174 builder.append("" + list.item(i));

175 }

176 builder.append("}");

177 result.setText("" + builder);

178 }

179 else result.setText("" + evalResult);

180 }

181 catch (XPathExpressionException e)

182 {

183 result.setText("" + e);

184 }

185 catch (Exception e) // reflection exception

186 {

187 e.printStackTrace();

188 }

189 }

190 }

javax.xml.xpath.XPathFactory 5.0

• static XPathFactory newInstance()

returns an XPathFactory instance for creating XPath objects.

• XPath newXpath()

constructs an XPath object for evaluating XPath expressions.

javax.xml.xpath.XPath 5.0

• String evaluate(String expression, Object startingPoint)

evaluates an expression, beginning at the given starting point. The starting point can be

a node or node list. If the result is a node or node set, the returned string consists of

the data of all text node children.

• Object evaluate(String expression, Object startingPoint, QName resultType)

evaluates an expression, beginning at the given starting point. The starting point can be

a node or node list. The resultType is one of the constants STRING, NODE, NODESET, NUMBER,

or BOOLEAN in the XPathConstants class. The return value is a String, Node, NodeList, Number,

or Boolean.

3.5 Using Namespaces

The Java language uses packages to avoid name clashes. Programmers can use the same name

for different classes as long as they aren’t in the same package. XML has a similar namespace
mechanism for element and attribute names.

A namespace is identified by a Uniform Resource Identifier (URI), such as

 http://www.w3.org/2001/XMLSchema

 uuid:1c759aed-b748-475c-ab68-10679700c4f2

 urn:com:books-r-us

The HTTP URL form is the most common. Note that the URL is just used as an identifier string,

not as a locator for a document. For example, the namespace identifiers

 http://www.horstmann.com/corejava

 http://www.horstmann.com/corejava/index.html

denote different namespaces, even though a web server would serve the same document for
both URLs.

http://www.horstmann.com/corejava
http://www.horstmann.com/corejava/index.html

There need not be any document at a namespace URL—the XML parser doesn’t attempt to find

anything at that location. However, as a help to programmers who encounter a possibly

unfamiliar namespace, it is customary to place a document explaining the purpose of the

namespace at the URL location. For example, if you point your browser to the namespace URL

for the XML Schema namespace (http://www.w3.org/2001/XMLSchema), you will find a document

describing the XML Schema standard.

Why use HTTP URLs for namespace identifiers? It is easy to ensure that they are unique.

If you choose a real URL, the host part’s uniqueness is guaranteed by the domain name system.

Your organization can then arrange for the uniqueness of the remainder of the URL. This

is the same rationale that underlies the use of reversed domain names in Java package names.

Of course, although long namespace identifiers are good for uniqueness, you don’t want

to deal with long identifiers any more than you have to. In the Java programming language,

you use the import mechanism to specify the long names of packages, and then use just the

short class names. In XML, there is a similar mechanism:

 <element xmlns="namespaceURI">

 children

 </element>

The element and its children are now part of the given namespace.

A child can provide its own namespace, for example:

 <element xmlns="namespaceURI1">

 <child xmlns="namespaceURI2">

 grandchildren

 </child>

 more children

 </element>

Then the first child and the grandchildren are part of the second namespace.

This simple mechanism works well if you need only a single namespace or if the namespaces

are naturally nested. Otherwise, you will want to use a second mechanism that has no analog

in Java. You can have a prefix for a namespace—a short identifier that you choose for a

particular document. Here is a typical example—the xsd prefix in an XML Schema file:

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="gridbag" type="GridBagType"/>

 ...

 </xsd:schema>

The attribute

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

 xmlns:prefix="namespaceURI"

defines a namespace and a prefix. In our example, the prefix is the string xsd. Thus,

xsd:schema really means schema in the namespace http://www.w3.org/2001/XMLSchema.

NOTE:

Only child elements inherit the namespace of their parent. Attributes without an explicit

prefix are never part of a namespace. Consider this contrived example:

 <configuration

xmlns="http://www.horstmann.com/corejava"

 xmlns:si="http://www.bipm.fr/enus/3_SI/si.ht

ml">

 <size value="210" si:unit="mm"/>

 ...

 </configuration>

In this example, the elements configuration and size are part of the namespace with URI

http://www.horstmann.com/corejava. The attribute si:unit is part of the namespace with URI

http://www.bipm.fr/enus/3_SI/si.html. However, the attribute value is not part of any

namespace.

You can control how the parser deals with namespaces. By default, the Sun DOM parser is

not namespace-aware.

To turn on namespace handling, call the setNamespaceAware method of the

DocumentBuilderFactory:

 factory.setNamespaceAware(true);

Now, all builders the factory produces support namespaces. Each node has three properties:

• The qualified name, with a prefix, returned by getNodeName, getTagName, and so on

• The namespace URI, returned by the getNamespaceURI method

• The local name, without a prefix or a namespace, returned by the getLocalName method

Here is an example. Suppose the parser sees the following element:

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

It then reports the following:

http://www.w3.org/2001/XMLSchema
http://www.horstmann.com/corejava
http://www.horstmann.com/corejava
http://www.bipm.fr/enus/3_SI/si.html
http://www.w3.org/2001/XMLSchema

• Qualified name = xsd:schema

• Namespace URI = http://www.w3.org/2001/XMLSchema

• Local name = schema

NOTE:

If namespace awareness is turned off, getNamespaceURI and getLocalName return null.

org.w3c.dom.Node 1.4

• String getLocalName()

returns the local name (without prefix), or null if the parser is not namespace-aware.

• String getNamespaceURI()

returns the namespace URI, or null if the node is not part of a namespace or if the parser

is not namespace-aware.

javax.xml.parsers.DocumentBuilderFactory 1.4

• boolean isNamespaceAware()

• void setNamespaceAware(boolean value)

gets or sets the namespaceAware property of the factory. If set to true, the parsers that

this factory generates are namespace-aware.

3.6 Streaming Parsers

The DOM parser reads an XML document in its entirety into a tree data structure. For most

practical applications, DOM works fine. However, it can be inefficient if the document is

large and if your processing algorithm is simple enough that you can analyze nodes on the

fly, without having to see all of the tree structure. In these cases, you should use a

streaming parser.

In the following sections, we discuss the streaming parsers supplied by the Java library:

the venerable SAX parser and the more modern StAX parser that was added to Java SE 6. The

SAX parser uses event callbacks, and the StAX parser provides an iterator through the parsing

events. The latter is usually a bit more convenient.

http://www.w3.org/2001/XMLSchema

3.6.1 Using the SAX Parser

The SAX parser reports events as it parses the components of the XML input, but it does

not store the document in any way—it is up to the event handlers to build a data structure.

In fact, the DOM parser is built on top of the SAX parser. It builds the DOM tree as it

receives the parser events.

Whenever you use a SAX parser, you need a handler that defines the event actions for the

various parse events. The ContentHandler interface defines several callback methods that

the parser executes as it parses the document. Here are the most important ones:

• startElement and endElement are called each time a start tag or end tag is encountered.

• characters is called whenever character data are encountered.

• startDocument and endDocument are called once each, at the start and the end of the

document.

For example, when parsing the fragment

 <name>Helvetica</name>

 <size units="pt">36</size>

the parser makes the following callbacks:

1. startElement, element name: font

2. startElement, element name: name

3. characters, content: Helvetica

4. endElement, element name: name

5. startElement, element name: size, attributes: units="pt"

6. characters, content: 36

7. endElement, element name: size

8. endElement, element name: font

Your handler needs to override these methods and have them carry out whatever action you

want to carry out as you parse the file. The program at the end of this section prints all

links in an HTML file. It simply overrides the startElement method of the

handler to check for links with name a and an attribute with name href. This is potentially

useful for implementing a “web crawler”—a program that reaches more and more web pages

by following links.

NOTE:

HTML doesn’t have to be valid XML, and many web pages deviate so much from proper XML that

the example programs will not be able to parse them. However, most pages authored by the

W3C are written in XHTML (an HTML dialect that is proper XML). You can use those pages to

test the example program. For example, if you run

 java SAXTest http://www.w3c.org/MarkUp

you will see a list of the URLs of all links on that page.

The sample program is a good example for the use of SAX. We don’t care at all in which

context the a elements occur, and there is no need to store a tree structure.

Here is how you get a SAX parser:

 SAXParserFactory factory = SAXParserFactory.newInstance();

 SAXParser parser = factory.newSAXParser();

You can now process a document:

 parser.parse(source, handler);

Here, source can be a file, URL string, or input stream. The handler belongs to a subclass

of DefaultHandler. The DefaultHandler class defines do-nothing methods for the four

interfaces:

 ContentHandler

 DTDHandler

 EntityResolver

 ErrorHandler

The example program defines a handler that overrides the startElement method of the

ContentHandler interface to watch out for a elements with an href attribute:

 DefaultHandler handler = new

 DefaultHandler()

 {

 public void startElement(String namespaceURI, String lname, String qname,

http://www.w3c.org/MarkUp

Attributes attrs)

 throws SAXException

 {

 if (lname.equalsIgnoreCase("a") && attrs != null)

 {

 for (int i = 0; i < attrs.getLength(); i++)

 {

 String aname = attrs.getLocalName(i);

 if (aname.equalsIgnoreCase("href"))

 System.out.println(attrs.getValue(i));

 }

 }

 }

 };

The startElement method has three parameters that describe the element name. The qname

parameter reports the qualified name of the form prefix:localname. If namespace processing

is turned on, then the namespaceURI and lname parameters provide the namespace and local

(unqualified) name.

As with the DOM parser, namespace processing is turned off by default. To activate namespace

processing, call the setNamespaceAware method of the factory class:

 SAXParserFactory factory = SAXParserFactory.newInstance();

 factory.setNamespaceAware(true);

 SAXParser saxParser = factory.newSAXParser();

In this program, we cope with another common issue. An XHTML file starts with a tag that

contains a DTD reference, and the parser will want to load it. Understandably, the W3C isn’t

too happy to serve billions of copies of files such as

www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd. At one point, they refused altogether, but at

the time of this writing, they serve the DTD at a glacial pace. If you don’t need to validate

the document, just call

 factory.setFeature("http://apache.org/xml/features/nonvalidating/load-external-dtd

", false);

Listing 3.8 contains the code for the web crawler program. Later in this chapter, you will

see another interesting use of SAX. An easy way of turning a non-XML data source into XML

is to report the SAX events that an XML parser would report. See Section 3.8, “XSL

Transformations,” on p. 222 for details.

Listing 3.8 sax/SAXTest.java

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://apache.org/xml/features/nonvalidating/load-external-dtd
http://apache.org/xml/features/nonvalidating/load-external-dtd

 1 package sax;

 2

 3 import java.io.*;

 4 import java.net.*;

 5 import javax.xml.parsers.*;

 6 import org.xml.sax.*;

 7 import org.xml.sax.helpers.*;

 8

 9 /**

10 * This program demonstrates how to use a SAX parser. The program prints all

hyperlinks of an

11 * XHTML web page.

12 * Usage: java sax.SAXTest URL

13 * @version 1.00 2001-09-29

14 * @author Cay Horstmann

15 */

16 public class SAXTest

17 {

18 public static void main(String[] args) throws Exception

19 {

20 String url;

21 if (args.length == 0)

22 {

23 url = "http://www.w3c.org";

24 System.out.println("Using " + url);

25 }

26 else url = args[0];

27

28 DefaultHandler handler = new DefaultHandler()

29 {

30 public void startElement(String namespaceURI, String

lname, String qname,

31 Attributes attrs)

32 {

33 if (lname.equals("a") && attrs != null)

34 {

35 for (int i = 0; i < attrs.getLength();

i++)

36 {

37 String aname =

attrs.getLocalName(i);

38 if (aname.equals("href"))

System.out.println(attrs.getValue(i));

39 }

40 }

41 }

42 };

43

44 SAXParserFactory factory = SAXParserFactory.newInstance();

45 factory.setNamespaceAware(true);

46 factory.setFeature("http://apache.org/xml/features/nonvalidati

ng/load-external-dtd", false);

47 SAXParser saxParser = factory.newSAXParser();

48 InputStream in = new URL(url).openStream();

49 saxParser.parse(in, handler);

50 }

51 }

javax.xml.parsers.SAXParserFactory 1.4

• static SAXParserFactory newInstance()

returns an instance of the SAXParserFactory class.

• SAXParser newSAXParser()

returns an instance of the SAXParser class.

• boolean isNamespaceAware()

• void setNamespaceAware(boolean value)

gets or sets the namespaceAware property of the factory. If set to true, the parsers that

this factory generates are namespace-aware.

• boolean isValidating()

• void setValidating(boolean value)

gets or sets the validating property of the factory. If set to true, the parsers that this

factory generates validate their input.

javax.xml.parsers.SAXParser 1.4

• void parse(File f, DefaultHandler handler)

• void parse(String url, DefaultHandler handler)

• void parse(InputStream in, DefaultHandler handler)

http://apache.org/xml/features/nonvalidating/load-external-dtd
http://apache.org/xml/features/nonvalidating/load-external-dtd

parses an XML document from the given file, URL, or input stream and reports parse events

to the given handler.

org.xml.sax.ContentHandler 1.4

• void startDocument()

• void endDocument()

is called at the start or the end of the document.

• void startElement(String uri, String lname, String qname, Attributes attr)

• void endElement(String uri, String lname, String qname)

is called at the start or the end of an element.

• void characters(char[] data, int start, int length)

is called when the parser reports character data.

org.xml.sax.Attributes 1.4

• int getLength()

returns the number of attributes stored in this attribute collection.

• String getLocalName(int index)

returns the local name (without prefix) of the attribute with the given index, or the empty

string if the parser is not namespace-aware.

• String getURI(int index)

returns the namespace URI of the attribute with the given index, or the empty string if

the node is not part of a namespace or if the parser is not namespace-aware.

• String getQName(int index)

returns the qualified name (with prefix) of the attribute with the given index, or the empty

string if the qualified name is not reported by the parser.

• String getValue(int index)

• String getValue(String qname)

• String getValue(String uri, String lname)

returns the attribute value from a given index, qualified name, or namespace URI + local

name. Returns null if the value doesn’t exist.

3.6.2 Using the StAX Parser

The StAX parser is a “pull parser.” Instead of installing an event handler, you simply

iterate through the events, using this basic loop:

 InputStream in = url.openStream();

 XMLInputFactory factory = XMLInputFactory.newInstance();

 XMLStreamReader parser = factory.createXMLStreamReader(in);

 while (parser.hasNext())

 {

 int event = parser.next();

 Call parser methods to obtain event details

 }

For example, when parsing the fragment

 <name>Helvetica</name>

 <size units="pt">36</size>

the parser yields the following events:

1. START_ELEMENT, element name: font

2. CHARACTERS, content: white space

3. START_ELEMENT, element name: name

4. CHARACTERS, content: Helvetica

5. END_ELEMENT, element name: name

6. CHARACTERS, content: white space

7. START_ELEMENT, element name: size

8. CHARACTERS, content: 36

9. END_ELEMENT, element name: size

10. CHARACTERS, content: white space

11. END_ELEMENT, element name: font

To analyze the attribute values, call the appropriate methods of the XMLStreamReader class.

For example,

 String units = parser.getAttributeValue(null, "units");

gets the units attribute of the current element.

By default, namespace processing is enabled. You can deactivate it by modifying the factory:

 XMLInputFactory factory = XMLInputFactory.newInstance();

 factory.setProperty(XMLInputFactory.IS_NAMESPACE_AWARE, false);

Listing 3.9 contains the code for the web crawler program implemented with the StAX parser.

As you can see, the code is simpler than the equivalent SAX code because you don’t have

to worry about event handling.

Listing 3.9 stax/StAXTest.java

 1 package stax;

 2

 3 import java.io.*;

 4 import java.net.*;

 5 import javax.xml.stream.*;

 6

 7 /**

 8 * This program demonstrates how to use a StAX parser. The program prints all

hyperlinks links of an

 9 * XHTML web page.

10 * Usage: java stax.StAXTest URL

11 * @author Cay Horstmann

12 * @version 1.0 2007-06-23

13 */

14 public class StAXTest

15 {

16 public static void main(String[] args) throws Exception

17 {

18 String urlString;

19 if (args.length == 0)

20 {

21 urlString = "http://www.w3c.org";

22 System.out.println("Using " + urlString);

23 }

24 else urlString = args[0];

25 URL url = new URL(urlString);

26 InputStream in = url.openStream();

27 XMLInputFactory factory = XMLInputFactory.newInstance();

28 XMLStreamReader parser = factory.createXMLStreamReader(in);

29 while (parser.hasNext())

30 {

31 int event = parser.next();

32 if (event == XMLStreamConstants.START_ELEMENT)

33 {

34 if (parser.getLocalName().equals("a"))

35 {

36 String href = parser.getAttributeValue(null,

"href");

37 if (href != null)

38 System.out.println(href);

39 }

40 }

41 }

42 }

43 }

javax.xml.stream.XMLInputFactory 6

• static XMLInputFactory newInstance()

returns an instance of the XMLInputFactory class.

• void setProperty(String name, Object value)

sets a property for this factory, or throws an IllegalArgumentException if the property

is not supported or cannot be set to the given value. The Java SE implementation supports

the following Boolean-valued properties:

• XMLStreamReader createXMLStreamReader(InputStream in)

• XMLStreamReader createXMLStreamReader(InputStream in, String characterEncoding)

• XMLStreamReader createXMLStreamReader(Reader in)

• XMLStreamReader createXMLStreamReader(Source in)

creates a parser that reads from the given stream, reader, or JAXP source.

javax.xml.stream.XMLStreamReader 6

• boolean hasNext()

returns true if there is another parse event.

• int next()

sets the parser state to the next parse event and returns one of the following constants:

START_ELEMENT, END_ELEMENT, CHARACTERS, START_DOCUMENT, END_DOCUMENT, CDATA, COMMENT,

SPACE (ignorable whitespace), PROCESSING_INSTRUCTION, ENTITY_REFERENCE, DTD.

• boolean isStartElement()

• boolean isEndElement()

• boolean isCharacters()

• boolean isWhiteSpace()

returns true if the current event is a start element, end element, character data, or

whitespace.

• QName getName()

• String getLocalName()

gets the name of the element in a START_ELEMENT or END_ELEMENT event.

• String getText()

returns the characters of a CHARACTERS, COMMENT, or CDATA event, the replacement value for

an ENTITY_REFERENCE, or the internal subset of a DTD.

• int getAttributeCount()

• QName getAttributeName(int index)

• String getAttributeLocalName(int index)

• String getAttributeValue(int index)

gets the attribute count and the names and values of the attributes, provided the current

event is START_ELEMENT.

• String getAttributeValue(String namespaceURI, String name)

gets the value of the attribute with the given name, provided the current event is

START_ELEMENT. If namespaceURI is null, the namespace is not checked.

3.7 Generating XML Documents

You now know how to write Java programs that read XML. Let us now turn to the opposite process:

producing XML output. Of course, you could write an XML file simply by making a sequence

of print calls, printing the elements, attributes, and text content, but that would not

be a good idea. The code is rather tedious, and you can easily make mistakes if you don’t

pay attention to special symbols (such as " or <) in the attribute values and text content.

A better approach is to build up a DOM tree with the contents of the document and then write

out the tree contents. The following sections discuss the details.

3.7.1 Documents without Namespaces

To build a DOM tree, you start out with an empty document. You can get an empty document

by calling the newDocument method of the DocumentBuilder class:

 Document doc = builder.newDocument();

Use the createElement method of the Document class to construct the elements of your

document:

 Element rootElement = doc.createElement(rootName);

 Element childElement = doc.createElement(childName);

Use the createTextNode method to construct text nodes:

 Text textNode = doc.createTextNode(textContents);

Add the root element to the document, and add the child nodes to their parents:

 doc.appendChild(rootElement);

 rootElement.appendChild(childElement);

 childElement.appendChild(textNode);

As you build up the DOM tree, you may also need to set element attributes. Simply call the

setAttribute method of the Element class:

 rootElement.setAttribute(name, value);

3.7.2 Documents with Namespaces

If you use namespaces, the procedure for creating a document is slightly different.

First, set the builder factory to be namespace-aware, then create the builder:

 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 factory.setNamespaceAware(true);

 builder = factory.newDocumentBuilder();

Then use createElementNS instead of createElement to create any nodes:

 String namespace = "http://www.w3.org/2000/svg";

 Element rootElement = doc.createElementNS(namespace, "svg");

If your node has a qualified name, with a namespace prefix, then any necessary xmlns-prefixed

attributes are created automatically. For example, if you need SVG inside XHTML, you can

construct an element like this:

 Element svgElement = doc.createElement(namespace, "svg:svg")

When the element is written, it turns into

 <svg:svg xmlns:svg="http://www.w3.org/2000/svg">

If you need to set element attributes whose names are in a namespace, use the setAttributeNS

method of the Element class:

 rootElement.setAttributeNS(namespace, qualifiedName, value);

3.7.3 Writing Documents

Somewhat curiously, it is not so easy to write a DOM tree to an output stream. The easiest

approach is to use the Extensible Stylesheet Language Transformations (XSLT) API. For more

information about XSLT, turn to Section 3.8, “XSL Transformations,” on p. 222. Right now,

consider the code that follows a magic incantation to produce XML output.

We apply the do-nothing transformation to the document and capture its output. To include

a DOCTYPE node in the output, we also need to set the SYSTEM and PUBLIC identifiers as output

properties.

 // construct the do-nothing transformation

 Transformer t = TransformerFactory.newInstance().newTransformer();

 // set output properties to get a DOCTYPE node

 t.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM, systemIdentifier);

 t.setOutputProperty(OutputKeys.DOCTYPE_PUBLIC, publicIdentifier);

 // set indentation

 t.setOutputProperty(OutputKeys.INDENT, "yes");

 t.setOutputProperty(OutputKeys.METHOD, "xml");

http://www.w3.org/2000/svg

 t.setOutputProperty("{http://xml.apache.org/xslt}indent-amount", "2");

 // apply the do-nothing transformation and send the output to a file

 t.transform(new DOMSource(doc), new StreamResult(new

FileOutputStream(file)));

Another approach is to use the LSSerializer interface. To get an instance, you have to use

the following magic incantation:

 DOMImplementation impl = doc.getImplementation();

 DOMImplementationLS implLS = (DOMImplementationLS) impl.getFeature("LS",

"3.0");

 LSSerializer ser = implLS.createLSSerializer();

If you want spaces and line breaks, set this flag:

 ser.getDomConfig().setParameter("format-pretty-print", true);

Then it’s simple enough to convert a document to a string:

 String str = ser.writeToString(doc);

If you want to write the output directly to a file, you need an LSOutput:

 LSOutput out = implLS.createLSOutput();

 out.setEncoding("UTF-8");

 out.setByteStream(Files.newOutputStream(path));

 ser.write(doc, out);

3.7.4 An Example: Generating an SVG File

Listing 3.10 is a typical program that produces XML output. The program draws a modernist

painting—a random set of colored rectangles (see Figure 3.6). To save a masterpiece, we

use the Scalable Vector Graphics (SVG) format. SVG is an XML format to describe complex

graphics in a device-independent fashion. You can find more information about SVG at

www.w3c.org/Graphics/SVG. To view SVG files, simply use any modern browser.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03fig06
http://www.w3c.org/Graphics/SVG

Figure 3.6 Generating modern art

We don’t need to go into details about SVG; for our purposes, we just need to know how

to express a set of colored rectangles. Here is a sample:

 <?xml version="1.0" encoding="UTF-8"?>

 <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20000802//EN"

 "http://www.w3.org/TR/2000/CR-SVG-20000802/DTD/svg-20000802.dtd">

 <svg xmlns="http://www.w3.org/2000/svg" width="300" height="150">

 <rect x="231" y="61" width="9" height="12" fill="#6e4a13"/>

 <rect x="107" y="106" width="56" height="5" fill="#c406be"/>

 ...

 </svg>

As you can see, each rectangle is described as a rect node. The position, width, height,

and fill color are attributes. The fill color is an RGB value in hexadecimal.

NOTE:

SVG uses attributes heavily. In fact, some attributes are quite complex. For example, here

is a path element:

 <path d="M 100 100 L 300 100 L 200 300 z">

The M denotes a “moveto” command, L is “lineto,” and z is “closepath” (!). Apparently,

the designers of this data format didn’t have much confidence in using XML for structured

data. In your own XML formats, you might want to use elements instead of complex attributes.

javax.xml.parsers.DocumentBuilder 1.4

http://www.w3.org/2000/svg

• Document newDocument()

returns an empty document.

org.w3c.dom.Document 1.4

• Element createElement(String name)

• Element createElementNS(String uri, String qname) creates an element with the given name.

• Text createTextNode(String data)

creates a text node with the given data.

org.w3c.dom.Node 1.4

• Node appendChild(Node child)

appends a node to the list of children of this node. Returns the appended node.

org.w3c.dom.Element 1.4

• void setAttribute(String name, String value)

• void setAttributeNS(String uri, String qname, String value) sets the attribute with the

given name to the given value.

javax.xml.transform.TransformerFactory 1.4

• static TransformerFactory newInstance()

returns an instance of the TransformerFactory class.

• Transformer newTransformer()

returns an instance of the Transformer class that carries out an identity (do-nothing)

transformation.

javax.xml.transform.Transformer 1.4

• void setOutputProperty(String name, String value)

sets an output property. See www.w3.org/TR/xslt#output for a listing of the standard output

properties. The most useful ones are shown here:

• void transform(Source from, Result to)

transforms an XML document.

javax.xml.transform.dom.DOMSource 1.4

• DOMSource(Node n)

constructs a source from the given node. Usually, n is a document node.

javax.xml.transform.stream.StreamResult 1.4

• StreamResult(File f)

• StreamResult(OutputStream out)

• StreamResult(Writer out)

• StreamResult(String systemID)

constructs a stream result from a file, stream, writer, or system ID (usually a relative

or absolute URL).

3.7.5 Writing an XML Document with StAX

In the preceding section, you saw how to produce an XML document by writing a DOM tree.

If you have no other use for the DOM tree, that approach is not very efficient.

The StAX API lets you write an XML tree directly. Construct an XMLStreamWriter from an

OutputStream:

 XMLOutputFactory factory = XMLOutputFactory.newInstance();

 XMLStreamWriter writer = factory.createXMLStreamWriter(out);

http://www.w3.org/TR/xslt#output

To produce the XML header, call

 writer.writeStartDocument()

Then call

 writer.writeStartElement(name);

Add attributes by calling

 writer.writeAttribute(name, value);

Now you can add child elements by calling writeStartElement again, or write characters with

 writer.writeCharacters(text);

When you have written all child nodes, call

 writer.writeEndElement();

This causes the current element to be closed.

To write an element without children (such as <img. . ./>), use the call

 writer.writeEmptyElement(name);

Finally, at the end of the document, call

 writer.writeEndDocument();

This call closes any open elements.

You still need to close the XMLStreamWriter, and you need to do it manually since the

XMLStreamWriter interface does not extend the AutoCloseable interface.

As with the DOM/XSLT approach, you don’t have to worry about escaping characters in

attribute values and character data. However, it is possible to produce malformed XML, such

as a document with multiple root nodes. Also, the current version of StAX has no support

for producing indented output.

The program in Listing 3.10 shows you both approaches for writing XML. Listings 3.11 and

3.12 show the frame and component classes for the rectangle painting.

Listing 3.10 write/XMLWriteTest.java

 1 package write;

 2

 3 import java.awt.*;

 4 import javax.swing.*;

 5

 6 /**

 7 * This program shows how to write an XML file. It saves a file describing

a modern drawing in SVG

 8 * format.

 9 * @version 1.11 2012-01-26

10 * @author Cay Horstmann

11 */

12 public class XMLWriteTest

13 {

14 public static void main(String[] args)

15 {

16 EventQueue.invokeLater(new Runnable()

17 {

18 public void run()

19 {

20 JFrame frame = new XMLWriteFrame();

21 frame.setTitle("XMLWriteTest");

22 frame.setDefaultCloseOperation(JFrame.EXIT_ON_

CLOSE);

23 frame.setVisible(true);

24 }

25 });

26 }

27 }

Listing 3.11 write/XMLWriteFrame.java

 1 package write;

 2

 3 import java.awt.event.*;

 4 import java.beans.*;

 5 import java.io.*;

 6 import java.nio.file.*;

 7 import javax.swing.*;

 8 import javax.xml.stream.*;

 9 import javax.xml.transform.*;

10 import javax.xml.transform.dom.*;

11 import javax.xml.transform.stream.*;

12 import org.w3c.dom.*;

13

14 /**

15 * A frame with a component for showing a modern drawing.

16 */

17 public class XMLWriteFrame extends JFrame

18 {

19 private RectangleComponent comp;

20 private JFileChooser chooser;

21

22 public XMLWriteFrame()

23 {

24 chooser = new JFileChooser();

25

26 // add component to frame

27

28 comp = new RectangleComponent();

29 add(comp);

30

31 // set up menu bar

32

33 JMenuBar menuBar = new JMenuBar();

34 setJMenuBar(menuBar);

35

36 JMenu menu = new JMenu("File");

37 menuBar.add(menu);

38

39 JMenuItem newItem = new JMenuItem("New");

40 menu.add(newItem);

41 newItem.addActionListener(EventHandler.create(ActionListener.class,

comp, "newDrawing"));

42

43 JMenuItem saveItem = new JMenuItem("Save with DOM/XSLT");

44 menu.add(saveItem);

45 saveItem.addActionListener(EventHandler.create(ActionListener.clas

s, this, "saveDocument"));

46

47 JMenuItem saveStAXItem = new JMenuItem("Save with StAX");

48 menu.add(saveStAXItem);

49 saveStAXItem.addActionListener(EventHandler.create(ActionListener.

class, this, "saveStAX"));

50

51 JMenuItem exitItem = new JMenuItem("Exit");

52 menu.add(exitItem);

53 exitItem.addActionListener(new ActionListener()

54 {

55 public void actionPerformed(ActionEvent event)

56 {

57 System.exit(0);

58 }

59 });

60 pack();

61 }

62

63 /**

64 * Saves the drawing in SVG format, using DOM/XSLT

65 */

66 public void saveDocument() throws TransformerException, IOException

67 {

68 if (chooser.showSaveDialog(this) != JFileChooser.APPROVE_OPTION)

return;

69 File file = chooser.getSelectedFile();

70 Document doc = comp.buildDocument();

71 Transformer t = TransformerFactory.newInstance().newTransformer();

72 t.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM,

73 "http://www.w3.org/TR/2000/CR-SVG-20000802/DTD/svg-2

0000802.dtd");

74 t.setOutputProperty(OutputKeys.DOCTYPE_PUBLIC, "-//W3C//DTD SVG

20000802//EN");

75 t.setOutputProperty(OutputKeys.INDENT, "yes");

76 t.setOutputProperty(OutputKeys.METHOD, "xml");

77 t.setOutputProperty("{http://xml.apache.org/xslt}indent-amount",

"2");

78 t.transform(new DOMSource(doc), new

StreamResult(Files.newOutputStream(file.toPath())));

79 }

80

81 /**

82 * Saves the drawing in SVG format, using StAX

83 */

84 public void saveStAX() throws IOException, XMLStreamException

85 {

86 if (chooser.showSaveDialog(this) != JFileChooser.APPROVE_OPTION)

return;

87 File file = chooser.getSelectedFile();

88 XMLOutputFactory factory = XMLOutputFactory.newInstance();

89 XMLStreamWriter writer =

http://www.w3.org/TR/2000/CR-SVG-20000802/DTD/svg-20000802.dtd
http://www.w3.org/TR/2000/CR-SVG-20000802/DTD/svg-20000802.dtd
http://xml.apache.org/xslt

factory.createXMLStreamWriter(Files.newOutputStream(file.toPath()));

90 try

91 {

92 comp.writeDocument(writer);

93 }

94 finally

95 {

96 writer.close(); // Not autocloseable

97 }

98 }

99 }

Listing 3.12 write/RectangleComponent.java

 1 package write;

 2

 3 import java.awt.*;

 4 import java.awt.geom.*;

 5 import java.util.*;

 6 import javax.swing.*;

 7 import javax.xml.parsers.*;

 8 import javax.xml.stream.*;

 9 import org.w3c.dom.*;

10

11 /**

12 * A component that shows a set of colored rectangles

13 */

14 public class RectangleComponent extends JComponent

15 {

16 private static final int DEFAULT_WIDTH = 300;

17 private static final int DEFAULT_HEIGHT = 200;

18

19 private java.util.List<Rectangle2D> rects;

20 private java.util.List<Color> colors;

21 private Random generator;

22 private DocumentBuilder builder;

23

24 public RectangleComponent()

25 {

26 rects = new ArrayList<>();

27 colors = new ArrayList<>();

28 generator = new Random();

29

30 DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

31 factory.setNamespaceAware(true);

32 try

33 {

34 builder = factory.newDocumentBuilder();

35 }

36 catch (ParserConfigurationException e)

37 {

38 e.printStackTrace();

39 }

40 }

41

42 /**

43 * Create a new random drawing.

44 */

45 public void newDrawing()

46 {

47 int n = 10 + generator.nextInt(20);

48 rects.clear();

49 colors.clear();

50 for (int i = 1; i <= n; i++)

51 {

52 int x = generator.nextInt(getWidth());

53 int y = generator.nextInt(getHeight());

54 int width = generator.nextInt(getWidth() - x);

55 int height = generator.nextInt(getHeight() - y);

56 rects.add(new Rectangle(x, y, width, height));

57 int r = generator.nextInt(256);

58 int g = generator.nextInt(256);

59 int b = generator.nextInt(256);

60 colors.add(new Color(r, g, b));

61 }

62 repaint();

63 }

64

65 public void paintComponent(Graphics g)

66 {

67 if (rects.size() == 0) newDrawing();

68 Graphics2D g2 = (Graphics2D) g;

69

70 // draw all rectangles

71 for (int i = 0; i < rects.size(); i++)

72 {

73 g2.setPaint(colors.get(i));

74 g2.fill(rects.get(i));

75 }

76 }

77

78 /**

79 * Creates an SVG document of the current drawing.

80 * @return the DOM tree of the SVG document

81 */

82 public Document buildDocument()

83 {

84 String namespace = "http://www.w3.org/2000/svg";

85 Document doc = builder.newDocument();

86 Element svgElement = doc.createElementNS(namespace, "svg");

87 doc.appendChild(svgElement);

88 svgElement.setAttribute("width", "" + getWidth());

89 svgElement.setAttribute("height", "" + getHeight());

90 for (int i = 0; i < rects.size(); i++)

91 {

92 Color c = colors.get(i);

93 Rectangle2D r = rects.get(i);

94 Element rectElement = doc.createElementNS(namespace, "rect");

95 rectElement.setAttribute("x", "" + r.getX());

96 rectElement.setAttribute("y", "" + r.getY());

97 rectElement.setAttribute("width", "" + r.getWidth());

98 rectElement.setAttribute("height", "" + r.getHeight());

99 rectElement.setAttribute("fill", colorToString(c));

100 svgElement.appendChild(rectElement);

101 }

102 return doc;

103 }

104

105 /**

106 * Writes an SVG document of the current drawing.

107 * @param writer the document destination

108 */

109 public void writeDocument(XMLStreamWriter writer) throws XMLStreamException

110 {

111 writer.writeStartDocument();

112 writer.writeDTD("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG

20000802//EN\" "

113 +

"\"http://www.w3.org/TR/2000/CR-SVG-20000802/DTD/svg-20000802.dtd\">");

114 writer.writeStartElement("svg");

115 writer.writeDefaultNamespace("http://www.w3.org/2000/svg");

http://www.w3.org/2000/svg

116 writer.writeAttribute("width", "" + getWidth());

117 writer.writeAttribute("height", "" + getHeight());

118 for (int i = 0; i < rects.size(); i++)

119 {

120 Color c = colors.get(i);

121 Rectangle2D r = rects.get(i);

122 writer.writeEmptyElement("rect");

123 writer.writeAttribute("x", "" + r.getX());

124 writer.writeAttribute("y", "" + r.getY());

125 writer.writeAttribute("width", "" + r.getWidth());

126 writer.writeAttribute("height", "" + r.getHeight());

127 writer.writeAttribute("fill", colorToString(c));

128 }

129 writer.writeEndDocument(); // closes svg element

130 }

131

132 /**

133 * Converts a color to a hex value.

134 * @param c a color

135 * @return a string of the form #rrggbb

136 */

137 private static String colorToString(Color c)

138 {

139 StringBuffer buffer = new StringBuffer();

140 buffer.append(Integer.toHexString(c.getRGB() & 0xFFFFFF));

141 while (buffer.length() < 6)

142 buffer.insert(0, '0');

143 buffer.insert(0, '#');

144 return buffer.toString();

145 }

146

147 public Dimension getPreferredSize() { return new Dimension(DEFAULT_WIDTH,

DEFAULT_HEIGHT); }

148 }

javax.xml.stream.XMLOutputFactory 6

• static XMLOutputFactory newInstance()

returns an instance of the XMLOutputFactory class.

• XMLStreamWriter createXMLStreamWriter(OutputStream in)

• XMLStreamWriter createXMLStreamWriter(OutputStream in, String characterEncoding)

• XMLStreamWriter createXMLStreamWriter(Writer in)

• XMLStreamWriter createXMLStreamWriter(Result in)

creates a writer that writes to the given stream, writer, or JAXP result.

javax.xml.stream.XMLStreamWriter 6

• void writeStartDocument()

• void writeStartDocument(String xmlVersion)

• void writeStartDocument(String encoding, String xmlVersion)

writes the XML processing instruction at the top of the document. Note that the encoding

parameter is only used to write the attribute. It does not set the character encoding of

the output.

• void setDefaultNamespace(String namespaceURI)

• void setPrefix(String prefix, String namespaceURI)

sets the default namespace or the namespace associated with a prefix.The declaration is

scoped to the current element or, if no element has been written, to the document root.

• void writeStartElement(String localName)

• void writeStartElement(String namespaceURI, String localName)

writes a start tag, replacing the namespaceURI with the associated prefix.

• void writeEndElement()

closes the current element.

• void writeEndDocument()

closes all open elements.

• void writeEmptyElement(String localName)

• void writeEmptyElement(String namespaceURI, String localName)

writes a self-closing tag, replacing the namespaceURI with the associated prefix.

• void writeAttribute(String localName, String value)

• void writeAttribute(String namespaceURI, String localName, String value)

writes an attribute for the current element, replacing the namespaceURI with the associated

prefix.

• void writeCharacters(String text)

writes character data.

• void writeCData(String text)

writes a CDATA block.

• void writeDTD(String dtd)

writes the dtd string, which is assumed to contain a DOCTYPE declaration.

• void writeComment(String comment)

writes a comment.

• void close()

closes this writer.

3.8 XSL Transformations

The XSL Transformations (XSLT) mechanism allows you to specify rules for transforming XML

documents into other formats, such as plain text, XHTML, or any other XML format. XSLT is

commonly used to translate from one machine-readable XML format to another, or to translate

XML into a presentation format for human consumption.

You need to provide an XSLT stylesheet that describes the conversion of XML documents into

some other format. An XSLT processor reads an XML document and the stylesheet and produces

the desired output (see Figure 3.7).

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03fig07

Figure 3.7 Applying XSL transformations

Here is a typical example. We want to transform XML files with employee records into HTML

documents. Consider this input file:

 <staff>

 <employee>

 <name>Carl Cracker</name>

 <salary>75000</salary>

 <hiredate year="1987" month="12" day="15"/>

 </employee>

 <employee>

 <name>Harry Hacker</name>

 <salary>50000</salary>

 <hiredate year="1989" month="10" day="1"/>

 </employee>

 <employee>

 <name>Tony Tester</name>

 <salary>40000</salary>

 <hiredate year="1990" month="3" day="15"/>

 </employee>

 </staff>

The desired output is an HTML table:

 <table border="1">

 <tr>

 <td>Carl Cracker</td><td>$75000.0</td><td>1987-12-15</td>

 </tr>

 <tr>

 <td>Harry Hacker</td><td>$50000.0</td><td>1989-10-1</td>

 </tr>

 <tr>

 <td>Tony Tester</td><td>$40000.0</td><td>1990-3-15</td>

 </tr>

 </table>

The XSLT specification is quite complex, and entire books have been written on the subject.

We can’t possibly discuss all the features of XSLT, so we will just work through a

representative example. You can find more information in the book Essential XML by Don Box
et al. The XSLT specification is available at www.w3.org/TR/xslt.

A stylesheet with transformation templates has this form:

 <?xml version="1.0" encoding="ISO-8859-1"?>

 <xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:output method="html"/>

 template1
 template2
 ...

 </xsl:stylesheet>

In our example, the xsl:output element specifies the method as HTML. Other valid method

settings are xml and text.

Here is a typical template:

 <xsl:template match="/staff/employee">

 <tr><xsl:apply-templates/></tr>

 </xsl:template>

The value of the match attribute is an XPath expression. The template states: Whenever you

see a node in the XPath set /staff/employee, do the following:

1. Emit the string <tr>.

2. Keep applying templates as you process its children.

3. Emit the string </tr> after you are done with all children.

http://www.w3.org/TR/xslt

In other words, this template generates the HTML table row markers around every employee

record.

The XSLT processor starts processing by examining the root element. Whenever a node matches

one of the templates, it applies the template. (If multiple templates match, the best

matching one is used; see the specification at www.w3.org/TR/xslt for the gory details.)

If no template matches, the processor carries out a default action.

For text nodes, the default is to include the contents in the output. For elements, the

default action is to create no output but to keep processing the children.

Here is a template for transforming name nodes in an employee file:

 <xsl:template match="/staff/employee/name">

 <td><xsl:apply-templates/></td>

 </xsl:template>

As you can see, the template produces the <td>. . .</td> delimiters, and it asks the processor

to recursively visit the children of the name element. There is just one child, the text

node. When the processor visits that node, it emits the text contents (provided, of course,

that there is no other matching template).

You have to work a little harder if you want to copy attribute values into the output. Here

is an example:

 <xsl:template match="/staff/employee/hiredate">

 <td><xsl:value-of select="@year"/>-<xsl:value-of

 select="@month"/>-<xsl:value-of select="@day"/></td>

 </xsl:template>

When processing a hiredate node, this template emits

1. The string <td>

2. The value of the year attribute

3. A hyphen

4. The value of the month attribute

5. A hyphen

6. The value of the day attribute

7. The string </td>

http://www.w3.org/TR/xslt

The xsl:value-of statement computes the string value of a node set. The node set is specified

by the XPath value of the select attribute. In this case, the path is relative to the

currently processed node. The node set is converted to a string by concatenation of the

string values of all nodes. The string value of an attribute node is its value. The string

value of a text node is its contents. The string value of an element node is the concatenation

of the string values of its child nodes (but not its attributes).

Listing 3.13 contains the stylesheet for turning an XML file with employee records into

an HTML table.

Listing 3.14 shows a different set of transformations. The input is the same XML file, and

the output is plain text in the familiar property file format:

 employee.1.name=Carl Cracker

 employee.1.salary=75000.0

 employee.1.hiredate=1987-12-15

 employee.2.name=Harry Hacker

 employee.2.salary=50000.0

 employee.2.hiredate=1989-10-1

 employee.3.name=Tony Tester

 employee.3.salary=40000.0

 employee.3.hiredate=1990-3-15

That example uses the position() function which yields the position of the current node

as seen from its parent. We thus get an entirely different output simply by switching the

stylesheet. This means you can safely use XML to describe your data; if some applications

need the data in another format, just use XSLT to generate the alternative format.

It is extremely simple to generate XSL transformations in the Java platform. Set up a

transformer factory for each stylesheet. Then, get a transformer object and tell it to

transform a source to a result:

 File styleSheet = new File(filename);

 StreamSource styleSource = new StreamSource(styleSheet);

 Transformer t =

TransformerFactory.newInstance().newTransformer(styleSource);

 t.transform(source, result);

The parameters of the transform method are objects of classes that implement the Source

and Result interfaces. Several classes implement the Source interface:

 DOMSource

 SAXSource

 StAXSource

 StreamSource

You can construct a StreamSource from a file, stream, reader, or URL, and a DOMSource from

the node of a DOM tree. For example, in the preceding section, we invoked the identity

transformation as

 t.transform(new DOMSource(doc), result);

In our example program, we do something slightly more interesting. Instead of starting out

with an existing XML file, we produce a SAX XML reader that gives the illusion of parsing

an XML file by emitting appropriate SAX events. Actually, our XML reader reads a flat file,

as described in Chapter 2. The input file looks like this:

 Carl Cracker|75000.0|1987|12|15

 Harry Hacker|50000.0|1989|10|1

 Tony Tester|40000.0|1990|3|15

Our XML reader generates SAX events as it processes the input. Here is a part of the parse

method of the EmployeeReader class that implements the XMLReader interface:

 AttributesImpl attributes = new AttributesImpl();

 handler.startDocument();

 handler.startElement("", "staff", "staff", attributes);

 while ((line = in.readLine()) != null)

 {

 handler.startElement("", "employee", "employee", attributes);

 StringTokenizer t = new StringTokenizer(line, "|");

 handler.startElement("", "name", "name", attributes);

 String s = t.nextToken();

 handler.characters(s.toCharArray(), 0, s.length());

 handler.endElement("", "name", "name");

 ...

 handler.endElement("", "employee", "employee");

 }

 handler.endElement("", rootElement, rootElement);

 handler.endDocument();

The SAXSource for the transformer is constructed from the XML reader:

 t.transform(new SAXSource(new EmployeeReader(),

 new InputSource(new FileInputStream(filename))), result);

This is an ingenious trick to convert non-XML legacy data into XML. Of course, most XSLT

applications will already have XML input data, and you can simply invoke the transform method

on a StreamSource:

 t.transform(new StreamSource(file), result);

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02

The transformation result is an object of a class that implements the Result interface.

The Java library supplies three classes:

 DOMResult

 SAXResult

 StreamResult

To store the result in a DOM tree, use a DocumentBuilder to generate a new document node

and wrap it into a DOMResult:

 Document doc = builder.newDocument();

 t.transform(source, new DOMResult(doc));

To save the output in a file, use a StreamResult:

 t.transform(source, new StreamResult(file));

Listing 3.15 contains the complete source code.

Listing 3.13 transform/makehtml.xsl

 1 <?xml version="1.0" encoding="ISO-8859-1"?>

 2

 3 <xsl:stylesheet

 4 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 5 version="1.0">

 6

 7 <xsl:output method="html"/>

 8

 9 <xsl:template match="/staff">

10 <table border="1"><xsl:apply-templates/></table>

11 </xsl:template>

12

13 <xsl:template match="/staff/employee">

14 <tr><xsl:apply-templates/></tr>

15 </xsl:template>

16

17 <xsl:template match="/staff/employee/name">

18 <td><xsl:apply-templates/></td>

19 </xsl:template>

20

21 <xsl:template match="/staff/employee/salary">

22 <td>$<xsl:apply-templates/></td>

23 </xsl:template>

24

25 <xsl:template match="/staff/employee/hiredate">

26 <td><xsl:value-of select="@year"/>-<xsl:value-of

27 select="@month"/>-<xsl:value-of select="@day"/></td>

28 </xsl:template>

29

30 </xsl:stylesheet>

31

Listing 3.14 transform/makeprop.xsl

 1 <?xml version="1.0"?>

 2

 3 <xsl:stylesheet

 4 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 5 version="1.0">

 6

 7 <xsl:output method="text" omit-xml-declaration="yes"/>

 8

 9 <xsl:template match="/staff/employee">

10 employee.<xsl:value-of select="position()"

11 />.name=<xsl:value-of select="name/text()"/>

12 employee.<xsl:value-of select="position()"

13 />.salary=<xsl:value-of select="salary/text()"/>

14 employee.<xsl:value-of select="position()"

15 />.hiredate=<xsl:value-of select="hiredate/@year"

16 />-<xsl:value-of select="hiredate/@month"

17 />-<xsl:value-of select="hiredate/@day"/>

18 </xsl:template>

19

20 </xsl:stylesheet>

Listing 3.15 transform/TransformTest.java

 1 package transform;

 2

 3 import java.io.*;

 4 import java.nio.file.*;

 5 import java.util.*;

 6 import javax.xml.transform.*;

 7 import javax.xml.transform.sax.*;

 8 import javax.xml.transform.stream.*;

 9 import org.xml.sax.*;

10 import org.xml.sax.helpers.*;

11

12 /**

13 * This program demonstrates XSL transformations. It applies a transformation to

a set of employee

14 * records. The records are stored in the file employee.dat and turned into XML

format. Specify the

15 * stylesheet on the command line, e.g.

16 * java transform.TransformTest transform/makeprop.xsl

17 * @version 1.02 2012-06-04

18 * @author Cay Horstmann

19 */

20 public class TransformTest

21 {

22 public static void main(String[] args) throws Exception

23 {

24 Path path;

25 if (args.length > 0) path = Paths.get(args[0]);

26 else path = Paths.get("transform", "makehtml.xsl");

27 try (InputStream styleIn = Files.newInputStream(path))

28 {

29 StreamSource styleSource = new StreamSource(styleIn);

30

31 Transformer t =

TransformerFactory.newInstance().newTransformer(styleSource);

32 t.setOutputProperty(OutputKeys.INDENT, "yes");

33 t.setOutputProperty(OutputKeys.METHOD, "xml");

34 t.setOutputProperty("{http://xml.apache.org/xslt}indent-amou

nt", "2");

35

36 try (InputStream docIn =

Files.newInputStream(Paths.get("transform", "employee.dat")))

37 {

38 t.transform(new SAXSource(new EmployeeReader(),

new InputSource(docIn)),

39 new StreamResult(System.out));

40 }

41 }

42 }

43 }

44

45 /**

46 * This class reads the flat file employee.dat and reports SAX parser events to

act as if it was

47 * parsing an XML file.

48 */

http://http/xml.apache.org/xslt

49 class EmployeeReader implements XMLReader

50 {

51 private ContentHandler handler;

52

53 public void parse(InputSource source) throws IOException, SAXException

54 {

55 InputStream stream = source.getByteStream();

56 BufferedReader in = new BufferedReader(new

InputStreamReader(stream));

57 String rootElement = "staff";

58 AttributesImpl atts = new AttributesImpl();

59

60 if (handler == null) throw new SAXException("No content handler");

61

62 handler.startDocument();

63 handler.startElement("", rootElement, rootElement, atts);

64 String line;

65 while ((line = in.readLine()) != null)

66 {

67 handler.startElement("", "employee", "employee", atts);

68 StringTokenizer t = new StringTokenizer(line, "|");

69

70 handler.startElement("", "name", "name", atts);

71 String s = t.nextToken();

72 handler.characters(s.toCharArray(), 0, s.length());

73 handler.endElement("", "name", "name");

74

75 handler.startElement("", "salary", "salary", atts);

76 s = t.nextToken();

77 handler.characters(s.toCharArray(), 0, s.length());

78 handler.endElement("", "salary", "salary");

79

80 atts.addAttribute("", "year", "year", "CDATA",

t.nextToken());

81 atts.addAttribute("", "month", "month", "CDATA",

t.nextToken());

82 atts.addAttribute("", "day", "day", "CDATA",

t.nextToken());

83 handler.startElement("", "hiredate", "hiredate", atts);

84 handler.endElement("", "hiredate", "hiredate");

85 atts.clear();

86

87 handler.endElement("", "employee", "employee");

88 }

89

90 handler.endElement("", rootElement, rootElement);

91 handler.endDocument();

92 }

93

94 public void setContentHandler(ContentHandler newValue)

95 {

96 handler = newValue;

97 }

98

99 public ContentHandler getContentHandler()

100 {

101 return handler;

102 }

103

104 // the following methods are just do-nothing implementations

105 public void parse(String systemId) throws IOException, SAXException

106 {

107 }

108

109 public void setErrorHandler(ErrorHandler handler)

110 {

111 }

112

113 public ErrorHandler getErrorHandler()

114 {

115 return null;

116 }

117

118 public void setDTDHandler(DTDHandler handler)

119 {

120 }

121

122 public DTDHandler getDTDHandler()

123 {

124 return null;

125 }

126

127 public void setEntityResolver(EntityResolver resolver)

128 {

129 }

130

131 public EntityResolver getEntityResolver()

132 {

133 return null;

134 }

135

136 public void setProperty(String name, Object value)

137 {

138 }

139

140 public Object getProperty(String name)

141 {

142 return null;

143 }

144

145 public void setFeature(String name, boolean value)

146 {

147 }

148

149 public boolean getFeature(String name)

150 {

151 return false;

152 }

153 }

javax.xml.transform.TransformerFactory 1.4

• Transformer newTransformer(Source styleSheet)

returns an instance of the Transformer class that reads a stylesheet from the given source.

javax.xml.transform.stream.StreamSource 1.4

• StreamSource(File f)

• StreamSource(InputStream in)

• StreamSource(Reader in)

• StreamSource(String systemID)

constructs a stream source from a file, stream, reader, or system ID (usually a relative

or absolute URL).

javax.xml.transform.sax.SAXSource 1.4

• SAXSource(XMLReader reader, InputSource source)

constructs a SAX source that obtains data from the given input source and uses the given

reader to parse the input.

org.xml.sax.XMLReader 1.4

• void setContentHandler(ContentHandler handler)

sets the handler that is notified of parse events as the input is parsed.

• void parse(InputSource source)

parses the input from the given input source and sends parse events to the content handler.

javax.xml.transform.dom.DOMResult 1.4

• DOMResult(Node n)

constructs a source from the given node. Usually, n is a new document node.

org.xml.sax.helpers.AttributesImpl 1.4

• void addAttribute(String uri, String lname, String qname, String type, String value)

adds an attribute to this attribute collection.

• void clear()

removes all attributes from this attribute collection.

This example concludes our discussion of XML support in the Java library. You should now

have a good perspective on the major strengths of XML—in particular, for automated parsing

and validation and as a powerful transformation mechanism. Of course, all this technology

is only going to work for you if you design your XML formats well. You need to make sure

that the formats are rich enough to express all your business needs, that they are stable

over time, and that your business partners are willing to accept your XML documents. Those

issues can be far more challenging than dealing with parsers, DTDs, or transformations.

In the next chapter, we will discuss network programming on the Java platform, starting

with the basics of network sockets and moving on to higher level protocols for e-mail and

the World Wide Web.

Chapter 4. Networking

In this chapter

• 4.1 Connecting to a Server,

• 4.2 Implementing Servers,

• 4.3 Interruptible Sockets,

• 4.4 Getting Web Data,

• 4.5 Sending E-Mail,

We begin this chapter by reviewing basic networking concepts, then move on to writing Java

programs that connect to network services. We will show you how network clients and servers

are implemented. Finally, you will see how to send e-mail from a Java program and how to

harvest information from a web server.

4.1 Connecting to a Server

Before writing our first network program, let’s discuss a great debugging tool for network

programming that you already have—namely, telnet. Telnet is prein-stalled on most systems.

You should be able to launch it by typing telnet from a command shell.

NOTE:

In Windows, you need to activate telnet. Go to the Control Panel, select Programs, click

“Turn Windows Features On or Off”, and select the “Telnet client” checkbox. The Windows

firewall also blocks quite a few network ports that we use in this chapter; you might need

an administrator account to unblock them.

You may have used telnet to connect to a remote computer, but you can use it to communicate

with other services provided by Internet hosts as well. Here is an example of what you can

do. Type

 telnet time-a.nist.gov 13

As Figure 4.1 shows, you should get back a line like this:

57488 16-04-10 04:23:00 50 0 0 610.5 UTC(NIST) *

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04lev4-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04lev4-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04lev4-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04lev4-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04lev4-5
http://time-a.nist.gov/
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04fig01

Figure 4.1 Output of the “time of day” service

What is going on? You have connected to the “time of day” service that most UNIX machines

constantly run. The particular server that you connected to is operated by the National

Institute of Standards and Technology and gives the measurement of a Cesium atomic clock.

(Of course, the reported time is not completely accurate due to network delays.)

By convention, the “time of day” service is always attached to “port” number 13.

NOTE:

In network parlance, a port is not a physical device, but an abstraction facilitating

communication between a server and a client (see Figure 4.2).

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04fig02

Figure 4.2 A client connecting to a server port

In the figure, change the IP address from 132.163.4.103 to 129.6.15.28 (2x).

The server software is continuously running on the remote machine, waiting for any network

traffic that wants to chat with port 13. When the operating system on the remote computer

receives a network package that contains a request to connect to port number 13, it wakes

up the listening server process and establishes the connection. The connection stays up

until it is terminated by one of the parties.

When you began the telnet session with time-a.nist.gov at port 13, a piece of network

software knew enough to convert the string "time-a.nist.gov" to its correct Internet

Protocol (IP) address, 129.6.15.28. The telnet software then sent a connection request to

that address, asking for a connection to port 13. Once the connection was established, the

remote program sent back a line of data and closed the connection. In general, of course,

clients and servers engage in a more extensive dialog before one or the other closes the

connection.

Here is another experiment along the same lines—but a bit more interesting. Type

 telnet horstmann.com 80

Then type very carefully the following:

 GET / HTTP/1.1

 Host: horstmann.com

 blank line

That is, hit the Enter key twice at the end.

http://time-a.nist.gov/
http://time-a.nist.gov/
http://horstmann.com/
http://horstmann.com/

Figure 4.3 shows the response. It should look eerily familiar—you got a page of

HTML-formatted text, namely Cay Horstmann’s home page.

Figure 4.3 Using telnet to access an HTTP port

This is exactly the same process that your web browser goes through to get a web page. It

uses HTTP to request web pages from servers. Of course, the browser displays the HTML code

more nicely.

NOTE:

The Host key/value pair is required when you connect to a web server that hosts multiple

domains with the same IP address. You can omit it if the server hosts a single domain.

Our first network program in Listing 4.1 will do the same thing we did using telnet—connect

to a port and print out what it finds.

Listing 4.1 socket/SocketTest.java

 1 package socket;

 2

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04fig03

 3 import java.io.*;

 4 import java.net.*;

 5 import java.util.*;

 6

 7 /**

 8 * This program makes a socket connection to the atomic clock in Boulder,

Colorado, and prints

 9 * the time that the server sends.

10 *

11 * @version 1.21 2016-04-27

12 * @author Cay Horstmann

13 */

14 public class SocketTest

15 {

16 public static void main(String[] args) throws IOException

17 {

18 try (Socket s = new Socket("time-a.nist.gov", 13);

19 Scanner in = new Scanner(s.getInputStream(), "UTF-8"))

20 {

21 while (in.hasNextLine())

22 {

23 String line = in.nextLine();

24 System.out.println(line);

25 }

26 }

27 }

28 }

The key statements of this simple program are as follows:

 Socket s = new Socket("time-a.nist.gov", 13);

 InputStream inStream = s.getInputStream();

The first line opens a socket, which is a network software abstraction that enables
communication out of and into this program. We pass the remote address and the port number

to the socket constructor. If the connection fails, an UnknownHostException is thrown. If

there is another problem, an IOException occurs. Since UnknownHostException is a subclass

of IOException and this is a sample program, we just catch the superclass.

Once the socket is open, the getInputStream method in java.net.Socket returns an InputStream

object that you can use just like any other stream. Once you have grabbed the stream, this

program simply prints each input line to standard output. This process continues until the

stream is finished and the server disconnects.

http://time-a.nist.gov/
http://time-a.nist.gov/
http://java.net.socket/

This program works only with very simple servers, such as a “time of day” service. In

more complex networking programs, the client sends request data to the server, and the server

might not immediately disconnect at the end of a response.

You will see how to implement that behavior in several examples throughout this chapter.

The Socket class is pleasant and easy to use because the Java library hides the complexities

of establishing a networking connection and sending data across it. The java.net package

essentially gives you the same programming interface you would use to work with a file.

NOTE:

In this book, we cover only the Transmission Control Protocol (TCP). The Java platform also

supports the User Datagram Protocol (UDP), which can be used to send packets (also called

datagrams) with much less overhead than that of TCP. The drawback is that packets need not
be delivered in sequential order to the receiving application and can even be dropped

altogether. It is up to the recipient to put the packets in order and to request

retransmission of missing packets. UDP is well suited for applications in which missing

packets can be tolerated—for example, for audio or video streams or continuous

measurements.

java.net.Socket 1.0

• Socket(String host, int port)

constructs a socket to connect to the given host and port.

• InputStream getInputStream()

• OutputStream getOutputStream()

gets the stream to read data from the socket or write data to the socket.

4.1.1 Socket Timeouts

Reading from a socket blocks until data are available. If the host is unreachable, your

application waits for a long time and you are at the mercy of the underlying operating system

to eventually time out.

You can decide what timeout value is reasonable for your particular application. Then, call

the setSoTimeout method to set a timeout value (in milliseconds).

http://java.net/

 Socket s = new Socket(. . .);

 s.setSoTimeout(10000); // time out after 10 seconds

If the timeout value has been set for a socket, all subsequent read and write operations

throw a SocketTimeoutException when the timeout has been reached before the operation has

completed its work. You can catch that exception and react to the timeout.

 try

 {

 InputStream in = s.getInputStream(); // read from in

 ...

 }

 catch (InterruptedIOException exception)

 {

 react to timeout

 }

There is one additional timeout issue that you need to address. The constructor

 Socket(String host, int port)

can block indefinitely until an initial connection to the host is established.

You can overcome this problem by first constructing an unconnected socket and then

connecting it with a timeout:

 Socket s = new Socket();

 s.connect(new InetSocketAddress(host, port), timeout);

See Section 4.3, “Interruptible Sockets,” on p. 253 for how to allow users to interrupt

the socket connection at any time.

java.net.Socket 1.0

• Socket() 1.1

creates a socket that has not yet been connected.

• void connect(SocketAddress address) 1.4

connects this socket to the given address.

• void connect(SocketAddress address, int timeoutInMilliseconds) 1.4

connects this socket to the given address, or returns if the time interval expired.

• void setSoTimeout(int timeoutInMilliseconds) 1.1

sets the blocking time for read requests on this socket. If the timeout is reached, an

InterruptedIOException is raised.

• boolean isConnected() 1.4

returns true if the socket is connected.

• boolean isClosed() 1.4

returns true if the socket is closed.

4.1.2 Internet Addresses

Usually, you don’t have to worry too much about Internet addresses—the numerical host

addresses that consist of 4 bytes (or, with IPv6, 16 bytes) such as 129.6.15.28. However,

you can use the InetAddress class if you need to convert between host names and Internet

addresses.

The java.net package supports IPv6 Internet addresses, provided the host operating system

does.

The static getByName method returns an InetAddress object of a host. For example,

 InetAddress address = InetAddress.getByName("time-a.nist.gov");

returns an InetAddress object that encapsulates the sequence of four bytes 129.6.15.28.

You can access the bytes with the getAddress method.

 byte[] addressBytes = address.getAddress();

Some host names with a lot of traffic correspond to multiple Internet addresses, to

facilitate load balancing. For example, at the time of this writing, the host name google.com

corresponds to twelve different Internet addresses. One of them is picked at random when

the host is accessed. You can get all hosts with the getAllByName method.

 InetAddress[] addresses = InetAddress.getAllByName(host);

Finally, you sometimes need the address of the local host. If you simply ask for the address

of localhost, you always get the local loopback address 127.0.0.1, which cannot be used

by others to connect to your computer. Instead, use the static getLocalHost method to get

the address of your local host.

 InetAddress address = InetAddress.getLocalHost();

http://java.net/
http://time-a.nist.gov/
http://google.com/

Listing 4.2 is a simple program that prints the Internet address of your local host if you

do not specify any command-line parameters, or all Internet addresses of another host if

you specify the host name on the command line, such as

 java inetAddress/InetAddressTest www.horstmann.com

Listing 4.2 inetAddress/InetAddressTest.java

 1 package inetAddress;

 2

 3 import java.io.*;

 4 import java.net.*;

 5

 6 /**

 7 * This program demonstrates the InetAddress class. Supply a host name as

command-line argument, or

 8 * run without command-line arguments to see the address of the local host.

 9 * @version 1.02 2012-06-05

10 * @author Cay Horstmann

11 */

12 public class InetAddressTest

13 {

14 public static void main(String[] args) throws IOException

15 {

16 if (args.length > 0)

17 {

18 String host = args[0];

19 InetAddress[] addresses = InetAddress.getAllByName(host);

20 for (InetAddress a : addresses)

21 System.out.println(a);

22 }

23 else

24 {

25 InetAddress localHostAddress = InetAddress.getLocalHost();

26 System.out.println(localHostAddress);

27 }

28 }

29 }

java.net.InetAddress 1.0

• static InetAddress getByName(String host)

• static InetAddress[] getAllByName(String host)

http://www.horstmann.com/

constructs an InetAddress, or an array of all Internet addresses, for the given host name.

• static InetAddress getLocalHost()

constructs an InetAddress for the local host.

• byte[] getAddress()

returns an array of bytes that contains the numerical address.

• String getHostAddress()

returns a string with decimal numbers, separated by periods, for example "129.6.15.28".

• String getHostName()

returns the host name.

4.2 Implementing Servers

Now that we have implemented a basic network client that receives data from the Internet,

let’s program a simple server that can send information to clients. Once you start the

server program, it waits for a client to attach to its port. We chose port number 8189,

which is not used by any of the standard services. The ServerSocket class establishes a

socket. In our case, the command

 ServerSocket s = new ServerSocket(8189);

establishes a server that monitors port 8189. The command

 Socket incoming = s.accept();

tells the program to wait indefinitely until a client connects to that port. Once someone

connects to this port by sending the correct request over the network, this method returns

a Socket object that represents the connection that was made. You can use this object to

get input and output streams, as is shown in the following code:

 InputStream inStream = incoming.getInputStream();

 OutputStream outStream = incoming.getOutputStream();

Everything that the server sends to the server output stream becomes the input of the client

program, and all the output from the client program ends up in the server input stream.

In all the examples in this chapter, we transmit text through sockets. We therefore turn

the streams into scanners and writers.

 Scanner in = new Scanner(inStream, "UTF-8");

 PrintWriter out = new PrintWriter(new OutputStreamWriter(outStream,

"UTF-8"),

 true /* autoFlush */);

Let’s send the client a greeting:

 out.println("Hello! Enter BYE to exit.");

When you use telnet to connect to this server program at port 8189, you will see the preceding

greeting on the terminal screen.

In this simple server, we just read the client input, a line at a time, and echo it. This

demonstrates that the program receives the client’s input. An actual server would obviously

compute and return an answer depending on the input.

 String line = in.nextLine();

 out.println("Echo: " + line);

 if (line.trim().equals("BYE")) done = true;

In the end, we close the incoming socket.

 incoming.close();

That is all there is to it. Every server program, such as an HTTP web server, continues

performing this loop:

1. It receives a command from the client (“get me this information”) through an incoming

data stream.

2. It decodes the client command.

3. It gathers the information that the client requested.

4. It sends the information to the client through the outgoing data stream.

Listing 4.3 is the complete program.

Listing 4.3 server/EchoServer.java

 1 package server;

 2

 3 import java.io.*;

 4 import java.net.*;

 5 import java.util.*;

 6

 7 /**

 8 * This program implements a simple server that listens to port 8189 and echoes

back all client

 9 * input.

10 * @version 1.21 2012-05-19

11 * @author Cay Horstmann

12 */

13 public class EchoServer

14 {

15 public static void main(String[] args) throws IOException

16 {

17 // establish server socket

18 try (ServerSocket s = new ServerSocket(8189))

19 {

20 // wait for client connection

21 try (Socket incoming = s.accept())

22 {

23 InputStream inStream = incoming.getInputStream();

24 OutputStream outStream = incoming.getOutputStream();

25

26 try (Scanner in = new Scanner(inStream, "UTF-8"))

27 {

28 PrintWriter out = new PrintWriter(

29 new OutputStreamWriter(outStream,

"UTF-8"),

30 true /* autoFlush */);

31

32 out.println("Hello! Enter BYE to exit.");

33

34 // echo client input

35 boolean done = false;

36 while (!done && in.hasNextLine())

37 {

38 String line = in.nextLine();

39 out.println("Echo: " + line);

40 if (line.trim().equals("BYE"))

done = true;

41 }

42 }

43 }

44 }

45 }

46 }

To try it out, compile and run the program. Then use telnet to connect to the server localhost

(or IP address 127.0.0.1) and port 8189.

If you are connected directly to the Internet, anyone in the world can access your echo

server, provided they know your IP address and the magic port number.

When you connect to the port, you will see the message shown in Figure 4.4:

 Hello! Enter BYE to exit.

Figure 4.4 Accessing an echo server

Type anything and watch the input echo on your screen. Type BYE (all uppercase letters)

to disconnect. The server program will terminate as well.

java.net.ServerSocket 1.0

• ServerSocket(int port)

creates a server socket that monitors a port.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04fig04

• Socket accept()

waits for a connection. This method blocks (i.e., idles) the current thread until the

connection is made.The method returns a Socket object through which the program can

communicate with the connecting client.

• void close()

closes the server socket.

4.2.1 Serving Multiple Clients

There is one problem with the simple server in the preceding example. Suppose we want to

allow multiple clients to connect to our server at the same time. Typically, a server runs

constantly on a server computer, and clients from all over the Internet might want to use

it at the same time. Rejecting multiple connections allows any one client to monopolize

the service by connecting to it for a long time. We can do much better through the magic

of threads.

Every time we know the program has established a new socket connection—that is, every time

the call to accept() returns a socket—we will launch a new thread to take care of the

connection between the server and that client. The main program will just go back and wait
for the next connection. For this to happen, the main loop of the server should look like

this:

 while (true)

 {

 Socket incoming = s.accept();

 Runnable r = new ThreadedEchoHandler(incoming);

 Thread t = new Thread(r);

 t.start();

 }

The ThreadedEchoHandler class implements Runnable and contains the communication loop with

the client in its run method.

 class ThreadedEchoHandler implements Runnable

 {

 ...

 public void run()

 {

 try

 {

 InputStream inStream = incoming.getInputStream();

 OutputStream outStream = incoming.getOutputStream();

 Process input and send response

 incoming.close();

 }

 catch(IOException e)

 {

 Handle exception

 }

 }

 }

When each connection starts a new thread, multiple clients can connect to the server at

the same time. You can easily check this out.

1. Compile and run the server program (Listing 4.4).

2. Open several telnet windows as we have in Figure 4.5.

3. Switch between windows and type commands. Note that you can communicate through all of

them simultaneously.

4. When you are done, switch to the window from which you launched the server program and

use Ctrl+C to kill it.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04fig05

Figure 4.5 Several telnet windows communicating simultaneously

NOTE:

In this program, we spawn a separate thread for each connection. This approach is not

satisfactory for high-performance servers. You can achieve greater server throughput by

using features of the java.nio package. See

www.ibm.com/developerworks/java/library/j-javaio for more information.

Listing 4.4 threaded/ThreadedEchoServer.java

 1 package threaded;

 2

 3 import java.io.*;

http://www.ibm.com/developerworks/java/library/j-javaio

 4 import java.net.*;

 5 import java.util.*;

 6

 7 /**

 8 This program implements a multithreaded server that listens to port 8189

and echoes back

 9 all client input.

10 @author Cay Horstmann

11 @version 1.22 2016-04-27

12 */

13 public class ThreadedEchoServer

14 {

15 public static void main(String[] args)

16 {

17 try (ServerSocket s = new ServerSocket(8189))

18 {

19 int i = 1;

20

21 while (true)

22 {

23 Socket incoming = s.accept();

24 System.out.println("Spawning " + i);

25 Runnable r = new ThreadedEchoHandler(incoming);

26 Thread t = new Thread(r);

27 t.start();

28 i++;

29 }

30 }

31 catch (IOException e)

32 {

33 e.printStackTrace();

34 }

35 }

36 }

37

38 /**

39 This class handles the client input for one server socket connection.

40 */

41 class ThreadedEchoHandler implements Runnable

42 {

43 private Socket incoming;

44

45 /**

46 Constructs a handler.

47 @param i the incoming socket

48 */

49 public ThreadedEchoHandler(Socket i)

50 {

51 incoming = i;

52 }

53

54 public void run()

55 {

56 try

57 {

58 try

59 {

60 InputStream inStream = incoming.getInputStream();

61 OutputStream outStream = incoming.getOutputStream();

62

63 Scanner in = new Scanner(inStream, "UTF-8");

64 PrintWriter out = new PrintWriter(

65 new OutputStreamWriter(outStream, "UTF-8"),

66 true /* autoFlush */);

67

68 out.println("Hello! Enter BYE to exit.");

69

70 // echo client input

71 boolean done = false;

72 while (!done && in.hasNextLine())

73 {

74 String line = in.nextLine();

75 out.println("Echo: " + line);

76 if (line.trim().equals("BYE"))

77 done = true;

78 }

79 }

80 finally

81 {

82 incoming.close();

83 }

84 }

85 catch (IOException e)

86 {

87 e.printStackTrace();

88 }

89 }

90 }

4.2.2 Half-Close

The half-close provides the ability for one end of a socket connection to terminate its
output while still receiving data from the other end.

Here is a typical situation. Suppose you transmit data to the server but you don’t know

at the outset how much data you have. With a file, you’d just close the file at the end

of the data. However, if you close a socket, you immediately disconnect from the server

and cannot read the response.

The half-close overcomes this problem. You can close the output stream of a socket, thereby

indicating to the server the end of the requested data, but keep the input stream open.

The client side looks like this:

 Socket socket = new Socket(host, port);

 Scanner in = new Scanner(socket.getInputStream(), "UTF-8");

 PrintWriter writer = new PrintWriter(socket.getOutputStream());

 // send request data

 writer.print(. . .);

 writer.flush();

 socket.shutdownOutput();

 // now socket is half-closed

 // read response data

 while (in.hasNextLine() != null) { String line = in.nextLine(); . . . }

 socket.close();

The server side simply reads input until the end of the input stream is reached. Then it

sends the response.

Of course, this protocol is only useful for one-shot services such as HTTP where the client

connects, issues a request, catches the response, and then disconnects.

java.net.Socket 1.0

• void shutdownOutput() 1.3

sets the output stream to “end of stream.”

• void shutdownInput() 1.3

sets the input stream to “end of stream.”

• boolean isOutputShutdown() 1.4

returns true if output has been shut down.

• boolean isInputShutdown() 1.4

returns true if input has been shut down.

4.3 Interruptible Sockets

When you connect to a socket, the current thread blocks until the connection has been

established or a timeout has elapsed. Similarly, when you read or write data through a socket,

the current thread blocks until the operation is successful or has timed out.

In interactive applications, you would like to give users an option to simply cancel a socket

connection that does not appear to produce results. However, if a thread blocks on an

unresponsive socket, you cannot unblock it by calling interrupt.

To interrupt a socket operation, use a SocketChannel, a feature of the java.nio package.

Open the SocketChannel like this:

 SocketChannel channel = SocketChannel.open(new InetSocketAddress(host, port));

A channel does not have associated streams. Instead, it has read and write methods that

make use of Buffer objects. (See Chapter 2 for more information about NIO buffers.) These

methods are declared in the interfaces ReadableByteChannel and WritableByteChannel.

If you don’t want to deal with buffers, you can use the Scanner class to read from a

SocketChannel because Scanner has a constructor with a ReadableByteChannel parameter:

 Scanner in = new Scanner(channel, "UTF-8");

To turn a channel into an output stream, use the static Channels.newOutputStream method.

 OutputStream outStream = Channels.newOutputStream(channel);

That’s all you need to do. Whenever a thread is interrupted during an open, read, or write

operation, the operation does not block, but is terminated with an exception.

The program in Listing 4.5 contrasts interruptible and blocking sockets. A server sends

numbers and pretends to be stuck after the tenth number. Click on either button, and a thread

is started that connects to the server and prints the output. The first thread uses an

interruptible socket; the second thread uses a blocking socket. If you click the Cancel

button within the first ten numbers, you can interrupt either thread.

However, after the first ten numbers, you can only interrupt the first thread. The second

thread keeps blocking until the server finally closes the connection (see Figure 4.6).

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04fig06

Figure 4.6 Interrupting a socket

Listing 4.5 interruptible/InterruptibleSocketTest.java

 1 package interruptible;

 2

 3 import java.awt.*;

 4 import java.awt.event.*;

 5 import java.util.*;

 6 import java.net.*;

 7 import java.io.*;

 8 import java.nio.channels.*;

 9 import javax.swing.*;

10

11 /**

12 * This program shows how to interrupt a socket channel.

13 * @author Cay Horstmann

14 * @version 1.04 2016-04-27

15 */

16 public class InterruptibleSocketTest

17 {

18 public static void main(String[] args)

19 {

20 EventQueue.invokeLater(() ->

21 {

22 JFrame frame = new InterruptibleSocketFrame();

23 frame.setTitle("InterruptibleSocketTest");

24 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

25 frame.setVisible(true);

26 });

27 }

28 }

29

30 class InterruptibleSocketFrame extends JFrame

31 {

32 public static final int TEXT_ROWS = 20;

33 public static final int TEXT_COLUMNS = 60;

34

35 private Scanner in;

36 private JButton interruptibleButton;

37 private JButton blockingButton;

38 private JButton cancelButton;

39 private JTextArea messages;

40 private TestServer server;

41 private Thread connectThread;

42

43 public InterruptibleSocketFrame()

44 {

45 JPanel northPanel = new JPanel();

46 add(northPanel, BorderLayout.NORTH);

47

48 messages = new JTextArea(TEXT_ROWS, TEXT_COLUMNS);

49 add(new JScrollPane(messages));

50

51 interruptibleButton = new JButton("Interruptible");

52 blockingButton = new JButton("Blocking");

53

54 northPanel.add(interruptibleButton);

55 northPanel.add(blockingButton);

56

57 interruptibleButton.addActionListener(new ActionListener()

58 {

59 public void actionPerformed(ActionEvent event)

60 {

61 interruptibleButton.setEnabled(false);

62 blockingButton.setEnabled(false);

63 cancelButton.setEnabled(true);

64 connectThread = new Thread(() ->

65 {

66 try

67 {

68 connectInterruptibly();

69 }

70 catch (IOException e)

71 {

72 messages.append("\nInterruptib

leSocketTest.connectInterruptibly: " + e);

73 }

74 });

75 connectThread.start();

76 }

77 });

78

79 blockingButton.addActionListener(event ->

80 {

81 interruptibleButton.setEnabled(false);

82 blockingButton.setEnabled(false);

83 cancelButton.setEnabled(true);

84 connectThread = new Thread(() ->

85 {

86 try

87 {

88 connectBlocking();

89 }

90 catch (IOException e)

91 {

92 messages.append("\nInterruptibleSo

cketTest.connectBlocking: " + e);

93 }

94 });

95 connectThread.start();

96 });

97

98 cancelButton = new JButton("Cancel");

99 cancelButton.setEnabled(false);

100 northPanel.add(cancelButton);

101 cancelButton.addActionListener(event ->

102 {

103 connectThread.interrupt();

104 cancelButton.setEnabled(false);

105 });

106 server = new TestServer();

107 new Thread(server).start();

108 pack();

109 }

110

111 /**

112 * Connects to the test server, using interruptible I/O

113 */

114 public void connectInterruptibly() throws IOException

115 {

116 messages.append("Interruptible:\n");

117 try (SocketChannel channel = SocketChannel.open(new

InetSocketAddress("localhost", 8189)))

118 {

119 in = new Scanner(channel, "UTF-8");

120 while (!Thread.currentThread().isInterrupted())

121 {

122 messages.append("Reading ");

123 if (in.hasNextLine())

124 {

125 String line = in.nextLine();

126 messages.append(line);

127 messages.append("\n");

128 }

129 }

130 }

131 finally

132 {

133 EventQueue.invokeLater(new Runnable()

134 {

135 public void run()

136 {

137 messages.append("Channel closed\n");

138 interruptibleButton.setEnabled(true);

139 blockingButton.setEnabled(true);

140 }

141 });

142 }

143 }

144

145 /**

146 * Connects to the test server, using blocking I/O

147 */

148 public void connectBlocking() throws IOException

149 {

150 messages.append("Blocking:\n");

151 try (Socket sock = new Socket("localhost", 8189))

152 {

153 in = new Scanner(sock.getInputStream(), "UTF-8");

154 while (!Thread.currentThread().isInterrupted())

155 {

156 messages.append("Reading ");

157 if (in.hasNextLine())

158 {

159 String line = in.nextLine();

160 messages.append(line);

161 messages.append("\n");

162 }

163 }

164 }

165 finally

166 {

167 EventQueue.invokeLater(() ->

168 {

169 messages.append("Socket closed\n");

170 interruptibleButton.setEnabled(true);

171 blockingButton.setEnabled(true);

172 });

173 }

174 }

175

176 /**

177 * A multithreaded server that listens to port 8189 and sends numbers to the

client, simulating

178 * a hanging server after 10 numbers.

179 */

180 class TestServer implements Runnable

181 {

182 public void run()

183 {

184 try (ServerSocket s = new ServerSocket(8189))

185 {

186 while (true)

187 {

188 Socket incoming = s.accept();

189 Runnable r = new TestServerHandler(incoming);

190 Thread t = new Thread(r);

191 t.start();

192 }

193 }

194 catch (IOException e)

195 {

196 messages.append("\nTestServer.run: " + e);

197 }

198 }

199 }

200

201 /**

202 * This class handles the client input for one server socket connection.

203 */

204 class TestServerHandler implements Runnable

205 {

206 private Socket incoming;

207 private int counter;

208

209 /**

210 * Constructs a handler.

211 * @param i the incoming socket

212 */

213 public TestServerHandler(Socket i)

214 {

215 incoming = i;

216 }

217

218 public void run()

219 {

220 try

221 {

222 try

223 {

224 OutputStream outStream =

incoming.getOutputStream();

225 PrintWriter out = new PrintWriter(

226 new OutputStreamWriter(outStream,

"UTF-8"),

227 true /* autoFlush */);

228 while (counter < 100)

229 {

230 counter++;

231 if (counter <= 10)

out.println(counter);

232 Thread.sleep(100);

233 }

234 }

235 finally

236 {

237 incoming.close();

238 messages.append("Closing server\n");

239 }

240 }

241 catch (Exception e)

242 {

243 messages.append("\nTestServerHandler.run: " + e);

244 }

245 }

246 }

247 }

java.net.InetSocketAddress 1.4

• InetSocketAddress(String hostname, int port)

constructs an address object with the given host and port, resolving the host name during

construction. If the host name cannot be resolved, the address object’s unresolved property

is set to true.

• boolean isUnresolved()

returns true if this address object could not be resolved.

java.nio.channels.SocketChannel 1.4

• static SocketChannel open(SocketAddress address)

opens a socket channel and connects it to a remote address.

java.nio.channels.Channels 1.4

• static InputStream newInputStream(ReadableByteChannel channel)

constructs an input stream that reads from the given channel.

• static OutputStream newOutputStream(WritableByteChannel channel)

constructs an output stream that writes to the given channel.

4.4 Getting Web Data

To access web servers in a Java program, you will want to work at a higher level than making

a socket connection and issuing HTTP requests. In the following sections, we discuss the

classes that the Java library provides for this purpose.

4.4.1 URLs and URIs

The URL and URLConnection classes encapsulate much of the complexity of retrieving

information from a remote site. You can construct a URL object from a string:

 URL url = new URL(urlString);

If you simply want to fetch the contents of the resource, use the openStream method of the

URL class. This method yields an InputStream object. Use it in the usual way, for example,

to construct a Scanner:

 InputStream inStream = url.openStream();

 Scanner in = new Scanner(inStream, "UTF-8");

The java.net package makes a useful distinction between URLs (uniform resource locators)
and URIs (uniform resource identifiers).

A URI is a purely syntactical construct that contains the various parts of the string

specifying a web resource. A URL is a special kind of URI, namely, one with sufficient

information to locate a resource. Other URIs, such as

 mailto:cay@horstmann.com

are not locators—there is no data to locate from this identifier. Such a URI is called

a URN (uniform resource name).

In the Java library, the URI class has no methods for accessing the resource that the

identifier specifies—its sole purpose is parsing. In contrast, the URL class can open a

stream to the resource. For that reason, the URL class only works with schemes that the

Java library knows how to handle, such as http:, https:, ftp:, the local file system (file:),

and JAR files (jar:).

To see why parsing is not trivial, consider how complex URIs can be. For example,

 http:/google.com?q=Beach+Chalet

 ftp://username:password@ftp.yourserver.com/pub/file.txt

The URI specification gives the rules for the makeup of these identifiers. A URI has the

syntax

 [scheme:]schemeSpecificPart[#fragment]

Here, the [. . .] denotes an optional part, and the : and # are included literally in the

identifier.

http://java.net/
http://http/google.com?q=Beach+Chalet

If the scheme: part is present, the URI is called absolute. Otherwise, it is called relative.

An absolute URI is opaque if the schemeSpecificPart does not begin with a / such as

 mailto:cay@horstmann.com

All absolute nonopaque URIs and all relative URIs are hierarchical. Examples are

 http://horstmann.com/index.html

 ../../java/net/Socket.html#Socket()

The schemeSpecificPart of a hierarchical URI has the structure

 [//authority][path][?query]

where, again, [. . .] denotes optional parts.

For server-based URIs, the authority part has the form

 [user-info@]host[:port]

The port must be an integer.

RFC 2396, which standardizes URIs, also supports a registry-based mechanism by which the

authority has a different format, but this is not in common use.

One of the purposes of the URI class is to parse an identifier and break it up into its

components. You can retrieve them with the methods

 getScheme

 getSchemeSpecificPart

 getAuthority

 getUserInfo

 getHost

 getPort

 getPath

 getQuery

 getFragment

The other purpose of the URI class is the handling of absolute and relative identifiers.

If you have an absolute URI such as

 http://docs.mycompany.com/api/java/net/ServerSocket.html

and a relative URI such as

http://horstmann.com/index.html
http://docs.mycompany.com/api/java/net/ServerSocket.html

 ../../java/net/Socket.html#Socket()

then you can combine the two into an absolute URI.

 http://docs.mycompany.com/api/java/net/Socket.html#Socket()

This process is called resolving a relative URL.

The opposite process is called relativization. For example, suppose you have a base URI

 http://docs.mycompany.com/api

and a URI

 http://docs.mycompany.com/api/java/lang/String.html

Then the relativized URI is

 java/lang/String.html

The URI class supports both of these operations:

 relative = base.relativize(combined);

 combined = base.resolve(relative);

4.4.2 Using a URLConnection to Retrieve Information

If you want additional information about a web resource, then you should use the

URLConnection class, which gives you much more control than the basic URL class.

When working with a URLConnection object, you must carefully schedule your steps:

1. Call the openConnection method of the URL class to obtain the URLConnection object:

 URLConnection connection = url.openConnection();

2. Set any request properties, using the methods

 setDoInput

 setDoOutput

 setIfModifiedSince

 setUseCaches

 setAllowUserInteraction

 setRequestProperty

http://docs.mycompany.com/api/java/net/Socket.html#Socket
http://docs.mycompany.com/api
http://docs.mycompany.com/api/java/lang/String.html

 setConnectTimeout

 setReadTimeout

We discuss these methods later in this section and in the API notes.

3. Connect to the remote resource by calling the connect method.

 connection.connect();

Besides making a socket connection to the server, this method also queries the server for

header information.

4. After connecting to the server, you can query the header information. Two methods,

getHeaderFieldKey and getHeaderField, enumerate all fields of the header. The method

getHeaderFields gets a standard Map object containing the header fields. For your

convenience, the following methods query standard fields:

 getContentType

 getContentLength

 getContentEncoding

 getDate

 getExpiration

 getLastModified

5. Finally, you can access the resource data. Use the getInputStream method to obtain an

input stream for reading the information. (This is the same input stream that the openStream

method of the URL class returns.) The other method, getContent, isn’t very useful in

practice. The objects that are returned by standard content types such as text/plain and

image/gif require classes in the com.sun hierarchy for processing. You could register your

own content handlers, but we do not discuss that technique in this book.

Caution

Some programmers form the wrong mental image when using the URLConnection class, thinking

that the getInputStream and getOutputStream methods are similar to those of the Socket class.

But that isn’t quite true. The URLConnection class does quite a bit of magic behind the

scenes, in particular, the handling of request and response headers. For that reason, it

is important that you follow the setup steps for the connection.

Let us now look at some of the URLConnection methods in detail. Several methods set

properties of the connection before connecting to the server. The most important ones are

setDoInput and setDoOutput. By default, the connection yields an input stream for reading

from the server but no output stream for writing. If you want an output stream (for example,

for posting data to a web server), you need to call

 connection.setDoOutput(true);

Next, you may want to set some of the request headers. The request headers are sent together

with the request command to the server. Here is an example:

 GET www.server.com/index.html HTTP/1.0

 Referer: http://www.somewhere.com/links.html

 Proxy-Connection: Keep-Alive

 User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1.4)

 Host: www.server.com

 Accept: text/html, image/gif, image/jpeg, image/png, */*

 Accept-Language: en

 Accept-Charset: iso-8859-1,*,utf-8

 Cookie: orangemilano=192218887821987

The setIfModifiedSince method tells the connection that you are only interested in data

that have been modified since a certain date.

The setUseCaches and setAllowUserInteraction methods should only be called inside applets.

The setUseCaches method directs the browser to first check the browser cache. The

setAllowUserInteraction method allows an applet to pop up a dialog box for querying the

user name and password for password-protected resources (see Figure 4.7).

http://www.server.com/index.html
http://www.somewhere.com/links.html
http://www.server.com/
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04fig07

Figure 4.7 A network password dialog box

Finally, you can use the catch-all setRequestProperty method to set any name/value pair

that is meaningful for the particular protocol. For the format of the HTTP request headers,

see RFC 2616. Some of these parameters are not well-documented and are passed around by

word of mouth from one programmer to the next. For example, if you want to access a

password-protected web page, you must do the following:

1. Concatenate the user name, a colon, and the password.

String input = username + ":" + password;

2. Compute the Base64 encoding of the resulting string. (The Base64 encoding encodes

a sequence of bytes into a sequence of printable ASCII characters.)

 Base64.Encoder encoder = Base64.getEncoder();

 String encoding =

encoder.encodeToString(input.getBytes(StandardCharsets.UTF_8));

3. Call the setRequestProperty method with a name of "Authorization" and the value "Basic

" + encoding:

 connection.setRequestProperty("Authorization", "Basic " + encoding);

TIP:

You just saw how to access a password-protected web page. To access a password-protected

file by FTP, use an entirely different method: Construct a URL of the form

ftp://username:password@ftp.yourserver.com/pub/file.txt

Once you call the connect method, you can query the response header information. First,

let’s see how to enumerate all response header fields. The implementors of this class felt

a need to express their individuality by introducing yet another iteration protocol. The

call

 String key = connection.getHeaderFieldKey(n);

gets the nth key from the response header, where n starts from 1! It returns null if n is

zero or greater than the total number of header fields. There is no method to return the

number of fields; you simply keep calling getHeaderFieldKey until you get null. Similarly,

the call

 String value = connection.getHeaderField(n);

returns the nth value.

The method getHeaderFields returns a Map of response header fields.

 Map<String,List<String>> headerFields = connection.getHeaderFields();

Here is a set of response header fields from a typical HTTP request:

 Date: Wed, 27 Aug 2008 00:15:48 GMT

 Server: Apache/2.2.2 (Unix)

 Last-Modified: Sun, 22 Jun 2008 20:53:38 GMT

 Accept-Ranges: bytes

 Content-Length: 4813

 Connection: close

 Content-Type: text/html

As a convenience, six methods query the values of the most common header types and convert

them to numeric types when appropriate. Table 4.1 shows these convenience methods. The

methods with return type long return the number of seconds since January 1, 1970 GMT.

Table 4.1 Convenience Methods for Response Header Values

The program in Listing 4.6 lets you experiment with URL connections. Supply a URL and an

optional user name and password on the command line when running the program, for example:

 java urlConnection.URLConnectionTest http://www.yourserver.com user password

The program prints

• All keys and values of the header

• The return values of the six convenience methods in Table 4.1

• The first ten lines of the requested resource

Listing 4.6 urlConnection/URLConnectionTest.java

 1 package urlConnection;

 2

 3 import java.io.*;

 4 import java.net.*;

 5 import java.nio.charset.*;

 6 import java.util.*;

 7

 8 /**

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04tab01
http://www.yourserver.com/
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04tab01

 9 * This program connects to an URL and displays the response header data and

the first 10 lines of

10 * the requested data.

11 *

12 * Supply the URL and an optional username and password (for HTTP basic

authentication) on the

13 * command line.

14 * @version 1.11 2007-06-26

15 * @author Cay Horstmann

16 */

17 public class URLConnectionTest

18 {

19 public static void main(String[] args)

20 {

21 try

22 {

23 String urlName;

24 if (args.length > 0) urlName = args[0];

25 else urlName = "http://horstmann.com";

26

27 URL url = new URL(urlName);

28 URLConnection connection = url.openConnection();

29

30 // set username, password if specified on command line

31

32 if (args.length > 2)

33 {

34 String username = args[1];

35 String password = args[2];

36 String input = username + ":" + password;

37 Base64.Encoder encoder = Base64.getEncoder();

38 String encoding =

encoder.encodeToString(input.getBytes(StandardCharsets.UTF_8));

39 connection.setRequestProperty("Authorization",

"Basic " + encoding);

40 }

41

42 connection.connect();

43

44 // print header fields

45

46 Map<String, List<String>> headers =

connection.getHeaderFields();

47 for (Map.Entry<String, List<String>> entry :

headers.entrySet())

48 {

49 String key = entry.getKey();

50 for (String value : entry.getValue())

51 System.out.println(key + ": " + value);

52 }

53

54 // print convenience functions

55

56 System.out.println("----------");

57 System.out.println("getContentType: " +

connection.getContentType());

58 System.out.println("getContentLength: " +

connection.getContentLength());

59 System.out.println("getContentEncoding: " +

connection.getContentEncoding());

60 System.out.println("getDate: " + connection.getDate());

61 System.out.println("getExpiration: " +

connection.getExpiration());

62 System.out.println("getLastModifed: " +

connection.getLastModified());

63 System.out.println("----------");

64

65 String encoding = connection.getContentEncoding();

66 if (encoding == null) encoding = "UTF-8";

67 try (Scanner in = new Scanner(connection.getInputStream(),

encoding))

68 {

69 // print first ten lines of contents

70

71 for (int n = 1; in.hasNextLine() && n <= 10; n++)

72 System.out.println(in.nextLine());

73 if (in.hasNextLine()) System.out.println(". . .");

74 }

75 }

76 catch (IOException e)

77 {

78 e.printStackTrace();

79 }

80 }

81 }

java.net.URL 1.0

• InputStream openStream()

opens an input stream for reading the resource data.

• URLConnection openConnection();

returns a URLConnection object that manages the connection to the resource.

java.net.URLConnection 1.0

• void setDoInput(boolean doInput)

• boolean getDoInput()

If doInput is true, the user can receive input from this URLConnection.

• void setDoOutput(boolean doOutput)

• boolean getDoOutput()

If doOutput is true, the user can send output to this URLConnection.

• void setIfModifiedSince(long time)

• long getIfModifiedSince()

The ifModifiedSince property configures this URLConnection to fetch only data modified

since a given time. The time is given in seconds since midnight, GMT, January 1, 1970.

• void setUseCaches(boolean useCaches)

• boolean getUseCaches()

If useCaches is true, data can be retrieved from a local cache. Note that the URLConnection

itself does not maintain such a cache. The cache must be supplied by an external program

such as a browser.

• void setAllowUserInteraction(boolean allowUserInteraction)

• boolean getAllowUserInteraction()

If allowUserInteraction is true, the user can be queried for passwords. Note that the

URLConnection itself has no facilities for executing such a query. The query must be carried

out by an external program such as a browser or browser plug-in.

• void setConnectTimeout(int timeout) 5.0

• int getConnectTimeout() 5.0

sets or gets the timeout for the connection (in milliseconds). If the timeout has elapsed

before a connection was established, the connect method of the associated input stream

throws a SocketTimeoutException.

• void setReadTimeout(int timeout) 5.0

• int getReadTimeout() 5.0

sets or gets the timeout for reading data (in milliseconds). If the timeout has elapsed

before a read operation was successful, the read method throws a SocketTimeoutException.

• void setRequestProperty(String key, String value)

sets a request header field.

• Map<String,List<String>> getRequestProperties() 1.4

returns a map of request properties. All values for the same key are placed in a list.

• void connect()

connects to the remote resource and retrieves response header information.

• Map<String,List<String>> getHeaderFields() 1.4

returns a map of response headers. All values for the same key are placed in a list.

• String getHeaderFieldKey(int n)

gets the key for the nth response header field, or null if n is ≤ 0 or greater than the

number of response header fields.

• String getHeaderField(int n)

gets value of the nth response header field, or null if n is ≤ 0 or greater than the number

of response header fields.

• int getContentLength()

gets the content length if available, or -1 if unknown.

• String getContentType()

gets the content type, such as text/plain or image/gif.

• String getContentEncoding()

gets the content encoding, such as gzip. This value is not commonly used, because the default

identity encoding is not supposed to be specified with a Content-Encoding header.

• long getDate()

• long getExpiration()

• long getLastModifed()

gets the date of creation, expiration, and last modification of the resource.The dates are

specified as seconds since midnight, GMT, January 1, 1970.

• InputStream getInputStream()

• OutputStream getOutputStream()

returns a stream for reading from the resource or writing to the resource.

• Object getContent()

selects the appropriate content handler to read the resource data and convert it into an

object. This method is not useful for reading standard types such as text/plain or image/gif

unless you install your own content handler.

4.4.3 Posting Form Data

In the preceding section, you saw how to read data from a web server. Now we will show you

how your programs can send data back to a web server and to programs that the web server

invokes.

To send information from a web browser to the web server, a user fills out a form, like
the one in Figure 4.8.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04fig08

Figure 4.8 An HTML form

When the user clicks the Submit button, the text in the text fields and the settings of

any checkboxes, radio buttons, and other input elements, are sent back to the web server.

The web server invokes a program that processes the user input.

Many technologies enable web servers to invoke programs. Among the best known ones are Java

servlets, JavaServer Faces, Microsoft Active Server Pages (ASP), and Common Gateway

Interface (CGI) scripts.

The server-side program processes the form data and produces another HTML page that the

web server sends back to the browser. This sequence is illustrated in Figure 4.9. The

response page can contain new information (for example, in an information-search program)

or just an acknowledgment. The web browser then displays the response page.

Figure 4.9 Data flow during execution of a server-side program

We do not discuss the implementation of server-side programs in this book. Our interest

is merely in writing client programs that interact with existing server-side programs.

When form data are sent to a web server, it does not matter whether the data are interpreted

by a servlet, a CGI script, or some other server-side technology. The client sends the data

to the web server in a standard format, and the web server takes care of passing it on to

the program that generates the response.

Two commands, called GET and POST, are commonly used to send information to a web server.

In the GET command, you simply attach query parameters to the end of the URL. The URL has

the form

 http://host/path?query

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04fig09
http://host/path?query

Each parameter has the form name=value. Parameters are separated by & characters. Parameter
values are encoded using the URL encoding scheme, following these rules:

• Leave the characters A through Z, a through z, 0 through 9, and . - ~ _ un-changed.

• Replace all spaces with + characters.

• Encode all other characters into UTF-8 and encode each byte by a %, followed by a two-digit

hexadecimal number.

For example, to transmit San Francisco, CA, you use San+Francisco%2c+CA, as the hexadecimal
number 2c is the UTF-8 code of the ',' character.

This encoding keeps any intermediate programs from messing with spaces and interpreting

other special characters.

For example, at the time of this writing the Google Maps web www.google.com/maps accepts

query parameters with names q and hl whose values are the location query and the human

language of the response. To get a map of 1 Market Street in San Francisco, with a response

in German, use the following URL:

 http://www.google.com/maps?q=1+Market+Street+San+Francisco&hl=de

Very long query strings can look unattractive in browsers, and older browsers and proxies

have a limit on the number of characters that you can include in a GET request.

For that reason, a POST request is often used for forms with a lot of data. In a POST request,

you do not attach parameters to a URL. Instead, you get an output stream from the

URLConnection and write name/value pairs to the output stream. You still have to URL-encode

the values and separate them with & characters.

Let us look at this process in detail. To post data to a server-side program, first establish

a URLConnection:

 URL url = new URL("http://host/path");

 URLConnection connection = url.openConnection();

Then, call the setDoOutput method to set up the connection for output:

 connection.setDoOutput(true);

Next, call getOutputStream to get a stream through which you can send data to the server.

If you are sending text to the server, it is convenient to wrap that stream into a

PrintWriter.

 PrintWriter out = new PrintWriter(connection.getOutputStream(), "UTF-8");

http://www.google.com/maps
http://www.google.com/maps?q=1+Market+Street+San+Francisco&hl=de
http://host/path

Now you are ready to send data to the server:

 out.print(name1 + "=" + URLEncoder.encode(value1, "UTF-8") + "&");

 out.print(name2 + "=" + URLEncoder.encode(value2, "UTF-8"));

Close the output stream.

 out.close();

Finally, call getInputStream and read the server response.

Let’s run through a practical example. The web site at https://www.usps.com/zip4/ contains

a form to find the zip code for a street address (see Figure 4.8). To use this form in a

Java program, you need to know the URL and the parameters of the POST request.

You could get that information by looking at the HTML code of the form, but it is usually

easier to “spy” on a request with a network monitor. Most browsers have a network monitor

as part of their development toolkit. For example, Figure 4.10 shows a screen capture of

the Firefox network monitor when submitting data to our example website. You can find out

the submission URL as well as the parameter names and values.

http://www.usps.com/zip4/
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04fig08
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04fig010

Figure 4.10 An HTML form

When posting form data, the HTTP header includes the content type and content length:

 Content-Type: application/x-www-form-urlencoded

You can also post data in other formats. For example, when sending data in JavaScript Object

Notation (JSON), set the content type to application/json.

The header for a POST must also include the content length, for example

 Content-Length: 124

The program in Listing 4.7 sends POST form data to any server-side program. Place the data

into a .properties file such as the following:

 url=https://tools.usps.com/go/ZipLookupAction.action

 tAddress=1 Market Street

 tCity=San Francisco

 sState=CA

 ...

The program removes the url entry and sends all others to the doPost method.

In the doPost method, we first open the connection, call setDoOutput(true), and open the

output stream. We then enumerate all keys and values. For each of them, we send the key,

= character, value, and & separator character:

 out.print(key);

 out.print('=');

 out.print(URLEncoder.encode(value, "UTF-8"));

 if (more pairs) out.print('&');

When switching from writing to reading any part of the response, the actual interaction

with the server happens. The Content-Length header is set to the size of the output. The

Content-Type header is set to application/x-www-form-urlencoded unless a different content

type was specified. The headers and data are sent to the server. Then the response headers

and server response are read and can be queried. In our example program, this switch happens

in the call to connection.getContentEncoding().

There is one twist with reading the response. If a server-side error occurs, the call to

connection.getInputStream() throws a FileNotFoundException. However, the server still

sends an error page back to the browser (such as the ubiquitous “Error 404 — page not

found”). To capture this error page, call the getErrorStream method:

 InputStream err = connection.getErrorStream();

NOTE:

The getErrorStream method, as well as several other methods in this program, belong to the

HttpURLConnection subclass of URLConnection. If you make a request to an URL that starts

with http:// or https://, you can cast the resulting connection object to HttpURLConnection.

When you send POST data to a server, it can happen that the server-side program responds

with a redirect: a different URL that should be called to get the actual information. The
server could do that because the information is available elsewhere, or to provide a

bookmarkable URL. The HttpURLConnection class can handle redirects in most cases.

NOTE:

If cookies need to be sent from one site to another in a redirect, you can configure the

global cookie handler like this:

 CookieHandler.setDefault(new CookieManager(null, CookiePolicy.ACCEPT_ALL));

Then cookies will be properly included in the redirect.

Even though redirects are usually automatically handled, there are some situations where

you need to do them yourself. Automatic redirects between HTTP and HTTPS are not supported

for security reasons. Redirects can also fail for more subtle reasons. For example, the

zip code service does not work if the User-Agent request parameter contains the string Java,

perhaps because the post office doesn’t want to serve programmatic requests. While it is

possible to set the user agent to a different string in the initial request, that setting

is not used in a automatic redirects. Instead, automatic redirects always send a generic

user agent string that contains the word Java.

In such situations, you can manually carry out the redirects. Before connecting the server,

turn off automatic redirects:

 connection.setInstanceFollowRedirects(false);

After making the request, get the response code:

 int responseCode = connection.getResponseCode();

Check if it is one of

 HttpURLConnection.HTTP_MOVED_PERM

 HttpURLConnection.HTTP_MOVED_TEMP

 HttpURLConnection.HTTP_SEE_OTHER

In that case, get the Location response header to obtain the URL for the redirect. Then

disconnect and make another connection to the new URL:

 String location = connection.getHeaderField("Location");

 if (location != null)

 {

 URL base = connection.getURL();

 connection.disconnect();

 connection = (HttpURLConnection) new URL(base,

location).openConnection();

 ...

 }

The techniques that this program illustrates can be useful whenever you need to query

information from an existing web site. Simply find out the parameters that you need to send,

and then strip out the HTML tags and other unnecessary information from the reply.

Listing 4.7 post/PostTest.java

 1 package post;

 2

 3 import java.io.*;

 4 import java.net.*;

 5 import java.nio.file.*;

 6 import java.util.*;

 7

 8 /**

 9 * This program demonstrates how to use the URLConnection class for a POST

request.

10 * @version 1.40 2016-04-24

11 * @author Cay Horstmann

12 */

13 public class PostTest

14 {

15 public static void main(String[] args) throws IOException

16 {

17 String propsFilename = args.length > 0 ? args[0] :

"post/post.properties";

18 Properties props = new Properties();

19 try (InputStream in = Files.newInputStream(Paths.get(propsFilename)))

20 {

21 props.load(in);

22 }

23 String urlString = props.remove("url").toString();

24 Object userAgent = props.remove("User-Agent");

25 Object redirects = props.remove("redirects");

26 CookieHandler.setDefault(new CookieManager(null,

CookiePolicy.ACCEPT_ALL));

27 String result = doPost(new URL(urlString), props,

28 userAgent == null ? null : userAgent.toString(),

29 redirects == null ? -1 :

Integer.parseInt(redirects.toString()));

30 System.out.println(result);

31 }

32

33 /**

34 * Do an HTTP POST.

35 * @param url the URL to post to

36 * @param nameValuePairs the query parameters

37 * @param userAgent the user agent to use, or null for the default user agent

38 * @param redirects the number of redirects to follow manually, or -1 for

automatic redirects

39 * @return the data returned from the server

40 */

41 public static String doPost(URL url, Map<Object, Object> nameValuePairs,

String userAgent, int redirects)

42 throws IOException

43 {

44 HttpURLConnection connection = (HttpURLConnection)

url.openConnection();

45 if (userAgent != null)

46 connection.setRequestProperty("User-Agent", userAgent);

47

48 if (redirects >= 0)

49 connection.setInstanceFollowRedirects(false);

50

51 connection.setDoOutput(true);

52

53 try (PrintWriter out = new PrintWriter(connection.getOutputStream()))

54 {

55 boolean first = true;

56 for (Map.Entry<Object, Object> pair :

nameValuePairs.entrySet())

57 {

58 if (first) first = false;

59 else out.print('&');

60 String name = pair.getKey().toString();

61 String value = pair.getValue().toString();

62 out.print(name);

63 out.print('=');

64 out.print(URLEncoder.encode(value, "UTF-8"));

65 }

66 }

67 String encoding = connection.getContentEncoding();

68 if (encoding == null) encoding = "UTF-8";

69

70 if (redirects > 0)

71 {

72 int responseCode = connection.getResponseCode();

73 if (responseCode == HttpURLConnection.HTTP_MOVED_PERM

74 || responseCode ==

HttpURLConnection.HTTP_MOVED_TEMP

75 || responseCode ==

HttpURLConnection.HTTP_SEE_OTHER)

76 {

77 String location = connection.getHeaderField("Location");

78 if (location != null)

79 {

80 URL base = connection.getURL();

81 connection.disconnect();

82 return doPost(new URL(base, location),

nameValuePairs, userAgent, redirects - 1);

83 }

84

85 }

86 }

87 else if (redirects == 0)

88 {

89 throw new IOException("Too many redirects");

90 }

91

92 StringBuilder response = new StringBuilder();

93 try (Scanner in = new Scanner(connection.getInputStream(),

encoding))

94 {

95 while (in.hasNextLine())

96 {

97 response.append(in.nextLine());

98 response.append("\n");

99 }

100 }

101 catch (IOException e)

102 {

103 InputStream err = connection.getErrorStream();

104 if (err == null) throw e;

105 try (Scanner in = new Scanner(err))

106 {

107 response.append(in.nextLine());

108 response.append("\n");

109 }

110 }

111

112 return response.toString();

113 }

114 }

java.net.HttpURLConnection 1.0

• InputStream getErrorStream()

returns a stream from which you can read web server error messages.

java.net.URLEncoder 1.0

• static String encode(String s, String encoding) 1.4

returns the URL-encoded form of the string s, using the given character encoding scheme.

(The recommended scheme is "UTF-8".) In URL encoding, the characters 'A'–'Z', 'a'–'z',

'0'–'9', '-', '_', '.', and '~' are left unchanged. Space is encoded into '+', and all

other characters are encoded into sequences of encoded bytes of the form "%XY", where 0xXY
is the hexadecimal value of the byte.

java.net.URLDecoder 1.2

• static string decode(String s, String encoding) 1.4

returns the decoding of the URL encoded string s under the given character encoding scheme.

4.5 Sending E-Mail

In the past, it was simple to write a program that sends e-mail by making a socket connection

to port 25, the SMTP port. The Simple Mail Transport Protocol (SMTP) describes the format

for e-mail messages. Once you are connected to the server, send a mail header (in the SMTP

format, which is easy to generate), followed by the mail message.

Here are the details:

1. Open a socket to your host.

 Socket s = new Socket("mail.yourserver.com", 25); // 25 is

SMTP

http://mail.yourserver.com/

 PrintWriter out = new PrintWriter(s.getOutputStream(),

"UTF-8");

2. Send the following information to the print stream:

 HELO sending host

 MAIL FROM: sender e-mail address

 RCPT TO: recipient e-mail address

 DATA

 Subject: subject

 (blank line)

 mail message (any number of lines)

 .

 QUIT

The SMTP specification (RFC 821) states that lines must be terminated with \r followed by

\n.

It used to be that SMTP servers were routinely willing to route e-mail from anyone. However,

in these days of spam floods, most servers have built-in checks and only accept requests

from users or IP address ranges that they trust. Authentication usually happens over secure

socket connections.

Implementing these authentication schemes manually would be very tedious. Instead, we will

show you how to use the JavaMail API to send e-mail from a Java program.

Download JavaMail from www.oracle.com/technetwork/java/javamail and unzip it somewhere on

your hard disk.

To use JavaMail, you need to set up some properties that depend on your mail server. For

example, with GMail, you use

 mail.transport.protocol=smtps

 mail.smtps.auth=true

 mail.smtps.host=smtp.gmail.com

 mail.smtps.user=cayhorstmann@gmail.com

Our sample program reads these from a property file.

For security reasons, we don’t put the password into the property file but instead prompt

for it.

Read in the property file, then get a mail session like this:

 Session mailSession = Session.getDefaultInstance(props);

http://www.oracle.com/technetwork/java/javamail

Make a message with the desired sender, recipient, subject, and message text:

 MimeMessage message = new MimeMessage(mailSession);

 message.setFrom(new InternetAddress(from));

 message.addRecipient(RecipientType.TO, new InternetAddress(to));

 message.setSubject(subject);

 message.setText(builder.toString());

Then send it off:

 Transport tr = mailSession.getTransport();

 tr.connect(null, password);

 tr.sendMessage(message, message.getAllRecipients());

 tr.close();

The program in Listing 4.8 reads the message from a text file of the format

 Sender Recipient Subject Message text (any number of lines)

To run the program, type

 java -classpath .:path/to/mail.jar path/to/message.txt

Here, mail.jar is the JAR file that came with the JavaMail distribution. (Windows users:

Remember to type a semicolon instead of a colon in the classpath.)

At the time of this writing, GMail does not check the veracity of the information—you can

supply any sender you like. (Keep this in mind the next time you get an e-mail message from

president@whitehouse.gov inviting you to a black-tie affair on the front lawn.)

TIP:

If you can’t figure out why your mail connection isn’t working, call

 mailSession.setDebug(true);

and check out the messages.Also, the JavaMail API FAQ has some useful hints.

Listing 4.8 mail/MailTest.java

 1 package mail;

 2

 3 import java.io.*;

 4 import java.nio.charset.*;

http://president@whitehouse.gov/

 5 import java.nio.file.*;

 6 import java.util.*;

 7 import javax.mail.*;

 8 import javax.mail.internet.*;

 9 import javax.mail.internet.MimeMessage.RecipientType;

10

11 /**

12 * This program shows how to use JavaMail to send mail messages.

13 * @author Cay Horstmann

14 * @version 1.00 2012-06-04

15 */

16 public class MailTest

17 {

18 public static void main(String[] args) throws MessagingException,

IOException

19 {

20 Properties props = new Properties();

21 try (InputStream in = Files.newInputStream(Paths.get("mail",

"mail.properties")))

22 {

23 props.load(in);

24 }

25 List<String> lines = Files.readAllLines(Paths.get(args[0]),

Charset.forName("UTF-8"));

26

27 String from = lines.get(0);

28 String to = lines.get(1);

29 String subject = lines.get(2);

30

31 StringBuilder builder = new StringBuilder();

32 for (int i = 3; i < lines.size(); i++)

33 {

34 builder.append(lines.get(i));

35 builder.append("\n");

36 }

37

38 Console console = System.console();

39 String password = new String(console.readPassword("Password: "));

40

41 Session mailSession = Session.getDefaultInstance(props);

42 // mailSession.setDebug(true);

43 MimeMessage message = new MimeMessage(mailSession);

44 message.setFrom(new InternetAddress(from));

45 message.addRecipient(RecipientType.TO, new InternetAddress(to));

46 message.setSubject(subject);

47 message.setText(builder.toString());

48 Transport tr = mailSession.getTransport();

49 try

50 {

51 tr.connect(null, password);

52 tr.sendMessage(message, message.getAllRecipients());

53 }

54 finally

55 {

56 tr.close();

57 }

58 }

59 }

In this chapter, you have seen how to write network clients and servers in Java and how

to harvest information from web servers. The next chapter covers database connectivity.

You will learn how to work with relational databases in Java, using the JDBC API. The chapter

also has a brief introduction to hierarchical databases (such as LDAP directories) and the

JNDI API.

Chapter 5. Database Programming

In this chapter

• 5.1 The Design of JDBC,

• 5.2 The Structured Query Language,

• 5.3 JDBC Configuration,

• 5.4 Executing SQL Statements,

• 5.5 Query Execution,

• 5.6 Scrollable and Updatable Result Sets,

• 5.7 Row Sets,

• 5.8 Metadata,

• 5.9 Transactions,

• 5.10 Connection Management in Web and Enterprise Applications,

In 1996, Sun released the first version of the JDBC API. This API lets programmers connect

to a database to query or update it using the Structured Query Language (SQL). (SQL, usually

pronounced “sequel,” is an industry standard for relational database access.) JDBC has

since become one of the most commonly used APIs in the Java library.

JDBC has been updated several times. As part of the Java SE 1.2 release in 1998, a second

version of JDBC was issued. JDBC 3 is included with Java SE 1.4 and 5.0. As this book is

published, JDBC 4.2, the version included with Java SE 8, is the most current version.

In this chapter, we will explain the key ideas behind JDBC. We will introduce you to (or

refresh your memory of) SQL, the industry-standard Structured Query Language for relational

databases. We will then provide enough details and examples to let you start using JDBC

for common programming situations.

NOTE:

According to Oracle, JDBC is a trademarked term and not an acronym for Java Database

Connectivity. It was named to be reminiscent of ODBC, a standard database API pioneered

by Microsoft and since incorporated into the SQL standard.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-6
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-7
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-8
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-9
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-10

5.1 The Design of JDBC

From the start, the developers of the Java technology were aware of the potential that Java

showed for working with databases. In 1995, they began working on extending the standard

Java library to deal with SQL access to databases. What they first hoped to do was to extend

Java so that a program could talk to any random database using only “pure” Java. It didn’t

take them long to realize that this is an impossible task: There are simply too many databases

out there, using too many protocols. Moreover, although database vendors were all in favor

of Java providing a standard network protocol for database access, they were only in favor

of it if Java used their network protocol.

What all the database vendors and tool vendors did agree on was that it would be useful
for Java to provide a pure Java API for SQL access along with a driver manager to allow

third-party drivers to connect to specific databases. Database vendors could provide their

own drivers to plug in to the driver manager. There would then be a simple mechanism for

registering third-party drivers with the driver manager.

This organization follows the very successful model of Microsoft’s ODBC which provided

a C programming language interface for database access. Both JDBC and ODBC are based on

the same idea: Programs written according to the API talk to the driver manager, which,

in turn, uses a driver to talk to the actual database.

This means the JDBC API is all that most programmers will ever have to deal with.

5.1.1 JDBC Driver Types

The JDBC specification classifies drivers into the following types:

• A type 1 driver translates JDBC to ODBC and relies on an ODBC driver to communicate with
the database. Early versions of Java included one such driver, the JDBC/ODBC bridge. However,
the bridge requires deployment and proper configuration of an ODBC driver. When JDBC was

first released, the bridge was handy for testing, but it was never intended for production

use. At this point, many better drivers are available, and Java 8 no longer provides the

JDBC/ODBC bridge.

• A type 2 driver is written partly in Java and partly in native code; it communicates with
the client API of a database. When using such a driver, you must install some

platform-specific code onto the client in addition to a Java library.

• A type 3 driver is a pure Java client library that uses a database-independent protocol
to communicate database requests to a server component, which then translates the requests

into a database-specific protocol. This simplifies deployment because the

platform-specific code is located only on the server.

• A type 4 driver is a pure Java library that translates JDBC requests directly to a
database-specific protocol.

NOTE:

The JDBC specification is available at

http://download.oracle.com/otnpub/jcp/jdbc-4_1-mrel-spec/jdbc4.1-fr-spec.pdf.

Most database vendors supply either a type 3 or type 4 driver with their database.

Furthermore, a number of third-party companies specialize in producing drivers with better

standards conformance, support for more platforms, better performance, or, in some cases,

simply better reliability than the drivers provided by the database vendors.

In summary, the ultimate goal of JDBC is to make possible the following:

• Programmers can write applications in the Java programming language to access any database,

using standard SQL statements (or even specialized extensions of SQL) while still following

Java language conventions.

• Database vendors and database tool vendors can supply the low-level drivers. Thus, they

can optimize their drivers for their specific products.

NOTE:

If you are curious as to why Java just didn’t adopt the ODBC model, the reason, as given

at the JavaOne conference in 1996, was this:

• ODBC is hard to learn.

• ODBC has a few commands with lots of complex options. The preferred style in the Java

programming language is to have simple and intuitive methods, but to have lots of them.

• ODBC relies on the use of void* pointers and other C features that are not natural in

the Java programming language.

• An ODBC-based solution is inherently less safe and harder to deploy than a pure Java

solution.

http://download.oracle.com/otnpub/jcp/jdbc-4_1-mrel-spec/jdbc4.1-fr-spec.pdf

5.1.2 Typical Uses of JDBC

The traditional client/server model has a rich GUI on the client and a database on the server

(see Figure 5.1). In this model, a JDBC driver is deployed on the client.

Figure 5.1 A traditional client/server application

However, nowadays it is far more common to have a three-tier model where the client

application does not make database calls. Instead, it calls on a middleware layer on the

server that in turn makes the database queries. The three-tier model has a couple of

advantages. It separates visual presentation (on the client) from the business logic (in
the middle tier) and the raw data (in the database). Therefore, it becomes possible to access

the same data and the same business rules from multiple clients, such as a Java desktop

application, a web browser, or a mobile app.

Communication between the client and the middle tier typically occurs through HTTP. JDBC

manages the communication between the middle tier and the back-end database. Figure 5.2

shows the basic architecture.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05fig01
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05fig02

Figure 5.2 A three-tier application

5.2 The Structured Query Language

JDBC lets you communicate with databases using SQL, which is the command language for

essentially all modern relational databases. Desktop databases usually have a GUI that lets

users manipulate the data directly, but server-based databases are accessed purely through

SQL.

The JDBC package can be thought of as nothing more than an API for communicating SQL

statements to databases. We will briefly introduce SQL in this section. If you have never

seen SQL before, you might not find this material sufficient. If so, turn to one of the

many learning resources on the topic; we recommend Learning SQL by Alan Beaulieu (O’Reilly,

2009) or the online book Learn SQL The Hard Way at http://sql.learncodethehardway.org/

You can think of a database as a bunch of named tables with rows and columns. Each column

has a column name. Each row contains a set of related data.

As an example database for this book, we use a set of database tables that describe a

collection of classic computer science books (see Tables 5.1 through 5.4).

Table 5.1 The Authors Table

http://sql.learncodethehardway.org/
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05tab01
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05tab04

Table 5.2 The Books Table

Table 5.3 The BooksAuthors Table

Table 5.4 The Publishers Table

Figure 5.3 shows a view of the Books table. Figure 5.4 shows the result of joining this
table with the Publishers table. The Books and the Publishers tables each contain an

identifier for the publisher. When we join both tables on the publisher code, we obtain

a query result made up of values from the joined tables. Each row in the result contains
the information about a book, together with the publisher name and web page URL. Note that

the publisher names and URLs are duplicated across several rows because we have several

rows with the same publisher.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05fig03
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05fig04

Figure 5.3 Sample table containing books

Figure 5.4 Two tables joined together

The benefit of joining tables is avoiding unnecessary duplication of data in the database

tables. For example, a naive database design might have had columns for the publisher name

and URL right in the Books table. But then the database itself, and not just the query result,

would have many duplicates of these entries. If a publisher’s web address changed, all
entries would need to be updated. Clearly, this is somewhat error-prone. In the relational

model, we distribute data into multiple tables so that no information is ever unnecessarily

duplicated. For example, each publisher’s URL is contained only once in the publisher table.

If the information needs to be combined, the tables are joined.

In the figures, you can see a graphical tool to inspect and link the tables. Many vendors

have tools to express queries in a simple form by connecting column names and filling

information into forms. Such tools are often called query by example (QBE) tools. In contrast,
a query that uses SQL is written out in text, using SQL syntax, for example:

 SELECT Books.Title, Books.Publisher_Id, Books.Price, Publishers.Name, Publishers.URL

 FROM Books, Publishers

 WHERE Books.Publisher_Id = Publishers.Publisher_Id

In the remainder of this section, you will learn how to write such queries. If you are already

familiar with SQL, just skip this section.

By convention, SQL keywords are written in capital letters, although this is not necessary.

The SELECT statement is quite flexible. You can simply select all rows in the Books table

with the following query:

 SELECT * FROM Books

The FROM clause is required in every SQL SELECT statement. It tells the database which tables

to examine to find the data.

You can choose the columns that you want:

 SELECT ISBN, Price, Title

 FROM Books

You can restrict the rows in the answer with the WHERE clause:

 SELECT ISBN, Price, Title

 FROM Books

 WHERE Price <= 29.95

Be careful with the “equals” comparison. SQL uses = and <>, rather than == or != as in

the Java programming language, for equality testing.

NOTE:

Some database vendors support the use of != for inequality testing. This is not standard

SQL, so we recommend against such use.

The WHERE clause can also use pattern matching by means of the LIKE operator. The wildcard

characters are not the usual * and ?, however. Use a % for zero or more characters and an

underscore for a single character. For example,

 SELECT ISBN, Price, Title

 FROM Books

 WHERE Title NOT LIKE '%n_x%'

excludes books with titles that contain words such as Unix or Linux.

Note that strings are enclosed in single quotes, not double quotes. A single quote inside

a string is represented by a pair of single quotes. For example,

 SELECT Title

 FROM Books

 WHERE Title LIKE '%''%'

reports all titles that contain a single quote.

You can select data from multiple tables:

 SELECT * FROM Books, Publishers

Without a WHERE clause, this query is not very interesting. It lists all combinations of
rows from both tables. In our case, where Books has 20 rows and Publishers has 8 rows, the

result is a set of rows with 20 × 8 entries and lots of duplications. We really want to

constrain the query to say that we are only interested in matching books with their
publishers:

 SELECT * FROM Books, Publishers

 WHERE Books.Publisher_Id = Publishers.Publisher_Id

This query result has 20 rows, one for each book, because each book has one publisher in

the Publisher table.

Whenever you have multiple tables in a query, the same column name can occur in two different

places. That happened in our example. There is a column called Publisher_Id in both the

Books and the Publishers tables. When an ambiguity would otherwise result, you must prefix

each column name with the name of the table to which it belongs, such as Books.Publisher_Id.

You can use SQL to change the data inside a database as well. For example, suppose you want

to reduce by $5.00 the current price of all books that have “C++” in their title:

 UPDATE Books

 SET Price = Price - 5.00

 WHERE Title LIKE '%C++%'

Similarly, to delete all C++ books, use a DELETE query:

 DELETE FROM Books

 WHERE Title LIKE '%C++%'

SQL comes with built-in functions for taking averages, finding maximums and minimums in

a column, and so on, which we do not discuss here.

Typically, to insert values into a table, you can use the INSERT statement:

 INSERT INTO Books

 VALUES ('A Guide to the SQL Standard', '0-201-96426-0', '0201', 47.95)

You need a separate INSERT statement for every row being inserted in the table.

Of course, before you can query, modify, and insert data, you must have a place to store

data. Use the CREATE TABLE statement to make a new table. Specify the name and data type

for each column. For example,

 CREATE TABLE Books

 (

 Title CHAR(60),

 ISBN CHAR(13),

 Publisher_Id CHAR(6),

 Price DECIMAL(10,2)

)

Table 5.5 shows the most common SQL data types.

Table 5.5 Common SQL Data Types

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05tab05

In this book, we do not discuss the additional clauses, such as keys and constraints, that

you can use with the CREATE TABLE statement.

5.3 JDBC Configuration

Of course, you need a database program for which a JDBC driver is available. There are many

excellent choices, such as IBM DB2, Microsoft SQL Server, MySQL, Oracle, and PostgreSQL.

You must also create a database for your experimental use. We assume you name it COREJAVA.

Create a new database, or have your database administrator create one with the appropriate

permissions. You need to be able to create, update, and drop tables in the database.

If you have never installed a client/server database before, you might find that setting

up the database is somewhat complex and that diagnosing the cause for failure can be

difficult. It might be best to seek expert help if your setup is not working correctly.

If this is your first experience with databases, we recommend that you use the Apache Derby

database, which is available from http://db.apache.org/derby, and also included with some

versions of the JDK.

NOTE:

The version of Apache Derby that is included with the JDK is officially called JavaDB. We

don’t think that’s particularly helpful, and we will call it Derby in this chapter.

You need to gather a number of items before you can write your first database program. The

following sections cover these items.

5.3.1 Database URLs

When connecting to a database, you must use various database-specific parameters such as

host names, port numbers, and database names.

JDBC uses a syntax similar to that of ordinary URLs to describe data sources. Here are

examples of the syntax:

 jdbc:derby://localhost:1527/COREJAVA;create=true

 jdbc:postgresql:COREJAVA

These JDBC URLs specify a Derby database and a PostgreSQL database named COREJAVA.

The general syntax is

 jdbc:subprotocol:other stuff

where a subprotocol selects the specific driver for connecting to the database.

The format for the other stuff parameter depends on the subprotocol used. You will need
to look up your vendor’s documentation for the specific format.

5.3.2 Driver JAR Files

You need to obtain the JAR file in which the driver for your database is located. If you

use Derby, you need the file derbyclient.jar. With another database, you need to locate

the appropriate driver. For example, the PostgreSQL drivers are available at

http://jdbc.postgresql.org.

http://db.apache.org/derby
http://jdbc.postgresql.org/

Include the driver JAR file on the class path when running a program that accesses the

database. (You don’t need the JAR file for compiling.)

When you launch programs from the command line, simply use the command

 java -classpath driverPath:. ProgramName

On Windows, use a semicolon to separate the current directory (denoted by the. character)

from the driver JAR location.

5.3.3 Starting the Database

The database server needs to be started before you can connect to it. The details depend

on your database.

With the Derby database, follow these steps:

1. Open a command shell and change to a directory that will hold the database files.

2. Locate the file derbyrun.jar. With some versions of the JDK, it is contained in the

jdk/db/lib directory. If it’s not there, install Apache Derby and locate the JAR file in

the installation directory. We will denote the directory containing lib/derbyrun.jar with

derby.

3. Run the command

 java -jar derby/lib/derbyrun.jar server start

4. Double-check that the database is working correctly. Create a file ij.properties that

contains these lines:

 ij.driver=org.apache.derby.jdbc.ClientDriver

 ij.protocol=jdbc:derby://localhost:1527/

 ij.database=COREJAVA;create=true

From another command shell, run Derby’s interactive scripting tool (called ij) by executing

 java -jar derby/lib/derbyrun.jar ij -p ij.properties

Now you can issue SQL commands such as

 CREATE TABLE Greetings (Message CHAR(20));

 INSERT INTO Greetings VALUES ('Hello, World!');

 SELECT * FROM Greetings;

 DROP TABLE Greetings;

Note that each command must be terminated by a semicolon. To exit, type

 EXIT;

5. When you are done using the database, stop the server with the command

 java -jar derby/lib/derbyrun.jar server shutdown

If you use another database, you need to consult the documentation to find out how to start

and stop your database server, and how to connect to it and issue SQL commands.

5.3.4 Registering the Driver Class

Many JDBC JAR files (such as the Derby driver included with Java SE 7) automatically register

the driver class. In that case, you can skip the manual registration step that we describe

in this section. A JAR file can automatically register the driver class if it contains a

file META-INF/services/java.sql.Driver. You can simply unzip your driver’s JAR file to

check.

NOTE:

This registration mechanism uses a little-known part of the JAR specification; see

http://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#Service%20Provider.

Automatic registration is a requirement for a JDBC4-compliant driver.

If your driver’s JAR file doesn’t support automatic registration, you need to find out

the name of the JDBC driver classes used by your vendor. Typical driver names are

 org.apache.derby.jdbc.ClientDriver

 org.postgresql.Driver

There are two ways to register the driver with the DriverManager. One way is to load the

driver class in your Java program. For example,

 Class.forName("org.postgresql.Driver"); // force loading of driver class

This statement causes the driver class to be loaded, thereby executing a static initializer

that registers the driver.

Alternatively, you can set the jdbc.drivers property. You can specify the property with

a command-line argument, such as

 java -Djdbc.drivers=org.postgresql.Driver ProgramName

http://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#Service%20Provider

Or, your application can set the system property with a call such as

 System.setProperty("jdbc.drivers", "org.postgresql.Driver");

You can also supply multiple drivers; separate them with colons, such as

 org.postgresql.Driver:org.apache.derby.jdbc.ClientDriver

5.3.5 Connecting to the Database

In your Java program, you can open a database connection like this:

 String url = "jdbc:postgresql:COREJAVA";

 String username = "dbuser";

 String password = "secret";

 Connection conn = DriverManager.getConnection(url, username, password);

The driver manager iterates through the registered drivers to find a driver that can use

the subprotocol specified in the database URL.

The getConnection method returns a Connection object. In the following sections, you will

see how to use the Connection object to execute SQL statements.

To connect to the database, you will need to have a user name and password for your database.

NOTE:

By default, Derby lets you connect with any user name, and it does not check passwords.A

separate set of tables is generated for each user.The default user name is app.

The test program in Listing 5.1 puts these steps to work. It loads connection parameters

from a file named database.properties and connects to the database. The database.properties

file supplied with the sample code contains connection information for the Derby database.

If you use a different database, put your database-specific connection information into

that file. Here is an example for connecting to a PostgreSQL database:

 jdbc.drivers=org.postgresql.Driver

 jdbc.url=jdbc:postgresql:COREJAVA

 jdbc.username=dbuser

 jdbc.password=secret

After connecting to the database, the test program executes the following SQL statements:

 statements:

 CREATE TABLE Greetings (Message CHAR(20))

 INSERT INTO Greetings VALUES ('Hello, World!')

 SELECT * FROM Greetings

The result of the SELECT statement is printed, and you should see an output of

 Hello, World!

Then the table is removed by executing the statement

 DROP TABLE Greetings

To run this test, start your database, as described previously, and launch the program as

 java -classpath .:driverJAR test.TestDB

(As always, Windows users need to use ; instead of : to separate the path elements.)

TIP:

One way to debug JDBC-related problems is to enable JDBC tracing. Call the

DriverManager.setLogWriter method to send trace messages to a PrintWriter. The trace output

contains a detailed listing of the JDBC activity. Most JDBC driver implementations provide

additional mechanisms for tracing. For example, with Derby, you can add a traceFile option

to the JDBC URL: jdbc:derby://localhost:1527/COREJAVA;create=true;traceFile=trace.out.

Listing 5.1 test/TestDB.java

 1 package test;

 2

 3 import java.nio.file.*;

 4 import java.sql.*;

 5 import java.io.*;

 6 import java.util.*;

 7

 8 /**

 9 * This program tests that the database and the JDBC driver are correctly

configured.

10 * @version 1.02 2012-06-05

11 * @author Cay Horstmann

12 */

13 public class TestDB

14 {

15 public static void main(String args[]) throws IOException

16 {

17 try

18 {

19 runTest();

20 }

21 catch (SQLException ex)

22 {

23 for (Throwable t : ex)

24 t.printStackTrace();

25 }

26 }

27

28 /**

29 * Runs a test by creating a table, adding a value, showing the table contents,

and removing

30 * the table.

31 */

32 public static void runTest() throws SQLException, IOException

33 {

34

35 try (Connection conn = getConnection())

36 {

37 Statement stat = conn.createStatement();

38

39 stat.executeUpdate("CREATE TABLE Greetings (Message

CHAR(20))");

40 stat.executeUpdate("INSERT INTO Greetings VALUES ('Hello,

World!')");

41

42 try (ResultSet result = stat.executeQuery("SELECT * FROM

Greetings"))

43 {

44 if (result.next())

45 System.out.println(result.getString(1));

46 }

47 stat.executeUpdate("DROP TABLE Greetings");

48 }

49 }

50

51 /**

52 * Gets a connection from the properties specified in the file

database.properties.

53 * @return the database connection

54 */

55 public static Connection getConnection() throws SQLException, IOException

56 {

57 Properties props = new Properties();

58 try (InputStream in =

Files.newInputStream(Paths.get("database.properties")))

59 {

60 props.load(in);

61 }

62 String drivers = props.getProperty("jdbc.drivers");

63 if (drivers != null) System.setProperty("jdbc.drivers", drivers);

64 String url = props.getProperty("jdbc.url");

65 String username = props.getProperty("jdbc.username");

66 String password = props.getProperty("jdbc.password");

67

68 return DriverManager.getConnection(url, username, password);

69 }

70 }

java.sql.DriverManager 1.1

• static Connection getConnection(String url, String user, String password)

establishes a connection to the given database and returns a Connection object.

5.4 Executing SQL Statements

To execute a SQL statement, you first create a Statement object. To create statement objects,

use the Connection object that you obtained from the call to DriverManager.getConnection.

 Statement stat = conn.createStatement();

Next, place the statement that you want to execute into a string, for example

 String command = "UPDATE Books"

 + " SET Price = Price - 5.00"

 + " WHERE Title NOT LIKE '%Introduction%'";

Then call the executeUpdate method of the Statement interface:

 stat.executeUpdate(command);

The executeUpdate method returns a count of the rows that were affected by the SQL statement,

or zero for statements that do not return a row count. For example, the call to executeUpdate

in the preceding example returns the number of rows whose price was lowered by $5.00.

The executeUpdate method can execute actions such as INSERT, UPDATE, and DELETE, as well

as data definition statements such as CREATE TABLE and DROP TABLE. However, you need to

use the executeQuery method to execute SELECT queries. There is also a catch-all execute

statement to execute arbitrary SQL statements. It’s commonly used only for queries that

a user supplies interactively.

When you execute a query, you are interested in the result. The executeQuery object returns

an object of type ResultSet that you can use to walk through the result one row at a time.

 ResultSet rs = stat.executeQuery("SELECT * FROM Books")

The basic loop for analyzing a result set looks like this:

 while (rs.next())

 {

 look at a row of the result set
 }

Caution

The iteration protocol of the ResultSet interface is subtly different from the protocol

of the java.util.Iterator interface. Here, the iterator is initialized to a position before
the first row. You must call the next method once to move the iterator to the first row.

Also, there is no hasNext method; keep calling next until it returns false.

The order of the rows in a result set is completely arbitrary. Unless you specifically

ordered the result with an ORDER BY clause, you should not attach any significance to the

row order.

When inspecting an individual row, you will want to know the contents of the fields. A large

number of accessor methods give you this information.

 String isbn = rs.getString(1);

 double price = rs.getDouble("Price");

There are accessors for various types, such as getString and getDouble. Each accessor has
two forms: one that takes a numeric argument and one that takes a string argument. When

you supply a numeric argument, you refer to the column with that number. For example,

rs.getString(1) returns the value of the first column in the current row.

Caution

Unlike array indexes, database column numbers start at 1.

When you supply a string argument, you refer to the column in the result set with that name.

For example, rs.getDouble("Price") returns the value of the column with label Price. Using

the numeric argument is a bit more efficient, but the string arguments make the code easier

to read and maintain.

Each get method makes reasonable type conversions when the type of the method doesn’t match

the type of the column. For example, the call rs.getString("Price") converts the

floating-point value of the Price column to a string.

java.sql.Connection 1.1

• Statement createStatement()

creates a Statement object that can be used to execute SQL queries and updates without

parameters.

• void close()

immediately closes the current connection and the JDBC resources that it created.

java.sql.Statement 1.1

• ResultSet executeQuery(String sqlQuery)

executes the SQL statement given in the string and returns a ResultSet object to view the

query result.

• int executeUpdate(String sqlStatement)

• long executeLargeUpdate(String sqlStatement) 8

executes the SQL INSERT, UPDATE, or DELETE statement specified by the string. Also executes

Data Definition Language (DDL) statements such as CREATE TABLE. Returns the number of rows

affected, or 0 for a statement without an update count.

• boolean execute(String sqlStatement)

executes the SQL statement specified by the string. Multiple result sets and update counts

may be produced. Returns true if the first result is a result set, false otherwise. Call

getResultSet or getUpdateCount to retrieve the first result. See Section 5.5.4, “Multiple

Results,” on p. 325 for details on processing multiple results.

• ResultSet getResultSet()

returns the result set of the preceding query statement, or null if the preceding statement

did not have a result set. Call this method only once per executed statement.

• int getUpdateCount()

• long getLargeUpdateCount() 8

returns the number of rows affected by the preceding update statement, or -1 if the preceding

statement was a statement without an update count. Call this method only once per executed

statement.

• void close()

closes this statement object and its associated result set.

• boolean isClosed() 6

returns true if this statement is closed.

• void closeOnCompletion() 7

causes this statement to be closed once all of its result sets have been closed.

java.sql.ResultSet 1.1

• boolean next()

makes the current row in the result set move forward by one. Returns false after the last

row. Note that you must call this method to advance to the first row.

• Xxx getXxx(int columnNumber)

• Xxx getXxx(String columnLabel)

(Xxx is a type such as int, double, String, Date, etc.)

• <T> T getObject(int columnIndex, Class<T> type) 7

• <T> T getObject(String columnLabel, Class<T> type) 7

• void updateObject(int columnIndex, Object x, SQLType targetSqlType) 8

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-5-4

• void updateObject(String columnLabel, Object x, SQLType targetSqlType) 8

returns or updates the value of the column with the given column index or label, converted

to the specified type. The column label is the label specified in the SQL AS clause or the

column name if AS is not used.

• int findColumn(String columnName)

gives the column index associated with a column name.

• void close()

immediately closes the current result set.

• boolean isClosed() 6

returns true if this statement is closed.

5.4.1 Managing Connections, Statements, and Result Sets

Every Connection object can create one or more Statement objects. You can use the same

Statement object for multiple, unrelated commands and queries. However, a statement has

at most one open result set. If you issue multiple queries whose results you analyze
concurrently, you need multiple Statement objects.

Be forewarned, though, that at least one commonly used database (Microsoft SQL Server) has

a JDBC driver that allows only one active statement at a time. Use the getMaxStatements

method of the DatabaseMetaData interface to find out the number of concurrently open

statements that your JDBC driver supports.

This sounds restrictive, but in practice, you should probably not fuss with multiple

concurrent result sets. If the result sets are related, you should be able to issue a combined

query and analyze a single result. It is much more efficient to let the

database combine queries than it is for a Java program to iterate through multiple result

sets.

When you are done using a ResultSet, Statement, or Connection, you should call the close

method immediately. These objects use large data structures and finite resources on the

database server.

The close method of a Statement object automatically closes the associated result set if

the statement has an open result set. Similarly, the close method of the Connection class

closes all statements of the connection.

Conversely, as of Java SE 7, you can call the closeOnCompletion method on a Statement, and

it will close automatically as soon as all its result sets have closed.

If your connections are short-lived, you don’t have to worry about closing statements and

result sets. To make absolutely sure that a connection object cannot possibly remain open,

use a try-with-resources statement:

 try (Connection conn = . . .)

 {

 Statement stat = conn.createStatement();

 ResultSet result = stat.executeQuery(queryString);

 process query result

 }

TIP:

Use the try-with-resources block just to close the connection, and use a separate try/catch

block to handle exceptions. Separating the try blocks makes your code easier to read and

maintain.

5.4.2 Analyzing SQL Exceptions

Each SQLException has a chain of SQLException objects that are retrieved with the

getNextException method. This exception chain is in addition to the “cause” chain of

Throwable objects that every exception has. (See Volume I, Chapter 11 for details about

Java exceptions.) One would need two nested loops to fully enumerate all these exceptions.

Fortunately, Java SE 6 enhanced the SQLException class to implement the Iterable<Throwable>

interface. The iterator() method yields an Iterator<Throwable> that iterates through both

chains: starts by going through the cause chain of the first SQLException, then moves on

to the next SQLException, and so on. You can simply use an enhanced for loop:

 for (Throwable t : sqlException)

 {

 do something with t
 }

You can call getSQLState and getErrorCode on an SQLException to analyze it further. The

first method yields a string that is standardized by either X/Open or SQL:2003. (Call the

getSQLStateType method of the DatabaseMetaData interface to find out which standard is used

by your driver.) The error code is vendor-specific.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11

The SQL exceptions are organized into an inheritance tree (shown in Figure 5.5). This allows

you to catch specific error types in a vendor-independent way.

Figure 5.5 SQL exception types

In addition, the database driver can report nonfatal conditions as warnings. You can

retrieve warnings from connections, statements, and result sets. The SQLWarning class is

a subclass of SQLException (even though a SQLWarning is not thrown as an exception). Call

getSQLState and getErrorCode to get further information about the warnings. Similar to SQL

exceptions, warnings are chained. To retrieve all warnings, use this loop:

 SQLWarning w = stat.getWarning();

 while (w != null)

 {

 do something with w
 w = w.nextWarning();

 }

The DataTruncation subclass of SQLWarning is used when data are read from the database and

unexpectedly truncated. If data truncation happens in an update statement, a DataTruncation

is thrown as an exception.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05fig05

java.sql.SQLException 1.1

• SQLException getNextException()

gets the next SQL exception chained to this one, or null at the end of the chain.

• Iterator<Throwable> iterator() 6

gets an iterator that yields the chained SQL exceptions and their causes.

• String getSQLState()

gets the “SQL state,” a standardized error code.

• int getErrorCode()

gets the vendor-specific error code.

java.sql.SQLWarning 1.1

• SQLWarning getNextWarning()

returns the next warning chained to this one, or null at the end of the chain.

java.sql.Connection 1.1 java.sql.Statement 1.1 java.sql.ResultSet 1.1

• QLWarning getWarnings()

• SQLWarning getWarnings()

returns the first of the pending warnings, or null if no warnings are pending.

java.sql.DataTruncation 1.1

• boolean getParameter()

returns true if the data truncation applies to a parameter, false if it applies to a column.

• int getIndex()

returns the index of the truncated parameter or column.

• int getDataSize()

returns the number of bytes that should have been transferred, or -1 if the value is unknown.

• int getTransferSize()

returns the number of bytes that were actually transferred, or -1 if the value is unknown.

5.4.3 Populating a Database

We now want to write our first real JDBC program. Of course, it would be nice if we could

execute some of the fancy queries that we discussed earlier. Unfortunately, we have a problem:

Right now, there are no data in the database. We need to populate the database, and there

is a simple way of doing that with a set of SQL instructions to create tables and insert

data into them. Most database programs can process a set of SQL instructions from a text

file, but there are pesky differences about statement terminators and other syntactical

issues.

For that reason, we will use JDBC to create a simple program that reads a file with SQL

instructions, one instruction per line, and executes them.

Specifically, the program reads data from a text file in a format such as

 CREATE TABLE Publishers (Publisher_Id CHAR(6), Name CHAR(30), URL CHAR(80));

 INSERT INTO Publishers VALUES ('0201', 'Addison-Wesley', 'www.aw-bc.com');

 INSERT INTO Publishers VALUES ('0471', 'John Wiley & Sons', 'www.wiley.com');

 ...

Listing 5.2 contains the code for the program that reads the SQL statement file and executes

the statements. It is not important that you read through the code; we merely provide the

program so that you can populate your database and run the examples in the remainder of

this chapter.

Make sure that your database server is running, and run the program as follows:

 java -classpath driverPath:. exec.ExecSQL Books.sql

 java -classpath driverPath:. exec.ExecSQL Authors.sql

 java -classpath driverPath:. exec.ExecSQL Publishers.sql

 java -classpath driverPath:. exec.ExecSQL BooksAuthors.sql

Before running the program, check that the file database.properties is set up properly for

your environment (see Section 5.3.5, “Connecting to the Database,” on p. 301).

NOTE:

Your database may also have a utility to read the SQL files directly. For example, with

Derby, you can run

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-3-5

 java -jar derby/lib/derbyrun.jar ij -p ij.properties

Books.sql

(The ij.properties file is described in Section 5.3.3, “Starting the Database,” on p.

299.)

In the data format for the ExecSQL command, we allow an optional semicolon at the end of

each line because most database utilities expect this format.

The following steps briefly describe the ExecSQL program:

1. Connect to the database. The getConnection method reads the properties in the file

database.properties and adds the jdbc.drivers property to the system properties. The driver

manager uses the jdbc.drivers property to load the appropriate database driver. The

getConnection method uses the jdbc.url, jdbc.username, and jdbc.password properties to open

the database connection.

2. Open the file with the SQL statements. If no file name was supplied, prompt the user

to enter the statements on the console.

3. Execute each statement with the generic execute method. If it returns true, the statement

had a result set. The four SQL files that we provide for the book database all end in a

SELECT * statement so that you can see that the data were successfully inserted.

4. If there was a result set, print out the result. Since this is a generic result set,

we need to use metadata to find out how many columns the result has. For more information,

see Section 5.8, “Metadata,” on p. 338.

5. If there is any SQL exception, print the exception and any chained exceptions that may

be contained in it.

6. Close the connection to the database.

Listing 5.2 shows the code for the program.

Listing 5.2 exec/ExecSQL.java

 1 package exec;

 2

 3 import java.io.*;

 4 import java.nio.file.*;

 5 import java.util.*;

 6 import java.sql.*;

 7

 8 /**

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-3-3

 9 * Executes all SQL statements in a file. Call this program as

10 * java -classpath driverPath:. ExecSQL commandFile

11 *

12 * @version 1.32 2016-04-27

13 * @author Cay Horstmann

14 */

15 class ExecSQL

16 {

17 public static void main(String args[]) throws IOException

18 {

19 try (Scanner in = args.length == 0 ? new Scanner(System.in)

20 : new Scanner(Paths.get(args[0]), "UTF-8"))

21 {

22 try (Connection conn = getConnection())

23 {

24 Statement stat = conn.createStatement();

25

26 while (true)

27 {

28 if (args.length == 0)

System.out.println("Enter command or EXIT to exit:");

29

30 if (!in.hasNextLine()) return;

31

32 String line = in.nextLine();

33 if (line.equalsIgnoreCase("EXIT")) return;

34 if (line.trim().endsWith(";")) // remove

trailing semicolon

35 {

36 line = line.trim();

37 line = line.substring(0, line.length() -

1);

38 }

39 try

40 {

41 boolean isResult = stat.execute(line);

42 if (isResult)

43 {

44 ResultSet rs =

stat.getResultSet();

45 showResultSet(rs);

46 }

47 else

48 {

49 int updateCount =

stat.getUpdateCount();

50 System.out.println(updateCount +

" rows updated");

51 }

52 }

53 catch (SQLException ex)

54 {

55 for (Throwable e : ex)

56 e.printStackTrace();

57 }

58 }

59 }

60 }

61 catch (SQLException e)

62 {

63 for (Throwable t : e)

64 t.printStackTrace();

65 }

66 }

67

68 /**

69 * Gets a connection from the properties specified in the file

database.properties

70 * @return the database connection

71 */

72 public static Connection getConnection() throws SQLException, IOException

73 {

74 Properties props = new Properties();

75 try (InputStream in =

Files.newInputStream(Paths.get("database.properties")))

76 {

77 props.load(in);

78 }

79

80 String drivers = props.getProperty("jdbc.drivers");

81 if (drivers != null) System.setProperty("jdbc.drivers", drivers);

82

83 String url = props.getProperty("jdbc.url");

84 String username = props.getProperty("jdbc.username");

85 String password = props.getProperty("jdbc.password");

86

87 return DriverManager.getConnection(url, username, password);

88 }

89

90 /**

91 * Prints a result set.

92 * @param result the result set to be printed

93 */

94 public static void showResultSet(ResultSet result) throws SQLException

95 {

96 ResultSetMetaData metaData = result.getMetaData();

97 int columnCount = metaData.getColumnCount();

98

99 for (int i = 1; i <= columnCount; i++)

100 {

101 if (i > 1) System.out.print(", ");

102 System.out.print(metaData.getColumnLabel(i));

103 }

104 System.out.println();

105

106 while (result.next())

107 {

108 for (int i = 1; i <= columnCount; i++)

109 {

110 if (i > 1) System.out.print(", ");

111 System.out.print(result.getString(i));

112 }

113 System.out.println();

114 }

115 }

116 }

5.5 Query Execution

In this section, we write a program that executes queries against the COREJAVA database.

For this program to work, you must have populated the COREJAVA database with tables, as

described in the preceding section.

When querying the database, you can select the author and the publisher or leave either

of them as Any.

You can also change the data in the database. Select a publisher and type an amount. All

prices of that publisher are adjusted by the amount you entered, and the program displays

how many rows were changed. After a price change, you might want to run a query to verify

the new prices.

5.5.1 Prepared Statements

In this program, we use one new feature, prepared statements. Consider the query for all
books by a particular publisher, independent of the author. The SQL query is

 SELECT Books.Price, Books.Title

 FROM Books, Publishers

 WHERE Books.Publisher_Id = Publishers.Publisher_Id

 AND Publishers.Name = the name from the list box

Instead of building a separate query statement every time the user launches such a query,

we can prepare a query with a host variable and use it many times, each time filling in
a different string for the variable. That technique benefits performance. Whenever the

database executes a query, it first computes a strategy of how to do it efficiently. By

preparing the query and reusing it, you ensure that the planning step is done only once.

Each host variable in a prepared query is indicated with a ?. If there is more than one

variable, you must keep track of the positions of the ? when setting the values. For example,

our prepared query becomes

 String publisherQuery =

 "SELECT Books.Price, Books.Title" +

 " FROM Books, Publishers" +

 " WHERE Books.Publisher_Id = Publishers.Publisher_Id AND

Publishers.Name = ?";

 PreparedStatement stat = conn.prepareStatement(publisherQuery);

Before executing the prepared statement, you must bind the host variables to actual values

with a set method. As with the get methods of the ResultSet interface, there are different

set methods for the various types. Here, we want to set a string to a publisher name.

 stat.setString(1, publisher);

The first argument is the position number of the host variable that we want to set. The

position 1 denotes the first ?. The second argument is the value that we want to assign

to the host variable.

If you reuse a prepared query that you have already executed, all host variables stay bound

unless you change them with a set method or call the clearParameters method. That means

you only need to call a setXxx method on those host variables that change from one query
to the next.

Once all variables have been bound to values, you can execute the prepared statement:

 ResultSet rs = stat.executeQuery();

TIP:

Building a query manually, by concatenating strings, is tedious and potentially dangerous.

You have to worry about special characters such as quotes, and, if your query involves user

input, you have to guard against injection attacks. Therefore, you should use prepared

statements whenever your query involves variables.

The price update feature is implemented as an UPDATE statement. Note that we call

executeUpdate, not executeQuery, because the UPDATE statement does not return a result set.

The return value of executeUpdate is the count of changed rows.

 int r = stat.executeUpdate();

 System.out.println(r + " rows updated");

NOTE:

A PreparedStatement object becomes invalid after the associated Connection object is closed.

However, many databases automatically cache prepared statements. If the same query is
prepared twice, the database simply reuses the query strategy. Therefore, don’t worry about

the overhead of calling prepareStatement.

The following list briefly describes the structure of the example program.

• The author and publisher array lists are populated by running two queries that return

all author and publisher names in the database.

• The queries involving authors are complex. A book can have multiple authors, so the

BooksAuthors table stores the correspondence between authors and books. For example, the

book with ISBN 0–201–96426–0 has two authors with codes DATE and DARW. The BooksAuthors

table has the rows

 0-201-96426-0, DATE, 1

 0-201-96426-0, DARW, 2

to indicate this fact. The third column lists the order of the authors. (We can’t just

use the position of the rows in the table. There is no fixed row ordering in a relational

table.) Thus, the query has to join the Books, BooksAuthors, and Authors tables to compare

the author name with the one selected by the user.

 SELECT Books.Price, Books.Title FROM Books, BooksAuthors, Authors, Publishers

 WHERE Authors.Author_Id = BooksAuthors.Author_Id AND BooksAuthors.ISBN =

Books.ISBN

 AND Books.Publisher_Id = Publishers.Publisher_Id AND Authors.Name = ? AND

Publishers.Name = ?

TIP:

Some Java programmers avoid complex SQL statements such as this one. A surprisingly common,

but very inefficient, workaround is to write lots of Java code that iterates through multiple

result sets. But the database is a lot better at executing query code than a Java program
can be—that’s the core competency of a database. A rule of thumb: If you can do it in

SQL, don’t do it in Java.

• The changePrices method executes an UPDATE statement. Note that the WHERE clause of the

UPDATE statement needs the publisher code and we know only the publisher name. This problem
is solved with a nested subquery:

 UPDATE Books

 SET Price = Price + ?

 WHERE Books.Publisher_Id = (SELECT Publisher_Id FROM Publishers WHERE Name = ?)

Listing 5.3 is the complete program code.

Listing 5.3 query/QueryTest.java

 1 package query;

 2

 3 import java.io.*;

 4 import java.nio.file.*;

 5 import java.sql.*;

 6 import java.util.*;

 7

 8 /**

 9 * This program demonstrates several complex database queries.

10 * @version 1.30 2012-06-05

11 * @author Cay Horstmann

12 */

13 public class QueryTest

14 {

15 private static final String allQuery = "SELECT Books.Price, Books.Title FROM

Books";

16

17 private static final String authorPublisherQuery = "SELECT Books.Price,

Books.Title"

18 + " FROM Books, BooksAuthors, Authors, Publishers"

19 + " WHERE Authors.Author_Id = BooksAuthors.Author_Id AND

BooksAuthors.ISBN = Books.ISBN"

20 + " AND Books.Publisher_Id = Publishers.Publisher_Id AND

Authors.Name = ?"

21 + " AND Publishers.Name = ?";

22

23 private static final String authorQuery

24 = "SELECT Books.Price, Books.Title FROM Books, BooksAuthors, Authors"

25 + " WHERE Authors.Author_Id = BooksAuthors.Author_Id AND

BooksAuthors.ISBN = Books.ISBN"

26 + " AND Authors.Name = ?";

27

28 private static final String publisherQuery

29 = "SELECT Books.Price, Books.Title FROM Books, Publishers"

30 + " WHERE Books.Publisher_Id = Publishers.Publisher_Id AND

Publishers.Name = ?";

31

32 private static final String priceUpdate = "UPDATE Books " + "SET Price = Price

+ ? "

33 + " WHERE Books.Publisher_Id = (SELECT Publisher_Id FROM

Publishers WHERE Name = ?)";

34

35 private static Scanner in;

36 private static Connection conn;

37 private static ArrayList<String> authors = new ArrayList<>();

38 private static ArrayList<String> publishers = new ArrayList<>();

39

40 public static void main(String[] args) throws IOException

41 {

42 try

43 {

44 conn = getConnection();

45 in = new Scanner(System.in);

46 authors.add("Any");

47 publishers.add("Any");

48 try (Statement stat = conn.createStatement())

49 {

50 // Fill the authors array list

51 String query = "SELECT Name FROM Authors";

52 try (ResultSet rs = stat.executeQuery(query))

53 {

54 while (rs.next())

55 authors.add(rs.getString(1));

56 }

57

58 // Fill the publishers array list

59 query = "SELECT Name FROM Publishers";

60 try (ResultSet rs = stat.executeQuery(query))

61 {

62 while (rs.next())

63 publishers.add(rs.getString(1));

64 }

65 }

66 boolean done = false;

67 while (!done)

68 {

69 System.out.print("Q)uery C)hange prices E)xit: ");

70 String input = in.next().toUpperCase();

71 if (input.equals("Q"))

72 executeQuery();

73 else if (input.equals("C"))

74 changePrices();

75 else

76 done = true;

77 }

78 }

79 catch (SQLException e)

80 {

81 for (Throwable t : e)

82 System.out.println(t.getMessage());

83 }

84 }

85

86 /**

87 * Executes the selected query.

88 */

89 private static void executeQuery() throws SQLException

90 {

91 String author = select("Authors:", authors);

92 String publisher = select("Publishers:", publishers);

93 PreparedStatement stat;

94 if (!author.equals("Any") && !publisher.equals("Any"))

95 {

96 stat = conn.prepareStatement(authorPublisherQuery);

97 stat.setString(1, author);

98 stat.setString(2, publisher);

99 }

100 else if (!author.equals("Any") && publisher.equals("Any"))

101 {

102 stat = conn.prepareStatement(authorQuery);

103 stat.setString(1, author);

104 }

105 else if (author.equals("Any") && !publisher.equals("Any"))

106 {

107 stat = conn.prepareStatement(publisherQuery);

108 stat.setString(1, publisher);

109 }

110 else

111 stat = conn.prepareStatement(allQuery);

112

113 try (ResultSet rs = stat.executeQuery())

114 {

115 while (rs.next())

116 System.out.println(rs.getString(1) + ", " +

rs.getString(2));

117 }

118 }

119

120 /**

121 * Executes an update statement to change prices.

122 */

123 public static void changePrices() throws SQLException

124 {

125 String publisher = select("Publishers:", publishers.subList(1,

publishers.size()));

126 System.out.print("Change prices by: ");

127 double priceChange = in.nextDouble();

128 PreparedStatement stat = conn.prepareStatement(priceUpdate);

129 stat.setDouble(1, priceChange);

130 stat.setString(2, publisher);

131 int r = stat.executeUpdate();

132 System.out.println(r + " records updated.");

133 }

134

135 /**

136 * Asks the user to select a string.

137 * @param prompt the prompt to display

138 * @param options the options from which the user can choose

139 * @return the option that the user chose

140 */

141 public static String select(String prompt, List<String> options)

142 {

143 while (true)

144 {

145 System.out.println(prompt);

146 for (int i = 0; i < options.size(); i++)

147 System.out.printf("%2d) %s%n", i + 1,

options.get(i));

148 int sel = in.nextInt();

149 if (sel > 0 && sel <= options.size())

150 return options.get(sel - 1);

151 }

152 }

153

154 /**

155 * Gets a connection from the properties specified in the file

database.properties.

156 * @return the database connection

157 */

158 public static Connection getConnection() throws SQLException,

IOException

159 {

160 Properties props = new Properties();

161 try (InputStream in =

Files.newInputStream(Paths.get("database.properties")))

162 {

163 props.load(in);

164 }

165

166 String drivers = props.getProperty("jdbc.drivers");

167 if (drivers != null) System.setProperty("jdbc.drivers",

drivers);

168 String url = props.getProperty("jdbc.url");

169 String username = props.getProperty("jdbc.username");

170 String password = props.getProperty("jdbc.password");

171

172 return DriverManager.getConnection(url, username, password);

173 }

174 }

java.sql.Connection 1.1

• PreparedStatement prepareStatement(String sql)

returns a PreparedStatement object containing the precompiled statement. The string sql

contains a SQL statement that can contain one or more parameter placeholders denoted by ?

characters.

java.sql.PreparedStatement 1.1

• void setXxx(int n, Xxx x)

(Xxx is a type such as int, double, String, Date, etc.)

sets the value of the nth parameter to x.

• void clearParameters()

clears all current parameters in the prepared statement.

• ResultSet executeQuery()

executes a prepared SQL query and returns a ResultSet object.

• int executeUpdate()

executes the prepared SQL INSERT, UPDATE, or DELETE statement represented by the

PreparedStatement object. Returns the number of rows affected, or 0 for DDL statements such

as CREATE TABLE.

5.5.2 Reading and Writing LOBs

In addition to numbers, strings, and dates, many databases can store large objects (LOBs)
such as images or other data. In SQL, binary large objects are called BLOBs, and character

large objects are called CLOBs.

To read a LOB, execute a SELECT statement and call the getBlob or getClob method on the

ResultSet. You will get an object of type Blob or Clob. To get the binary data from a Blob,

call the getBytes or getBinaryStream. For example, if you have a table with book cover images,

you can retrieve an image like this:

 PreparedStatement stat = conn.prepareStatement("SELECT Cover FROM

BookCovers WHERE ISBN=?");

 stat.set(1, isbn);

 ResultSet result = stat.executeQuery();

 if (result.next())

 {

 Blob coverBlob = result.getBlob(1);

 Image coverImage = ImageIO.read(coverBlob.getBinaryStream());

 }

Similarly, if you retrieve a Clob object, you can get character data by calling the

getSubString or getCharacterStream method.

To place a LOB into a database, call createBlob or createClob on your Connection object,

get an output stream or writer to the LOB, write the data, and store the object in the database.

For example, here is how you store an image:

 Blob coverBlob = connection.createBlob();

 int offset = 0;

 OutputStream out = coverBlob.setBinaryStream(offset);

 ImageIO.write(coverImage, "PNG", out);

 PreparedStatement stat = conn.prepareStatement("INSERT INTO Cover VALUES

(?, ?)");

 stat.set(1, isbn);

 stat.set(2, coverBlob);

 stat.executeUpdate();

java.sql.ResultSet 1.1

• Blob getBlob(int columnIndex) 1.2

• Blob getBlob(String columnLabel) 1.2

• Clob getClob(int columnIndex) 1.2

• Clob getClob(String columnLabel) 1.2

gets the BLOB or CLOB at the given column.

java.sql.Blob 1.2

• long length()

gets the length of this BLOB.

• byte[] getBytes(long startPosition, long length)

gets the data in the given range from this BLOB.

• InputStream getBinaryStream()

• InputStream getBinaryStream(long startPosition, long length)

returns a stream to read the data from this BLOB or from the given range.

• OutputStream setBinaryStream(long startPosition) 1.4

returns an output stream for writing into this BLOB, starting at the given position.

java.sql.Clob 1.4

• long length()

gets the number of characters of this CLOB.

• String getSubString(long startPosition, long length)

gets the characters in the given range from this BLOB.

• Reader getCharacterStream()

• Reader getCharacterStream(long startPosition, long length)

returns a reader (not a stream) to read the characters from this CLOB or from the given

range.

• Writer setCharacterStream(long startPosition) 1.4

returns a writer (not a stream) for writing into this CLOB, starting at the given position.

java.sql.Connection 1.1

• Blob createBlob() 6

• Clob createClob() 6

creates an empty BLOB or CLOB.

5.5.3 SQL Escapes

The “escape” syntax supports features that are commonly supported by databases but use

database-specific syntax variations. It is the job of the JDBC driver to translate the escape

syntax to the syntax of a particular database.

Escapes are provided for the following features:

• Date and time literals

• Calling scalar functions

• Calling stored procedures

• Outer joins

• The escape character in LIKE clauses

Date and time literals vary widely among databases. To embed a date or time literal, specify

the value in ISO 8601 format (www.cl.cam.ac.uk/~mgk25/iso-time.html). The driver will then

translate it into the native format. Use d, t, ts for DATE, TIME, or TIMESTAMP values:

 {d '2008-01-24'}

 {t '23:59:59'}

 {ts '2008-01-24 23:59:59.999'}

A scalar function is a function that returns a single value. Many functions are widely
available in databases, but with varying names. The JDBC specification provides standard

names and translates them into the database-specific names. To call a function, embed the

standard function name and arguments like this:

 {fn left(?, 20)}

 {fn user()}

You can find a complete list of supported function names in the JDBC specification.

A stored procedure is a procedure that executes in the database, written in a
database-specific language. To call a stored procedure, use the call escape. You need not

supply parentheses if the procedure has no parameters. Use = to capture a return value:

 {call PROC1(?, ?)}

 {call PROC2}

 {call ? = PROC3(?)}

An outer join of two tables does not require that the rows of each table match according
to the join condition. For example, the query

 SELECT * FROM {oj Books LEFT OUTER JOIN Publishers ON Books.Publisher_Id =

Publisher.Publisher_Id}

contains books for which Publisher_Id has no match in the Publishers table, with NULL values

to indicate that no match exists. You would need a RIGHT OUTER JOIN to include publishers

without matching books, or a FULL OUTER JOIN to return both. The escape syntax is needed

because not all databases use a standard notation for these joins.

http://www.cl.cam.ac.uk/~mgk25/iso-time.html

Finally, the _ and % characters have special meanings in a LIKE clause—to match a single

character or a sequence of characters. There is no standard way to use them literally. If

you want to match all strings containing a _, use this construct:

 ... WHERE ? LIKE %!_% {escape '!'}

Here we define ! as the escape character. The combination !_ denotes a literal underscore.

5.5.4 Multiple Results

It is possible for a query to return multiple results. This can happen when executing a

stored procedure, or with databases that also allow submission of multiple SELECT statements

in a single query. Here is how you retrieve all result sets.

1. Use the execute method to execute the SQL statement.

2. Retrieve the first result or update count.

3. Repeatedly call the getMoreResults method to move on to the next result set.

4. Finish when there are no more result sets or update counts.

The execute and getMoreResults methods return true if the next item in the chain is a result

set. The getUpdateCount method returns -1 if the next item in the chain is not an update

count.

The following loop traverses all results:

 boolean isResult = stat.execute(command);

 boolean done = false;

 while (!done)

 {

 if (isResult)

 {

 ResultSet result = stat.getResultSet();

 do something with result

 }

 else

 {

 int updateCount = stat.getUpdateCount();

 if (updateCount >= 0)

 do something with updateCount

 else

 done = true;

 }

 if (!done) isResult = stat.getMoreResults();

 }

java.sql.Statement 1.1

• boolean getMoreResults()

• boolean getMoreResults(int current) 6

gets the next result for this statement. The current parameter is one of

CLOSE_CURRENT_RESULT (default), KEEP_CURRENT_RESULT, or CLOSE_ALL_RESULTS. Returns true

if the next result exists and is a result set.

5.5.5 Retrieving Autogenerated Keys

Most databases support some mechanism for autonumbering rows in a database. Unfortunately,

the mechanisms differ widely among vendors. These automatic numbers are often used as

primary keys. Although JDBC doesn’t offer a vendor-independent solution for generating

keys, it does provide an efficient way of retrieving them. When you insert a new row into

a table and a key is automatically generated, you can retrieve it with the following code:

 stmt.executeUpdate(insertStatement, Statement.RETURN_GENERATED_KEYS);

 ResultSet rs = stmt.getGeneratedKeys();

 if (rs.next())

 {

 int key = rs.getInt(1);

 ...

 }

java.sql.Statement 1.1

• boolean execute(String statement, int autogenerated) 1.4

• int executeUpdate(String statement, int autogenerated) 1.4

executes the given SQL statement, as previously described. If autogenerated is set to

Statement.RETURN_GENERATED_KEYS and the statement is an INSERT statement, the first column

contains the autogenerated key.

5.6 Scrollable and Updatable Result Sets

As you have seen, the next method of the ResultSet interface iterates over the rows in a

result set. That is certainly adequate for a program that needs to analyze the data. However,

consider a visual data display that shows a table or query results (such as Figure 5.4).

You usually want the user to be able to move both forward and backward in the result set.

In a scrollable result, you can move forward and backward through a result set and even
jump to any position.

Furthermore, once users see the contents of a result set displayed, they may be tempted

to edit it. In an updatable result set, you can programmatically update entries so that
the database is automatically updated. We discuss these capabilities in the following

sections.

5.6.1 Scrollable Result Sets

By default, result sets are not scrollable or updatable. To obtain scrollable result sets

from your queries, you must obtain a different Statement object with the method

 Statement stat = conn.createStatement(type, concurrency);

For a prepared statement, use the call

 PreparedStatement stat = conn.prepareStatement(command, type, concurrency);

The possible values of type and concurrency are listed in Tables 5.6 and 5.7. You have the

following choices:

• Do you want the result set to be scrollable? If not, use ResultSet.TYPE_FORWARD_ONLY.

• If the result set is scrollable, do you want it to be able to reflect changes in the database

that occurred after the query that yielded it? (In our discussion, we assume the

ResultSet.TYPE_SCROLL_INSENSITIVE setting for scrollable result sets. This assumes that

the result set does not “sense” database changes that occurred after execution of the

query.)

• Do you want to be able to update the database by editing the result set? (See the next

section for details.)

Table 5.6 ResultSet Type Values

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05fig04
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05tab06
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05tab07

Table 5.7 ResultSet Concurrency Values

For example, if you simply want to be able to scroll through a result set but don’t want

to edit its data, use:

 Statement stat = conn.createStatement(

 ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);

All result sets that are returned by method calls

 ResultSet rs = stat.executeQuery(query)

are now scrollable. A scrollable result set has a cursor that indicates the current position.

NOTE:

Not all database drivers support scrollable or updatable result sets. (The

supportsResultSetType and supportsResultSetConcurrency methods of the DatabaseMetaData

interface will tell you which types and concurrency modes are supported by a particular

database using a particular driver.) Even if a database supports all result set modes, a

particular query might not be able to yield a result set with all the properties that you

requested. (For example, the result set of a complex query might not be updatable.) In that

case, the executeQuery method returns a ResultSet of lesser capabilities and adds an

SQLWarning to the connection object. (Section 5.4.5, “Analyzing SQL Exceptions,” on p.

shows how to retrieve the warning.) Alternatively, you can use the getType and

getConcurrency methods of the ResultSet interface to find out what mode a result set actually

has. If you do not check the result set capabilities and issue an unsupported operation,

such as previous on a result set that is not scrollable, the operation will throw a

SQLException.

Scrolling is very simple. Use

 if (rs.previous()) . . .

to scroll backward. The method returns true if the cursor is positioned on an actual row,

or false if it is now positioned before the first row.

You can move the cursor backward or forward by a number of rows with the call

 rs.relative(n);

If n is positive, the cursor moves forward. If n is negative, it moves backward. If n is
zero, the call has no effect. If you attempt to move the cursor outside the current set

of rows, it is set to point either after the last row or before the first row, depending

on the sign of n. Then, the method returns false and the cursor does not move. The method
returns true if the cursor is positioned on an actual row.

Alternatively, you can set the cursor to a particular row number:

 rs.absolute(n);

To get the current row number, call

 int currentRow = rs.getRow();

The first row in the result set has number 1. If the return value is 0, the cursor is not

currently on a row—it is either before the first row or after the last row.

The convenience methods first, last, beforeFirst, and afterLast move the cursor to the first,

to the last, before the first, or after the last position.

Finally, the methods isFirst, isLast, isBeforeFirst, and isAfterLast test whether the

cursor is at one of these special positions.

Using a scrollable result set is very simple. The hard work of caching the query data is

carried out behind the scenes by the database driver.

5.6.2 Updatable Result Sets

If you want to edit the result set data and have the changes automatically reflected in

the database, create an updatable result set. Updatable result sets don’t have to be

scrollable, but if you present data to a user for editing, you usually want to allow scrolling

as well.

To obtain updatable result sets, create a statement as follows:

 Statement stat = conn.createStatement(

 ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_UPDATABLE);

NOTE:

Not all queries return updatable result sets. If your query is a join that involves multiple

tables, the result might not be updatable. However, if your query involves only a single

table or if it joins multiple tables by their primary keys, you should expect the result

set to be updatable. Call the getConcurrency method of the ResultSet interface to find out

for sure.

For example, suppose you want to raise the prices of some books, but you don’t have a simple

criterion for issuing an UPDATE statement. Then, you can iterate through all books and update

prices, based on arbitrary conditions.

 String query = "SELECT * FROM Books";

 ResultSet rs = stat.executeQuery(query);

 while (rs.next())

 {

 if (. . .)

 {

 double increase = . . .

 double price = rs.getDouble("Price");

 rs.updateDouble("Price", price + increase);

 rs.updateRow(); // make sure to call updateRow after updating

fields

 }

 }

There are updateXxx methods for all data types that correspond to SQL types, such as
updateDouble, updateString, and so on; specify the name or the number of the column (as

with the getXxx methods), then the new value for the field.

NOTE:

If you use the updateXxx method whose first parameter is the column number, be aware that
this is the column number in the result set. It could well be different from the column
number in the database.

The updateXxx method changes only the row values, not the database. When you are done with
the field updates in a row, you must call the updateRow method. That method sends all updates

in the current row to the database. If you move the cursor to another row without calling

updateRow, this row’s updates are discarded from the row set and never communicated to

the database. You can also call the cancelRowUpdates method to cancel the updates to the

current row.

The preceding example shows how to modify an existing row. If you want to add a new row

to the database, first use the moveToInsertRow method to move the cursor to a special

position, called the insert row. Then, build up a new row in the insert row position by
issuing updateXxx instructions. When you are done, call the insertRow method to deliver
the new row to the database. When you are done inserting, call moveToCurrentRow to move

the cursor back to the position before the call to moveToInsertRow. Here is an example:

 rs.moveToInsertRow();

 rs.updateString("Title", title);

 rs.updateString("ISBN", isbn);

 rs.updateString("Publisher_Id", pubid);

 rs.updateDouble("Price", price);

 rs.insertRow();

 rs.moveToCurrentRow();

Note that you cannot influence where the new data is added in the result set or the database.

If you don’t specify a column value in the insert row, it is set to a SQL NULL. However,

if the column has a NOT NULL constraint, an exception is thrown and the row is not inserted.

Finally, you can delete the row under the cursor:

 rs.deleteRow();

The deleteRow method immediately removes the row from both the result set and the database.

The updateRow, insertRow, and deleteRow methods of the ResultSet interface give you the

same power as executing UPDATE, INSERT, and DELETE SQL statements. However, Java programmers

might find it more natural to manipulate the database contents through result sets than

by constructing SQL statements.

Caution

If you are not careful, you can write staggeringly inefficient code with updatable result

sets. It is much more efficient to execute an UPDATE statement than to make a query and
iterate through the result, changing data along the way. Updatable result sets make sense

for interactive programs in which a user can make arbitrary changes, but for most

programmatic changes, a SQL UPDATE is more appropriate.

NOTE:

JDBC 2 delivered further enhancements to result sets, such as the capability of updating

a result set with the most recent data if the data have been modified by another concurrent

database connection. JDBC 3 added yet another refinement, specifying the behavior of result

sets when a transaction is committed. However, these advanced features are outside the scope

of this introductory chapter. We refer you to the JDBC™ API Tutorial and Reference,Third
Edition, by Maydene Fisher, Jon Ellis, and Jonathan Bruce (Addison-Wesley, 2003) and the
JDBC specification for more information.

java.sql.Connection 1.1

• Statement createStatement(int type, int concurrency) 1.2

• PreparedStatement prepareStatement(String command, int type, int concurrency) 1.2

creates a statement or prepared statement that yields result sets with the given type and

concurrency.

java.sql.ResultSet 1.1

• int getType() 1.2

returns the type of this result set—one of TYPE_FORWARD_ONLY, TYPE_SCROLL_INSENSITIVE,

or TYPE_SCROLL_SENSITIVE.

• int getConcurrency() 1.2

returns the concurrency setting of this result set—one of CONCUR_READ_ONLY or

CONCUR_UPDATABLE.

• boolean previous() 1.2

moves the cursor to the preceding row. Returns true if the cursor is positioned on a row,

or false if the cursor is positioned before the first row.

• int getRow() 1.2

gets the number of the current row. Rows are numbered starting with 1.

• boolean absolute(int r) 1.2

moves the cursor to row r. Returns true if the cursor is positioned on a row.

• boolean relative(int d) 1.2

moves the cursor by d rows. If d is negative, the cursor is moved backward. Returns true

if the cursor is positioned on a row.

• boolean first() 1.2

• boolean last() 1.2

moves the cursor to the first or last row. Returns true if the cursor is positioned on a

row.

• void beforeFirst() 1.2

• void afterLast() 1.2

moves the cursor before the first or after the last row.

• boolean isFirst() 1.2

• boolean isLast() 1.2

tests whether the cursor is at the first or last row.

• boolean isBeforeFirst() 1.2

• boolean isAfterLast() 1.2

tests whether the cursor is before the first or after the last row.

• void moveToInsertRow() 1.2

moves the cursor to the insert row.The insert row is a special row for inserting new data

with the updateXxx and insertRow methods.

• void moveToCurrentRow() 1.2

moves the cursor back from the insert row to the row that it occupied when the moveToInsertRow

method was called.

• void insertRow() 1.2

inserts the contents of the insert row into the database and the result set.

• void deleteRow() 1.2

deletes the current row from the database and the result set.

• void updateXxx(int column, Xxx data) 1.2

• void updateXxx(String columnName, Xxx data) 1.2

(Xxx is a type such as int, double, String, Date, etc.)

updates a field in the current row of the result set.

• void updateRow() 1.2

sends the current row updates to the database.

• void cancelRowUpdates() 1.2

cancels the current row updates.

java.sql.DatabaseMetaData 1.1

• boolean supportsResultSetType(int type) 1.2

returns true if the database can support result sets of the given type; type is one of the

constants TYPE_FORWARD_ONLY, TYPE_SCROLL_INSENSITIVE, or TYPE_SCROLL_SENSITIVE of the

ResultSet interface.

• boolean supportsResultSetConcurrency(int type, int concurrency) 1.2

returns true if the database can support result sets of the given combination of type and

concurrency.

5.7 Row Sets

Scrollable result sets are powerful, but they have a major drawback. You need to keep the

database connection open during the entire user interaction. However, a user can walk away

from the computer for a long time, leaving the connection occupied. That is not

good—database connections are scarce resources. In this situation, use a row set. The
RowSet interface extends the ResultSet interface, but row sets don’t have to be tied to

a database connection.

Row sets are also suitable if you need to move a query result to a different tier of a complex

application, or to another device such as a cell phone. You would never want to move a result

set—its data structures can be huge, and it is tethered to the database connection.

5.7.1 Constructing Row Sets

The javax.sql.rowset package provides the following interfaces that extend the RowSet

interface:

• A CachedRowSet allows disconnected operation. We will discuss cached row sets in the

following section.

• A WebRowSet is a cached row set that can be saved to an XML file. The XML file can be

moved to another tier of a web application where it is opened by another WebRowSet object.

• The FilteredRowSet and JoinRowSet interfaces support lightweight operations on row sets

that are equivalent to SQL SELECT and JOIN operations. These operations are carried out

on the data stored in row sets, without having to make a database connection.

• A JdbcRowSet is a thin wrapper around a ResultSet. It adds useful getters and setters

from the RowSet interface, turning a result set into a “bean.” (See [Missing XREF!] for

more information on beans.)

As of Java SE 7, there is a standard way for obtaining a row set:

 RowSetFactory factory = RowSetProvider.newFactory();

 CachedRowSet crs = factory.createCachedRowSet();

There are similar methods for obtaining the other row set types.

Before Java SE 7, there were vendor-specific methods for creating row sets. In addition,

the JDK supplies reference implementations in the package com.sun.rowset. The class names

end in Impl, for example, CachedRowSetImpl. If you can’t use the RowSetProvider, you can

instead use those classes:

 CachedRowSet crs = new com.sun.rowset.CachedRowSetImpl();

5.7.2 Cached Row Sets

A cached row set contains all data from a result set. Since CachedRowSet is a subinter-face

of the ResultSet interface, you can use a cached row set exactly as you would use a result

set. Cached row sets confer an important benefit: You can close the connection and still

use the row set. As you will see in our sample program in Listing 5.4, this greatly simplifies

the implementation of interactive applications. Each user command simply opens the database

connection, issues a query, puts the result in a cached row set, and then closes the database

connection.

It is even possible to modify the data in a cached row set. Of course, the modifications

are not immediately reflected in the database. Instead, you need to make an explicit request

to accept the accumulated changes. The CachedRowSet then reconnects to the database and

issues SQL statements to write the accumulated changes.

You can populate a CachedRowSet from a result set:

 ResultSet result = . . .;

 CachedRowSet crs = new com.sun.rowset.CachedRowSetImpl();

 // or use an implementation from your database vendor

 crs.populate(result);

 conn.close(); // now OK to close the database connection

Alternatively, you can let the CachedRowSet object establish a connection automatically.

Set up the database parameters:

 crs.setURL("jdbc:derby://localhost:1527/COREJAVA");

 crs.setUsername("dbuser");

 crs.setPassword("secret");

Then set the query statement and any parameters.

 crs.setCommand("SELECT * FROM Books WHERE PUBLISHER = ?");

 crs.setString(1, publisherName);

Finally, populate the row set with the query result:

 crs.execute();

This call establishes a database connection, issues the query, populates the row set, and

disconnects.

If your query result is very large, you would not want to put it into the row set in its

entirety. After all, your users will probably only look at a few rows. In that case, specify

a page size:

 CachedRowSet crs = . . .;

 crs.setCommand(command);

 crs.setPageSize(20);

 ...

 crs.execute();

Now you will only get 20 rows. To get the next batch of rows, call

 crs.nextPage();

You can inspect and modify the row set with the same methods you use for result sets. If

you modified the row set contents, you must write it back to the database by calling

 crs.acceptChanges(conn);

or

 crs.acceptChanges();

The second call works only if you configured the row set with the information required to

connect to a database (such as URL, user name, and password).

In Section 5.6.2, “Updatable Result Sets,” on p. 329, you saw that not all result sets

are updatable. Similarly, a row set that contains the result of a complex query will not

be able to write its changes back to the database. You should be safe if your row set contains

data from a single table.

Caution

If you populated the row set from a result set, the row set does not know the name of the

table to update. You need to call setTableName to set the table name.

Another complexity arises if the data in the database have changed after you populated the

row set. This is clearly a sign of trouble that could lead to inconsistent data. The reference

implementation checks whether the original row set values (that is, the values before

editing) are identical to the current values in the database. If so, they are replaced with

the edited values; otherwise, a SyncProviderException is thrown and none of the changes

are written. Other implementations may use other strategies for synchronization.

javax.sql.RowSet 1.4

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05lev5-6-2

• String getURL()

• void setURL(String url)

gets or sets the database URL.

• String getUsername()

• void setUsername(String username)

gets or sets the user name for connecting to the database.

• String getPassword()

• void setPassword(String password)

gets or sets the password for connecting to the database.

• String getCommand()

• void setCommand(String command)

gets or sets the command that is executed to populate this row set.

• void execute()

populates this row set by issuing the statement set with setCommand. For the driver manager

to obtain a connection, the URL, user name, and password must be set.

javax.sql.rowset.CachedRowSet 5.0

• void execute(Connection conn)

populates this row set by issuing the statement set with setCommand.This method uses the

given connection and closes it.

• void populate(ResultSet result)

populates this cached row set with the data from the given result set.

• String getTableName()

• void setTableName(String tableName)

gets or sets the name of the table from which this cached row set was populated.

• int getPageSize()

• void setPageSize(int size)

gets or sets the page size.

• boolean nextPage()

• boolean previousPage()

loads the next or previous page of rows. Returns true if there is a next or previous page.

• void acceptChanges()

• void acceptChanges(Connection conn)

reconnects to the database and writes the changes that are the result of editing the row

set. May throw a SyncProviderException if the data cannot be written back because the

database data have changed.

javax.sql.rowset.RowSetProvider 7

• static RowSetFactory newFactory()

creates a row set factory.

javax.sql.rowset.RowSetFactory 7

• CachedRowSet createCachedRowSet()

• FilteredRowSet createFilteredRowSet()

• JdbcRowSet createJdbcRowSet()

• JoinRowSet createJoinRowSet()

• WebRowSet createWebRowSet()

creates a row set of the specified type.

5.8 Metadata

In the preceding sections, you saw how to populate, query, and update database tables.

However, JDBC can give you additional information about the structure of a database and
its tables. For example, you can get a list of the tables in a particular database or the

column names and types of a table. This information is not useful when you are implementing

a business application with a predefined database. After all, if you design the tables,

you know their structure. Structural information is, however, extremely useful for

programmers who write tools that work with any database.

In SQL, data that describe the database or one of its parts are called metadata (to
distinguish them from the actual data stored in the database). You can get three kinds of

metadata: about a database, about a result set, and about parameters of prepared statements.

To find out more about the database, request an object of type DatabaseMetaData from the

database connection.

 DatabaseMetaData meta = conn.getMetaData();

Now you are ready to get some metadata. For example, the call

 ResultSet mrs = meta.getTables(null, null, null, new String[] { "TABLE" });

returns a result set that contains information about all tables in the database. (See the

API note at the end of this section for other parameters to this method.)

Each row in the result set contains information about a table in the database. The third

column is the name of the table. (Again, see the API note for the other columns.) The

following loop gathers all table names:

 while (mrs.next())

 tableNames.addItem(mrs.getString(3));

There is a second important use for database metadata. Databases are complex, and the SQL

standard leaves plenty of room for variability. Well over a hundred methods in the

DatabaseMetaData interface can inquire about the database, including calls with such exotic

names as

 meta.supportsCatalogsInPrivilegeDefinitions()

and

 meta.nullPlusNonNullIsNull()

Clearly, these are geared toward advanced users with special needs—in particular, those

who need to write highly portable code that works with multiple databases.

The DatabaseMetaData interface gives data about the database. A second metadata interface,

ResultSetMetaData, reports information about a result set. Whenever you have a result set

from a query, you can inquire about the number of columns and each column’s name, type,

and field width. Here is a typical loop:

 ResultSet mrs = stat.executeQuery("SELECT * FROM " + tableName);

 ResultSetMetaData meta = mrs.getMetaData();

 for (int i = 1; i <= meta.getColumnCount(); i++)

 {

 String columnName = meta.getColumnLabel(i);

 int columnWidth = meta.getColumnDisplaySize(i);

 ...

 }

In this section, we will show you how to write such a simple tool. The program in Listing

5.4 uses metadata to let you browse all tables in a database. The program also illustrates

the use of a cached row set.

The combo box on top displays all tables in the database. Select one of them, and the center

of the frame is filled with the field names of that table and the values of the first row,

as shown in Figure 5.6. Click Next and Previous to scroll through the rows in the table.

You can also delete a row and edit the row values. Click the Save button to save the changes

to the database.

Figure 5.6 The ViewDB application

NOTE:

Many databases come with much more sophisticated tools for viewing and editing tables. If

your database doesn’t, check out iSQL-Viewer (http://isql.sourceforge.net) or SQuirreL

(http://squirrel-sql.sourceforge.net). These programs can view the tables in any JDBC

database. Our example program is not intended as a replacement for these tools, but it shows

you how to implement a tool for working with arbitrary tables.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05fig06
http://isql.sourceforge.net/
http://squirrel-sql.sourceforge.net/

Listing 5.4 view/ViewDB.java

 1 package view;

 2

 3 import java.awt.*;

 4 import java.io.*;

 5 import java.nio.file.*;

 6 import java.sql.*;

 7 import java.util.*;

 8

 9 import javax.sql.*;

10 import javax.sql.rowset.*;

11 import javax.swing.*;

12

13 /**

14 * This program uses metadata to display arbitrary tables in a database.

15 * @version 1.33 2016-04-27

16 * @author Cay Horstmann

17 */

18 public class ViewDB

19 {

20 public static void main(String[] args)

21 {

22 EventQueue.invokeLater(() ->

23 {

24 JFrame frame = new ViewDBFrame();

25 frame.setTitle("ViewDB");

26 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

27 frame.setVisible(true);

28 });

29 }

30 }

31

32 /**

33 * The frame that holds the data panel and the navigation buttons.

34 */

35 class ViewDBFrame extends JFrame

36 {

37 private JButton previousButton;

38 private JButton nextButton;

39 private JButton deleteButton;

40 private JButton saveButton;

41 private DataPanel dataPanel;

42 private Component scrollPane;

43 private JComboBox<String> tableNames;

44 private Properties props;

45 private CachedRowSet crs;

46

47 public ViewDBFrame()

48 {

49 tableNames = new JComboBox<String>();

50 tableNames.addActionListener(

51 event -> showTable((String) tableNames.getSelectedItem()));

52 add(tableNames, BorderLayout.NORTH);

53

54 try

55 {

56 readDatabaseProperties();

57 try (Connection conn = getConnection())

58 {

59 DatabaseMetaData meta = conn.getMetaData();

60 ResultSet mrs = meta.getTables(null, null, null, new

String[] { "TABLE" });

61 while (mrs.next())

62 tableNames.addItem(mrs.getString(3));

63 }

64 }

65 catch (SQLException e)

66 {

67 JOptionPane.showMessageDialog(this, e);

68 }

69 catch (IOException e)

70 {

71 JOptionPane.showMessageDialog(this, e);

72 }

73

74 JPanel buttonPanel = new JPanel();

75 add(buttonPanel, BorderLayout.SOUTH);

76

77 previousButton = new JButton("Previous");

78 previousButton.addActionListener(event -> showPreviousRow());

79 buttonPanel.add(previousButton);

80

81 nextButton = new JButton("Next");

82 nextButton.addActionListener(event -> showNextRow());

83 buttonPanel.add(nextButton);

84

85 deleteButton = new JButton("Delete");

86 deleteButton.addActionListener(event -> deleteRow());

87 buttonPanel.add(deleteButton);

88

89 saveButton = new JButton("Save");

90 saveButton.addActionListener(event -> saveChanges());

91 buttonPanel.add(saveButton);

92 pack();

93 }

94

95 /**

96 * Prepares the text fields for showing a new table, and shows the first

row.

97 * @param tableName the name of the table to display

98 */

99 public void showTable(String tableName)

100 {

101 try

102 {

103 try (Connection conn = getConnection())

104 {

105 // get result set

106 Statement stat = conn.createStatement();

107 ResultSet result = stat.executeQuery("SELECT * FROM " +

tableName);

108 // copy into cached row set

109 RowSetFactory factory = RowSetProvider.newFactory();

110 crs = factory.createCachedRowSet();

111 crs.setTableName(tableName);

112 crs.populate(result);

113 }

114

115 if (scrollPane != null) remove(scrollPane);

116 dataPanel = new DataPanel(crs);

117 scrollPane = new JScrollPane(dataPanel);

118 add(scrollPane, BorderLayout.CENTER);

119 validate();

120 showNextRow();

121 }

122 catch (SQLException e)

123 {

124 JOptionPane.showMessageDialog(this, e);

125 }

126 }

127

128 /**

129 * Moves to the previous table row.

130 */

131 public void showPreviousRow()

132 {

133 try

134 {

135 if (crs == null || crs.isFirst()) return;

136 crs.previous();

137 dataPanel.showRow(crs);

138 }

139 catch (SQLException e)

140 {

141 for (Throwable t : e)

142 t.printStackTrace();

143 }

144 }

145

146 /**

147 * Moves to the next table row.

148 */

149 public void showNextRow()

150 {

151 try

152 {

153 if (crs == null || crs.isLast()) return;

154 crs.next();

155 dataPanel.showRow(crs);

156 }

157 catch (SQLException e)

158 {

159 JOptionPane.showMessageDialog(this, e);

160 }

161 }

162

163 /**

164 * Deletes current table row.

165 */

166 public void deleteRow()

167 {

168 try

169 {

170 try (Connection conn = getConnection())

171 {

172 crs.deleteRow();

173 crs.acceptChanges(conn);

174 if (crs.isAfterLast())

175 if (!crs.last()) crs = null;

176 dataPanel.showRow(crs);

177 }

178 }

179 catch (SQLException e)

180 {

181 JOptionPane.showMessageDialog(this, e);

182 }

183 }

184

185 /**

186 * Saves all changes.

187 */

188 public void saveChanges()

189 {

190 try

191 {

192 try (Connection conn = getConnection())

193 {

194 dataPanel.setRow(crs);

195 crs.acceptChanges(conn);

196 }

197 }

198 catch (SQLException e)

199 {

200 JOptionPane.showMessageDialog(this, e);

201 }

202 }

203

204 private void readDatabaseProperties() throws IOException

205 {

206 props = new Properties();

207 try (InputStream in =

Files.newInputStream(Paths.get("database.properties")))

208 {

209 props.load(in);

210 }

211 String drivers = props.getProperty("jdbc.drivers");

212 if (drivers != null) System.setProperty("jdbc.drivers", drivers);

213 }

214

215 /**

216 * Gets a connection from the properties specified in the file

database.properties.

217 * @return the database connection

218 */

219 private Connection getConnection() throws SQLException

220 {

221 String url = props.getProperty("jdbc.url");

222 String username = props.getProperty("jdbc.username");

223 String password = props.getProperty("jdbc.password");

224

225 return DriverManager.getConnection(url, username, password);

226 }

227 }

228

229 /**

230 * This panel displays the contents of a result set.

231 */

232 class DataPanel extends JPanel

233 {

234 private java.util.List<JTextField> fields;

235

236 /**

237 * Constructs the data panel.

238 * @param rs the result set whose contents this panel displays

239 */

240 public DataPanel(RowSet rs) throws SQLException

241 {

242 fields = new ArrayList<>();

243 setLayout(new GridBagLayout());

244 GridBagConstraints gbc = new GridBagConstraints();

245 gbc.gridwidth = 1;

246 gbc.gridheight = 1;

247

248 ResultSetMetaData rsmd = rs.getMetaData();

249 for (int i = 1; i <= rsmd.getColumnCount(); i++)

250 {

251 gbc.gridy = i - 1;

252

253 String columnName = rsmd.getColumnLabel(i);

254 gbc.gridx = 0;

255 gbc.anchor = GridBagConstraints.EAST;

256 add(new JLabel(columnName), gbc);

257

258 int columnWidth = rsmd.getColumnDisplaySize(i);

259 JTextField tb = new JTextField(columnWidth);

260 if

(!rsmd.getColumnClassName(i).equals("java.lang.String"))

261 tb.setEditable(false);

262

263 fields.add(tb);

264

265 gbc.gridx = 1;

266 gbc.anchor = GridBagConstraints.WEST;

267 add(tb, gbc);

268 }

269 }

270

271 /**

272 * Shows a database row by populating all text fields with the column

values.

273 */

274 public void showRow(ResultSet rs) throws SQLException

275 {

276 for (int i = 1; i <= fields.size(); i++)

277 {

278 String field = rs == null ? "" : rs.getString(i);

279 JTextField tb = fields.get(i - 1);

280 tb.setText(field);

281 }

282 }

283

284 /**

285 * Updates changed data into the current row of the row set.

286 */

287 public void setRow(RowSet rs) throws SQLException

288 {

289 for (int i = 1; i <= fields.size(); i++)

290 {

291 String field = rs.getString(i);

292 JTextField tb = fields.get(i - 1);

293 if (!field.equals(tb.getText()))

294 rs.updateString(i, tb.getText());

295 }

296 rs.updateRow();

297 }

298 }

java.sql.Connection 1.1

• DatabaseMetaData getMetaData()

returns the metadata for the connection as a DatabaseMetaData object.

java.sql.DatabaseMetaData 1.1

• ResultSet getTables(String catalog, String schemaPattern, String tableNamePattern,

String types[])

returns a description of all tables in a catalog that match the schema and table name patterns

and the type criteria. (A schema describes a group of related tables and access permissions.
A catalog describes a related group of schemas. These concepts are important for structuring
large databases.)

The catalog and schemaPattern parameters can be "" to retrieve those tables without a catalog

or schema, or null to return tables regardless of catalog or schema.

The types array contains the names of the table types to include. Typical types are TABLE,

VIEW, SYSTEM TABLE, GLOBAL TEMPORARY, LOCAL TEMPORARY, ALIAS, and SYNONYM. If types is null,

tables of all types are returned.

The result set has five columns, all of which are of type String.

• int getJDBCMajorVersion() 1.4

• int getJDBCMinorVersion() 1.4

returns the major or minor JDBC version numbers of the driver that established the database

connection. For example, a JDBC 3.0 driver has major version number 3 and minor version

number 0.

• int getMaxConnections()

returns the maximum number of concurrent connections allowed to this database.

• int getMaxStatements()

returns the maximum number of concurrently open statements allowed per database connection,

or 0 if the number is unlimited or unknown.

java.sql.ResultSet 1.1

• ResultSetMetaData getMetaData()

returns the metadata associated with the current ResultSet columns.

java.sql.ResultSetMetaData 1.1

• int getColumnCount()

returns the number of columns in the current ResultSet object.

• int getColumnDisplaySize(int column)

returns the maximum width of the column specified by the index parameter.

Parameters: column The column number

• String getColumnLabel(int column)

returns the suggested title for the column.

Parameters: column The column number

• String getColumnName(int column)

returns the column name associated with the column index specified.

Parameters: column The column number

5.9 Transactions

You can group a set of statements to form a transaction. The transaction can be committed
when all has gone well. Or, if an error has occurred in one of them, it can be rolled back
as if none of the statements had been issued.

The major reason for grouping statements into transactions is database integrity. For
example, suppose we want to transfer money from one bank account to another. Then, it is

important that we simultaneously debit one account and credit another. If the system fails

after debiting the first account but before crediting the other account, the debit needs

to be undone.

If you group update statements into a transaction, the transaction either succeeds in its

entirety and can be committed, or it fails somewhere in the middle. In that case, you can
carry out a rollback and the database automatically undoes the effect of all updates that
occurred since the last committed transaction.

By default, a database connection is in autocommit mode, and each SQL statement is committed
to the database as soon as it is executed. Once a statement is committed, you cannot roll

it back. Turn off this default so you can use transactions:

 conn.setAutoCommit(false);

Create a statement object in the normal way:

 Statement stat = conn.createStatement();

Call executeUpdate any number of times:

 stat.executeUpdate(command1);

 stat.executeUpdate(command2);

 stat.executeUpdate(command3);

 ...

If all statements have been executed without error, call the commit method:

 conn.commit();

However, if an error occurred, call

 conn.rollback();

Then, all statements since the last commit are automatically reversed. You typically issue

a rollback when your transaction was interrupted by a SQLException.

5.9.1 Save Points

With some drivers, you can gain finer-grained control over the rollback process by using

save points. Creating a save point marks a point to which you can later return without having
to abandon the entire transaction. For example,

 Statement stat = conn.createStatement(); // start transaction; rollback() goes here

 stat.executeUpdate(command1);

 Savepoint svpt = conn.setSavepoint(); // set savepoint; rollback(svpt) goes here

 stat.executeUpdate(command2);

 if (. . .) conn.rollback(svpt); // undo effect of command2

 ...

 conn.commit();

When you no longer need a save point, you should release it:

 conn.releaseSavepoint(svpt);

5.9.2 Batch Updates

Suppose a program needs to execute many INSERT statements to populate a database table.

You can improve the performance of the program by using a batch update. In a batch update,
a sequence of statements is collected and submitted as a batch.

NOTE:

Use the supportsBatchUpdates method of the DatabaseMetaData interface to find out if your

database supports this feature.

The statements in a batch can be actions such as INSERT, UPDATE, or DELETE as well as data

definition statements such as CREATE TABLE or DROP TABLE. An exception is thrown if you

add a SELECT statement to a batch. (Conceptually, a SELECT statement makes no sense in a

batch because it returns a result set without updating the database.)

To execute a batch, first create a Statement object in the usual way:

 Statement stat = conn.createStatement();

Now, instead of calling executeUpdate, call the addBatch method:

 String command = "CREATE TABLE . . ."

 stat.addBatch(command);

 while (. . .)

 {

 command = "INSERT INTO . . . VALUES (" + . . . + ")";

 stat.addBatch(command);

 }

Finally, submit the entire batch:

 int[] counts = stat.executeBatch();

The call to executeBatch returns an array of the row counts for all submitted statements.

For proper error handling in batch mode, treat the batch execution as a single transaction.

If a batch fails in the middle, you want to roll back to the state before the beginning

of the batch.

First, turn the autocommit mode off, then collect the batch, execute it, commit it, and

finally restore the original autocommit mode:

 boolean autoCommit = conn.getAutoCommit();

 conn.setAutoCommit(false);

 Statement stat = conn.getStatement();

 ...

 // keep calling stat.addBatch(. . .);

 ...

 stat.executeBatch();

 conn.commit(); conn.setAutoCommit(autoCommit);

java.sql.Connection 1.1

• boolean getAutoCommit()

• void setAutoCommit(boolean b)

gets or sets the autocommit mode of this connection to b. If autocommit is true, all

statements are committed as soon as their execution is completed.

• void commit()

commits all statements that were issued since the last commit.

• void rollback()

undoes the effect of all statements that were issued since the last commit.

• Savepoint setSavepoint() 1.4

• Savepoint setSavepoint(String name) 1.4

sets an unnamed or named save point.

• void rollback(Savepoint svpt) 1.4

rolls back until the given save point.

• void releaseSavepoint(Savepoint svpt) 1.4

releases the given save point.

java.sql.Savepoint 1.4

• int getSavepointId()

gets the ID of this unnamed save point, or throws a SQLException if this is a named save

point.

• String getSavepointName()

gets the name of this save point, or throws a SQLException if this is an unnamed save point.

java.sql.Statement 1.1

• void addBatch(String command) 1.2

adds the command to the current batch of commands for this statement.

• int[] executeBatch() 1.2

• long[] executeLargeBatch() 8

executes all commands in the current batch. Each value in the returned array corresponds

to one of the batch statements. If it is non-negative, it is a row count. If it is the value

SUCCESS_NO_INFO, the statement succeeded, but no row count is available. If it is

EXECUTE_FAILED, the statement failed.

java.sql.DatabaseMetaData 1.1

• boolean supportsBatchUpdates() 1.2

returns true if the driver supports batch updates.

5.9.3 Advanced SQL Types

Table 5.8 lists the SQL data types supported by JDBC and their equivalents in the Java

programming language.

Table 5.8 SQL Data Types and Their Corresponding Java Types

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05tab08

A SQL ARRAY is a sequence of values. For example, in a Student table, you can have a Scores

column that is an ARRAY OF INTEGER. The getArray method returns an object of the interface

type java.sql.Array. That interface has methods to fetch the array values.

When you get a LOB or an array from a database, the actual contents are fetched from the

database only when you request individual values. This is a useful performance enhancement,

as the data can be quite voluminous.

Some databases support ROWID values that describe the location of a row so that it can be

retrieved very rapidly. JDBC 4 introduced an interface java.sql.RowId and the methods to

supply the row ID in queries and retrieve it from results.

A national character string (NCHAR and its variants) stores strings in a local character
encoding and sorts them using a local sorting convention. JDBC 4 provided methods for

converting between Java String objects and national character strings in queries and

results.

Some databases can store user-defined structured types. JDBC 3 provided a mechanism for

automatically mapping structured SQL types to Java objects.

Some databases provide native storage for XML data. JDBC 4 introduced a SQLXML interface

that can mediate between the internal XML representation and the DOM Source/Result

interfaces, as well as binary streams. See the API documentation for the SQLXML class for

details.

We do not discuss these advanced SQL types any further. You can find more information on

these topics in the JDBC API Tutorial and Reference and the JDBC specification.

5.10 Connection Management in Web and Enterprise Applications

The simplistic database connection setup with a database.properties file, as described in

the preceding sections, is suitable for small test programs but won’t scale for larger

applications.

When a JDBC application is deployed in a web or enterprise environment, the management of

database connections is integrated with the JNDI. The properties of data sources across

the enterprise can be stored in a directory. Using a directory allows for centralized

management of user names, passwords, database names, and JDBC URLs.

In such an environment, you can use the following code to establish a database connection:

 Context jndiContext = new InitialContext();

 DataSource source = (DataSource) jndiContext.lookup("java:comp/env/jdbc/corejava");

 Connection conn = source.getConnection();

Note that the DriverManager is no longer involved. Instead, the JNDI service locates a data
source. A data source is an interface that allows for simple JDBC connections as well as
more advanced services, such as executing distributed transactions that involve multiple

databases. The DataSource interface is defined in the javax.sql standard extension package.

NOTE:

In a Java EE container, you don’t even have to program the JNDI lookup. Simply use the

Resource annotation on a DataSource field, and the data source reference will be set when

your application is loaded:

 @Resource(name="jdbc/corejava")

 private DataSource source;

Of course, the data source needs to be configured somewhere. If you write database programs

that execute in a servlet container such as Apache Tomcat or in an application server such

as GlassFish, then you place the database configuration (including the JNDI name, JDBC URL,

user name, and password) in a configuration file, or you set it in an admin GUI.

Management of user names and logins is just one of the issues that require special attention.

Another issue involves the cost of establishing database connections. Our sample database

programs used two strategies for obtaining a database connection. The QueryDB program in

Listing 5.3 established a single database connection at the start of the program and closed

it at the end of the program. The ViewDB program in Listing 5.4 opened a new connection

whenever one was needed.

However, neither of these approaches is satisfactory. Database connections are a finite

resource. If a user walks away from an application for some time, the connection should

not be left open. Conversely, obtaining a connection for each query and closing it afterward

is very costly.

The solution is to pool the connections. This means that database connections are not
physically closed but are kept in a queue and reused. Connection pooling is an important

service, and the JDBC specification provides hooks for implementors to supply it. However,

the JDK itself does not provide any implementation, and database vendors don’t usually

include one with their JDBC drivers either. Instead, vendors of web containers and

application servers supply connection pool implementations.

Using a connection pool is completely transparent to the programmer. Acquire a connection

from a source of pooled connections by obtaining a data source and calling getConnection.

When you are done using the connection, call close. That doesn’t close the physical

connection but tells the pool that you are done using it. The connection pool typically

makes an effort to pool prepared statements as well.

You have now learned about the JDBC fundamentals and know enough to implement simple database

applications. However, as we mentioned at the beginning of this chapter, databases are

complex and quite a few advanced topics are beyond the scope of this introductory chapter.

For an overview of advanced JDBC capabilities, refer to the JDBC API Tutorial and Reference
or the JDBC specification.

In this chapter, you have learned how to work with relational databases in Java. The next

chapter covers the important topic of internationalization, showing you how to make your

software usable for customers around the world.

Chapter 6. The Date and Time API

In this chapter

• 6.1 The Time Line,

• 6.2 Local Dates,

• 6.3 Date Adjusters,

• 6.4 Local Time,

• 6.5 Zoned Time,

• 6.6 Formatting and Parsing,

• 6.7 Interoperating with Legacy Code,

Time flies like an arrow, and we can easily set a starting point and count forward and

backwards in seconds. So why is it so hard to deal with time? The problem is humans. All

would be easy if we could just tell each other: “Meet me at 1371409200, and don’t be late!”

But we want time to relate to daylight and the seasons. That’s where things get complicated.

Java 1.0 had a Date class that was, in hindsight, naïve, and had most of its methods

deprecated in Java 1.1 when a Calendar class was introduced. Its API wasn’t stellar, its

instances were mutable, and it didn’t deal with issues such as leap seconds. The third

time is a charm, and the java.time API introduced in Java SE 8 has remedied the flaws of

the past and should serve us for quite some time. In this chapter, you will learn what makes

time computations so vexing, and how the Date and Time API solves these issues.

6.1 The Time Line

Historically, the fundamental time unit—the second—was derived from Earth’s rotation

around its axis. There are 24 hours or 24 × 60 × 60 = 86400 seconds in a full revolution,

so it seems just a question of astronomical measurements to precisely define a second.

Unfortunately, Earth wobbles slightly, and a more precise definition was needed. In 1967,

a new precise definition of a second, matching the historical definition, was derived from

an intrinsic property of atoms of caesium-133. Since then, a network of atomic clocks keeps

the official time.

Ever so often, the official time keepers synchronize the absolute time with the rotation

of Earth. At first, the official seconds were slightly adjusted, but starting in 1972, “leap

seconds” were occasionally inserted. (In theory, a second might need to be removed once

in a while, but that has not yet happened.) There is talk of changing the system again.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06lev6-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06lev6-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06lev6-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06lev6-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06lev6-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06lev6-6
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06lev6-7

Clearly, leap seconds are a pain, and many computer systems instead use “smoothing” where

time is artificially slowed down or sped up just before the leap second, keeping 86,400

seconds per day. This works because the local time on a computer isn’t all that precise,

and computers are used to synchronizing themselves with an external time service.

The Java Date and Time API specification requires that Java uses a time scale that:

• Has 86,400 seconds per day.

• Exactly matches the official time at noon each day.

• Closely matches it elsewhere, in a precisely defined way.

That gives Java the flexibility to adjust to future changes in the official time.

In Java, an Instant represents a point on the time line. An origin, called the epoch, is

arbitrarily set at midnight of January 1, 1970 at the prime meridian that passes through

the Greenwich Royal Observatory in London. This is the same convention used in the Unix/POSIX

time. Starting from that origin, time is measured in 86,400 seconds per day, forwards and

backwards, to nanosecond precision. The Instant values go back as far as a billion years

(Instant.MIN). That’s not quite enough to express the age of the universe (around 13.5

billion years), but it should be enough for all practical purposes. After all, a billion

years ago, the earth was covered in ice and populated by microscopic ancestors of today’s

plants and animals. The largest value, Instant.MAX, is December 31 of the year

1,000,000,000.

The static method call Instant.now() gives the current instant. You can compare two instants

with the equals and compareTo methods in the usual way, so you can use instants as timestamps.

To find out the difference between two instants, use the static method Duration.between.

For example, here is how you can measure the running time of an algorithm:

 Instant start = Instant.now();

 runAlgorithm();

 Instant end = Instant.now();

 Duration timeElapsed = Duration.between(start, end);

 long millis = timeElapsed.toMillis();

A Duration is the amount of time between two instants. You can get the length of a Duration

in conventional units by calling toNanos, toMillis, getSeconds, toMinutes, toHours, or

toDays.

Durations require more than a long value for their internal storage. The number of seconds

is stored in a long, and the number of nanoseconds in an additional int. If you want to

make computations to nanosecond accuracy, and you actually need the entire range of a

Duration, you can use one of the methods in Table 6.1. Otherwise, you can just call toNanos

and do your calculations with long values.

NOTE:

It takes almost 300 years of nanoseconds to overflow a long.

For example, if you want to check whether an algorithm is at least ten times faster than

another, you can compute

 Duration timeElapsed2 = Duration.between(start2, end2);

 boolean overTenTimesFaster =

 timeElapsed.multipliedBy(10).minus(timeElapsed2).isNegative();

 // Or timeElapsed.toNanos() * 10 < timeElapsed2.toNanos()

NOTE:

The Instant and Duration classes are immutable, and all methods, such as multipliedBy or

minus, return a new instance.

Table 6.1 Arithmetic Operations for Time Instants and Durations

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06tab01

In the example program Listing 6.1, you can see how to use the Instant and Duration classes

for timing two algorithms.

Listing 6.1 timeline/TimeLine.java

 1 package timeline;

 2

 3 import java.time.*;

 4 import java.util.*;

 5 import java.util.stream.*;

 6

 7 public class Timeline

 8 {

 9 public static void main(String[] args)

10 {

11 Instant start = Instant.now();

12 runAlgorithm();

13 Instant end = Instant.now();

14 Duration timeElapsed = Duration.between(start, end);

15 long millis = timeElapsed.toMillis();

16 System.out.printf("%d milliseconds\n", millis);

17

18 Instant start2 = Instant.now();

19 runAlgorithm2();

20 Instant end2 = Instant.now();

21 Duration timeElapsed2 = Duration.between(start2, end2);

22 System.out.printf("%d milliseconds\n",

timeElapsed2.toMillis());

23 boolean overTenTimesFaster = timeElapsed.multipliedBy(10)

24 .minus(timeElapsed2).isNegative();

25 System.out.printf("The first algorithm is %smore than ten times

faster",

26 overTenTimesFaster ? "" : "not ");

27 }

28

29 public static void runAlgorithm()

30 {

31 int size = 10;

32 List<Integer> list = new Random().ints().map(i -> i %

100).limit(size)

33 .boxed().collect(Collectors.toList());

34 Collections.sort(list);

35 System.out.println(list);

36 }

37

38 public static void runAlgorithm2()

39 {

40 int size = 10;

41 List<Integer> list = new Random().ints().map(i -> i %

100).limit(size)

42 .boxed().collect(Collectors.toList());

43 while (!IntStream.range(1, list.size()).allMatch(

44 i -> list.get(i - 1).compareTo(list.get(i)) <= 0))

45 Collections.shuffle(list);

46 System.out.println(list);

47 }

48 }

6.2 Local Dates

Now let us turn from absolute time to human time. There are two kinds of human time in the

Java API, local date/time and zoned time. Local date/time has a date and/or time of day,
but no associated time zone information. An example of a local date is June 14, 1903 (the

day on which Alonzo Church, inventor of the lambda calculus, was born). Since that date

has neither a time of day nor time zone information, it does not correspond to a precise

instant of time. In contrast, July 16, 1969, 09:32:00 EDT (the launch of Apollo 11) is a

zoned date/time, representing a precise instant on the time line.

There are many calculations where time zones are not required, and in some cases they can

even be a hindrance. Suppose you schedule a meeting every week at 10:00. If you add 7 days

(that is, 7 × 24 × 60 × 60 seconds) to the last zoned time, and you happen to cross the

daylight savings time boundary, the meeting will be an hour too early or too late!

For that reason, the API designers recommend that you do not use zoned time unless you really

want to represent absolute time instances. Birthdays, holidays, schedule times, and so on

are usually best represented as local dates or times.

A LocalDate is a date with a year, month, and day of the month. To construct one, you can

use the now or of static methods:

 LocalDate today = LocalDate.now(); // Today's date

 LocalDate alonzosBirthday = LocalDate.of(1903, 6, 14);

 alonzosBirthday = LocalDate.of(1903, Month.JUNE, 14);

 // Uses the Month enumeration

Unlike the irregular conventions in Unix and java.util.Date, where months are zero-based

and years are counted from 1900, you supply the usual numbers for the month of year.

Alternatively, you can use the Month enumeration.

Table 6.2 shows the most useful methods for working with LocalDate objects.

Table 6.2 LocalDate Methods

For example, Programmer’s Day is the 256th day of the year. Here is how you can easily
compute it:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06tab02

 LocalDate programmersDay = LocalDate.of(2014, 1, 1).plusDays(255);

 // September 13, but in a leap year it would be September 12

Recall that the difference between two time instants is a Duration. The equivalent for local

dates is a Period, which expresses a number of elapsed years, months, or days. You can call

birthday.plus(Period.ofYears(1)), to get the birthday next year. Of course, you can also

just call birthday.plusYears(1). But birthday.plus(Duration.ofDays(365)) won’t produce

the correct result in a leap year.

The until method yields the difference between two local dates. For example,

 independenceDay.until(christmas)

yields a period of 5 months and 21 days. That is actually not terribly useful because the

number of days per month varies. To find the number of days, use

 independenceDay.until(christmas, ChronoUnit.DAYS) // 174 days

Caution

Some methods in Table 6.2 could potentially create nonexistent dates. For example, adding

one month to January 31 should not yield February 31. Instead of throwing an exception,

these methods return the last valid day of the month. For example,

 LocalDate.of(2016, 1, 31).plusMonths(1)

and

 LocalDate.of(2016, 3, 31).minusMonths(1)

yield February 29, 2016.

The getDayOfWeek yields the weekday, as a value of the DayOfWeek enumeration.

DayOfWeek.MONDAY has the numerical value 1, and DayOfWeek.SUNDAY has the value 7. For

example,

 LocalDate.of(1900, 1, 1).getDayOfWeek().getValue()

yields 1. The DayOfWeek enumeration has convenience methods plus and minus to compute

weekdays modulo 7. For example, DayOfWeek.SATURDAY.plus(3) yields DayOfWeek.TUESDAY.

NOTE:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06tab02

The weekend days actually come at the end of the week. This is different from

java.util.Calendar where Sunday has value 1 and Saturday value 7.

In addition to LocalDate, there are also classes MonthDay, YearMonth, and Year to describe

partial dates. For example, December 25 (with the year unspecified) can be represented as

a MonthDay.

The example program in Listing 6.2 shows how to work with the LocalDate class.

Listing 6.2 localdates/LocalDates.java

 1 package localdates;

 2

 3 import java.time.*;

 4 import java.time.temporal.*;

 5

 6 public class LocalDates

 7 {

 8 public static void main(String[] args)

 9 {

10 LocalDate today = LocalDate.now(); // Today's date

11 System.out.println("today: " + today);

12

13 LocalDate alonzosBirthday = LocalDate.of(1903, 6, 14);

14 alonzosBirthday = LocalDate.of(1903, Month.JUNE, 14);

15 // Uses the Month enumeration

16 System.out.println("alonzosBirthday: " + alonzosBirthday);

17

18 LocalDate programmersDay = LocalDate.of(2014, 1,

1).plusDays(255);

19 // September 13, but in a leap year it would be September 12

20 System.out.println("programmersDay: " + programmersDay);

21

22 LocalDate independenceDay = LocalDate.of(2014, Month.JULY, 4);

23 LocalDate christmas = LocalDate.of(2014, Month.DECEMBER, 25);

24

25 System.out

26 .println("Until christmas: " +

independenceDay.until(christmas));

27 System.out.println("Until christmas: "

28 + independenceDay.until(christmas,

ChronoUnit.DAYS));

29

30 System.out.println(LocalDate.of(2016, 1, 31).plusMonths(1));

31 System.out.println(LocalDate.of(2016, 3, 31).minusMonths(1));

32

33 DayOfWeek startOfLastMillennium = LocalDate.of(1900, 1,

1).getDayOfWeek();

34 System.out.println("startOfLastMillennium: " +

startOfLastMillennium);

35 System.out.println(startOfLastMillennium.getValue());

36 System.out.println(DayOfWeek.SATURDAY.plus(3));

37 }

38 }

6.3 Date Adjusters

For scheduling applications, you often need to compute dates such as “the first Tuesday

of every month.” The TemporalAdjusters class provides a number of static methods for common

adjustments. You pass the result of an adjustment method to the with method. For example,

the first Tuesday of a month can be computed like this:

 LocalDate firstTuesday = LocalDate.of(year, month, 1).with(

 TemporalAdjusters.nextOrSame(DayOfWeek.TUESDAY));

As always, the with method returns a new LocalDate object without modifying the original.

Table 6.3 shows the available adjusters.

Table 6.3 Date Adjusters in the TemporalAdjusters Class

You can also make your own adjuster by implementing the TemporalAdjuster interface. Here

is an adjuster for computing the next weekday.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06tab03

 TemporalAdjuster NEXT_WORKDAY = w ->

 {

 LocalDate result = (LocalDate) w;

 do

 {

 result = result.plusDays(1);

 }

 while (result.getDayOfWeek().getValue() >= 6);

 return result;

 };

 LocalDate backToWork = today.with(NEXT_WORKDAY);

Note that the parameter of the lambda expression has type Temporal, and it must be cast

to LocalDate. You can avoid this cast with the ofDateAdjuster method that expects a lambda

of type UnaryOperator<LocalDate>.

 TemporalAdjuster NEXT_WORKDAY = TemporalAdjusters.ofDateAdjuster(w ->

 {

 LocalDate result = w; // No cast

 do

 {

 result = result.plusDays(1);

 }

 while (result.getDayOfWeek().getValue() >= 6);

 return result;

 });

6.4 Local Time

A LocalTime represents a time of day, such as 15:30:00. You can create an instance with

the now or of methods:

 LocalTime rightNow = LocalTime.now();

 LocalTime bedtime = LocalTime.of(22, 30); // or LocalTime.of(22, 30, 0)

Table 6.4 shows common operations with local times. The plus and minus operations wrap around

a 24-hour day. For example,

 LocalTime wakeup = bedtime.plusHours(8); // wakeup is 6:30:00

NOTE:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06tab04

LocalTime doesn’t concern itself with AM/PM. That silliness is left to a formatter—see

Section 6.6, “Formatting and Parsing,” on p. 371.

Table 6.4 LocalTime Methods

There is a LocalDateTime class representing a date and time. That class is suitable for

storing points in time in a fixed time zone—for example, for a schedule of classes or events.

However, if you need to make calculations that span the daylight savings time, or if you

need to deal with users in different time zones, you should use the ZonedDateTime class

that we discuss next.

6.5 Zoned Time

Time zones, perhaps because they are an entirely human creation, are even messier than the

complications caused by the earth’s irregular rotation. In a rational world, we’d all

follow the clock in Greenwich, and some of us would eat our lunch at 02:00, others at 22:00.

Our stomachs would figure it out. This is actually done in China, which spans four

conventional time zones. Elsewhere, we have time zones with irregular and shifting

boundaries and, to make matters worse, the daylight savings time.

As capricious as the time zones may appear to the enlightened, they are a fact of life.

When you implement a calendar application, it needs to work for people who fly from one

country to another. When you have a conference call at 10:00 in New York, but happen to

be in Berlin, you expect to be alerted at the correct local time.

The Internet Assigned Numbers Authority (IANA) keeps a database of all known time zones

around the world (https://www.iana.org/time-zones), which is updated several times per year.

The bulk of the updates deals with the changing rules for daylight savings time. Java uses

the IANA database.

Each time zone has an ID, such as America/New_York or Europe/Berlin. To find out all

available time zones, call ZoneId.getAvailableIds. At the time of this writing, there were

almost 600 IDs.

Given a time zone ID, the static method ZoneId.of(id) yields a ZoneId object. You can use

that object to turn a LocalDateTime object into a ZonedDateTime object by calling

local.atZone(zoneId), or you can construct a ZonedDateTime by calling the static method

ZonedDateTime.of(year, month, day, hour, minute, second, nano, zoneId). For example,

 ZonedDateTime apollo11launch = ZonedDateTime.of(1969, 7, 16, 9, 32, 0, 0,

 ZoneId.of("America/New_York"));

 // 1969-07-16T09:32-04:00[America/New_York]

This is a specific instant in time. Call apollo11launch.toInstant to get the Instant.

Conversely, if you have an instant in time, call instant.atZone(ZoneId.of("UTC")) to get

the ZonedDateTime at the Greenwich Royal Observatory, or use another ZoneId to get it

elsewhere on the planet.

NOTE:

UTC stands for “Coordinated Universal Time,” and the acronym is a compromise between the

aforementioned English and the French “Temps Universel Coordiné,” having the distinction

of being incorrect in either language. UTC is the time at the Greenwich Royal Observatory,

without daylight savings time.

Many of the methods of ZonedDateTime are the same as those of LocalDateTime (see Table 6.5).

Most are straightforward, but daylight savings time introduces some complications.

When daylight savings time starts, clocks advance by an hour. What happens when you construct

a time that falls into the skipped hour? For example, in 2013, Central Europe switched to

http://www.iana.org/time-zones
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06tab05

daylight savings time on March 31 at 2:00. If you try to construct nonexistent time March

31 2:30, you actually get 3:30.

 ZonedDateTime skipped = ZonedDateTime.of(

 LocalDate.of(2013, 3, 31),

 LocalTime.of(2, 30),

 ZoneId.of("Europe/Berlin"));

 // Constructs March 31 3:30

Conversely, when daylight time ends, clocks are set back by an hour, and there are two

instants with the same local time! When you construct a time within that span, you get the

earlier of the two.

 ZonedDateTime ambiguous = ZonedDateTime.of(

 LocalDate.of(2013, 10, 27), // End of daylight savings time

 LocalTime.of(2, 30),

 ZoneId.of("Europe/Berlin"));

 // 2013-10-27T02:30+02:00[Europe/Berlin]

 ZonedDateTime anHourLater = ambiguous.plusHours(1);

 // 2013-10-27T02:30+01:00[Europe/Berlin]

An hour later, the time has the same hours and minutes, but the zone offset has changed.

You also need to pay attention when adjusting a date across daylight savings time boundaries.

For example, if you set a meeting for next week, don’t add a duration of seven days:

 ZonedDateTime nextMeeting = meeting.plus(Duration.ofDays(7));

 // Caution! Won't work with daylight savings time

Instead, use the Period class.

 ZonedDateTime nextMeeting = meeting.plus(Period.ofDays(7)); // OK

Table 6.5 ZonedDateTime Methods

Caution

There is also an OffsetDateTime class that represents times with an offset from UTC, but

without time zone rules. That class is intended for specialized applications that

specifically require the absence of those rules, such as certain network protocols. For

human time, use ZonedDateTime.

The example program in Listing 6.3 demonstrates the ZonedDateTime class.

Listing 6.3 zonedtimes/ZonedTimes.java

 1 package zonedTimes;

 2

 3 import java.time.*;

 4

 5 public class ZonedTimes

 6 {

 7 public static void main(String[] args)

 8 {

 9 ZonedDateTime apollo11launch = ZonedDateTime.of(1969, 7, 16, 9, 32,

0, 0,

10 ZoneId.of("America/New_York"));

11 // 1969-07-16T09:32-04:00[America/New_York]

12 System.out.println("apollo11launch: " + apollo11launch);

13

14 Instant instant = apollo11launch.toInstant();

15 System.out.println("instant: " + instant);

16

17 ZonedDateTime zonedDateTime =

instant.atZone(ZoneId.of("UTC"));

18 System.out.println("zonedDateTime: " + zonedDateTime);

19

20 ZonedDateTime skipped = ZonedDateTime.of(LocalDate.of(2013, 3,

31),

21 LocalTime.of(2, 30), ZoneId.of("Europe/Berlin"));

22 // Constructs March 31 3:30

23 System.out.println("skipped: " + skipped);

24

25 ZonedDateTime ambiguous = ZonedDateTime.of(LocalDate.of(2013, 10,

27),

26 // End of daylight savings time

27 LocalTime.of(2, 30), ZoneId.of("Europe/Berlin"));

28 // 2013-10-27T02:30+02:00[Europe/Berlin]

29 ZonedDateTime anHourLater = ambiguous.plusHours(1);

30 // 2013-10-27T02:30+01:00[Europe/Berlin]

31 System.out.println("ambiguous: " + ambiguous);

32 System.out.println("anHourLater: " + anHourLater);

33

34 ZonedDateTime meeting = ZonedDateTime.of(LocalDate.of(2013, 10,

31),

35 LocalTime.of(14, 30),

ZoneId.of("America/Los_Angeles"));

36 System.out.println("meeting: " + meeting);

37 ZonedDateTime nextMeeting = meeting.plus(Duration.ofDays(7));

38 // Caution! Won't work with daylight savings time

39 System.out.println("nextMeeting: " + nextMeeting);

40 nextMeeting = meeting.plus(Period.ofDays(7)); // OK

41 System.out.println("nextMeeting: " + nextMeeting);

42 }

43 }

6.6 Formatting and Parsing

The DateTimeFormatter class provides three kinds of formatters to print a date/time value:

• Predefined standard formatters (see Table 6.6)

• Locale-specific formatters

• Formatters with custom patterns

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06tab06

To use one of the standard formatters, simply call its format method:

 String formatted = DateTimeFormatter.ISO_DATE_TIME.format(apollo11launch);

 // 1969-07-16T09:32:00-05:00[America/New_York]

Table 6.6 Predefined Formatters

The standard formatters are mostly intended for machine-readable timestamps. To present

dates and times to human readers, use a locale-specific formatter. There are four styles,

SHORT, MEDIUM, LONG, and FULL, for both date and time—see Table 6.7.

The static methods ofLocalizedDate, ofLocalizedTime, and ofLocalizedDateTime create such

a formatter. For example:

 DateTimeFormatter formatter =

DateTimeFormatter.ofLocalizedDateTime(FormatStyle.LONG);

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06tab07

 String formatted = formatter.format(apollo11launch);

 // July 16, 1969 9:32:00 AM EDT

These methods use the default locale. To change to a different locale, simply use the

withLocale method.

 formatted = formatter.withLocale(Locale.FRENCH).format(apollo11launch);

 // 16 juillet 1969 09:32:00 EDT

The DayOfWeek and Month enumerations have methods getDisplayName for giving the names of

weekdays and months in different locales and formats.

 for (DayOfWeek w : DayOfWeek.values())

 System.out.print(w.getDisplayName(TextStyle.SHORT, Locale.ENGLISH) + " ");

 // Prints Mon Tue Wed Thu Fri Sat Sun

See Chapter 13 for more information about locales.

Table 6.7 Locale-Specific Formatting Styles

NOTE:

The java.time.format.DateTimeFormatter class is intended as a re- placement for

java.util.DateFormat. If you need an instance of the latter for backwards compatibility,

call formatter.toFormat().

Finally, you can roll your own date format by specifying a pattern. For example,

 formatter = DateTimeFormatter.ofPattern("E yyyy-MM-dd HH:mm");

formats a date in the form Wed 1969-07-16 09:32. Each letter denotes a different time field,

and the number of times the letter is repeated selects a particular format, according to

rules that are arcane and seem to have organically grown over time. Table 6.8 shows the

most useful pattern elements.

Table 6.8 Commonly Used Formatting Symbols for Date/Time Formats

To parse a date/time value from a string, use one of the static parse methods. For example,

 LocalDate churchsBirthday = LocalDate.parse("1903-06-14");

 ZonedDateTime apollo11launch =

 ZonedDateTime.parse("1969-07-16 03:32:00-0400",

 DateTimeFormatter.ofPattern("yyyy-MM-dd

HH:mm:ssxx"));

The first call uses the standard ISO_LOCAL_DATE formatter, the second one a custom

formatter.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06tab08

The program in Listing 6.4 shows how to format and parse dates and times.

Listing 6.4 formatting/Formatting.java

 1 package formatting;

 2

 3 import java.time.*;

 4 import java.time.format.*;

 5 import java.util.*;

 6

 7 public class Formatting

 8 {

 9 public static void main(String[] args)

10 {

11 ZonedDateTime apollo11launch = ZonedDateTime.of(1969, 7, 16, 9,

32, 0, 0,

12 ZoneId.of("America/New_York"));

13

14 String formatted =

DateTimeFormatter.ISO_DATE_TIME.format(apollo11launch);

15 // 1969-07-16T09:32:00-05:00[America/New_York]

16 System.out.println(formatted);

17

18 DateTimeFormatter formatter = DateTimeFormatter

19 .ofLocalizedDateTime(FormatStyle.LONG);

20 formatted = formatter.format(apollo11launch);

21 // July 16, 1969 9:32:00 AM EDT

22 System.out.println(formatted);

23 formatted =

formatter.withLocale(Locale.FRENCH).format(apollo11launch);

24 // 16 juillet 1969 09:32:00 EDT

25 System.out.println(formatted);

26

27 formatter = DateTimeFormatter.ofPattern("E yyyy-MM-dd HH:mm");

28 formatted = formatter.format(apollo11launch);

29 System.out.println(formatted);

30

31 LocalDate churchsBirthday = LocalDate.parse("1903-06-14");

32 System.out.println("churchsBirthday: " + churchsBirthday);

33 apollo11launch = ZonedDateTime.parse("1969-07-16 03:32:00-0400",

34 DateTimeFormatter.ofPattern("yyyy-MM-dd

HH:mm:ssxx"));

35 System.out.println("apollo11launch: " + apollo11launch);

36

37 for (DayOfWeek w : DayOfWeek.values())

38 System.out.print(w.getDisplayName(TextStyle.SHORT,

Locale.ENGLISH)

39 + " ");

40 }

41 }

6.7 Interoperating with Legacy Code

As a brand-new creation, the Java Date and Time API will have to interoperate with existing

classes, in particular, the ubiquitous java.util.Date, java.util. GregorianCalendar, and

java.sql.Date/Time/Timestamp.

The Instant class is a close analog to java.util.Date. In Java SE 8, that class has two

added methods: the toInstant method that converts a Date to an Instant, and the static from

method that converts in the other direction.

Similarly, ZonedDateTime is a close analog to java.util.GregorianCalendar, and that class

has gained conversion methods in Java SE 8. The toZonedDateTime method converts a

 GregorianCalendar to a ZonedDateTime, and the static from method does the opposite

conversion.

Another set of conversions is available for the date and time classes in the java.sql package.

You can also pass a DateTimeFormatter to legacy code that uses java.text.Format. Table 6.9

summarizes these conversions.

Table 6.9 Conversions between java.time Classes and Legacy Classes

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06tab09

Chapter 7. Internationalization

In this chapter

• 7.1 Locales,

• 7.2 Number Formats,

• 7.4 Date and Time,

• 7.5 Collation and Normalization,

• 7.6 Message Formatting,

• 7.7 Text Input and Output,

• 7.8 Resource Bundles,

• 7.9 A Complete Example,

There’s a big world out there; we hope that lots of its inhabitants will be interested

in your software. The Internet, after all, effortlessly spans the barriers between countries.

On the other hand, when you pay no attention to an international audience, you are putting
up a barrier.

The Java programming language was the first language designed from the ground up to support

internationalization. From the beginning, it had the one essential feature needed for

effective internationalization: It used Unicode for all strings. Unicode support makes it

easy to write Java programs that manipulate strings in any one of multiple languages.

Many programmers believe that all they need to do to internationalize their application

is to support Unicode and to translate the messages in the user interface.

However, as this chapter demonstrates, there is a lot more to internationalizing programs

than just Unicode support. Dates, times, currencies, even numbers are formatted differently

in different parts of the world. You need an easy way to configure menu and button names,

message strings, and keyboard shortcuts for different languages.

In this chapter, we will show you how to write internationalized Java programs and how to

localize dates, times, numbers, text, and GUIs. We will show you the tools that Java offers

for writing internationalized programs. We will close this chapter with a complete

example—a retirement calculator with a user interface in English, German, and Chinese.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07lev7-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07lev7-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07lev7-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07lev7-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07lev7-6
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07lev7-7
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07lev7-8
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07lev7-9

7.1 Locales

When you look at an application that is adapted to an international market, the most obvious

difference you notice is the language. This observation is actually a bit too limiting for

true internationalization, since countries can share a common language, but you might still

need to do some work to make computer users of both countries happy. As Oscar Wilde famously

said: “We have really everything in common with America nowadays, except, of course,

language.”

In all cases, menus, button labels, and program messages will need to be translated to the

local language; they might also need to be rendered in a different script. There are many

more subtle differences; for example, numbers are formatted quite differently in English

and in German. The number

 123,456.78

should be displayed as

 123.456,78

for a German user—that is, the roles of the decimal point and the decimal comma separator

are reversed. There are similar variations in the display of dates. In the United States,

dates are somewhat irrationally displayed as month/day/year. Germany uses the more sensible

order of day/month/year, whereas in China, the usage is year/month/day. Thus, the date

 3/22/61

should be presented as

 22.03.1961

to a German user. Of course, if the month names are written out explicitly, then the

difference in languages becomes apparent. The English

 March 22, 1961

should be presented as

 22. März 1961

in German, or

in Chinese.

There are several formatter classes that take these differences into account. To control

the formatting, use the Locale class. A locale is made up of up to five components:

1. A language, specified by two or three lowercase letters, such as en (English), de (German),

or zh (Chinese). Tables 7.1 shows common codes.

2. Optionally, a script, specified by four letters with an initial uppercase, such as Latn

(Latin), Cyrl (Cyrillic), or Hant (traditional Chinese characters). This can be useful

because some languages, such as Serbian, are written in Latin or Cyrillic, and some Chinese

readers prefer the traditional over the simplified characters.

3. Optionally, a country or region, specified by two uppercase letters or three digits,

such as US (United States) or CH (Switzerland). 7.2 shows common codes.

4. Optionally, a variant, specifying miscellaneous features such as dialects or spelling

rules. Variants are rarely used nowadays. There used to be a “Nynorsk” variant of Norwegian,

but it is now expressed with a different language code, nn. What used to be variants for

the Japanese imperial calendar and Thai numerals are now expressed as extensions (see the

next item).

5. Optionally, an extension. Extensions describe local preferences for calendars (such as

the Japanese calendar), numbers (Thai instead of Western digits), and so on. The Unicode

standard specifies some of these extensions. Extensions start with u- and a two-letter code

specifying whether the extension deals with the calendar (ca), numbers (nu), and so on.

For example, the extension u-nu-thai denotes the use of Thai numerals. Other extensions

are entirely arbitrary and start with x-, such as x-java.

Rules for locales are formulated in the “Best Current Practices” memo BCP 47 of the

Internet Engineering Task Force (http://tools.ietf.org/html/bcp47). You can find a more

accessible summary at www.w3.org/International/articles/language-tags.

Table 7.1 Common ISO 639–1 Language Codes

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07tab01
http://tools.ietf.org/html/bcp47
http://www.w3.org/International/articles/language-tags

Table 7.2 Common ISO 3166–1 Country Codes

The codes for languages and countries seem a bit random because some of them are derived

from local languages. German in German is Deutsch, Chinese in Chinese is zhongwen; hence

de and zh. And Switzerland is CH, deriving from the latin term Confoederatio Helvetica for
the Swiss confederation.

Locales are described by tags—hyphenated strings of locale elements such as en-US.

In Germany, you would use a locale de-DE. Switzerland has four official languages (German,

French, Italian, and Rhaeto-Romance). A German speaker in Switzerland would want to use

a locale de-CH. This locale uses the rules for the German language, but currency values

are expressed in Swiss francs, not euros.

If you only specify the language, say, de, then the locale cannot be used for

country-specific issues such as currencies.

You can construct a Locale object from a tag string like this:

 Locale usEnglish = Locale.forLanguageTag("en-US");

The toLanguageTag method yields the language tag for a given locale. For example,

For your convenience, there are predefined locale objects for various countries:

 Locale.CANADA

 Locale.CANADA_FRENCH

 Locale.CHINA

 Locale.FRANCE

 Locale.GERMANY

 Locale.ITALY

 Locale.JAPAN

 Locale.KOREA

 Locale.PRC

 Locale.TAIWAN

 Locale.UK

 Locale.US

A number of predefined locales specify just a language without a location:

 Locale.CHINESE

 Locale.ENGLISH

 Locale.FRENCH

 Locale.GERMAN

 Locale.ITALIAN

 Locale.JAPANESE

 Locale.KOREAN

 Locale.SIMPLIFIED_CHINESE

 Locale.TRADITIONAL_CHINESE

Finally, the static getAvailableLocales method returns an array of all locales known to

the virtual machine.

Besides constructing a locale or using a predefined one, you have two other methods for

obtaining a locale object.

The static getDefault method of the Locale class initially gets the default locale as stored

by the local operating system. You can change the default Java locale by calling setDefault;

however, that change only affects your program, not the operating system.

All locale-dependent utility classes can return an array of the locales they support. For

example,

 Locale[] supportedLocales = NumberFormat.getAvailableLocales();

returns all locales that the NumberFormat class can handle.

TIP:

If you want to test a locale that just has language and country settings, you can supply

them on the command line when you launch your program. For example, here we set the default

locale to de-CH:

 java -Duser.language=de -Duser.region=CH MyProgram

Once you have a locale, what can you do with it? Not much, as it turns out. The only useful

methods in the Locale class are those for identifying the language and country codes. The

most important one is getDisplayName. It returns a string describing the locale. This string

does not contain the cryptic two-letter codes, but is in a form that can be presented to

a user, such as

 German (Switzerland)

Actually, there is a problem here. The display name is issued in the default locale. That

might not be appropriate. If your user already selected German as the preferred language,

you probably want to present the string in German. You can do just that by giving the German

locale as a parameter. The code

 Locale loc = new Locale("de", "CH");

 System.out.println(loc.getDisplayName(Locale.GERMAN));

prints

 Deutsch (Schweiz)

This example shows why you need Locale objects. You feed them to locale-aware methods that

produce text that is presented to users in different locations. You can see many examples

in the following sections.

java.util.Locale 1.1

• Locale(String language)

• Locale(String language, String country)

• Locale(String language, String country, String variant)

constructs a locale with the given language, country, and variant. Don’t use variants in

new code—use the IETF BCP 47 language tags instead.

• static Locale forLanguageTag(String languageTag) 7 constructs a locale corresponding to

the given language tag.

• static Locale getDefault() returns the default locale.

• static void setDefault(Locale loc)

sets the default locale.

• String getDisplayName()

returns a name describing the locale, expressed in the current locale.

• String getDisplayName(Locale loc)

returns a name describing the locale, expressed in the given locale.

• String getLanguage()

returns the language code, a lowercase two-letter ISO 639 code.

• String getDisplayLanguage()

returns the name of the language, expressed in the current locale.

• String getDisplayLanguage(Locale loc)

returns the name of the language, expressed in the given locale.

• String getCountry()

returns the country code as an uppercase two-letter ISO 3166 code.

• String getDisplayCountry()

returns the name of the country, expressed in the current locale.

• String getDisplayCountry(Locale loc)

returns the name of the country, expressed in the given locale.

• String toLanguageTag() 7 returns the IETF BCP 47 language tag for this locale, e.g.,

"de-CH".

• String toString()

returns a description of the locale, with the language and country separated by underscores

(e.g., "de_CH"). Use this method only for debugging.

7.2 Number Formats

We already mentioned how number and currency formatting is highly locale-dependent. The

Java library supplies a collection of formatter objects that can format and parse numeric

values in the java.text package. Go through the following steps to format a number for a

particular locale:

1. Get the locale object, as described in the preceding section.

2. Use a “factory method” to obtain a formatter object.

3. Use the formatter object for formatting and parsing.

The factory methods are static methods of the NumberFormat class that take a Locale argument.

There are three factory methods: getNumberInstance, getCurrencyInstance, and

getPercentInstance. These methods return objects that can format and parse numbers,

currency amounts, and percentages, respectively. For example, here is how you can format

a currency value in German:

 Locale loc = new Locale("de", "DE");

 NumberFormat currFmt = NumberFormat.getCurrencyInstance(loc);

 double amt = 123456.78;

 String result = currFmt.format(amt);

The result is

 123.456,78€

Note that the currency symbol is € and that it is placed at the end of the string. Also,

note the reversal of decimal points and decimal commas.

Conversely, to read in a number that was entered or stored with the conventions of a certain

locale, use the parse method. For example, the following code parses the value that the

user typed into a text field. The parse method can deal with decimal points and commas,

as well as digits in other languages.

 TextField inputField;

 ...

 NumberFormat fmt = NumberFormat.getNumberInstance();

 // get the number formatter for default locale

 Number input = fmt.parse(inputField.getText().trim());

 double x = input.doubleValue();

The return type of parse is the abstract type Number. The returned object is either a Double

or a Long wrapper object, depending on whether the parsed number was a floating-point number.

If you don’t care about the distinction, you can simply use the doubleValue method of the

Number class to retrieve the wrapped number.

CAUTION:

Objects of type Number are not automatically unboxed—you cannot simply assign a Number

object to a primitive type. Instead, use the doubleValue or intValue method.

If the text for the number is not in the correct form, the method throws a ParseException.

For example, leading whitespace in the string is not allowed. (Call trim to remove it.)
However, any characters that follow the number in the string are simply ignored, so no

exception is thrown.

Note that the classes returned by the getXxxInstance factory methods are not actually of
type NumberFormat. The NumberFormat type is an abstract class, and the actual formatters

belong to one of its subclasses. The factory methods merely know how to locate the object

that belongs to a particular locale.

You can get a list of the currently supported locales with the static getAvailableLocales

method. That method returns an array of the locales for which number formatter objects can

be obtained.

The sample program for this section lets you experiment with number formatters (see Figure

7.1). The combo box at the top of the figure contains all locales with number formatters.

You can choose between number, currency, and percentage formatters. Each time you make

another choice, the number in the text field is reformatted. If you go through a few locales,

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07fig01
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07fig01

you can get a good impression of how many ways a number or currency value can be formatted.

You can also type a different number and click the Parse button to call the parse method,

which tries to parse what you entered. If your input is successfully parsed, it is passed

to format and the result is displayed. If parsing fails, then a “Parse error” message

is displayed in the text field.

Figure 7.1 The NumberFormatTest program

The code, shown in Listing 7.1, is fairly straightforward. In the constructor, we call

NumberFormat.getAvailableLocales. For each locale, we call getDisplayName and fill a combo

box with the strings that the getDisplayName method returns. (The strings are not sorted;

we tackle this issue in Section 7.5, “Collation and Normalization,” on p. 399.) Whenever

the user selects another locale or clicks one of the radio buttons, we create a new formatter

object and update the text field. When the user clicks the Parse button, we call the parse

method to do the actual parsing, based on the locale selected.

Listing 7.1 numberFormat/NumberFormatTest.java

 1 package numberFormat;

 2

 3 import java.awt.*;

 4 import java.awt.event.*;

 5 import java.text.*;

 6 import java.util.*;

 7

 8 import javax.swing.*;

 9

10 /**

11 * This program demonstrates formatting numbers under various locales.

12 * @version 1.14 2016-05-06

13 * @author Cay Horstmann

14 */

15 public class NumberFormatTest

16 {

17 public static void main(String[] args)

18 {

19 EventQueue.invokeLater(() ->

20 {

21 JFrame frame = new NumberFormatFrame();

22 frame.setTitle("NumberFormatTest");

23 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

24 frame.setVisible(true);

25 });

26 }

27 }

28

29 /**

30 * This frame contains radio buttons to select a number format, a combo box to

pick a locale, a text

31 * field to display a formatted number, and a button to parse the text field

contents.

32 */

33 class NumberFormatFrame extends JFrame

34 {

35 private Locale[] locales;

36 private double currentNumber;

37 private JComboBox<String> localeCombo = new JComboBox<>();

38 private JButton parseButton = new JButton("Parse");

39 private JTextField numberText = new JTextField(30);

40 private JRadioButton numberRadioButton = new JRadioButton("Number");

41 private JRadioButton currencyRadioButton = new JRadioButton("Currency");

42 private JRadioButton percentRadioButton = new JRadioButton("Percent");

43 private ButtonGroup rbGroup = new ButtonGroup();

44 private NumberFormat currentNumberFormat;

45

46 public NumberFormatFrame()

47 {

48 setLayout(new GridBagLayout());

49

50 ActionListener listener = event -> updateDisplay();

51

52 JPanel p = new JPanel();

53 addRadioButton(p, numberRadioButton, rbGroup, listener);

54 addRadioButton(p, currencyRadioButton, rbGroup, listener);

55 addRadioButton(p, percentRadioButton, rbGroup, listener);

56

57 add(new JLabel("Locale:"), new GBC(0, 0).setAnchor(GBC.EAST));

58 add(p, new GBC(1, 1));

59 add(parseButton, new GBC(0, 2).setInsets(2));

60 add(localeCombo, new GBC(1, 0).setAnchor(GBC.WEST));

61 add(numberText, new GBC(1, 2).setFill(GBC.HORIZONTAL));

62 locales = (Locale[]) NumberFormat.getAvailableLocales().clone();

63 Arrays.sort(locales, Comparator.comparing(Locale::getDisplayName));

64 for (Locale loc : locales)

65 localeCombo.addItem(loc.getDisplayName());

66 localeCombo.setSelectedItem(Locale.getDefault().getDisplayName());

67 currentNumber = 123456.78;

68 updateDisplay();

69

70 localeCombo.addActionListener(listener);

71

72 parseButton.addActionListener(event ->

73 {

74 String s = numberText.getText().trim();

75 try

76 {

77 Number n = currentNumberFormat.parse(s);

78 if (n != null)

79 {

80 currentNumber = n.doubleValue();

81 updateDisplay();

82 }

83 else

84 {

85 numberText.setText("Parse error: " + s);

86 }

87 }

88 catch (ParseException e)

89 {

90 numberText.setText("Parse error: " + s);

91 }

92 });

93 pack();

94 }

95

96 /**

97 * Adds a radio button to a container.

98 * @param p the container into which to place the button

99 * @param b the button

100 * @param g the button group

101 * @param listener the button listener

102 */

103 public void addRadioButton(Container p, JRadioButton b, ButtonGroup g,

ActionListener listener)

104 {

105 b.setSelected(g.getButtonCount() == 0);

106 b.addActionListener(listener);

107 g.add(b);

108 p.add(b);

109 }

110

111 /**

112 * Updates the display and formats the number according to the user

settings.

113 */

114 public void updateDisplay()

115 {

116 Locale currentLocale = locales[localeCombo.getSelectedIndex()];

117 currentNumberFormat = null;

118 if (numberRadioButton.isSelected()) currentNumberFormat =

NumberFormat

119 .getNumberInstance(currentLocale);

120 else if (currencyRadioButton.isSelected()) currentNumberFormat =

NumberFormat

121 .getCurrencyInstance(currentLocale);

122 else if (percentRadioButton.isSelected()) currentNumberFormat =

NumberFormat

123 .getPercentInstance(currentLocale);

124 String n = currentNumberFormat.format(currentNumber);

125 numberText.setText(n);

126 }

127 }

java.text.NumberFormat 1.1

• static Locale[] getAvailableLocales()

returns an array of Locale objects for which NumberFormat formatters are available.

• static NumberFormat getNumberInstance()

• static NumberFormat getNumberInstance(Locale l)

• static NumberFormat getCurrencyInstance()

• static NumberFormat getCurrencyInstance(Locale l)

• static NumberFormat getPercentInstance()

• static NumberFormat getPercentInstance(Locale l)

returns a formatter for numbers, currency amounts, or percentage values for the current

locale or for the given locale.

• String format(double x)

• String format(long x)

returns the string resulting from formatting the given floating-point number or integer.

• Number parse(String s)

parses the given string and returns the number value, as a Double if the input string

described a floating-point number and as a Long otherwise. The beginning of the string must

contain a number; no leading whitespace is allowed. The number can be followed by other

characters, which are ignored. Throws ParseException if parsing was not successful.

• void setParseIntegerOnly(boolean b)

• boolean isParseIntegerOnly()

sets or gets a flag to indicate whether this formatter should parse only integer values.

• void setGroupingUsed(boolean b)

• boolean isGroupingUsed()

sets or gets a flag to indicate whether this formatter emits and recognizes decimal

separators (such as 100,000).

• void setMinimumIntegerDigits(int n)

• int getMinimumIntegerDigits()

• void setMaximumIntegerDigits(int n)

• int getMaximumIntegerDigits()

• void setMinimumFractionDigits(int n)

• int getMinimumFractionDigits()

• void setMaximumFractionDigits(int n)

• int getMaximumFractionDigits()

sets or gets the maximum or minimum number of digits allowed in the integer or fractional

part of a number.

7.3 Currencies

To format a currency value, you can use the NumberFormat.getCurrencyInstance method.

However, that method is not very flexible—it returns a formatter for a single currency.

Suppose you prepare an invoice for an American customer in which some amounts are in dollars

and others are in Euros. You can’t just use two formatters

 NumberFormat dollarFormatter = NumberFormat.getCurrencyInstance(Locale.US);

 NumberFormat euroFormatter = NumberFormat.getCurrencyInstance(Locale.GERMANY);

Your invoice would look very strange, with some values formatted like $100,000 and others

like 100.000 €. (Note that the Euro value uses a decimal point, not a comma.)

Instead, use the Currency class to control the currency used by the formatters. You can

get a Currency object by passing a currency identifier to the static Currency.getInstance

method. Then call the setCurrency method for each formatter. Here is how you would set up

the Euro formatter for your American customer:

 NumberFormat euroFormatter =

NumberFormat.getCurrencyInstance(Locale.US);

 euroFormatter.setCurrency(Currency.getInstance("EUR"));

The currency identifiers are defined by ISO 4217 (see

www.currency-iso.org/iso_index/iso_tables/iso_tables_a1.htm). Table 7.3 provides a

partial list.

Table 7.3 Currency Identifiers

http://www.currency-iso.org/iso_index/iso_tables/iso_tables_a1.htm
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07tab03

java.util.Currency 1.4

• static Currency getInstance(String currencyCode)

• static Currency getInstance(Locale locale)

returns the Currency instance for the given ISO 4217 currency code or the country of the

given locale.

• String toString()

• String getCurrencyCode()

gets the ISO 4217 currency code of this currency.

• String getSymbol()

• String getSymbol(Locale locale)

gets the formatting symbol of this currency for the default locale or the given locale.

For example, the symbol for USD can be "$" or "US$", depending on the locale.

• int getDefaultFractionDigits()

gets the default number of fraction digits of this currency.

• static Set<Currency> getAvailableCurrencies() 7 gets all available currencies.

7.4 Date and Time

When you are formatting date and time, you should be concerned with four locale-dependent

issues:

• The names of months and weekdays should be presented in the local language.

• There will be local preferences for the order of year, month, and day.

• The Gregorian calendar might not be the local preference for expressing dates.

• The time zone of the location must be taken into account.

The DateTimeFormat class from the java.time package handles these issues. Pick one of the

formatting styles shown in Tables 7.4. Then get a formatter:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07tab04

 FormatStyle style = ...; // One of FormatStyle.SHORT, FormatStyle.MEDIUM, . . .

 DateTimeFormatter dateFormatter = DateTimeFormatter.ofLocalizedDate(style);

 DateTimeFormatter timeFormatter = DateTimeFormatter.ofLocalizedTime(style);

 DateTimeFormatter dateTimeFormatter =

DateTimeFormatter.ofLocalizedDateTime(style);

 // or DateTimeFormatter.ofLocalizedDateTime(style1, style2)

These formatters use the current locale. To use a different locale, use the withLocale

method:

 DateTimeFormatter dateFormatter =

 DateTimeFormatter.ofLocalizedDate(style).withLocale(locale);

Now you can format a LocalDate, LocalDateTime, LocalTime, or ZonedDateTime:

 ZonedDateTime appointment = ...;

 String formatted = formatter.format(appointment);

Table 7.4 Date and Time Formatting Styles

NOTE:

Here we use the DateTimeFormatter class from the java.time package. There is also a legacy

java.text.DateFormatter class from Java 1.1 that works with Date and Calendar objects.

You can use one of the static parse methods of LocalDate, LocalDateTime, LocalTime, or

ZonedDateTime to parse a date or time in a string:

 LocalTime time = LocalTime.parse("9:32 AM", formatter);

These methods are not suitable for parsing human input, at least not without preprocessing.

For example, the short time formatter for the United States will parse "9:32 AM" but not

"9:32AM" or "9:32 am".

CAUTION:

Date formatters parse nonexistent dates, such as November 31, and adjust them to the last

date in the given month.

Sometimes, you need to display just the names of weekdays and months, for example, in a

calendar application. Call the getDisplayName method of the DayOfWeek and Month

enumerations.

 for (Month m : Month.values())

 System.out.println(m.getDisplayName(textStyle, locale) + " ");

Tables 7.5 shows the text styles. The STANDALONE versions are for display outside a formatted

date. For example, in Finnish, January is “tammikuuta” inside a date, but “tammikuu”

standalone.

Table 7.5 Values of the java.time.format.TextStyle Enumeration

Listing 7.2 shows the DateFormat class in action. You can select a locale and see how the

date and time are formatted in different places around the world.

Figure 7.2 shows the program (after Chinese fonts were installed). As you can see, it

correctly displays the output.

Figure 7.2 The DateFormatTest program

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07tab05
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07fig02

You can also experiment with parsing. Enter a date, time, or date/time and click the “Parse”

button.

We use a helper class EnumCombo to solve a technical problem (see Listing 7.3). We wanted

to fill a combo with values such as Short, Medium, and Long and then automatically convert

the user’s selection to values FormatStyle.SHORT, FormatStyle.MEDIUM, and

FormatStyle.LONG. Instead of writing repetitive code, we use reflection: We convert the

user’s choice to upper case, replace all spaces with underscores, and then find the value

of the static field with that name. (See Volume I, Chapter 5 for more details about

reflection.)

Listing 7.2 dateFormat/DateTimeFormatterTest.java

 1 package dateFormat;

 2

 3 import java.awt.*;

 4 import java.awt.event.*;

 5 import java.time.*;

 6 import java.time.format.*;

 7 import java.util.*;

 8

 9 import javax.swing.*;

10

11 /**

12 * This program demonstrates formatting dates under various locales.

13 * @version 1.00 2016-05-06

14 * @author Cay Horstmann

15 */

16 public class DateTimeFormatterTest

17 {

18 public static void main(String[] args)

19 {

20 EventQueue.invokeLater(() ->

21 {

22 JFrame frame = new DateTimeFormatterFrame();

23 frame.setTitle("DateFormatTest");

24 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE

);

25 frame.setVisible(true);

26 });

27 }

28 }

29

30 /**

31 * This frame contains combo boxes to pick a locale, date and time formats, text

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05

fields to display

32 * formatted date and time, buttons to parse the text field contents, and a

"lenient" check box.

33 */

34 class DateTimeFormatterFrame extends JFrame

35 {

36 private Locale[] locales;

37 private LocalDate currentDate;

38 private LocalTime currentTime;

39 private ZonedDateTime currentDateTime;

40 private DateTimeFormatter currentDateFormat;

41 private DateTimeFormatter currentTimeFormat;

42 private DateTimeFormatter currentDateTimeFormat;

43 private JComboBox<String> localeCombo = new JComboBox<>();

44 private JButton dateParseButton = new JButton("Parse");

45 private JButton timeParseButton = new JButton("Parse");

46 private JButton dateTimeParseButton = new JButton("Parse");

47 private JTextField dateText = new JTextField(30);

48 private JTextField timeText = new JTextField(30);

49 private JTextField dateTimeText = new JTextField(30);

50 private EnumCombo<FormatStyle> dateStyleCombo = new

EnumCombo<>(FormatStyle.class,

51 "Short", "Medium", "Long", "Full");

52 private EnumCombo<FormatStyle> timeStyleCombo = new

EnumCombo<>(FormatStyle.class,

53 "Short", "Medium");

54 private EnumCombo<FormatStyle> dateTimeStyleCombo = new

EnumCombo<>(FormatStyle.class,

55 "Short", "Medium", "Long", "Full");

56

57 public DateTimeFormatterFrame()

58 {

59 setLayout(new GridBagLayout());

60 add(new JLabel("Locale"), new GBC(0, 0).setAnchor(GBC.EAST));

61 add(localeCombo, new GBC(1, 0, 2, 1).setAnchor(GBC.WEST));

62

63 add(new JLabel("Date"), new GBC(0, 1).setAnchor(GBC.EAST));

64 add(dateStyleCombo, new GBC(1, 1).setAnchor(GBC.WEST));

65 add(dateText, new GBC(2, 1, 2, 1).setFill(GBC.HORIZONTAL));

66 add(dateParseButton, new GBC(4, 1).setAnchor(GBC.WEST));

67

68 add(new JLabel("Time"), new GBC(0, 2).setAnchor(GBC.EAST));

69 add(timeStyleCombo, new GBC(1, 2).setAnchor(GBC.WEST));

70 add(timeText, new GBC(2, 2, 2, 1).setFill(GBC.HORIZONTAL));

71 add(timeParseButton, new GBC(4, 2).setAnchor(GBC.WEST));

72

73 add(new JLabel("Date and time"), new GBC(0, 3).setAnchor(GBC.EAST));

74 add(dateTimeStyleCombo, new GBC(1, 3).setAnchor(GBC.WEST));

75 add(dateTimeText, new GBC(2, 3, 2, 1).setFill(GBC.HORIZONTAL));

76 add(dateTimeParseButton, new GBC(4, 3).setAnchor(GBC.WEST));

77

78 locales = (Locale[]) Locale.getAvailableLocales().clone();

79 Arrays.sort(locales,

Comparator.comparing(Locale::getDisplayName));

80 for (Locale loc : locales)

81 localeCombo.addItem(loc.getDisplayName());

82 localeCombo.setSelectedItem(Locale.getDefault().getDisplayName()

);

83 currentDate = LocalDate.now();

84 currentTime = LocalTime.now();

85 currentDateTime = ZonedDateTime.now();

86 updateDisplay();

87

88 ActionListener listener = event -> updateDisplay();

89

90 localeCombo.addActionListener(listener);

91 dateStyleCombo.addActionListener(listener);

92 timeStyleCombo.addActionListener(listener);

93 dateTimeStyleCombo.addActionListener(listener);

94

95 dateParseButton.addActionListener(event ->

96 {

97 String d = dateText.getText().trim();

98 try

99 {

100 currentDate = LocalDate.parse(d,

currentDateFormat);

101 updateDisplay();

102 }

103 catch (Exception e)

104 {

105 dateText.setText(e.getMessage());

106 }

107 });

108

109 timeParseButton.addActionListener(event ->

110 {

111 String t = timeText.getText().trim();

112 try

113 {

114 currentTime = LocalTime.parse(t,

currentTimeFormat);

115 updateDisplay();

116 }

117 catch (Exception e)

118 {

119 timeText.setText(e.getMessage());

120 }

121 });

122

123 dateTimeParseButton.addActionListener(event ->

124 {

125 String t = dateTimeText.getText().trim();

126 try

127 {

128 currentDateTime = ZonedDateTime.parse(t,

currentDateTimeFormat);

129 updateDisplay();

130 }

131 catch (Exception e)

132 {

133 dateTimeText.setText(e.getMessage());

134 }

135 });

136

137 pack();

138 }

139

140 /**

141 * Updates the display and formats the date according to the user settings.

142 */

143 public void updateDisplay()

144 {

145 Locale currentLocale = locales[localeCombo.getSelectedIndex()];

146 FormatStyle dateStyle = dateStyleCombo.getValue();

147 currentDateFormat = DateTimeFormatter.ofLocalizedDate(

148 dateStyle).withLocale(currentLocale);

149 dateText.setText(currentDateFormat.format(currentDate));

150 FormatStyle timeStyle = timeStyleCombo.getValue();

151 currentTimeFormat = DateTimeFormatter.ofLocalizedTime(

152 timeStyle).withLocale(currentLocale);

153 timeText.setText(currentTimeFormat.format(currentTime));

154 FormatStyle dateTimeStyle = dateTimeStyleCombo.getValue();

155 currentDateTimeFormat = DateTimeFormatter.ofLocalizedDateTime(

156 dateTimeStyle).withLocale(currentLocale);

157 dateTimeText.setText(currentDateTimeFormat.format(currentDateTi

me));

158 }

159 }

Listing 7.3 dateFormat/EnumCombo.java

 1 package dateFormat;

 2

 3 import java.util.*;

 4 import javax.swing.*;

 5

 6 /**

 7 A combo box that lets users choose from among static field

 8 values whose names are given in the constructor.

 9 @version 1.15 2016-05-06

10 @author Cay Horstmann

11 */

12 public class EnumCombo<T> extends JComboBox<String>

13 {

14 private Map<String, T> table = new TreeMap<>();

15

16 /**

17 Constructs an EnumCombo yielding values of type T.

18 @param cl a class

19 @param labels an array of strings describing static field names

20 of cl that have type T

21 */

22 public EnumCombo(Class<?> cl, String... labels)

23 {

24 for (String label : labels)

25 {

26 String name = label.toUpperCase().replace(' ', '_');

27 try

28 {

29 java.lang.reflect.Field f = cl.getField(name);

30 @SuppressWarnings("unchecked") T value = (T) f.get(cl);

31 table.put(label, value);

32 }

33 catch (Exception e)

34 {

35 label = "(" + label + ")";

36 table.put(label, null);

37 }

38 addItem(label);

39 }

40 setSelectedItem(labels[0]);

41 }

42

43 /**

44 Returns the value of the field that the user selected.

45 @return the static field value

46 */

47 public T getValue()

48 {

49 return table.get(getSelectedItem());

50 }

51 }

java.time.format.DateTimeFormatter 8

• static DateTimeFormatter ofLocalizedDate(FormatStyle dateStyle)

• static DateTimeFormatter ofLocalizedTime(FormatStyle dateStyle)

• static DateTimeFormatter ofLocalizedDateTime(FormatStyle dateTimeStyle)

• static DateTimeFormatter ofLocalizedDate(FormatStyle dateStyle, FormatStyle timeStyle)

return DateTimeFormatter instances that format dates, times, or dates and times with the

specified styles.

• DateTimeFormatter withLocale(Locale locale)

returns a copy of this formatter with the given locale.

• String format(TemporalAccessor temporal)

returns the string resulting from formatting the given date/time.

java.time.LocalDate 8

java.time.LocalTime 8

java.time.LocalDateTime 8

java.time.ZonedDateTime 8

• static Xxx parse(CharSequence text, DateTimeFormatter formatter)

parses the given string and returns the LocalDate, LocalTime, LocalDateTime, or

ZonedDateTime described in it. Throws a DateTimeParseException if parsing was not

successful.

7.5 Collation and Normalization

Most programmers know how to compare strings with the compareTo method of the String class.

Unfortunately, when interacting with human users, this method is not very useful. The

compareTo method uses the values of the UTF-16 encoding of the string, which leads to absurd

results, even in English. For example, the following five strings are ordered according

to the compareTo method:

 America

 Zulu

 able

 zebra

 Ångström

For dictionary ordering, you would want to consider upper case and lower case to be

equivalent. To an English speaker, the sample list of words would be ordered as

 able

 America

 Ångström

 zebra

 Zulu

However, that order would not be acceptable to a Swedish user. In Swedish, the letter Å

is different from the letter A, and it is collated after the letter Z! That is, a Swedish
user would want the words to be sorted as

 able

 America

 zebra

 Zulu

 Ångström

To obtain a locale-sensitive comparator, call the static Collator.getInstance method:

 Collator coll = Collator.getInstance(locale);

 Collections.sort(words, coll); // Collator implements Comparator<Object>

Since the Collator class implements the Comparator interface, you can pass a Collator object

to the Collections.sort method to sort a list of strings.

There are a couple of advanced settings for collators. You can set a collator’s strength
to select how selective it should be. Character differences are classified as primary,
secondary, or tertiary. For example, in English, the difference between “A” and “Z”

is considered primary, the difference between “A” and “Å” is secondary, and between

“A” and “a” is tertiary.

By setting the strength of the collator to Collator.PRIMARY, you tell it to pay

attention only to primary differences. By setting the strength to

Collator.SECONDARY, you instruct the collator to take secondary differences into account.

That is, two strings will be more likely to be considered different when the strength is

set to "secondary" or "tertiary," as shown in Table 7.6.

Table 7.6 Collations with Different Strengths (English Locale)

When the strength has been set to Collator.IDENTICAL, no differences are allowed.

This setting is mainly useful in conjunction with a rather technical collator setting,

the decomposition mode, which we take up next.

Occasionally, a character or sequence of characters can be described in more than one

way in Unicode. For example, an "Å" can be Unicode character U+00C5, or it can be

expressed as a plain A (U+0065) followed by a° ("combining ring above"; U+030A). Perhaps

more surprisingly, the letter sequence "ffi" can be described with a single character

"Latin small ligature ffi" with code U+FB03. (One could argue that this is a presentation

issue that should not have resulted in different Unicode characters, but we don’t make

the rules.)

The Unicode standard defines four normalization forms (D, KD, C, and KC) for strings.

See www.unicode.org/unicode/reports/tr15/tr15-23.html for the details. In the

normalization form C, accented characters are always composed. For example, a

sequence of A and a combining ring above° is combined into a single character Å. In

form D, accented characters are always decomposed into their base letters and combining

accents: Å is turned into A followed by°. Forms KC and KD also decompose characters such

as ligatures or the trademark symbol.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07tab06
http://www.unicode.org/unicode/reports/tr15/tr15-23.html

You can choose the degree of normalization that you want a collator to use. The value

Collator.NO_DECOMPOSITION does not normalize strings at all. This option is faster, but

it might not be appropriate for text that expresses characters in multiple forms. The default,

Collator.CANONICAL_DECOMPOSITION, uses the normalization form D. This is useful for

text that contains accents but not ligatures. Finally, "full decomposition" uses

normalization form KD. See Table 7.7 for examples.

Table 7.7 Differences between Decomposition Modes

It is wasteful to have the collator decompose a string many times. If one string is compared

many times against other strings, you can save the decomposition in a collation key object.

The getCollationKey method returns a CollationKey object that you can use for further,

faster comparisons. Here is an example:

 String a = . . .;

 CollationKey aKey = coll.getCollationKey(a);

 if(aKey.compareTo(coll.getCollationKey(b)) == 0) // fast comparison

 ...

Finally, you might want to convert strings into their normalized forms even when you don’t

do collation—for example, when storing strings in a database or communicating with another

program. The java.text.Normalizer class carries out the normalization process. For example,

 String name = "Ångström";

 String normalized = Normalizer.normalize(name, Normalizer.Form.NFD); // uses

normalization form D

The normalized string contains ten characters. The "Å" and "ö" are replaced by "Å" and "ö"

sequences.

However, that is not usually the best form for storage and transmission. Normalization form

C first applies decomposition and then combines the accents back in a standardized order.

According to the W3C, this is the recommended mode for transferring data over the Internet.

The program in Listing 7.4 lets you experiment with collation order. Type a word into the

text field and click the Add button to add it to the list of words. Each time you add another

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07tab07

word, or change the locale, strength, or decomposition mode, the list of words is sorted

again. An = sign indicates words that are considered identical (see Figure 7.3).

Figure 7.3 The CollationTest program

The locale names in the combo box are displayed in sorted order, using the collator of the

default locale. If you run this program with the US English locale, note that “Norwegian

(Norway,Nynorsk)” comes before “Norwegian (Norway)”, even though the Unicode value of

the comma character is greater than the Unicode value of the closing parenthesis.

Listing 7.4 collation/CollationTest.java

 1 package collation;

 2

 3 import java.awt.*;

 4 import java.awt.event.*;

 5 import java.text.*;

 6 import java.util.*;

 7 import java.util.List;

 8

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07fig03

 9 import javax.swing.*;

10

11 /**

12 * This program demonstrates collating strings under various locales.

13 * @version 1.15 2016-05-06

14 * @author Cay Horstmann

15 */

16 public class CollationTest

17 {

18 public static void main(String[] args)

19 {

20 EventQueue.invokeLater(() ->

21 {

22 JFrame frame = new CollationFrame();

23 frame.setTitle("CollationTest");

24 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

25 frame.setVisible(true);

26 });

27 }

28 }

29

30 /**

31 * This frame contains combo boxes to pick a locale, collation strength and

decomposition rules, a

32 * text field and button to add new strings, and a text area to list the collated

strings.

33 */

34 class CollationFrame extends JFrame

35 {

36 private Collator collator = Collator.getInstance(Locale.getDefault());

37 private List<String> strings = new ArrayList<>();

38 private Collator currentCollator;

39 private Locale[] locales;

40 private JComboBox<String> localeCombo = new JComboBox<>();

41 private JTextField newWord = new JTextField(20);

42 private JTextArea sortedWords = new JTextArea(20, 20);

43 private JButton addButton = new JButton("Add");

44 private EnumCombo<Integer> strengthCombo = new EnumCombo<>(Collator.class,

"Primary",

45 "Secondary", "Tertiary", "Identical");

46 private EnumCombo<Integer> decompositionCombo = new

EnumCombo<>(Collator.class,

47 "Canonical Decomposition", "Full Decomposition", "No

Decomposition");

48

49 public CollationFrame()

50 {

51 setLayout(new GridBagLayout());

52 add(new JLabel("Locale"), new GBC(0, 0).setAnchor(GBC.EAST));

53 add(new JLabel("Strength"), new GBC(0, 1).setAnchor(GBC.EAST));

54 add(new JLabel("Decomposition"), new GBC(0, 2).setAnchor(GBC.EAST));

55 add(addButton, new GBC(0, 3).setAnchor(GBC.EAST));

56 add(localeCombo, new GBC(1, 0).setAnchor(GBC.WEST));

57 add(strengthCombo, new GBC(1, 1).setAnchor(GBC.WEST));

58 add(decompositionCombo, new GBC(1, 2).setAnchor(GBC.WEST));

59 add(newWord, new GBC(1, 3).setFill(GBC.HORIZONTAL));

60 add(new JScrollPane(sortedWords), new GBC(0, 4, 2,

1).setFill(GBC.BOTH));

61

62 locales = (Locale[]) Collator.getAvailableLocales().clone();

63 Arrays.sort(locales, (l1, l2) ->

collator.compare(l1.getDisplayName(), l2.getDisplayName()));

64 for (Locale loc : locales)

65 localeCombo.addItem(loc.getDisplayName());

66 localeCombo.setSelectedItem(Locale.getDefault().getDisplayName()

);

67

68 strings.add("America");

69 strings.add("able");

70 strings.add("Zulu");

71 strings.add("zebra");

72 strings.add("\u00C5ngstr\u00F6m");

73 strings.add("A\u030angstro\u0308m");

74 strings.add("Angstrom");

75 strings.add("Able");

76 strings.add("office");

77 strings.add("o\uFB03ce");

78 strings.add("Java\u2122");

79 strings.add("JavaTM");

80 updateDisplay();

81

82 addButton.addActionListener(event ->

83 {

84 strings.add(newWord.getText());

85 updateDisplay();

86 });

87

88 ActionListener listener = event -> updateDisplay();

89

90 localeCombo.addActionListener(listener);

91 strengthCombo.addActionListener(listener);

92 decompositionCombo.addActionListener(listener);

93 pack();

94 }

95

96 /**

97 * Updates the display and collates the strings according to the user settings.

98 */

99 public void updateDisplay()

100 {

101 Locale currentLocale = locales[localeCombo.getSelectedIndex()];

102 localeCombo.setLocale(currentLocale);

103

104 currentCollator = Collator.getInstance(currentLocale);

105 currentCollator.setStrength(strengthCombo.getValue());

106 currentCollator.setDecomposition(decompositionCombo.getValue());

107

108 Collections.sort(strings, currentCollator);

109

110 sortedWords.setText("");

111 for (int i = 0; i < strings.size(); i++)

112 {

113 String s = strings.get(i);

114 if (i > 0 && currentCollator.compare(s, strings.get(i - 1))

== 0) sortedWords

115 .append("= ");

116 sortedWords.append(s + "\n");

117 }

118 pack();

119 }

120 }

java.text.Collator 1.1

• static Locale[] getAvailableLocales()

returns an array of Locale objects for which Collator objects are available.

• static Collator getInstance()

• static Collator getInstance(Locale l)

returns a collator for the default locale or the given locale.

• int compare(String a, String b)

returns a negative value if a comes before b, 0 if they are considered identical, and a

positive value otherwise.

• boolean equals(String a, String b)

returns true if they are considered identical, false otherwise.

• void setStrength(int strength)

• int getStrength()

sets or gets the strength of the collator. Stronger collators tell more words apart. Strength

values are Collator.PRIMARY, Collator.SECONDARY, and Collator.TERTIARY.

• void setDecomposition(int decomp)

• int getDecompositon()

sets or gets the decomposition mode of the collator.The more a collator decomposes a string,

the more strict it will be in deciding whether two strings should be considered identical.

Decomposition values are Collator.NO_DECOMPOSITION, Collator.CANONICAL_DECOMPOSITION,

and Collator.FULL_DECOMPOSITION.

• CollationKey getCollationKey(String a)

returns a collation key that contains a decomposition of the characters in a form that can

be quickly compared against another collation key.

java.text.CollationKey 1.1

• int compareTo(CollationKey b)

returns a negative value if this key comes before b, 0 if they are considered identical,

and a positive value otherwise.

java.text.Normalizer 6

• static String normalize(CharSequence str, Normalizer.Form form)

returns the normalized form of str. The form value is one of ND, NKD, NC, or NKC.

7.6 Message Formatting

The Java library has a MessageFormat class that formats text with variable parts. It is

similar to formatting with the printf method, but it supports locales and formats for numbers

and dates. We will examine that mechanism in the following sections.

7.6.1 Formatting Numbers and Dates

Here is a typical message format string:

 "On {2}, a {0} destroyed {1} houses and caused {3} of damage."

The numbers in braces are placeholders for actual names and values. The static method

MessageFormat.format lets you substitute values for the variables. It is a “varargs”

method, so you can simply supply the parameters as follows:

 String msg = MessageFormat.format("On {2}, a {0} destroyed {1} houses and

caused {3} of damage.",

 "hurricane", 99, new GregorianCalendar(1999, 0, 1).getTime(),

10.0E8);

In this example, the placeholder {0} is replaced with "hurricane", {1} is replaced with

99, and so on.

The result of our example is the string

 On 1/1/99 12:00 AM, a hurricane destroyed 99 houses and caused 100,000,000 of

damage.

That is a start, but it is not perfect. We don’t want to display the time “12:00 AM,”

and we want the damage amount printed as a currency value. The way we do this is by supplying

an optional format for some of the placeholders:

 "On {2,date,long}, a {0} destroyed {1} houses and caused {3,number,currency} of

damage."

This example code prints:

 On January 1, 1999, a hurricane destroyed 99 houses and caused $100,000,000 of damage.

In general, the placeholder index can be followed by a type and a style. Separate the index,
type, and style by commas. The type can be any of

 number

 time

 date

 choice

If the type is number, then the style can be

 integer

 currency

 percent

or it can be a number format pattern such as $,##0. (See the documentation of the

DecimalFormat class for more information about the possible formats.)

If the type is either time or date, then the style can be

 short

 medium

 long

 full

or a date format pattern such as yyyy-MM-dd. (See the documentation of the SimpleDateFormat

class for more information about the possible formats.)

CAUTION:

The static MessageFormat.format method uses the current locale to format the values. To

format with an arbitrary locale, you have to work a bit harder because there is no “varargs”

method that you can use. You need to place the values to be formatted into an Object[] array,

like this:

 MessageFormat mf = new MessageFormat(pattern, loc);

 String msg = mf.format(new Object[] { values });

java.text.MessageFormat 1.1

• MessageFormat(String pattern)

• MessageFormat(String pattern, Locale loc)

constructs a message format object with the specified pattern and locale.

• void applyPattern(String pattern)

sets the pattern of a message format object to the specified pattern.

• void setLocale(Locale loc)

• Locale getLocale()

sets or gets the locale to be used for the placeholders in the message. The locale is only
used for subsequent patterns that you set by calling the applyPattern method.

• static String format(String pattern, Object... args)

formats the pattern string by using args[i] as input for placeholder {i}.

• StringBuffer format(Object args, StringBuffer result, FieldPosition pos)

formats the pattern of this MessageFormat. The args parameter must be an array of objects.The

formatted string is appended to result, and result is returned. If pos equals new

FieldPosition(MessageFormat.Field.ARGUMENT), its beginIndex and endIndex properties are

set to the location of the text that replaces the {1} placeholder. Supply null if you are

not interested in position information.

java.text.Format 1.1

• String format(Object obj)

formats the given object, according to the rules of this formatter. This method calls

format(obj, new StringBuffer(), new FieldPosition(1)).toString().

7.6.2 Choice Formats

Let’s look closer at the pattern of the preceding section:

 "On {2}, a {0} destroyed {1} houses and caused {3} of damage."

If we replace the disaster placeholder {0} with "earthquake", the sentence is not

grammatically correct in English:

 On January 1, 1999, a earthquake destroyed . . .

That means what we really want to do is integrate the article “a” into the placeholder:

 "On {2}, {0} destroyed {1} houses and caused {3} of damage."

The {0} would then be replaced with "a hurricane" or "an earthquake". That is especially

appropriate if this message needs to be translated into a language where the gender of a

word affects the article. For example, in German, the pattern would be

 "{0} zerstörte am {2} {1} Häuser und richtete einen Schaden von {3} an."

The placeholder would then be replaced with the grammatically correct combination of article

and noun, such as "Ein Wirbelsturm" or "Eine Naturkatastrophe".

Now let us turn to the {1} parameter. If the disaster wasn’t all that catastrophic, {1}

might be replaced with the number 1, and the message would read:

 On January 1, 1999, a mudslide destroyed 1 houses and . . .

Ideally, we would like the message to vary according to the placeholder value, so it would

read

 no houses

 one house

 2 houses

 ...

depending on the placeholder value. The choice formatting option was designed for this

purpose.

A choice format is a sequence of pairs, each containing

• A lower limit

• A format string

The lower limit and format string are separated by a # character, and the pairs are separated

by | characters.

For example,

 {1,choice,0#no houses|1#one house|2#{1} houses}

Table 7.8 shows the effect of this format string for various values of {1}.

Table 7.8 String Formatted by Choice Format

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07tab08

Why do we use {1} twice in the format string? When the message format applies the choice

format to the {1} placeholder and the value is $2, the choice format returns "{1} houses".

That string is then formatted again by the message format, and the answer is spliced into

the result.

NOTE:

This example shows that the designer of the choice format was a bit muddleheaded. If you

have three format strings, you need two limits to separate them. In general, you need one

fewer limit than you have format strings. As you saw in Table 7.8, the MessageFormat class
ignores the first limit.

The syntax would have been a lot clearer if the designer of this class realized that the

limits belong between the choices, such as

 no houses|1|one house|2|{1} houses // not the actual format

You can use the < symbol to denote that a choice should be selected if the lower bound is

strictly less than the value.

You can use the < symbol to denote that a choice should be selected if the lower bound is

strictly less than the value. You can also use the symbol (expressed as the Unicode

character code \u2264) as a synonym for #. If you like, you can even specify a lower bound

of - as -\u221E for the first value.

For example,

 -<no houses|0<one house|2{1} houses

or, using Unicode escapes,

 -\u221E<no houses|0<one house|2\u2264{1} houses

Let's finish our natural disaster scenario. If we put the choice string inside the original

message string, we get the following format instruction:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07tab08

 String pattern = "On {2,date,long}, {0} destroyed {1,choice,0#no

houses|1#one house|2#{1}

 houses}" + "and caused {3,number,currency} of damage.";

Or, in German,

 String pattern = "{0} zerstörte am {2,date,long} {1,choice,0#kein

Haus|1#ein Haus|2#{1} Häuser}"

 + "und richtete einen Schaden von {3,number,currency} an.";

Note that the ordering of the words is different in German, but the array of objects you

pass to the format method is the same. The order of the placeholders in the format string

takes care of the changes in the word ordering.

7.7 Text Input and Output

As you know, the Java programming language itself is fully Unicode-based. However, Windows

and Mac OS X still support legacy character encodings such as "Windows-1252" or "Mac Roman"

in Western European countries, or "Big 5" in Taiwan. Therefore, communicating with your

users through text is not as simple as it should be. The following sections discuss the

complications that you may encounter.

7.7.1 Text Files

Nowadays, it is best to use UTF-8 for saving and loading text files. But you may need to

work with legacy files. If you know the expected character encoding, you can specify it

when writing or reading text files:

 PrintWriter out = new PrintWriter(filename, "Windows-1252");

For a guess of the best encoding to use, get the “platform encoding” by calling

 Charset platformEncoding = Charset.defaultCharset();

7.7.2 Line Endings

This isn’t an issue of locales but of platforms. On Windows, text files are expected to

use \r\n at the end of each line, where Unix-based systems only require a \n character.

Nowadays, most Windows programs can deal with just a \n. The notable exception is Notepad.

If it is important to you that users can double-click on a text file that your application

produces and view it in Notepad, make sure that the text file has proper line endings.

Any line written with the println method will be properly terminated. The only problem is

if you print strings that contain \n characters. They are not automatically modified to

the platform line ending.

Instead of using \n in strings, you can use printf and the %n format specifier to produce

platform-dependent line endings. For example,

 out.printf("Hello%nWorld%n");

produces

 Hello\r\nWorld\r\n

on Windows and

 Hello\nWorld\n

everywhere else.

7.7.3 The Console

If you write programs that communicate with the user through System.in/System.out or

System.console(), then you have to face the possibility that the console may use a character

encoding that is different from the platform encoding reported by Charset.defaultCharset().

This is particularly noticeable when working with the cmd shell on Windows. In the US version,

the command shell uses the archaic IBM437 encoding that originated with IBM personal

computers in 1982. There is no official API for revealing that information. The

Charset.defaultCharset() method will return the Windows-1252 character set, which is quite

different. For example, the euro symbol € is present in Windows-1252 but not in IBM437.

When you call

 System.out.println("100 ");

the console will display

100 ?

You can advise your users to switch the character encoding of the console. In Windows, that

is achieved with the chcp command. For example,

 chcp 1252

changes the console to the Windows-1252 code page.

Ideally, of course, your users should switch the console to UTF-8. In Windows, the command

is

 chcp 65001

Unfortunately, that is not enough to make Java use UTF-8 in the console. It is also necessary

to set the platform encoding with the unofficial file.encoding system property:

 java -Dfile.encoding=UTF-8 MyProg

7.7.4 Log Files

When log messages from the java.util.logging library are sent to the console, they are

written with the console encoding. You saw how to control that in the preceding section.

However, log messages in a file use a FileHandler which, by default, uses the platform

encoding.

To change the encoding to UTF-8, you need to change the log manager settings. In the logging

configuration file, set

 java.util.logging.FileHandler.encoding=UTF-8

7.7.5 The UTF-8 Byte Order Mark

As already mentioned, it is a good idea to use UTF-8 for text files when you can. If your

application has to read UTF-8 text files that were created by other programs, you run into

another potential problem. It is perfectly legal to add a “byte order mark” character

U+FEFF as the first character of a file. In the UTF-16 encoding, where each code unit is

a two-byte quantity, the byte order mark tells a reader whether the file uses “big-endian”

or “little-endian” byte ordering. UTF-8 is a single-byte encoding, so there is no need

for specifying a byte ordering. But if a file starts with bytes 0xEF 0xBB 0xBF (the UTF-8

encoding of U+FEFF), that is a strong indication that it uses UTF-8. For that reason, the

Unicode standard encourages this practice. Any reader is supposed to discard an initial

byte order mark.

There is just one fly in the ointment. The Oracle Java implementation stubbornly refuses

follow the Unicode standard, citing potential compatibility issues. That means that you,

the programmer, must do what the platform won’t do. When you read a text file and encounter

a U+FEFF at the beginning, ignore it.

CAUTION:

Unfortunately, the JDK implementors do not follow this advice. When you pass the javac

compiler a valid UTF-8 source file that starts with a byte order mark, compilation fails

with an error message “illegal character: \65279”.

7.7.6 Character Encoding of Source Files

It is worth keeping in mind that you, the programmer, will need to communicate with the

Java compiler. And you do that with tools on your local system. For example, you can use

the Chinese version of Notepad to write your Java source code files. The resulting source

code files are not portable because they use the local character encoding (GB or Big5,
depending on which Chinese operating system you use). Only the compiled class files are

portable—they will automatically use the “modified UTF-8” encoding for identifiers and

strings. That means that when a program is compiling and running, three character encodings

are involved:

• Source files: platform encoding

• Class files: modified UTF-8

• Virtual machine: UTF-16

(See Chapter 2 for a definition of the modified UTF-8 and UTF-16 formats.)

TIP:

You can specify the character encoding of your source files with the -encoding flag, for

example,

 javac -encoding UTF-8 Myfile.java

To make your source files portable, restrict yourself to using the plain ASCII encoding.

That is, you should change all non-ASCII characters to their equivalent Unicode encodings.

For example, instead of using the string "Häuser", use "H\u0084user".

The JDK contains a utility, native2ascii, that you can use to convert the native character

encoding to plain ASCII. This utility simply replaces every non-ASCII character in the input

with a \u followed by the four hex digits of the Unicode value. To use the native2ascii

program, provide the input and output file names.

 native2ascii Myfile.java Myfile.temp

You can convert the other way with the -reverse option:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02

 native2ascii -reverse Myfile.temp Myfile.java

You can specify another encoding with the -encoding option. The encoding name must be one

of those listed in [Missing XREF!].

 native2ascii -encoding UTF-8 Myfile.java Myfile.temp

7.8 Resource Bundles

When localizing an application, you’ll probably have a dauntingly large number of message

strings, button labels, and so on, that all need to be translated. To make this task feasible,

you’ll want to define the message strings in an external location, usually called a resource.
The person carrying out the translation can then simply edit the resource files without

having to touch the source code of the program.

In Java, you can use property files to specify string resources, and you can implement

classes for resources of other types.

NOTE:

Java technology resources are not the same as Windows or Macintosh resources. A Macintosh

or Windows executable program stores resources, such as menus, dialog boxes, icons, and

messages, in a section separate from the program code.A resource editor can inspect and

update these resources without affecting the program code.

NOTE:

Volume I, Chapter 10 describes a concept of JAR file resources, whereby data files, sounds,

and images can be placed in a JAR file. The getResource method of the class Class finds

the file, opens it, and returns a URL to the resource. By placing the files into the JAR

file, you leave the job of finding the files to the class loader, which already knows how

to locate items in a JAR file. However, that mechanism has no locale support.

7.8.1 Locating Resource Bundles

When localizing an application, you produce a set of resource bundles. Each bundle is a
property file or a class that describes locale-specific items (such as messages, labels,

and so on). For each bundle, you have to provide versions for all locales that you want

to support.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10

You need to use a specific naming convention for these bundles. For example, resources

specific to Germany go into a file bundleName_de_DE, whereas those shared by all
German-speaking countries go into bundleName_de. In general, use

 bundleName_language_country

for all country-specific resources, and use

 bundleName_language

for all language-specific resources. Finally, as a fallback, you can put defaults into a

file without any suffix.

To load a bundle, use the command

 ResourceBundle currentResources = ResourceBundle.getBundle(bundleName,
currentLocale);

The getBundle method attempts to load the bundle that matches the current locale by language

and country. If it is not successful, the country and the language are dropped in turn.

Then the same search is applied to the default locale, and finally, the default bundle file

is consulted. If even that attempt fails, the method throws a MissingResourceException.

That is, the getBundle method tries to load the following bundles:

 bundleName_currentLocaleLanguage_currentLocaleCountrybundleName_currentLocaleLangu
age
 bundleName_currentLocaleLanguage_defaultLocaleCountry
 bundleName_defaultLocaleLanguage
 bundleName

Once the getBundle method has located a bundle (say, bundleName_de_DE), it will still keep
looking for bundleName_de and bundleName. If these bundles exist, they become the parents
of the bundleName_de_DE bundle in a resource hierarchy. Later, when looking up a resource,
the parents are searched if a lookup was not successful in the current bundle. That is,

if a particular resource was not found in bundleName_de_DE, then the bundleName_de and
bundleName will be queried as well.

This is clearly a very useful service—and one that would be tedious to program by hand.

The resource bundle mechanism of the Java programming language automatically locates the

items that are the best match for a given locale. It is easy to add more and more localizations

to an existing program—all you have to do is create additional resource bundles.

NOTE:

We simplified the discussion of resource bundle lookup. If a locale has a script or variant,

the lookup is quite a bit more complex. See the documentation of the method

ResourceBundle.Control.getCandidateLocales for the gory details.

TIP:

You need not place all resources for your application into a single bundle. You could have

one bundle for button labels, one for error messages, and so on.

7.8.2 Property Files

Internationalizing strings is quite straightforward. You place all your strings into a

property file such as MyProgramStrings.properties. This is simply a text file with one

key/value pair per line. A typical file would look like this:

 computeButton=Rechnen

 colorName=black

 defaultPaperSize=210×297

Then you name your property files as described in the preceding section, for example:

 MyProgramStrings.properties

 MyProgramStrings_en.properties

 MyProgramStrings_de_DE.properties

You can load the bundle simply as

 ResourceBundle bundle = ResourceBundle.getBundle("MyProgramStrings", locale);

To look up a specific string, call

 String computeButtonLabel = bundle.getString("computeButton");

CAUTION:

Files for storing properties are always ASCII files. If you need to place a Unicode character

into a property file, encode it using the \uxxxx encoding. For example, to specify

"colorName=Grün", use

 colorName=Gr\u00FCn

You can use the native2ascii tool to generate these files.

7.8.3 Bundle Classes

To provide resources that are not strings, define classes that extend the ResourceBundle

class. Use the standard naming convention to name your classes, for example

 MyProgramResources.java

 MyProgramResources_en.java

 MyProgramResources_de_DE.java

Load the class with the same getBundle method that you use to load a property file:

 ResourceBundle bundle = ResourceBundle.getBundle("MyProgramResources", locale);

CAUTION:

When searching for bundles, a bundle in a class is given preference over a property file

when the two bundles have the same base names.

Each resource bundle class implements a lookup table. You need to provide a key string for

each setting you want to localize, and use that key string to retrieve the setting. For

example,

 Color backgroundColor = (Color) bundle.getObject("backgroundColor");

 double[] paperSize = (double[]) bundle.getObject("defaultPaperSize");

The simplest way of implementing resource bundle classes is to extend the ListResourceBundle

class. The ListResourceBundle lets you place all your resources into an object array and

then does the lookup for you. Follow this code outline:

 public class bundleName_language_country extends ListResourceBundle

 {

 private static final Object[][] contents =

 {

 { key1, value2 },

 { key2, value2 },

 ...

 }

 public Object[][] getContents() { return contents; }

 }

For example,

 public class ProgramResources_de extends ListResourceBundle

 {

 private static final Object[][] contents =

 {

 { "backgroundColor", Color.black },

 { "defaultPaperSize", new double[] { 210, 297 } }

 }

 public Object[][] getContents() { return contents; }

 }

 public class ProgramResources_en_US extends ListResourceBundle

 {

 private static final Object[][] contents =

 {

 { "backgroundColor", Color.blue },

 { "defaultPaperSize", new double[] { 216, 279 } }

 }

 public Object[][] getContents() { return contents; }

 }

NOTE:

The paper sizes are given in millimeters. Everyone on the planet, with the exception of

the United States and Canada, uses ISO 216 paper sizes. For more information, see

www.cl.cam.ac.uk/~mgk25/iso-paper.html.

Alternatively, your resource bundle classes can extend the ResourceBundle class. Then you

need to implement two methods, to enumerate all keys and to look up the value for a given

key:

 Enumeration<String> getKeys()

 Object handleGetObject(String key)

The getObject method of the ResourceBundle class calls the handleGetObject method that you

supply.

java.util.ResourceBundle 1.1

• static ResourceBundle getBundle(String baseName, Locale loc)

• static ResourceBundle getBundle(String baseName)

http://www.cl.cam.ac.uk/~mgk25/iso-paper.html

loads the resource bundle class with the given name, for the given locale or the default

locale, and its parent classes. If the resource bundle classes are located in a package,

the base name must contain the full package name, such as "intl.ProgramResources".The

resource bundle classes must be public so that the getBundle method can access them.

• Object getObject(String name)

looks up an object from the resource bundle or its parents.

• String getString(String name)

looks up an object from the resource bundle or its parents and casts it as a string.

• String[] getStringArray(String name)

looks up an object from the resource bundle or its parents and casts it as a string array.

• Enumeration<String> getKeys()

returns an enumeration object to enumerate the keys of this resource bundle. It enumerates

the keys in the parent bundles as well.

• Object handleGetObject(String key)

should be overridden to look up the resource value associated with the given key if you

define your own resource lookup mechanism.

7.9 A Complete Example

In this section, we apply the material of this chapter to localize a retirement calculator.

The program calculates whether or not you are saving enough money for your retirement. You

enter your age, how much money you save every month, and so on (see Figure 7.4).

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07fig04

Figure 7.4 The retirement calculator in English

The text area and the graph show the balance of the retirement account for every year. If

the numbers turn negative toward the later part of your life and the bars in the graph appear

below the x axis, you need to do something—for example, save more money, postpone your

retirement, die earlier, or be younger.

The retirement calculator works in three locales (English, German, and Chinese). Here are

some of the highlights of the internationalization:

• The labels, buttons, and messages are translated into German and Chinese. You can find

them in the classes RetireResources_de, RetireResources_zh. English is used as the

fallback—see the RetireResources file. To generate the Chinese messages, we first typed

the file, using Notepad running in Chinese Windows, and then we used the native2ascii utility

to convert the characters to Unicode.

• Whenever the locale changes, we reset the labels and reformat the contents of the text

fields.

• The text fields handle numbers, currency amounts, and percentages in the local format.

• The computation field uses a MessageFormat. The format string is stored in the resource

bundle of each language.

• Just to show that it can be done, we use different colors for the bar graph, depending

on the language chosen by the user.

Listings 7.5 through 7.8 show the code. Listings 7.9 through 7.11 are the property files

for the localized strings. Figures 7.5 and 7.6 show the outputs in German and Chinese,

respectively. To see Chinese characters, be sure you have Chinese fonts installed and

configured with your Java runtime. Otherwise, all Chinese characters will show up as

“missing character” icons.

Figure 7.5 The retirement calculator in German

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07fig05
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07fig06

Figure 7.6 The retirement calculator in Chinese

Listing 7.5 retire/Retire.java

 1 package retire;

 2

 3 import java.awt.*;

 4 import java.awt.geom.*;

 5 import java.text.*;

 6 import java.util.*;

 7

 8 import javax.swing.*;

 9

10 /**

11 * This program shows a retirement calculator. The UI is displayed in English,

German, and Chinese.

12 * @version 1.24 2016-05-06

13 * @author Cay Horstmann

14 */

15 public class Retire

16 {

17 public static void main(String[] args)

18 {

19 EventQueue.invokeLater(() ->

20 {

21 JFrame frame = new RetireFrame();

22 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

23 frame.setVisible(true);

24 });

25 }

26 }

27

28 class RetireFrame extends JFrame

29 {

30 private JTextField savingsField = new JTextField(10);

31 private JTextField contribField = new JTextField(10);

32 private JTextField incomeField = new JTextField(10);

33 private JTextField currentAgeField = new JTextField(4);

34 private JTextField retireAgeField = new JTextField(4);

35 private JTextField deathAgeField = new JTextField(4);

36 private JTextField inflationPercentField = new JTextField(6);

37 private JTextField investPercentField = new JTextField(6);

38 private JTextArea retireText = new JTextArea(10, 25);

39 private RetireComponent retireCanvas = new RetireComponent();

40 private JButton computeButton = new JButton();

41 private JLabel languageLabel = new JLabel();

42 private JLabel savingsLabel = new JLabel();

43 private JLabel contribLabel = new JLabel();

44 private JLabel incomeLabel = new JLabel();

45 private JLabel currentAgeLabel = new JLabel();

46 private JLabel retireAgeLabel = new JLabel();

47 private JLabel deathAgeLabel = new JLabel();

48 private JLabel inflationPercentLabel = new JLabel();

49 private JLabel investPercentLabel = new JLabel();

50 private RetireInfo info = new RetireInfo();

51 private Locale[] locales = { Locale.US, Locale.CHINA, Locale.GERMANY };

52 private Locale currentLocale;

53 private JComboBox<Locale> localeCombo = new LocaleCombo(locales);

54 private ResourceBundle res;

55 private ResourceBundle resStrings;

56 private NumberFormat currencyFmt;

57 private NumberFormat numberFmt;

58 private NumberFormat percentFmt;

59

60 public RetireFrame()

61 {

62 setLayout(new GridBagLayout());

63 add(languageLabel, new GBC(0, 0).setAnchor(GBC.EAST));

64 add(savingsLabel, new GBC(0, 1).setAnchor(GBC.EAST));

65 add(contribLabel, new GBC(2, 1).setAnchor(GBC.EAST));

66 add(incomeLabel, new GBC(4, 1).setAnchor(GBC.EAST));

67 add(currentAgeLabel, new GBC(0, 2).setAnchor(GBC.EAST));

68 add(retireAgeLabel, new GBC(2, 2).setAnchor(GBC.EAST));

69 add(deathAgeLabel, new GBC(4, 2).setAnchor(GBC.EAST));

70 add(inflationPercentLabel, new GBC(0, 3).setAnchor(GBC.EAST));

71 add(investPercentLabel, new GBC(2, 3).setAnchor(GBC.EAST));

72 add(localeCombo, new GBC(1, 0, 3, 1));

73 add(savingsField, new GBC(1, 1).setWeight(100,

0).setFill(GBC.HORIZONTAL));

74 add(contribField, new GBC(3, 1).setWeight(100,

0).setFill(GBC.HORIZONTAL));

75 add(incomeField, new GBC(5, 1).setWeight(100,

0).setFill(GBC.HORIZONTAL));

76 add(currentAgeField, new GBC(1, 2).setWeight(100,

0).setFill(GBC.HORIZONTAL));

77 add(retireAgeField, new GBC(3, 2).setWeight(100,

0).setFill(GBC.HORIZONTAL));

78 add(deathAgeField, new GBC(5, 2).setWeight(100,

0).setFill(GBC.HORIZONTAL));

79 add(inflationPercentField, new GBC(1, 3).setWeight(100,

0).setFill(GBC.HORIZONTAL));

80 add(investPercentField, new GBC(3, 3).setWeight(100,

0).setFill(GBC.HORIZONTAL));

81 add(retireCanvas, new GBC(0, 4, 4, 1).setWeight(100,

100).setFill(GBC.BOTH));

82 add(new JScrollPane(retireText), new GBC(4, 4, 2, 1).setWeight(0,

100).setFill(GBC.BOTH));

83

84 computeButton.setName("computeButton");

85 computeButton.addActionListener(event ->

86 {

87 getInfo();

88 updateData();

89 updateGraph();

90 });

91 add(computeButton, new GBC(5, 3));

92

93 retireText.setEditable(false);

94 retireText.setFont(new Font("Monospaced", Font.PLAIN, 10));

95

96 info.setSavings(0);

97 info.setContrib(9000);

98 info.setIncome(60000);

99 info.setCurrentAge(35);

100 info.setRetireAge(65);

101 info.setDeathAge(85);

102 info.setInvestPercent(0.1);

103 info.setInflationPercent(0.05);

104

105 int localeIndex = 0; // US locale is default selection

106 for (int i = 0; i < locales.length; i++)

107 // if current locale one of the choices, select it

108 if (getLocale().equals(locales[i])) localeIndex = i;

109 setCurrentLocale(locales[localeIndex]);

110

111 localeCombo.addActionListener(event ->

112 {

113 setCurrentLocale((Locale)

localeCombo.getSelectedItem());

114 validate();

115 });

116 pack();

117 }

118

119 /**

120 * Sets the current locale.

121 * @param locale the desired locale

122 */

123 public void setCurrentLocale(Locale locale)

124 {

125 currentLocale = locale;

126 localeCombo.setLocale(currentLocale);

127 localeCombo.setSelectedItem(currentLocale);

128

129 res = ResourceBundle.getBundle("retire.RetireResources",

currentLocale);

130 resStrings = ResourceBundle.getBundle("retire.RetireStrings",

currentLocale);

131 currencyFmt = NumberFormat.getCurrencyInstance(currentLocale);

132 numberFmt = NumberFormat.getNumberInstance(currentLocale);

133 percentFmt = NumberFormat.getPercentInstance(currentLocale);

134

135 updateDisplay();

136 updateInfo();

137 updateData();

138 updateGraph();

139 }

140

141 /**

142 * Updates all labels in the display.

143 */

144 public void updateDisplay()

145 {

146 languageLabel.setText(resStrings.getString("language"));

147 savingsLabel.setText(resStrings.getString("savings"));

148 contribLabel.setText(resStrings.getString("contrib"));

149 incomeLabel.setText(resStrings.getString("income"));

150 currentAgeLabel.setText(resStrings.getString("currentAge"));

151 retireAgeLabel.setText(resStrings.getString("retireAge"));

152 deathAgeLabel.setText(resStrings.getString("deathAge"));

153 inflationPercentLabel.setText(resStrings.getString("inflationPercen

t"));

154 investPercentLabel.setText(resStrings.getString("investPercent"));

155 computeButton.setText(resStrings.getString("computeButton"));

156 }

157

158 /**

159 * Updates the information in the text fields.

160 */

161 public void updateInfo()

162 {

163 savingsField.setText(currencyFmt.format(info.getSavings()));

164 contribField.setText(currencyFmt.format(info.getContrib()));

165 incomeField.setText(currencyFmt.format(info.getIncome()));

166 currentAgeField.setText(numberFmt.format(info.getCurrentAge()));

167 retireAgeField.setText(numberFmt.format(info.getRetireAge()));

168 deathAgeField.setText(numberFmt.format(info.getDeathAge()));

169 investPercentField.setText(percentFmt.format(info.getInvestPercent

()));

170 inflationPercentField.setText(percentFmt.format(info.getInflationP

ercent()));

171 }

172

173 /**

174 * Updates the data displayed in the text area.

175 */

176 public void updateData()

177 {

178 retireText.setText("");

179 MessageFormat retireMsg = new MessageFormat("");

180 retireMsg.setLocale(currentLocale);

181 retireMsg.applyPattern(resStrings.getString("retire"));

182

183 for (int i = info.getCurrentAge(); i <= info.getDeathAge(); i++)

184 {

185 Object[] args = { i, info.getBalance(i) };

186 retireText.append(retireMsg.format(args) + "\n");

187 }

188 }

189

190 /**

191 * Updates the graph.

192 */

193 public void updateGraph()

194 {

195 retireCanvas.setColorPre((Color) res.getObject("colorPre"));

196 retireCanvas.setColorGain((Color) res.getObject("colorGain"));

197 retireCanvas.setColorLoss((Color) res.getObject("colorLoss"));

198 retireCanvas.setInfo(info);

199 repaint();

200 }

201

202 /**

203 * Reads the user input from the text fields.

204 */

205 public void getInfo()

206 {

207 try

208 {

209 info.setSavings(currencyFmt.parse(savingsField.getText()).doub

leValue());

210 info.setContrib(currencyFmt.parse(contribField.getText()).doub

leValue());

211 info.setIncome(currencyFmt.parse(incomeField.getText()).double

Value());

212 info.setCurrentAge(numberFmt.parse(currentAgeField.getText()).

intValue());

213 info.setRetireAge(numberFmt.parse(retireAgeField.getText()).in

tValue());

214 info.setDeathAge(numberFmt.parse(deathAgeField.getText()).intV

alue());

215 info.setInvestPercent(percentFmt.parse(investPercentField.getT

ext()).doubleValue());

216 info.setInflationPercent(percentFmt.parse(inflationPercentFiel

d.getText()).doubleValue());

217 }

218 catch (ParseException ex)

219 {

220 ex.printStackTrace();

221 }

222 }

223 }

224

225 /**

226 * The information required to compute retirement income data.

227 */

228 class RetireInfo

229 {

230 private double savings;

231 private double contrib;

232 private double income;

233 private int currentAge;

234 private int retireAge;

235 private int deathAge;

236 private double inflationPercent;

237 private double investPercent;

238 private int age;

239 private double balance;

240

241 /**

242 * Gets the available balance for a given year.

243 * @param year the year for which to compute the balance

244 * @return the amount of money available (or required) in that year

245 */

246 public double getBalance(int year)

247 {

248 if (year < currentAge) return 0;

249 else if (year == currentAge)

250 {

251 age = year;

252 balance = savings;

253 return balance;

254 }

255 else if (year == age) return balance;

256 if (year != age + 1) getBalance(year - 1);

257 age = year;

258 if (age < retireAge) balance += contrib;

259 else balance -= income;

260 balance = balance * (1 + (investPercent - inflationPercent));

261 return balance;

262 }

263

264 /**

265 * Gets the amount of prior savings.

266 * @return the savings amount

267 */

268 public double getSavings()

269 {

270 return savings;

271 }

272

273 /**

274 * Sets the amount of prior savings.

275 * @param newValue the savings amount

276 */

277 public void setSavings(double newValue)

278 {

279 savings = newValue;

280 }

281

282 /**

283 * Gets the annual contribution to the retirement account.

284 * @return the contribution amount

285 */

286 public double getContrib()

287 {

288 return contrib;

289 }

290

291 /**

292 * Sets the annual contribution to the retirement account.

293 * @param newValue the contribution amount

294 */

295 public void setContrib(double newValue)

296 {

297 contrib = newValue;

298 }

299

300 /**

301 * Gets the annual income.

302 * @return the income amount

303 */

304 public double getIncome()

305 {

306 return income;

307 }

308

309 /**

310 * Sets the annual income.

311 * @param newValue the income amount

312 */

313 public void setIncome(double newValue)

314 {

315 income = newValue;

316 }

317

318 /**

319 * Gets the current age.

320 * @return the age

321 */

322 public int getCurrentAge()

323 {

324 return currentAge;

325 }

326

327 /**

328 * Sets the current age.

329 * @param newValue the age

330 */

331 public void setCurrentAge(int newValue)

332 {

333 currentAge = newValue;

334 }

335

336 /**

337 * Gets the desired retirement age.

338 * @return the age

339 */

340 public int getRetireAge()

341 {

342 return retireAge;

343 }

344

345 /**

346 * Sets the desired retirement age.

347 * @param newValue the age

348 */

349 public void setRetireAge(int newValue)

350 {

351 retireAge = newValue;

352 }

353

354 /**

355 * Gets the expected age of death.

356 * @return the age

357 */

358 public int getDeathAge()

359 {

360 return deathAge;

361 }

362

363 /**

364 * Sets the expected age of death.

365 * @param newValue the age

366 */

367 public void setDeathAge(int newValue)

368 {

369 deathAge = newValue;

370 }

371

372 /**

373 * Gets the estimated percentage of inflation.

374 * @return the percentage

375 */

376 public double getInflationPercent()

377 {

378 return inflationPercent;

379 }

380

381 /**

382 * Sets the estimated percentage of inflation.

383 * @param newValue the percentage

384 */

385 public void setInflationPercent(double newValue)

386 {

387 inflationPercent = newValue;

388 }

389

390 /**

391 * Gets the estimated yield of the investment.

392 * @return the percentage

393 */

394 public double getInvestPercent()

395 {

396 return investPercent;

397 }

398

399 /**

400 * Sets the estimated yield of the investment.

401 * @param newValue the percentage

402 */

403 public void setInvestPercent(double newValue)

404 {

405 investPercent = newValue;

406 }

407 }

408

409 /**

410 * This component draws a graph of the investment result.

411 */

412 class RetireComponent extends JComponent

413 {

414 private static final int DEFAULT_WIDTH = 800;

415 private static final int DEFAULT_HEIGHT = 600;

416 private static final int PANEL_WIDTH = 400;

417 private static final int PANEL_HEIGHT = 200;

418

419 private RetireInfo info = null;

420 private Color colorPre;

421 private Color colorGain;

422 private Color colorLoss;

423

424 public RetireComponent()

425 {

426 setSize(PANEL_WIDTH, PANEL_HEIGHT);

427 }

428

429 /**

430 * Sets the retirement information to be plotted.

431 * @param newInfo the new retirement info.

432 */

433 public void setInfo(RetireInfo newInfo)

434 {

435 info = newInfo;

436 repaint();

437 }

438

439 public void paintComponent(Graphics g)

440 {

441 Graphics2D g2 = (Graphics2D) g;

442 if (info == null) return;

443

444 double minValue = 0;

445 double maxValue = 0;

446 int i;

447 for (i = info.getCurrentAge(); i <= info.getDeathAge(); i++)

448 {

449 double v = info.getBalance(i);

450 if (minValue > v) minValue = v;

451 if (maxValue < v) maxValue = v;

452 }

453 if (maxValue == minValue) return;

454

455 int barWidth = getWidth() / (info.getDeathAge() - info.getCurrentAge()

+ 1);

456 double scale = getHeight() / (maxValue - minValue);

457

458 for (i = info.getCurrentAge(); i <= info.getDeathAge(); i++)

459 {

460 int x1 = (i - info.getCurrentAge()) * barWidth + 1;

461 int y1;

462 double v = info.getBalance(i);

463 int height;

464 int yOrigin = (int) (maxValue * scale);

465

466 if (v >= 0)

467 {

468 y1 = (int) ((maxValue - v) * scale);

469 height = yOrigin - y1;

470 }

471 else

472 {

473 y1 = yOrigin;

474 height = (int) (-v * scale);

475 }

476

477 if (i < info.getRetireAge()) g2.setPaint(colorPre);

478 else if (v >= 0) g2.setPaint(colorGain);

479 else g2.setPaint(colorLoss);

480 Rectangle2D bar = new Rectangle2D.Double(x1, y1, barWidth -

2, height);

481 g2.fill(bar);

482 g2.setPaint(Color.black);

483 g2.draw(bar);

484 }

485 }

486

487 /**

488 * Sets the color to be used before retirement.

489 * @param color the desired color

490 */

491 public void setColorPre(Color color)

492 {

493 colorPre = color;

494 repaint();

495 }

496

497 /**

498 * Sets the color to be used after retirement while the account balance is

positive.

499 * @param color the desired color

500 */

501 public void setColorGain(Color color)

502 {

503 colorGain = color;

504 repaint();

505 }

506

507 /**

508 * Sets the color to be used after retirement when the account balance

is negative.

509 * @param color the desired color

510 */

511 public void setColorLoss(Color color)

512 {

513 colorLoss = color;

514 repaint();

515 }

516

517 public Dimension getPreferredSize() { return new Dimension(DEFAULT_WIDTH,

DEFAULT_HEIGHT); }

518 }

Listing 7.6 retire/RetireResources.java

 1 package retire;

 2

 3 import java.awt.*;

 4

 5 /**

 6 * These are the English non-string resources for the retirement calculator.

 7 * @version 1.21 2001-08-27

 8 * @author Cay Horstmann

 9 */

10 public class RetireResources extends java.util.ListResourceBundle

11 {

12 private static final Object[][] contents = {

13 // BEGIN LOCALIZE

14 { "colorPre", Color.blue }, { "colorGain", Color.white },

{ "colorLoss", Color.red }

15 // END LOCALIZE

16 };

17

18 public Object[][] getContents()

19 {

20 return contents;

21 }

22 }

Listing 7.7 retire/RetireResources_de.java

 1 package retire;

 2

 3 import java.awt.*;

 4

 5 /**

 6 * These are the German non-string resources for the retirement calculator.

 7 * @version 1.21 2001-08-27

 8 * @author Cay Horstmann

 9 */

10 public class RetireResources_de extends java.util.ListResourceBundle

11 {

12 private static final Object[][] contents = {

13 // BEGIN LOCALIZE

14 { "colorPre", Color.yellow }, { "colorGain", Color.black },

{ "colorLoss", Color.red }

15 // END LOCALIZE

16 };

17

18 public Object[][] getContents()

19 {

20 return contents;

21 }

22 }

Listing 7.8 retire/RetireResources_zh.java

 1 package retire;

 2

 3 import java.awt.*;

 4

 5 /**

 6 * These are the Chinese non-string resources for the retirement calculator.

 7 * @version 1.21 2001-08-27

 8 * @author Cay Horstmann

 9 */

10 public class RetireResources_zh extends java.util.ListResourceBundle

11 {

12 private static final Object[][] contents = {

13 // BEGIN LOCALIZE

14 { "colorPre", Color.red }, { "colorGain", Color.blue },

{ "colorLoss", Color.yellow }

15 // END LOCALIZE

16 };

17

18 public Object[][] getContents()

19 {

20 return contents;

21 }

22 }

Listing 7.9 retire/RetireStrings.properties

 1 language=Language

 2 computeButton=Compute

 3 savings=Prior Savings

 4 contrib=Annual Contribution

 5 income=Retirement Income

 6 currentAge=Current Age

 7 retireAge=Retirement Age

 8 deathAge=Life Expectancy

 9 inflationPercent=Inflation

10 investPercent=Investment Return

11 retire=Age: {0,number} Balance: {1,number,currency}

Listing 7.10 retire/RetireStrings_de.properties

 1 language=Sprache

 2 computeButton=Rechnen

 3 savings=Vorherige Ersparnisse

 4 contrib=J\u00e4hrliche Einzahlung

 5 income=Einkommen nach Ruhestand

 6 currentAge=Jetziges Alter

 7 retireAge=Ruhestandsalter

 8 deathAge=Lebenserwartung

 9 inflationPercent=Inflation

10 investPercent=Investitionsgewinn

11 retire=Alter: {0,number} Guthaben: {1,number,currency}

Listing 7.11 retire/RetireStrings_zh.properties

 1 language=\u8bed\u8a00

 2 computeButton=\u8ba1\u7b97

 3 savings=\u65e2\u5b58

 4 contrib=\u6bcf\u5e74\u5b58\u91d1

 5 income=\u9000\u4f11\u6536\u5165

 6 currentAge=\u73b0\u9f84

 7 retireAge=\u9000\u4f11\u5e74\u9f84

 8 deathAge=\u9884\u671f\u5bff\u547d

 9 inflationPercent=\u901a\u8d27\u81a8\u6da8

10 investPercent=\u6295\u8d44\u62a5\u916c

11 retire=\u5e74\u9f84: {0,number} \u603b\u7ed3: {1,number,currency}

You have seen how to use the internationalization features of the Java language. You can

now use resource bundles to provide translations into multiple languages, and use formatters

and collators for locale-specific text processing.

In the next chapter, we will delve into advanced Swing programming.

Chapter 8. Scripting, Compiling, and Annotation Processing

In this chapter

• 8.1 Scripting for the Java Platform,

• 8.2 The Compiler API,

• 8.3 Using Annotations,

• 8.4 Annotation Syntax,

• 8.5 Standard Annotations,

• 8.6 Source-Level Annotation Processing,

• 8.7 Bytecode Engineering,

This chapter introduces three techniques for processing code. The scripting API lets you

invoke code in a scripting language such as JavaScript or Groovy. You can use the compiler

API when you want to compile Java code inside your application. Annotation processors

operate on Java source or class files that contain annotations. As you will see, there are

many applications for annotation processing, ranging from simple diagnostics to “bytecode

engineering”—the insertion of bytecodes into class files or even running programs.

8.1 Scripting for the Java Platform

A scripting language is a language that avoids the usual edit/compile/link/run cycle by

interpreting the program text at runtime. Scripting languages have a number of advantages:

• Rapid turnaround, encouraging experimentation

• Changing the behavior of a running program

• Enabling customization by program users

On the other hand, most scripting languages lack features that are beneficial for

programming complex applications, such as strong typing, encapsulation, and modularity.

It is therefore tempting to combine the advantages of scripting and traditional languages.

The scripting API lets you do just that for the Java platform. It enables you to invoke

scripts written in JavaScript, Groovy, Ruby, and even exotic languages such as Scheme and

Haskell, from a Java program. For example, the Renjin project (http://www.renjin.org)

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08lev8-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08lev8-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08lev8-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08lev8-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08lev8-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08lev8-6
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08lev8-7
http://www.renjin.org/

provides a Java implementation of the R programming language, which is commonly used for

statistical programming, together with an “engine” of the scripting API.

In the following sections, we’ll show you how to select an engine for a particular language,

how to execute scripts, and how to take advantage of advanced features that some scripting

engines offer.

8.1.1 Getting a Scripting Engine

A scripting engine is a library that can execute scripts in a particular language. When

the virtual machine starts, it discovers the available scripting engines. To enumerate them,

construct a ScriptEngineManager and invoke the getEngineFactories method. You can ask each

engine factory for the supported engine names, MIME types, and file extensions. Table 8.1

shows typical values.

Table 8.1 Properties of Scripting Engine Factories

Usually, you know which engine you need, and you can simply request it by name, MIME type,

or extension. For example:

 ScriptEngine engine = manager.getEngineByName("nashorn");

Java SE 8 includes a version of Nashorn, a JavaScript interpreter developed by Oracle. You

can add more languages by providing the necessary JAR files on the class path.

javax.script.ScriptEngineManager 6

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08tab01

• List<ScriptEngineFactory> getEngineFactories()

gets a list of all discovered engine factories.

• ScriptEngine getEngineByName(String name)

• ScriptEngine getEngineByExtension(String extension)

• ScriptEngine getEngineByMimeType(String mimeType)

gets the script engine with the given name, script file extension, or MIME type.

javax.script.ScriptEngineFactory 6

• List<String> getNames()

• List<String> getExtensions()

• List<String> getMimeTypes()

gets the names, script file extensions, and MIME types under which this factory is known.

8.1.2 Script Evaluation and Bindings

Once you have an engine, you can call a script simply by invoking

 Object result = engine.eval(scriptString);

If the script is stored in a file, open a Reader and call

 Object result = engine.eval(reader);

You can invoke multiple scripts on the same engine. If one script defines variables,

functions, or classes, most scripting engines retain the definitions for later use. For

example,

 engine.eval("n = 1728");

 Object result = engine.eval("n + 1");

will return 1729.

NOTE:

To find out whether it is safe to concurrently execute scripts in multiple threads, call

 Object param = factory.getParameter("THREADING");

The returned value is one of the following:

• null: Concurrent execution is not safe.

• "MULTITHREADED": Concurrent execution is safe. Effects from one thread might be visible

from another thread.

• "THREAD-ISOLATED": In addition to "MULTITHREADED", different variable bindings are

maintained for each thread.

• "STATELESS": In addition to "THREAD-ISOLATED", scripts do not alter variable bindings.

You will often want to add variable bindings to the engine. A binding consists of a name

and an associated Java object. For example, consider these statements:

 engine.put("k", 1728);

 Object result = engine.eval("k + 1");

The script code reads the definition of k from the bindings in the “engine scope.” This

is particularly important because most scripting languages can access Java objects, often

with a syntax that is simpler than the Java syntax. For example,

 engine.put("b", new JButton());

 engine.eval("b.text = 'Ok'");

Conversely, you can retrieve variables that were bound by scripting statements:

 engine.eval("n = 1728");

 Object result = engine.get("n");

In addition to the engine scope, there is also a global scope. Any bindings that you add

to the ScriptEngineManager are visible to all engines.

Instead of adding bindings to the engine or global scope, you can collect them in an object

of type Bindings and pass it to the eval method:

 Bindings scope = engine.createBindings();

 scope.put("b", new JButton());

 engine.eval(scriptString, scope);

This is useful if a set of bindings should not persist for future calls to the eval method.

NOTE:

You might want to have scopes other than the engine and global scopes. For example, a web

container might need request and session scopes. However, then you are on your own. You

will need to write a class that implements the ScriptContext interface, managing a

collection of scopes. Each scope is identified by an integer number, and scopes with lower

numbers should be searched first. (The standard library provides a SimpleScriptContext

class, but it only holds global and engine scopes.)

javax.script.ScriptEngine 6

• Object eval(String script)

• Object eval(Reader reader)

• Object eval(String script, Bindings bindings)

• Object eval(Reader reader, Bindings bindings)

evaluates the script given by the string or reader, subject to the given bindings.

• Object get(String key)

• void put(String key, Object value)

gets or puts a binding in the engine scope.

• Bindings createBindings()

creates an empty Bindings object suitable for this engine.

javax.script.ScriptEngineManager 6

• Object get(String key)

• void put(String key, Object value)

gets or puts a binding in the global scope.

javax.script.Bindings 6

• Object get(String key)

• void put(String key, Object value)

gets or puts a binding into the scope represented by this Bindings object.

8.1.3 Redirecting Input and Output

You can redirect the standard input and output of a script by calling the setReader and

setWriter methods of the script context. For example,

 StringWriter writer = new StringWriter();

 engine.getContext().setWriter(new PrintWriter(writer, true));

Any output written with the JavaScript print or println functions is sent to writer.

The setReader and setWriter methods only affect the scripting engine’s standard input and

output sources. For example, if you execute the JavaScript code

 println("Hello");

 java.lang.System.out.println("World");

only the first output is redirected.

The Nashorn engine does not have the notion of a standard input source. Calling setReader

has no effect.

javax.script.ScriptEngine 6

• ScriptContext getContext()

gets the default script context for this engine.

javax.script.ScriptContext 6

• Reader getReader()

• void setReader(Reader reader)

• Writer getWriter()

• void setWriter(Writer writer)

• Writer getErrorWriter()

• void setErrorWriter(Writer writer)

gets or sets the reader for input or writer for normal or error output.

8.1.4 Calling Scripting Functions and Methods

With many script engines, you can invoke a function in the scripting language without having

to evaluate the actual script code. This is useful if you allow users to implement a service

in a scripting language of their choice.

The script engines that offer this functionality implement the Invocable interface. In

particular, the Nashorn engine implements Invocable.

To call a function, call the invokeFunction method with the function name, followed by the

function parameters:

 // Define greet function in JavaScript

 engine.eval("function greet(how, whom) { return how + ', ' + whom + '!' }");

 // Call the function with arguments "Hello", "World"

 result = ((Invocable) engine).invokeFunction("greet", "Hello", "World");

If the scripting language is object-oriented, call invokeMethod:

 // Define Greeter class in JavaScript

 engine.eval("function Greeter(how) { this.how = how }");

 engine.eval("Greeter.prototype.welcome = "

 + " function(whom) { return this.how + ', ' + whom + '!' }");

 // Construct an instance

 Object yo = engine.eval("new Greeter('Yo')");

 // Call the welcome method on the instance

 result = ((Invocable) engine).invokeMethod(yo, "welcome", "World");

NOTE:

For more information on how to define classes in JavaScript, see JavaScript—The Good Parts
by Douglas Crockford (O’Reilly, 2008).

NOTE:

If the script engine does not implement the Invocable interface, you might still be able

to call a method in a language-independent way. The getMethodCallSyntax method of the

ScriptEngineFactory interface produces a string that you can pass to the eval method.

However, all method parameters must be bound to names, whereas invokeMethod can be called

with arbitrary values.

You can go a step further and ask the scripting engine to implement a Java interface. Then

you can call scripting functions and methods with the Java method call syntax.

The details depend on the scripting engine, but typically you need to supply a function

for each method of the interface. For example, consider a Java interface

 public interface Greeter

 {

 String greet(String whom);

 }

If you define a global function with the same name in Nashorn, you can call it through this

interface.

 // Define welcome function in JavaScript

 engine.eval("function welcome(whom) { return 'Hello, ' + whom + '!' }");

 // Get a Java object and call a Java method

 Greeter g = ((Invocable) engine).getInterface(Greeter.class);

 result = g.welcome("World");

In an object-oriented scripting language, you can access a script class through a matching

Java interface. For example, here is how to call an object of the JavaScript SimpleGreeter

class with Java syntax:

 Greeter g = ((Invocable) engine).getInterface(yo, Greeter.class);

 result = g.welcome("World");

In summary, the Invocable interface is useful if you want to call scripting code from Java

without worrying about the scripting language syntax.

javax.script.Invocable 6

• Object invokeFunction(String name, Object... parameters)

• Object invokeMethod(Object implicitParameter, String name, Object...

explicitParameters)

invokes the function or method with the given name, passing the given parameters.

• <T> T getInterface(Class<T> iface)

returns an implementation of the given interface, implementing the methods with functions

in the scripting engine.

• <T> T getInterface(Object implicitParameter, Class<T> iface)

returns an implementation of the given interface, implementing the methods with the methods

of the given object.

8.1.5 Compiling a Script

Some scripting engines can compile scripting code into an intermediate form for efficient

execution. Those engines implement the Compilable interface. The following example shows

how to compile and evaluate code contained in a script file:

 Reader reader = new FileReader("myscript.js");

 CompiledScript script = null;

 if (engine implements Compilable)

 CompiledScript script = ((Compilable) engine).compile(reader);

Once the script is compiled, you can execute it. The following code executes the compiled

script if compilation was successful, or the original script if the engine didn’t support

compilation.

 if (script != null)

 script.eval();

 else

 engine.eval(reader);

Of course, it only makes sense to compile a script if you need to execute it repeatedly.

javax.script.Compilable 6

• CompiledScript compile(String script)

• CompiledScript compile(Reader reader)

compiles the script given by a string or reader.

javax.script.CompiledScript 6

• Object eval()

• Object eval(Bindings bindings)

evaluates this script.

8.1.6 An Example: Scripting GUI Events

To illustrate the scripting API, we will write a sample program that allows users to specify

event handlers in a scripting language of their choice.

Have a look at the program in Listing 8.1 that adds scripting to an arbitrary frame class.

By default it reads the ButtonFrame class in Listing 8.2, which is similar to the event

handling demo in Volume I, with two differences:

• Each component has its name property set.

• There are no event handlers.

The event handlers are defined in a property file. Each property definition has the form

 componentName.eventName = scriptCode

For example, if you choose to use JavaScript, supply the event handlers in a file

js.properties, like this: The companion code also has files for Groovy, R, and SISC Scheme.

 yellowButton.action=panel.background = java.awt.Color.YELLOW

 blueButton.action=panel.background = java.awt.Color.BLUE

 redButton.action=panel.background = java.awt.Color.RED

The program starts by loading an engine for the language specified on the command line.

If no language is specified, we use JavaScript.

We then process a script init.language if it is present. This is useful for the R and Scheme
languages, which need some initializations that we did not want to include in every event

handler script.

Next, we recursively traverse all child components and add the bindings (name, object)
into a map of components because some scripting engines. Then we add the bindings to the

engine.

Next, we read the file language.properties. For each property, we synthesize an event
handler proxy that causes the script code to be executed. The details are a bit technical.

You might want to read the section on proxies in Volume I, Chapter 6, if you want to follow

the implementation in detail. The essential part, however, is that each event handler calls

 engine.eval(scriptCode);

Let us look at the yellowButton in more detail. When the line

 yellowButton.action=panel.background = java.awt.Color.YELLOW

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06

is processed, we find the JButton component with the name "yellowButton". We then attach

an ActionListener with an actionPerformed method that executes the script

 panel.background = java.awt.Color.YELLOW

if the scripting is done with Nashorn.

The engine contains a binding that binds the name "panel" to the JPanel object. When the

event occurs, the setBackground method of the panel is executed, and the color changes.

You can run this program with the JavaScript event handlers, simply by executing

 java ScriptTest

For the Groovy handlers, use

 java -classpath .:groovy/lib/* ScriptTest groovy

Here, groovy is the directory into which you installed Groovy.

For the Renjin implementation of R, include the JAR files for Renjin Studio and the Renjin

script engine on the classpath. Both are available at www.renjin.org/downloads.html.

To try out Scheme, download SISC Scheme from http://sisc-scheme.org and run

 java -classpath .:sisc/*:jsr223-engines/scheme/build/scheme-engine.jar ScriptTest
scheme

where sisc is the installation directory for SISC Scheme and jsr223-engines is the directory
that contains the engine adapters from http://java.net/projects/scripting

This application demonstrates how to use scripting for Java GUI programming. One could go

a step further and describe the GUI with an XML file, as you have seen in Chapter 3. Then

our program would become an interpreter for GUIs that have visual presentation defined by

XML and behavior defined by a scripting language. Note the similarity to a dynamic HTML

page or a dynamic server-side scripting environment.

Listing 8.1 script/ScriptTest.java

 1 package script;

 2

 3 import java.awt.*;

 4 import java.beans.*;

 5 import java.io.*;

 6 import java.lang.reflect.*;

 7 import java.util.*;

http://www.renjin.org/downloads.html
http://sisc-scheme.org/
http://java.net/projects/scripting
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03

 8 import javax.script.*;

 9 import javax.swing.*;

10

11 /**

12 * @version 1.02 2016-05-10

13 * @author Cay Horstmann

14 */

15 public class ScriptTest

16 {

17 public static void main(String[] args)

18 {

19 EventQueue.invokeLater(() ->

20 {

21 try

22 {

23 ScriptEngineManager manager = new

ScriptEngineManager();

24 String language;

25 if (args.length == 0)

26 {

27 System.out.println("Available

factories: ");

28 for (ScriptEngineFactory factory :

manager.getEngineFactories())

29 System.out.println(factory.get

EngineName());

30

31 language = "nashorn";

32 }

33 else language = args[0];

34

35 final ScriptEngine engine =

manager.getEngineByName(language);

36 if (engine == null)

37 {

38 System.err.println("No engine for " +

language);

39 System.exit(1);

40 }

41

42 final String frameClassName = args.length <

2 ? "buttons1.ButtonFrame" : args[1];

43

44 JFrame frame = (JFrame)

Class.forName(frameClassName).newInstance();

45 InputStream in =

frame.getClass().getResourceAsStream("init." + language);

46 if (in != null) engine.eval(new

InputStreamReader(in));

47 Map<String, Component> components = new

HashMap<>();

48 getComponentBindings(frame, components);

49 components.forEach((name, c) ->

engine.put(name, c));

50

51 final Properties events = new Properties();

52 in =

frame.getClass().getResourceAsStream(language + ".properties");

53 events.load(in);

54

55 for (final Object e : events.keySet())

56 {

57 String[] s = ((String) e).split("\\.");

58 addListener(s[0], s[1], (String)

events.get(e), engine, components);

59 }

60 frame.setTitle("ScriptTest");

61 frame.setDefaultCloseOperation(JFrame.EXIT

_ON_CLOSE);

62 frame.setVisible(true);

63 }

64 catch (ReflectiveOperationException | IOException

65 | ScriptException | IntrospectionException

ex)

66 {

67 ex.printStackTrace();

68 }

69 });

70 }

71

72 /**

73 * Gathers all named components in a container.

74 * @param c the component

75 * @param namedComponents a map into which to enter the component names and

components

76 */

77 private static void getComponentBindings(Component c, Map<String, Component>

namedComponents)

78 {

79 String name = c.getName();

80 if (name != null) { namedComponents.put(name, c); }

81 if (c instanceof Container)

82 {

83 for (Component child : ((Container) c).getComponents())

84 getComponentBindings(child, namedComponents);

85 }

86 }

87

88 /**

89 * Adds a listener to an object whose listener method executes a script.

90 * @param beanName the name of the bean to which the listener should be added

91 * @param eventName the name of the listener type, such as "action" or

"change"

92 * @param scriptCode the script code to be executed

93 * @param engine the engine that executes the code

94 * @param bindings the bindings for the execution

95 * @throws IntrospectionException

96 */

97 private static void addListener(String beanName, String eventName, final

String scriptCode,

98 final ScriptEngine engine, Map<String, Component> components)

99 throws ReflectiveOperationException, IntrospectionException

100 {

101 Object bean = components.get(beanName);

102 EventSetDescriptor descriptor = getEventSetDescriptor(bean,

eventName);

103 if (descriptor == null) return;

104 descriptor.getAddListenerMethod().invoke(bean,

105 Proxy.newProxyInstance(null, new Class[]

{ descriptor.getListenerType() },

106 (proxy, method, args) ->

107 {

108 engine.eval(scriptCode);

109 return null;

110 }

111));

112 }

113

114 private static EventSetDescriptor getEventSetDescriptor(Object bean, String

eventName)

115 throws IntrospectionException

116 {

117 for (EventSetDescriptor descriptor :

Introspector.getBeanInfo(bean.getClass())

118 .getEventSetDescriptors())

119 if (descriptor.getName().equals(eventName)) return

descriptor;

120 return null;

121 }

122 }

Listing 8.2 buttons1/ButtonFrame.java

 1 package buttons1;

 2

 3 import javax.swing.*;

 4

 5 /**

 6 * A frame with a button panel.

 7 * @version 1.00 2007-11-02

 8 * @author Cay Horstmann

 9 */

10 public class ButtonFrame extends JFrame

11 {

12 private static final int DEFAULT_WIDTH = 300;

13 private static final int DEFAULT_HEIGHT = 200;

14

15 private JPanel panel;

16 private JButton yellowButton;

17 private JButton blueButton;

18 private JButton redButton;

19

20 public ButtonFrame()

21 {

22 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

23

24 panel = new JPanel();

25 panel.setName("panel");

26 add(panel);

27

28 yellowButton = new JButton("Yellow");

29 yellowButton.setName("yellowButton");

30 blueButton = new JButton("Blue");

31 blueButton.setName("blueButton");

32 redButton = new JButton("Red");

33 redButton.setName("redButton");

34

35 panel.add(yellowButton);

36 panel.add(blueButton);

37 panel.add(redButton);

38 }

39 }

8.2 The Compiler API

In the preceding sections, you saw how to interact with code in a scripting language. Now

we turn to a different scenario: Java programs that compile Java code. There are quite a

few tools that need to invoke the Java compiler, such as:

• Development environments

• Java teaching and tutoring programs

• Build and test automation tools

• Templating tools that process snippets of Java code, such as JavaServer Pages (JSP)

In the past, applications invoked the Java compiler by calling undocumented classes in the

jdk/lib/tools.jar library. Nowadays, a public API for compilation is a part of the Java
platform, and it is no longer necessary to use tools.jar. This section explains the compiler

API.

8.2.1 Compiling the Easy Way

It is very easy to invoke the compiler. Here is a sample call:

 JavaCompiler compiler = ToolProvider.getSystemJavaCompiler();

 OutputStream outStream = . . .;

 OutputStream errStream = . . .;

 int result = compiler.run(null, outStream, errStream, "-sourcepath", "src",

"Test.java");

A result value of 0 indicates successful compilation.

The compiler sends output and error messages to the provided streams. You can set these

parameters to null, in which case System.out and System.err are used. The first parameter

of the run method is an input stream. As the compiler takes no console input, you can always

leave it as null. (The run method is inherited from a generic Tool interface, which allows

for tools that read input.)

The remaining parameters of the run method are simply the arguments that you would pass

to javac if you invoked it on the command line. These can be options or file names.

8.2.2 Using Compilation Tasks

You can have even more control over the compilation process with a CompilationTask object.

In particular, you can

• Control the source of program code—for example, by providing code in a string builder

instead of a file.

• Control the placement of class files—for example, by storing them in a database.

• Listen to error and warning messages as they occur during compilation.

• Run the compiler in the background.

The location of source and class files is controlled by a JavaFileManager. It is responsible

for determining JavaFileObject instances for source and class files. AJavaFileObject can

correspond to a disk file, or it can provide another mechanism for reading and writing its

contents.

To listen to error messages, install a DiagnosticListener. The listener receives a

Diagnostic object whenever the compiler reports a warning or error message. The

DiagnosticCollector class implements this interface. It simply collects all diagnostics

so that you can iterate through them after the compilation is complete.

A Diagnostic object contains information about the problem location (including file name,

line number, and column number) as well as a human-readable description.

To obtain a CompilationTask object, call the getTask method of the JavaCompiler class. You

need to specify:

• A Writer for any compiler output that is not reported as a Diagnostic, or null to use

System.err

• A JavaFileManager, or null to use the compiler’s standard file manager

• A DiagnosticListener

• Option strings, or null for no options

• Class names for annotation processing, or null if none are specified (we’ll discuss

annotation processing later in this chapter)

• JavaFileObject instances for source files

You need to provide the last three arguments as Iterable objects. For example, a sequence

of options might be specified as

 Iterable<String> options = Arrays.asList("-g", "-d", "classes");

Alternatively, you can use any collection class.

If you want the compiler to read source files from disk, you can ask the

StandardJavaFileManager to translate the file name strings or File objects to

JavaFileObject instances. For example,

 StandardJavaFileManager fileManager = compiler.getStandardFileManager(null, null,

null);

 Iterable<JavaFileObject> fileObjects =

fileManager.getJavaFileObjectsFromStrings(fileNames);

However, if you want the compiler to read source code from somewhere other than a disk file,

you need to supply your own JavaFileObject subclass. Listing 8.3 shows the code for a source

file object with data contained in a StringBuilder. The class extends the

SimpleJavaFileObject convenience class and overrides the getCharContent method to return

the content of the string builder. We’ll use this class in our example program in which

we dynamically produce the code for a Java class and then compile it.

The CompilationTask interface extends the Callable<Boolean> interface. You can pass it to

an Executor for execution in another thread, or you can simply invoke the call method. A

return value of Boolean.FALSE indicates failure.

 Callable<Boolean> task = new JavaCompiler.CompilationTask(null, fileManager,

diagnostics,

 options, null, fileObjects);

 if (!task.call())

 System.out.println("Compilation failed");

If you simply want the compiler to produce class files on disk, you need not customize the

JavaFileManager. However, our sample application will generate class files in byte arrays

and later read them from memory, using a special class loader. Listing 8.4 defines a class

that implements the JavaFileObject interface. Its openOutputStream method returns the

ByteArrayOutputStream into which the compiler will deposit the bytecodes.

It turns out a bit tricky to tell the compiler’s file manager to use these file objects.

The library doesn’t supply a class that implements the StandardJavaFileManager interface.

Instead, you subclass the ForwardingJavaFileManager class that delegates all calls to a

given file manager. In our situation, we only want to change the getJavaFileForOutput method.

We achieve this with the following outline:

 JavaFileManager fileManager = compiler.getStandardFileManager(diagnostics, null,

null);

 fileManager = new ForwardingJavaFileManager<JavaFileManager>(fileManager)

 {

 public JavaFileObject getJavaFileForOutput(Location location, final

String className,

 Kind kind, FileObject sibling) throws IOException

 {

 return custom file object

 }

 };

In summary, call the run method of the JavaCompiler task if you simply want to invoke the

compiler in the usual way, reading and writing disk files. You can capture the output and

error messages, but you need to parse them yourself.

If you want more control over file handling or error reporting, use the CompilationTask

interface instead. Its API is quite complex, but you can control every aspect of the

compilation process.

Listing 8.3 compiler/StringBuilderJavaSource.java

 1 package compiler;

 2

 3 import java.net.*;

 4 import javax.tools.*;

 5

 6 /**

 7 * A Java source that holds the code in a string builder.

 8 * @version 1.00 2007-11-02

 9 * @author Cay Horstmann

10 */

11 public class StringBuilderJavaSource extends SimpleJavaFileObject

12 {

13 private StringBuilder code;

14

15 /**

16 * Constructs a new StringBuilderJavaSource.

17 * @param name the name of the source file represented by this file object

18 */

19 public StringBuilderJavaSource(String name)

20 {

21 super(URI.create("string:///" + name.replace('.', '/') +

Kind.SOURCE.extension),

22 Kind.SOURCE);

23 code = new StringBuilder();

24 }

25

26 public CharSequence getCharContent(boolean ignoreEncodingErrors)

27 {

28 return code;

29 }

30

31 public void append(String str)

32 {

33 code.append(str);

34 code.append('\n');

35 }

36 }

8.2.3 An Example: Dynamic Java Code Generation

In the JSP technology for dynamic web pages, you can mix HTML with snippets of Java code,

such as

 <p>The current date and time is <%= new java.util.Date() %>.</p>

The JSP engine dynamically compiles the Java code into a servlet. In our sample application,

we use a simpler example and generate dynamic Swing code instead. The idea is that you use

a GUI builder to lay out the components in a frame and specify the behavior of the components

in an external file. Listing 8.5 shows a very simple example of a frame class, and Listing

8.6 shows the code for the button actions. Note that the constructor of the frame class

calls an abstract method addEventHandlers. Our code generator will produce a subclass that

implements the addEventHandlers method, adding an action listener for each line in the

action.properties file. (We leave it as the proverbial exercise to the reader to extend

the code generation to other event types.)

We place the subclass into a package with the name x, which we hope is not used anywhere

else in the program. The generated code has the form

 package x;

 public class Frame extends SuperclassName {
 protected void addEventHandlers() {

 componentName1.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent) {

 code for event handler1

 } });

 // repeat for the other event handlers ...

 }}

The buildSource method in the program of Listing 8.7 builds up this code and places it into

a StringBuilderJavaSource object. That object is passed to the Java compiler.

We use a ForwardingJavaFileManager with a getJavaFileForOutput method that constructs a

ByteArrayJavaClass object for every class in the x package. These objects capture the class

files generated when the x.Frame class is compiled. The method adds each file object to

a list before returning it so that we can locate the bytecodes later. Note that compiling

the x.Frame class produces a class file for the main class and one class file per listener

class.

After compilation, we build a map that associates class names with bytecode arrays. A simple

class loader (shown in Listing 8.8) loads the classes stored in this map.

We ask the class loader to load the class that we just compiled, and then we construct and

display the application’s frame class.

 ClassLoader loader = new MapClassLoader(byteCodeMap);

 Class<?> cl = loader.loadClass("x.Frame");

 Frame frame = (JFrame) cl.newInstance();

 frame.setVisible(true);

When you click the buttons, the background color changes in the usual way. To see that the

actions are dynamically compiled, change one of the lines in action.properties, for example,

like this:

 yellowButton=panel.setBackground(java.awt.Color.YELLOW);

yellowButton.setEnabled(false);

Run the program again. Now the Yellow button is disabled after you click it. Also have a

look at the code directories. You will not find any source or class files for the classes

in the x package. This example demonstrates how you can use dynamic compilation with

in-memory source and class files.

Listing 8.5 buttons2/ButtonFrame.java

 1 package buttons2;

 2 import javax.swing.*;

 3

 4 /**

 5 * A frame with a button panel.

 6 * @version 1.00 2007-11-02

 7 * @author Cay Horstmann

 8 */

 9 public abstract class ButtonFrame extends JFrame

10 {

11 public static final int DEFAULT_WIDTH = 300;

12 public static final int DEFAULT_HEIGHT = 200;

13

14 protected JPanel panel;

15 protected JButton yellowButton;

16 protected JButton blueButton;

17 protected JButton redButton;

18

19 protected abstract void addEventHandlers();

20

21 public ButtonFrame()

22 {

23 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

24

25 panel = new JPanel();

26 add(panel);

27

28 yellowButton = new JButton("Yellow");

29 blueButton = new JButton("Blue");

30 redButton = new JButton("Red");

31

32 panel.add(yellowButton);

33 panel.add(blueButton);

34 panel.add(redButton);

35

36 addEventHandlers();

37 }

38 }

Listing 8.6 buttons2/action.properties

1 yellowButton=panel.setBackground(java.awt.Color.YELLOW);

2 blueButton=panel.setBackground(java.awt.Color.BLUE);

Listing 8.7 compiler/CompilerTest.java

 1 package compiler;

 2

 3 import java.awt.*;

 4 import java.io.*;

 5 import java.util.*;

 6 import java.util.List;

 7 import javax.swing.*;

 8 import javax.tools.*;

 9 import javax.tools.JavaFileObject.*;

10

11 /**

12 * @version 1.01 2016-05-10

13 * @author Cay Horstmann

14 */

15 public class CompilerTest

16 {

17 public static void main(final String[] args) throws IOException,

ClassNotFoundException

18 {

19 JavaCompiler compiler = ToolProvider.getSystemJavaCompiler();

20

21 final List<ByteArrayJavaClass> classFileObjects = new

ArrayList<>();

22

23 DiagnosticCollector<JavaFileObject> diagnostics = new

DiagnosticCollector<>();

24

25 JavaFileManager fileManager =

compiler.getStandardFileManager(diagnostics, null, null);

26 fileManager = new

ForwardingJavaFileManager<JavaFileManager>(fileManager)

27 {

28 public JavaFileObject getJavaFileForOutput(Location

location, final String className,

29 Kind kind, FileObject sibling) throws

IOException

30 {

31 if (className.startsWith("x."))

32 {

33 ByteArrayJavaClass fileObject = new

ByteArrayJavaClass(className);

34 classFileObjects.add(fileObject);

35 return fileObject;

36 }

37 else return

super.getJavaFileForOutput(location, className, kind, sibling);

38 }

39 };

40

 41

42 String frameClassName = args.length == 0 ? "buttons2.ButtonFrame" :

args[0];

43 JavaFileObject source = buildSource(frameClassName);

44 JavaCompiler.CompilationTask task = compiler.getTask(null,

fileManager, diagnostics, null,

45 null, Arrays.asList(source));

46 Boolean result = task.call();

47

48 for (Diagnostic<? extends JavaFileObject> d :

diagnostics.getDiagnostics())

49 System.out.println(d.getKind() + ": " + d.getMessage(null));

50 fileManager.close();

51 if (!result)

52 {

53 System.out.println("Compilation failed.");

54 System.exit(1);

55 }

56

57 EventQueue.invokeLater(() ->

58 {

59 try

60 {

61 Map<String, byte[]> byteCodeMap = new HashMap<>();

62 for (ByteArrayJavaClass cl : classFileObjects)

63 byteCodeMap.put(cl.getName().substring(1),

cl.getBytes());

64 ClassLoader loader = new

MapClassLoader(byteCodeMap);

65 JFrame frame = (JFrame)

loader.loadClass("x.Frame").newInstance();

66 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CL

OSE);

67 frame.setTitle("CompilerTest");

68 frame.setVisible(true);

69 }

70 catch (Exception ex)

71 {

72 ex.printStackTrace();

73 }

74 });

75 }

76

77 /*

78 * Builds the source for the subclass that implements the addEventHandlers

method.

79 * @return a file object containing the source in a string builder

80 */

81 static JavaFileObject buildSource(String superclassName)

82 throws IOException, ClassNotFoundException

83 {

84 StringBuilderJavaSource source = new

StringBuilderJavaSource("x.Frame");

85 source.append("package x;\n");

86 source.append("public class Frame extends " + superclassName + "

{");

87 source.append("protected void addEventHandlers() {");

88 final Properties props = new Properties();

89 props.load(Class.forName(superclassName).getResourceAsStream("

action.properties"));

90 for (Map.Entry<Object, Object> e : props.entrySet())

91 {

92 String beanName = (String) e.getKey();

93 String eventCode = (String) e.getValue();

94 source.append(beanName + ".addActionListener(event -> {");

95 source.append(eventCode);

96 source.append("});");

97 }

98 source.append("} }");

99 return source;

100 }

101 }

Listing 8.8 compiler/MapClassLoader.java

 1 package compiler;

 2

 3 import java.util.*;

 4

 5 /**

 6 * A class loader that loads classes from a map whose keys are class names

and whose values are

 7 * byte code arrays.

 8 * @version 1.00 2007-11-02

 9 * @author Cay Horstmann

10 */

11 public class MapClassLoader extends ClassLoader

12 {

13 private Map<String, byte[]> classes;

14

15 public MapClassLoader(Map<String, byte[]> classes)

16 {

17 this.classes = classes;

18 }

19

20 protected Class<?> findClass(String name) throws

ClassNotFoundException

21 {

22 byte[] classBytes = classes.get(name);

23 if (classBytes == null) throw new ClassNotFoundException(name);

24 Class<?> cl = defineClass(name, classBytes, 0, classBytes.length);

25 if (cl == null) throw new ClassNotFoundException(name);

26 return cl;

27 }

28 }

8.3 Using Annotations

Annotations are tags that you insert into your source code so that some tool can process

them. The tools can operate on the source level, or they can process class files into which

the compiler has placed annotations.

Annotations do not change the way in which your programs are compiled. The Java compiler

generates the same virtual machine instructions with or without the annotations.

To benefit from annotations, you need to select a processing tool. You need to use
annotations that your processing tool understands, then apply the processing tool to your

code.

There is a wide range of uses for annotations, and that generality can be confusing at first.

Here are some uses for annotations:

• Automatic generation of auxiliary files, such as deployment descriptors or bean

information classes

• Automatic generation of code for testing, logging, transaction semantics, and so on

8.3.1 An Introduction into Annotations

We’ll start our discussion of annotations with the basic concepts and put them to use in

a concrete example: We will mark methods as event listeners for AWT components, and show

you an annotation processor that analyzes the annotations and hooks up the listeners. We’ll

then discuss the syntax rules in detail and finish the chapter with two advanced examples

for annotation processing. One of them processes source-level annotations, the other uses

the Apache Bytecode Engineering Library to process class files, injecting additional

bytecodes into annotated methods.

Here is an example of a simple annotation:

 public class MyClass

 {

 ...

 @Test public void checkRandomInsertions()

 }

The annotation @Test annotates the checkRandomInsertions method.

In Java, an annotation is used like a modifier and is placed before the annotated item without
a semicolon. (A modifier is a keyword such as public or static.) The name of each annotation
is preceded by an @ symbol, similar to Javadoc comments. However, Javadoc comments occur

inside /** . . . */ delimiters, whereas annotations are part of the code.

By itself, the @Test annotation does not do anything. It needs a tool to be useful. For

example, the JUnit 4 testing tool (available at http://junit.org) calls all methods that

are labeled @Test when testing a class. Another tool might remove all test methods from

a class file so that they are not shipped with the program after it has been tested.

Annotations can be defined to have elements, such as

 @Test(timeout="10000")

These elements can be processed by the tools that read the annotations. Other forms of

elements are possible; we’ll discuss them later in this chapter.

Besides methods, you can annotate classes, fields, and local variables—an annotation can

be anywhere you could put a modifier such as public or static.

Each annotation must be defined by an annotation interface. The methods of the interface
correspond to the elements of the annotation. For example, the JUnit Test annotation is

defined by the following interface:

 @Target(ElementType.METHOD)

 @Retention(RetentionPolicy.RUNTIME)

 public @interface Test

 {

 long timeout() default 0L;

http://junit.org/

 ...

 }

The @interface declaration creates an actual Java interface. Tools that process annotations

receive objects that implement the annotation interface. A tool would call the timeout

method to retrieve the timeout element of a particular Test annotation.

The Target and Retention annotations are meta-annotations. They annotate the Test
annotation, marking it as an annotation that can be applied to methods only and is retained

when the class file is loaded into the virtual machine. We’ll discuss these in detail in

Section 8.5.3, “Meta-Annotations,” on p. 475.

You have now seen the basic concepts of program metadata and annotations. In the next section,

we’ll walk through a concrete example of annotation processing.

8.3.2 An Example: Annotating Event Handlers

One of the more boring tasks in user interface programming is the wiring of listeners to

event sources. Many listeners are of the form

 myButton.addActionListener(() -> doSomething());

In this section, we’ll design an annotation to reverse the wiring. The annotation, defined

in Listing 8.9, is used as follows:

 @ActionListenerFor(source="myButton") void doSomething() { . . . }

The programmer no longer has to make calls to addActionListener. Instead, each method is

tagged with an annotation. Listing 8.10 shows the ButtonFrame class from Volume I, Chapter

8, reimplemented with these annotations.

We also need to define an annotation interface. The code is in Listing 8.11.

Of course, the annotations don’t do anything by themselves. They sit in the source file.

The compiler places them in the class file, and the virtual machine loads them. We now need

a mechanism to analyze them and install action listeners. That is the job of the

ActionListenerInstaller class. The ButtonFrame constructor calls

 ActionListenerInstaller.processAnnotations(this);

The static processAnnotations method enumerates all methods of the object it received. For

each method, it gets the ActionListenerFor annotation object and processes it.

 Class<?> cl = obj.getClass();

 for (Method m : cl.getDeclaredMethods())

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08lev8-5-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08

 {

 ActionListenerFor a = m.getAnnotation(ActionListenerFor.class);

 if (a != null) . . .

 }

Here, we use the getAnnotation method defined in the AnnotatedElement interface. The classes

Method, Constructor, Field, Class, and Package implement this interface.

The name of the source field is stored in the annotation object. We retrieve it by calling

the source method, and then look up the matching field.

 String fieldName = a.source();

 Field f = cl.getDeclaredField(fieldName);

This shows a limitation of our annotation. The source element must be the name of a field.

It cannot be a local variable.

The remainder of the code is rather technical. For each annotated method, we construct a

proxy object, implementing the ActionListener interface, with an actionPerformed method

that calls the annotated method. (For more information about proxies, see Volume I, Chapter

6.) The details are not important. The key observation is that the functionality of the

annotations was established by the processAnnotations method.

Figure 8.1 shows how annotations are handled in this example.

Figure 8.1 Processing annotations at runtime

In this example, the annotations were processed at runtime. It is also possible to process

them at the source level; a source code generator would then produce the code for adding

the listeners. Alternatively, the annotations can be processed at the bytecode level; a

bytecode editor could inject the calls to addActionListener into the frame constructor.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch06.html#ch06
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08fig01

This sounds complex, but libraries are available to make this task relatively

straightforward. You can see an example in Section 8.7, “Bytecode Engineering,” on p.

483.

Our example was not intended as a serious tool for user interface programmers. A utility

method for adding a listener could be just as convenient for the programmer as the annotation.

(In fact, the java.beans.EventHandler class tries to do just that. You could make the class

truly useful by supplying a method that adds the event handler instead of just constructing

it.)

However, this example shows the mechanics of annotating a program and of analyzing the

annotations. Having seen a concrete example, you are now more prepared (we hope) for the

following sections that describe the annotation syntax in complete detail.

Listing 8.9 runtimeAnnotations/ActionListenerInstaller.java

 1 package runtimeAnnotations;

 2

 3 import java.awt.event.*;

 4 import java.lang.reflect.*;

 5

 6 /**

 7 * @version 1.00 2004-08-17

 8 * @author Cay Horstmann

 9 */

10 public class ActionListenerInstaller

11 {

12 /**

13 * Processes all ActionListenerFor annotations in the given object.

14 * @param obj an object whose methods may have ActionListenerFor annotations

15 */

16 public static void processAnnotations(Object obj)

17 {

18 try

19 {

20 Class<?> cl = obj.getClass();

21 for (Method m : cl.getDeclaredMethods())

22 {

23 ActionListenerFor a =

m.getAnnotation(ActionListenerFor.class);

24 if (a != null)

25 {

26 Field f = cl.getDeclaredField(a.source());

27 f.setAccessible(true);

28 addListener(f.get(obj), obj, m);

29 }

30 }

31 }

32 catch (ReflectiveOperationException e)

33 {

34 e.printStackTrace();

35 }

36 }

37

38 /**

39 * Adds an action listener that calls a given method.

40 * @param source the event source to which an action listener is added

41 * @param param the implicit parameter of the method that the listener calls

42 * @param m the method that the listener calls

43 */

44 public static void addListener(Object source, final Object param, final Method

m)

45 throws ReflectiveOperationException

46 {

47 InvocationHandler handler = new InvocationHandler()

48 {

49 public Object invoke(Object proxy, Method mm, Object[] args)

throws Throwable

50 {

51 return m.invoke(param);

52 }

53 };

54

55 Object listener = Proxy.newProxyInstance(null,

56 new Class[] { java.awt.event.ActionListener.class },

handler);

57 Method adder = source.getClass().getMethod("addActionListener",

ActionListener.class);

58 adder.invoke(source, listener);

59 }

60 }

Listing 8.10 buttons3/ButtonFrame.java

 1 package buttons3;

 2

 3 import java.awt.*;

 4 import javax.swing.*;

 5 import runtimeAnnotations.*;

 6

 7 /**

 8 * A frame with a button panel.

 9 * @version 1.00 2004-08-17

10 * @author Cay Horstmann

11 */

12 public class ButtonFrame extends JFrame

13 {

14 private static final int DEFAULT_WIDTH = 300;

15 private static final int DEFAULT_HEIGHT = 200;

16

17 private JPanel panel;

18 private JButton yellowButton;

19 private JButton blueButton;

20 private JButton redButton;

21

22 public ButtonFrame()

23 {

24 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

25

26 panel = new JPanel();

27 add(panel);

28

29 yellowButton = new JButton("Yellow");

30 blueButton = new JButton("Blue");

31 redButton = new JButton("Red");

32

33 panel.add(yellowButton);

34 panel.add(blueButton);

35 panel.add(redButton);

36

37 ActionListenerInstaller.processAnnotations(this);

38 }

39

40 @ActionListenerFor(source = "yellowButton")

41 public void yellowBackground()

42 {

43 panel.setBackground(Color.YELLOW);

44 }

45

46 @ActionListenerFor(source = "blueButton")

47 public void blueBackground()

48 {

49 panel.setBackground(Color.BLUE);

50 }

51

52 @ActionListenerFor(source = "redButton")

53 public void redBackground()

54 {

55 panel.setBackground(Color.RED);

56 }

57 }

Listing 8.11 runtimeAnnotations/ActionListenerFor.java

 1 package runtimeAnnotations;

 2

 3 import java.lang.annotation.*;

 4

 5 /**

 6 * @version 1.00 2004-08-17

 7 * @author Cay Horstmann

 8 */

 9

10 @Target(ElementType.METHOD)

11 @Retention(RetentionPolicy.RUNTIME)

12 public @interface ActionListenerFor

13 {

14 String source();

15 }

java.lang.reflect.AnnotatedElement 5.0

• boolean isAnnotationPresent(Class<? extends Annotation> annotationType)

returns true if this item has an annotation of the given type.

• <T extends Annotation> T getAnnotation(Class<T> annotationType)

gets the annotation of the given type, or null if this item has no such annotation.

• <T extends Annotation> T[] getAnnotationsByType(Class<T> annotationType) 8

gets all annotations of a repeatable annotation type (see Section 8.5.3,

“Meta-Annotations,” on p. 475), or an array of length 0.

• Annotation[] getAnnotations()

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08lev8-5-3

gets all annotations present for this item, including inherited annotations. If no

annotations are present, an array of length 0 is returned.

• Annotation[] getDeclaredAnnotations()

gets all annotations declared for this item, excluding inherited annotations. If no

annotations are present, an array of length 0 is returned.

8.4 Annotation Syntax

In the following sections, we cover everything you need to know about the annotation syntax.

8.4.1 Annotation Interfaces

An annotation is defined by an annotation interface:

 modifiers @interface AnnotationName
 {

 elementDeclaration1
 elementDeclaration2
 ...

 }

Each element declaration has the form

 type elementName();

or

 type elementName() default value;

For example, the following annotation has two elements, assignedTo and severity:

 public @interface BugReport

 {

 String assignedTo() default "[none]";

 int severity();

 }

All annotation interfaces implicitly extend the java.lang.annotation.Annotation interface.

That interface is a regular interface, not an annotation interface. See the API notes at
the end of this section for the methods provided by this interface. You cannot extend

annotation interfaces. In other words, all annotation interfaces directly extend

java.lang.annotation.Annotation. You never supply classes that implement annotation

interfaces.

The methods of an annotation interface can have no parameters and no throws clauses. They

cannot be default or static methods, and they cannot have type parameters.

The type of an annotation element is one of the following:

• A primitive type (int, short, long, byte, char, double, float, or boolean)

• String

• Class (with an optional type parameter such as Class<? extends MyClass>)

• An enum type

• An annotation type

• An array of the preceding types (an array of arrays is not a legal element type)

Here are examples of valid element declarations:

 public @interface BugReport

 {

 enum Status { UNCONFIRMED, CONFIRMED, FIXED, NOTABUG };

 boolean showStopper() default false;

 String assignedTo() default "[none]";

 Class<?> testCase() default Void.class;

 Status status() default Status.UNCONFIRMED;

 Reference ref() default @Reference(); // an annotation type

 String[] reportedBy();

 }

java.lang.annotation.Annotation 5.0

• Class<? extends Annotation> annotationType()

returns the Class object that represents the annotation interface of this annotation object.

Note that calling getClass on an annotation object would return the actual class, not the

interface.

• boolean equals(Object other)

returns true if other is an object that implements the same annotation interface as this

annotation object and if all elements of this object and other are equal.

• int hashCode()

returns a hash code, compatible with the equals method, derived from the name of the

annotation interface and the element values.

• String toString()

returns a string representation that contains the annotation interface name and the element

values; for example, @BugReport(assignedTo=[none], severity=0).

8.4.2 Annotations

Each annotation has the format

 @AnnotationName(elementName1=value1, elementName2=value2, . . .)

For example,

 @BugReport(assignedTo="Harry", severity=10)

The order of the elements does not matter. The annotation

 @BugReport(severity=10, assignedTo="Harry")

is identical to the preceding one.

The default value of the declaration is used if an element value is not specified. For example,

consider the annotation

 @BugReport(severity=10)

The value of the assignedTo element is the string "[none]".

CAUTION:

Defaults are not stored with the annotation; instead, they are dynamically computed. For

example, if you change the default for the assignedTo element to "[]" and recompile the

BugReport interface, the annotation @BugReport(severity=10) will use the new default, even

in class files that have been compiled before the default changed.

Two special shortcuts can simplify annotations.

If no elements are specified, either because the annotation doesn’t have any or because

all of them use the default value, you don’t need to use parentheses. For example,

 @BugReport

is the same as

 @BugReport(assignedTo="[none]", severity=0)

Such an annotation is called a marker annotation.

The other shortcut is the single value annotation. If an element has the special name value
and no other element is specified, you can omit the element name and the = symbol. For example,

had we defined the ActionListenerFor annotation interface of the preceding section as

 public @interface ActionListenerFor

 {

 String value();

 }

then the annotations could be written as

 @ActionListenerFor("yellowButton")

instead of

 @ActionListenerFor(value="yellowButton")

An item can have multiple annotations:

 @Test

 @BugReport(showStopper=true, reportedBy="Joe")

 public void checkRandomInsertions()

If the author of an annotation declared it to be repeatable, you can repeat the same

annotation multiple times:

 @BugReport(showStopper=true, reportedBy="Joe")

 @BugReport(reportedBy={"Harry", "Carl"})

 public void checkRandomInsertions()

NOTE:

Since annotations are evaluated by the compiler, all element values must be compile-time

constants. For example,

 @BugReport(showStopper=true, assignedTo="Harry",

testCase=MyTestCase.class,

 status=BugReport.Status.CONFIRMED, . . .)

CAUTION:

An annotation element can never be set to null. Not even a default of null is permissible.

This can be rather inconvenient in practice. You will need to find other defaults, such

as "" or Void.class.

If an element value is an array, enclose its values in braces:

 @BugReport(. . ., reportedBy={"Harry", "Carl"})

You can omit the braces if the element has a single value:

 @BugReport(. . ., reportedBy="Joe") // OK, same as {"Joe"}

Since an annotation element can be another annotation, you can build arbitrarily complex

annotations. For example,

 @BugReport(ref=@Reference(id="3352627"), . . .)

NOTE:

It is an error to introduce circular dependencies in annotations. For example, BugReport

has an element of the annotation type Reference, therefore Reference cannot have an element

of type BugReport.

8.4.3 Annotating Declarations

There are many places where annotations can occur. They fall into two categories:

declarations and type uses. Declaration annotations can appear at the declarations of

• Packages

• Classes (including enum)

• Interfaces (including annotation interfaces)

• Methods

• Constructors

• Instance fields (including enum constants)

• Local variables

• Parameter variables

• Type parameters

For classes and interfaces, put the annotations before the class or interface keyword:

 @Entity public class User { . . . }

For variables, put them before the type:

 @SuppressWarnings("unchecked") List<User> users = . . .;

 public User getUser(@Param("id") String userId)

A type parameter in a generic class or method can be annotated like this:

 public class Cache<@Immutable V> { . . . }

A package is annotated in a file package-info.java that contains only the package statement

preceded by annotations.

 /**

 Package-level Javadoc

 */

 @GPL(version="3")

 package com.horstmann.corejava;

 import org.gnu.GPL;

NOTE:

Annotations for local variables can only be processed at the source level. Class files do

not describe local variables. Therefore, all local variable annotations are discarded when

a class is compiled. Similarly, annotations for packages are not retained beyond the source

level.

8.4.4 Annotating Type Uses

A declaration annotation provides some information about the item being declared. For

example, in the declaration

 public User getUser(@NonNull String userId)

it is asserted that the userId parameter is not null.

NOTE:

The @NonNull annotation is a part of the Checker Framework

(http://types.cs.washington.edu/checker-framework).With that framework, you can include

assertions in your program, such that a parameter is non-null or that a String contains

a regular expression. A static analysis tool then checks whether the assertions are valid

in a given body of source code.

Now suppose we have a parameter of type List<String>, and we want to express that all of

the strings are non-null. That is where type use annotations come in. Place the annotation

before the type argument: List<@NonNull String>.

Type use annotations can appear in the following places:

• With generic type arguments: List<@NonNull String>, Comparator.<@NonNull String>

reverseOrder().

• In any position of an array: @NonNull String[][] words (words[i][j] is not null), String

@NonNull [][] words (words is not null), String[] @NonNull [] words (words[i] is not null).

• With superclasses and implemented interfaces: class Warning extends @Localized Message.

• With constructor invocations: new @Localized String(...).

• With casts and instanceof checks: (@Localized String) text, if (text instanceof @Localized

String). (The annotations are only for use by external tools. They have no effect on the

behavior of a cast or an instanceof check.)

• With exception specifications: public String read() throws @Localized IOException.

• With wildcards and type bounds: List<@Localized ? extends Message>, List<? extends

@Localized Message>.

• With method and constructor references: @Localized Message::getText.

http://types.cs.washington.edu/checker-framework

There are a few type positions that cannot be annotated:

 @NonNull String.class // ERROR: Cannot annotate class literal

 import java.lang.@NonNull String; // ERROR: Cannot annotate import

You can place annotations before or after other modifiers such as private and static. It

is customary (but not required) to put type use annotations after other modifiers, and

declaration annotations before other modifiers. For example,

 private @NonNull String text; // Annotates the type use

 @Id private String userId; // Annotates the variable

NOTE:

An annotation author needs to specify where a particular annotation can appear. If an

annotation is permissible both for a variable and a type use, and it is used in a variable

declaration, then both the variable and the type use are annotated. For example, consider

 public User getUser(@NonNull String userId)

If @NonNull can apply both to parameters and to type uses, the userId parameter is annotated,

and the parameter type is @NonNull String.

8.4.5 Annotating this

Suppose you want to annotate parameters that are not being mutated by a method.

 public class Point {

 public boolean equals(@ReadOnly Object other) { . . . }

 }

Then a tool that processes this annotation would, upon seeing a call

 p.equals(q)

reason that q has not been changed.

But what about p?

When the method is called, the this variable is bound to p. But this is never declared,

so you cannot annotate it.

Actually, you can declare it, with a rarely used syntax variant, just so that you can add

an annotation:

 public class Point {

 public boolean equals(@ReadOnly Point this, @ReadOnly Object other)

{ . . . }

 }

The first paramater is called the receiver parameter. It must be named this. Its type is
the class that is being constructed.

NOTE:

You can provide a receiver parameter only for methods, not for constructors. Conceptually,

the this reference in a constructor is not an object of the given type until the constructor

has completed. Instead, an annotation placed on the constructor describes a property of

the constructed object.

A different hidden parameter is passed to the constructor of an inner class, namely the

reference to the enclosing class object. You can make that parameter explicit as well:

 static class Sequence {

 private int from;

 private int to;

 class Iterator implements java.util.Iterator<Integer> {

 private int current;

 public Iterator(@ReadOnly Sequence Sequence.this) {

 this.current = Sequence.this.from;

 }

 ...

 }

 ...

 }

The parameter must be named just like when you refer to it, EnclosingClass.this, and its
type is the enclosing class.

8.5 Standard Annotations

Java SE defines a number of annotation interfaces in the java.lang, java.lang.annotation,

and javax.annotation packages. Four of them are meta-annotations that describe the behavior

of annotation interfaces. The others are regular annotations that you can use to annotate

items in your source code. Table 8.2 shows these annotations. We’ll discuss them in detail

in the following two sections.

Table 8.2 The Standard Annotations

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08tab02

8.5.1 Annotations for Compilation

The @Deprecated annotation can be attached to any items for which use is no longer encouraged.

The compiler will warn when you use a deprecated item. This annotation has the same role

as the @deprecated Javadoc tag.

The @SuppressWarnings annotation tells the compiler to suppress warnings of a particular

type, for example,

 @SuppressWarnings("unchecked")

The @Override annotation applies only to methods. The compiler checks that a method with

this annotation really overrides a method from the superclass. For example, if you declare

 public MyClass

 {

 @Override public boolean equals(MyClass other);

 ...

 }

then the compiler will report an error. After all, the equals method does not override the
equals method of the Object class because that method has a parameter of type Object, not

MyClass.

The @Generated annotation is intended for use by code generator tools. Any generated source

code can be annotated to differentiate it from programmer-provided code. For example, a

code editor can hide the generated code, or a code generator can remove older versions of

generated code. Each annotation must contain a unique identifier for the code generator.

A date string (in ISO 8601 format) and a comment string are optional. For example,

 @Generated("com.horstmann.beanproperty", "2008-01-04T12:08:56.235-0700");

8.5.2 Annotations for Managing Resources

The @PostConstruct and @PreDestroy annotations are used in environments that control the

lifecycle of objects, such as web containers and application servers. Methods tagged with

these annotations should be invoked immediately after an object has been constructed or

immediately before it is being removed.

The @Resource annotation is intended for resource injection. For example, consider a web

application that accesses a database. Of course, the database access information should

not be hardwired into the web application. Instead, the web container has some user interface

for setting connection parameters and a JNDI name for a data source. In the web application,

you can reference the data source like this:

 @Resource(name="jdbc/mydb")

 private DataSource source;

When an object containing this field is constructed, the container “injects” a reference

to the data source.

8.5.3 Meta-Annotations

The @Target meta-annotation is applied to an annotation, restricting the items to which

the annotation applies. For example,

 @Target({ElementType.TYPE, ElementType.METHOD})

 public @interface BugReport

Table 8.3 shows all possible values. They belong to the enumerated type ElementType. You

can specify any number of element types, enclosed in braces.

Table 8.3 Element Types for the @Target Annotation

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08tab03

An annotation without an @Target restriction can be applied to any item. The compiler checks

that you apply an annotation only to a permitted item. For example, if you apply @BugReport

to a field, a compile-time error results.

The @Retention meta-annotation specifies how long an annotation is retained. You can specify

at most one of the values in Table 8.4. The default is RetentionPolicy.CLASS.

Table 8.4 Retention Policies for the @Retention Annotation

In Listing 8.11, the @ActionListenerFor annotation was declared with

RetentionPolicy.RUNTIME because we used reflection to process annotations. In the following

two sections, you will see examples of processing annotations at the source and class file

levels.

The @Documented meta-annotation gives a hint to documentation tools such as Javadoc.

Documented annotations should be treated just like other modifiers such as protected or

static for documentation purposes. The use of other annotations is not included in the

documentation. For example, suppose we declare @ActionListenerFor as a documented

annotation:

 @Documented

 @Target(ElementType.METHOD)

 @Retention(RetentionPolicy.RUNTIME)

 public @interface ActionListenerFor

Now the documentation of each annotated method contains the annotation, as shown in Figure

8.2.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08tab04
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08fig02
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08fig02

Figure 8.2 Documented annotations

If an annotation is transient (such as @BugReport), you should probably not document its

use.

NOTE:

It is legal to apply an annotation to itself. For example, the @Documented annotation is

itself annotated as @Documented.Therefore, the Javadoc documentation for annotations shows

whether they are documented.

The @Inherited meta-annotation applies only to annotations for classes. When a class has

an inherited annotation, then all of its subclasses automatically have the same annotation.

This makes it easy to create annotations that work as marker interfaces, such as

Serializable.

In fact, an annotation @Serializable would be more appropriate than the Serializable marker

interface with no methods. A class is serializable because there is runtime support for

reading and writing its fields, not because of any principles of object-oriented design.

An annotation describes this fact better than does interface inheritance. Of course, the

Serializable interface was created in JDK 1.1, long before annotations existed.

Suppose you define an inherited annotation @Persistent to indicate that objects of a class

can be saved in a database. Then the subclasses of persistent classes are automatically

annotated as persistent.

 @Inherited @interface Persistent { }

 @Persistent class Employee { . . . }

 class Manager extends Employee { . . . } // also @Persistent

When the persistence mechanism searches for objects to store in the database, it will detect

both Employee and Manager objects.

As of Java SE 8, it is legal to apply the same annotation type multiple times to an item.

For backwards compatibility, the implementor of a repeatable annotation needs to provide

a container annotation that holds the repeated annotations in an array.

Here is how to define the @TestCase annotation and its container:

 @Repeatable(TestCases.class)

 @interface TestCase {

 String params();

 String expected();

 }

 @interface TestCases {

 TestCase[] value();

 }

Whenever the user supplies two or more @TestCase annotations, they are automatically wrapped

into a @TestCases annotation.

CAUTION:

You have to be careful when processing repeatable annotations. If you call getAnnotation

to look up a repeatable annotation, and the annotation was actually repeated, then you get

null. That is because the repeated annotations were wrapped inside the container annotation.

In this case, you should call getAnnotationsByType. That call “looks through” the

container and gives you an array of the repeated annotations. If there was just one

annotation, you get it in an array of length 1. With this method, you don’t have to worry

about the container annotation.

8.6 Source-Level Annotation Processing

In the preceding section, you saw how to analyze annotations in a running program. Another

use for annotation is the automatic processing of source files to produce more source code,

configuration files, scripts, or whatever else one might want to generate.

8.6.1 Annotation Processors

Annotation processing is integrated into the Java compiler. During compilation, you can

invoke annotation processors by running

 javac -processor ProcessorClassName1,ProcessorClassName2,. . . sourceFiles

The compiler locates the annotations of the source files. Each annotation processor is

executed in turn and given the annotations in which it expressed an interest. If an

annotation processor creates a new source file, the process is repeated. Once a processing

round yields no further source files, all source files are compiled.

NOTE:

An annotation processor can only generate new source files. It cannot modify an existing

source file.

An annotation processor implements the Processor interface, generally by extending the

AbstractProcessor class. You need to specify which annotations your processor supports.

In our case:

 @SupportedAnnotationTypes("com.horstmann.annotations.ToString")

 @SupportedSourceVersion(SourceVersion.RELEASE_8)

 public class ToStringAnnotationProcessor extends AbstractProcessor {

 @Override

 public boolean process(Set<? extends TypeElement> annotations,

 RoundEnvironment currentRound) {

 ...

 }

 }

A processor can claim specific annotation types, wildcards such as "com.horstmann.*“ (all

annotations in the com.horstmann package or any subpackage), or even "*" (all annotations).

The process method is called once for each round, with the set of all annotations that were

found in any files during this round, and a RoundEnvironment reference that contains

information about the current processing round.

8.6.2 The Language Model API

You use the language model API for analyzing source-level annotations. Unlike the reflection
API, which presents the virtual machine representation of classes and methods, the language

model API lets you analyze a Java program according to the rules of the Java language.

The compiler produces a tree whose nodes are instances of classes that implement the

javax.lang.model.element.Element interface and its subinterfaces, TypeElement,

VariableElement, ExecutableElement, and so on. These are the compile-time analogs to the

Class, Field/Parameter, Method/Constructor reflection classes.

I do not want to cover the API in detail, but here are the highlights that you need to know

for processing annotations.

• The RoundEnvironment gives you a set of all elements annotated with a particular annotation,

by calling the method

 Set<? extends Element> getElementsAnnotatedWith(Class<? extends Annotation> a)

• The source-level equivalent of the AnnotateElement interface is AnnotatedConstruct. You

use the methods

 A getAnnotation(Class<A> annotationType)

 A[] getAnnotationsByType(Class<A> annotationType)

to get the annotation or repeated annotations for a given annotation class.

• A TypeElement represents a class or interface. The getEnclosedElements method yields a

list of its fields and methods.

• Calling getSimpleName on an Element or getQualifiedName on a TypeElement yields a Name

object that can be converted to a string with toString.

8.6.3 Using Annotations to Generate Source Code

As an example, we will use annotations to reduce the tedium of implementing toString methods.

We can’t put these methods into the original classes—annotation processors can only

produce new classes, not modify existing ones.

Therefore, we’ll add all methods into a utility class ToStrings:

 public class ToStrings {

 public static String toString(Point obj) {

 Generated code

 }

 public static String toString(Rectangle obj) {

 Generated code

 }

 ...

 public static String toString(Object obj) {

 return Objects.toString(obj);

 }

 }

We don’t want to use reflection, so we annotate accessor methods, not fields:

 @ToString

 public class Rectangle {

 ...

 @ToString(includeName=false) public Point getTopLeft() { return topLeft; }

 @ToString public int getWidth() { return width; }

 @ToString public int getHeight() { return height; }

 }

The annotation processor should then generate the following source code:

 public static String toString(Rectangle obj) {

 StringBuilder result = new StringBuilder();

 result.append("Rectangle");

 result.append("[");

 result.append(toString(obj.getTopLeft()));

 result.append(",");

 result.append("width=");

 result.append(toString(obj.getWidth()));

 result.append(",");

 result.append("height=");

 result.append(toString(obj.getHeight()));

 result.append("]");

 return result.toString();

 }

The “boilerplate” code is in gray. Here is an outline of the method that produces the

toString method for a class with given TypeElement.

 private void writeToStringMethod(PrintWriter out, TypeElement te) {

 String className = te.getQualifiedName().toString();

 Print method header and declaration of string builder

 ToString ann = te.getAnnotation(ToString.class);

 if (ann.includeName()) Print code to add class name

 for (Element c : te.getEnclosedElements()) {

 ann = c.getAnnotation(ToString.class);

 if (ann != null) {

 if (ann.includeName()) Print code to add field name

 Print code to append toString(obj.methodName())

 }

 }

 Print code to return string

 }

And here is an outline of the process method of the annotation processor. It creates a source

file for the helper class and writes the class header and one method for each annotated

class.

 public boolean process(Set<? extends TypeElement> annotations,

 RoundEnvironment currentRound) {

 if (annotations.size() == 0) return true;

 try {

 JavaFileObject sourceFile =

processingEnv.getFiler().createSourceFile(

 "com.horstmann.annotations.ToStrings");

 try (PrintWriter out = new

PrintWriter(sourceFile.openWriter())) {

 Print code for package and class

 for (Element e :

currentRound.getElementsAnnotatedWith(ToString.class)) {

 if (e instanceof TypeElement) {

 TypeElement te = (TypeElement) e;

 writeToStringMethod(out, te);

 }

 }

 Print code for toString(Object)

 } catch (IOException ex) {

 processingEnv.getMessager().printMessage(

 Kind.ERROR, ex.getMessage());

 }

 }

 return true;

 }

For the tedious details, check the book’s companion code.

Note that the process method is called in subsequent rounds with an empty list of annotations.

It then returns immediately so it doesn’t create the source file twice.

First compile the annotation processor, and then compile and run the test program as follows:

 javac sourceAnnotations/ToStringAnnotationProcessor.java

 javac -processor sourceAnnotations.ToStringAnnotationProcessor

rect/*.java

 java rect.SourceLevelAnnotationDemo

TIP:

To see the rounds, run the javac command with the -XprintRounds flag:

 Round 1:

 input files: {rect.Point, rect.Rectangle,

 rect.SourceLevelAnnotationDemo}

 annotations: [sourceAnnotations.ToString]

 last round: false

 Round 2:

 input files: {sourceAnnotations.ToStrings}

 annotations: []

 last round: false

 Round 3:

 input files: {}

 annotations: []

 last round: true

This example demonstrates how tools can harvest source file annotations to produce other

files. The generated files don’t have to be source files. Annotation processors may choose

to generate XML descriptors, property files, shell scripts, HTML documentation, and so on.

NOTE:

Some people have suggested using annotations to remove an even bigger drudgery. Wouldn’t

it be nice if trivial getters and setters were generated automatically? For example, the

annotation

 @Property private String title;

could produce the methods

 public String getTitle() { return title; }

 public void setTitle(String title) { this.title = title; }

However, those methods need to be added to the same class. This requires editing a source
file, not just generating another file, and is beyond the capabilities of annotation

processors. It would be possible to build another tool for this purpose, but such a tool

would go beyond the mission of annotations.An annotation is intended as a description about
a code item, not a directive for adding or changing code.

8.7 Bytecode Engineering

You have seen how annotations can be processed at runtime or at the source code level. There

is a third possibility: processing at the bytecode level. Unless annotations are removed

at the source level, they are present in the class files. The class file format is documented

(see http://docs.oracle.com/javase/specs/jvms/se8/html). The format is rather complex,

and it would be challenging to process class files without special libraries. One such

library is the ASM library , available at http://asm.ow2.org.

8.7.1 Modifying Class Files

In this section, we use ASM to add logging messages to annotated methods. If a method is

annotated with

 @LogEntry(logger=loggerName)

then we add the bytecodes for the following statement at the beginning of the method:

 Logger.getLogger(loggerName).entering(className, methodName);

For example, if you annotate the hashCode method of the Item class as

 @LogEntry(logger="global") public int hashCode()

then a message similar to the following is printed whenever the method is called:

 May 17, 2016 10:57:59 AM Item hashCode

 FINER: ENTRY

To achieve this, we do the following:

1. Load the bytecodes in the class file.

2. Locate all methods.

http://docs.oracle.com/javase/specs/jvms/se8/html
http://asm.ow2.org/

3. For each method, check whether it has a LogEntry annotation.

4. If it does, add the bytecodes for the following instructions at the beginning of the

method:

 ldc loggerName

 invokestatic

 java/util/logging/Logger.getLogger:(Ljava/lang

/String;)Ljava/util/logging/Logger;

 ldc className

 ldc methodName

 invokevirtual

java/util/logging/Logger.entering:(Ljava/lang/String;Ljava/lang/String;)V

Inserting these bytecodes sounds tricky, but ASM makes it fairly straightforward. We don’t

describe the process of analyzing and inserting bytecodes in detail. The important point

is that the program in Listing 8.12 edits a class file and inserts a logging call at the

beginning of the methods annotated with the LogEntry annotation.

For example, here is how you add the logging instructions to Item.java in Listing 8.13,

where asm is the directory into which you installed the ASM library:

 javac set/Item.java

 javac -classpath .:asm/lib/*

bytecodeAnnotations/EntryLogger.java

 java -classpath .:asm/lib/* bytecodeAnnotations.EntryLogger

set.Item

Try running

 javap -c set.Item

before and after modifying the Item class file. You can see the inserted instructions at

the beginning of the hashCode, equals, and compareTo methods.

 public int hashCode();

 Code:

 0: ldc #85; //String global

 2: invokestatic #80;

 //Method

java/util/logging/Logger.getLogger:(Ljava/lang/String;)Ljava/util/logging/Logger;

 5: ldc #86; //String Item

 7: ldc #88; //String hashCode

 9: invokevirtual #84;

 //Method

java/util/logging/Logger.entering:(Ljava/lang/String;Ljava/lang/String;)V

 12: bipush 13

 14: aload_0

 15: getfield #2; //Field

description:Ljava/lang/String;

 18: invokevirtual #15; //Method

java/lang/String.hashCode:()I

 21: imul

 22: bipush 17

 24: aload_0

 25: getfield #3; //Field partNumber:I

 28: imul

 29: iadd

 30: ireturn

The SetTest program in Listing 8.14 inserts Item objects into a hash set. When you run it

with the modified class file, you will see the logging messages.

 May 17, 2016 10:57:59 AM Item hashCode

 FINER: ENTRY

 May 17, 2016 10:57:59 AM Item hashCode

 FINER: ENTRY

 May 17, 2016 10:57:59 AM Item hashCode

 FINER: ENTRY

 May 17, 2016 10:57:59 AM Item equals

 FINER: ENTRY

 [[description=Toaster, partNumber=1729], [description=Microwave,

partNumber=4104]]

Note the call to equals when we insert the same item twice.

This example shows the power of bytecode engineering. Annotations are used to add directives

to a program, and a bytecode editing tool picks up the directives and modifies the virtual

machine instructions.

Listing 8.12 bytecodeAnnotations/EntryLogger.java

 1 package bytecodeAnnotations;

 2

 3 import java.io.*;

 4 import java.nio.file.*;

 5

 6 import org.objectweb.asm.*;

 7 import org.objectweb.asm.commons.*;

 8

 9 /**

10 * Adds "entering" logs to all methods of a class that have the LogEntry annotation.

11 * @version 1.20 2016-05-10

12 * @author Cay Horstmann

13 */

14 public class EntryLogger extends ClassVisitor

15 {

16 private String className;

17

18 /**

19 * Constructs an EntryLogger that inserts logging into annotated methods of

a given class.

20 * @param cg the class

21 */

22 public EntryLogger(ClassWriter writer, String className)

23 {

24 super(Opcodes.ASM5, writer);

25 this.className = className;

26 }

27

28 @Override

29 public MethodVisitor visitMethod(int access, String methodName, String desc,

30 String signature, String[] exceptions)

31 {

32 MethodVisitor mv = cv.visitMethod(access, methodName, desc, signature,

exceptions);

33 return new AdviceAdapter(Opcodes.ASM5, mv, access, methodName, desc)

34 {

35 private String loggerName;

36

37 public AnnotationVisitor visitAnnotation(String desc,

boolean visible)

38 {

39 return new AnnotationVisitor(Opcodes.ASM5)

40 {

41 public void visit(String name, Object

value)

42 {

43 if

(desc.equals("LbytecodeAnnotations/LogEntry;") && name.equals("logger"))

44 loggerName =

value.toString();

45 }

46 };

47 }

48

49 public void onMethodEnter()

50 {

51 if (loggerName != null)

52 {

53 visitLdcInsn(loggerName);

54 visitMethodInsn(INVOKESTATIC,

"java/util/logging/Logger", "getLogger",

55 "(Ljava/lang/String;)Ljava/util/loggin

g/Logger;", false);

56 visitLdcInsn(className);

57 visitLdcInsn(methodName);

58 visitMethodInsn(INVOKEVIRTUAL,

"java/util/logging/Logger", "entering",

59 "(Ljava/lang/String;Ljava/lang/String;

)V", false);

60 loggerName = null;

61 }

62 }

63 };

64 }

65

66 /**

67 * Adds entry logging code to the given class.

68 * @param args the name of the class file to patch

69 */

70 public static void main(String[] args) throws IOException

71 {

72 if (args.length == 0)

73 {

74 System.out.println("USAGE: java

bytecodeAnnotations.EntryLogger classfile");

75 System.exit(1);

76 }

77 Path path = Paths.get(args[0]);

78 ClassReader reader = new ClassReader(Files.newInputStream(path));

79 ClassWriter writer = new ClassWriter(

80 ClassWriter.COMPUTE_MAXS | ClassWriter.COMPUTE_FRAMES);

81 EntryLogger entryLogger = new EntryLogger(writer,

82 path.toString().replace(".class", "").replaceAll("[/\\\\]",

"."));

83 reader.accept(entryLogger, ClassReader.EXPAND_FRAMES);

84 Files.write(Paths.get(args[0]), writer.toByteArray());

85 }

86 }

Listing 8.13 set/Item.java

 1 package set;

 2

 3 import java.util.*;

 4 import bytecodeAnnotations.*;

 5

 6 /**

 7 * An item with a description and a part number.

 8 * @version 1.01 2012-01-26

 9 * @author Cay Horstmann

10 */

11 public class Item

12 {

13 private String description;

14 private int partNumber;

15

16 /**

17 * Constructs an item.

18 * @param aDescription the item's description

19 * @param aPartNumber the item's part number

20 */

21 public Item(String aDescription, int aPartNumber)

22 {

23 description = aDescription;

24 partNumber = aPartNumber;

25 }

26

27 /**

28 * Gets the description of this item.

29 * @return the description

30 */

31 public String getDescription()

32 {

33 return description;

34 }

35

36 public String toString()

37 {

38 return "[description=" + description + ", partNumber=" + partNumber

+ "]";

39 }

40

41 @LogEntry(logger = "com.horstmann")

42 public boolean equals(Object otherObject)

43 {

44 if (this == otherObject) return true;

45 if (otherObject == null) return false;

46 if (getClass() != otherObject.getClass()) return false;

47 Item other = (Item) otherObject;

48 return Objects.equals(description, other.description) &&

partNumber == other.partNumber;

49 }

50

51 @LogEntry(logger = "com.horstmann")

52 public int hashCode()

53 {

54 return Objects.hash(description, partNumber);

55 }

56 }

Listing 8.14 set/SetTest.java

 1 package set;

 2

 3 import java.util.*;

 4 import java.util.logging.*;

 5

 6 /**

 7 * @version 1.02 2012-01-26

 8 * @author Cay Horstmann

 9 */

10 public class SetTest

11 {

12 public static void main(String[] args)

13 {

14 Logger.getLogger("com.horstmann").setLevel(Level.FINEST);

15 Handler handler = new ConsoleHandler();

16 handler.setLevel(Level.FINEST);

17 Logger.getLogger("com.horstmann").addHandler(handler);

18

19 Set<Item> parts = new HashSet<>();

20 parts.add(new Item("Toaster", 1279));

21 parts.add(new Item("Microwave", 4104));

22 parts.add(new Item("Toaster", 1279));

23 System.out.println(parts);

24 }

25 }

8.7.2 Modifying Bytecodes at Load Time

In the preceding section, you saw a tool that edits class files. However, it can be cumbersome

to add yet another tool into the build process. An attractive alternative is to defer the

bytecode engineering until load time, when the class loader loads the class.

The instrumentation API has a hook for installing a bytecode transformer. The transformer
must be installed before the main method of the program is called. You can meet this

requirement by defining an agent, a library that is loaded to monitor a program in some
way. The agent code can carry out initializations in a premain method.

Here are the steps required to build an agent:

1. Implement a class with a method

 public static void premain(String arg, Instrumentation instr)

This method is called when the agent is loaded. The agent can get a single command-line

argument, which is passed in the arg parameter. The instr parameter can be used to install

various hooks.

2. Make a manifest file EntryLoggingAgent.mf that sets the Premain-Class attribute, for

example:

 Premain-Class: bytecodeAnnotations.EntryLoggingAgent

3. Package the agent code and the manifest into a JAR file, for example:

 javac -classpath .:asm/lib/*

bytecodeAnnotations.EntryLoggingAgent

 jar cvfm EntryLoggingAgent.jar

bytecodeAnnotations/EntryLoggingAgent.mf \

 bytecodeAnnotations/Entry*.class

To launch a Java program together with the agent, use the following command-line options:

 java -javaagent:AgentJARFile=agentArgument . . .

For example, to run the SetTest program with the entry logging agent, call

 javac set/SetTest.java

 java -javaagent:EntryLoggingAgent.jar=set.Item

-classpath .:asm/lib/* set.SetTest

The Item argument is the name of the class that the agent should modify.

Listing 8.15 shows the agent code. The agent installs a class file transformer. The

transformer first checks whether the class name matches the agent argument. If so, it uses

the EntryLogger class from the preceding section to modify the bytecodes. However, the

modified bytecodes are not saved to a file. Instead, the transformer returns them for loading

into the virtual machine (see Figure 8.3). In other words, this technique carries out “just

in time” modification of the bytecodes.

Figure 8.3 Modifying classes at load time

Listing 8.15 bytecodeAnnotations/EntryLoggingAgent.java

 1 package bytecodeAnnotations;

 2

 3 import java.lang.instrument.*;

 4

 5 import org.objectweb.asm.*;

 6

 7 /**

 8 * @version 1.10 2016-05-10

 9 * @author Cay Horstmann

10 */

11 public class EntryLoggingAgent

12 {

13 public static void premain(final String arg, Instrumentation instr)

14 {

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08fig03

15 instr.addTransformer((loader, className, cl, pd, data) ->

16 {

17 if (!className.equals(arg)) return null;

18 ClassReader reader = new ClassReader(data);

19 ClassWriter writer = new ClassWriter(

20 ClassWriter.COMPUTE_MAXS |

ClassWriter.COMPUTE_FRAMES);

21 EntryLogger el = new EntryLogger(writer, className);

22 reader.accept(el, ClassReader.EXPAND_FRAMES);

23 return writer.toByteArray();

24 });

25 }

26 }

In this chapter, you have learned how to

• Add annotations to Java programs

• Design your own annotation interfaces

• Implement tools that make use of the annotations

You have seen three technologies for processing code: scripting, compiling Java programs,

and processing annotations. The first two were quite straightforward. On the other hand,

building annotation tools is undeniably complex and not something that most developers will

need to tackle. This chapter gave you the background for understanding the inner workings

of the annotation tools you will encounter, and perhaps piqued your interest in developing

your own tools.

In the next chapter, we’ll move on to an entirely different topic: security. Security has

always been a core feature of the Java platform. As the world in which we live and compute

gets more dangerous, a thorough understanding of Java security will be of increasing

importance for many developers.

Chapter 9. Security

In this chapter

• 9.1 Class Loaders,

• 9.1.5 Bytecode Verification,

• 9.2 Security Managers and Permissions,

• 9.3 User Authentication,

• 9.4 Digital Signatures,

• 9.4.7 Code Signing,

• 9.5 Encryption,

When Java technology first appeared on the scene, the excitement was not about a well-crafted

programming language but about the possibility of safely executing applets delivered over

the Internet. Obviously, delivering executable applets is only practical when the

recipients are sure that the code can’t wreak havoc on their machines. For this reason,

security was and is a major concern of both the designers and the users of Java technology.

This means that unlike other languages and systems, where security was implemented as an

afterthought or a reaction to break-ins, security mechanisms are an integral part of Java

technology.

Three mechanisms help ensure safety:

 Language design features (bounds checking on arrays, no unchecked type conversions, no pointer arithmetic,

and so on).

 An access control mechanism that controls what the code can do (such as file access, network access, and so on).

 Code signing, whereby code authors can use standard cryptographic algorithms to authenticate Java code. Then,

the users of the code can determine exactly who created the code and whether the code has been altered after

it was signed.

We will first discuss class loaders that check class files for integrity when they are loaded
into the virtual machine. We will demonstrate how that mechanism can detect tampering with

class files.

For maximum security, both the default mechanism for loading a class and a custom class

loader need to work with a security manager class that controls what actions code can perform.
You’ll see in detail how to configure Java platform security.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09lev9-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09lev9-1-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09lev9-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09lev9-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09lev9-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09lev9-4-7
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09lev9-5

Finally, you’ll see the cryptographic algorithms supplied in the java.security package,

which allow for code signing and user authentication.

As always, we’ll focus on those topics that are of greatest interest to application

programmers. For an in-depth view, we recommend the book Inside Java™ 2 Platform Security:
Architecture, API Design, and Implementation, Second Edition, by Li Gong, Gary Ellison,
and Mary Dageforde (Prentice Hall, 2003).

9.1 Class Loaders

A Java compiler converts source instructions for the Java virtual machine. The virtual

machine code is stored in a class file with a .class extension. Each class file contains

the definition and implementation code for one class or interface. In the following section,

you will see how the virtual machine loads these class files.

9.1.1 The Class Loading Process

The virtual machine loads only those class files that are needed for the execution of a

program. For example, suppose program execution starts with MyProgram.class. Here are the

steps that the virtual machine carries out:

1. The virtual machine has a mechanism for loading class files—for example, by reading

the files from disk or by requesting them from the Web; it uses this mechanism to load the

contents of the MyProgram class file.

2. If the MyProgram class has fields or superclasses of another class type, their class

files are loaded as well. (The process of loading all the classes that a given class depends

on is called resolving the class.)

3. The virtual machine then executes the main method in MyProgram (which is static, so no

instance of a class needs to be created).

4. If the main method or a method that main calls requires additional classes, these are

loaded next.

The class loading mechanism doesn’t just use a single class loader, however. Every Java

program has at least three class loaders:

• The bootstrap class loader

• The extension class loader

• The system class loader (sometimes also called the application class loader)

The bootstrap class loader loads the system classes (typically, from the JAR file rt.jar).

It is an integral part of the virtual machine and is usually implemented in C. There is

no ClassLoader object corresponding to the bootstrap class loader. For example,

 String.class.getClassLoader()

returns null.

The extension class loader loads “standard extensions” from the jre/lib/ext directory.
You can drop JAR files into that directory, and the extension class loader will find the

classes in them, even without any class path. (Some people recommend this mechanism to avoid

the “class path hell,” but see the next cautionary note.)

The system class loader loads the application classes. It locates classes in the directories

and JAR/ZIP files on the class path, as set by the CLASSPATH environment variable or the

-classpath command-line option.

In Oracle Java implementation, the extension and system class loaders are implemented in

Java. Both are instances of the URLClassLoader class.

CAUTION

You can run into grief if you drop a JAR file into the jre/lib/ext directory and one of
its classes needs to load a class that is not a system or extension class. The extension

class loader does not use the class path. Keep that in mind before you use the extension
directory as a way to manage your class file hassles.

NOTE:

In addition to all the places already mentioned, classes can be loaded from the

jre/lib/endorsed directory. This mechanism can only be used to replace certain standard
Java libraries (such as those for XML and CORBA support) with newer versions. See

http://docs.oracle.com/javase/8/docs/technotes/guides/standards for details.

9.1.2 The Class Loader Hierarchy

Class loaders have a parent/child relationship. Every class loader except for the bootstrap
one has a parent class loader. A class loader is supposed to give its parent a chance to

load any given class and only load it if the parent has failed. For example, when the system

class loader is asked to load a system class (say, java.util.ArrayList), it first asks the

http://docs.oracle.com/javase/8/docs/technotes/guides/standards

extension class loader. That class loader first asks the bootstrap class loader. The

bootstrap class loader finds and loads the class in rt.jar, so neither of the other class

loaders searches any further.

Some programs have a plugin architecture in which certain parts of the code are packaged

as optional plugins. If the plugins are packaged as JAR files, you can simply load the plugin

classes with an instance of URLClassLoader.

 URL url = new URL("file:///path/to/plugin.jar"); URLClassLoader pluginLoader =

new URLClassLoader(new URL[] { url }); Class<?> cl =

pluginLoader.loadClass("mypackage.MyClass");

Because no parent was specified in the URLClassLoader constructor, the parent of the

pluginLoader is the system class loader. Figure 9.1 shows the hierarchy.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09fig01

Figure 9.1 The class loader hierarchy

Most of the time, you don’t have to worry about the class loader hierarchy. Generally,

classes are loaded because they are required by other classes, and that process is

transparent to you.

Occasionally, you need to intervene and specify a class loader. Consider this example:

• Your application code contains a helper method that calls Class.forName(classNameString).

• That method is called from a plugin class.

• The classNameString specifies a class that is contained in the plugin JAR.

The author of the plugin has reasons to expect that the class should be loaded. However,

the helper method’s class was loaded by the system class loader, and that is the class

loader used by Class.forName. The classes in the plugin JAR are not visible. This phenomenon

is called classloader inversion.

To overcome this problem, the helper method needs to use the correct class loader. It can

require the class loader as a parameter. Alternatively, it can require that the correct

class loader is set as the context class loader of the current thread. This strategy is
used by many frameworks (such as the JAXP and JNDI frameworks that we discussed in Chapters

3 and 5).

Each thread has a reference to a class loader, called the context class loader. The main

thread’s context class loader is the system class loader. When a new thread is created,

its context class loader is set to the creating thread’s context class loader. Thus, if

you don’t do anything, all threads will have their context class loaders set to the system

class loader.

However, you can set any class loader by calling

 Thread t = Thread.currentThread();

 t.setContextClassLoader(loader);

The helper method can then retrieve the context class loader:

 Thread t = Thread.currentThread();

 ClassLoader loader = t.getContextClassLoader();

 Class cl = loader.loadClass(className);

The question remains when the context class loader is set to the plugin class loader. The

application designer must make this decision. Generally, it is a good idea to set the context

class loader when invoking a method of a plugin class that was loaded with a different class

loader. Alternatively, the caller of the helper method can set the context class loader.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05

TIP:

If you write a method that loads a class by name, it is a good idea to offer the caller

the choice between passing an explicit class loader and using the context class loader.

Don’t simply use the class loader of the method’s class.

9.1.3 Using Class Loaders as Namespaces

Every Java programmer knows that package names are used to eliminate name conflicts. There

are two classes called Date in the standard library, but of course their real names are

java.util.Date and java.sql.Date. The simple name is only a programmer convenience and

requires the inclusion of appropriate import statements. In a running program, all class

names contain their package names.

It might surprise you, however, that you can have two classes in the same virtual machine

that have the same class and package name. A class is determined by its full name and the
class loader. This technique is useful for loading code from multiple sources. For example,

a browser uses separate instances of the applet class loader for each web page. This allows

the virtual machine to separate classes from different web pages, no matter what they are

named. Figure 9.2 shows an example. Suppose a web page contains two applets, provided by

different advertisers, and each applet has a class called Banner. Since each applet is loaded

by a separate class loader, these classes are entirely distinct and do not conflict with

each other.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09fig02

Figure 9.2 Two class loaders load different classes with the same name.

NOTE:

This technique has other uses as well, such as “hot deployment” of servlets and Enterprise

JavaBeans. See http://zeroturnaround.com/labs/rjc301 for more information.

9.1.4 Writing Your Own Class Loader

You can write your own class loader for specialized purposes. That lets you carry out custom

checks before you pass the bytecodes to the virtual machine. For example, you can write

a class loader that can refuse to load a class that has not been marked as “paid for.”

To write your own class loader, simply extend the ClassLoader class and override the method

 findClass(String className)

The loadClass method of the ClassLoader superclass takes care of the delegation to the parent

and calls findClass only if the class hasn’t already been loaded and if the parent class

loader was unable to load the class.

Your implementation of this method must do the following:

1. Load the bytecodes for the class from the local file system or some other source.

2. Call the defineClass method of the ClassLoader superclass to present the bytecodes to

the virtual machine.

In the program of Listing 9.1, we implement a class loader that loads encrypted class files.

The program asks the user for the name of the first class to load (that is, the class

containing main) and the decryption key. It then uses a special class loader to load the

specified class and calls the main method. The class loader decrypts the specified class

and all nonsystem classes that are referenced by it. Finally, the program calls the main

method of the loaded class (see Figure 9.3).

http://zeroturnaround.com/labs/rjc301
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09fig03

Figure 9.3 The ClassLoaderTest program

For simplicity, we ignore the 2,000 years of progress in the field of cryptography and use

the venerable Caesar cipher for encrypting the class files.

NOTE:

David Kahn’s wonderful book The Codebreakers (Macmillan, 1967, p. 84) refers to Suetonius
as a historical source for the Caesar cipher. Caesar shifted the 24 letters of the Roman

alphabet by 3 letters, which at the time baffled his adversaries.

When this chapter was first written, the U.S. government restricted the export of strong

encryption methods. Therefore, we used Caesar’s method for our example because it was

clearly legal for export.

Our version of the Caesar cipher has as a key a number between 1 and 255. To decrypt, simply

add that key to every byte and reduce modulo 256. The Caesar.java program of Listing 9.2

carries out the encryption.

To not confuse the regular class loader, we use a different extension, .caesar, for the

encrypted class files.

To decrypt, the class loader simply subtracts the key from every byte. In the companion

code for this book, you will find four class files, encrypted with a key value of 3—the

traditional choice. To run the encrypted program, you’ll need the custom class loader

defined in our ClassLoaderTest program.

Encrypting class files has a number of practical uses (provided, of course, that you use

something stronger than the Caesar cipher). Without the decryption key, the class files

are useless. They can neither be executed by a standard virtual machine nor readily

disassembled.

This means that you can use a custom class loader to authenticate the user of the class

or to ensure that a program has been paid for before it will be allowed to run. Of course,

encryption is only one application of a custom class loader. You can use other types of

class loaders to solve other problems—for example, storing class files in a database.

Listing 9.1 classLoader/ClassLoaderTest.java

 1 package classLoader;

 2

 3 import java.io.*;

 4 import java.lang.reflect.*;

 5 import java.nio.file.*;

 6 import java.awt.*;

 7 import java.awt.event.*;

 8 import javax.swing.*;

 9

10 /**

11 * This program demonstrates a custom class loader that decrypts class files.

12 * @version 1.24 2016-05-10

13 * @author Cay Horstmann

14 */

15 public class ClassLoaderTest

16 {

17 public static void main(String[] args)

18 {

19 EventQueue.invokeLater(() ->

20 {

21 JFrame frame = new ClassLoaderFrame();

22 frame.setTitle("ClassLoaderTest");

23 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

24 frame.setVisible(true);

25 });

26 }

27 }

28

29 /**

30 * This frame contains two text fields for the name of the class to load and the

decryption key.

31 */

32 class ClassLoaderFrame extends JFrame

33 {

34 private JTextField keyField = new JTextField("3", 4);

35 private JTextField nameField = new JTextField("Calculator", 30);

36 private static final int DEFAULT_WIDTH = 300;

37 private static final int DEFAULT_HEIGHT = 200;

38

39 public ClassLoaderFrame()

40 {

41 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

42 setLayout(new GridBagLayout());

43 add(new JLabel("Class"), new GBC(0, 0).setAnchor(GBC.EAST));

44 add(nameField, new GBC(1, 0).setWeight(100,

0).setAnchor(GBC.WEST));

45 add(new JLabel("Key"), new GBC(0, 1).setAnchor(GBC.EAST));

46 add(keyField, new GBC(1, 1).setWeight(100,

0).setAnchor(GBC.WEST));

47 JButton loadButton = new JButton("Load");

48 add(loadButton, new GBC(0, 2, 2, 1));

49 loadButton.addActionListener(event ->

runClass(nameField.getText(), keyField.getText()));

50 pack();

51 }

52

53 /**

54 * Runs the main method of a given class.

55 * @param name the class name

56 * @param key the decryption key for the class files

57 */

58 public void runClass(String name, String key)

59 {

60 try

61 {

62 ClassLoader loader = new

CryptoClassLoader(Integer.parseInt(key));

63 Class<?> c = loader.loadClass(name);

64 Method m = c.getMethod("main", String[].class);

65 m.invoke(null, (Object) new String[] {});

66 }

67 catch (Throwable e)

68 {

69 JOptionPane.showMessageDialog(this, e);

70 }

71 }

72

73 }

74

75 /**

76 * This class loader loads encrypted class files.

77 */

78 class CryptoClassLoader extends ClassLoader

79 {

80 private int key;

81

82 /**

83 * Constructs a crypto class loader.

84 * @param k the decryption key

85 */

86 public CryptoClassLoader(int k)

87 {

88 key = k;

89 }

90

91 protected Class<?> findClass(String name) throws

ClassNotFoundException

92 {

93 try

94 {

95 byte[] classBytes = null;

96 classBytes = loadClassBytes(name);

97 Class<?> cl = defineClass(name, classBytes, 0,

classBytes.length);

98 if (cl == null) throw new ClassNotFoundException(name);

99 return cl;

100 }

101 catch (IOException e)

102 {

103 throw new ClassNotFoundException(name);

104 }

105 }

106

107 /**

108 * Loads and decrypt the class file bytes.

109 * @param name the class name

110 * @return an array with the class file bytes

111 */

112 private byte[] loadClassBytes(String name) throws IOException

113 {

114 String cname = name.replace('.', '/') + ".caesar";

115 byte[] bytes = Files.readAllBytes(Paths.get(cname));

116 for (int i = 0; i < bytes.length; i++)

117 bytes[i] = (byte) (bytes[i] - key);

118 return bytes;

119 }

120 }

Listing 9.2 classLoader/Caesar.java

 1 package classLoader;

 2

 3 import java.io.*;

 4

 5 /**

 6 * Encrypts a file using the Caesar cipher.

 7 * @version 1.01 2012-06-10

 8 * @author Cay Horstmann

 9 */

10 public class Caesar

11 {

12 public static void main(String[] args) throws Exception

13 {

14 if (args.length != 3)

15 {

16 System.out.println("USAGE: java classLoader.Caesar in out

key");

17 return;

18 }

19

20 try(FileInputStream in = new FileInputStream(args[0]);

21 FileOutputStream out = new FileOutputStream(args[1]))

22 {

23 int key = Integer.parseInt(args[2]);

24 int ch;

25 while ((ch = in.read()) != -1)

26 {

27 byte c = (byte) (ch + key);

28 out.write(c);

29 }

30 }

31 }

32 }

java.lang.Class 1.0

• ClassLoader getClassLoader()

gets the class loader that loaded this class.

java.lang.ClassLoader 1.0

• ClassLoader getParent() 1.2

returns the parent class loader, or null if the parent class loader is the bootstrap class

loader.

• static ClassLoader getSystemClassLoader() 1.2

gets the system class loader—that is, the class loader that was used to load the first

application class.

• protected Class findClass(String name) 1.2

should be overridden by a class loader to find the bytecodes for a class and present them

to the virtual machine by calling the defineClass method. In the name of the class, use .

as package name separator, and don’t use a .class suffix.

• Class defineClass(String name, byte[] byteCodeData, int offset, int length)

adds a new class to the virtual machine whose bytecodes are provided in the given data range.

java.net.URLClassLoader 1.2

• URLClassLoader(URL[] urls)

• URLClassLoader(URL[] urls, ClassLoader parent)

constructs a class loader that loads classes from the given URLs. If a URL ends in a /,

it is assumed to be a directory, otherwise it is assumed to be a JAR file.

java.lang.Thread 1.0

• ClassLoader getContextClassLoader() 1.2

gets the class loader that the creator of this thread has designated as the most reasonable

class loader to use when executing this thread.

• void setContextClassLoader(ClassLoader loader) 1.2

sets a class loader for code in this thread to retrieve for loading classes. If no context

class loader is set explicitly when a thread is started, the parent’s context class loader

is used.

9.1.5 Bytecode Verification

When a class loader presents the bytecodes of a newly loaded Java platform class to the

virtual machine, these bytecodes are first inspected by a verifier. The verifier checks
that the instructions cannot perform actions that are obviously damaging. All classes except

for system classes are verified.

Here are some of the checks that the verifier carries out:

• Variables are initialized before they are used.

• Method calls match the types of object references.

• Rules for accessing private data and methods are not violated.

• Local variable accesses fall within the runtime stack.

• The runtime stack does not overflow.

If any of these checks fails, the class is considered corrupted and will not be loaded.

NOTE:

If you are familiar with Gödel’s theorem, you might wonder how the verifier can prove that

a class file is free from type mismatches, uninitialized variables, and stack overflows.

Gödel’s theorem states that it is impossible to design algorithms that process program

files and decide whether the input programs have a particular property (such as being free

from stack overflows). Is this a conflict between the public relations department at Oracle

and the laws of logic? No—in fact, the verifier is not a decision algorithm in the sense
of Gödel. If the verifier accepts a program, it is indeed safe. However, the verifier might

reject virtual machine instructions even though they would actually be safe. (You might

have run into this issue when you were forced to initialize a variable with a dummy value

because the verifier couldn’t tell that it was going to be properly initialized.)

This strict verification is an important security consideration. Accidental errors, such

as uninitialized variables, can easily wreak havoc if they are not caught. More importantly,

in the wide open world of the Internet, you must be protected against malicious programmers

who create evil effects on purpose. For example, by modifying values on the runtime stack

or by writing to the private data fields of system objects, a program can break through

the security system of a browser.

You might wonder, however, why a special verifier checks all these features. After all,

the compiler would never allow you to generate a class file in which an uninitialized

variable is used or in which a private data field is accessed from another class. Indeed,

a class file generated by a compiler for the Java programming language always passes

verification. However, the bytecode format used in the class files is well documented, and

it is an easy matter for someone with experience in assembly programming and a hex editor

to manually produce a class file containing valid but unsafe instructions for the Java

virtual machine. Once again, keep in mind that the verifier is always guarding against

maliciously altered class files, not just checking the class files produced by a compiler.

Here’s an example of how to construct such an altered class file. We start with the program

VerifierTest.java of Listing 9.3. This is a simple program that calls a method and displays

the method result. The program can be run both as a console program and as an applet. The

fun method itself just computes 1 + 2.

 static int fun() {

 int m;

 int n;

 m = 1;

 n = 2;

 int r = m + n;

 return r;

 }

As an experiment, try to compile the following modification of this program:

 static int fun() {

 int m = 1;

 int n;

 m = 1;

 m = 2;

 int r = m + n;

 return r;

 }

In this case, n is not initialized, and it could have any random value. Of course, the

compiler detects that problem and refuses to compile the program. To create a bad class

file, we have to work a little harder. First, run the javap program to find out how the

compiler translates the fun method. The command

 javap -c verifier.VerifierTest

shows the bytecodes in the class file in mnemonic form.

 Method int fun()

 0 iconst_1

 1 istore_0

 2 iconst_2

 3 istore_1

 4 iload_0

 5 iload_1

 6 iadd

 7 istore_2

 8 iload_2

 9 ireturn

Use a hex editor to change instruction 3 from istore_1 to istore_0. That is, local variable

0 (which is m) is initialized twice, and local variable 1 (which is n) is not initialized

at all. We need to know the hexadecimal values for these instructions; these values are

readily available from The Java™ Virtual Machine Specification, Second Edition, by Tim
Lindholm and Frank Yellin (Prentice Hall, 1999).

 0 iconst_1 04

 1 istore_0 3B

 2 iconst_2 05

 3 istore_1 3C

 4 iload_0 1A

 5 iload_1 1B

 6 iadd 60

 7 istore_2 3D

 8 iload_2 1C

 9 ireturn AC

You can use any hex editor to carry out the modification. In Figure 9.4, you see the class

file VerifierTest.class loaded into the Gnome hex editor, with the bytecodes of the fun

method highlighted.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09fig04

Figure 9.4 Modifying bytecodes with a hex editor

Change 3C to 3B and save the class file. Then try running the VerifierTest program. You

get an error message:

 Exception in thread "main" java.lang.VerifyError: (class: VerifierTest, method:fun

signature:

 ()I) Accessing value from uninitialized register 1

That is good—the virtual machine detected our modification.

Now run the program with the -noverify (or -Xverify:none) option.

 java -noverify verifier.VerifierTest

The fun method returns a seemingly random value. This is actually 2 plus the value that

happened to be stored in the variable n, which never was initialized. Here is a typical

printout:

1 + 2 == 15102330

To see how browsers handle verification, we wrote this program to run either as an

application or an applet. Load the applet into a browser, using a file URL such as

 file:///C:/CoreJavaBook/v2ch9/verifier/VerifierTest.html

You then see an error message displayed indicating that verification has failed (Figure

9.5).

Figure 9.5 Loading a corrupted class file raises a method verification error.

Listing 9.3 verifier/VerifierTest.java

 1 package verifier;

 2

 3 import java.applet.*;

 4 import java.awt.*;

 5

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09fig05
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09fig05

 6 /**

 7 * This application demonstrates the bytecode verifier of the virtual machine.

If you use a hex

 8 * editor to modify the class file, then the virtual machine should detect the

tampering.

 9 * @version 1.00 1997-09-10

10 * @author Cay Horstmann

11 */

12 public class VerifierTest extends Applet

13 {

14 public static void main(String[] args)

15 {

16 System.out.println("1 + 2 == " + fun());

17 }

18

19 /**

20 * A function that computes 1 + 2.

21 * @return 3, if the code has not been corrupted

22 */

23 public static int fun()

24 {

25 int m;

26 int n;

27 m = 1;

28 n = 2;

29 // use hex editor to change to "m = 2" in class file

30 int r = m + n;

31 return r;

32 }

33

34 public void paint(Graphics g)

35 {

36 g.drawString("1 + 2 == " + fun(), 20, 20);

37 }

38 }

9.2 Security Managers and Permissions

Once a class has been loaded into the virtual machine and checked by the verifier, the second

security mechanism of the Java platform springs into action: the security manager. This
is the topic of the following sections.

9.2.1 Permission Checking

The security manager controls whether a specific operation is permitted. Operations checked

by the security manager include the following:

• Creating a new class loader

• Exiting the virtual machine

• Accessing a field of another class by using reflection

• Accessing a file

• Opening a socket connection

• Starting a print job

• Accessing the system clipboard

• Accessing the AWT event queue

• Bringing up a top-level window

There are many other checks throughout the Java library.

The default behavior when running Java applications is that no security manager is installed,
so all these operations are permitted. The applet viewer, on the other hand, enforces a

security policy that is quite restrictive.

For example, applets are not allowed to exit the virtual machine. If they try calling the

exit method, a security exception is thrown. Here is what happens in detail. The exit method

of the Runtime class calls the checkExit method of the security manager. Here is the entire

code of the exit method:

 public void exit(int status)

 {

 SecurityManager security = System.getSecurityManager();

 if (security != null)

 security.checkExit(status);

 exitInternal(status);

 }

The security manager now checks if the exit request came from the browser or an individual

applet. If the security manager agrees with the exit request, the checkExit method simply

returns and normal processing continues. However, if the security manager doesn’t want

to grant the request, the checkExit method throws a SecurityException.

The exit method continues only if no exception occurred. It then calls the private native
exitInternal method that actually terminates the virtual machine. There is no other way

of terminating the virtual machine, and since the exitInternal method is private, it cannot

be called from any other class. Thus, any code that attempts to exit the virtual machine

must go through the exit method and thus through the checkExit security check without

triggering a security exception.

Clearly, the integrity of the security policy depends on careful coding. The providers of

system services in the standard library must always consult the security manager before

attempting any sensitive operation.

The security manager of the Java platform allows both programmers and system administrators

fine-grained control over individual security permissions. We will describe these features

in the following section. First, we’ll summarize the Java 2 platform security model. We’ll

then show how you can control permissions with policy files. Finally, we’ll explain how

you can define your own permission types.

NOTE:

It is possible to implement and install your own security manager, but you should not attempt

this unless you are an expert in computer security. It is much safer to configure the standard

security manager.

9.2.2 Java Platform Security

JDK 1.0 had a very simple security model: Local classes had full permissions, and remote

classes were confined to the sandbox. Just like a child that can only play in a sandbox,
remote code was only allowed to paint on the screen and interact with the user. The applet

security manager denied all access to local resources. JDK 1.1 implemented a slight

modification: Remote code that was signed by a trusted entity was granted the same

permissions as local classes. However, both versions of the JDK provided an all-or-nothing

approach. Programs either had full access or they had to play in the sandbox.

Starting with Java SE 1.2, the Java platform has a much more flexible mechanism. A security
policy maps code sources to permission sets (see Figure 9.6).

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09fig06

Figure 9.6 A security policy

A code source is specified by a code base and a set of certificates. The code base specifies
the origin of the code. For example, the code base of remote applet code is the HTTP URL

from which the applet is loaded. The code base of code in a JAR file is the file’s URL.

A certificate, if present, is an assurance by some party that the code has not been tampered

with. We cover certificates later in this chapter.

A permission is any property that is checked by a security manager. The Java platform
supports a number of permission classes, each encapsulating the details of a particular

permission. For example, the following instance of the FilePermission class states that

it is okay to read and write any file in the /tmp directory.

 FilePermission p = new FilePermission("/tmp/*", "read,write");

More importantly, the default implementation of the Policy class reads permissions from

a permission file. Inside a permission file, the same read permission is expressed as

 permission java.io.FilePermission "/tmp/*", "read,write";

We’ll discuss permission files in the next section.

Figure 9.7 shows the hierarchy of the permission classes that were supplied with Java SE

1.2. Many more permission classes have been added in subsequent Java releases.

Figure 9.7 A part of the hierarchy of permission classes

In the preceding section, you saw that the SecurityManager class has security check methods

such as checkExit. These methods exist only for the convenience of the programmer and for

backward compatibility. They all map into standard permission checks. For example, here

is the source code for the checkExit method:

 public void checkExit()

 {

 checkPermission(new RuntimePermission("exitVM"));

 }

Each class has a protection domain—an object that encapsulates both the code source and

the collection of permissions of the class. When the SecurityManager needs to check a

permission, it looks at the classes of all methods currently on the call stack. It then

gets the protection domains of all classes and asks each protection domain if its permission

collection allows the operation currently being checked. If all domains agree, the check

passes. Otherwise, a SecurityException is thrown.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09fig07

Why do all methods on the call stack need to allow a particular operation? Let us work through

an example. Suppose the init method of an applet wants to open a file. It might call

 Reader in = new FileReader(name);

The FileReader constructor calls the FileInputStream constructor, which calls the checkRead

method of the security manager, which finally calls checkPermission with a

FilePermission(name, "read") object. Table 9.1 shows the call stack.

Table 9.1 Call Stack During Permission Checking

The FileInputStream and SecurityManager classes are system classes for which CodeSource
is null and the permissions consist of an instance of the AllPermission class, which allows

all operations. Clearly, their permissions alone can’t determine the outcome of the check.

As you can see, the checkPermission method must take into account the restricted permissions

of the applet class. By checking the entire call stack, the security mechanism ensures that

one class can never ask another class to carry out a sensitive operation on its behalf.

NOTE:

This brief discussion of permission checking explains the basic concepts. However, we omit

a number of technical details here. With security, the devil lies in the details, and we

encourage you to read the book by Li Gong for more information. For a more critical view

of the Java platform’s security model, see the book Securing Java: Getting Down to Business
with Mobile Code, Second Edition, by Gary McGraw and Ed W. Felten (Wiley, 1999).You can
find an online version of that book at www.securingjava.com.

java.lang.SecurityManager 1.0

• void checkPermission(Permission p) 1.2

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09tab01
http://www.securingjava.com/

checks whether this security manager grants the given permission. The method throws a

SecurityException if the permission is not granted.

java.lang.Class 1.0

• ProtectionDomain getProtectionDomain() 1.2

gets the protection domain for this class, or null if this class was loaded without a

protection domain.

java.security.ProtectionDomain 1.2

• ProtectionDomain(CodeSource source, PermissionCollection permissions)

constructs a protection domain with the given code source and permissions.

• CodeSource getCodeSource()

gets the code source of this protection domain.

• boolean implies(Permission p)

returns true if the given permission is allowed by this protection domain.

java.security.CodeSource 1.2

• Certificate[] getCertificates()

gets the certificate chain for class file signatures associated with this code source.

• URL getLocation()

gets the code base of class files associated with this code source.

9.2.3 Security Policy Files

The policy manager reads policy files that contain instructions for mapping code sources
to permissions. Here is a typical policy file:

 grant codeBase "http://www.horstmann.com/classes"

 {

 permission java.io.FilePermission "/tmp/*", "read,write";

 };

This file grants permission to read and write files in the /tmp directory to all code that

was downloaded from www.horstmann.com/classes.

You can install policy files in standard locations. By default, there are two locations:

• The file java.policy in the Java platform’s home directory

• The file .java.policy (notice the period at the beginning of the file name) in the user’s

home directory

NOTE:

You can change the locations of these files in the java.security configuration file in the

jre/lib/security. The defaults are specified as

 policy.url.1=file:${java.home}/lib/security/java.policy

 policy.url.2=file:${user.home}/.java.policy

A system administrator can modify the java.security file and specify policy URLs that reside

on another server and cannot be edited by users. There can be any number of policy URLs

(with consecutive numbers) in the policy file.The permissions of all files are combined.

If you want to store policies outside the file system, you can implement a subclass of the

Policy class that gathers the permissions. Then change the line

 policy.provider=sun.security.provider.PolicyFile

in the java.security configuration file.

During testing, we don’t like to constantly modify the standard policy files. Therefore,

we prefer to explicitly name the policy file required for each application. Place the

permissions into a separate file—say, MyApp.policy. To apply the policy, you have two

choices. You can set a system property inside your applications’ main method:

 System.setProperty("java.security.policy", "MyApp.policy");

Alternatively, you can start the virtual machine as

 java -Djava.security.policy=MyApp.policy MyApp

For applets, you should instead use

 appletviewer -J-Djava.security.policy=MyApplet.policy MyApplet.html

http://www.horstmann.com/classes

(You can use the -J option of the appletviewer to pass any command-line argument to the

virtual machine.)

In these examples, the MyApp.policy file is added to the other policies in effect. If you

add a second equal sign, such as

 java -Djava.security.policy==MyApp.policy MyApp

then your application will use only the specified policy file, and the standard policy files
will be ignored.

CAUTION

An easy mistake during testing is to accidentally leave a .java.policy file that grants

a lot of permissions, perhaps even AllPermission, in the home directory. If you find that

your application doesn’t seem to pay attention to the restrictions in your policy file,

check for a left-behind .java.policy file in your home directory. If you use a UNIX system,

this is a particularly easy mistake to make because files with names that start with a period

are not displayed by default.

As you saw previously, Java applications by default do not install a security manager.

Therefore, you won’t see the effect of policy files until you install one. You can, of

course, add a line

 System.setSecurityManager(new SecurityManager());

into your main method. Or you can add the command-line option -Djava.security.manager when

starting the virtual machine.

 java -Djava.security.manager -Djava.security.policy=MyApp.policy MyApp

In the remainder of this section, we’ll show you in detail how to describe permissions

in the policy file. We’ll describe the entire policy file format, except for code

certificates which we cover later in this chapter.

A policy file contains a sequence of grant entries. Each entry has the following form:

 grant codesource
 {

 permission1;
 permission2;
 ...

 };

The code source contains a code base (which can be omitted if the entry applies to code

from all sources) and the names of trusted principals and certificate signers (which can

be omitted if signatures are not required for this entry).

The code base is specified as

 codeBase "url"

If the URL ends in a /, then it refers to a directory. Otherwise, it is taken to be the

name of a JAR file. For example,

 grant codeBase "www.horstmann.com/classes/" { . . . };

 grant codeBase "www.horstmann.com/classes/MyApp.jar" { . . . };

The code base is a URL and should always contain forward slashes as file separators, even

for file URLs in Windows. For example,

 grant codeBase "file:C:/myapps/classes/" { . . . };

NOTE:

Everyone knows that http URLs start with two slashes (http://). But there seems enough

confusion about file URLs that the policy file reader accepts two forms of file URLs, namely,

file://localFile and file:localFile. Furthermore, a slash before a Windows drive letter
is optional. That is, all of the following are acceptable:

 file:C:/dir/filename.ext

 file:/C:/dir/filename.ext

 file://C:/dir/filename.ext

 file:///C:/dir/filename.ext

Actually, in our tests, the file:////C:/dir/filename.ext is acceptable as well, and we have

no explanation for that.

The permissions have the following structure:

 permission className targetName, actionList;

The className is the fully qualified class name of the permission class (such as
java.io.FilePermission). The targetName is a permission-specific value—for example, a

file or directory name for the file permission, or a host and port for a socket permission.

The actionList is also permission-specific. It is a list of actions, such as read or connect,
separated by commas. Some permission classes don’t need target names and action lists.

Table 9.2 lists the commonly used permission classes and their actions.

http://www.horstmann.com/classes/
http://www.horstmann.com/classes/MyApp.jar
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09tab02

Table 9.2 Permissions and Their Associated Targets and Actions

As you can see from Table 9.2, most permissions simply permit a particular operation. You

can think of the operation as the target with an implied action "permit". These permission

classes all extend the BasicPermission class (see Figure 9.7). However, the targets for

the file, socket, and property permissions are more complex, and we need to investigate

them in detail.

File permission targets can have the following form:

For example, the following permission entry gives access to all files in the directory /myapp

and any of its subdirectories.

 permission java.io.FilePermission "/myapp/-", "read,write,delete";

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09tab02
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09fig07

You must use the \\ escape sequence to denote a backslash in a Windows file name.

 permission java.io.FilePermission "c:\\myapp\\-", "read,write,delete";

Socket permission targets consist of a host and a port range. Host specifications have the

following form:

Port ranges are optional and have the form:

Here is an example:

 permission java.net.SocketPermission "*.horstmann.com:8000-8999", "connect";

Finally, property permission targets can have one of two forms:

Examples are "java.home" and "java.vm.*".

For example, the following permission entry allows a program to read all properties that

start with java.vm:

 permission java.util.PropertyPermission "java.vm.*", "read";

You can use system properties in policy files. The token ${property} is replaced by the
property value. For example, ${user.home} is replaced by the home directory of the user.

Here is a typical use of this system property in a permission entry:

 permission java.io.FilePermission "${user.home}", "read,write";

To create platform-independent policy files, it is a good idea to use the file.separator

property instead of explicit / or \\ separators. To make this simpler, the special notation

${/} is a shortcut for ${file.separator}. For example,

 permission java.io.FilePermission "${user.home}${/}-", "read,write";

is a portable entry for granting permission to read and write in the user’s home directory

and any of its subdirectories.

NOTE:

The JDK comes with a rudimentary tool, called policytool, that you can use to edit policy

files (see Figure 9.8). Of course, this tool is not suitable for end users who would be

completely mystified by most of the settings. We view it as a proof of concept for an

administration tool that might be used by system administrators who prefer point-and-click

over syntax. Still, what’s missing is a sensible set of categories (such as low, medium,

or high security) that is meaningful to nonexperts. As a general observation, we believe

that the Java platform certainly contains all the pieces for a fine-grained security model

but it could benefit from some polish in delivering these pieces to end users and system

administrators.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09fig08

Figure 9.8 The policy tool

9.2.4 Custom Permissions

In this section, you’ll see how you can supply your own permission class that users can

refer to in their policy files.

To implement your permission class, extend the Permission class and supply the following

methods:

• A constructor with two String parameters, for the target and the action list

• String getActions()

• boolean equals()

• int hashCode()

• boolean implies(Permission other)

The last method is the most important. Permissions have an ordering, in which more general
permissions imply more specific ones. Consider the file permission

 p1 = new FilePermission("/tmp/-", "read, write");

This permission allows reading and writing of any file in the /tmp directory and any of

its subdirectories.

This permission implies other, more specific permissions:

 p2 = new FilePermission("/tmp/-", "read");

 p3 = new FilePermission("/tmp/aFile", "read, write");

 p4 = new FilePermission("/tmp/aDirectory/-", "write");

In other words, a file permission p1 implies another file permission p2 if

1. The target file set of p1 contains the target file set of p2.

2. The action set of p1 contains the action set of p2.

Consider the following example of the use of the implies method. When the FileInputStream

constructor wants to open a file for reading, it checks whether it has permission to do

so. For that check, a specific file permission object is passed to the checkPermission
method:

 checkPermission(new FilePermission(fileName, "read"));

The security manager now asks all applicable permissions whether they imply this permission.

If any one of them implies it, the check passes.

In particular, the AllPermission implies all other permissions.

If you define your own permission classes, you need to define a suitable notion of

implication for your permission objects. Suppose, for example, that you define a

TVPermission for a set-top box powered by Java technology. A permission

 new TVPermission("Tommy:2-12:1900-2200", "watch,record")

might allow Tommy to watch and record television channels 2–12 between 19:00 and 22:00.

You need to implement the implies method so that this permission implies a more specific

one, such as

 new TVPermission("Tommy:4:2000-2100", "watch")

9.2.5 Implementation of a Permission Class

In the next sample program, we implement a new permission for monitoring the insertion of

text into a text area. The program ensures that you cannot add “bad words” such as sex,
drugs, and C++ into a text area. We use a custom permission class so that the list of bad
words can be supplied in a policy file.

The following subclass of JTextArea asks the security manager whether it is okay to add

new text:

 class WordCheckTextArea extends JTextArea

 {

 public void append(String text)

 {

 WordCheckPermission p = new WordCheckPermission(text, "insert");

 SecurityManager manager = System.getSecurityManager();

 if (manager != null) manager.checkPermission(p);

 super.append(text);

 }

 }

If the security manager grants the WordCheckPermission, the text is appended. Otherwise,

the checkPermission method throws an exception.

Word check permissions have two possible actions: insert (the permission to insert a

specific text) and avoid (the permission to add any text that avoids certain bad words).

You should run this program with the following policy file:

 grant

 {

 permission permissions.WordCheckPermission "sex,drugs,C++", "avoid";

 };

This policy file grants the permission to insert any text that avoids the bad words sex,
drugs, and C++.

When designing the WordCheckPermission class, we must pay particular attention to the

implies method. Here are the rules that control whether permission p1 implies permission

p2.

• If p1 has action avoid and p2 has action insert, then the target of p2 must avoid all

words in p1. For example, the permission

 permissions.WordCheckPermission "sex,drugs,C++", "avoid"

implies the permission

 permissions.WordCheckPermission "Mary had a little lamb", "insert"

• If p1 and p2 both have action avoid, then the word set of p2 must contain all words in

the word set of p1. For example, the permission

 permissions.WordCheckPermission "sex,drugs", "avoid"

implies the permission

 permissions.WordCheckPermission "sex,drugs,C++", "avoid"

• If p1 and p2 both have action insert, then the text of p1 must contain the text of p2.

For example, the permission

 permissions.WordCheckPermission "Mary had a little lamb", "insert"

implies the permission

 permissions.WordCheckPermission "a little lamb", "insert"

You can find the implementation of this class in Listing 9.4.

Note that to retrieve the permission target, you need to use the confusingly named getName

method of the Permission class.

Since permissions are described by a pair of strings in policy files, permission classes

need to be prepared to parse these strings. In particular, we use the following method to

transform the comma-separated list of bad words of an avoid per-mission into a genuine Set:

 public Set<String> badWordSet()

 {

 Set<String> set = new HashSet<String>();

 set.addAll(Arrays.asList(getName().split(",")));

 return set;

 }

This code allows us to use the equals and containsAll methods to compare sets. As you saw

in Chapter 3, the equals method of a set class finds two sets to be equal if they contain

the same elements in any order. For example, the sets resulting from "sex,drugs,C++" and

"C++,drugs,sex" are equal.

CAUTION

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03

Make sure that your permission class is a public class. The policy file loader cannot load

classes with package visibility outside the boot class path, and it silently ignores any

classes that it cannot find.

The program in Listing 9.5 shows how the WordCheckPermission class works. Type any text

into the text field and click the Insert button. If the security check passes, the text

is appended to the text area. If not, an error message is displayed (see Figure 9.9).

Figure 9.9 The PermissionTest program

CAUTION

If you carefully look at Figure 9.9, you will see that the message window has a warning

triangle, which is supposed to warn viewers that this window may have been popped up without

permission. The warning started out as an ominous “Untrusted Java Applet Window” label,

got watered down several times in successive JDK releases, and has now become essentially

useless for alerting users. The warning is turned off by the showWindowWithoutWarningBanner

target of the java.awt.AWTPermission. If you like, you can edit the policy file to grant

that permission.

You have now seen how to configure Java platform security. Most commonly, you will simply

tweak the standard permissions. For additional control, you can define custom permissions

that can be configured in the same way as the standard permissions.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09fig09
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09fig09

Listing 9.4 permissions/WordCheckPermission.java

 1 package permissions;

 2

 3 import java.security.*;

 4 import java.util.*;

 5

 6 /**

 7 * A permission that checks for bad words.

 8 */

 9 public class WordCheckPermission extends Permission

10 {

11 private String action;

12

13 /**

14 * Constructs a word check permission.

15 * @param target a comma separated word list

16 * @param anAction "insert" or "avoid"

17 */

18 public WordCheckPermission(String target, String anAction)

19 {

20 super(target);

21 action = anAction;

22 }

23

24 public String getActions()

25 {

26 return action;

27 }

28

29 public boolean equals(Object other)

30 {

31 if (other == null) return false;

32 if (!getClass().equals(other.getClass())) return false;

33 WordCheckPermission b = (WordCheckPermission) other;

34 if (!Objects.equals(action, b.action)) return false;

35 if ("insert".equals(action)) return Objects.equals(getName(),

b.getName());

36 else if ("avoid".equals(action)) return

badWordSet().equals(b.badWordSet());

37 else return false;

38 }

39

40 public int hashCode()

41 {

42 return Objects.hash(getName(), action);

43 }

44

45 public boolean implies(Permission other)

46 {

47 if (!(other instanceof WordCheckPermission)) return false;

48 WordCheckPermission b = (WordCheckPermission) other;

49 if (action.equals("insert"))

50 {

51 return b.action.equals("insert") &&

getName().indexOf(b.getName()) >= 0;

52 }

53 else if (action.equals("avoid"))

54 {

55 if (b.action.equals("avoid")) return

b.badWordSet().containsAll(badWordSet());

56 else if (b.action.equals("insert"))

57 {

58 for (String badWord : badWordSet())

59 if (b.getName().indexOf(badWord) >= 0) return

false;

60 return true;

61 }

62 else return false;

63 }

64 else return false;

65 }

66

67 /**

68 * Gets the bad words that this permission rule describes.

69 * @return a set of the bad words

70 */

71 public Set<String> badWordSet()

72 {

73 Set<String> set = new HashSet<>();

74 set.addAll(Arrays.asList(getName().split(",")));

75 return set;

76 }

77 }

Listing 9.5 permissions/PermissionTest.java

 1 package permissions;

 2

 3 import java.awt.*;

 4

 5 import javax.swing.*;

 6

 7 /**

 8 * This class demonstrates the custom WordCheckPermission.

 9 * @version 1.04 2016-05-10

10 * @author Cay Horstmann

11 */

12 public class PermissionTest

13 {

14 public static void main(String[] args)

15 {

16 System.setProperty("java.security.policy",

"permissions/PermissionTest.policy");

17 System.setSecurityManager(new SecurityManager());

18 EventQueue.invokeLater(() ->

19 {

20 JFrame frame = new PermissionTestFrame();

21 frame.setTitle("PermissionTest");

22 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

23 frame.setVisible(true);

24 });

25 }

26 }

27

28 /**

29 * This frame contains a text field for inserting words into a text area that is

protected from

30 * "bad words".

31 */

32 class PermissionTestFrame extends JFrame

33 {

34 private JTextField textField;

35 private WordCheckTextArea textArea;

36 private static final int TEXT_ROWS = 20;

37 private static final int TEXT_COLUMNS = 60;

38

39 public PermissionTestFrame()

40 {

41 textField = new JTextField(20);

42 JPanel panel = new JPanel();

43 panel.add(textField);

44 JButton openButton = new JButton("Insert");

45 panel.add(openButton);

46 openButton.addActionListener(event ->

insertWords(textField.getText()));

47

48 add(panel, BorderLayout.NORTH);

49

50 textArea = new WordCheckTextArea();

51 textArea.setRows(TEXT_ROWS);

52 textArea.setColumns(TEXT_COLUMNS);

53 add(new JScrollPane(textArea), BorderLayout.CENTER);

54 pack();

55 }

56

57 /**

58 * Tries to insert words into the text area. Displays a dialog if the

attempt fails.

59 * @param words the words to insert

60 */

61 public void insertWords(String words)

62 {

63 try

64 {

65 textArea.append(words + "\n");

66 }

67 catch (SecurityException ex)

68 {

69 JOptionPane.showMessageDialog(this, "I am sorry, but I cannot

do that.");

70 ex.printStackTrace();

71 }

72 }

73 }

74

75 /**

76 * A text area whose append method makes a security check to see that no bad words

are added.

77 */

78 class WordCheckTextArea extends JTextArea

79 {

80 public void append(String text)

81 {

82 WordCheckPermission p = new WordCheckPermission(text, "insert");

83 SecurityManager manager = System.getSecurityManager();

84 if (manager != null) manager.checkPermission(p);

85 super.append(text);

86 }

87 }

java.security.Permission 1.2

• Permission(String name)

constructs a permission with the given target name.

• String getName()

returns the target name of this permission.

• boolean implies(Permission other)

checks whether this permission implies the other permission.That is the case if the other

permission describes a more specific condition that is a consequence of the condition

described by this permission.

9.3 User Authentication

The Java API provides a framework, called the Java Authentication and Authorization Service

(JAAS), that integrates platform-provided authentication with permission management. We

discuss the JAAS framework in the following sections.

9.3.1 The JAAS Framework

As you can tell from its name, the JAAS framework has two components. The “authentication”

part is concerned with ascertaining the identity of a program user. The “authorization”

part maps users to permissions.

JAAS is a “pluggable” API that isolates Java applications from the particular technology

used to implement authentication. It supports, among others, UNIX logins, NT logins,

Kerberos authentication, and certificate-based authentication.

Once a user has been authenticated, you can attach a set of permissions. For example, here

we grant Harry a particular set of permissions that other users do not have:

 grant principal com.sun.security.auth.UnixPrincipal "harry"

 {

 permission java.util.PropertyPermission "user.*", "read";

 ...

 };

The com.sun.security.auth.UnixPrincipal class checks the name of the UNIX user who is

running this program. Its getName method returns the UNIX login name, and we check whether

that name equals "harry".

Use a LoginContext to allow the security manager to check such a grant statement. Here is

the basic outline of the login code:

 try

 {

 System.setSecurityManager(new SecurityManager());

 LoginContext context = new LoginContext("Login1"); // defined in JAAS configuration

file

 context.login();

 // get the authenticated Subject

 Subject subject = context.getSubject();

 ...

 context.logout();

 }

 catch (LoginException exception) // thrown if login was not successful

 {

 exception.printStackTrace();

 }

Now the subject denotes the individual who has been authenticated.

The string parameter "Login1" in the LoginContext constructor refers to an entry with the

same name in the JAAS configuration file. Here is a sample configuration file:

 Login1

 {

 com.sun.security.auth.module.UnixLoginModule required;

 com.whizzbang.auth.module.RetinaScanModule sufficient;

 };

 Login2

 {

 ...

 };

Of course, the JDK contains no biometric login modules. The following modules are supplied

in the com.sun.security.auth.module package:

 UnixLoginModule

 NTLoginModule

 Krb5LoginModule

 JndiLoginModule

 KeyStoreLoginModule

A login policy consists of a sequence of login modules, each of which is labeled required,

sufficient, requisite, or optional. The meaning of these keywords is given by the following

algorithm:

A login authenticates a subject, which can have multiple principals. A principal describes
some property of the subject, such as the user name, group ID, or role. As you saw in the

grant statement, principals govern permissions. The com.sun.security.auth.UnixPrincipal

describes the UNIX login name, and the UnixNumericGroupPrincipal can test for membership

in a UNIX group.

A grant clause can test for a principal, with the syntax

 grant principalClass "principalName"

For example:

 grant com.sun.security.auth.UnixPrincipal "harry"

When a user has logged in, you then run, in a separate access control context, the code

that requires checking of principals. Use the static doAs or doAsPrivileged method to start

a new PrivilegedAction whose run method executes the code.

Both of those methods execute an action by calling the run method of an object that implements

the PrivilegedAction interface, using the permissions of the subject’s principals:

 PrivilegedAction<T> action = new

 PrivilegedAction()

 {

 public T run()

 {

 // run with permissions of subject principals

 ...

 }

 };

 T result = Subject.doAs(subject, action); // or Subject.doAsPrivileged(subject, action,

null)

If the actions can throw checked exceptions, you need to implement the

PrivilegedExceptionAction interface instead.

The difference between the doAs and doAsPrivileged methods is subtle. The doAs method starts

out with the current access control context, whereas the doAsPrivileged method starts out

with a new context. The latter method allows you to separate the permissions for the login

code and the “business logic.” In our example application, the login code has permissions

 permission javax.security.auth.AuthPermission "createLoginContext.Login1";

 permission javax.security.auth.AuthPermission "doAsPrivileged";

The authenticated user has a permission

 permission java.util.PropertyPermission "user.*", "read";

If we had used doAs instead of doAsPrivileged, then the login code would have also needed

that permission!

The program in Listings 9.6 and 9.7 demonstrates how to restrict permissions to certain

users. The AuthTest program authenticates a user and runs a simple action that retrieves

a system property.

To make this example work, package the code for the login and the action into two separate

JAR files:

 javac auth/*.java

 jar cvf login.jar auth/AuthTest.class

 jar cvf action.jar auth/SysPropAction.class

If you look at the policy file in Listing 9.8, you will see that the UNIX user with the

name harry has the permission to read all files. Change harry to your login name. Then run

the command

 java -classpath login.jar:action.jar

 -Djava.security.policy=auth/AuthTest.policy

 -Djava.security.auth.login.config=auth/jaas.config

 auth.AuthTest

Listing 9.9 shows the login configuration.

On Windows, change UnixPrincipal to NTUserPrincipal in AuthTest.policy and UnixLoginModule

to NTLoginModule in jaas.config. When running the program, use a semicolon to separate the

JAR files:

 java -classpath login.jar;action.jar . . .

The AuthTest program should now display the value of the user.home property. However, if

you log in with a different name, a security exception should be thrown because you no longer

have the required permission.

CAUTION

Be careful to follow these instructions exactly. It is very easy to get the setup wrong
by making seemingly innocuous changes.

Listing 9.6 auth/AuthTest.java

 1 package auth;

 2

 3 import java.security.*;

 4 import javax.security.auth.*;

 5 import javax.security.auth.login.*;

 6

 7 /**

 8 * This program authenticates a user via a custom login and then executes the

SysPropAction with the

 9 * user's privileges.

10 * @version 1.01 2007-10-06

11 * @author Cay Horstmann

12 */

13 public class AuthTest

14 {

15 public static void main(final String[] args)

16 {

17 System.setSecurityManager(new SecurityManager());

18 try

19 {

20 LoginContext context = new LoginContext("Login1");

21 context.login();

22 System.out.println("Authentication successful.");

23 Subject subject = context.getSubject();

24 System.out.println("subject=" + subject);

25 PrivilegedAction<String> action = new

SysPropAction("user.home");

26 String result = Subject.doAsPrivileged(subject, action, null);

27 System.out.println(result);

28 context.logout();

29 }

30 catch (LoginException e)

31 {

32 e.printStackTrace();

33 }

34 }

35 }

Listing 9.7 auth/SysPropAction.java

 1 package auth;

 2

 3 import java.security.*;

 4

 5 /**

 6 This action looks up a system property.

 7 * @version 1.01 2007-10-06

 8 * @author Cay Horstmann

 9 */

10 public class SysPropAction implements PrivilegedAction<String>

11 {

12 private String propertyName;

13

14 /**

15 Constructs an action for looking up a given property.

16 @param propertyName the property name (such as "user.home")

17 */

18 public SysPropAction(String propertyName) { this.propertyName =

propertyName; }

19

20 public String run()

21 {

22 return System.getProperty(propertyName);

23 }

24 }

Listing 9.8 auth/AuthTest.policy

 1 grant codebase "file:login.jar"

 2 {

 3 permission javax.security.auth.AuthPermission

"createLoginContext.Login1";

 4 permission javax.security.auth.AuthPermission "doAsPrivileged";

 5 };

 6

 7 grant principal com.sun.security.auth.UnixPrincipal "harry"

 8 {

 9 permission java.util.PropertyPermission "user.*", "read";

10 };

Listing 9.9 auth/jaas.config

1 Login1

2 {

3 com.sun.security.auth.module.UnixLoginModule required;

4 };

javax.security.auth.login.LoginContext 1.4

• LoginContext(String name)

constructs a login context. The name corresponds to the login descriptor in the JAAS

configuration file.

• void login()

establishes a login or throws LoginException if the login failed. Invokes the login method

on the managers in the JAAS configuration file.

• void logout()

logs out the subject. Invokes the logout method on the managers in the JAAS configuration

file.

• Subject getSubject()

returns the authenticated subject.

javax.security.auth.Subject 1.4

• Set<Principal> getPrincipals()

gets the principals of this subject.

• static Object doAs(Subject subject, PrivilegedAction action)

• static Object doAs(Subject subject, PrivilegedExceptionAction action)

• static Object doAsPrivileged(Subject subject, PrivilegedAction action,

AccessControlContext context)

• static Object doAsPrivileged(Subject subject, PrivilegedExceptionAction action,

AccessControlContext context)

executes the privileged action on behalf of the subject. Returns the return value of the

run method. The doAsPrivileged methods execute the action in the given access control

context. You can supply a “context snapshot” that you obtained earlier by calling the

static method AccessController.getContext(), or you can supply null to execute the code

in a new context.

java.security.PrivilegedAction 1.4

• Object run()

You must define this method to execute the code that you want to have executed on behalf

of a subject.

java.security.PrivilegedExceptionAction 1.4

• Object run()

You must define this method to execute the code that you want to have executed on behalf

of a subject. This method may throw any checked exceptions.

java.security.Principal 1.1

• String getName()

returns the identifying name of this principal.

9.3.2 JAAS Login Modules

In this section, we’ll look at a JAAS example that shows you:

• How to implement your own login module

• How to implement role-based authentication

Supplying your own login module is useful if you store login information in a database.

Even if you are happy with the default module, studying a custom module will help you

understand the JAAS configuration file options.

Role-based authentication is essential if you manage a large number of users. It would be

impractical to put the names of all legitimate users into a policy file. Instead, the login

module should map users to roles such as “admin” or “HR,” and the permissions should

be based on these roles.

One job of the login module is to populate the principal set of the subject that is being

authenticated. If a login module supports roles, it adds Principal objects that describe

roles. The Java library does not provide a class for this purpose, so we wrote our own (see

Listing 9.10). The class simply stores a description/value pair, such as role=admin. Its

getName method returns that pair, so we can add role-based permissions into a policy file:

 grant principal SimplePrincipal "role=admin" { . . . }

Our login module looks up users, passwords, and roles in a text file that contains lines

like this:

 harry|secret|admin

 carl|guessme|HR

Of course, in a realistic login module, you would store this information in a database or

directory.

You can find the code for the SimpleLoginModule in Listing 9.11. The checkLogin method checks

whether the user name and password match a record in the password file. If so, we add two

SimplePrincipal objects to the subject’s principal set:

 Set<Principal> principals = subject.getPrincipals();

 principals.add(new SimplePrincipal("username", username));

 principals.add(new SimplePrincipal("role", role));

The remainder of SimpleLoginModule is straightforward plumbing. The initialize method

receives

• The Subject that is being authenticated

• A handler to retrieve login information

• A sharedState map that can be used for communication between login modules

• An options map that contains the name/value pairs that are set in the login configuration

For example, we configure our module as follows:

 SimpleLoginModule required pwfile="password.txt";

The login module retrieves the pwfile settings from the options map.

The login module does not gather the user name and password; that is the job of a separate

handler. This separation allows you to use the same login module without worrying whether

the login information comes from a GUI dialog box, a console prompt, or a configuration

file.

The handler is specified when you construct the LoginContext, for example:

 LoginContext context = new LoginContext("Login1",

 new com.sun.security.auth.callback.DialogCallbackHandler());

The DialogCallbackHandler pops up a simple GUI dialog box to retrieve the user name and

password. The com.sun.security.auth.callback.TextCallbackHandler class gets the

information from the console.

However, in our application, we have our own GUI for collecting the user name and password

(see Figure 9.10). We produce a simple handler that merely stores and returns that

information (see Listing 9.12).

Figure 9.10 A custom login module

The handler has a single method, handle, that processes an array of Callback objects. A

number of predefined classes, such as NameCallback and PasswordCallback, implement the

Callback interface. You could also add your own class, such as RetinaScanCallback. The

handler code is a bit unsightly because it needs to analyze the types of the callback objects:

 public void handle(Callback[] callbacks)

 {

 for (Callback callback : callbacks)

 {

 if (callback instanceof NameCallback) . . .

 else if (callback instanceof PasswordCallback) . . .

 else . . .

 }

 }

The login module prepares an array of the callbacks that it needs for authentication:

 NameCallback nameCall = new NameCallback("username: ");

 PasswordCallback passCall = new PasswordCallback("password: ", false);

 callbackHandler.handle(new Callback[] { nameCall, passCall });

Then it retrieves the information from the callbacks.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09fig010

The program in Listing 9.13 displays a form for entering the login information and the name

of a system property. If the user is authenticated, the property value is retrieved in a

PrivilegedAction. As you can see from the policy file in Listing 9.14, only users with the

admin role have permission to read properties.

As in the preceding section, you must separate the login and action code. Create two JAR

files:

 javac *.java

 jar cvf login.jar JAAS*.class Simple*.class

 jar cvf action.jar SysPropAction.class

Then run the program as

 java -classpath login.jar:action.jar

 -Djava.security.policy=JAASTest.policy

 -Djava.security.auth.login.config=jaas.config

 JAASTest

Listing 9.15 shows the policy file.

NOTE:

It is possible to support a more complex two-phase protocol, whereby a login is committed
if all modules in the login configuration were successful. For more information, see the

login module developer’s guide at

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASLMDevGuide.htm

l.

Listing 9.10 jaas/SimplePrincipal.java

 1 package jaas;

 2

 3 import java.security.*;

 4 import java.util.*;

 5

 6 /**

 7 * A principal with a named value (such as "role=HR" or "username=harry").

 8 */

 9 public class SimplePrincipal implements Principal

10 {

11 private String descr;

12 private String value;

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASLMDevGuide.html

13

14 /**

15 * Constructs a SimplePrincipal to hold a description and a value.

16 * @param descr the description

17 * @param value the associated value

18 */

19 public SimplePrincipal(String descr, String value)

20 {

21 this.descr = descr;

22 this.value = value;

23 }

24

25 /**

26 * Returns the role name of this principal.

27 * @return the role name

28 */

29 public String getName()

30 {

31 return descr + "=" + value;

32 }

33

34 public boolean equals(Object otherObject)

35 {

36 if (this == otherObject) return true;

37 if (otherObject == null) return false;

38 if (getClass() != otherObject.getClass()) return false;

39 SimplePrincipal other = (SimplePrincipal) otherObject;

40 return Objects.equals(getName(), other.getName());

41 }

42

43 public int hashCode()

44 {

45 return Objects.hashCode(getName());

46 }

47 }

Listing 9.11 jaas/SimpleLoginModule.java

 1 package jaas;

 2

 3 import java.io.*;

 4 import java.nio.file.*;

 5 import java.security.*;

 6 import java.util.*;

 7 import javax.security.auth.*;

 8 import javax.security.auth.callback.*;

 9 import javax.security.auth.login.*;

10 import javax.security.auth.spi.*;

11

12 /**

13 * This login module authenticates users by reading usernames, passwords, and

roles from a text

14 * file.

15 */

16 public class SimpleLoginModule implements LoginModule

17 {

18 private Subject subject;

19 private CallbackHandler callbackHandler;

20 private Map<String, ?> options;

21

22 public void initialize(Subject subject, CallbackHandler callbackHandler,

23 Map<String, ?> sharedState, Map<String, ?> options)

24 {

25 this.subject = subject;

26 this.callbackHandler = callbackHandler;

27 this.options = options;

28 }

29

30 public boolean login() throws LoginException

31 {

32 if (callbackHandler == null) throw new LoginException("no handler");

33

34 NameCallback nameCall = new NameCallback("username: ");

35 PasswordCallback passCall = new PasswordCallback("password: ", false);

36 try

37 {

38 callbackHandler.handle(new Callback[] { nameCall, passCall });

39 }

40 catch (UnsupportedCallbackException e)

41 {

42 LoginException e2 = new LoginException("Unsupported callback");

43 e2.initCause(e);

44 throw e2;

45 }

46 catch (IOException e)

47 {

48 LoginException e2 = new LoginException("I/O exception in

callback");

49 e2.initCause(e);

50 throw e2;

51 }

52

53 try

54 {

55 return checkLogin(nameCall.getName(), passCall.getPassword());

56 }

57 catch (IOException ex)

58 {

59 LoginException ex2 = new LoginException();

60 ex2.initCause(ex);

61 throw ex2;

62 }

63 }

64

65 /**

66 * Checks whether the authentication information is valid. If it is, the

subject acquires

67 * principals for the user name and role.

68 * @param username the user name

69 * @param password a character array containing the password

70 * @return true if the authentication information is valid

71 */

72 private boolean checkLogin(String username, char[] password) throws

LoginException, IOException

73 {

74 try (Scanner in = new Scanner(Paths.get("" + options.get("pwfile")),

"UTF-8"))

75 {

76 while (in.hasNextLine())

77 {

78 String[] inputs = in.nextLine().split("\\|");

79 if (inputs[0].equals(username) &&

Arrays.equals(inputs[1].toCharArray(), password))

80 {

81 String role = inputs[2];

82 Set<Principal> principals =

subject.getPrincipals();

83 principals.add(new

SimplePrincipal("username", username));

84 principals.add(new

SimplePrincipal("role", role));

85 return true;

86 }

87 }

88 return false;

89 }

90 }

91

92 public boolean logout()

93 {

94 return true;

95 }

96

97 public boolean abort()

98 {

99 return true;

100 }

101

102 public boolean commit()

103 {

104 return true;

105 }

106 }

Listing 9.12 jaas/SimpleCallbackHandler.java

 1 package jaas;

 2

 3 import javax.security.auth.callback.*;

 4

 5 /**

 6 * This simple callback handler presents the given user name and password.

 7 */

 8 public class SimpleCallbackHandler implements CallbackHandler

 9 {

10 private String username;

11 private char[] password;

12

13 /**

14 * Constructs the callback handler.

15 * @param username the user name

16 * @param password a character array containing the password

17 */

18 public SimpleCallbackHandler(String username, char[] password)

19 {

20 this.username = username;

21 this.password = password;

22 }

23

24 public void handle(Callback[] callbacks)

25 {

26 for (Callback callback : callbacks)

27 {

28 if (callback instanceof NameCallback)

29 {

30 ((NameCallback) callback).setName(username);

31 }

32 else if (callback instanceof PasswordCallback)

33 {

34 ((PasswordCallback) callback).setPassword(password);

35 }

36 }

37 }

38 }

Listing 9.13 jaas/JAASTest.java

 1 package jaas;

 2

 3 import java.awt.*;

 4 import javax.swing.*;

 5

 6 /**

 7 * This program authenticates a user via a custom login and then looks up a system

property with

 8 * the user's privileges.

 9 * @version 1.02 2016-05-10

10 * @author Cay Horstmann

11 */

12 public class JAASTest

13 {

14 public static void main(final String[] args)

15 {

16 System.setSecurityManager(new SecurityManager());

17 EventQueue.invokeLater(() ->

18 {

19 JFrame frame = new JAASFrame();

20 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

21 frame.setTitle("JAASTest");

22 frame.setVisible(true);

23 });

24 }

25 }

Listing 9.14 jaas/JAASTest.policy

 1 grant codebase "file:login.jar"

 2 {

 3 permission java.awt.AWTPermission "showWindowWithoutWarningBanner";

 4 permission java.awt.AWTPermission "accessEventQueue";

 5 permission javax.security.auth.AuthPermission

"createLoginContext.Login1";

 6 permission javax.security.auth.AuthPermission "doAsPrivileged";

 7 permission javax.security.auth.AuthPermission "modifyPrincipals";

 8 permission java.io.FilePermission "jaas/password.txt", "read";

 9 };

10

11 grant principal jaas.SimplePrincipal "role=admin"

12 {

13 permission java.util.PropertyPermission "*", "read";

14 };

Listing 9.15 jaas/jaas.config

1 Login1

2 {

3 jaas.SimpleLoginModule required pwfile="jaas/password.txt" debug=true;

4 };

javax.security.auth.callback.CallbackHandler 1.4

• void handle(Callback[] callbacks)

handles the given callbacks, interacting with the user if desired, and stores the security

information in the callback objects.

javax.security.auth.callback.NameCallback 1.4

• NameCallback(String prompt)

• NameCallback(String prompt, String defaultName)

constructs a NameCallback with the given prompt and default name.

• String getName()

• void setName(String name)

gets or sets the name gathered by this callback.

• String getPrompt()

gets the prompt to use when querying this name.

• String getDefaultName()

gets the default name to use when querying this name.

javax.security.auth.callback.PasswordCallback 1.4

• PasswordCallback(String prompt, boolean echoOn)

constructs a PasswordCallback with the given prompt and echo flag.

• char[] getPassword()

• void setPassword(char[] password)

gets or sets the password gathered by this callback.

• String getPrompt()

gets the prompt to use when querying this password.

• boolean isEchoOn()

gets the echo flag to use when querying this password.

javax.security.auth.spi.LoginModule 1.4

• void initialize(Subject subject, CallbackHandler handler, Map<String,?> sharedState,

Map<String,?> options)

initializes this LoginModule for authenticating the given subject. During login processing,

uses the given handler to gather login information. Use the sharedState map for

communicating with other login modules.The options map contains the name/value pairs

specified in the login configuration for this module instance.

• boolean login()

carries out the authentication process and populates the subject’s principals. Returns

true if the login was successful.

• boolean commit()

is called after all login modules were successful, for login scenarios that require a

two-phase commit. Returns true if the operation was successful.

• boolean abort()

is called if the failure of another login module caused the login process to abort. Returns

true if the operation was successful.

• boolean logout()

logs out this subject. Returns true if the operation was successful.

9.4 Digital Signatures

As we said earlier, applets were what started the Java craze. In practice, people discovered

that although they could write animated applets (like the famous “nervous text” applet),

applets could not do a whole lot of useful stuff in the JDK 1.0 security model. For example,

since applets under JDK 1.0 were so closely supervised, they couldn’t do much good on a

corporate intranet, even though relatively little risk attaches to executing an applet from

your company’s secure intranet. It quickly became clear to Sun that for applets to become

truly useful, it was important for users to be able to assign different levels of security,
depending on where the applet originated. If an applet comes from a trusted supplier and

has not been tampered with, the user of that applet can decide whether to give the applet

more privileges.

To give more trust to an applet, we need to know two things:

• Where did the applet come from?

• Was the code corrupted in transit?

In the past 50 years, mathematicians and computer scientists have developed sophisticated

algorithms for ensuring the integrity of data and for electronic signatures. The

java.security package contains implementations of many of these algorithms. Fortunately,

you don’t need to understand the underlying mathematics to use the algorithms in the

java.security package. In the next sections, we’ll show you how message digests can detect

changes in data files and how digital signatures can prove the identity of the signer.

9.4.1 Message Digests

A message digest is a digital fingerprint of a block of data. For example, the so-called

SHA-1 (Secure Hash Algorithm #1) condenses any data block, no matter how long, into a

sequence of 160 bits (20 bytes). As with real fingerprints, one hopes that no two messages

have the same SHA-1 fingerprint. Of course, that cannot be true—there are only 2160 SHA-1

fingerprints, so there must be some messages with the same fingerprint. But 2160 is so large

that the probability of duplication occurring is negligible. How negligible? According to

James Walsh in True Odds: How Risks Affect Your Everyday Life (Merritt Publishing, 1996),
the chance that you will die from being struck by lightning is about one in 30,000. Now,

think of nine other people—for example, your nine least favorite managers or professors.

The chance that you and all of them will die from lightning strikes is higher than that
of a forged message having the same SHA-1 fingerprint as the original. (Of course, more

than ten people, none of whom you are likely to know, will die from lightning strikes. However,

we are talking about the far slimmer chance that your particular choice of people will be
wiped out.)

A message digest has two essential properties:

• If one bit or several bits of the data are changed, the message digest also changes.

• A forger who is in possession of a given message cannot construct a fake message that

has the same message digest as the original.

The second property is again a matter of probabilities, of course. Consider the following

message by the billionaire father:

“Upon my death, my property shall be divided equally among my children; however, my son
George shall receive nothing.”

That message (with a final newline) has an SHA-1 fingerprint of

12 5F 09 03 E7 31 30 19 2E A6 E7 E4 90 43 84 B4 38 99 8F 67

The distrustful father has deposited the message with one attorney and the fingerprint with

another. Now, suppose George bribes the lawyer holding the message. He wants to change the

message so that Bill gets nothing. Of course, that changes the fingerprint to a completely

different bit pattern:

 7D F6 AB 08 EB 40 EC CD AB 74 ED E9 86 F9 ED 99 D1 45 B1 57

Can George find some other wording that matches the fingerprint? If he had been the proud

owner of a billion computers from the time the Earth was formed, each computing a million

messages a second, he would not yet have found a message he could substitute.

A number of algorithms have been designed to compute such message digests. Among them are

SHA-1, the secure hash algorithm developed by the National Institute of Standards and

Technology, and MD5, an algorithm invented by Ronald Rivest of MIT. Both algorithms scramble

the bits of a message in ingenious ways. For details about these algorithms, see, for example,

Cryptography and Network Security, Fifth Edition, by William Stallings (Prentice Hall,
2011). However, subtle regularities have been discovered in both algorithms, and NIST

recommends to switch to stronger alternatives such as SHA-256, SHA-384 or SHA-512.

The Java programming language implements MD5, SHA-1, SHA-256, SHA-384 and SHA-512. The

MessageDigest class is a factory for creating objects that encapsulate the fingerprinting
algorithms. It has a static method, called getInstance, that returns an object of a class

that extends the MessageDigest class. This means the MessageDigest class serves double duty:

• As a factory class

• As the superclass for all message digest algorithms

For example, here is how you obtain an object that can compute SHA fingerprints:

 MessageDigest alg = MessageDigest.getInstance("SHA-1");

(To get an object that can compute MD5, use the string "MD5" as the argument to getInstance.)

After you have obtained a MessageDigest object, feed it all the bytes in the message by

repeatedly calling the update method. For example, the following code passes all bytes in

a file to the alg object just created to do the fingerprinting:

 InputStream in = . . .

 int ch;

 while ((ch = in.read()) != -1)

 alg.update((byte) ch);

Alternatively, if you have the bytes in an array, you can update the entire array at once:

 byte[] bytes = . . .;

 alg.update(bytes);

When you are done, call the digest method. This method pads the input as required by the

fingerprinting algorithm, does the computation, and returns the digest as an array of bytes.

 byte[] hash = alg.digest();

The program in Listing 9.16 computes a message digest, using MD5, SHA-1, SHA-256, SHA-384

or SHA-512. Run it as

 java hash.Digest hash/input.txt

or

 java hash.Digest hash/input.txt MD5

Listing 9.16 hash/Digest.java

 1 package hash;

 2

 3 import java.io.*;

 4 import java.nio.file.*;

 5 import java.security.*;

 6

 7 /**

 8 * This program computes the message digest of a file.

 9 * @version 1.20 2012-06-16

10 * @author Cay Horstmann

11 */

12 public class Digest

13 {

14 /**

15 * @param args args[0] is the filename, args[1] is optionally the algorithm

16 * (SHA-1, SHA-256, or MD5)

17 */

18 public static void main(String[] args) throws IOException,

GeneralSecurityException

19 {

20 String algname = args.length >= 2 ? args[1] : "SHA-1";

21 MessageDigest alg = MessageDigest.getInstance(algname);

22 byte[] input = Files.readAllBytes(Paths.get(args[0]));

23 byte[] hash = alg.digest(input);

24 String d = "";

25 for (int i = 0; i < hash.length; i++)

26 {

27 int v = hash[i] & 0xFF;

28 if (v < 16) d += "0";

29 d += Integer.toString(v, 16).toUpperCase() + " ";

30 }

31 System.out.println(d);

32 }

33 }

java.security.MessageDigest 1.1

• static MessageDigest getInstance(String algorithmName)

returns a MessageDigest object that implements the specified algorithm. Throws

NoSuchAlgorithmException if the algorithm is not provided.

• void update(byte input)

• void update(byte[] input)

• void update(byte[] input, int offset, int len)

updates the digest, using the specified bytes.

• byte[] digest()

completes the hash computation, returns the computed digest, and resets the algorithm

object.

• void reset()

resets the digest.

9.4.2 Message Signing

In the last section, you saw how to compute a message digest—a fingerprint for the original

message. If the message is altered, the fingerprint of the altered message will not match

the fingerprint of the original. If the message and its fingerprint are delivered separately,

the recipient can check whether the message has been tampered with. However, if both the

message and the fingerprint were intercepted, it is an easy matter to modify the message

and then recompute the fingerprint. After all, the message digest algorithms are publicly

known, and they don’t require secret keys. In that case, the recipient of the forged message

and the recomputed fingerprint would never know that the message has been altered. Digital

signatures solve this problem.

To help you understand how digital signatures work, we’ll explain a few concepts from the

field called public key cryptography. Public key cryptography is based on the notion of
a public key and private key. The idea is that you tell everyone in the world your public
key. However, only you hold the private key, and it is important that you safeguard it and

don’t release it to anyone else. The keys are matched by mathematical relationships, though

the exact nature of these relationships is not important to us. (If you are interested,

look it up in The Handbook of Applied Cryptography at www.cacr.math.uwaterloo.ca/hac.)

The keys are quite long and complex. For example, here is a matching pair of public and

private Digital Signature Algorithm (DSA) keys.

Public key:

 p:

fca682ce8e12caba26efccf7110e526db078b05edecbcd1eb4a208f3ae1617ae01f35b91a47e6df63413c5

e12ed089

 9bcd132acd50d99151bdc43ee737592e17

http://www.cacr.math.uwaterloo.ca/hac

 q: 962eddcc369cba8ebb260ee6b6a126d9346e38c5

 g:

678471b27a9cf44ee91a49c5147db1a9aaf244f05a434d6486931d2d14271b9e35030b71fd73da179069b3

2e293563

 0e1c2062354d0da20a6c416e50be794ca4

 y:

c0b6e67b4ac098eb1a32c5f8c4c1f0e7e6fb9d832532e27d0bdab9ca2d2a8123ce5a8018b8161a760480fa

dd040b92

 7281ddb22cb9bc4df596d7de4d1b977d50

Private key:

 p:

fca682ce8e12caba26efccf7110e526db078b05edecbcd1eb4a208f3ae1617ae01f35b91a47e6df63413c5

e12ed089

 9bcd132acd50d99151bdc43ee737592e17

 q: 962eddcc369cba8ebb260ee6b6a126d9346e38c5

 g:

678471b27a9cf44ee91a49c5147db1a9aaf244f05a434d6486931d2d14271b9e35030b71fd73da179069b3

2e293563

 0e1c2062354d0da20a6c416e50be794ca4

 x: 146c09f881656cc6c51f27ea6c3a91b85ed1d70a

It is believed to be practically impossible to compute one key from the other. That is,

even though everyone knows your public key, they can’t compute your private key in your

lifetime, no matter how many computing resources they have available.

It might seem difficult to believe that you can’t compute the private key from the public

key, but nobody has ever found an algorithm to do this for the encryption algorithms in

common use today. If the keys are sufficiently long, brute force—simply trying all possible

keys—would require more computers than can be built from all the atoms in the solar system,

crunching away for thousands of years. Of course it is possible that someone could come

up with algorithms for computing keys that are much more clever than brute force. For example,

the RSA algorithm (the encryption algorithm invented by Rivest, Shamir, and Adleman) depends

on the difficulty of factoring large numbers. For the last 20 years, many of the best

mathematicians have tried to come up with good factoring algorithms, but so far with no

success. For that reason, most cryptographers believe that keys with a “modulus” of 2,000

bits or more are currently completely safe from any attack. DSA is believed to be similarly

secure.

Figure 9.11 illustrates how the process works in practice.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09fig011

Figure 9.11 Public key signature exchange with DSA

Suppose Alice wants to send Bob a message, and Bob wants to know this message came from

Alice and not an impostor. Alice writes the message and signs the message digest with her
private key. Bob gets a copy of her public key. Bob then applies the public key to verify
the signature. If the verification passes, Bob can be assured of two facts:

• The original message has not been altered.

• The message was signed by Alice, the holder of the private key that matches the public

key that Bob used for verification.

You can see why the security of private keys is so important. If someone steals Alice’s

private key, or if a government can require her to turn it over, then she is in trouble.

The thief or a government agent can now impersonate her by sending messages, such as money

transfer instructions, that others will believe came from Alice.

9.4.3 Verifying a Signature

The JDK comes with the keytool program, which is a command-line tool to generate and manage

a set of certificates. We expect that ultimately the functionality of this tool will be

embedded in other, more user-friendly programs. But right now, we’ll use keytool to show

how Alice can sign a document and send it to Bob, and how Bob can verify that the document

really was signed by Alice and not an im-poster.

The keytool program manages keystores, databases of certificates and private/public key
pairs. Each entry in the keystore has an alias. Here is how Alice creates a keystore,
alice.certs, and generates a key pair with alias alice:

 keytool -genkeypair -keystore alice.certs -alias alice

When creating or opening a keystore, you are prompted for a keystore password. For this

example, just use secret. If you were to use the keytool-generated keystore for any serious

purpose, you would need to choose a good password and safeguard this file.

When generating a key, you are prompted for the following information:

 Enter keystore password: secret

 Reenter new password: secret

 What is your first and last name?

 [Unknown]: Alice Lee

 What is the name of your organizational unit?

 [Unknown]: Engineering

 What is the name of your organization?

 [Unknown]: ACME Software

 What is the name of your City or Locality?

 [Unknown]: San Francisco

 What is the name of your State or Province?

 [Unknown]: CA

 What is the two-letter country code for this unit?

 [Unknown]: US

 Is <CN=Alice Lee, OU=Engineering, O=ACME Software, L=San Francisco, ST=CA, C=US>

correct?

 [no]: yes

The keytool uses names in the X.500 format, whose components are Common Name (CN),

Organizational Unit (OU), Organization (O), Location (L), State (ST), and Country (C), to

identify key owners and certificate issuers.

Finally, specify a key password, or press Enter to use the keystore password as the key

password.

Suppose Alice wants to give her public key to Bob. She needs to export a certificate file:

 keytool -exportcert -keystore alice.certs -alias alice -file alice.cer

Now Alice can send the certificate to Bob. When Bob receives the certificate, he can print

it:

 keytool -printcert -file alice.cer

The printout looks like this:

 Owner: CN=Alice Lee, OU=Engineering, O=ACME Software, L=San Francisco, ST=CA, C=US

 Issuer: CN=Alice Lee, OU=Engineering, O=ACME Software, L=San Francisco, ST=CA, C=US

 Serial number: 470835ce

 Valid from: Sat Oct 06 18:26:38 PDT 2007 until: Fri Jan 04 17:26:38 PST 2008

 Certificate fingerprints:

 MD5: BC:18:15:27:85:69:48:B1:5A:C3:0B:1C:C6:11:B7:81

 SHA1: 31:0A:A0:B8:C2:8B:3B:B6:85:7C:EF:C0:57:E5:94:95:61:47:6D:34

 Signature algorithm name: SHA1withDSA

 Version: 3

If Bob wants to check that he got the right certificate, he can call Alice and verify the

certificate fingerprint over the phone.

NOTE:

Some certificate issuers publish certificate fingerprints on their web sites. For example,

to check the VeriSign certificate in the keystore jre/lib/security/cacerts directory, use
the -list option:

 keytool -list -v -keystore jre/lib/security/cacerts

The password for this keystore is changeit. One of the certificates in this keystore is

 Owner: OU=VeriSign Trust Network, OU="(c) 1998 VeriSign, Inc. - For authorized use

only",

 OU=Class 1 Public Primary Certification Authority - G2, O="VeriSign, Inc.", C=US

 Issuer: OU=VeriSign Trust Network, OU="(c) 1998 VeriSign, Inc. - For authorized

 use only", OU=Class 1 Public Primary Certification Authority - G2, O="VeriSign, Inc.",

 C=US

 Serial number: 4cc7eaaa983e71d39310f83d3a899192

 Valid from: Sun May 17 17:00:00 PDT 1998 until: Tue Aug 01 16:59:59 PDT 2028

 Certificate fingerprints:

 MD5: DB:23:3D:F9:69:FA:4B:B9:95:80:44:73:5E:7D:41:83

 SHA1:

27:3E:E1:24:57:FD:C4:F9:0C:55:E8:2B:56:16:7F:62:F5:32:E5:47

You can check that your certificate is valid by visiting the web site

www.verisign.com/repository/root.html.

Once Bob trusts the certificate, he can import it into his keystore.

 keytool -importcert -keystore bob.certs -alias alice -file alice.cer

CAUTION

Never import into a keystore a certificate that you don’t fully trust. Once a certificate

is added to the keystore, any program that uses the keystore assumes that the certificate

can be used to verify signatures.

Now Alice can start sending signed documents to Bob. The jarsigner tool signs and verifies

JAR files. Alice simply adds the document to be signed into a JAR file.

 jar cvf document.jar document.txt

She then uses the jarsigner tool to add the signature to the file. She needs to specify

the keystore, the JAR file, and the alias of the key to use.

 jarsigner -keystore alice.certs document.jar alice

When Bob receives the file, he uses the -verify option of the jarsigner program.

 jarsigner -verify -keystore bob.certs document.jar

Bob does not need to specify the key alias. The jarsigner program finds the X.500 name of

the key owner in the digital signature and looks for a matching certificate in the keystore.

If the JAR file is not corrupted and the signature matches, the jarsigner program prints

 jar verified.

Otherwise, the program displays an error message.

http://www.verisign.com/repository/root.html

9.4.4 The Authentication Problem

Suppose you get a message from your friend Alice, signed with her private key, using the

method we just showed you. You might already have her public key, or you can easily get

it by asking her for a copy or by getting it from her web page. Then, you can verify that

the message was in fact authored by Alice and has not been tampered with. Now, suppose you

get a message from a stranger who claims to represent a famous software company, urging

you to run a program attached to the message. The stranger even sends you a copy of his

public key so you can verify that he authored the message. You check that the signature

is valid. This proves that the message was signed with the matching private key and has

not been corrupted.

Be careful: You still have no idea who wrote the message. Anyone could have generated a
pair of public and private keys, signed the message with the private key, and sent the signed

message and the public key to you. The problem of determining the identity of the sender

is called the authentication problem.

The usual way to solve the authentication problem is simple. Suppose the stranger and you

have a common acquaintance you both trust. Suppose the stranger meets your acquaintance

in person and hands over a disk with the public key. Your acquaintance later meets you,

assures you that he met the stranger and that the stranger indeed works for the famous

software company, and then gives you the disk (see Figure 9.12). That way, your acquaintance

vouches for the authenticity of the stranger.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09fig012

Figure 9.12 Authentication through a trusted intermediary

In fact, your acquaintance does not actually need to meet you. Instead, he can use his private

key to sign the stranger’s public key file (see Figure 9.13).

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09fig013

Figure 9.13 Authentication through a trusted intermediary’s signature

When you get the public key file, you verify the signature of your friend, and because you

trust him, you are confident that he did check the stranger’s credentials before applying

his signature.

However, you might not have a common acquaintance. Some trust models assume that there is

always a “chain of trust”—a chain of mutual acquaintances—so that you trust every member

of that chain. In practice, of course, that isn’t always true. You might trust your friend,

Alice, and you know that Alice trusts Bob, but you don’t know Bob and aren’t sure that

you trust him. Other trust models assume that there is a benevolent big brother—a company

in which we all trust. The best known of such companies is VeriSign, Inc. (www.verisign.com).

You will often encounter digital signatures signed by one or more entities who will vouch

for the authenticity, and you will need to evaluate to what degree you trust the

authenticators. You might place a great deal of trust in VeriSign, perhaps because you saw

their logo on many web pages or because you heard that they require multiple people with

black attaché cases to come together into a secure chamber whenever new master keys are

to be minted.

However, you should have realistic expectations about what is actually being authenticated.

The CEO of VeriSign does not personally meet every individual or company representative

when authenticating a public key. You can get a “class 1” ID simply by filling out a web

form and paying a small fee. The key is mailed to the e-mail address included in the

certificate. Thus, you can be reasonably assured that the e-mail address is genuine, but

the requestor could have filled in any name and organization. There are more stringent
classes of IDs. For example, with a “class 3” ID, VeriSign will require an individual

requestor to appear before a notary public, and it will check the financial rating of a

corporate requestor. Other authenticators will have different procedures. Thus, when you

receive an authenticated message, it is important that you understand what, in fact, is

being authenticated.

9.4.5 Certificate Signing

In Section 9.4.3, “Verifying a Signature,” on p. 558 you saw how Alice used a self-signed

certificate to distribute a public key to Bob. However, Bob needed to ensure that the

certificate was valid by verifying the fingerprint with Alice.

Suppose Alice wants to send her colleague Cindy a signed message, but Cindy doesn’t want

to bother with verifying lots of signature fingerprints. Now suppose there is an entity

that Cindy trusts to verify signatures. In this example, Cindy trusts the Information

Resources Department at ACME Software.

That department operates a certificate authority (CA). Everyone at ACME has the CA’s public

key in their keystore, installed by a system administrator who carefully checked the key

fingerprint. The CA signs the keys of ACME employees. When they install each other’s keys,

the keystore will trust them implicitly because they are signed by a trusted key.

Here is how you can simulate this process. Create a keystore acmesoft.certs. Generate a

key pair and export the public key:

 keytool -genkeypair -keystore acmesoft.certs -alias acmeroot

 keytool -exportcert -keystore acmesoft.certs -alias acmeroot -file acmeroot.cer

http://www.verisign.com/

The public key is exported into a “self-signed” certificate. Then add it to every

employee’s keystore.

 keytool -importcert -keystore cindy.certs -alias acmeroot -file acmeroot.cer

For Alice to send messages to Cindy and to everyone else at ACME Software, she needs to

bring her certificate to the Information Resources Department and have it signed.

Unfortunately, this functionality is missing in the keytool program. In the book’s

companion code, we supply a CertificateSigner class to fill the gap. An authorized staff

member at ACME Software would verify Alice’s identity and generate a signed certificate

as follows:

 java CertificateSigner -keystore acmesoft.certs -alias acmeroot

 -infile alice.cer -outfile alice_signedby_acmeroot.cer

The certificate signer program must have access to the ACME Software keystore, and the staff

member must know the keystore password. Clearly, this is a sensitive operation.

Alice gives the file alice_signedby_acmeroot.cer file to Cindy and to anyone else in ACME

Software. Alternatively, ACME Software can simply store the file in a company directory.

Remember, this file contains Alice’s public key and an assertion by ACME Software that

this key really belongs to Alice.

Now Cindy imports the signed certificate into her keystore:

 keytool -importcert -keystore cindy.certs -alias alice -file

alice_signedby_acmeroot.cer

The keystore verifies that the key was signed by a trusted root key that is already present

in the keystore. Cindy is not asked to verify the certificate fingerprint.

Once Cindy has added the root certificate and the certificates of the people who regularly

send her documents, she never has to worry about the keystore again.

9.4.6 Certificate Requests

In the preceding section, we simulated a CA with a keystore and the CertificateSigner tool.

However, most CAs run more sophisticated software to manage certificates, and they use

slightly different formats for certificates. This section shows the added steps required

to interact with those software packages.

We will use the OpenSSL software package as an example. The software is prein-stalled on

many Linux systems and Mac OS X, and a Cygwin port is also available. Alternatively, you

can download the software at www.openssl.org.

http://www.openssl.org/

To create a CA, run the CA script. The exact location depends on your operating system.

On Ubuntu, run

 /usr/lib/ssl/misc/CA.pl -newca

This script creates a subdirectory called demoCA in the current directory. The directory

contains a root key pair and storage for certificates and certificate revocation lists.

You will want to import the public key into the Java keystores of all employees, but it

is in the Privacy Enhanced Mail (PEM) format, not the DER format that the keystore accepts

easily. Copy the file demoCA/cacert.pem to a file acmeroot.pem and open that file in a text

editor. Remove everything before the line

 -----BEGIN CERTIFICATE-----

and after the line

 -----END CERTIFICATE-----

Now you can import acmeroot.pem into each keystore in the usual way:

 keytool -importcert -keystore cindy.certs -alias alice -file acmeroot.pem

It seems quite incredible that the keytool cannot carry out this editing operation itself.

To sign Alice’s public key, you start by generating a certificate request that contains
the certificate in the PEM format:

 keytool -certreq -keystore alice.store -alias alice -file alice.pem

To sign the certificate, run

 openssl ca -in alice.pem -out alice_signedby_acmeroot.pem

As before, cut out everything outside the BEGIN CERTIFICATE/END CERTIFICATE markers from

alice_signedby_acmeroot.pem. Then import it into the keystore:

 keytool -importcert -keystore cindy.certs -alias alice -file

alice_signedby_acmeroot.pem

You can use the same steps to have a certificate signed by a public certificate authority

such as VeriSign.

9.4.7 Code Signing

A common use of authentication technology is signing executable programs. If you download

a program, you are naturally concerned about the damage it can do. For example, the program

could have been infected by a virus. If you know where the code comes from and that it has
not been tampered with since it left its origin, your comfort level will be a lot higher

than without this knowledge.

In this section, we’ll show you how to sign JAR files, and how you can configure Java to

verify the signature. This capability was designed for the Java Plug-In, the launching point

for applets and Java Web Start applications. These are no longer commonly used technologies,

but you may still need to support them in legacy products.

When Java was first released, applets ran in the “sandbox”, with limited permissions,

as soon as they were loaded. If users wanted to use applets that can access the local file

system, make network connections, and so on, they had to explicitly agree. To ensure that

the applet code was not tampered with in transit, it had to be digitally signed.

Here is a specific example. Suppose that while surfing the Internet, you encounter a web

site that offers to run an applet from an unfamiliar vendor, provided you grant it the

permission to do so (see Figure 9.14). Such a program is signed with a software developer
certificate issued by a certificate authority that the Java runtime trusts. The pop-up

dialog box identifies the software developer and the certificate issuer. Now you need to

decide whether to authorize the program.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09fig014

Figure 9.14 Launching a signed applet

What facts do you have at your disposal that might influence your decision? Here is what

you know:

• Thawte sold a certificate to the software developer.

• The program really was signed with that certificate, and it hasn’t been modified in

transit.

• The certificate really was signed by Thawte—it was verified by the public key in the

local cacerts file.

Does that tell you whether the code is safe to run? Can you trust a vendor if all you know

is the vendor’s name and the fact that Thawte sold them a software developer certificate?

One would like to think that Thawte went to some degree of trouble to assure itself that

ChemAxon Kft. is not an outright cracker. However, no certificate issuer carries out a

comprehensive audit of the honesty and competence of software vendors. They merely verify

the identity, typically by inspecting a scanned copy of a business license or passport.

As you can see, this is not a satisfactory solution. A better way might have been to expand

the functionality of the sandbox. When the Java Web Start technology was first released,

it went beyond the sandbox and enabled users to agree to limited file and printer access.

However, that concept was never further developed. Instead, the opposite happened. When

the sandbox was under attack by hackers, Oracle found it too difficult to keep up and

discontinued support for unsigned applets altogether.

Nowadays, applets are quite uncommon and mostly used for legacy purposes. If you need to

support an applet that is delivered to the public, sign it with a certificate from a vendor

who is trusted by the Java runtime environment.

For intranet application, one can do a bit better. One can install policy files and

certificates on local machines so that no user interaction is required for launching code

from trusted sources. Whenever the Java Plug-in tool loads signed code, it consults the

policy file for the permissions and the keystore for signatures.

For the remainder of this section, we will describe how you can build policy files that

grant specific permissions to code from known sources. Building and deploying these policy

files is not for casual end users. However, system administrators can carry out these tasks

in preparation for distributing intranet programs.

Suppose ACME Software wants its employees to run certain programs that require local file

access, and it wants to deploy these programs through a browser as applets or Web Start

applications.

As you saw earlier in this chapter, ACME could identify the programs by their code base.

But that means ACME would need to update the policy files each time the programs are moved

to a different web server. Instead, ACME decides to sign the JAR files that contain the
program code.

First, ACME generates a root certificate:

 keytool -genkeypair -keystore acmesoft.certs -alias acmeroot

Of course, the keystore containing the private root key must be kept in a safe place.

Therefore, we create a second keystore client.certs for the public certificates and add

the public acmeroot certificate into it.

 keytool -exportcert -keystore acmesoft.certs -alias acmeroot -file acmeroot.cer

 keytool -importcert -keystore client.certs -alias acmeroot -file acmeroot.cer

To make a signed JAR file, programmers add their class files to a JAR file in the usual

way. For example,

 javac FileReadApplet.java

 jar cvf FileReadApplet.jar *.class

Then a trusted person at ACME runs the jarsigner tool, specifying the JAR file and the alias

of the private key:

 jarsigner -keystore acmesoft.certs FileReadApplet.jar acmeroot

The signed applet is now ready to be deployed on a web server.

Next, let us turn to the client machine configuration. A policy file must be distributed

to each client machine.

To reference a keystore, a policy file starts with the line

 keystore "keystoreURL", "keystoreType";

The URL can be absolute or relative. Relative URLs are relative to the location of the policy

file. The type is JKS if the keystore was generated by keytool. For example,

 keystore "client.certs", "JKS";

Then grant clauses can have suffixes signedBy "alias", such as this one:

 grant signedBy "acmeroot"

 {

 ...

 };

Any signed code that can be verified with the public key associated with the alias is now

granted the permissions inside the grant clause.

You can try out the code signing process with the applet in Listing 9.17. The applet tries

to read from a local file. The default security policy only lets the applet read files from

its code base and any subdirectories. Use appletviewer to run the applet and verify that

you can view files from the code base directory, but not from other directories.

We provide a policy file applet.policy with the contents:

 keystore "client.certs", "JKS";

 grant signedBy "acmeroot"

 {

 permission java.lang.RuntimePermission "usePolicy";

 permission java.io.FilePermission "/etc/*", "read";

 };

The usePolicy permission overrides the default “all or nothing” permission for signed

applets. Here, we say that any applets signed by acmeroot are allowed to read files in the

/etc directory. (Windows users: Substitute another directory such as C:\Windows.)

Tell the applet viewer to use the policy file:

 appletviewer -J-Djava.security.policy=applet.policy FileReadApplet.html

Now the applet can read files from the /etc directory, thus demonstrating that the signing

mechanism works.

TIP:

If you have trouble getting this step to work, add the option -J-Djava.security.debug=policy,

and you will be rewarded with detailed messages that trace how the program establishes the

security policy.

As a final test, you can run your applet inside the browser (see Figure 9.15). You need

to copy the permission file and the keystore inside the Java deployment directory. If you

run UNIX or Linux, that directory is the .java/deployment subdirectory of your home

directory. In Windows, it is the C:\Users\yourLoginName\AppData\Sun\Java\Deployment
directory. In the following, we’ll refer to that directory as deploydir.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09fig015

Figure 9.15 A signed applet can read local files.

Copy applet.policy and client.certs to the deploydir/security directory. In that directory,
rename applet.policy to java.policy. (Double-check that you are not wiping out an existing

java.policy file. If there is one, add the applet.policy contents to it.)

Restart your browser and load the FileReadApplet.html. You should not be prompted to accept
any certificate. Check that you can load any file from the /etc directory and the directory

from which the applet was loaded, but not from other directories.

When you are done, remember to clean up your deploydir/security directory. Remove the files
java.policy and client.certs. Restart your browser. If you load the applet again after

cleaning up, you should no longer be able to read files from the local file system. Instead,

you will be prompted for a certificate. We’ll discuss security certificates in the next

section.

TIP:

For more details on configuring client Java security, we refer you to the Java Rich Internet

Applications Guide at

http://docs.oracle.com/javase/8/docs/technotes/guides/jweb/index.html.

Listing 9.17 signed/FileReadApplet.java

 1 package signed;

 2

 3 import java.awt.*;

 4 import java.awt.event.*;

 5 import java.io.*;

 6 import java.nio.file.*;

 7 import javax.swing.*;

 8

 9 /**

10 * This applet can run "outside the sandbox" and read local files when it is given

the right

11 * permissions.

12 * @version 1.13 2016-05-10

13 * @author Cay Horstmann

14 */

15 public class FileReadApplet extends JApplet

16 {

17 private JTextField fileNameField;

18 private JTextArea fileText;

19

20 public void init()

21 {

22 EventQueue.invokeLater(() ->

23 {

24 fileNameField = new JTextField(20);

25 JPanel panel = new JPanel();

26 panel.add(new JLabel("File name:"));

27 panel.add(fileNameField);

28 JButton openButton = new JButton("Open");

29 panel.add(openButton);

30 ActionListener listener = event ->

loadFile(fileNameField.getText());

31 fileNameField.addActionListener(listener);

32 openButton.addActionListener(listener);

33 add(panel, "North");

34 fileText = new JTextArea();

35 add(new JScrollPane(fileText), "Center");

36 });

http://docs.oracle.com/javase/8/docs/technotes/guides/jweb/index.html

37 }

38

39 /**

40 * Loads the contents of a file into the text area.

41 * @param filename the file name

42 */

43 public void loadFile(String filename)

44 {

45 fileText.setText("");

46 try

47 {

48 fileText.append(new

String(Files.readAllBytes(Paths.get(filename))));

49 }

50 catch (IOException ex)

51 {

52 fileText.append(ex + "\n");

53 }

54 catch (SecurityException ex)

55 {

56 fileText.append("I am sorry, but I cannot do that.\n");

57 fileText.append(ex + "\n");

58 ex.printStackTrace();

59 }

60 }

61 }

9.5 Encryption

So far, we have discussed one important cryptographic technique implemented in the Java

security API—namely, authentication through digital signatures. A second important aspect

of security is encryption. When information is authenticated, the information itself is
plainly visible. The digital signature merely verifies that the information has not been

changed. In contrast, when information is encrypted, it is not visible. It can only be

decrypted with a matching key.

Authentication is sufficient for code signing—there is no need for hiding the code. However,

encryption is necessary when applets or applications transfer confidential information,

such as credit card numbers and other personal data.

In the past, patents and export controls prevented many companies from offering strong

encryption. Fortunately, export controls are now much less stringent, and the patents for

important algorithms have expired. Nowadays, Java SE has excellent encryption support as

a part of the standard library.

9.5.1 Symmetric Ciphers

The Java cryptographic extensions contain a class Cipher that is the superclass of all

encryption algorithms. To get a cipher object, call the getInstance method:

 Cipher cipher = Cipher.getInstance(algorithName);

or

 Cipher cipher = Cipher.getInstance(algorithName, providerName);

The JDK comes with ciphers by the provider named "SunJCE". It is the default provider used

if you don’t specify another provider name. You might want another provider if you need

specialized algorithms that Oracle does not support.

The algorithm name is a string such as "AES" or "DES/CBC/PKCS5Padding".

The Data Encryption Standard (DES) is a venerable block cipher with a key length of 56 bits.

Nowadays, the DES algorithm is considered obsolete because it can be cracked with brute

force (see, for example, http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker). A far

better alternative is its successor, the Advanced Encryption Standard (AES). See

www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf for a detailed description of

the AES algorithm. We use AES for our example.

Once you have a cipher object, initialize it by setting the mode and the key:

 int mode = . . .;

 Key key = . . .;

 cipher.init(mode, key);

The mode is one of

 Cipher.ENCRYPT_MODE

 Cipher.DECRYPT_MODE

 Cipher.WRAP_MODE

 Cipher.UNWRAP_MODE

The wrap and unwrap modes encrypt one key with another—see the next section for an example.

Now you can repeatedly call the update method to encrypt blocks of data:

 int blockSize = cipher.getBlockSize();

 byte[] inBytes = new byte[blockSize];

 . . . // read inBytes

 int outputSize= cipher.getOutputSize(blockSize);

http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf

 byte[] outBytes = new byte[outputSize];

 int outLength = cipher.update(inBytes, 0, outputSize, outBytes);

 . . . // write outBytes

When you are done, you must call the doFinal method once. If a final block of input data

is available (with fewer than blockSize bytes), call

 outBytes = cipher.doFinal(inBytes, 0, inLength);

If all input data have been encrypted, instead call

 outBytes = cipher.doFinal();

The call to doFinal is necessary to carry out padding of the final block. Consider the DES
cipher. It has a block size of eight bytes. Suppose the last block of the input data has

fewer than eight bytes. Of course, we can fill the remaining bytes with 0, to obtain one

final block of eight bytes, and encrypt it. But when the blocks are decrypted, the result

will have several trailing 0 bytes appended to it, and therefore will be slightly different

from the original input file. That could be a problem; to avoid it, we need a padding scheme.
A commonly used padding scheme is the one described in the Public Key Cryptography Standard

(PKCS) #5 by RSA Security, Inc. (ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2–

0.pdf).

In this scheme, the last block is not padded with a pad value of zero, but with a pad value

that equals the number of pad bytes. In other words, if L is the last (incomplete) block,

it is padded as follows:

Finally, if the length of the input is actually divisible by 8, then one block

08 08 08 08 08 08 08 08

is appended to the input and encrypted. For decryption, the very last byte of the plaintext

is a count of the padding characters to discard.

9.5.2 Key Generation

To encrypt, you need to generate a key. Each cipher has a different format for keys, and

you need to make sure that the key generation is random. Follow these steps:

http://ftp/ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2%E2%80%930.pdf
http://ftp/ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2%E2%80%930.pdf

1. Get a KeyGenerator for your algorithm.

2. Initialize the generator with a source for randomness. If the block length of the cipher

is variable, also specify the desired block length.

3. Call the generateKey method.

For example, here is how you generate an AES key:

 KeyGenerator keygen = KeyGenerator.getInstance("AES");

 SecureRandom random = new SecureRandom(); // see below

 keygen.init(random);

 Key key = keygen.generateKey();

Alternatively, you can produce a key from a fixed set of raw data (perhaps derived from

a password or the timing of keystrokes). Then construct a SecretKeySpec (which implements

the SecretKey interface) like this:

 byte[] keyData = . . .; // 16 bytes for AES

 SecretKey key = new SecretKeySpec(keyData, "AES");

When generating keys, make sure you use truly random numbers. For example, the regular random
number generator in the Random class, seeded by the current date and time, is not random

enough. Suppose the computer clock is accurate to 1/10 of a second. Then there are at most

864,000 seeds per day. If an attacker knows the day a key was issued (as can often be deduced

from a message date or certificate expiration date), it is an easy matter to generate all

possible seeds for that day.

The SecureRandom class generates random numbers that are far more secure than those produced

by the Random class. You still need to provide a seed to start the number sequence at a

random spot. The best method for doing this is to obtain random input from a hardware device

such as a white-noise generator. Another reasonable source for random input is to ask the

user to type away aimlessly on the keyboard, with each keystroke contributing only one or

two bits to the random seed. Once you gather such random bits in an array of bytes, pass

it to the setSeed method:

 SecureRandom secrand = new SecureRandom();

 byte[] b = new byte[20];

 // fill with truly random bits

 secrand.setSeed(b);

If you don’t seed the random number generator, it will compute its own 20-byte seed by

launching threads, putting them to sleep, and measuring the exact time when they are

awakened.

NOTE:

This algorithm is not known to be safe. In the past, algorithms that relied on timing some
components of the computer, such as hard disk access time, were shown not to be completely

random.

The sample program at the end of this section puts the AES cipher to work (see Listing 9.18).

The crypt utility method in Listing 9.19 will be reused in other examples. To use the program,

you first need to generate a secret key. Run

 java aes.AESTest -genkey secret.key

The secret key is saved in the file secret.key.

Now you can encrypt with the command

 java aes.AESTest -encrypt plaintextFile encryptedFile secret.key

Decrypt with the command

 java aes.AESTest -decrypt encryptedFile decryptedFile secret.key

The program is straightforward. The -genkey option produces a new secret key and serializes

it in the given file. That operation takes a long time because the initialization of the

secure random generator is time-consuming. The -encrypt and -decrypt options both call into

the same crypt method that calls the update and doFinal methods of the cipher. Note how

the update method is called as long as the input blocks have the full length, and the doFinal

method is either called with a partial input block (which is then padded) or with no

additional data (to generate one pad block).

Listing 9.18 aes/AESTest.java

 1 package aes;

 2

 3 import java.io.*;

 4 import java.security.*;

 5 import javax.crypto.*;

 6

 7 /**

 8 * This program tests the AES cipher. Usage:

 9 * java aes.AESTest -genkey keyfile

10 * java aes.AESTest -encrypt plaintext encrypted keyfile

11 * java aes.AESTest -decrypt encrypted decrypted keyfile

12 * @author Cay Horstmann

13 * @version 1.01 2012-06-10

14 */

15 public class AESTest

16 {

17 public static void main(String[] args)

18 throws IOException, GeneralSecurityException, ClassNotFoundException

19 {

20 if (args[0].equals("-genkey"))

21 {

22 KeyGenerator keygen = KeyGenerator.getInstance("AES");

23 SecureRandom random = new SecureRandom();

24 keygen.init(random);

25 SecretKey key = keygen.generateKey();

26 try (ObjectOutputStream out = new ObjectOutputStream(new

FileOutputStream(args[1])))

27 {

28 out.writeObject(key);

29 }

30 }

31 else

32 {

33 int mode;

34 if (args[0].equals("-encrypt")) mode = Cipher.ENCRYPT_MODE;

35 else mode = Cipher.DECRYPT_MODE;

36

37 try (ObjectInputStream keyIn = new ObjectInputStream(new

FileInputStream(args[3]));

38 InputStream in = new FileInputStream(args[1]);

39 OutputStream out = new FileOutputStream(args[2]))

40 {

41 Key key = (Key) keyIn.readObject();

42 Cipher cipher = Cipher.getInstance("AES");

43 cipher.init(mode, key);

44 Util.crypt(in, out, cipher);

45 }

46 }

47 }

48 }

49

Listing 9.19 aes/Util.java

 1 package aes;

 2

 3 import java.io.*;

 4 import java.security.*;

 5 import javax.crypto.*;

 6

 7 public class Util

 8 {

 9 /**

10 * Uses a cipher to transform the bytes in an input stream and sends the

transformed bytes to

11 * an output stream.

12 * @param in the input stream

13 * @param out the output stream

14 * @param cipher the cipher that transforms the bytes

15 */

16 public static void crypt(InputStream in, OutputStream out, Cipher cipher)

throws IOException,

17 GeneralSecurityException

18 {

19 int blockSize = cipher.getBlockSize();

20 int outputSize = cipher.getOutputSize(blockSize);

21 byte[] inBytes = new byte[blockSize];

22 byte[] outBytes = new byte[outputSize];

23

24 int inLength = 0;

25 ;

26 boolean more = true;

27 while (more)

28 {

29 inLength = in.read(inBytes);

30 if (inLength == blockSize)

31 {

32 int outLength = cipher.update(inBytes, 0, blockSize,

outBytes);

33 out.write(outBytes, 0, outLength);

34 }

35 else more = false;

36 }

37 if (inLength > 0) outBytes = cipher.doFinal(inBytes, 0, inLength);

38 else outBytes = cipher.doFinal();

39 out.write(outBytes);

40 }

41 }

javax.crypto.Cipher 1.4

• static Cipher getInstance(String algorithmName)

• static Cipher getInstance(String algorithmName, String providerName)

returns a Cipher object that implements the specified algorithm. Throws a

NoSuchAlgorithmException if the algorithm is not provided.

• int getBlockSize()

returns the size (in bytes) of a cipher block, or 0 if the cipher is not a block cipher.

• int getOutputSize(int inputLength)

returns the size of an output buffer that is needed if the next input has the given number

of bytes. This method takes into account any buffered bytes in the cipher object.

• void init(int mode, Key key)

initializes the cipher algorithm object. The mode is one of ENCRYPT_MODE, DECRYPT_MODE,

WRAP_MODE, or UNWRAP_MODE.

• byte[] update(byte[] in)

• byte[] update(byte[] in, int offset, int length)

• int update(byte[] in, int offset, int length, byte[] out)

transforms one block of input data. The first two methods return the output. The third method

returns the number of bytes placed into out.

• byte[] doFinal()

• byte[] doFinal(byte[] in)

• byte[] doFinal(byte[] in, int offset, int length)

• int doFinal(byte[] in, int offset, int length, byte[] out)

transforms the last block of input data and flushes the buffer of this algorithm object.

The first three methods return the output. The fourth method returns the number of bytes

placed into out.

javax.crypto.KeyGenerator 1.4

• static KeyGenerator getInstance(String algorithmName)

returns a KeyGenerator object that implements the specified algorithm. Throws a

NoSuchAlgorithmException if the algorithm is not provided.

• void init(SecureRandom random)

• void init(int keySize, SecureRandom random)

initializes the key generator.

• SecretKey generateKey()

generates a new key.

javax.crypto.spec.SecretKeySpec 1.4

• SecretKeySpec(byte[] key, String algorithmName)

constructs a key specification.

9.5.3 Cipher Streams

The JCE library provides a convenient set of stream classes that automatically encrypt or

decrypt stream data. For example, here is how you can encrypt data to a file:

 Cipher cipher = . . .;

 cipher.init(Cipher.ENCRYPT_MODE, key);

 CipherOutputStream out = new CipherOutputStream(new FileOutputStream(outputFileName),

cipher);

 byte[] bytes = new byte[BLOCKSIZE];

 int inLength = getData(bytes); // get data from data source

 while (inLength != -1)

 {

 out.write(bytes, 0, inLength);

 inLength = getData(bytes); // get more data from data source

 }

 out.flush();

Similarly, you can use a CipherInputStream to read and decrypt data from a file:

 Cipher cipher = . . .;

 cipher.init(Cipher.DECRYPT_MODE, key);

 CipherInputStream in = new CipherInputStream(new FileInputStream(inputFileName),

cipher);

 byte[] bytes = new byte[BLOCKSIZE];

 int inLength = in.read(bytes);

 while (inLength != -1)

 {

 putData(bytes, inLength); // put data to destination

 inLength = in.read(bytes);

 }

The cipher stream classes transparently handle the calls to update and doFinal, which is

clearly a convenience.

javax.crypto.CipherInputStream 1.4

• CipherInputStream(InputStream in, Cipher cipher)

constructs an input stream that reads data from in and decrypts or encrypts them by using

the given cipher.

• int read()

• int read(byte[] b, int off, int len)

reads data from the input stream, which is automatically decrypted or encrypted.

javax.crypto.CipherOutputStream 1.4

• CipherOutputStream(OutputStream out, Cipher cipher)

constructs an output stream that writes data to out and encrypts or decrypts them using

the given cipher.

• void write(int ch)

• void write(byte[] b, int off, int len)

writes data to the output stream, which is automatically encrypted or decrypted.

• void flush()

flushes the cipher buffer and carries out padding if necessary.

9.5.4 Public Key Ciphers

The AES cipher that you have seen in the preceding section is a symmetric cipher. The same
key is used for both encryption and decryption. The Achilles heel of symmetric ciphers is

key distribution. If Alice sends Bob an encrypted method, Bob needs the same key that Alice

used. If Alice changes the key, she needs to send Bob both the message and, through a secure

channel, the new key. But perhaps she has no secure channel to Bob—which is why she encrypts

her messages to him in the first place.

Public key cryptography solves that problem. In a public key cipher, Bob has a key pair

consisting of a public key and a matching private key. Bob can publish the public key anywhere,

but he must closely guard the private key. Alice simply uses the public key to encrypt her

messages to Bob.

Actually, it’s not quite that simple. All known public key algorithms are much slower than
symmetric key algorithms such as DES or AES. It would not be practical to use a public key

algorithm to encrypt large amounts of information. However, that problem can easily be

overcome by combining a public key cipher with a fast symmetric cipher, like this:

1. Alice generates a random symmetric encryption key. She uses it to encrypt her plaintext.

2. Alice encrypts the symmetric key with Bob’s public key.

3. Alice sends Bob both the encrypted symmetric key and the encrypted plaintext.

4. Bob uses his private key to decrypt the symmetric key.

5. Bob uses the decrypted symmetric key to decrypt the message.

Nobody but Bob can decrypt the symmetric key because only Bob has the private key for

decryption. Thus, the expensive public key encryption is only applied to a small amount

of key data.

The most commonly used public key algorithm is the RSA algorithm invented by Rivest, Shamir,

and Adleman. Until October 2000, the algorithm was protected by a patent assigned to RSA

Security, Inc. Licenses were not cheap—typically a 3% royalty, with a minimum payment of

$50,000 per year. Now the algorithm is in the public domain.

To use the RSA algorithm, you need a public/private key pair. Use a KeyPairGenerator like

this:

 KeyPairGenerator pairgen = KeyPairGenerator.getInstance("RSA");

 SecureRandom random = new SecureRandom();

 pairgen.initialize(KEYSIZE, random);

 KeyPair keyPair = pairgen.generateKeyPair();

 Key publicKey = keyPair.getPublic();

 Key privateKey = keyPair.getPrivate();

The program in Listing 9.20 has three options. The -genkey option produces a key pair. The

-encrypt option generates an AES key and wraps it with the public key.

 Key key = . . .; // an AES key

 Key publicKey = . . .; // a public RSA key

 Cipher cipher = Cipher.getInstance("RSA");

 cipher.init(Cipher.WRAP_MODE, publicKey);

 byte[] wrappedKey = cipher.wrap(key);

It then produces a file that contains

• The length of the wrapped key

• The wrapped key bytes

• The plaintext encrypted with the AES key

The -decrypt option decrypts such a file. To try the program, first generate the RSA keys:

 java rsa.RSATest -genkey public.key private.key

Then encrypt a file:

 java rsa.RSATest -encrypt plaintextFile encryptedFile public.key

Finally, decrypt it and verify that the decrypted file matches the plaintext:

 java rsa.RSATest -decrypt encryptedFile decryptedFile private.key

Listing 9.20 rsa/RSATest.java

 1 package rsa;

 2

 3 import java.io.*;

 4 import java.security.*;

 5 import javax.crypto.*;

 6

 7 /**

 8 * This program tests the RSA cipher. Usage:

 9 * java rsa.RSATest -genkey public private

10 * java rsa.RSATest -encrypt plaintext encrypted public

11 * java rsa.RSATest -decrypt encrypted decrypted private

12 * @author Cay Horstmann

13 * @version 1.01 2012-06-10

14 */

15 public class RSATest

16 {

17 private static final int KEYSIZE = 512;

18

19 public static void main(String[] args)

20 throws IOException, GeneralSecurityException, ClassNotFoundException

21 {

22 if (args[0].equals("-genkey"))

23 {

24 KeyPairGenerator pairgen =

KeyPairGenerator.getInstance("RSA");

25 SecureRandom random = new SecureRandom();

26 pairgen.initialize(KEYSIZE, random);

27 KeyPair keyPair = pairgen.generateKeyPair();

28 try (ObjectOutputStream out = new ObjectOutputStream(new

FileOutputStream(args[1])))

29 {

30 out.writeObject(keyPair.getPublic());

31 }

32 try (ObjectOutputStream out = new ObjectOutputStream(new

FileOutputStream(args[2])))

33 {

34 out.writeObject(keyPair.getPrivate());

35 }

36 }

37 else if (args[0].equals("-encrypt"))

38 {

39 KeyGenerator keygen = KeyGenerator.getInstance("AES");

40 SecureRandom random = new SecureRandom();

41 keygen.init(random);

42 SecretKey key = keygen.generateKey();

43

44 // wrap with RSA public key

45 try (ObjectInputStream keyIn = new ObjectInputStream(new

FileInputStream(args[3]));

46 DataOutputStream out = new DataOutputStream(new

FileOutputStream(args[2]));

47 InputStream in = new FileInputStream(args[1]))

48 {

49 Key publicKey = (Key) keyIn.readObject();

50 Cipher cipher = Cipher.getInstance("RSA");

51 cipher.init(Cipher.WRAP_MODE, publicKey);

52 byte[] wrappedKey = cipher.wrap(key);

53 out.writeInt(wrappedKey.length);

54 out.write(wrappedKey);

55

56 cipher = Cipher.getInstance("AES");

57 cipher.init(Cipher.ENCRYPT_MODE, key);

58 Util.crypt(in, out, cipher);

59 }

60 }

61 else

62 {

63 try (DataInputStream in = new DataInputStream(new

FileInputStream(args[1]));

64 ObjectInputStream keyIn = new ObjectInputStream(new

FileInputStream(args[3]));

65 OutputStream out = new FileOutputStream(args[2]))

66 {

67 int length = in.readInt();

68 byte[] wrappedKey = new byte[length];

69 in.read(wrappedKey, 0, length);

70

71 // unwrap with RSA private key

72 Key privateKey = (Key) keyIn.readObject();

73

74 Cipher cipher = Cipher.getInstance("RSA");

75 cipher.init(Cipher.UNWRAP_MODE, privateKey);

76 Key key = cipher.unwrap(wrappedKey, "AES",

Cipher.SECRET_KEY);

77

78 cipher = Cipher.getInstance("AES");

79 cipher.init(Cipher.DECRYPT_MODE, key);

80

81 Util.crypt(in, out, cipher);

82 }

83 }

84 }

85 }

You have now seen how the Java security model allows controlled execution of code, which

is a unique and increasingly important aspect of the Java platform. You have also seen the

services for authentication and encryption that the Java library provides. We did not cover

a number of advanced and specialized issues, among them:

• The GSS-API for “generic security services” that provides support for the Kerberos

protocol (and, in principle, other protocols for secure message exchange). There is a

tutorial at

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jgss/tutorials.

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jgss/tutorials

• Support for the Simple Authentication and Security Layer (SASL), used by the Lightweight

Directory Access Protocol (LDAP) and Internet Message Access Protocol (IMAP). If you need

to implement SASL in your application, look at

http://docs.oracle.com/javase/7/docs/technotes/guides/security/sasl/sasl-refguide.html

.

• Support for SSL. Using SSL over HTTP is transparent to application programmers; simply

use URLs that start with https. If you want to add SSL to your application, see the Java

Secure Socket Extension (JSSE) reference at

http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html.

In the next chapter, we will delve into advanced Swing programming.

http://docs.oracle.com/javase/7/docs/technotes/guides/security/sasl/sasl-refguide.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/sasl/sasl-refguide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html

Chapter 10. Advanced Swing

In this chapter

• 10.1 Lists,

• 10.2 Tables,

• 10.3 Trees,

• 10.4 Text Components,

• 10.5 Progress Indicators,

• 10.6 Component Organizers and Decorators,

In this chapter, we continue our discussion of the Swing user interface toolkit from Volume

I. Swing is a rich toolkit, and Volume I covered only the basic and commonly used components.

That leaves us with three significantly more complex components for lists, tables, and trees,

the exploration of which occupies a large part of this chapter. We will then turn to text

components and go beyond the simple text fields and text areas that you have seen in Volume

I. We will show you how to add validations and spinners to text fields and how you can display

structured text such as HTML. Next, you will see a number of components for displaying

progress of a slow activity. We will finish the chapter by covering component organizers,

such as tabbed panes and desktop panes with internal frames.

10.1 Lists

If you want to present a set of choices to a user, and a radio button or checkbox set consumes

too much space, you can use a combo box or a list. Combo boxes were covered in Volume I

because they are relatively simple. The JList component has many more features, and its

design is similar to that of the tree and table components. For that reason, it is our

starting point for the discussion of complex Swing components.

You can have lists of strings, of course, but you can also have lists of arbitrary objects,

with full control of how they appear. The internal architecture of the list component that

makes this generality possible is rather elegant. Unfortunately, the designers at Sun felt

that they needed to show off that elegance, instead of hiding it from the programmer who

just wants to use the component. You will find that the list control is somewhat awkward

to use for common cases because you need to manipulate some of the machinery that makes

the general cases possible. We will walk you through the simple and most common case—a

list box of strings—and then give a more complex example that shows off the flexibility

of the list component.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10lev10-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10lev10-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10lev10-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10lev10-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10lev10-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10lev10-6

10.1.1 The JList Component

The JList component shows a number of items inside a single box. Figure 10.1 shows an

admittedly silly example. The user can select the attributes for the fox, such as “quick,”

“brown,” “hungry,” “wild,” and, because we ran out of attributes, “static,”

“private,” and “final.” You can thus have the private static final fox jump over the
lazy dog.

As of Java SE 7, JList is a generic type. The type parameter is the type of the values the

user can select. In this example, we use a JList<String>.

Figure 10.1 A list box

To construct this list component, start out with an array of strings and pass that array

to the JList constructor:

 String[] words= { "quick", "brown", "hungry", "wild", . . . };

 JList<String> wordList = new JList<>(words);

List boxes do not scroll automatically. To make a list box scroll, you must insert it into

a scroll pane:

 JScrollPane scrollPane = new JScrollPane(wordList);

Then, add the scroll pane, not the list, into the surrounding panel.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig01

We have to admit that the separation of the list display and the scrolling mechanism is

elegant in theory, but a pain in practice. Essentially all lists that we ever encountered

needed scrolling. It seems cruel to force programmers to go through the hoops in the default

case just so they can appreciate that elegance.

By default, the list component displays eight items; use the setVisibleRowCount method to

change that value:

 wordList.setVisibleRowCount(4); // display 4 items

You can set the layout orientation to one of three values:

• JList.VERTICAL (the default): Arrange all items vertically.

• JList.VERTICAL_WRAP: Start new columns if there are more items than the visible row count

(see Figure 10.2).

Figure 10.2 Lists with vertical and horizontal wrap

• JList.HORIZONTAL_WRAP: Start new columns if there are more items than the visible row

count, but fill them horizontally. Look at the placement of the words “quick,” “brown,”

and “hungry” in Figure 10.2 to see the difference between vertical and horizontal wrap.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig02
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig02

By default, a user can select multiple items. To add more items to a selection, press the

Ctrl key while clicking on each item. To select a contiguous range of items, click on the

first one, then hold down the Shift key and click on the last one.

You can also restrict the user to a more limited selection mode with the setSelectionMode

method:

 wordList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

 // select one item at a time

 wordList.setSelectionMode(ListSelectionModel.SINGLE_INTERVAL_SELECTION);

 // select one item or one range of items

You might recall from Volume I that the basic user interface components send out action

events when the user activates them. List boxes use a different notification mechanism.

Rather than listening to action events, you need to listen to list selection events. Add

a list selection listener to the list component, and implement the method

 public void valueChanged(ListSelectionEvent evt)

in the listener.

When the user selects items, a flurry of list selection events is generated. For example,

suppose the user clicks on a new item. When the mouse button goes down, an event reports

a change in selection. This is a transitional event—the call

 event.getValueIsAdjusting()

returns true if the selection is not yet final. Then, when the mouse button goes up, there

is another event, this time with getValueIsAdjusting returning false. If you are not

interested in the transitional events, you can wait for the event for which

getValueIsAdjusting is false. However, if you want to give the user instant feedback as

soon as the mouse button is clicked, you need to process all events.

Once you are notified that an event has happened, you will want to find out what items are

currently selected. If your list is in single-selection mode, call getSelectedValue to get

the value as the list element type. Otherwise, call the getSelectedValuesList method which

returns a list containing all selected items. You can process it in the usual way:

 for (String value : wordList.getSelectedValuesList())

 // do something with value

NOTE:

List components do not react to double clicks from a mouse. As envisioned by the designers

of Swing, you use a list to select an item, then click a button to make something happen.

However, some interfaces allow a user to double-click on a list item as a shortcut for

selecting the item and invoking the default action. If you want to implement this behavior,

you have to add a mouse listener to the list box, then trap the mouse event as follows:

 public void mouseClicked(MouseEvent evt)

 {

 if (evt.getClickCount() == 2)

 {

 JList source = (JList) evt.getSource();

 Object[] selection = source.getSelectedValuesList();

 doAction(selection);

 }

 }

Listing 10.1 is the listing of the frame containing a list box filled with strings. Notice

how the valueChanged method builds up the message string from the selected items.

Listing 10.1 list/ListFrame.java

 1 package list;

 2

 3 import java.awt.*;

 4

 5 import javax.swing.*;

 6

 7 /**

 8 * This frame contains a word list and a label that shows a sentence made up

from the chosen words.

 9 * Note that you can select multiple words with Ctrl+click and Shift+click.

10 */

11 class ListFrame extends JFrame

12 {

13 private static final int DEFAULT_WIDTH = 400;

14 private static final int DEFAULT_HEIGHT = 300;

15

16 private JPanel listPanel;

17 private JList<String> wordList;

18 private JLabel label;

19 private JPanel buttonPanel;

20 private ButtonGroup group;

21 private String prefix = "The ";

22 private String suffix = "fox jumps over the lazy dog.";

23

24 public ListFrame()

25 {

26 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

27

28 String[] words = { "quick", "brown", "hungry", "wild", "silent",

"huge", "private",

29 "abstract", "static", "final" };

30

31 wordList = new JList<>(words);

32 wordList.setVisibleRowCount(4);

33 JScrollPane scrollPane = new JScrollPane(wordList);

34

35 listPanel = new JPanel();

36 listPanel.add(scrollPane);

37 wordList.addListSelectionListener(event ->

38 {

39 StringBuilder text = new StringBuilder(prefix);

40 for (String value : wordList.getSelectedValuesList())

41 {

42 text.append(value);

43 text.append(" ");

44 }

45 text.append(suffix);

46

47 label.setText(text.toString());

48 });

49

50 buttonPanel = new JPanel();

51 group = new ButtonGroup();

52 makeButton("Vertical", JList.VERTICAL);

53 makeButton("Vertical Wrap", JList.VERTICAL_WRAP);

54 makeButton("Horizontal Wrap", JList.HORIZONTAL_WRAP);

55

56 add(listPanel, BorderLayout.NORTH);

57 label = new JLabel(prefix + suffix);

58 add(label, BorderLayout.CENTER);

59 add(buttonPanel, BorderLayout.SOUTH);

60 }

61

62 /**

63 * Makes a radio button to set the layout orientation.

64 * @param label the button label

65 * @param orientation the orientation for the list

66 */

67 private void makeButton(String label, final int orientation)

68 {

69 JRadioButton button = new JRadioButton(label);

70 buttonPanel.add(button);

71 if (group.getButtonCount() == 0) button.setSelected(true);

72 group.add(button);

73 button.addActionListener(event ->

74 {

75 wordList.setLayoutOrientation(orientation);

76 listPanel.revalidate();

77 });

78 }

79 }

javax.swing.JList<E> 1.2

• JList(E[] items)

constructs a list that displays these items.

• int getVisibleRowCount()

• void setVisibleRowCount(int c)

gets or sets the preferred number of rows in the list that can be displayed without a scroll

bar.

• int getLayoutOrientation() 1.4

• void setLayoutOrientation(int orientation) 1.4

gets or sets the layout orientation

Parameters: orientation One of VERTICAL, VERTICAL_WRAP, HORIZONTAL_WRAP

• int getSelectionMode()

• void setSelectionMode(int mode)

gets or sets the mode that determines whether single-item or multiple-item selections are

allowed.

• void addListSelectionListener(ListSelectionListener listener)

adds to the list a listener that’s notified each time a change to the selection occurs.

• List<E> getSelectedValuesList() 7

returns the selected values or an empty list if the selection is empty.

• E getSelectedValue()

returns the first selected value or null if the selection is empty.

javax.swing.event.ListSelectionListener 1.2

• void valueChanged(ListSelectionEvent e)

is called whenever the list selection changes.

10.1.2 List Models

In the preceding section, you saw the most common method for using a list component:

1. Specify a fixed set of strings for display in the list.

2. Place the list inside a scroll pane.

3. Trap the list selection events.

In the remainder of the section on lists, we cover more complex situations that require

a bit more finesse:

• Very long lists

• Lists with changing contents

• Lists that don’t contain strings

In the first example, we constructed a JList component that held a fixed collection of

strings. However, the collection of choices in a list box is not always fixed. How do we

add or remove items in the list box? Somewhat surprisingly, there are no methods in the

JList class to achieve this. Instead, you have to understand a little more about the internal

design of the list component. The list component uses the model-view-controller design

pattern to separate the visual appearance (a column of items that are rendered in some way)

from the underlying data (a collection of objects).

The JList class is responsible for the visual appearance of the data. It actually knows

very little about how the data are stored—all it knows is that it can retrieve the data

through some object that implements the ListModel interface:

 public interface ListModel<E>

 {

 int getSize();

 E getElementAt(int i);

 void addListDataListener(ListDataListener l);

 void removeListDataListener(ListDataListener l);

 }

Through this interface, the JList can get a count of elements and retrieve any of them.

Also, the JList object can add itself as a ListDataListener. That way, if the collection

of elements changes, the JList gets notified so it can repaint itself.

Why is this generality useful? Why doesn’t the JList object simply store an array of

objects?

Note that the interface doesn’t specify how the objects are stored. In particular, it

doesn’t force them to be stored at all! The getElementAt method is free to recompute each

value whenever it is called. This is potentially useful if you want to show a very large

collection without having to store the values.

Here is a somewhat silly example: We let the user choose among all three-letter words in
a list box (see Figure 10.3).

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig03

Figure 10.3 Choosing from a very long list of selections

There are 26 × 26 × 26 = 17,576 three-letter combinations. Instead of storing all these

combinations, we recompute them as requested when the user scrolls through them.

This turns out to be easy to implement. The tedious part, adding and removing listeners,

has been done for us in the AbstractListModel class, which we extend. We only need to supply

the getSize and getElementAt methods:

 class WordListModel extends AbstractListModel<String>

 {

 public WordListModel(int n) { length = n; }

 public int getSize() { return (int) Math.pow(26, length); }

 public String getElementAt(int n)

 {

 // compute nth string

 ...

 }

 ...

 }

The computation of the nth string is a bit technical—you’ll find the details in Listing

10.3.

Now that we have a model, we can simply build a list that lets the user scroll through the

elements supplied by the model:

 JList<String> wordList = new JList<>(new WordListModel(3));

 wordList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

 JScrollPane scrollPane = new JScrollPane(wordList);

The point is that the strings are never stored. Only those strings that the user actually
requests to see are generated.

We must make one other setting: tell the list component that all items have a fixed width

and height. The easiest way to set the cell dimensions is to specify a prototype cell value:

 wordList.setPrototypeCellValue("www");

The prototype cell value is used to determine the size for all cells. (We use the string

“www” because “w” is the widest lowercase letter in most fonts.)

Alternatively, you can set a fixed cell size:

 wordList.setFixedCellWidth(50);

 wordList.setFixedCellHeight(15);

If you don’t set a prototype value or a fixed cell size, the list component computes the

width and height of each item. That can take a long time.

Listing 10.2 shows the frame class of the example program.

As a practical matter, very long lists are rarely useful. It is extremely cumbersome for

a user to scroll through a huge selection. For that reason, we believe that the list control

has been overengineered. A selection that can be comfortably managed on the screen is

certainly small enough to be stored directly in the list component. That arrangement would

have saved programmers from the pain of having to deal with the list model as a separate

entity. On the other hand, the JList class is consistent with the JTree and JTable classes

where this generality is useful.

Listing 10.2 longList/LongListFrame.java

 1 package longList;

 2

 3 import java.awt.*;

 4

 5 import javax.swing.*;

 6

 7 /**

 8 * This frame contains a long word list and a label that shows a sentence made

up from the chosen

 9 * word.

10 */

11 public class LongListFrame extends JFrame

12 {

13 private JList<String> wordList;

14 private JLabel label;

15 private String prefix = "The quick brown ";

16 private String suffix = " jumps over the lazy dog.";

17

18 public LongListFrame()

19 {

20 wordList = new JList<String>(new WordListModel(3));

21 wordList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

22 wordList.setPrototypeCellValue("www");

23 JScrollPane scrollPane = new JScrollPane(wordList);

24

25 JPanel p = new JPanel();

26 p.add(scrollPane);

27 wordList.addListSelectionListener(event ->

setSubject(wordList.getSelectedValue()));

28

29 Container contentPane = getContentPane();

30 contentPane.add(p, BorderLayout.NORTH);

31 label = new JLabel(prefix + suffix);

32 contentPane.add(label, BorderLayout.CENTER);

33 setSubject("fox");

34 pack();

35 }

36

37 /**

38 * Sets the subject in the label.

39 * @param word the new subject that jumps over the lazy dog

40 */

41 public void setSubject(String word)

42 {

43 StringBuilder text = new StringBuilder(prefix);

44 text.append(word);

45 text.append(suffix);

46 label.setText(text.toString());

47 }

48 }

Listing 10.3 longList/WordListModel.java

 1 package longList;

 2

 3 import javax.swing.*;

 4

 5 /**

 6 * A model that dynamically generates n-letter words.

 7 */

 8 public class WordListModel extends AbstractListModel<String>

 9 {

10 private int length;

11 public static final char FIRST = 'a';

12 public static final char LAST = 'z';

13

14 /**

15 * Constructs the model.

16 * @param n the word length

17 */

18 public WordListModel(int n)

19 {

20 length = n;

21 }

22

23 public int getSize()

24 {

25 return (int) Math.pow(LAST - FIRST + 1, length);

26 }

27

28 public String getElementAt(int n)

29 {

30 StringBuilder r = new StringBuilder();

31

32 for (int i = 0; i < length; i++)

33 {

34 char c = (char) (FIRST + n % (LAST - FIRST + 1));

35 r.insert(0, c);

36 n = n / (LAST - FIRST + 1);

37 }

38 return r.toString();

39 }

40 }

javax.swing.JList<E> 1.2

• JList(ListModel<E> dataModel)

constructs a list that displays the elements in the specified model.

• E getPrototypeCellValue()

• void setPrototypeCellValue(E newValue)

gets or sets the prototype cell value used to determine the width and height of each cell

in the list. The default is null, which forces the size of each cell to be measured.

• void setFixedCellWidth(int width)

 void setFixedCellHeight(int height)

if the width or height is greater than zero, specifies the width or height (in pixels) of

every cell in the list. The default value is -1, which forces the size of each cell to be

measured.

javax.swing.ListModel<E> 1.2

• int getSize()

returns the number of elements of the model.

• E getElementAt(int position)

returns an element of the model at the given position.

10.1.3 Inserting and Removing Values

You cannot directly edit the collection of list values. Instead, you must access the model
and then add or remove elements. That, too, is easier said than done. Suppose you want to

add more values to a list. You can obtain a reference to the model:

 ListModel<String> model = list.getModel();

But that does you no good—as you saw in the preceding section, the ListModel interface

has no methods to insert or remove elements because, after all, the whole point of having

a list model is that it does not need to store the elements.

Let’s try it the other way around. One of the constructors of JList takes a vector of

objects:

 Vector<String> values = new Vector<String>();

 values.addElement("quick");

 values.addElement("brown");

 ...

 JList<String> list = new JList<>(values);

You can now edit the vector and add or remove elements, but the list does not know that

this is happening, so it cannot react to the changes. In particular, the list does not update

its view when you add the values. Therefore, this constructor is not very useful.

Instead, you should construct a DefaultListModel object, fill it with the initial values,

and associate it with the list. The DefaultListModel class implements the ListModel

inter-face and manages a collection of objects.

 DefaultListModel<String> model = new DefaultListModel<>();

 model.addElement("quick");

 model.addElement("brown");

 ...

 JList<String> list = new JList<>(model);

Now you can add or remove values from the model object. The model object then notifies the

list of the changes, and the list repaints itself.

 model.removeElement("quick");

 model.addElement("slow");

For historical reasons, the DefaultListModel class doesn’t use the same method names as

the collection classes.

Internally, the default list model uses a vector to store the values.

CAUTION

There are JList constructors that construct a list from an array or vector of objects or

strings. You might think that these constructors use a DefaultListModel to store these

values.That is not the case—the constructors build a trivial model that can access the

values without any provisions for notification if the content changes. For example, here

is the code for the constructor that constructs a JList from a Vector:

 public JList(final Vector<? extends E> listData)

 {

 this (new AbstractListModel<E>()

 {

 public int getSize() { return listData.size(); }

 public E getElementAt(int i) { return listData.elementAt(i); }

 });

 }

That means, if you change the contents of the vector after the list is constructed, the

list might show a confusing mix of old and new values until it is completely repainted.

(The keyword final in the preceding constructor does not prevent you from changing the vector

elsewhere—it only means that the constructor itself won’t modify the value of the listData

reference; the keyword is required because the listData object is used in the inner class.)

javax.swing.JList<E> 1.2

• ListModel<E> getModel()

gets the model of this list.

javax.swing.DefaultListModel<E> 1.2

• void addElement(E obj)

adds the object to the end of the model.

• boolean removeElement(Object obj)

removes the first occurrence of the object from the model. Returns true if the object was

contained in the model, false otherwise.

10.1.4 Rendering Values

So far, all lists you have seen in this chapter contained strings. It is actually just as

easy to show a list of icons—simply pass an array or vector filled with Icon objects. More

interestingly, you can easily represent your list values with any drawing whatsoever.

Although the JList class can display strings and icons automatically, you need to install

a list cell renderer into the JList object for all custom drawing. A list cell renderer
is any class that implements the following interface:

 interface ListCellRenderer<E>

 {

 Component getListCellRendererComponent(JList<? extends E> list,

 E value, int index, boolean isSelected, boolean cellHasFocus);

 }

This method is called for each cell. It returns a component that paints the cell contents.

The component is placed at the appropriate location whenever a cell needs to be rendered.

One way to implement a cell renderer is to create a class that extends JComponent, like

this:

 class MyCellRenderer extends JComponent implements ListCellRenderer<Type>

 {

 public Component getListCellRendererComponent(JList<? extends Type> list,

 Type value, int index, boolean isSelected, boolean cellHasFocus)

 {

 stash away information needed for painting and size measurement
 return this;

 }

 public void paintComponent(Graphics g)

 {

 paint code
 }

 public Dimension getPreferredSize()

 {

 size measurement code
 }

 instance fields
 }

In Listing 10.4, we display the font choices graphically by showing the actual appearance

of each font (see Figure 10.4). In the paintComponent method, we display each name in its

own font. We also need to make sure to match the usual colors of the look-and-feel of the

JList class. We obtain these colors by calling the getForeground/getBackground and

getSelectionForeground/getSelectionBackground methods of the JList class. In the

getPreferredSize method, we need to measure the size of the string, using the techniques

that you saw in Volume I, Chapter 7.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig04
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07

Figure 10.4 A list box with rendered cells

To install the cell renderer, simply call the setCellRenderer method:

 fontList.setCellRenderer(new FontCellRenderer());

Now all list cells are drawn with the custom renderer.

Actually, a simpler method for writing custom renderers works in many cases. If the rendered

image just contains text, an icon, and possibly a change of color, you can get by with

configuring a JLabel. For example, to show the font name in its own font, we can use the

following renderer:

 class FontCellRenderer extends JLabel implements ListCellRenderer

 {

 public Component getListCellRendererComponent(JList<? extends Font> list,

 Font value, int index, boolean isSelected, boolean cellHasFocus)

 {

 Font font = (Font) value;

 setText(font.getFamily());

 setFont(font);

 setOpaque(true);

 setBackground(isSelected ? list.getSelectionBackground() :

list.getBackground());

 setForeground(isSelected ? list.getSelectionForeground() :

list.getForeground());

 return this;

 }

 }

Note that here we don’t write any paintComponent or getPreferredSize methods; the JLabel

class already implements these methods to our satisfaction. All we do is configure the label

appropriately by setting its text, font, and color.

This code is a convenient shortcut for those cases where an existing component—in this

case, JLabel—already provides all functionality needed to render a cell value.

We could have used a JLabel in our sample program, but we gave you the more general code

so you can modify it when you need to do arbitrary drawings in list cells.

CAUTION

It is not a good idea to construct a new component in each call to

getListCellRendererComponent. If the user scrolls through many list entries, a new

component would be constructed every time. Reconfiguring an existing component is safe and

much more efficient.

Listing 10.4 listRendering/FontCellRenderer.java

 1 package listRendering;

 2

 3 import java.awt.*;

 4 import javax.swing.*;

 5

 6 /**

 7 * A cell renderer for Font objects that renders the font name in its own font.

 8 */

 9 public class FontCellRenderer extends JComponent implements

ListCellRenderer

10 {

11 private Font font;

12 private Color background;

13 private Color foreground;

14

15 public Component getListCellRendererComponent(JList<? extends Font> list,

16 Font value, int index, boolean isSelected, boolean cellHasFocus)

17 {

18 font = value;

19 background = isSelected ? list.getSelectionBackground() :

list.getBackground();

20 foreground = isSelected ? list.getSelectionForeground() :

list.getForeground();

21 return this;

22 }

23

24 public void paintComponent(Graphics g)

25 {

26 String text = font.getFamily();

27 FontMetrics fm = g.getFontMetrics(font);

28 g.setColor(background);

29 g.fillRect(0, 0, getWidth(), getHeight());

30 g.setColor(foreground);

31 g.setFont(font);

32 g.drawString(text, 0, fm.getAscent());

33 }

34

35 public Dimension getPreferredSize()

36 {

37 String text = font.getFamily();

38 Graphics g = getGraphics();

39 FontMetrics fm = g.getFontMetrics(font);

40 return new Dimension(fm.stringWidth(text), fm.getHeight());

41 }

42 }

javax.swing.JList<E> 1.2

• Color getBackground()

returns the background color for unselected cells.

• Color getSelectionBackground()

returns the background color for selected cells.

• Color getForeground()

returns the foreground color for unselected cells.

• Color getSelectionForeground()

returns the foreground color for selected cells.

• void setCellRenderer(ListCellRenderer<? super E> cellRenderer)

sets the renderer that paints the cells in the list.

javax.swing.ListCellRenderer<E> 1.2

• Component getListCellRendererComponent(JList<? extends E> list, E item, int index,

boolean isSelected, boolean hasFocus)

returns a component whose paint method draws the cell contents. If the list cells do not

have fixed size, that component must also implement getPreferredSize.

10.2 Tables

The JTable component displays a two-dimensional grid of objects. Tables are common in user

interfaces, and the Swing team has put a lot of effort into the table control. Tables are

inherently complex, but—perhaps more successfully than other Swing classes—the JTable

component hides much of that complexity. You can produce fully functional tables with rich

behavior by writing a few lines of code. You can also write more code and customize the

display and behavior for your specific applications.

In the following sections, we will explain how to make simple tables, how the user interacts

with them, and how to make some of the most common adjustments. As with the other complex

Swing controls, it is impossible to cover all aspects in complete detail. For more

information, look in Graphic Java™, Third Edition, by David M. Geary (Prentice Hall, 1999),
or Core Swing by Kim Topley (Prentice Hall, 1999).

10.2.1 A Simple Table

Similar to the JList component, a JTable does not store its own data but obtains them from

a table model. The JTable class has a constructor that wraps a two-dimensional array of
objects into a default model. That is the strategy that we use in our first example; later

in this chapter, we will turn to table models.

Figure 10.5 shows a typical table, describing the properties of the planets of the solar

system. (A planet is gaseous if it consists mostly of hydrogen and helium. You should take

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig05

the “Color” entries with a grain of salt—that column was added because it will be useful

in later code examples.)

Figure 10.5 A simple table

As you can see from the code in Listing 10.5, the data of the table is stored as a

two-dimensional array of Object values:

 Object[][] cells =

 {

 { "Mercury", 2440.0, 0, false, Color.YELLOW },

 { "Venus", 6052.0, 0, false, Color.YELLOW },

 ...

 }

NOTE:

Here, we take advantage of autoboxing. The entries in the second, third, and fourth columns

are automatically converted into objects of type Double, Integer, and Boolean.

The table simply invokes the toString method on each object to display it. That’s why the

colors show up as java.awt.Color[r=...,g=...,b=...].

Supply the column names in a separate array of strings:

 String[] columnNames = { "Planet", "Radius", "Moons", "Gaseous", "Color" };

Then, construct a table from the cell and column name arrays:

 JTable table = new JTable(cells, columnNames);

NOTE:

Note that a JTable, unlike a JList, is not a generic type. There is a good reason for that.

Elements in a list are expected to be of a uniform type—but, in general, there is no single

element type for the entire table. In our example, the planet name is a string, the color

is a java.awt.Color, and so on.

You can add scroll bars in the usual way—by wrapping the table in a JScrollPane:

 JScrollPane pane = new JScrollPane(table);

When you scroll the table, the table header doesn’t scroll out of view.

Next, click on one of the column headers and drag it to the left or right. See how the entire

column becomes detached (see Figure 10.6). You can drop it in a different location. This

rearranges the columns in the view only. The data model is not affected.

Figure 10.6 Moving a column

To resize columns, simply place the cursor between two columns until the cursor shape changes
to an arrow. Then, drag the column boundary to the desired place (see Figure 10.7).

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig06
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig07

Figure 10.7 Resizing columns

Users can select rows by clicking anywhere in a row. The selected rows are highlighted;

you will see later how to get selection events. Users can also edit the table entries by

clicking on a cell and typing into it. However, in this code example, the edits do not change

the underlying data. In your programs, you should either make cells uneditable or handle

cell editing events and update your model. We will discuss those topics later in this

section.

Finally, click on a column header. The rows are automatically sorted. Click again, and the

sort order is reversed. This behavior is activated by the call

 table.setFillsViewportHeight(true);

You can print a table with the call

 table.print();

A print dialog box appears, and the table is sent to the printer. We will discuss custom

printing options in Chapter 11.

NOTE:

If you resize the TableTest frame so that its height is taller than the table height, you

will see a gray area below the table. Unlike JList and JTree components, the table does

not fill the scroll pane’s viewport. This can be a problem if you want to support drag

and drop. (For more information on drag and drop, see Chapter 11.) In that case, call

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11

 table.setFillsViewportHeight(true);

CAUTION

If you don’t wrap a table into a scroll pane, you need to explicitly add the header:

 add(table.getTableHeader(), BorderLayout.NORTH);

Listing 10.5 table/TableTest.java

 1 package table;

 2

 3 import java.awt.*;

 4 import java.awt.print.*;

 5

 6 import javax.swing.*;

 7

 8 /**

 9 * This program demonstrates how to show a simple table.

10 * @version 1.13 2016-05-10

11 * @author Cay Horstmann

12 */

13 public class TableTest

14 {

15 public static void main(String[] args)

16 {

17 EventQueue.invokeLater(() ->

18 {

19 JFrame frame = new PlanetTableFrame();

20 frame.setTitle("TableTest");

21 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

22 frame.setVisible(true);

23 });

24 }

25 }

26

27 /**

28 * This frame contains a table of planet data.

29 */

30 class PlanetTableFrame extends JFrame

31 {

32 private String[] columnNames = { "Planet", "Radius", "Moons", "Gaseous",

"Color" };

33 private Object[][] cells = { { "Mercury", 2440.0, 0, false, Color.YELLOW },

34 { "Venus", 6052.0, 0, false, Color.YELLOW }, { "Earth", 6378.0,

1, false, Color.BLUE },

35 { "Mars", 3397.0, 2, false, Color.RED }, { "Jupiter", 71492.0,

16, true, Color.ORANGE },

36 { "Saturn", 60268.0, 18, true, Color.ORANGE },

37 { "Uranus", 25559.0, 17, true, Color.BLUE }, { "Neptune",

24766.0, 8, true, Color.BLUE },

38 { "Pluto", 1137.0, 1, false, Color.BLACK } };

39

40 public PlanetTableFrame()

41 {

42 final JTable table = new JTable(cells, columnNames);

43 table.setAutoCreateRowSorter(true);

44 add(new JScrollPane(table), BorderLayout.CENTER);

45 JButton printButton = new JButton("Print");

46 printButton.addActionListener(event ->

47 {

48 try { table.print(); }

49 catch (SecurityException | PrinterException ex)

{ ex.printStackTrace(); }

50 });

51 JPanel buttonPanel = new JPanel();

52 buttonPanel.add(printButton);

53 add(buttonPanel, BorderLayout.SOUTH);

54 pack();

55 }

56 }

javax.swing.JTable 1.2

• JTable(Object[][] entries, Object[] columnNames)

constructs a table with a default table model.

• void print() 5.0

displays a print dialog box and prints the table.

• boolean getAutoCreateRowSorter() 6

• void setAutoCreateRowSorter(boolean newValue) 6

gets or sets the autoCreateRowSorter property. The default is false. When set, a default

row sorter is automatically set whenever the model changes.

• boolean getFillsViewportHeight() 6

• void setFillsViewportHeight(boolean newValue) 6

gets or sets the fillsViewportHeight property. The default is false. When set, the table

always fills an enclosing viewport.

10.2.2 Table Models

In the preceding example, the table data were stored in a two-dimensional array. However,

you should generally not use that strategy in your own code. If you find yourself dumping

data into an array to display it as a table, you should instead consider implementing your

own table model.

Table models are particularly simple to implement because you can take advantage of the

AbstractTableModel class that implements most of the required methods. You only need to

supply three methods:

 public int getRowCount();

 public int getColumnCount();

 public Object getValueAt(int row, int column);

There are many ways of implementing the getValueAt method. For example, if you want to

display the contents of a RowSet that contains the result of a database query, simply provide

this method:

 public Object getValueAt(int r, int c)

 {

 try

 {

 rowSet.absolute(r + 1);

 return rowSet.getObject(c + 1);

 }

 catch (SQLException e)

 {

 e.printStackTrace();

 return null;

 }

 }

Our sample program is even simpler. We construct a table that shows some computed

values—namely, the growth of an investment under different interest rate scenarios (see

Figure 10.8).

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig08

Figure 10.8 Growth of an investment

The getValueAt method computes the appropriate value and formats it:

 public Object getValueAt(int r, int c)

 {

 double rate = (c + minRate) / 100.0;

 int nperiods = r;

 double futureBalance = INITIAL_BALANCE * Math.pow(1 + rate, nperiods);

 return String.format("%.2f", futureBalance);

 }

The getRowCount and getColumnCount methods simply return the number of rows and columns.

 public int getRowCount() { return years; }

 public int getColumnCount() { return maxRate - minRate + 1; }

If you don’t supply column names, the getColumnName method of the AbstractTableModel names

the columns A, B, C, and so on. You will usually want to override that default behavior.

To change column names, override the getColumnName method. In this example, we simply label

each column with the interest rate.

 public String getColumnName(int c) { return (c + minRate) + "%"; }

You can find the complete source code in Listing 10.6.

Listing 10.6 tableModel/InvestmentTable.java

 1 package tableModel;

 2

 3 import java.awt.*;

 4

 5 import javax.swing.*;

 6 import javax.swing.table.*;

 7

 8 /**

 9 * This program shows how to build a table from a table model.

10 * @version 1.03 2006-05-10

11 * @author Cay Horstmann

12 */

13 public class InvestmentTable

14 {

15 public static void main(String[] args)

16 {

17 EventQueue.invokeLater(() ->

18 {

19 JFrame frame = new InvestmentTableFrame();

20 frame.setTitle("InvestmentTable");

21 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

22 frame.setVisible(true);

23 });

24 }

25 }

26

27 /**

28 * This frame contains the investment table.

29 */

30 class InvestmentTableFrame extends JFrame

31 {

32 public InvestmentTableFrame()

33 {

34 TableModel model = new InvestmentTableModel(30, 5, 10);

35 JTable table = new JTable(model);

36 add(new JScrollPane(table));

37 pack();

38 }

39

40 }

41

42 /**

43 * This table model computes the cell entries each time they are requested. The

table contents

44 * shows the growth of an investment for a number of years under different interest

rates.

45 */

46 class InvestmentTableModel extends AbstractTableModel

47 {

48 private static double INITIAL_BALANCE = 100000.0;

49

50 private int years;

51 private int minRate;

52 private int maxRate;

53

54 /**

55 * Constructs an investment table model.

56 * @param y the number of years

57 * @param r1 the lowest interest rate to tabulate

58 * @param r2 the highest interest rate to tabulate

59 */

60 public InvestmentTableModel(int y, int r1, int r2)

61 {

62 years = y;

63 minRate = r1;

64 maxRate = r2;

65 }

66

67 public int getRowCount()

68 {

69 return years;

70 }

71

72 public int getColumnCount()

73 {

74 return maxRate - minRate + 1;

75 }

76

77 public Object getValueAt(int r, int c)

78 {

79 double rate = (c + minRate) / 100.0;

80 int nperiods = r;

81 double futureBalance = INITIAL_BALANCE * Math.pow(1 + rate,

nperiods);

82 return String.format("%.2f", futureBalance);

83 }

84

85 public String getColumnName(int c)

86 {

87 return (c + minRate) + "%";

88 }

89 }

javax.swing.table.TableModel 1.2

• int getRowCount()

• int getColumnCount()

gets the number of rows and columns in the table model.

• Object getValueAt(int row, int column)

gets the value at the given row and column.

• void setValueAt(Object newValue, int row, int column)

sets a new value at the given row and column.

• boolean isCellEditable(int row, int column)

returns true if the cell at the given row and column is editable.

• String getColumnName(int column)

gets the column title.

10.2.3 Working with Rows and Columns

In this subsection, you will see how to manipulate the rows and columns in a table. As you

read through this material, keep in mind that a Swing table is quite asymmetric—the

operations that you can carry out on rows and columns are different. The table component

was optimized to display rows of information with the same structure, such as the result

of a database query, not an arbitrary two-dimensional grid of objects. You will see this

asymmetry throughout this subsection.

10.2.3.1 Column Classes

In the next example, we again display our planet data, but this time we want to give the

table more information about the column types. This is achieved by defining the method

 Class<?> getColumnClass(int columnIndex)

of the table model to return the class that describes the column type.

The JTable class uses this information to pick an appropriate renderer for the class. Table

10.1 shows the default rendering actions.

Table 10.1 Default Rendering Actions

You can see the checkboxes and images in Figure 10.9. (Thanks to Jim Evins,

www.snaught.com/JimsCoolIcons/Planets, for providing the planet images!)

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10tab01
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10tab01
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig09
http://www.snaught.com/JimsCoolIcons/Planets

Figure 10.9 A table with planet data

To render other types, you can install a custom renderer—see Section 10.2.4, “Cell

Rendering and Editing,” on p. 630.

10.2.3.2 Accessing Table Columns

The JTable class stores information about table columns in objects of type TableColumn.

A TableColumnModel object manages the columns. (Figure 10.10 shows the relationships among

the most important table classes.) If you don’t want to insert or remove columns dynamically,

you won’t use the column model much. The most common use for the column model is simply

to get a TableColumn object:

 int columnIndex = . . .;

 TableColumn column = table.getColumnModel().getColumn(columnIndex);

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig010

Figure 10.10 Relationship between table classes

10.2.3.3 Resizing Columns

The TableColumn class gives you control over the resizing behavior of columns. You can set

the preferred, minimum, and maximum width with the methods

 void setPreferredWidth(int width)

 void setMinWidth(int width)

 void setMaxWidth(int width)

This information is used by the table component to lay out the columns.

Use the method

 void setResizable(boolean resizable)

to control whether the user is allowed to resize the column.

You can programmatically resize a column with the method

 void setWidth(int width)

When a column is resized, the default is to leave the total size of the table unchanged.

Of course, the width increase or decrease of the resized column must then be distributed

over other columns. The default behavior is to change the size of all columns to the right

of the resized column. That’s a good default because it allows a user to adjust all columns

to a desired width, moving from left to right.

You can set another behavior from Table 10.2 by using the method

 void setAutoResizeMode(int mode)

of the JTable class.

Table 10.2 Resize Modes

10.2.3.4 Resizing Rows

Row heights are managed directly by the JTable class. If your cells are taller than the

default, you may want to set the row height:

 table.setRowHeight(height);

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10tab02

By default, all rows of the table have the same height. You can set the heights of individual

rows with the call

 table.setRowHeight(row, height);

The actual row height equals the row height set with these methods, reduced by the row margin.

The default row margin is 1 pixel, but you can change it with the call

 table.setRowMargin(margin);

10.2.3.5 Selecting Rows, Columns, and Cells

Depending on the selection mode, the user can select rows, columns, or individual cells

in the table. By default, row selection is enabled. Clicking inside a cell selects the entire

row (see Figure 10.9). Call

 table.setRowSelectionAllowed(false)

to disable row selection.

When row selection is enabled, you can control whether the user is allowed to select a single

row, a contiguous set of rows, or any set of rows. You need to retrieve the selection model
and use its setSelectionMode method:

 table.getSelectionModel().setSelectionMode(mode);

Here, mode is one of the three values:

 ListSelectionModel.SINGLE_SELECTION

 ListSelectionModel.SINGLE_INTERVAL_SELECTION

 ListSelectionModel.MULTIPLE_INTERVAL_SELECTION

Column selection is disabled by default. You can turn it on with the call

 table.setColumnSelectionAllowed(true)

Enabling both row and column selection is equivalent to enabling cell selection. The user

then selects ranges of cells (see Figure 10.11). You can also enable that setting with the

call

 table.setCellSelectionEnabled(true)

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig09
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig011

Figure 10.11 Selecting a range of cells

Run the program in Listing 10.7 to watch cell selection in action. Enable row, column, or

cell selection in the Selection menu and watch how the selection behavior changes.

You can find out which rows and columns are selected by calling the getSelectedRows and

getSelectedColumns methods. Both return an int[] array of the indexes of the selected items.

Note that the index values are those of the table view, not the underlying table model.

Try selecting rows and columns, then drag columns to different places and sort the rows

by clicking on column headers. Use the Print Selection menu item to see which rows and columns

are reported as selected.

If you need to translate the table index values to table model index values, use the JTable

methods convertRowIndexToModel and convertColumnIndexToModel.

10.2.3.6 Sorting Rows

As you have seen in our first table example, it is easy to add row sorting to a JTable simply

by calling the setAutoCreateRowSorter method. However, to have finer-grained control over

the sorting behavior, install a TableRowSorter<M> object into a JTable and customize it.

The type parameter M denotes the table model; it needs to be a sub-type of the TableModel

interface.

 TableRowSorter<TableModel> sorter = new TableRowSorter<TableModel>(model);

 table.setRowSorter(sorter);

Some columns should not be sortable, such as the image column in our planet data. Turn sorting

off by calling

 sorter.setSortable(IMAGE_COLUMN, false);

You can install a custom comparator for each column. In our example, we will sort the colors

in the Color column so that we prefer blue and green over red. When you click on the Color

column, you will see that the blue planets go to the bottom of the table. This is achieved

with the following call:

 sorter.setComparator(COLOR_COLUMN, new Comparator<Color>()

 {

 public int compare(Color c1, Color c2)

 {

 int d = c1.getBlue() - c2.getBlue();

 if (d != 0) return d;

 d = c1.getGreen() - c2.getGreen();

 if (d != 0) return d;

 return c1.getRed() - c2.getRed();

 }

 });

If you do not specify a comparator for a column, the sort order is determined as follows:

1. If the column class is String, use the default collator returned by

Collator.getInstance(). It sorts strings in a way that is appropriate for the current locale.

(See Chapter 5 for more information about locales and collators.)

2. If the column class implements Comparable, use its compareTo method.

3. If a TableStringConverter has been set for the sorter, sort the strings returned by the

converter’s toString method with the default collator. If you want to use this approach,

define a converter as follows:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch05.html#ch05

4. Otherwise, call the toString method on the cell values and sort them with the default

collator.

 sorter.setStringConverter(new TableStringConverter()

 {

 public String toString(TableModel model, int row, int

column)

 {

 Object value = model.getValueAt(row, column);

 convert value to a string and return it
 }

 });

10.2.3.7 Filtering Rows

In addition to sorting rows, the TableRowSorter can also selectively hide rows—a process

called filtering. To activate filtering, set a RowFilter. For example, to include all rows
that contain at least one moon, call

 sorter.setRowFilter(RowFilter.numberFilter(ComparisonType.NOT_EQUAL, 0,

MOONS_COLUMN));

Here, we use a predefined number filter. To construct a number filter, supply

• The comparison type (one of EQUAL, NOT_EQUAL, AFTER, or BEFORE).

• An object of a subclass of Number (such as an Integer or Double). Only objects that have

the same class as the given Number object are considered.

• Zero or more column index values. If no index values are supplied, all columns are searched.

The static RowFilter.dateFilter method constructs a date filter in the same way; you need

to supply a Date object instead of the Number object.

Finally, the static RowFilter.regexFilter method constructs a filter that looks for strings

matching a regular expression. For example,

 sorter.setRowFilter(RowFilter.regexFilter(".*[^s]$", PLANET_COLUMN));

only displays those planets whose name doesn’t end with an “s”. (See Chapter 2 for more

information on regular expressions.)

You can also combine filters with the andFilter, orFilter, and notFilter methods. To filter

for planets not ending in an “s” with at least one moon, you can use this filter

combination:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02

 sorter.setRowFilter(RowFilter.andFilter(Arrays.asList(

 RowFilter.regexFilter(".*[^s]$", PLANET_COLUMN),

 RowFilter.numberFilter(ComparisonType.NOT_EQUAL, 0, MOONS_COLUMN)));

CAUTION

Annoyingly, the andFilter and orFilter methods don’t use variable arguments but a single

parameter of type Iterable.

To implement your own filter, provide a subclass of RowFilter and implement an include method

to indicate which rows should be displayed. This is easy to do, but the glorious generality

of the RowFilter class makes it a bit scary.

The RowFilter<M, I> class has two type parameters—the types for the model and for the row

identifier. When dealing with tables, the model is always a subtype of TableModel and the

identifier type is Integer. (At some point in the future, other components might also support

row filtering. For example, to filter rows in a JTree, one might use a RowFilter<TreeModel,

TreePath>.)

A row filter must implement the method

 public boolean include(RowFilter.Entry<? extends M, ? extends I> entry)

The RowFilter.Entry class supplies methods to obtain the model, the row identifier, and

the value at a given index. Therefore, you can filter both by row identifier and by the

contents of the row.

For example, this filter displays every other row:

 RowFilter<TableModel, Integer> filter = new RowFilter<TableModel, Integer>()

 {

 public boolean include(Entry<? extends TableModel, ? extends Integer>

entry)

 {

 return entry.getIdentifier() % 2 == 0;

 }

 };

If you wanted to include only those planets with an even number of moons, you would instead

test for

 ((Integer) entry.getValue(MOONS_COLUMN)) % 2 == 0

In our sample program, we allow the user to hide arbitrary rows. We store the hidden row

indexes in a set. The row filter includes all rows whose indexes are not in that set.

The filtering mechanism wasn’t designed for filters with criteria changing over time. In

our sample program, we keep calling

 sorter.setRowFilter(filter);

whenever the set of hidden rows changes. Setting a filter causes it to be applied

immediately.

10.2.3.8 Hiding and Displaying Columns

As you saw in the preceding section, you can filter table rows by either their contents

or their row identifier. Hiding table columns uses a completely different mechanism.

The removeColumn method of the JTable class removes a column from the table view. The column

data are not actually removed from the model—they are just hidden from view. The

removeColumn method takes a TableColumn argument. If you have the column number (for example,

from a call to getSelectedColumns), you need to ask the table model for the actual table

column object:

 TableColumnModel columnModel = table.getColumnModel();

 TableColumn column = columnModel.getColumn(i);

 table.removeColumn(column);

If you remember the column, you can later add it back in:

 table.addColumn(column);

This method adds the column to the end. If you want it to appear elsewhere, call the

moveColumn method.

You can also add a new column that corresponds to a column index in the table model, by

adding a new TableColumn object:

 table.addColumn(new TableColumn(modelColumnIndex));

You can have multiple table columns that view the same column of the model.

The program in Listing 10.7 demonstrates selection and filtering of rows and columns.

Listing 10.7 tableRowColumn/PlanetTableFrame.java

 1 package tableRowColumn;

 2

 3 import java.awt.*;

 4 import java.util.*;

 5

 6 import javax.swing.*;

 7 import javax.swing.table.*;

 8

 9 /**

10 * This frame contains a table of planet data.

11 */

12 public class PlanetTableFrame extends JFrame

13 {

14 private static final int DEFAULT_WIDTH = 600;

15 private static final int DEFAULT_HEIGHT = 500;

16

17 public static final int COLOR_COLUMN = 4;

18 public static final int IMAGE_COLUMN = 5;

19

20 private JTable table;

21 private HashSet<Integer> removedRowIndices;

22 private ArrayList<TableColumn> removedColumns;

23 private JCheckBoxMenuItem rowsItem;

24 private JCheckBoxMenuItem columnsItem;

25 private JCheckBoxMenuItem cellsItem;

26

27 private String[] columnNames = { "Planet", "Radius", "Moons", "Gaseous",

"Color", "Image" };

28

29 private Object[][] cells = {

30 { "Mercury", 2440.0, 0, false, Color.YELLOW,

31 new ImageIcon(getClass().getResource("Mercury.gif")) },

32 { "Venus", 6052.0, 0, false, Color.YELLOW,

33 new ImageIcon(getClass().getResource("Venus.gif")) },

34 { "Earth", 6378.0, 1, false, Color.BLUE,

35 new ImageIcon(getClass().getResource("Earth.gif")) },

36 { "Mars", 3397.0, 2, false, Color.RED,

37 new ImageIcon(getClass().getResource("Mars.gif")) },

38 { "Jupiter", 71492.0, 16, true, Color.ORANGE,

39 new ImageIcon(getClass().getResource("Jupiter.gif")) },

40 { "Saturn", 60268.0, 18, true, Color.ORANGE,

41 new ImageIcon(getClass().getResource("Saturn.gif")) },

42 { "Uranus", 25559.0, 17, true, Color.BLUE,

43 new ImageIcon(getClass().getResource("Uranus.gif")) },

44 { "Neptune", 24766.0, 8, true, Color.BLUE,

45 new ImageIcon(getClass().getResource("Neptune.gif")) },

46 { "Pluto", 1137.0, 1, false, Color.BLACK,

47 new ImageIcon(getClass().getResource("Pluto.gif")) } };

48

49 public PlanetTableFrame()

50 {

51 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

52

53 TableModel model = new DefaultTableModel(cells, columnNames)

54 {

55 public Class<?> getColumnClass(int c)

56 {

57 return cells[0][c].getClass();

58 }

59 };

60

61 table = new JTable(model);

62

63 table.setRowHeight(100);

64 table.getColumnModel().getColumn(COLOR_COLUMN).setMinWidth(250);

65 table.getColumnModel().getColumn(IMAGE_COLUMN).setMinWidth(100);

66

67 final TableRowSorter<TableModel> sorter = new

TableRowSorter<>(model);

68 table.setRowSorter(sorter);

69 sorter.setComparator(COLOR_COLUMN,

Comparator.comparing(Color::getBlue)

70 .thenComparing(Color::getGreen).thenComparing(Color::getRed)

);

71 sorter.setSortable(IMAGE_COLUMN, false);

72 add(new JScrollPane(table), BorderLayout.CENTER);

73

74 removedRowIndices = new HashSet<>();

75 removedColumns = new ArrayList<>();

76

77 final RowFilter<TableModel, Integer> filter = new

RowFilter<TableModel, Integer>()

78 {

79 public boolean include(Entry<? extends TableModel, ? extends

Integer> entry)

80 {

81 return !removedRowIndices.contains(entry.getIdentifi

er());

82 }

83 };

84

85 // create menu

86

87 JMenuBar menuBar = new JMenuBar();

88 setJMenuBar(menuBar);

89

90 JMenu selectionMenu = new JMenu("Selection");

91 menuBar.add(selectionMenu);

92

93 rowsItem = new JCheckBoxMenuItem("Rows");

94 columnsItem = new JCheckBoxMenuItem("Columns");

95 cellsItem = new JCheckBoxMenuItem("Cells");

96

97 rowsItem.setSelected(table.getRowSelectionAllowed());

98 columnsItem.setSelected(table.getColumnSelectionAllowed());

99 cellsItem.setSelected(table.getCellSelectionEnabled());

100

101 rowsItem.addActionListener(event ->

102 {

103 table.clearSelection();

104 table.setRowSelectionAllowed(rowsItem.isSelected());

105 updateCheckboxMenuItems();

106 });

107 selectionMenu.add(rowsItem);

108

109 columnsItem.addActionListener(event ->

110 {

111 table.clearSelection();

112 table.setColumnSelectionAllowed(columnsItem.isSelecte

d());

113 updateCheckboxMenuItems();

114 });

115 selectionMenu.add(columnsItem);

116

117 cellsItem.addActionListener(event ->

118 {

119 table.clearSelection();

120 table.setCellSelectionEnabled(cellsItem.isSelected());

121 updateCheckboxMenuItems();

122 });

123 selectionMenu.add(cellsItem);

124

125 JMenu tableMenu = new JMenu("Edit");

126 menuBar.add(tableMenu);

127

128 JMenuItem hideColumnsItem = new JMenuItem("Hide Columns");

129 hideColumnsItem.addActionListener(event ->

130 {

131 int[] selected = table.getSelectedColumns();

132 TableColumnModel columnModel = table.getColumnModel();

133

134 // remove columns from view, starting at the last

135 // index so that column numbers aren't affected

136

137 for (int i = selected.length - 1; i >= 0; i--)

138 {

139 TableColumn column =

columnModel.getColumn(selected[i]);

140 table.removeColumn(column);

141

142 // store removed columns for "show columns"

command

143

144 removedColumns.add(column);

145 }

146 });

147 tableMenu.add(hideColumnsItem);

148

149 JMenuItem showColumnsItem = new JMenuItem("Show Columns");

150 showColumnsItem.addActionListener(event ->

151 {

152 // restore all removed columns

153 for (TableColumn tc : removedColumns)

154 table.addColumn(tc);

155 removedColumns.clear();

156 });

157 tableMenu.add(showColumnsItem);

158

159 JMenuItem hideRowsItem = new JMenuItem("Hide Rows");

160 hideRowsItem.addActionListener(event ->

161 {

162 int[] selected = table.getSelectedRows();

163 for (int i : selected)

164 removedRowIndices.add(table.convertRowIndexToMo

del(i));

165 sorter.setRowFilter(filter);

166 });

167 tableMenu.add(hideRowsItem);

168

169 JMenuItem showRowsItem = new JMenuItem("Show Rows");

170 showRowsItem.addActionListener(event ->

171 {

172 removedRowIndices.clear();

173 sorter.setRowFilter(filter);

174 });

175 tableMenu.add(showRowsItem);

176

177 JMenuItem printSelectionItem = new JMenuItem("Print Selection");

178 printSelectionItem.addActionListener(event ->

179 {

180 int[] selected = table.getSelectedRows();

181 System.out.println("Selected rows: " +

Arrays.toString(selected));

182 selected = table.getSelectedColumns();

183 System.out.println("Selected columns: " +

Arrays.toString(selected));

184 });

185 tableMenu.add(printSelectionItem);

186 }

187

188 private void updateCheckboxMenuItems()

189 {

190 rowsItem.setSelected(table.getRowSelectionAllowed());

191 columnsItem.setSelected(table.getColumnSelectionAllowed());

192 cellsItem.setSelected(table.getCellSelectionEnabled());

193 }

194 }

javax.swing.table.TableModel 1.2

• Class getColumnClass(int columnIndex)

gets the class for the values in this column.This information is used for sorting and

rendering.

javax.swing.JTable 1.2

• TableColumnModel getColumnModel()

gets the “column model” that describes the arrangement of the table columns.

• void setAutoResizeMode(int mode)

sets the mode for automatic resizing of table columns.

• int getRowMargin()

• void setRowMargin(int margin)

gets or sets the amount of empty space between cells in adjacent rows.

• int getRowHeight()

• void setRowHeight(int height)

gets or sets the default height of all rows of the table.

• int getRowHeight(int row)

• void setRowHeight(int row, int height)

gets or sets the height of the given row of the table.

• ListSelectionModel getSelectionModel()

returns the list selection model.You need that model to choose between row, column, and

cell selection.

• boolean getRowSelectionAllowed()

• void setRowSelectionAllowed(boolean b)

gets or sets the rowSelectionAllowed property. If true, rows are selected when the user

clicks on cells.

• boolean getColumnSelectionAllowed()

• void setColumnSelectionAllowed(boolean b)

gets or sets the columnSelectionAllowed property. If true, columns are selected when the

user clicks on cells.

• boolean getCellSelectionEnabled()

returns true if both rowSelectionAllowed and columnSelectionAllowed are true.

• void setCellSelectionEnabled(boolean b)

sets both rowSelectionAllowed and columnSelectionAllowed to b.

• void addColumn(TableColumn column)

adds a column as the last column of the table view.

• void moveColumn(int from, int to)

moves the column whose table index is from so that its index becomes to. Only the view is

affected.

• void removeColumn(TableColumn column)

removes the given column from the view.

• int convertRowIndexToModel(int index) 6

• int convertColumnIndexToModel(int index)

returns the model index of the row or column with the given index. This value is different

from index when rows are sorted or filtered, or when columns are moved or removed.

• void setRowSorter(RowSorter<? extends TableModel> sorter)

sets the row sorter.

javax.swing.table.TableColumnModel 1.2

• TableColumn getColumn(int index)

gets the table column object that describes the column with the given view index.

javax.swing.table.TableColumn 1.2

• TableColumn(int modelColumnIndex)

constructs a table column for viewing the model column with the given index.

• void setPreferredWidth(int width)

• void setMinWidth(int width)

• void setMaxWidth(int width)

sets the preferred, minimum, and maximum width of this table column to width.

• void setWidth(int width)

sets the actual width of this column to width.

• void setResizable(boolean b)

If b is true, this column is resizable.

javax.swing.ListSelectionModel 1.2

• void setSelectionMode(int mode)

javax.swing.DefaultRowSorter<M, I> 6

• void setComparator(int column, Comparator<?> comparator)

sets the comparator to be used with the given column.

• void setSortable(int column, boolean enabled)

enables or disables sorting for the given column.

• void setRowFilter(RowFilter<? super M,? super I> filter)

sets the row filter.

javax.swing.table.TableRowSorter<M extends TableModel> 6

• void setStringConverter(TableStringConverter stringConverter)

sets the string converter used for sorting and filtering.

javax.swing.table.TableStringConverter 6

• abstract String toString(TableModel model, int row, int column)

converts the model value at the given location to a string; you can override this method.

javax.swing.RowFilter<M, I> 6

• boolean include(RowFilter.Entry<? extends M,? extends I> entry)

specifies the rows that are retained; you can override this method.

• static <M,I> RowFilter<M,I> numberFilter(RowFilter.ComparisonType type, Number number,

int... indices)

• static <M,I> RowFilter<M,I> dateFilter(RowFilter.ComparisonType type, Date date, int...

indices)

returns a filter that includes rows containing values that match the given comparison to

the given number or date. The comparison type is one of EQUAL, NOT_EQUAL, AFTER, or BEFORE.

If any column model indexes are given, only those columns are searched; otherwise, all

columns are searched. For the number filter, the class of the cell value must match the

class of number.

• static <M,I> RowFilter<M,I> regexFilter(String regex, int... indices)

returns a filter that includes rows that have a string value matching the given regular

expression. If any column model indexes are given, only those columns are searched;

otherwise, all columns are searched. Note that the string returned by the getStringValue

method of RowFilter.Entry is matched.

• static <M,I> RowFilter<M,I> andFilter(Iterable<? extends RowFilter<? super M,? super I>>

filters)

• static <M,I> RowFilter<M,I> orFilter(Iterable<? extends RowFilter<? super M,? super I>>

filters)

returns a filter that includes the entries included by all filters or at least one of the

filters.

• static <M,I> RowFilter<M,I> notFilter(RowFilter<M,I> filter)

returns a filter that includes the entries not included by the given filter.

javax.swing.RowFilter.Entry<M, I> 6

• I getIdentifier()

returns the identifier of this row entry.

• M getModel()

returns the model of this row entry.

• Object getValue(int index)

returns the value stored at the given index of this row.

• int getValueCount()

returns the number of values stored in this row.

• String getStringValue()

returns the value stored at the given index of this row, converted to a string. The

TableRowSorter produces entries whose getStringValue calls the sorter’s string converter.

10.2.4 Cell Rendering and Editing

As you saw in [Missing XREF!], the column type determines how the cells are rendered. There

are default renderers for the types Boolean and Icon that render a checkbox or icon. For

all other types, you need to install a custom renderer.

Table cell renderers are similar to the list cell renderers that you saw earlier. They

implement the TableCellRenderer interface which has a single method:

 Component getTableCellRendererComponent(JTable table, Object value, boolean

isSelected,

 boolean hasFocus, int row, int column)

That method is called when the table needs to draw a cell. You return a component whose

paint method is then invoked to fill the cell area.

The table in Figure 10.12 contains cells of type Color. The renderer simply returns a panel

with a background color that is the color object stored in the cell. The color is passed

as the value parameter.

 class ColorTableCellRenderer extends JPanel implements TableCellRenderer

 {

 public Component getTableCellRendererComponent(JTable table, Object value,

 boolean isSelected, boolean hasFocus, int row, int column)

 {

 setBackground((Color) value);

 if (hasFocus)

 setBorder(UIManager.getBorder("Table.focusCellHighlightBorder"));

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig012

 else

 setBorder(null);

 return this;

 }

 }

Figure 10.12 A table with cell renderers

As you can see, the renderer installs a border when the cell has focus. (We ask the UIManager

for the correct border. To find the lookup key, we peeked into the source code of the

DefaultTableCellRenderer class.)

Generally, you will also want to set the background color of the cell to indicate whether

it is currently selected. We skip this step because it would interfere with the displayed

color. The ListRenderingTest example in Listing 10.4 shows how to indicate the selection

status in a renderer.

TIP:

If your renderer simply draws a text string or an icon, you can extend the

DefaultTableCellRenderer class. It takes care of rendering the focus and selection status

for you.

You need to tell the table to use this renderer with all objects of type Color. The

setDefaultRenderer method of the JTable class lets you establish this association. Supply

a Class object and the renderer:

 table.setDefaultRenderer(Color.class, new ColorTableCellRenderer());

That renderer is now used for all objects of the given type in this table.

If you want to select a renderer based on some other criterion, you need to subclass the

JTable class and override the getCellRenderer method.

10.2.4.1 Rendering the Header

To display an icon in the header, set the header value:

 moonColumn.setHeaderValue(new ImageIcon("Moons.gif"));

However, the table header isn’t smart enough to choose an appropriate renderer for the

header value. You have to install the renderer manually. For example, to show an image icon

in a column header, call

 moonColumn.setHeaderRenderer(table.getDefaultRenderer(ImageIcon.class));

10.2.4.2 Cell Editing

To enable cell editing, the table model must indicate which cells are editable by defining

the isCellEditable method. Most commonly, you will want to make certain columns editable.

In the example program, we allow editing in four columns.

 public boolean isCellEditable(int r, int c)

 {

 return c == PLANET_COLUMN || c == MOONS_COLUMN || c == GASEOUS_COLUMN || c ==

COLOR_COLUMN;

 }

NOTE:

The AbstractTableModel defines the isCellEditable method to always return false. The

DefaultTableModel overrides the method to always return true.

If you run the program (Listings 10.8 to 10.11), note that you can click the check-boxes

in the Gaseous column and turn the check marks on and off. If you click a cell in the Moons

column, a combo box appears (see Figure 10.13). You will shortly see how to install such

a combo box as a cell editor.

Figure 10.13 A cell editor

Finally, click a cell in the first column. The cell gains focus. You can start typing, and

the cell contents change.

What you just saw in action are the three variations of the DefaultCellEditor class. A

DefaultCellEditor can be constructed with a JTextField, a JCheckBox, or a JComboBox. The

JTable class automatically installs a checkbox editor for Boolean cells and a text field

editor for all editable cells that don’t supply their own renderer. The text fields let

the user edit the strings that result from applying toString to the return value of the

getValueAt method of the table model.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig013

When the edit is complete, the edited value is retrieved by calling the getCellEditorValue

method of your editor. That method should return a value of the correct type (that is, the

type returned by the getColumnType method of the model).

To get a combo box editor, set a cell editor manually—the JTable component has no idea

what values might be appropriate for a particular type. For the Moons column, we wanted

to enable the user to pick any value between 0 and 20. Here is the code for initializing

the combo box:

 JComboBox moonCombo = new JComboBox();

 for (int i = 0; i <= 20; i++)

 moonCombo.addItem(i);

To construct a DefaultCellEditor, supply the combo box in the constructor:

 TableCellEditor moonEditor = new DefaultCellEditor(moonCombo);

Next, we need to install the editor. Unlike the color cell renderer, this editor does not

depend on the object type—we don’t necessarily want to use it for all objects of type

Integer. Instead, we need to install it into a particular column:

 moonColumn.setCellEditor(moonEditor);

10.2.4.3 Custom Editors

Run the example program again and click a color. A color chooser pops up and lets you pick
a new color for the planet. Select a color and click OK. The cell color is updated (see

Figure 10.14).

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig014

Figure 10.14 Editing the cell color with a color chooser

The color cell editor is not a standard table cell editor but a custom implementation. To

create a custom cell editor, implement the TableCellEditor interface. That interface is

a bit tedious, and as of Java SE 1.3, an AbstractCellEditor class is provided to take care

of the event handling details.

The getTableCellEditorComponent method of the TableCellEditor interface requests a

component to render the cell. It is exactly the same as the getTableCellRendererComponent

method of the TableCellRenderer interface, except that there is no focus parameter. When

the cell is being edited, it is presumed to have focus. The editor component temporarily

replaces the renderer when the editing is in progress. In our example, we return a blank
panel that is not colored. This is an indication to the user that the cell is currently

being edited.

Next, you want to have your editor pop up when the user clicks on the cell.

The JTable class calls your editor with an event (such as a mouse click) to find out if

that event is acceptable to initiate the editing process. The AbstractCellEditor class

defines the method to accept all events.

 public boolean isCellEditable(EventObject anEvent)

 {

 return true;

 }

However, if you override this method to return false, the table would not go through the

trouble of inserting the editor component.

Once the editor component is installed, the shouldSelectCell method is called, presumably

with the same event. You should initiate editing in this method—for example, by popping

up an external edit dialog box.

 public boolean shouldSelectCell(EventObject anEvent)

 {

 colorDialog.setVisible(true);

 return true;

 }

If the user cancels the edit, the table calls the cancelCellEditing method. If the user

has clicked on another table cell, the table calls the stopCellEditing method. In both cases,

you should hide the dialog box. When your stopCellEditing method is called, the table would

like to use the partially edited value. You should return true if the current value is valid.

In the color chooser, any value is valid. But if you edit other data, you can ensure that

only valid data are retrieved from the editor.

Also, you should call the superclass methods that take care of event firing—otherwise,

the editing won’t be properly canceled.

 public void cancelCellEditing()

 {

 colorDialog.setVisible(false);

 super.cancelCellEditing();

 }

Finally, you need a method that yields the value that the user supplied in the editing

process:

 public Object getCellEditorValue()

 {

 return colorChooser.getColor();

 }

To summarize, your custom editor should do the following:

1. Extend the AbstractCellEditor class and implement the TableCellEditor interface.

2. Define the getTableCellEditorComponent method to supply a component. This can either

be a dummy component (if you pop up a dialog box) or a component for in-place editing such

as a combo box or text field.

3. Define the shouldSelectCell, stopCellEditing, and cancelCellEditing methods to handle

the start, completion, and cancellation of the editing process. The stopCellEditing and

cancelCellEditing methods should call the superclass methods to ensure that listeners are

notified.

4. Define the getCellEditorValue method to return the value that is the result of the editing

process.

Finally, indicate when the user is finished editing by calling the stopCellEditing and

cancelCellEditing methods. When constructing the color dialog box, we install the accept

and cancel callbacks that fire these events.

 colorDialog = JColorChooser.createDialog(null, "Planet Color", false,

colorChooser,

 EventHandler.create(ActionListener.class, this, "stopCellEditing"),

 EventHandler.create(ActionListener.class, this, "cancelCellEditing"));

This completes the implementation of the custom editor.

You now know how to make a cell editable and how to install an editor. There is one remaining

issue—how to update the model with the value that the user edited. When editing is complete,

the JTable class calls the following method of the table model:

 void setValueAt(Object value, int r, int c)

You need to override the method to store the new value. The value parameter is the object

that was returned by the cell editor. If you implemented the cell editor, you know the type

of the object you return from the getCellEditorValue method. In the case of the

DefaultCellEditor, there are three possibilities for that value. It is a Boolean if the

cell editor is a checkbox, a string if it is a text field, and, if the value comes from

a combo box, it is the object that the user selected.

If the value object does not have the appropriate type, you need to convert it. That happens

most commonly when a number is edited in a text field. In our example, we populated the

combo box with Integer objects so that no conversion is necessary.

Listing 10.8 tableCellRender/TableCellRenderFrame.java

 1 package tableCellRender;

 2

 3 import java.awt.*;

 4 import javax.swing.*;

 5 import javax.swing.table.*;

 6

 7 /**

 8 * This frame contains a table of planet data.

 9 */

10 public class TableCellRenderFrame extends JFrame

11 {

12 private static final int DEFAULT_WIDTH = 600;

13 private static final int DEFAULT_HEIGHT = 400;

14

15 public TableCellRenderFrame()

16 {

17 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

18

19 TableModel model = new PlanetTableModel();

20 JTable table = new JTable(model);

21 table.setRowSelectionAllowed(false);

22

23 // set up renderers and editors

24

25 table.setDefaultRenderer(Color.class, new ColorTableCellRenderer());

26 table.setDefaultEditor(Color.class, new ColorTableCellEditor());

27

28 JComboBox<Integer> moonCombo = new JComboBox<>();

29 for (int i = 0; i <= 20; i++)

30 moonCombo.addItem(i);

31

32 TableColumnModel columnModel = table.getColumnModel();

33 TableColumn moonColumn =

columnModel.getColumn(PlanetTableModel.MOONS_COLUMN);

34 moonColumn.setCellEditor(new DefaultCellEditor(moonCombo));

35 moonColumn.setHeaderRenderer(table.getDefaultRenderer(ImageIcon.cl

ass));

36 moonColumn.setHeaderValue(new

ImageIcon(getClass().getResource("Moons.gif")));

37

38 // show table

39

40 table.setRowHeight(100);

41 add(new JScrollPane(table), BorderLayout.CENTER);

42 }

43 }

44

Listing 10.9 tableCellRender/PlanetTableModel.java

 1 package tableCellRender;

 2

 3 import java.awt.*;

 4 import javax.swing.*;

 5 import javax.swing.table.*;

 6

 7 /**

 8 * The planet table model specifies the values, rendering and editing

properties for the planet

 9 * data.

10 */

11 public class PlanetTableModel extends AbstractTableModel

12 {

13 public static final int PLANET_COLUMN = 0;

14 public static final int MOONS_COLUMN = 2;

15 public static final int GASEOUS_COLUMN = 3;

16 public static final int COLOR_COLUMN = 4;

17

18 private Object[][] cells = {

19 { "Mercury", 2440.0, 0, false, Color.YELLOW,

20 new

ImageIcon(getClass().getResource("Mercury.gif")) },

21 { "Venus", 6052.0, 0, false, Color.YELLOW,

22 new ImageIcon(getClass().getResource("Venus.gif")) },

23 { "Earth", 6378.0, 1, false, Color.BLUE,

24 new ImageIcon(getClass().getResource("Earth.gif")) },

25 { "Mars", 3397.0, 2, false, Color.RED,

26 new ImageIcon(getClass().getResource("Mars.gif")) },

27 { "Jupiter", 71492.0, 16, true, Color.ORANGE,

28 new

ImageIcon(getClass().getResource("Jupiter.gif")) },

29 { "Saturn", 60268.0, 18, true, Color.ORANGE,

30 new ImageIcon(getClass().getResource("Saturn.gif")) },

31 { "Uranus", 25559.0, 17, true, Color.BLUE,

32 new ImageIcon(getClass().getResource("Uranus.gif")) },

33 { "Neptune", 24766.0, 8, true, Color.BLUE,

34 new

ImageIcon(getClass().getResource("Neptune.gif")) },

35 { "Pluto", 1137.0, 1, false, Color.BLACK,

36 new

ImageIcon(getClass().getResource("Pluto.gif")) } };

37

38 private String[] columnNames = { "Planet", "Radius", "Moons", "Gaseous",

"Color", "Image" };

39

40 public String getColumnName(int c)

41 {

42 return columnNames[c];

43 }

44

45 public Class<?> getColumnClass(int c)

46 {

47 return cells[0][c].getClass();

48 }

49

50 public int getColumnCount()

51 {

52 return cells[0].length;

53 }

54

55 public int getRowCount()

56 {

57 return cells.length;

58 }

59

60 public Object getValueAt(int r, int c)

61 {

62 return cells[r][c];

63 }

64

65 public void setValueAt(Object obj, int r, int c)

66 {

67 cells[r][c] = obj;

68 }

69

70 public boolean isCellEditable(int r, int c)

71 {

72 return c == PLANET_COLUMN || c == MOONS_COLUMN || c == GASEOUS_COLUMN

|| c == COLOR_COLUMN;

73 }

74 }

Listing 10.10 tableCellRender/ColorTableCellRenderer.java

 1 package tableCellRender;

 2

 3 import java.awt.*;

 4 import javax.swing.*;

 5 import javax.swing.table.*;

 6

 7 /**

 8 * This renderer renders a color value as a panel with the given color.

 9 */

10 public class ColorTableCellRenderer extends JPanel implements TableCellRenderer

11 {

12 public Component getTableCellRendererComponent(JTable table, Object value,

boolean isSelected,

13 boolean hasFocus, int row, int column)

14 {

15 setBackground((Color) value);

16 if (hasFocus)

setBorder(UIManager.getBorder("Table.focusCellHighlightBorder"));

17 else setBorder(null);

18 return this;

19 }

20 }

Listing 10.11 tableCellRender/ColorTableCellEditor.java

 1 package tableCellRender;

 2

 3 import java.awt.*;

 4 import java.awt.event.*;

 5 import java.beans.*;

 6 import java.util.*;

 7 import javax.swing.*;

 8 import javax.swing.table.*;

 9

10 /**

11 * This editor pops up a color dialog to edit a cell value.

12 */

13 public class ColorTableCellEditor extends AbstractCellEditor implements

TableCellEditor

14 {

15 private JColorChooser colorChooser;

16 private JDialog colorDialog;

17 private JPanel panel;

18

19 public ColorTableCellEditor()

20 {

21 panel = new JPanel();

22 // prepare color dialog

23

24 colorChooser = new JColorChooser();

25 colorDialog = JColorChooser.createDialog(null, "Planet Color",

false, colorChooser,

26 EventHandler.create(ActionListener.class, this,

"stopCellEditing"),

27 EventHandler.create(ActionListener.class, this,

"cancelCellEditing"));

28 }

29

30 public Component getTableCellEditorComponent(JTable table, Object value,

boolean isSelected,

31 int row, int column)

32 {

33 // this is where we get the current Color value. We store it in the

dialog in case the user.

34 // starts editing

35 colorChooser.setColor((Color) value);

36 return panel;

37 }

38

39 public boolean shouldSelectCell(EventObject anEvent)

40 {

41 // start editing

42 colorDialog.setVisible(true);

43

44 // tell caller it is ok to select this cell

45 return true;

46 }

47

48 public void cancelCellEditing()

49 {

50 // editing is canceled--hide dialog

51 colorDialog.setVisible(false);

52 super.cancelCellEditing();

53 }

54

55 public boolean stopCellEditing()

56 {

57 // editing is complete--hide dialog

58 colorDialog.setVisible(false);

59 super.stopCellEditing();

60

61 // tell caller is is ok to use color value

62 return true;

63 }

64

65 public Object getCellEditorValue()

66 {

67 return colorChooser.getColor();

68 }

69 }

javax.swing.JTable 1.2

• TableCellRenderer getDefaultRenderer(Class<?> type)

gets the default renderer for the given type.

• TableCellEditor getDefaultEditor(Class<?> type)

gets the default editor for the given type.

javax.swing.table.TableCellRenderer 1.2

• Component getTableCellRendererComponent(JTable table, Object value, boolean selected,

boolean hasFocus, int row, int column)

returns a component whose paint method is invoked to render a table cell.

javax.swing.table.TableColumn 1.2

• void setCellEditor(TableCellEditor editor)

• void setCellRenderer(TableCellRenderer renderer)

sets the cell editor or renderer for all cells in this column.

• void setHeaderRenderer(TableCellRenderer renderer)

sets the cell renderer for the header cell in this column.

• void setHeaderValue(Object value)

sets the value to be displayed for the header in this column.

javax.swing.DefaultCellEditor 1.2

• DefaultCellEditor(JComboBox comboBox)

constructs a cell editor that presents the combo box for selecting cell values.

javax.swing.table.TableCellEditor 1.2

• Component getTableCellEditorComponent(JTable table, Object value, boolean selected, int

row, int column)

returns a component whose paint method renders a table cell.

javax.swing.CellEditor 1.2

• boolean isCellEditable(EventObject event)

returns true if the event is suitable for initiating the editing process for this cell.

• boolean shouldSelectCell(EventObject anEvent)

starts the editing process. Returns true if the edited cell should be selected. Normally,
you want to return true, but you can return false if you don’t want the editing process

to change the cell selection.

• void cancelCellEditing()

cancels the editing process.You can abandon partial edits.

• boolean stopCellEditing()

stops the editing process, with the intent of using the result. Returns true if the edited

value is in a proper state for retrieval.

• Object getCellEditorValue()

returns the edited result.

• void addCellEditorListener(CellEditorListener l)

• void removeCellEditorListener(CellEditorListener l)

adds or removes the obligatory cell editor listener.

10.3 Trees

Every computer user who has worked with a hierarchical file system has seen tree displays.

Of course, directories and files form only one of the many examples of tree-like

organizations. Many tree structures arise in everyday life, such as the hierarchy of

countries, states, and cities shown in Figure 10.15.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig015

Figure 10.15 A hierarchy of countries, states, and cities

As programmers, we often need to display tree structures. Fortunately, the Swing library

has a JTree class for this purpose. The JTree class (together with its helper classes) takes

care of laying out the tree and processing user requests for expanding and collapsing nodes.

In this section, you will learn how to put the JTree class to use.

As with the other complex Swing components, we must focus on the common and useful cases

and cannot cover every nuance. If you want to achieve something unusual, we recommend that

you consult Graphic Java™, Third Edition, by David M. Geary or Core Swing by Kim Topley.

Before going any further, let’s settle on some terminology (see Figure 10.16). A tree is
composed of nodes. Every node is either a leaf or it has child nodes. Every node, with the
exception of the root node, has exactly one parent. A tree has exactly one root node.
Sometimes you have a collection of trees, each with its own root node. Such a collection

is called a forest.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig016

Figure 10.16 Tree terminology

10.3.1 Simple Trees

In our first example program, we will simply display a tree with a few nodes (see Figure

10.18). As with many other Swing components, you need to provide a model of the data, and

the component displays it for you. To construct a JTree, supply the tree model in the

constructor:

 TreeModel model = . . .;

 JTree tree = new JTree(model);

NOTE:

There are also constructors that construct trees out of a collection of elements:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig018
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig018

 JTree(Object[] nodes)

 JTree(Vector<?> nodes)

 JTree(Hashtable<?, ?> nodes) // the values become the nodes

These constructors are not very useful. They merely build a forest of trees, each with a

single node. The third constructor seems particularly useless because the nodes appear in

the seemingly random order determined by the hash codes of the keys.

How do you obtain a tree model? You can construct your own model by creating a class that

implements the TreeModel interface. You will see later in this chapter how to do that. For

now, we will stick with the DefaultTreeModel that the Swing library supplies.

To construct a default tree model, you must supply a root node.

 TreeNode root = . . .;

 DefaultTreeModel model = new DefaultTreeModel(root);

TreeNode is another interface. Populate the default tree model with objects of any class

that implements the interface. For now, we will use the concrete node class that Swing

supplies—namely, DefaultMutableTreeNode. This class implements the MutableTreeNode

interface, a subinterface of TreeNode (see Figure 10.17).

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig017

Figure 10.17 Tree classes

A default mutable tree node holds an object—the user object. The tree renders the user
objects for all nodes. Unless you specify a renderer, the tree displays the string that

is the result of the toString method.

In our first example, we use strings as user objects. In practice, you would usually populate

a tree with more expressive user objects. For example, when displaying a directory tree,

it makes sense to use File objects for the nodes.

You can specify the user object in the constructor, or you can set it later with the

setUserObject method.

 DefaultMutableTreeNode node = new DefaultMutableTreeNode("Texas");

 ...

 node.setUserObject("California");

Next, you need to establish the parent/child relationships between the nodes. Start with

the root node and use the add method to add the children:

 DefaultMutableTreeNode root = new DefaultMutableTreeNode("World");

 DefaultMutableTreeNode country = new DefaultMutableTreeNode("USA");

 root.add(country);

 DefaultMutableTreeNode state = new DefaultMutableTreeNode("California");

 country.add(state);

Figure 10.18 illustrates how the tree will look.

Figure 10.18 A simple tree

Link up all nodes in this fashion. Then, construct a DefaultTreeModel with the root node.

Finally, construct a JTree with the tree model.

 DefaultTreeModel treeModel = new DefaultTreeModel(root);

 JTree tree = new JTree(treeModel);

Or, as a shortcut, you can simply pass the root node to the JTree constructor. Then the

tree automatically constructs a default tree model:

 JTree tree = new JTree(root);

Listing 10.12 contains the complete code.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig018

Listing 10.12 tree/SimpleTreeFrame.java

 1 package tree;

 2

 3 import javax.swing.*;

 4 import javax.swing.tree.*;

 5

 6 /**

 7 * This frame contains a simple tree that displays a manually constructed tree

model.

 8 */

 9 public class SimpleTreeFrame extends JFrame

10 {

11 private static final int DEFAULT_WIDTH = 300;

12 private static final int DEFAULT_HEIGHT = 200;

13

14 public SimpleTreeFrame()

15 {

16 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

17

18 // set up tree model data

19

20 DefaultMutableTreeNode root = new

DefaultMutableTreeNode("World");

21 DefaultMutableTreeNode country = new

DefaultMutableTreeNode("USA");

22 root.add(country);

23 DefaultMutableTreeNode state = new

DefaultMutableTreeNode("California");

24 country.add(state);

25 DefaultMutableTreeNode city = new DefaultMutableTreeNode("San

Jose");

26 state.add(city);

27 city = new DefaultMutableTreeNode("Cupertino");

28 state.add(city);

29 state = new DefaultMutableTreeNode("Michigan");

30 country.add(state);

31 city = new DefaultMutableTreeNode("Ann Arbor");

32 state.add(city);

33 country = new DefaultMutableTreeNode("Germany");

34 root.add(country);

35 state = new DefaultMutableTreeNode("Schleswig-Holstein");

36 country.add(state);

37 city = new DefaultMutableTreeNode("Kiel");

38 state.add(city);

39

40 // construct tree and put it in a scroll pane

41

42 JTree tree = new JTree(root);

43 add(new JScrollPane(tree));

44 }

45 }

When you run the program, the tree first looks as in Figure 10.19. Only the root node and

its children are visible. Click on the circle icons (the handles) to open up the subtrees.
The line sticking out from the handle icon points to the right when the subtree is collapsed

and down when the subtree is expanded (see Figure 10.20).

We don’t know what the designers of the Metal look-and-feel had in mind, but we think of

the icon as a door handle. You push down on the handle to open the subtree.

Figure 10.19 The initial tree display

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig019
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig020

Figure 10.20 Collapsed and expanded subtrees

NOTE:

Of course, the display of the tree depends on the selected look-and-feel. We just described

the Metal look-and-feel. In the Windows look-and-feel, the handles have the more familiar

look—a “-” or “+” in a box (see Figure 10.21).

Figure 10.21 A tree with the Windows look-and-feel

You can use the following magic incantation to turn off the lines joining parents and

children (see Figure 10.22):

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig021
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig022

 tree.putClientProperty("JTree.lineStyle", "None");

Figure 10.22 A tree with no connecting lines

Conversely, to make sure that the lines are shown, use

 tree.putClientProperty("JTree.lineStyle", "Angled");

Another line style, "Horizontal", is shown in Figure 10.23. The tree is displayed with

horizontal lines separating only the children of the root. We aren’t quite sure what it

is good for.

Figure 10.23 A tree with the horizontal line style

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig023

By default, there is no handle for collapsing the root of the tree. If you like, you can

add one with the call

 tree.setShowsRootHandles(true);

Figure 10.24 shows the result. Now you can collapse the entire tree into the root node.

Figure 10.24 A tree with a root handle

Conversely, you can hide the root altogether. You will thus display a forest—a set of trees,

each with its own root. You still must join all trees in the forest to a common root; then,

hide the root with the instruction

 tree.setRootVisible(false);

Look at Figure 10.25. There appear to be two roots, labeled “USA” and “Germany.” The

actual root that joins the two is made invisible.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig024
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig025

Figure 10.25 A forest

Let’s turn from the root to the leaves of the tree. Note that the leaves have an icon

different from the other nodes (see Figure 10.26).

Figure 10.26 Leaf and folder icons

When the tree is displayed, each node is drawn with an icon. There are actually three kinds

of icons: a leaf icon, an opened nonleaf icon, and a closed nonleaf icon. For simplicity,

we refer to the last two as folder icons.

The node renderer needs to know which icon to use for each node. By default, the decision

process works like this: If the isLeaf method of a node returns true, then the leaf icon

is used; otherwise, a folder icon is used.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig026

The isLeaf method of the DefaultMutableTreeNode class returns true if the node has no

children. Thus, nodes with children get folder icons, and nodes without children get leaf

icons.

Sometimes, that behavior is not appropriate. Suppose we added a node “Montana” to our

sample tree, but we’re at a loss as to what cities to add. We would not want the state

node to get a leaf icon because conceptually only the cities are leaves.

The JTree class has no idea which nodes should be leaves. It asks the tree model. If a

childless node isn’t automatically a conceptual leaf, you can ask the tree model to use

a different criterion for leafiness—namely, to query the “allows children” node

property.

For those nodes that should not have children, call

 node.setAllowsChildren(false);

Then, tell the tree model to ask the value of the “allows children” property to determine

whether a node should be displayed with a leaf icon. Use the setAsksAllowsChildren method

of the DefaultTreeModel class to set this behavior:

 model.setAsksAllowsChildren(true);

With this decision criterion, nodes that allow children get folder icons, and nodes that

don’t allow children get leaf icons.

Alternatively, if you construct the tree from the root node, supply the setting for the

“asks allows children” property in the constructor.

 JTree tree = new JTree(root, true); // nodes that don't allow children get leaf icons

javax.swing.JTree 1.2

• JTree(TreeModel model)

constructs a tree from a tree model.

• JTree(TreeNode root)

• JTree(TreeNode root, boolean asksAllowChildren)

constructs a tree with a default tree model that displays the root and its children.

• void setShowsRootHandles(boolean b)

if b is true, the root node has a handle for collapsing or expanding its children.

• void setRootVisible(boolean b)

if b is true, then the root node is displayed. Otherwise, it is hidden.

javax.swing.tree.TreeNode 1.2

• boolean isLeaf()

returns true if this node is conceptually a leaf.

• boolean getAllowsChildren()

returns true if this node can have child nodes.

javax.swing.tree.MutableTreeNode 1.2

• void setUserObject(Object userObject)

sets the “user object” that the tree node uses for rendering.

javax.swing.tree.TreeModel 1.2

• boolean isLeaf(Object node)

returns true if node should be displayed as a leaf node.

javax.swing.tree.DefaultTreeModel 1.2

• void setAsksAllowsChildren(boolean b)

if b is true, nodes are displayed as leaves when their getAllowsChildren method returns

false. Otherwise, they are displayed as leaves when their isLeaf method returns true.

javax.swing.tree.DefaultMutableTreeNode 1.2

• DefaultMutableTreeNode(Object userObject)

constructs a mutable tree node with the given user object.

• void add(MutableTreeNode child)

adds a node as the last child of this node.

• void setAllowsChildren(boolean b)

if b is true, children can be added to this node.

javax.swing.JComponent 1.2

• void putClientProperty(Object key, Object value)

adds a key/value pair to a small table that each component manages. This is an “escape

hatch” mechanism that some Swing components use for storing properties specific to a

look-and-feel.

10.3.1.1 Editing Trees and Tree Paths

In the next example program, you will see how to edit a tree. Figure 10.27 shows the user

interface. If you click the Add Sibling or Add Child button, the program adds a new node

(with title New) to the tree. If you click the Delete button, the program deletes the

currently selected node.

Figure 10.27 Editing a tree

To implement this behavior, you need to find out which tree node is currently selected.

The JTree class has a surprising way of identifying nodes in a tree. It does not deal with

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig027

tree nodes but with paths of objects, called tree paths. A tree path starts at the root
and consists of a sequence of child nodes (see Figure 10.28).

Figure 10.28 A tree path

You might wonder why the JTree class needs the whole path. Couldn’t it just get a TreeNode

and keep calling the getParent method? In fact, the JTree class knows nothing about the

TreeNode interface. That interface is never used by the TreeModel interface; it is only

used by the DefaultTreeModel implementation. You can have other tree models in which the

nodes do not implement the TreeNode interface at all. If you use a tree model that manages

other types of objects, those objects might not have getParent and getChild methods. They

would of course need to have some other connection to each other. It is the job of the tree

model to link nodes together. The JTree class itself has no clue about the nature of their

linkage. For that reason, the JTree class always needs to work with complete paths.

The TreePath class manages a sequence of Object (not TreeNode!) references. A number of

JTree methods return TreePath objects. When you have a tree path, you usually just need

to know the terminal node, which you can get with the getLastPathComponent method. For

example, to find out the currently selected node in a tree, use the getSelectionPath method

of the JTree class. You will get a TreePath object back, from which you can retrieve the

actual node.

 TreePath selectionPath = tree.getSelectionPath();

 DefaultMutableTreeNode selectedNode

 = (DefaultMutableTreeNode) selectionPath.getLastPathComponent();

Actually, since this particular query is so common, there is a convenience method that gives

the selected node immediately:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig028

 DefaultMutableTreeNode selectedNode

 = (DefaultMutableTreeNode) tree.getLastSelectedPathComponent();

This method is not called getSelectedNode because the tree does not know that it contains

nodes—its tree model deals only with paths of objects.

NOTE:

Tree paths are one of the two ways in which the JTree class describes nodes. Quite a few

JTree methods take or return an integer index—the row position. A row position is simply
the row number (starting with 0) of the node in the tree display. Only visible nodes have

row numbers, and the row number of a node changes if other nodes before it are expanded,

collapsed, or modified. For that reason, you should avoid row positions. All JTree methods

that use rows have equivalents that use tree paths instead.

Once you have the selected node, you can edit it. However, do not simply add children to

a tree node:

 selectedNode.add(newNode); // No!

If you change the structure of the nodes, you change the model but the associated view is

not notified. You could send out a notification yourself, but if you use the insertNodeInto

method of the DefaultTreeModel class, the model class takes care of that. For example, the

following call appends a new node as the last child of the selected node and notifies the

tree view:

 model.insertNodeInto(newNode, selectedNode, selectedNode.getChildCount());

The analogous call removeNodeFromParent removes a node and notifies the view:

 model.removeNodeFromParent(selectedNode);

If you keep the node structure in place but change the user object, you should call the

following method:

 model.nodeChanged(changedNode);

The automatic notification is a major advantage of using the DefaultTreeModel. If you supply

your own tree model, you have to implement automatic notification by hand. (See Core Swing
by Kim Topley for details.)

CAUTION

The DefaultTreeModel class has a reload method that reloads the entire model. However,

don’t call reload simply to update the tree after making a few changes. When the tree is

regenerated, all nodes beyond the root’s children are collapsed again. It will be quite

disconcerting to your users if they have to keep expanding the tree after every change.

When the view is notified of a change in the node structure, it updates the display but

does not automatically expand a node to show newly added children. In particular, if a user

in our sample program adds a new child node to a node for which children are currently

collapsed, the new node is silently added to the collapsed subtree. This gives the user

no feedback that the command was actually carried out. In such a case, you should make a

special effort to expand all parent nodes so that the newly added node becomes visible.

Use the makeVisible method of the JTree class for this purpose. The makeVisible method

expects a tree path leading to the node that should become visible.

Thus, you need to construct a tree path from the root to the newly inserted node. To get

a tree path, first call the getPathToRoot method of the DefaultTreeModel class. It returns

a TreeNode[] array of all nodes from a node to the root node. Pass that array to a TreePath

constructor.

For example, here is how you make the new node visible:

 TreeNode[] nodes = model.getPathToRoot(newNode);

 TreePath path = new TreePath(nodes);

 tree.makeVisible(path);

NOTE:

It is curious that the DefaultTreeModel class feigns almost complete ignorance of the

TreePath class, even though its job is to communicate with a JTree. The JTree class uses

tree paths a lot, and it never uses arrays of node objects.

But now suppose your tree is contained inside a scroll pane. After the tree node expansion,

the new node might still not be visible because it falls outside the viewport. To overcome

that problem, call

 tree.scrollPathToVisible(path);

instead of calling makeVisible. This call expands all nodes along the path and tells the

ambient scroll pane to scroll the node at the end of the path into view (see Figure 10.29).

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig029

Figure 10.29 The scroll pane scrolls to display a new node.

By default, tree nodes cannot be edited. However, if you call

 tree.scrollPathToVisible(path);

the user can edit a node simply by double-clicking, editing the string, and pressing the

Enter key. Double-clicking invokes the default cell editor, which is implemented by the
DefaultCellEditor class (see Figure 10.30). It is possible to install other cell editors,

using the same process that you have seen in our discussion of table cell editors.

Figure 10.30 The default cell editor

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig030

Listing 10.13 shows the complete source code of the tree editing program. Run the program,

add a few nodes, and edit them by double-clicking them. Observe how collapsed nodes expand

to show added children and how the scroll pane keeps added nodes in the viewport.

Listing 10.13 treeEdit/TreeEditFrame.java

 1 package treeEdit;

 2

 3 import java.awt.*;

 4

 5 import javax.swing.*;

 6 import javax.swing.tree.*;

 7

 8 /**

 9 * A frame with a tree and buttons to edit the tree.

10 */

11 public class TreeEditFrame extends JFrame

12 {

13 private static final int DEFAULT_WIDTH = 400;

14 private static final int DEFAULT_HEIGHT = 200;

15

16 private DefaultTreeModel model;

17 private JTree tree;

18

19 public TreeEditFrame()

20 {

21 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

22

23 // construct tree

24

25 TreeNode root = makeSampleTree();

26 model = new DefaultTreeModel(root);

27 tree = new JTree(model);

28 tree.setEditable(true);

29

30 // add scroll pane with tree

31

32 JScrollPane scrollPane = new JScrollPane(tree);

33 add(scrollPane, BorderLayout.CENTER);

34

35 makeButtons();

36 }

37

38 public TreeNode makeSampleTree()

39 {

40 DefaultMutableTreeNode root = new DefaultMutableTreeNode("World");

41 DefaultMutableTreeNode country = new DefaultMutableTreeNode("USA");

42 root.add(country);

43 DefaultMutableTreeNode state = new

DefaultMutableTreeNode("California");

44 country.add(state);

45 DefaultMutableTreeNode city = new DefaultMutableTreeNode("San Jose");

46 state.add(city);

47 city = new DefaultMutableTreeNode("San Diego");

48 state.add(city);

49 state = new DefaultMutableTreeNode("Michigan");

50 country.add(state);

51 city = new DefaultMutableTreeNode("Ann Arbor");

52 state.add(city);

53 country = new DefaultMutableTreeNode("Germany");

54 root.add(country);

55 state = new DefaultMutableTreeNode("Schleswig-Holstein");

56 country.add(state);

57 city = new DefaultMutableTreeNode("Kiel");

58 state.add(city);

59 return root;

60 }

61

62 /**

63 * Makes the buttons to add a sibling, add a child, and delete a node.

64 */

65 public void makeButtons()

66 {

67 JPanel panel = new JPanel();

68 JButton addSiblingButton = new JButton("Add Sibling");

69 addSiblingButton.addActionListener(event ->

70 {

71 DefaultMutableTreeNode selectedNode =

(DefaultMutableTreeNode) tree

72 .getLastSelectedPathComponent();

73

74 if (selectedNode == null) return;

75

76 DefaultMutableTreeNode parent =

(DefaultMutableTreeNode) selectedNode.getParent();

77

78 if (parent == null) return;

79

80 DefaultMutableTreeNode newNode = new

DefaultMutableTreeNode("New");

81

82 int selectedIndex = parent.getIndex(selectedNode);

83 model.insertNodeInto(newNode, parent, selectedIndex +

1);

84

85 // now display new node

86

87 TreeNode[] nodes = model.getPathToRoot(newNode);

88 TreePath path = new TreePath(nodes);

89 tree.scrollPathToVisible(path);

90 });

91 panel.add(addSiblingButton);

92

93 JButton addChildButton = new JButton("Add Child");

94 addChildButton.addActionListener(event ->

95 {

96 DefaultMutableTreeNode selectedNode =

(DefaultMutableTreeNode) tree

97 .getLastSelectedPathComponent();

98

99 if (selectedNode == null) return;

100

101 DefaultMutableTreeNode newNode = new

DefaultMutableTreeNode("New");

102 model.insertNodeInto(newNode, selectedNode,

selectedNode.getChildCount());

103

104 // now display new node

105

106 TreeNode[] nodes = model.getPathToRoot(newNode);

107 TreePath path = new TreePath(nodes);

108 tree.scrollPathToVisible(path);

109 });

110 panel.add(addChildButton);

111

112 JButton deleteButton = new JButton("Delete");

113 deleteButton.addActionListener(event ->

114 {

115 DefaultMutableTreeNode selectedNode =

(DefaultMutableTreeNode) tree

116 .getLastSelectedPathComponent();

117

118 if (selectedNode != null &&

selectedNode.getParent() != null) model

119 .removeNodeFromParent(selectedNode);

120 });

121 panel.add(deleteButton);

122 add(panel, BorderLayout.SOUTH);

123 }

124 }

javax.swing.JTree 1.2

• TreePath getSelectionPath()

gets the path to the currently selected node, or the path to the first selected node if

multiple nodes are selected. Returns null if no node is selected.

• Object getLastSelectedPathComponent()

gets the node object that represents the currently selected node, or the first node if

multiple nodes are selected. Returns null if no node is selected.

• void makeVisible(TreePath path)

expands all nodes along the path.

• void scrollPathToVisible(TreePath path)

expands all nodes along the path and, if the tree is contained in a scroll pane, scrolls

to ensure that the last node on the path is visible.

javax.swing.tree.TreePath 1.2

• Object getLastPathComponent()

gets the last object on this path—that is, the node object that the path represents.

javax.swing.tree.TreeNode 1.2

• TreeNode getParent()

returns the parent node of this node.

• TreeNode getChildAt(int index)

looks up the child node at the given index. The index must be between 0 and getChildCount()

- 1.

• int getChildCount()

returns the number of children of this node.

• Enumeration children()

returns an enumeration object that iterates through all children of this node.

javax.swing.tree.DefaultTreeModel 1.2

• void insertNodeInto(MutableTreeNode newChild, MutableTreeNode parent, int index)

inserts newChild as a new child node of parent at the given index and notifies the tree

model listeners.

• void removeNodeFromParent(MutableTreeNode node)

removes node from this model and notifies the tree model listeners.

• void nodeChanged(TreeNode node)

notifies the tree model listeners that node has changed.

• void nodesChanged(TreeNode parent, int[] changedChildIndexes)

notifies the tree model listeners that all child nodes of parent with the given indexes

have changed.

• void reload()

reloads all nodes into the model. This is a drastic operation that you should use only if

the nodes have changed completely because of some outside influence.

10.3.2 Node Enumeration

Sometimes you need to find a node in a tree by starting at the root and visiting all children

until you have found a match. The DefaultMutableTreeNode class has several convenience

methods for iterating through nodes.

The breadthFirstEnumeration and depthFirstEnumeration methods return enumeration objects

whose nextElement method visits all children of the current node, using either a

breadth-first or depth-first traversal. Figure 10.31 shows the traversals for a sample

tree—the node labels indicate the order in which the nodes are traversed.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig031

Figure 10.31 Tree traversal orders

Breadth-first enumeration is the easiest to visualize. The tree is traversed in layers.

The root is visited first, followed by all of its children, then the grandchildren, and

so on.

To visualize depth-first enumeration, imagine a rat trapped in a tree-shaped maze. It rushes

along the first path until it comes to a leaf. Then, it backtracks and turns around to the

next path, and so on.

Computer scientists also call this postorder traversal because the search process visits
the children before visiting the parents. The postOrderTraversal method is a synonym for

depthFirstTraversal. For completeness, there is also a preOrderTraversal, a depth-first

search that enumerates parents before the children.

Here is the typical usage pattern:

 Enumeration breadthFirst = node.breadthFirstEnumeration();

 while (breadthFirst.hasMoreElements())

 do something with breadthFirst.nextElement();

Finally, a related method, pathFromAncestorEnumeration, finds a path from an ancestor to

a given node and enumerates the nodes along that path. That’s no big deal—it just keeps

calling getParent until the ancestor is found and then presents the path in reverse order.

In our next example program, we put node enumeration to work. The program displays

inheritance trees of classes. Type the name of a class into the text field on the bottom

of the frame. The class and all of its superclasses are added to the tree (see Figure 10.32).

Figure 10.32 An inheritance tree

In this example, we take advantage of the fact that the user objects of the tree nodes can

be objects of any type. Since our nodes describe classes, we store Class objects in the

nodes.

We don’t want to add the same class object twice, so we need to check whether a class already

exists in the tree. The following method finds the node with a given user object if it exists

in the tree.

 public DefaultMutableTreeNode findUserObject(Object obj)

 {

 Enumeration e = root.breadthFirstEnumeration();

 while (e.hasMoreElements())

 {

 DefaultMutableTreeNode node = (DefaultMutableTreeNode) e.nextElement();

 if (node.getUserObject().equals(obj))

 return node;

 }

 return null;

 }

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig032

10.3.3 Rendering Nodes

In your applications, you will often need to change the way a tree component draws the nodes.

The most common change is, of course, to choose different icons for nodes and leaves. Other

changes might involve changing the font of the node labels or drawing images at the nodes.

All these changes are possible by installing a new tree cell renderer into the tree. By
default, the JTree class uses DefaultTreeCellRenderer objects to draw each node. The

DefaultTreeCellRenderer class extends the JLabel class. The label contains the node icon

and the node label.

NOTE:

The cell renderer does not draw the “handles” for expanding and collapsing subtrees. The

handles are part of the look-and-feel, and it is recommended that you do not change them.

You can customize the display in three ways.

• You can change the icons, font, and background color used by a DefaultTreeCellRenderer.

These settings are used for all nodes in the tree.

•You can install a renderer that extends the DefaultTreeCellRenderer class and vary the

icons, fonts, and background color for each node.

•You can install a renderer that implements the TreeCellRenderer interface to draw a custom

image for each node.

Let us look at these possibilities one by one. The easiest customization is to construct

a DefaultTreeCellRenderer object, change the icons, and install it into the tree:

 DefaultTreeCellRenderer renderer = new DefaultTreeCellRenderer();

 renderer.setLeafIcon(new ImageIcon("blue-ball.gif")); // used for leaf nodes

 renderer.setClosedIcon(new ImageIcon("red-ball.gif")); // used for collapsed nodes

 renderer.setOpenIcon(new ImageIcon("yellow-ball.gif")); // used for expanded nodes

 tree.setCellRenderer(renderer);

You can see the effect in Figure 10.32. We just use the “ball” icons as

placeholders—presumably your user interface designer would supply you with appropriate

icons to use for your applications.

We don’t recommend that you change the font or background color for an entire tree—that

is really the job of the look-and-feel.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig032

However, it can be useful to change the font of some nodes in a tree to highlight them.

If you look carefully at Figure 10.32, you will notice that the abstract classes are set
in italics.

To change the appearance of individual nodes, install a tree cell renderer. Tree cell

renderers are very similar to the list cell renderers we discussed earlier in this chapter.

The TreeCellRenderer interface has a single method:

 Component getTreeCellRendererComponent(JTree tree, Object value, boolean selected,

 boolean expanded, boolean leaf, int row, boolean hasFocus)

The getTreeCellRendererComponent method of the DefaultTreeCellRenderer class returns

this—in other words, a label. (The DefaultTreeCellRenderer class extends the JLabel class.)

To customize the component, extend the DefaultTreeCellRenderer class. Override the

getTreeCellRendererComponent method as follows: Call the superclass method so it can

prepare the label data, customize the label properties, and finally return this.

 class MyTreeCellRenderer extends DefaultTreeCellRenderer

 {

 public Component getTreeCellRendererComponent(JTree tree, Object value, boolean

selected,

 boolean expanded, boolean leaf, int row, boolean hasFocus)

 {

 Component comp = super.getTreeCellRendererComponent(tree, value,

selected,

 expanded, leaf, row, hasFocus);

 DefaultMutableTreeNode node = (DefaultMutableTreeNode) value;

 look at node.getUserObject();

 Font font = appropriate font;

 comp.setFont(font);

 return comp;

 }

 };

CAUTION

The value parameter of the getTreeCellRendererComponent method is the node object, not the
user object! Recall that the user object is a feature of the DefaultMutableTreeNode, and

that a JTree can contain nodes of an arbitrary type. If your tree uses DefaultMutableTreeNode

nodes, you must retrieve the user object in a second step, as we did in the preceding code

sample.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig032

CAUTION

The DefaultTreeCellRenderer uses the same label object for all nodes, only changing the
label text for each node. If you change the font for a particular node, you must set it

back to its default value when the method is called again. Otherwise, all subsequent nodes

will be drawn in the changed font! Look at the code in Listing 10.14 to see how to restore

the font to the default.

We do not show an example of a tree cell renderer that draws arbitrary graphics. If you

need this capability, you can adapt the list cell renderer in Listing 10.4; the technique

is entirely analogous.

The ClassNameTreeCellRenderer in Listing 10.14 sets the class name in either the normal

or italic font, depending on the ABSTRACT modifier of the Class object. We don’t want to

set a particular font because we don’t want to change whatever font the look-and-feel

normally uses for labels. For that reason, we use the font from the label and derive an
italic font from it. Recall that only a single shared JLabel object is returned by all calls.

We need to hang on to the original font and restore it in the next call to the

getTreeCellRendererComponent method.

Also, note how we change the node icons in the ClassTreeFrame constructor.

javax.swing.tree.DefaultMutableTreeNode 1.2

• Enumeration breadthFirstEnumeration()

• Enumeration depthFirstEnumeration()

• Enumeration preOrderEnumeration()

• Enumeration postOrderEnumeration()

returns enumeration objects for visiting all nodes of the tree model in a particular order.

In breadth-first traversal, children that are closer to the root are visited before those

that are farther away. In depth-first traversal, all children of a node are completely

enumerated before its siblings are visited. The postOrderEnumeration method is a synonym

for depthFirstEnumeration.The preorder traversal is identical to the postorder traversal

except that parents are enumerated before their children.

javax.swing.tree.TreeCellRenderer 1.2

• Component getTreeCellRendererComponent(JTree tree, Object value, boolean selected,

boolean expanded, boolean leaf, int row, boolean hasFocus)

returns a component whose paint method is invoked to render a tree cell.

javax.swing.tree.DefaultTreeCellRenderer 1.2

• void setLeafIcon(Icon icon)

• void setOpenIcon(Icon icon)

• void setClosedIcon(Icon icon)

sets the icon to show for a leaf node, an expanded node, and a collapsed node.

10.3.4 Listening to Tree Events

Most commonly, a tree component is paired with some other component. When the user selects

tree nodes, some information shows up in another window. See Figure 10.33 for an example.

When the user selects a class, the instance and static variables of that class are displayed

in the text area to the right.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig033

Figure 10.33 A class browser

To obtain this behavior, you need to install a tree selection listener. The listener must
implement the TreeSelectionListener interface—an interface with a single method:

 void valueChanged(TreeSelectionEvent event)

That method is called whenever the user selects or deselects tree nodes.

Add the listener to the tree in the normal way:

 tree.addTreeSelectionListener(listener);

You can specify whether the user is allowed to select a single node, a contiguous range

of nodes, or an arbitrary, potentially discontiguous, set of nodes. The JTree class uses

a TreeSelectionModel to manage node selection. You need to retrieve the model to set the

selection state to one of SINGLE_TREE_SELECTION, CONTIGUOUS_TREE_SELECTION, or

DISCONTIGUOUS_TREE_SELECTION. (Discontiguous selection mode is the default.) For example,

in our class browser, we want to allow selection of only a single class:

 int mode = TreeSelectionModel.SINGLE_TREE_SELECTION;

 tree.getSelectionModel().setSelectionMode(mode);

Apart from setting the selection mode, you need not worry about the tree selection model.

NOTE:

How the user selects multiple items depends on the look-and-feel. In the Metal look-and-feel,

hold down the Ctrl key while clicking an item to add it to the selection, or to remove it

if it was currently selected. Hold down the Shift key while clicking an item to select a

range of items, extending from the previously selected item to the new item.

To find out the current selection, query the tree with the getSelectionPaths method:

 TreePath[] selectedPaths = tree.getSelectionPaths();

If you restricted the user to single-item selection, you can use the convenience method

getSelectionPath which returns the first selected path or null if no path was selected.

CAUTION

The TreeSelectionEvent class has a getPaths method that returns an array of TreePath objects,

but that array describes selection changes, not the current selection.

Listing 10.14 shows the frame class for the class tree program. The program displays

inheritance hierarchies and customizes the display to show abstract classes in italics.

(See Listing 10.15 for the cell renderer.) The program displays inheritance hierarchies

and customizes the display to show abstract classes in italics. You can type the name of

any class into the text field at the bottom of the frame. Press the Enter key or click the

Add button to add the class and its superclasses to the tree. You must enter the full package

name, such as java.util.ArrayList.

This program is a bit tricky because it uses reflection to construct the class tree. This

work is done inside the addClass method. (The details are not that important. We use the

class tree in this example because inheritance yields a nice supply of trees without

laborious coding. When you display trees in your applications, you will have your own source

of hierarchical data.) The method uses the breadth-first search algorithm to find whether

the current class is already in the tree by calling the findUserObject method that we

implemented in the preceding section. If the class is not already in the tree, we add the

superclasses to the tree, then make the new class node a child and make that node visible.

When you select a tree node, the text area to the right is filled with the fields of the

selected class. In the frame constructor, we restrict the user to single-item selection

and add a tree selection listener. When the valueChanged method is called, we ignore its

event parameter and simply ask the tree for the current selection path. As always, we need

to get the last node of the path and look up its user object. We then call the

getFieldDescription method which uses reflection to assemble a string with all fields of

the selected class.

Listing 10.14 treeRender/ClassTreeFrame.java

 1 package treeRender;

 2

 3 import java.awt.*;

 4 import java.awt.event.*;

 5 import java.lang.reflect.*;

 6 import java.util.*;

 7

 8 import javax.swing.*;

 9 import javax.swing.tree.*;

10

11 /**

12 * This frame displays the class tree, a text field, and an "Add" button to add

more classes

13 * into the tree.

14 */

15 public class ClassTreeFrame extends JFrame

16 {

17 private static final int DEFAULT_WIDTH = 400;

18 private static final int DEFAULT_HEIGHT = 300;

19

20 private DefaultMutableTreeNode root;

21 private DefaultTreeModel model;

22 private JTree tree;

23 private JTextField textField;

24 private JTextArea textArea;

25

26 public ClassTreeFrame()

27 {

28 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

29

30 // the root of the class tree is Object

31 root = new DefaultMutableTreeNode(java.lang.Object.class);

32 model = new DefaultTreeModel(root);

33 tree = new JTree(model);

34

35 // add this class to populate the tree with some data

36 addClass(getClass());

37

38 // set up node icons

39 ClassNameTreeCellRenderer renderer = new ClassNameTreeCellRenderer();

40 renderer.setClosedIcon(new

ImageIcon(getClass().getResource("red-ball.gif")));

41 renderer.setOpenIcon(new

ImageIcon(getClass().getResource("yellow-ball.gif")));

42 renderer.setLeafIcon(new

ImageIcon(getClass().getResource("blue-ball.gif")));

43 tree.setCellRenderer(renderer);

44

45 // set up selection mode

46 tree.addTreeSelectionListener(event ->

47 {

48 // the user selected a different node--update description

49 TreePath path = tree.getSelectionPath();

50 if (path == null) return;

51 DefaultMutableTreeNode selectedNode =

(DefaultMutableTreeNode) path

52 .getLastPathComponent();

53 Class<?> c = (Class<?>) selectedNode.getUserObject();

54 String description = getFieldDescription(c);

55 textArea.setText(description);

56 });

57 int mode = TreeSelectionModel.SINGLE_TREE_SELECTION;

58 tree.getSelectionModel().setSelectionMode(mode);

59

60 // this text area holds the class description

61 textArea = new JTextArea();

 62

63 // add tree and text area

64 JPanel panel = new JPanel();

65 panel.setLayout(new GridLayout(1, 2));

66 panel.add(new JScrollPane(tree));

67 panel.add(new JScrollPane(textArea));

68

69 add(panel, BorderLayout.CENTER);

70

71 addTextField();

72 }

73

74 /**

75 * Add the text field and "Add" button to add a new class.

76 */

77 public void addTextField()

78 {

79 JPanel panel = new JPanel();

80

81 ActionListener addListener = event ->

82 {

83 // add the class whose name is in the text field

84 try

85 {

86 String text = textField.getText();

87 addClass(Class.forName(text)); // clear

text field to indicate success

88 textField.setText("");

89 }

90 catch (ClassNotFoundException e)

91 {

92 JOptionPane.showMessageDialog(null, "Class

not found");

93 }

94 };

95

96 // new class names are typed into this text field

97 textField = new JTextField(20);

98 textField.addActionListener(addListener);

99 panel.add(textField);

100

101 JButton addButton = new JButton("Add");

102 addButton.addActionListener(addListener);

103 panel.add(addButton);

104

105 add(panel, BorderLayout.SOUTH);

106 }

107

108 /**

109 * Finds an object in the tree.

110 * @param obj the object to find

111 * @return the node containing the object or null if the object is not present

in the tree

112 */

113 @SuppressWarnings("unchecked")

114 public DefaultMutableTreeNode findUserObject(Object obj)

115 {

116 // find the node containing a user object

117 Enumeration<TreeNode> e = (Enumeration<TreeNode>)

root.breadthFirstEnumeration();

118 while (e.hasMoreElements())

119 {

120 DefaultMutableTreeNode node = (DefaultMutableTreeNode)

e.nextElement();

121 if (node.getUserObject().equals(obj)) return node;

122 }

123 return null;

124 }

125

126 /**

127 * Adds a new class and any parent classes that aren't yet part of the tree

128 * @param c the class to add

129 * @return the newly added node.

130 */

131 public DefaultMutableTreeNode addClass(Class<?> c)

132 {

133 // add a new class to the tree

134

135 // skip non-class types

136 if (c.isInterface() || c.isPrimitive()) return null;

137

138 // if the class is already in the tree, return its node

139 DefaultMutableTreeNode node = findUserObject(c);

140 if (node != null) return node;

141

142 // class isn't present--first add class parent recursively

143

144 Class<?> s = c.getSuperclass();

145

146 DefaultMutableTreeNode parent;

147 if (s == null) parent = root;

148 else parent = addClass(s);

149

150 // add the class as a child to the parent

151 DefaultMutableTreeNode newNode = new DefaultMutableTreeNode(c);

152 model.insertNodeInto(newNode, parent, parent.getChildCount());

153

154 // make node visible

155 TreePath path = new TreePath(model.getPathToRoot(newNode));

156 tree.makeVisible(path);

157

158 return newNode;

159 }

160

161 /**

162 * Returns a description of the fields of a class.

163 * @param the class to be described

164 * @return a string containing all field types and names

165 */

166 public static String getFieldDescription(Class<?> c)

167 {

168 // use reflection to find types and names of fields

169 StringBuilder r = new StringBuilder();

170 Field[] fields = c.getDeclaredFields();

171 for (int i = 0; i < fields.length; i++)

172 {

173 Field f = fields[i];

174 if ((f.getModifiers() & Modifier.STATIC) != 0) r.append("static

");

175 r.append(f.getType().getName());

176 r.append(" ");

177 r.append(f.getName());

178 r.append("\n");

179 }

180 return r.toString();

181 }

182 }

Listing 10.15 treeRender/ClassNameTreeCellRenderer.java

 1 package treeRender;

 2

 3 import java.awt.*;

 4 import java.lang.reflect.*;

 5 import javax.swing.*;

 6 import javax.swing.tree.*;

 7

 8 /**

 9 * This class renders a class name either in plain or italic. Abstract classes

are italic.

10 */

11 public class ClassNameTreeCellRenderer extends DefaultTreeCellRenderer

12 {

13 private Font plainFont = null;

14 private Font italicFont = null;

15

16 public Component getTreeCellRendererComponent(JTree tree, Object value,

boolean selected,

17 boolean expanded, boolean leaf, int row, boolean hasFocus)

18 {

19 super.getTreeCellRendererComponent(tree, value, selected,

expanded, leaf, row, hasFocus);

20 // get the user object

21 DefaultMutableTreeNode node = (DefaultMutableTreeNode) value;

22 Class<?> c = (Class<?>) node.getUserObject();

23

24 // the first time, derive italic font from plain font

25 if (plainFont == null)

26 {

27 plainFont = getFont();

28 // the tree cell renderer is sometimes called with a label

that has a null font

29 if (plainFont != null) italicFont =

plainFont.deriveFont(Font.ITALIC);

30 }

31

32 // set font to italic if the class is abstract, plain otherwise

33 if ((c.getModifiers() & Modifier.ABSTRACT) == 0)

setFont(plainFont);

34 else setFont(italicFont);

35 return this;

36 }

37 }

javax.swing.JTree 1.2

• TreePath getSelectionPath()

• TreePath[] getSelectionPaths()

returns the first selected path, or an array of paths to all selected nodes. If no paths

are selected, both methods return null.

javax.swing.event.TreeSelectionListener 1.2

• void valueChanged(TreeSelectionEvent event)

is called whenever nodes are selected or deselected.

javax.swing.event.TreeSelectionEvent 1.2

• TreePath getPath()

• TreePath[] getPaths()

gets the first path or all paths that have changed in this selection event. If you want
to know the current selection, not the selection change, you should call

JTree.getSelectionPaths instead.

10.3.5 Custom Tree Models

In the final example, we implement a program that inspects the contents of an object, just

like a debugger does (see Figure 10.34).

Figure 10.34 An object inspection tree

Before going further, compile and run the example program. Each node corresponds to an

instance field. If the field is an object, expand it to see its instance fields. The program
inspects the contents of the frame window. If you poke around a few of the instance fields,

you should be able to find some familiar classes. You’ll also gain some respect for how

complex the Swing user interface components are under the hood.

What’s remarkable about the program is that the tree does not use the DefaultTreeModel.

If you already have data that are hierarchically organized, you might not want to build

a duplicate tree and worry about keeping both trees synchronized. That is the situation

in our case—the inspected objects are already linked to each other through the object

references, so there is no need to replicate the linking structure.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig034

The TreeModel interface has only a handful of methods. The first group of methods enables

the JTree to find the tree nodes by first getting the root, then the children. The JTree

class calls these methods only when the user actually expands a node.

 Object getRoot()

 int getChildCount(Object parent)

 Object getChild(Object parent, int index)

This example shows why the TreeModel interface, like the JTree class itself, does not need

an explicit notion of nodes. The root and its children can be any objects. The TreeModel

is responsible for telling the JTree how they are connected.

The next method of the TreeModel interface is the reverse of getChild:

 int getIndexOfChild(Object parent, Object child)

Actually, this method can be implemented in terms of the first three—see the code in Listing

10.16.

The tree model tells the JTree which nodes should be displayed as leaves:

 boolean isLeaf(Object node)

If your code changes the tree model, the tree needs to be notified so that it can redraw

itself. The tree adds itself as a TreeModelListener to the model. Thus, the model must

support the usual listener management methods:

 void addTreeModelListener(TreeModelListener l)

 void removeTreeModelListener(TreeModelListener l)

You can see the implementations for these methods in Listing 10.17.

When the model modifies the tree contents, it calls one of the four methods of the

TreeModelListener interface:

 void treeNodesChanged(TreeModelEvent e)

 void treeNodesInserted(TreeModelEvent e)

 void treeNodesRemoved(TreeModelEvent e)

 void treeStructureChanged(TreeModelEvent e)

The TreeModelEvent object describes the location of the change. The details of assembling

a tree model event that describes an insertion or removal event are quite technical. You

only need to worry about firing these events if your tree can actually have nodes added

and removed. In Listing 10.16, we show you how to fire one event by replacing the root with

a new object.

TIP:

To simplify the code for event firing, use the javax.swing.EventListenerList convenience

class that collects listeners. The last three methods of Listing 10.17 show how to use the

class.

Finally, if the user edits a tree node, your model is called with the change:

 void valueForPathChanged(TreePath path, Object newValue)

If you don’t allow editing, this method is never called.

If you don’t need to support editing, constructing a tree model is easily done. Implement

the three methods

 Object getRoot()

 int getChildCount(Object parent)

 Object getChild(Object parent, int index)

These methods describe the structure of the tree. Supply routine implementations of the

other five methods, as in Listing 10.16. You are then ready to display your tree.

Now let’s turn to the implementation of the example program. Our tree will contain objects

of type Variable.

NOTE:

Had we used the DefaultTreeModel, our nodes would have been objects of type

DefaultMutableTreeNode with user objects of type Variable.

For example, suppose you inspect the variable

 Employee joe;

That variable has a type Employee.class, a name "joe", and a value—the value of the object

reference joe. In Listing 10.18, we define a class Variable that describes a variable in

a program:

 Variable v = new Variable(Employee.class, "joe", joe);

If the type of the variable is a primitive type, you must use an object wrapper for the

value.

 new Variable(double.class, "salary", new Double(salary));

If the type of the variable is a class, the variable has fields. Using reflection, we
enumerate all fields and collect them in an ArrayList. Since the getFields method of the

Class class does not return the fields of the superclass, we need to call getFields on all

superclasses as well. You can find the code in the Variable constructor. The getFields method

of our Variable class returns the array of fields. Finally, the toString method of the

Variable class formats the node label. The label always contains the variable type and name.

If the variable is not a class, the label also contains the value.

NOTE:

If the type is an array, we do not display the elements of the array. This would not be

difficult to do; we leave it as the proverbial “exercise for the reader.”

Let’s move on to the tree model. The first two methods are simple.

 public Object getRoot()

 {

 return root;

 }

 public int getChildCount(Object parent)

 {

 return ((Variable) parent).getFields().size();

 }

The getChild method returns a new Variable object that describes the field with the given

index. The getType and getName methods of the Field class yield the field type and name.

By using reflection, you can read the field value as f.get(parentValue). That method can

throw an IllegalAccessException. However, we made all fields accessible in the Variable

constructor, so this won’t happen in practice.

Here is the complete code of the getChild method:

 public Object getChild(Object parent, int index)

 {

 ArrayList fields = ((Variable) parent).getFields();

 Field f = (Field) fields.get(index);

 Object parentValue = ((Variable) parent).getValue();

 try

 {

 return new Variable(f.getType(), f.getName(), f.get(parentValue));

 }

 catch (IllegalAccessException e)

 {

 return null;

 }

 }

These three methods reveal the structure of the object tree to the JTree component. The

remaining methods are routine—see the source code in Listing 10.17.

There is one remarkable fact about this tree model: It actually describes an infinite tree.
You can verify this by following one of the WeakReference objects. Click on the variable

named referent. It leads you right back to the original object. You get an identical subtree,

and you can open its WeakReference object again, ad infinitum. Of course, you cannot store
an infinite set of nodes; the tree model simply generates the nodes on demand as the user

expands the parents. Listing 10.16 shows the frame class of the sample program.

Listing 10.16 treeModel/ObjectInspectorFrame.java

 1 package treeModel;

 2

 3 import java.awt.*;

 4 import javax.swing.*;

 5

 6 /**

 7 * This frame holds the object tree.

 8 */

 9 public class ObjectInspectorFrame extends JFrame

10 {

11 private JTree tree;

12 private static final int DEFAULT_WIDTH = 400;

13 private static final int DEFAULT_HEIGHT = 300;

14

15 public ObjectInspectorFrame()

16 {

17 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

18

19 // we inspect this frame object

20

21 Variable v = new Variable(getClass(), "this", this);

22 ObjectTreeModel model = new ObjectTreeModel();

23 model.setRoot(v);

24

25 // construct and show tree

26

27 tree = new JTree(model);

28 add(new JScrollPane(tree), BorderLayout.CENTER);

29 }

30 }

Listing 10.17 treeModel/ObjectTreeModel.java

 1 package treeModel;

 2

 3 import java.lang.reflect.*;

 4 import java.util.*;

 5 import javax.swing.event.*;

 6 import javax.swing.tree.*;

 7

 8 /**

 9 * This tree model describes the tree structure of a Java object. Children are

the objects that

10 * are stored in instance variables.

11 */

12 public class ObjectTreeModel implements TreeModel

13 {

14 private Variable root;

15 private EventListenerList listenerList = new EventListenerList();

16

17 /**

18 * Constructs an empty tree.

19 */

20 public ObjectTreeModel()

21 {

22 root = null;

23 }

24

25 /**

26 * Sets the root to a given variable.

27 * @param v the variable that is being described by this tree

28 */

29 public void setRoot(Variable v)

30 {

31 Variable oldRoot = v;

32 root = v;

33 fireTreeStructureChanged(oldRoot);

34 }

35

36 public Object getRoot()

37 {

38 return root;

39 }

40

41 public int getChildCount(Object parent)

42 {

43 return ((Variable) parent).getFields().size();

44 }

45

46 public Object getChild(Object parent, int index)

47 {

48 ArrayList<Field> fields = ((Variable) parent).getFields();

49 Field f = (Field) fields.get(index);

50 Object parentValue = ((Variable) parent).getValue();

51 try

52 {

53 return new Variable(f.getType(), f.getName(),

f.get(parentValue));

54 }

55 catch (IllegalAccessException e)

56 {

57 return null;

58 }

59 }

60

61 public int getIndexOfChild(Object parent, Object child)

62 {

63 int n = getChildCount(parent);

64 for (int i = 0; i < n; i++)

65 if (getChild(parent, i).equals(child)) return i;

66 return -1;

67 }

68

69 public boolean isLeaf(Object node)

70 {

71 return getChildCount(node) == 0;

72 }

73

74 public void valueForPathChanged(TreePath path, Object newValue)

75 {

76 }

77

78 public void addTreeModelListener(TreeModelListener l)

79 {

80 listenerList.add(TreeModelListener.class, l);

81 }

 82

83 public void removeTreeModelListener(TreeModelListener l)

84 {

85 listenerList.remove(TreeModelListener.class, l);

86 }

87

88 protected void fireTreeStructureChanged(Object oldRoot)

89 {

90 TreeModelEvent event = new TreeModelEvent(this, new Object[]

{ oldRoot });

91 for (TreeModelListener l :

listenerList.getListeners(TreeModelListener.class))

92 l.treeStructureChanged(event);

93 }

94 }

Listing 10.18 treeModel/Variable.java

 1 package treeModel;

 2

 3 import java.lang.reflect.*;

 4 import java.util.*;

 5

 6 /**

 7 * A variable with a type, name, and value.

 8 */

 9 public class Variable

10 {

11 private Class<?> type;

12 private String name;

13 private Object value;

14 private ArrayList<Field> fields;

15

16 /**

17 * Construct a variable.

18 * @param aType the type

19 * @param aName the name

20 * @param aValue the value

21 */

22 public Variable(Class<?> aType, String aName, Object aValue)

23 {

24 type = aType;

25 name = aName;

26 value = aValue;

27 fields = new ArrayList<>();

28

29 // find all fields if we have a class type except we don't expand strings

and null values

30

31 if (!type.isPrimitive() && !type.isArray()

&& !type.equals(String.class) && value != null)

32 {

33 // get fields from the class and all superclasses

34 for (Class<?> c = value.getClass(); c != null; c =

c.getSuperclass())

35 {

36 Field[] fs = c.getDeclaredFields();

37 AccessibleObject.setAccessible(fs, true);

38

39 // get all nonstatic fields

40 for (Field f : fs)

41 if ((f.getModifiers() & Modifier.STATIC) == 0)

fields.add(f);

42 }

43 }

44 }

45

46 /**

47 * Gets the value of this variable.

48 * @return the value

49 */

50 public Object getValue()

51 {

52 return value;

53 }

54

55 /**

56 * Gets all nonstatic fields of this variable.

57 * @return an array list of variables describing the fields

58 */

59 public ArrayList<Field> getFields()

60 {

61 return fields;

62 }

63

64 public String toString()

65 {

66 String r = type + " " + name;

67 if (type.isPrimitive()) r += "=" + value;

68 else if (type.equals(String.class)) r += "=" + value;

69 else if (value == null) r += "=null";

70 return r;

71 }

72 }

javax.swing.tree.TreeModel 1.2

• Object getRoot()

returns the root node.

• int getChildCount(Object parent)

gets the number of children of the parent node.

• Object getChild(Object parent, int index)

gets the child node of the parent node at the given index.

• int getIndexOfChild(Object parent, Object child)

gets the index of the child node in the parent node, or -1 if child is not a child of parent

in this tree model.

• boolean isLeaf(Object node)

returns true if node is conceptually a leaf of the tree.

• void addTreeModelListener(TreeModelListener l)

• void removeTreeModelListener(TreeModelListener l)

adds or removes listeners that are notified when the information in the tree model changes.

• void valueForPathChanged(TreePath path, Object newValue)

is called when a cell editor has modified the value of a node.

javax.swing.event.TreeModelListener 1.2

• void treeNodesChanged(TreeModelEvent e)

• void treeNodesInserted(TreeModelEvent e)

• void treeNodesRemoved(TreeModelEvent e)

• void treeStructureChanged(TreeModelEvent e)

is called by the tree model when the tree has been modified.

javax.swing.event.TreeModelEvent 1.2

• TreeModelEvent(Object eventSource, TreePath node)

constructs a tree model event.

10.4 Text Components

Figure 10.35 shows all text components that are included in the Swing library. You already

saw the three most commonly used components—JTextField, JPasswordField, and JTextArea—in

Volume I, Chapter 9. In the following sections, we will introduce the remaining text

components. We will also discuss the JSpinner component that contains a formatted text field

together with tiny “up” and “down” buttons to change its contents.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig035
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch09.html#ch09

Figure 10.35 The hierarchy of text components and documents

All text components render and edit the data stored in a model object of a class implementing

the Document interface. The JTextField and JTextArea components use a PlainDocument that

simply stores a sequence of lines of plain text without any formatting.

A JEditorPane can show and edit styled text (with fonts, colors, etc.) in a variety of formats,

most notably HTML; see Section 10.4.4, “Displaying HTML with the JEditorPane,” on p. 719.

The StyledDocument interface describes the additional requirements of styles, fonts, and

colors. The HTMLDocument class implements this interface.

The subclass JTextPane of JEditorPane also holds styled text as well as embedded Swing

components. We do not cover the very complex JTextPane in this book but instead refer you

to the detailed description in Core Swing by Kim Topley. For a typical use of the JTextPane
class, have a look at the StylePad demo that is included in the JDK.

10.4.1 Change Tracking in Text Components

Most of the intricacies of the Document interface are of interest only if you implement

your own text editor. There is, however, one common use of the interface: tracking changes.

Sometimes, you may want to update a part of your user interface whenever a user edits text,

without waiting for the user to click a button. Here is a simple example. We show three

text fields for the red, blue, and green component of a color. Whenever the content of the

text fields changes, the color should be updated. Figure 10.36 shows the running application

of Listing 10.19.

Figure 10.36 Tracking changes in a text field

First of all, note that it is not a good idea to monitor keystrokes. Some keystrokes (such

as the arrow keys) don’t change the text. More importantly, the text can be updated by

mouse gestures (such as “middle mouse button pasting” in X11). Instead, you should ask

the document (and not the text component) to notify you whenever the data have changed by
installing a document listener:

 textField.getDocument().addDocumentListener(listener);

When the text has changed, one of the following DocumentListener methods is called:

 void insertUpdate(DocumentEvent event)

 void removeUpdate(DocumentEvent event)

 void changedUpdate(DocumentEvent event)

The first two methods are called when characters have been inserted or removed. The third

method is not called at all for text fields. For more complex document types, it would be

called when some other change, such as a change in formatting, has occurred. Unfortunately,

there is no single callback to tell you that the text has changed—usually you don’t much

care how it has changed. There is no adapter class, either. Thus, your document listener

must implement all three methods. Here is what we do in our sample program:

 DocumentListener listener = new DocumentListener()

 {

 public void insertUpdate(DocumentEvent event) { setColor(); }

 public void removeUpdate(DocumentEvent event) { setColor(); }

 public void changedUpdate(DocumentEvent event) {}

 }

The setColor method uses the getText method to obtain the current user input strings from

the text fields and sets the color.

Our program has one limitation. Users can type malformed input, such as "twenty", into the

text field, or leave a field blank. For now, we catch the NumberFormatException that the

parseInt method throws, and we simply don’t update the color when the text field entry

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig036

is not a number. In the next section, you will see how you can prevent the user from entering

invalid input in the first place.

NOTE:

Instead of listening to document events, you can add an action event listener to a text

field. The action listener is notified whenever the user presses the Enter key. We don’t

recommend this approach, because users don’t always remember to press Enter when they are

done entering data. If you use an action listener, you should also install a focus listener

so that you can track when the user leaves the text field.

Listing 10.19 textChange/ColorFrame.java

 1 package textChange;

 2

 3 import java.awt.*;

 4 import javax.swing.*;

 5 import javax.swing.event.*;

 6

 7 /**

 8 * A frame with three text fields to set the background color.

 9 */

10 public class ColorFrame extends JFrame

11 {

12 private JPanel panel;

13 private JTextField redField;

14 private JTextField greenField;

15 private JTextField blueField;

16

17 public ColorFrame()

18 {

19 DocumentListener listener = new DocumentListener()

20 {

21 public void insertUpdate(DocumentEvent event)

{ setColor(); }

22 public void removeUpdate(DocumentEvent event)

{ setColor(); }

23 public void changedUpdate(DocumentEvent event) {}

24 };

25

26 panel = new JPanel();

27

28 panel.add(new JLabel("Red:"));

29 redField = new JTextField("255", 3);

30 panel.add(redField);

31 redField.getDocument().addDocumentListener(listener);

32

33 panel.add(new JLabel("Green:"));

34 greenField = new JTextField("255", 3);

35 panel.add(greenField);

36 greenField.getDocument().addDocumentListener(listener);

37

38 panel.add(new JLabel("Blue:"));

39 blueField = new JTextField("255", 3);

40 panel.add(blueField);

41 blueField.getDocument().addDocumentListener(listener);

42

43 add(panel);

44 pack();

45 }

46

47 /**

48 * Set the background color to the values stored in the text fields.

49 */

50 public void setColor()

51 {

52 try

53 {

54 int red = Integer.parseInt(redField.getText().trim());

55 int green = Integer.parseInt(greenField.getText().trim());

56 int blue = Integer.parseInt(blueField.getText().trim());

57 panel.setBackground(new Color(red, green, blue));

58 }

59 catch (NumberFormatException e)

60 {

61 // don't set the color if the input can't be parsed

62 }

63 }

64 }

javax.swing.JComponent 1.2

• Dimension getPreferredSize()

• void setPreferredSize(Dimension d)

gets or sets the preferred size of this component.

javax.swing.text.Document 1.2

• int getLength()

returns the number of characters currently in the document.

• String getText(int offset, int length)

returns the text contained within the given portion of the document.

• void addDocumentListener(DocumentListener listener)

registers the listener to be notified when the document changes.

javax.swing.event.DocumentEvent 1.2

• Document getDocument()

gets the document that is the source of the event.

javax.swing.event.DocumentListener 1.2

• void changedUpdate(DocumentEvent event)

is called whenever an attribute or set of attributes changes.

• void insertUpdate(DocumentEvent event)

is called whenever an insertion into the document occurs.

• void removeUpdate(DocumentEvent event)

is called whenever a portion of the document has been removed.

10.4.2 Formatted Input Fields

In the previous example program, we wanted the program user to type numbers, not arbitrary

strings. That is, the user is allowed to enter only digits 0 through 9 and a hyphen (-).

The hyphen, if present at all, must be the first symbol of the input string.

On the surface, this input validation task sounds simple. We can install a key listener

to the text field and consume all key events that aren’t digits or a hyphen. Unfortunately,

this simple approach, although commonly recommended as a method for input validation, does

not work well in practice. First, not every combination of the valid input characters is

a valid number. For example, --3 and 3-3 aren’t valid, even though they are made up from

valid input characters. But more importantly, there are other ways of changing the text

that don’t involve typing character keys. Depending on the look-and-feel, certain key

combinations can be used to cut, copy, and paste text. For example, in the Metal

look-and-feel, the Ctrl+V key combination pastes the content of the paste buffer into the

text field. That is, we also need to monitor that the user doesn’t paste in an invalid

character. Clearly, filtering keystrokes to prevent invalid content begins to look like

a real chore. This is certainly not something that an application programmer should have

to worry about.

Perhaps surprisingly, before Java SE 1.4, there were no components for entering numeric

values. Starting with the first edition of Core Java, we supplied an implementation for

an IntTextField—a text field for entering a properly formatted integer. In every new

edition, we changed the implementation to extract whatever limited advantage we could from

the various half-baked validation schemes added in each version of Java. Finally, in Java

SE 1.4, the Swing designers faced the issues head-on and supplied a versatile

JFormattedTextField class that can be used not just for numeric input but also for dates

or even more esoteric formatted values such as IP addresses.

10.4.2.1 Integer Input

Let’s get started with an easy case: a text field for integer input.

 JFormattedTextField intField = new

JFormattedTextField(NumberFormat.getIntegerInstance());

The NumberFormat.getIntegerInstance returns a formatter object that formats integers using

the current locale. In the U.S. locale, commas are used as decimal separators, allowing

users to enter values such as 1,729. Chapter 7 explains in detail how you can select other

locales.

As with any text field, you can set the number of columns:

 intField.setColumns(6);

You can set a default value with the setValue method. That method takes an Object parameter,

so you’ll need to wrap the default int value in an Integer object:

 intField.setValue(new Integer(100));

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07

Typically, users will supply inputs in multiple text fields and then click a button to read

all values. When the button is clicked, you can get the user-supplied value with the getValue

method. That method returns an Object result, and you need to cast it into the appropriate

type. The JFormattedTextField returns an object of type Long if the user edited the value.

However, if the user made no changes, the original Integer object is returned. Therefore,

you should cast the return value to the common superclass Number:

 Number value = (Number) intField.getValue();

 int v = value.intValue();

The formatted text field is not very interesting until you consider what happens when a

user provides illegal input. That is the topic of the next section.

10.4.2.2 Behavior on Loss of Focus

Consider what happens when a user supplies input to a text field. The user types input and

eventually decides to leave the field, perhaps by clicking on another component with the

mouse. Then the text field loses focus. The I-beam cursor is no longer visible in the text
field, and keystrokes are directed toward a different component.

When the formatted text field loses focus, the formatter looks at the text string that the

user produced. If the formatter knows how to convert the text string to an object, the text

is valid. Otherwise it is invalid. You can use the isEditValid method to check whether the

current content of the text field is valid.

The default behavior on loss of focus is called “commit or revert.” If the text string

is valid, it is committed. The formatter converts it to an object. That object becomes the
current value of the field (that is, the return value of the getValue method that you saw

in the preceding section). The value is then converted back to a string, which becomes the

text string visible in the field. For example, the integer formatter recognizes the input

1729 as valid, sets the current value to new Long(1729), and converts it back into a string

with a decimal comma: 1,729.

Conversely, if the text string is invalid, the current value is not changed and the text

field reverts to the string that represents the old value. For example, if the user enters
a bad value, such as x1, the old value is restored when the text field loses focus.

NOTE:

The integer formatter regards a text string as valid if it starts with an integer. For example,

1729x is a valid string. It is converted to the number 1729, which is then formatted as

the string 1,729.

You can set other behaviors with the setFocusLostBehavior method. The “commit” behavior

is subtly different from the default. If the text string is invalid, then both the text

string and the field value stay unchanged—they are now out of sync. The “persist” behavior

is even more conservative. Even if the text string is valid, neither the text field nor

the current value are changed. You would need to call commitEdit, setValue, or setText to

bring them back in sync. Finally, there is a “revert” behavior that doesn’t ever seem

to be useful: Whenever focus is lost, the user input is disregarded, and the text string

reverts to the old value.

NOTE:

Generally, the “commit or revert” default behavior is reasonable. There is just one

potential problem. Suppose a dialog box contains a text field for an integer value. A user

enters a string " 1729", with a leading space, and clicks the OK button. The leading space

makes the number invalid, and the field value reverts to the old value. The action listener

of the OK button retrieves the field value and closes the dialog box. The user never knows

that the new value has been rejected. In this situation, it is appropriate to select the

“commit” behavior and have the OK button listener check that all field edits are valid

before closing the dialog box.

10.4.2.3 Filters

The basic functionality of formatted text fields is straightforward and sufficient for most

uses. However, you can add a couple of refinements. Perhaps you want to prevent the user

from entering nondigits altogether. You can achieve that behavior with a document filter.
Recall that in the model-view-controller architecture, the controller translates input

events into commands that modify the underlying document of the text field—that is, the

text string that is stored in a PlainDocument object. For example, whenever the controller

processes a command that causes text to be inserted into the document, it calls the “insert

string” command. The string to be inserted can be either a single character or the content

of the paste buffer. A document filter can intercept this command and modify the string

or cancel the insertion altogether. Here is the code for the insertString method of a filter

that analyzes the string to be inserted and inserts only the characters that are digits

or a – sign. (The code handles supplementary Unicode characters, as explained in Volume

I, Chapter 3. See Chapter 2 for the StringBuilder class.)

 public void insertString(FilterBypass fb, int offset, String string, AttributeSet attr)

 throws BadLocationException

 {

 StringBuilder builder = new StringBuilder(string);

 for (int i = builder.length() - 1; i >= 0; i--)

 {

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch03.html#ch03
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02

 int cp = builder.codePointAt(i);

 if (!Character.isDigit(cp) && cp != '-')

 {

 builder.deleteCharAt(i);

 if (Character.isSupplementaryCodePoint(cp))

 {

 i--;

 builder.deleteCharAt(i);

 }

 }

 }

 super.insertString(fb, offset, builder.toString(), attr);

 }

You should also override the replace method of the DocumentFilter class—it is called when

text is selected and then replaced. The implementation of the replace method is

straightforward—see Listing 10.21.

Now you need to install the document filter. Unfortunately, there is no straightforward

method to do that. You need to override the getDocumentFilter method of a formatter class

and pass an object of that formatter class to the JFormattedTextField. The integer text

field uses an InternationalFormatter that is initialized with

NumberFormat.getIntegerInstance(). Here is how you install a formatter to yield the desired

filter:

 JFormattedTextField intField = new JFormattedTextField(new

 InternationalFormatter(NumberFormat.getIntegerInstance())

 {

 private DocumentFilter filter = new IntFilter();

 protected DocumentFilter getDocumentFilter()

 {

 return filter;

 }

 });

NOTE:

The Java SE documentation states that the DocumentFilter class was invented to avoid

subclassing. Until Java SE 1.3, filtering in a text field was achieved by extending the

PlainDocument class and overriding the insertString and replace methods. Now the

PlainDocument class has a pluggable filter instead. That is a splendid improvement. It would

have been even more splendid if the filter had also been made pluggable in the formatter

class. Alas, it was not, and we must subclass the formatter.

Try out the FormatTest example program at the end of this section. The third text field

has a filter installed. You can insert only digits or the minus (-) character. Note that

you can still enter invalid strings such as "1-2-3". In general, it is impossible to avoid

all invalid strings through filtering. For example, the string "-" is invalid, but a filter

can’t reject it because it is a prefix of a legal string "-1". Even though filters can’t

give perfect protection, it makes sense to use them to reject inputs that are obviously

invalid.

TIP:

Another use for filtering is to turn all characters of a string to upper case. Such a filter

is easy to write. In the insertString and replace methods of the filter, convert the string

to be inserted to upper case and then invoke the superclass method.

10.4.2.4 Verifiers

There is another potentially useful mechanism to alert users to invalid inputs. You can

attach a verifier to any JComponent. If the component loses focus, the verifier is queried.
If the verifier reports the content of the component to be invalid, the component immediately

regains focus. The user is thus forced to fix the content before supplying other inputs.

A verifier must extend the abstract InputVerifier class and define a verify method. It is

particularly easy to define a verifier that checks formatted text fields. The isEditValid

method of the JFormattedTextField class calls the formatter and returns true if the

formatter can turn the text string into an object. Here is the verifier, attached to a

JFormattedTextField:

 intField.setInputVerifier(new InputVerifier()

 {

 public boolean verify(JComponent component)

 {

 JFormattedTextField field = (JFormattedTextField)

component;

 return field.isEditValid();

 }

 });

The fourth text field in the example program has this verifier attached. Try entering an

invalid number (such as x1729) and press the Tab key or click with the mouse on another

text field. Note that the field immediately regains focus. However, if you click the OK

button, the action listener calls getValue, which reports the last good value.

A verifier is not entirely foolproof. If you click on a button, the button notifies its

action listeners before an invalid component regains focus. The action listeners can then

get an invalid result from the component that failed verification. There is a reason for

this behavior: Users might want to click a Cancel button without first having to fix an

invalid input.

10.4.2.5 Other Standard Formatters

Besides the integer formatter, the JFormattedTextField supports several other formatters.

The NumberFormat class has static methods

 getNumberInstance

 getCurrencyInstance

 getPercentInstance

that yield formatters of floating-point numbers, currency values, and percentages. For

example, you can obtain a text field for the input of currency values by calling

 JFormattedTextField currencyField = new

JFormattedTextField(NumberFormat.getCurrencyInstance());

To edit dates and times, call one of the static methods of the DateFormat class:

 getDateInstance

 getTimeInstance

 getDateTimeInstance

For example,

 JFormattedTextField dateField = new

JFormattedTextField(DateFormat.getDateInstance());

This field edits a date in the default or “medium” format such as

 Aug 5, 2007

You can instead choose a “short” format such as

 8/5/07

by calling

 DateFormat.getDateInstance(DateFormat.SHORT)

NOTE:

By default, the date format is “lenient.” That is, an invalid date such as February 31,

2002, is rolled over to the next valid date, March 3, 2002. That behavior might be surprising

to your users. In that case, call setLenient(false) on the DateFormat object.

The DefaultFormatter can format objects of any class that has a constructor with a string

parameter and a matching toString method. For example, the URL class has a URL(String)

constructor that can be used to construct a URL from a string, such as

 URL url = new URL("http://horstmann.com");

Therefore, you can use the DefaultFormatter to format URL objects. The formatter calls

toString on the field value to initialize the field text. When the field loses focus, the

formatter constructs a new object of the same class as the current value, using the

constructor with a String parameter. If that constructor throws an exception, the edit is

not valid. You can try that out in the example program by entering a URL that does not start

with a prefix such as "http:".

NOTE:

By default, the DefaultFormatter is in overwrite mode. That is different from the other
formatters and not very useful. Call setOverwriteMode(false) to turn off overwrite mode.

Finally, the MaskFormatter is useful for fixed-size patterns that contain some constant

and some variable characters. For example, Social Security numbers (such as 078-05-1120)

can be formatted with a

 new MaskFormatter("###-##-####")

The # symbol denotes a single digit. Table 10.3 shows the symbols that you can use in a

mask formatter.

Table 10.3 MaskFormatter Symbols

http://horstmann.com/
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10tab03

You can restrict the characters that can be typed into the field by calling one of the methods

of the MaskFormatter class:

 setValidCharacters

 setInvalidCharacters

For example, to read in a letter grade (such as A+ or F), you could use

 MaskFormatter formatter = new MaskFormatter("U*");

 formatter.setValidCharacters("ABCDF+- ");

However, there is no way of specifying that the second character cannot be a letter.

Note that the string formatted by the mask formatter has exactly the same length as the

pattern. If the user erases characters during editing, they are replaced with the

placeholder character. The default placeholder character is a space, but you can change
it with the setPlaceholderCharacter method, for example,

 formatter.setPlaceholderCharacter('0');

By default, a mask formatter is in overtype mode, which is quite intuitive—try it out in

the example program. Also, note that the caret position jumps over the fixed characters

in the mask.

The mask formatter is very effective for rigid patterns such as Social Security numbers

or American telephone numbers. However, note that no variation at all is permitted in the

mask pattern. For example, you cannot use a mask formatter for international telephone

numbers that have a variable number of digits.

10.4.2.6 Custom Formatters

If none of the standard formatters is appropriate, it is fairly easy to define your own

formatter. Consider 4-byte IP addresses such as

 130.65.86.66

You can’t use a MaskFormatter because each byte might be represented by one, two, or three

digits. Also, we want to check in the formatter that each byte’s value is at most 255.

To define your own formatter, extend the DefaultFormatter class and override the methods

 String valueToString(Object value)

 Object stringToValue(String text)

The first method turns the field value into the string that is displayed in the text field.

The second method parses the text that the user typed and turns it back into an object.

If either method detects an error, it should throw a ParseException.

In our example program, we store an IP address in a byte[] array of length 4. The

valueToString method forms a string that separates the bytes with periods. Note that byte

values are signed quantities between –128 and 127. (For example, in an IP address

130.65.86.66, the first octet is actually the byte with value –126.) To turn negative byte

values into unsigned integer values, add 256.

 public String valueToString(Object value) throws ParseException

 {

 if (!(value instanceof byte[]))

 throw new ParseException("Not a byte[]", 0);

 byte[] a = (byte[]) value;

 if (a.length != 4)

 throw new ParseException("Length != 4", 0);

 StringBuilder builder = new StringBuilder();

 for (int i = 0; i < 4; i++)

 {

 int b = a[i];

 if (b < 0) b += 256;

 builder.append(String.valueOf(b));

 if (i < 3) builder.append('.');

 }

 return builder.toString();

 }

Conversely, the stringToValue method parses the string and produces a byte[] object if the

string is valid. If not, it throws a ParseException.

 public Object stringToValue(String text) throws ParseException

 {

 StringTokenizer tokenizer = new StringTokenizer(text, ".");

 byte[] a = new byte[4];

 for (int i = 0; i < 4; i++)

 {

 int b = 0;

 try

 {

 b = Integer.parseInt(tokenizer.nextToken());

 }

 catch (NumberFormatException e)

 {

 throw new ParseException("Not an integer", 0);

 }

 if (b < 0 || b >= 256)

 throw new ParseException("Byte out of range", 0);

 a[i] = (byte) b;

 }

 return a;

 }

Try out the IP address field in the sample program. If you enter an invalid address, the

field reverts to the last valid address. The complete formatter is shown in Listing 10.22.

The program in Listing 10.20 shows various formatted text fields in action (see Figure 10.37).

Click the OK button to retrieve the current values from the fields.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig037

Figure 10.37 The FormatTest program

NOTE:

The “Swing Connection” online newsletter has a short article describing a formatter that

matches any regular expression. See www.oracle.com/technetwork/java/reftf-138955.html.

Listing 10.20 textFormat/FormatTestFrame.java

 1 package textFormat;

 2

 3 import java.awt.*;

 4 import java.net.*;

 5 import java.text.*;

 6 import java.util.*;

 7

 8 import javax.swing.*;

 9 import javax.swing.text.*;

10

11 /**

12 * A frame with a collection of formatted text fields and a button that displays

the field values.

13 */

14 public class FormatTestFrame extends JFrame

15 {

16 private DocumentFilter filter = new IntFilter();

17 private JButton okButton;

http://www.oracle.com/technetwork/java/reftf-138955.html

18 private JPanel mainPanel;

19

20 public FormatTestFrame()

21 {

22 JPanel buttonPanel = new JPanel();

23 okButton = new JButton("Ok");

24 buttonPanel.add(okButton);

25 add(buttonPanel, BorderLayout.SOUTH);

26

27 mainPanel = new JPanel();

28 mainPanel.setLayout(new GridLayout(0, 3));

29 add(mainPanel, BorderLayout.CENTER);

30

31 JFormattedTextField intField = new

JFormattedTextField(NumberFormat.getIntegerInstance());

32 intField.setValue(new Integer(100));

33 addRow("Number:", intField);

34

35 JFormattedTextField intField2 = new

JFormattedTextField(NumberFormat.getIntegerInstance());

36 intField2.setValue(new Integer(100));

37 intField2.setFocusLostBehavior(JFormattedTextField.COMMIT);

38 addRow("Number (Commit behavior):", intField2);

39

40 JFormattedTextField intField3 = new JFormattedTextField(new

InternationalFormatter(

41 NumberFormat.getIntegerInstance())

42 {

43 protected DocumentFilter getDocumentFilter()

44 {

45 return filter;

46 }

47

48 });

49 intField3.setValue(new Integer(100));

50 addRow("Filtered Number", intField3);

51

52 JFormattedTextField intField4 = new

JFormattedTextField(NumberFormat.getIntegerInstance());

53 intField4.setValue(new Integer(100));

54 intField4.setInputVerifier(new InputVerifier()

55 {

56 public boolean verify(JComponent component)

57 {

58 JFormattedTextField field = (JFormattedTextField)

component;

59 return field.isEditValid();

60 }

61 });

62 addRow("Verified Number:", intField4);

63

64 JFormattedTextField currencyField = new

JFormattedTextField(NumberFormat

65 .getCurrencyInstance());

66 currencyField.setValue(new Double(10));

67 addRow("Currency:", currencyField);

68

69 JFormattedTextField dateField = new

JFormattedTextField(DateFormat.getDateInstance());

70 dateField.setValue(new Date());

71 addRow("Date (default):", dateField);

72

73 DateFormat format = DateFormat.getDateInstance(DateFormat.SHORT);

74 format.setLenient(false);

75 JFormattedTextField dateField2 = new JFormattedTextField(format);

76 dateField2.setValue(new Date());

77 addRow("Date (short, not lenient):", dateField2);

78

79 try

80 {

81 DefaultFormatter formatter = new DefaultFormatter();

82 formatter.setOverwriteMode(false);

83 JFormattedTextField urlField = new

JFormattedTextField(formatter);

84 urlField.setValue(new URL("http://java.sun.com"));

85 addRow("URL:", urlField);

86 }

87 catch (MalformedURLException ex)

88 {

89 ex.printStackTrace();

90 }

91

92 try

93 {

94 MaskFormatter formatter = new MaskFormatter("###-##-####");

95 formatter.setPlaceholderCharacter('0');

96 JFormattedTextField ssnField = new

JFormattedTextField(formatter);

http://java.sun.com/

97 ssnField.setValue("078-05-1120");

98 addRow("SSN Mask:", ssnField);

99 }

100 catch (ParseException ex)

101 {

102 ex.printStackTrace();

103 }

104

105 JFormattedTextField ipField = new JFormattedTextField(new

IPAddressFormatter());

106 ipField.setValue(new byte[] { (byte) 130, 65, 86, 66 });

107 addRow("IP Address:", ipField);

108 pack();

109 }

110

111 /**

112 * Adds a row to the main panel.

113 * @param labelText the label of the field

114 * @param field the sample field

115 */

116 public void addRow(String labelText, final JFormattedTextField field)

117 {

118 mainPanel.add(new JLabel(labelText));

119 mainPanel.add(field);

120 final JLabel valueLabel = new JLabel();

121 mainPanel.add(valueLabel);

122 okButton.addActionListener(event ->

123 {

124 Object value = field.getValue();

125 Class<?> cl = value.getClass();

126 String text = null;

127 if (cl.isArray())

128 {

129 if (cl.getComponentType().isPrimitive())

130 {

131 try

132 {

133 text =

Arrays.class.getMethod("toString", cl).invoke(null, value)

134 .toString();

135 }

136 catch (ReflectiveOperationException ex)

137 {

138 // ignore reflection exceptions

139 }

140 }

141 else text = Arrays.toString((Object[]) value);

142 }

143 else text = value.toString();

144 valueLabel.setText(text);

145 });

146 }

147 }

148

 149

150

151

Listing 10.21 textFormat/IntFilter.java

 1 package textFormat;

 2

 3 import javax.swing.text.*;

 4

 5 /**

 6 * A filter that restricts input to digits and a '-' sign.

 7 */

 8 public class IntFilter extends DocumentFilter

 9 {

10 public void insertString(FilterBypass fb, int offset, String string,

AttributeSet attr)

11 throws BadLocationException

12 {

13 StringBuilder builder = new StringBuilder(string);

14 for (int i = builder.length() - 1; i >= 0; i--)

15 {

16 int cp = builder.codePointAt(i);

17 if (!Character.isDigit(cp) && cp != '-')

18 {

19 builder.deleteCharAt(i);

20 if (Character.isSupplementaryCodePoint(cp))

21 {

22 i--;

23 builder.deleteCharAt(i);

24 }

25 }

26 }

27 super.insertString(fb, offset, builder.toString(), attr);

28 }

29

30 public void replace(FilterBypass fb, int offset, int length, String string,

AttributeSet attr)

31 throws BadLocationException

32 {

33 if (string != null)

34 {

35 StringBuilder builder = new StringBuilder(string);

36 for (int i = builder.length() - 1; i >= 0; i--)

37 {

38 int cp = builder.codePointAt(i);

39 if (!Character.isDigit(cp) && cp != '-')

40 {

41 builder.deleteCharAt(i);

42 if (Character.isSupplementaryCodePoint(cp))

43 {

44 i--;

45 builder.deleteCharAt(i);

46 }

47 }

48 }

49 string = builder.toString();

50 }

51 super.replace(fb, offset, length, string, attr);

52 }

53 }

Listing 10.22 textFormat/IPAddressFormatter.java

 1 package textFormat;

 2

 3 import java.text.*;

 4 import java.util.*;

 5 import javax.swing.text.*;

 6

 7 /**

 8 * A formatter for 4-byte IP addresses of the form a.b.c.d

 9 */

10 public class IPAddressFormatter extends DefaultFormatter

11 {

12 public String valueToString(Object value) throws ParseException

13 {

14 if (!(value instanceof byte[])) throw new ParseException("Not a

byte[]", 0);

15 byte[] a = (byte[]) value;

16 if (a.length != 4) throw new ParseException("Length != 4", 0);

17 StringBuilder builder = new StringBuilder();

18 for (int i = 0; i < 4; i++)

19 {

20 int b = a[i];

21 if (b < 0) b += 256;

22 builder.append(String.valueOf(b));

23 if (i < 3) builder.append('.');

24 }

25 return builder.toString();

26 }

27

28 public Object stringToValue(String text) throws ParseException

29 {

30 StringTokenizer tokenizer = new StringTokenizer(text, ".");

31 byte[] a = new byte[4];

32 for (int i = 0; i < 4; i++)

33 {

34 int b = 0;

35 if (!tokenizer.hasMoreTokens()) throw new

ParseException("Too few bytes", 0);

36 try

37 {

38 b = Integer.parseInt(tokenizer.nextToken());

39 }

40 catch (NumberFormatException e)

41 {

42 throw new ParseException("Not an integer", 0);

43 }

44 if (b < 0 || b >= 256) throw new ParseException("Byte out of

range", 0);

45 a[i] = (byte) b;

46 }

47 if (tokenizer.hasMoreTokens()) throw new ParseException("Too

many bytes", 0);

48 return a;

49 }

50 }

javax.swing.JFormattedTextField 1.4

• JFormattedTextField(Format fmt)

constructs a text field that uses the specified format.

• JFormattedTextField(JFormattedTextField.AbstractFormatter formatter)

constructs a text field that uses the specified formatter. Note that DefaultFormatter and

InternationalFormatter are subclasses of JFormattedTextField.AbstractFormatter.

• Object getValue()

returns the current valid value of the field. Note that this might not correspond to the

string being edited.

• void setValue(Object value)

attempts to set the value of the given object.The attempt fails if the formatter cannot

convert the object to a string.

• void commitEdit()

attempts to set the valid value of the field from the edited string.The attempt might fail

if the formatter cannot convert the string.

• boolean isEditValid()

checks whether the edited string represents a valid value.

• int getFocusLostBehavior()

• void setFocusLostBehavior(int behavior)

gets or sets the “focus lost” behavior. Legal values for behavior are the constants

COMMIT_OR_REVERT, REVERT, COMMIT, and PERSIST of the JFormattedTextField class.

javax.swing.JFormattedTextField.AbstractFormatter 1.4

• abstract String valueToString(Object value)

converts a value to an editable string.Throws a ParseException if value is not appropriate

for this formatter.

• abstract Object stringToValue(String s)

converts a string to a value. Throws a ParseException if s is not in the appropriate format.

• DocumentFilter getDocumentFilter()

override this method to provide a document filter that restricts inputs into the text field.

A return value of null indicates that no filtering is needed.

javax.swing.text.DefaultFormatter 1.3

• boolean getOverwriteMode()

• void setOverwriteMode(boolean mode)

gets or sets the overwrite mode. If mode is true, new characters overwrite existing

characters when editing text.

javax.swing.text.DocumentFilter 1.4

• void insertString(DocumentFilter.FilterBypass bypass, int offset, String text,

AttributeSet attrib)

is invoked before a string is inserted into a document.You can override the method and modify

the string. You can disable insertion by not calling super.insertString or by calling bypass

methods to modify the document without filtering.

• void replace(DocumentFilter.FilterBypass bypass, int offset, int length, String text,

AttributeSet attrib)

is invoked before a part of a document is replaced with a new string.You can override the

method and modify the string. You can disable replacement by not calling super.replace or

by calling bypass methods to modify the document without filtering.

• void remove(DocumentFilter.FilterBypass bypass, int offset, int length)

is invoked before a part of a document is removed. Get the document by calling

bypass.getDocument() if you need to analyze the effect of the removal.

javax.swing.text.MaskFormatter 1.4

• MaskFormatter(String mask)

constructs a mask formatter with the given mask. See Table 10.3 for the symbols in a mask.

• String getValidCharacters()

• void setValidCharacters(String characters)

gets or sets the valid editing characters. Only the characters in the given string are

accepted for the variable parts of the mask.

• String getInvalidCharacters()

• void setInvalidCharacters(String characters)

gets or sets the invalid editing characters. None of the characters in the given string

are accepted as input.

• char getPlaceholderCharacter()

• void setPlaceholderCharacter(char ch)

gets or sets the placeholder character used for the mask’s variable characters that the

user has not yet supplied. The default placeholder character is a space.

• String getPlaceholder()

• void setPlaceholder(String s)

gets or sets the placeholder string. Its tail end is used if the user has not supplied all

variable characters in the mask. If it is null or shorter than the mask, the placeholder

character fills remaining inputs.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10tab03

• boolean getValueContainsLiteralCharacters()

• void setValueContainsLiteralCharacters(boolean b)

gets or sets the “value contains literal characters” flag. If this flag is true, the field

value contains the literal (nonvariable) parts of the mask. If it is false, the literal

characters are removed. The default is true.

10.4.3 The JSpinner Component

A JSpinner is a component that contains a text field and two small buttons on the side.

When the buttons are clicked, the text field value is incremented or decremented (see Figure

10.38).

Figure 10.38 Several variations of the JSpinner component

The values in the spinner can be numbers, dates, values from a list, or, in the most general

case, any sequence of values for which predecessors and successors can be determined. The

JSpinner class defines standard data models for the first three cases. You can define your

own data model to describe arbitrary sequences.

By default, a spinner manages an integer, and the buttons increment or decrement it by 1.

You can get the current value by calling the getValue method. That method returns an Object.

Cast it to an Integer and retrieve the wrapped value.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig038
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig038

 JSpinner defaultSpinner = new JSpinner();

 ...

 int value = (Integer) defaultSpinner.getValue();

You can change the increment to a value other than 1, and you can supply the lower and upper

bounds. Here is a spinner with the starting value of 5 and the increment of 0.5, bounded

between 0 and 10:

 JSpinner boundedSpinner = new JSpinner(new SpinnerNumberModel(5, 0, 10, 0.5));

There are two SpinnerNumberModel constructors, one with only int parameters and one with

double parameters. If any of the parameters is a floating-point number, the second

constructor is used. It sets the spinner value to a Double object.

Spinners aren’t restricted to numeric values. You can have a spinner iterate through any

collection of values. Simply pass a SpinnerListModel to the JSpinner constructor. You can

construct a SpinnerListModel from an array or a class implementing the List interface (such

as an ArrayList). In our sample program, we display a spinner control with all available

font names.

 String[] fonts =

GraphicsEnvironment.getLocalGraphicsEnvironment().getAvailableFontFamilyNames();

 JSpinner listSpinner = new JSpinner(new SpinnerListModel(fonts));

However, we found that the direction of the iteration was mildly confusing because it is

opposite to that of a combo box. In a combo box, higher values are below lower values, so
you would expect the downward arrow to navigate toward higher values. But the spinner

increments the array index so that the upward arrow yields higher values. There is no

provision for reversing the traversal order in the SpinnerListModel, but an impromptu

anonymous subclass yields the desired result:

 JSpinner reverseListSpinner = new JSpinner(

 new SpinnerListModel(fonts)

 {

 public Object getNextValue()

 {

 return super.getPreviousValue();

 }

 public Object getPreviousValue()

 {

 return super.getNextValue();

 }

 });

Try both versions and see which you find more intuitive.

Another good use for a spinner is for a date that the user can increment or decrement. You

can get such a spinner, initialized with today’s date, with the call

 JSpinner dateSpinner = new JSpinner(new SpinnerDateModel());

However, if you look carefully at Figure 10.38, you will see that the spinner text shows

both date and time, such as

 8/05/07 9:05 PM

The time doesn’t make any sense for a date picker. It turns out to be somewhat difficult

to make the spinner show just the date. Here is the magic incantation:

 JSpinner betterDateSpinner = new JSpinner(new SpinnerDateModel());

 String pattern = ((SimpleDateFormat) DateFormat.getDateInstance()).toPattern();

 betterDateSpinner.setEditor(new JSpinner.DateEditor(betterDateSpinner, pattern));

Using the same approach, you can also make a time picker.

 JSpinner timeSpinner = new JSpinner(new SpinnerDateModel());

 pattern = ((SimpleDateFormat)

DateFormat.getTimeInstance(DateFormat.SHORT)).toPattern();

 timeSpinner.setEditor(new JSpinner.DateEditor(timeSpinner, pattern));

You can display arbitrary sequences in a spinner by defining your own spinner model. In

our sample program, we have a spinner that iterates through all permutations of the string

“meat”. You can get to “mate”, “meta”, “team”, and the rest of the total of 24

permutations by clicking the spinner buttons.

When you define your own model, you should extend the AbstractSpinnerModel class and define

the following four methods:

 Object getValue()

 void setValue(Object value)

 Object getNextValue()

 Object getPreviousValue()

The getValue method returns the value stored by the model. The setValue method sets a new

value. It should throw an IllegalArgumentException if the new value is not appropriate.

CAUTION

The setValue method must call the fireStateChanged method after setting the new value.

Otherwise, the spinner field won’t be updated.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig038

The getNextValue and getPreviousValue methods return the values that should come after or

before the current value, or null if the end of the traversal has been reached.

CAUTION

The getNextValue and getPreviousValue methods should not change the current value. When
a user clicks on the upward arrow of the spinner, the getNextValue method is called. If

the return value is not null, it is set by a call to setValue.

In the sample program, we use a standard algorithm to determine the next and previous

permutations (see Listing 10.24). The details of the algorithm are not important.

Listing 10.23 shows how to generate the various spinner types. Click the OK button to see

the spinner values.

Listing 10.23 spinner/SpinnerFrame.java

 1 package spinner;

 2

 3 import java.awt.*;

 4 import java.awt.event.*;

 5 import java.text.*;

 6 import javax.swing.*;

 7

 8 /**

 9 * A frame with a panel that contains several spinners and a button that displays

the spinner

10 * values.

11 */

12 public class SpinnerFrame extends JFrame

13 {

14 private JPanel mainPanel;

15 private JButton okButton;

16

17 public SpinnerFrame()

18 {

19 JPanel buttonPanel = new JPanel();

20 okButton = new JButton("Ok");

21 buttonPanel.add(okButton);

22 add(buttonPanel, BorderLayout.SOUTH);

23

24 mainPanel = new JPanel();

25 mainPanel.setLayout(new GridLayout(0, 3));

26 add(mainPanel, BorderLayout.CENTER);

27

28 JSpinner defaultSpinner = new JSpinner();

29 addRow("Default", defaultSpinner);

30

31 JSpinner boundedSpinner = new JSpinner(new SpinnerNumberModel(5, 0, 10,

0.5));

32 addRow("Bounded", boundedSpinner);

33

34 String[] fonts = GraphicsEnvironment.getLocalGraphicsEnvironment()

35 .getAvailableFontFamilyNames();

36

37 JSpinner listSpinner = new JSpinner(new SpinnerListModel(fonts));

38 addRow("List", listSpinner);

39

40 JSpinner reverseListSpinner = new JSpinner(new SpinnerListModel(fonts)

41 {

42 public Object getNextValue() { return

super.getPreviousValue(); }

43 public Object getPreviousValue() { return

super.getNextValue(); }

44 });

45 addRow("Reverse List", reverseListSpinner);

46

47 JSpinner dateSpinner = new JSpinner(new SpinnerDateModel());

48 addRow("Date", dateSpinner);

49

50 JSpinner betterDateSpinner = new JSpinner(new SpinnerDateModel());

51 String pattern = ((SimpleDateFormat)

DateFormat.getDateInstance()).toPattern();

52 betterDateSpinner.setEditor(new

JSpinner.DateEditor(betterDateSpinner, pattern));

53 addRow("Better Date", betterDateSpinner);

54

55 JSpinner timeSpinner = new JSpinner(new SpinnerDateModel());

56 pattern = ((SimpleDateFormat)

DateFormat.getTimeInstance(DateFormat.SHORT)).toPattern();

57 timeSpinner.setEditor(new JSpinner.DateEditor(timeSpinner,

pattern));

58 addRow("Time", timeSpinner);

59

60 JSpinner permSpinner = new JSpinner(new

PermutationSpinnerModel("meat"));

61 addRow("Word permutations", permSpinner);

62 pack();

63 }

64

65 /**

66 * Adds a row to the main panel.

67 * @param labelText the label of the spinner

68 * @param spinner the sample spinner

69 */

70 public void addRow(String labelText, final JSpinner spinner)

71 {

72 mainPanel.add(new JLabel(labelText));

73 mainPanel.add(spinner);

74 final JLabel valueLabel = new JLabel();

75 mainPanel.add(valueLabel);

76 okButton.addActionListener(event ->

77 {

78 Object value = spinner.getValue();

79 valueLabel.setText(value.toString());

80 });

81 }

82 }

Listing 10.24 spinner/PermutationSpinnerModel.java

 1 package spinner;

 2

 3 import javax.swing.*;

 4

 5 /**

 6 * A model that dynamically generates word permutations.

 7 */

 8 public class PermutationSpinnerModel extends AbstractSpinnerModel

 9 {

10 private String word;

11

12 /**

13 * Constructs the model.

14 * @param w the word to permute

15 */

16 public PermutationSpinnerModel(String w)

17 {

18 word = w;

19 }

20

21 public Object getValue()

22 {

23 return word;

24 }

25

26 public void setValue(Object value)

27 {

28 if (!(value instanceof String)) throw new IllegalArgumentException();

29 word = (String) value;

30 fireStateChanged();

31 }

32

33 public Object getNextValue()

34 {

35 int[] codePoints = toCodePointArray(word);

36 for (int i = codePoints.length - 1; i > 0; i--)

37 {

38 if (codePoints[i - 1] < codePoints[i])

39 {

40 int j = codePoints.length - 1;

41 while (codePoints[i - 1] > codePoints[j])

42 j--;

43 swap(codePoints, i - 1, j);

44 reverse(codePoints, i, codePoints.length - 1);

45 return new String(codePoints, 0, codePoints.length);

46 }

47 }

48 reverse(codePoints, 0, codePoints.length - 1);

49 return new String(codePoints, 0, codePoints.length);

50 }

51

52 public Object getPreviousValue()

53 {

54 int[] codePoints = toCodePointArray(word);

55 for (int i = codePoints.length - 1; i > 0; i--)

56 {

57 if (codePoints[i - 1] > codePoints[i])

58 {

59 int j = codePoints.length - 1;

60 while (codePoints[i - 1] < codePoints[j])

61 j--;

62 swap(codePoints, i - 1, j);

63 reverse(codePoints, i, codePoints.length - 1);

64 return new String(codePoints, 0, codePoints.length);

65 }

66 }

67 reverse(codePoints, 0, codePoints.length - 1);

68 return new String(codePoints, 0, codePoints.length);

69 }

70

71 private static int[] toCodePointArray(String str)

72 {

73 int[] codePoints = new int[str.codePointCount(0, str.length())];

74 for (int i = 0, j = 0; i < str.length(); i++, j++)

75 {

76 int cp = str.codePointAt(i);

77 if (Character.isSupplementaryCodePoint(cp)) i++;

78 codePoints[j] = cp;

79 }

80 return codePoints;

81 }

82

83 private static void swap(int[] a, int i, int j)

84 {

85 int temp = a[i];

86 a[i] = a[j];

87 a[j] = temp;

88 }

89

90 private static void reverse(int[] a, int i, int j)

91 {

92 while (i < j)

93 {

94 swap(a, i, j);

95 i++;

96 j--;

97 }

98 }

99 }

javax.swing.JSpinner 1.4

• JSpinner()

constructs a spinner that edits an integer with starting value 0, increment 1, and no bounds.

• JSpinner(SpinnerModel model)

constructs a spinner that uses the given data model.

• Object getValue()

gets the current value of the spinner.

• void setValue(Object value)

attempts to set the value of the spinner. Throws an IllegalArgumentException if the model

does not accept the value.

• void setEditor(JComponent editor)

sets the component used for editing the spinner value.

javax.swing.SpinnerNumberModel 1.4

• SpinnerNumberModel(int initval, int minimum, int maximum, int stepSize)

• SpinnerNumberModel(double initval, double minimum, double maximum, double stepSize)

these constructors yield number models that manage an Integer or Double value. Use the

MIN_VALUE and MAX_VALUE constants of the Integer and Double classes for unbounded values.

javax.swing.SpinnerListModel 1.4

• SpinnerListModel(Object[] values)

• SpinnerListModel(List values)

these constructors yield models that select a value from among the given values.

javax.swing.SpinnerDateModel 1.4

• SpinnerDateModel()

constructs a date model with today’s date as the initial value, no lower or upper bounds,

and an increment of Calendar.DAY_OF_MONTH.

• SpinnerDateModel(Date initval, Comparable minimum, Comparable maximum, int step)

java.text.SimpleDateFormat 1.1

• String toPattern() 1.2

gets the editing pattern for this date formatter. A typical pattern is "yyyy-MM-dd". See

the Java SE documentation for more details about the pattern.

javax.swing.JSpinner.DateEditor 1.4

• DateEditor(JSpinner spinner, String pattern)

constructs a date editor for a spinner.

javax.swing.AbstractSpinnerModel 1.4

• Object getValue()

gets the current value of the model.

• void setValue(Object value)

attempts to set a new value for the model. Throws an IllegalArgumentException if the value

is not acceptable.When overriding this method, you should call fireStateChanged after

setting the new value.

• Object getNextValue()

• Object getPreviousValue()

computes (but does not set) the next or previous value in the sequence that this model

defines.

10.4.4 Displaying HTML with the JEditorPane

Unlike the text components discussed up to this point, the JEditorPane can display and edit

styled text, in particular HTML and RTF. (RTF is the “Rich Text Format” used by a number

of Microsoft applications for document interchange. It is a poorly documented format that

doesn’t work well even between Microsoft’s own applications. We do not cover RTF

capabilities in this book.)

Frankly, the JEditorPane is not as functional as one would like it to be. The HTML renderer

can display simple files, but it chokes at many complex pages that you typically find on

the Web. The HTML editor is limited and unstable.

A plausible application for the JEditorPane is to display program help in HTML format. By

having control over the help files you provide, you can stay away from features that the

JEditorPane does not display well.

NOTE:

For more information on an industrial-strength help system, check out JavaHelp at

http://javahelp.java.net.

The program in Listing 10.25 contains an editor pane that shows the contents of an HTML

page. Type a URL into the text field. The URL must start with http: or file:. Then, click

the Load button. The selected HTML page is displayed in the editor pane (see Figure 10.39).

http://javahelp.java.net/
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig039

Figure 10.39 The editor pane displaying an HTML page

The hyperlinks are active: If you click a link, the application loads it. The Back button

returns to the previous page.

This program is in fact a very simple browser. Of course, it does not have any of the comfort

features, such as page caching or bookmark lists, that you would expect from a commercial

browser. The editor pane does not even display applets!

If you click the Editable checkbox, the editor pane becomes editable. You can type in text

and use the Backspace key to delete text. The component also understands the Ctrl+X, Ctrl+C,

and Ctrl+V shortcuts for cut, copy, and paste. However, you would have to do quite a bit

of programming to add support for fonts and formatting.

When the component is editable, hyperlinks are not active. Also, with some web pages you

can see JavaScript commands, comments, and other tags when edit mode is turned on (see Figure

10.40). The example program lets you investigate the editing feature, but we recommend that

you omit it in your programs.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig040
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig040

Figure 10.40 The editor pane in edit mode

TIP:

By default, the JEditorPane is in edit mode. You should call editorPane.setEditable(false)

to turn it off.

The features of the editor pane that you saw in the example program are easy to use. Use

the setPage method to load a new document. For example,

 JEditorPane editorPane = new JEditorPane();

 editorPane.setPage(url);

The parameter is either a string or a URL object. The JEditorPane class extends the

JTextComponent class. Therefore, you can call the setText method as well—it simply displays

plain text.

TIP:

The API documentation is unclear about whether setPage loads the new document in a separate

thread (which is generally what you want—the JEditorPane is no speed demon). However, you

can force loading in a separate thread with the following incantation:

 AbstractDocument doc = (AbstractDocument) editorPane.getDocument();

 doc.setAsynchronousLoadPriority(0);

To listen to hyperlink clicks, add a HyperlinkListener. The HyperlinkListener interface

has a single method, hyperlinkUpdate, that is called when the user moves over or clicks

on a link. The method has a parameter of type HyperlinkEvent.

You need to call the getEventType method to find out what kind of event occurred. There

are three possible return values:

 HyperlinkEvent.EventType.ACTIVATED

 HyperlinkEvent.EventType.ENTERED

 HyperlinkEvent.EventType.EXITED

The first value indicates that the user clicked on the hyperlink. In that case, you typically

want to open the new link. You can use the second and third values to give some visual feedback,

such as a tooltip, when the mouse hovers over the link.

NOTE:

It is a complete mystery why there aren’t three separate methods to handle activation,

entry, and exit in the HyperlinkListener interface.

The getURL method of the HyperlinkEvent class returns the URL of the hyperlink. For example,

here is how you can install a hyperlink listener that follows the links that a user activates:

 editorPane.addHyperlinkListener(event ->

 {

 if (event.getEventType() == HyperlinkEvent.EventType.ACTIVATED)

 {

 try

 {

 editorPane.setPage(event.getURL());

 }

 catch (IOException e)

 {

 editorPane.setText("Exception: " + e);

 }

 }

 });

The event handler simply gets the URL and updates the editor pane. The setPage method can

throw an IOException. In that case, we display an error message as plain text.

The program in Listing 10.25 shows all the features that you need to put together an HTML

help system. Under the hood, the JEditorPane is even more complex than the tree and table

components. However, if you don’t need to write a text editor or a renderer of a custom

text format, that complexity is hidden from you.

Listing 10.25 editorPane/EditorPaneFrame.java

 1 package editorPane;

 2

 3 import java.awt.*;

 4 import java.awt.event.*;

 5 import java.io.*;

 6 import java.util.*;

 7 import javax.swing.*;

 8 import javax.swing.event.*;

 9

10 /**

11 * This frame contains an editor pane, a text field and button to enter a URL and

load a document,

12 * and a Back button to return to a previously loaded document.

13 */

14 public class EditorPaneFrame extends JFrame

15 {

16 private static final int DEFAULT_WIDTH = 600;

17 private static final int DEFAULT_HEIGHT = 400;

18

19 public EditorPaneFrame()

20 {

21 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

22

23 final Stack<String> urlStack = new Stack<>();

24 final JEditorPane editorPane = new JEditorPane();

25 final JTextField url = new JTextField(30);

26

27 // set up hyperlink listener

28

29 editorPane.setEditable(false);

30 editorPane.addHyperlinkListener(event ->

31 {

32 if (event.getEventType() ==

HyperlinkEvent.EventType.ACTIVATED)

33 {

34 try

35 {

36 // remember URL for back button

37 urlStack.push(event.getURL().toString());

38 // show URL in text field

39 url.setText(event.getURL().toString());

40 editorPane.setPage(event.getURL());

41 }

42 catch (IOException e)

43 {

44 editorPane.setText("Exception: " + e);

45 }

46 }

47 });

48

49 // set up checkbox for toggling edit mode

50

51 final JCheckBox editable = new JCheckBox();

52 editable.addActionListener(event ->

53 editorPane.setEditable(editable.isSelected()));

54

55 // set up load button for loading URL

56

57 ActionListener listener = event ->

58 {

59 try

60 {

61 // remember URL for back button

62 urlStack.push(url.getText());

63 editorPane.setPage(url.getText());

64 }

65 catch (IOException e)

66 {

67 editorPane.setText("Exception: " + e);

68 }

69 };

70

71 JButton loadButton = new JButton("Load");

72 loadButton.addActionListener(listener);

73 url.addActionListener(listener);

74

75 // set up back button and button action

76

77 JButton backButton = new JButton("Back");

78 backButton.addActionListener(event ->

79 {

80 if (urlStack.size() <= 1) return;

81 try

82 {

83 // get URL from back button

84 urlStack.pop();

85 // show URL in text field

86 String urlString = urlStack.peek();

87 url.setText(urlString);

88 editorPane.setPage(urlString);

89 }

90 catch (IOException e)

91 {

92 editorPane.setText("Exception: " + e);

93 }

94 });

95

96 add(new JScrollPane(editorPane), BorderLayout.CENTER);

97

98 // put all control components in a panel

99

100 JPanel panel = new JPanel();

101 panel.add(new JLabel("URL"));

102 panel.add(url);

103 panel.add(loadButton);

104 panel.add(backButton);

105 panel.add(new JLabel("Editable"));

106 panel.add(editable);

107

108 add(panel, BorderLayout.SOUTH);

109 }

110 }

javax.swing.JEditorPane 1.2

• void setPage(URL url)

loads the page from url into the editor pane.

• void addHyperlinkListener(HyperLinkListener listener)

adds a hyperlink listener to this editor pane.

javax.swing.event.HyperlinkListener 1.2

• void hyperlinkUpdate(HyperlinkEvent event)

is called whenever a hyperlink was selected.

javax.swing.event.HyperlinkEvent 1.2

• URL getURL()

returns the URL of the selected hyperlink.

10.5 Progress Indicators

In the following sections, we discuss three classes for indicating the progress of a slow

activity. A JProgressBar is a Swing component that indicates progress. A ProgressMonitor

is a dialog box that contains a progress bar. A ProgressMonitorInputStream displays a

progress monitor dialog box while the stream is read.

10.5.1 Progress Bars

A progress bar is a simple component—just a rectangle that is partially filled with color

to indicate the progress of an operation. By default, progress is indicated by a string

“n%”. You can see a progress bar in the bottom right of Figure 10.41.

Figure 10.41 A progress bar

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig041

You can construct a progress bar much as you construct a slider—by supplying the minimum

and maximum value and an optional orientation:

 progressBar = new JProgressBar(0, 1000);

 progressBar = new JProgressBar(SwingConstants.VERTICAL, 0, 1000);

You can also set the minimum and maximum with the setMinimum and setMaximum methods.

Unlike a slider, the progress bar cannot be adjusted by the user. Your program needs to

call setValue to update it.

If you call

 progressBar.setStringPainted(true);

the progress bar computes the completion percentage and displays a string “n%”. If you

want to show a different string, you can supply it with the setString method:

 if (progressBar.getValue() > 900)

 progressBar.setString("Almost Done");

The program in Listing 10.26 shows a progress bar that monitors a simulated time-consuming

activity.

The SimulatedActivity class increments a value current ten times per second. When it reaches

a target value, the activity finishes. We use the SwingWorker class to implement the activity

and update the progress bar in the process method. The SwingWorker invokes the method from

the event dispatch thread, so that it is safe to update the progress bar. (See Volume I,

Chapter 14 for more information about thread safety in Swing.)

Java SE 1.4 added support for an indeterminate progress bar that shows an animation
indicating some kind of progress, without specifying the percentage of completion. That

is the kind of progress bar that you see in your browser—it indicates that the browser

is waiting for the server and has no idea how long the wait might be. To display the

“indeterminate wait” animation, call the setIndeterminate method.

Listing 10.26 shows the full program code.

Listing 10.26 progressBar/ProgressBarFrame.java

 1 package progressBar;

 2

 3 import java.awt.*;

 4 import java.util.List;

 5

 6 import javax.swing.*;

 7

 8 /**

 9 * A frame that contains a button to launch a simulated activity, a progress

bar, and a text area

10 * for the activity output.

11 */

12 public class ProgressBarFrame extends JFrame

13 {

14 public static final int TEXT_ROWS = 10;

15 public static final int TEXT_COLUMNS = 40;

16

17 private JButton startButton;

18 private JProgressBar progressBar;

19 private JCheckBox checkBox;

20 private JTextArea textArea;

21 private SimulatedActivity activity;

22

23 public ProgressBarFrame()

24 {

25 // this text area holds the activity output

26 textArea = new JTextArea(TEXT_ROWS, TEXT_COLUMNS);

27

28 // set up panel with button and progress bar

29

30 final int MAX = 1000;

31 JPanel panel = new JPanel();

32 startButton = new JButton("Start");

33 progressBar = new JProgressBar(0, MAX);

34 progressBar.setStringPainted(true);

35 panel.add(startButton);

36 panel.add(progressBar);

37

38 checkBox = new JCheckBox("indeterminate");

39 checkBox.addActionListener(event ->

40 {

41 progressBar.setIndeterminate(checkBox.isSelected());

42 progressBar.setStringPainted(!progressBar.isIndetermin

ate());

43 });

44 panel.add(checkBox);

45 add(new JScrollPane(textArea), BorderLayout.CENTER);

46 add(panel, BorderLayout.SOUTH);

47

48 // set up the button action

49

50 startButton.addActionListener(event ->

51 {

52 startButton.setEnabled(false);

53 activity = new SimulatedActivity(MAX);

54 activity.execute();

55 });

56 pack();

57 }

58

59 class SimulatedActivity extends SwingWorker<Void, Integer>

60 {

61 private int current;

62 private int target;

63

64 /**

65 * Constructs the simulated activity that increments a counter from

0 to a

66 * given target.

67 * @param t the target value of the counter.

68 */

69 public SimulatedActivity(int t)

70 {

71 current = 0;

72 target = t;

73 }

74

75 protected Void doInBackground() throws Exception

76 {

77 try

78 {

79 while (current < target)

80 {

81 Thread.sleep(100);

82 current++;

83 publish(current);

84 }

85 }

86 catch (InterruptedException e)

87 {

88 }

89 return null;

90 }

91

92 protected void process(List<Integer> chunks)

93 {

94 for (Integer chunk : chunks)

95 {

96 textArea.append(chunk + "\n");

97 progressBar.setValue(chunk);

98 }

99 }

100

101 protected void done()

102 {

103 startButton.setEnabled(true);

104 }

105 }

106 }

10.5.2 Progress Monitors

A progress bar is a simple component that can be placed inside a window. In contrast, a

ProgressMonitor is a complete dialog box that contains a progress bar (see Figure 10.42).

The dialog box contains a Cancel button. If you click it, the monitor dialog box is closed.

In addition, your program can query whether the user has canceled the dialog box and

terminate the monitored action. (Note that the class name does not start with a “J”.)

Figure 10.42 A progress monitor dialog box

Construct a progress monitor by supplying the following:

• The parent component over which the dialog box should pop up

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig042

• An object (which should be a string, icon, or component) that is displayed in the dialog

box

• An optional note to display below the object

• The minimum and maximum values

However, the progress monitor cannot measure progress or cancel an activity by itself. You

still need to periodically set the progress value by calling the setProgress method. (This

is the equivalent of the setValue method of the JProgressBar class.) When the monitored

activity has concluded, call the close method to dismiss the dialog box. You can reuse the

same dialog box by calling start again.

The biggest problem with using a progress monitor dialog box is handling the cancellation

requests. You cannot attach an event handler to the Cancel button. Instead, you need to

periodically call the isCanceled method to see if the user has clicked the Cancel button.

If your worker thread can block indefinitely (for example, when reading input from a network

connection), it cannot monitor the Cancel button. In our sample program, we will show you

how to use a timer for that purpose. We will also make the timer responsible for updating

the progress measurement.

If you run the program in Listing 10.27, you can observe an interesting feature of the

progress monitor dialog box. The dialog box doesn’t come up immediately. Instead, it waits

for a short interval to see if the activity has already been completed or is likely to

complete in less time than it would take for the dialog box to appear.

Use the setMillisToDecideToPopup method to set the number of milliseconds to wait between

the construction of the dialog object and the decision whether to show the pop-up at all.

The default value is 500 milliseconds. The setMillisToPopup is your estimation of the time

the dialog box needs to pop up. The Swing designers set this value to a default of 2 seconds.

Clearly they were mindful of the fact that Swing dialogs don’t always come up as snappily

as we all would like. You should probably not touch this value.

Listing 10.27 progressMonitor/ProgressMonitorFrame.java

 1 package progressMonitor;

 2

 3 import java.awt.*;

 4

 5 import javax.swing.*;

 6

 7 /**

 8 * A frame that contains a button to launch a simulated activity and a text

area for the activity

 9 * output.

10 */

11 class ProgressMonitorFrame extends JFrame

12 {

13 public static final int TEXT_ROWS = 10;

14 public static final int TEXT_COLUMNS = 40;

15

16 private Timer cancelMonitor;

17 private JButton startButton;

18 private ProgressMonitor progressDialog;

19 private JTextArea textArea;

20 private SimulatedActivity activity;

21

22 public ProgressMonitorFrame()

23 {

24 // this text area holds the activity output

25 textArea = new JTextArea(TEXT_ROWS, TEXT_COLUMNS);

26

27 // set up a button panel

28 JPanel panel = new JPanel();

29 startButton = new JButton("Start");

30 panel.add(startButton);

31

32 add(new JScrollPane(textArea), BorderLayout.CENTER);

33 add(panel, BorderLayout.SOUTH);

34

35 // set up the button action

36

37 startButton.addActionListener(event ->

38 {

39 startButton.setEnabled(false);

40 final int MAX = 1000;

41

42 // start activity

43 activity = new SimulatedActivity(MAX);

44 activity.execute();

45

46 // launch progress dialog

47 progressDialog = new

ProgressMonitor(ProgressMonitorFrame.this,

48 "Waiting for Simulated Activity", null, 0,

MAX);

49 cancelMonitor.start();

50 });

51

52 // set up the timer action

53

54 cancelMonitor = new Timer(500, event ->

55 {

56 if (progressDialog.isCanceled())

57 {

58 activity.cancel(true);

59 startButton.setEnabled(true);

60 }

61 else if (activity.isDone())

62 {

63 progressDialog.close();

64 startButton.setEnabled(true);

65 }

66 else

67 {

68 progressDialog.setProgress(activity.getProgress(

));

69 }

70 });

71 pack();

72 }

73

74 class SimulatedActivity extends SwingWorker<Void, Integer>

75 {

76 private int current;

77 private int target;

78

79 /**

80 * Constructs the simulated activity that increments a counter from

0 to a

81 * given target.

82 * @param t the target value of the counter.

83 */

84 public SimulatedActivity(int t)

85 {

86 current = 0;

87 target = t;

88 }

89

90 protected Void doInBackground() throws Exception

91 {

92 try

93 {

94 while (current < target)

95 {

96 Thread.sleep(100);

97 current++;

98 textArea.append(current + "\n");

99 setProgress(current);

100 }

101 }

102 catch (InterruptedException e)

103 {

104 }

105 return null;

106 }

107 }

108 }

10.5.3 Monitoring the Progress of Input Streams

The Swing package contains a useful stream filter, ProgressMonitorInputStream, that

automatically pops up a dialog box that monitors how much of the stream has been read.

This filter is extremely easy to use. Insert a ProgressMonitorInputStream into your usual

sequence of filtered streams. (See Chapter 2 for more information on streams.)

For example, suppose you read text from a file. You start out with a FileInputStream:

 FileInputStream in = new FileInputStream(f);

Normally, you would convert in to an InputStreamReader:

 InputStreamReader reader = new InputStreamReader(in);

However, to monitor the stream, first turn the file input stream into a stream with a progress

monitor:

 ProgressMonitorInputStream progressIn = new ProgressMonitorInputStream(parent,

caption, in);

Supply the parent component, a caption, and, of course, the stream to monitor. The read

method of the progress monitor stream simply passes along the bytes and updates the progress

dialog box.

You can now go on building your filter sequence:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02

 InputStreamReader reader = new InputStreamReader(progressIn);

That’s all there is to it. When the file is read, the progress monitor automatically pops

up (see Figure 10.43). This is a very nice application of stream filtering.

Figure 10.43 A progress monitor for an input stream

CAUTION

The progress monitor stream uses the available method of the InputStream class to determine

the total number of bytes in the stream. However, the available method only reports the

number of bytes in the stream that are available without blocking. Progress monitors work
well for files and HTTP URLs because their length is known in advance, but they don’t work

with all streams.

The program in Listing 10.28 counts the lines in a file. If you read in a large file (such

as "The Count of Monte Cristo" in the gutenberg directory of the companion code), the

progress dialog box pops up.

If the user clicks the Cancel button, the input stream closes. The code that processes the

input already knows how to deal with the end of input, so no change to the programming logic

is required to handle cancellation.

Note that the program doesn’t use a very efficient way of filling up the text area. It

would be faster to first read the file into a StringBuilder and then set the text of the

text area to the string builder contents. However, in this example program, we actually

like this slow approach—it gives you more time to admire the progress dialog box.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig043

To avoid flicker, we do not display the text area while it is filling up.

Listing 10.28 progressMonitorInputStream/TextFrame.java

 1 package progressMonitorInputStream;

 2

 3 import java.io.*;

 4 import java.nio.file.*;

 5 import java.util.*;

 6

 7 import javax.swing.*;

 8

 9 /**

10 * A frame with a menu to load a text file and a text area to display its contents.

The text area

11 * is constructed when the file is loaded and set as the content pane of the frame

when the

12 * loading is complete. That avoids flicker during loading.

13 */

14 public class TextFrame extends JFrame

15 {

16 public static final int TEXT_ROWS = 10;

17 public static final int TEXT_COLUMNS = 40;

18

19 private JMenuItem openItem;

20 private JMenuItem exitItem;

21 private JTextArea textArea;

22 private JFileChooser chooser;

23

24 public TextFrame()

25 {

26 textArea = new JTextArea(TEXT_ROWS, TEXT_COLUMNS);

27 add(new JScrollPane(textArea));

28

29 chooser = new JFileChooser();

30 chooser.setCurrentDirectory(new File("."));

31

32 JMenuBar menuBar = new JMenuBar();

33 setJMenuBar(menuBar);

34 JMenu fileMenu = new JMenu("File");

35 menuBar.add(fileMenu);

36 openItem = new JMenuItem("Open");

37 openItem.addActionListener(event ->

38 {

39 try

40 {

41 openFile();

42 }

43 catch (IOException exception)

44 {

45 exception.printStackTrace();

46 }

47 });

48

49 fileMenu.add(openItem);

50 exitItem = new JMenuItem("Exit");

51 exitItem.addActionListener(event -> System.exit(0));

52 fileMenu.add(exitItem);

53 pack();

54 }

55

56 /**

57 * Prompts the user to select a file, loads the file into a text area,

and sets it as the

58 * content pane of the frame.

59 */

60 public void openFile() throws IOException

61 {

62 int r = chooser.showOpenDialog(this);

63 if (r != JFileChooser.APPROVE_OPTION) return;

64 final File f = chooser.getSelectedFile();

65

66 // set up stream and reader filter sequence

67

68 InputStream fileIn = Files.newInputStream(f.toPath());

69 final ProgressMonitorInputStream progressIn = new

ProgressMonitorInputStream(

70 this, "Reading " + f.getName(), fileIn);

71

72 textArea.setText("");

73

74 SwingWorker<Void, Void> worker = new SwingWorker<Void, Void>()

75 {

76 protected Void doInBackground() throws Exception

77 {

78 try (Scanner in = new Scanner(progressIn,

"UTF-8"))

79 {

80 while (in.hasNextLine())

81 {

82 String line = in.nextLine();

83 textArea.append(line);

84 textArea.append("\n");

85 }

86 }

87 return null;

88 }

89 };

90 worker.execute();

91 }

92 }

javax.swing.JProgressBar 1.2

• JProgressBar()

• JProgressBar(int direction)

• JProgressBar(int min, int max)

• JProgressBar(int direction, int min, int max)

constructs a slider with the given direction, minimum, and maximum.

• int getMinimum()

• int getMaximum()

• void setMinimum(int value)

• void setMaximum(int value)

gets or sets the minimum and maximum values.

• int getValue()

• void setValue(int value)

gets or sets the current value.

• String getString()

• void setString(String s)

gets or sets the string to be displayed in the progress bar. If the string is null, a default

string “n%” is displayed.

• boolean isStringPainted()

• void setStringPainted(boolean b)

gets or sets the “string painted” property. If this property is true, a string is painted

on top of the progress bar. The default is false.

• boolean isIndeterminate() 1.4

• void setIndeterminate(boolean b) 1.4

gets or sets the “indeterminate” property. If this property is true, the progress bar

becomes a block that moves backward and forward, indicating a wait of unknown duration.

The default is false.

javax.swing.ProgressMonitor 1.2

• ProgressMonitor(Component parent, Object message, String note, int min, int max)

constructs a progress monitor dialog box.

• void setNote(String note)

changes the note text.

• void setProgress(int value)

sets the progress bar value to the given value.

• void close()

closes this dialog box.

• boolean isCanceled()

returns true if the user canceled this dialog box.

javax.swing.ProgressMonitorInputStream 1.2

• ProgressMonitorInputStream(Component parent, Object message, InputStream in)

constructs an input stream filter with an associated progress monitor dialog box.

10.6 Component Organizers and Decorators

We conclude the discussion of advanced Swing features with a presentation of components

that help organize other components. These include the split pane, a mechanism for splitting
an area into multiple parts with boundaries that can be adjusted; the tabbed pane which
uses tab dividers to allow a user to flip through multiple panels; and the desktop pane
that can be used to implement applications displaying multiple internal frames. We will
close with a discussion of layers—decorators that can be superimposed over other

components.

10.6.1 Split Panes

A split pane splits a component into two parts, with an adjustable boundary in between.

Figure 10.44 shows a frame with two split panes. The components in the outer split pane

are arranged vertically, with a text area on the bottom and another split pane on the top.

That split pane’s components are arranged horizontally, with a list on the left and a label

containing an image on the right.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig044

Figure 10.44 A frame with two nested split panes

Construct a split pane by specifying the orientation—one of JSplitPane.HORIZONTAL_SPLIT

or JSplitPane.VERTICAL_SPLIT, followed by the two components. For example,

 JSplitPane innerPane = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT, planetList,

planetImage);

That’s all you have to do. If you like, you can add “one-touch expand” icons to the

splitter bar. You can see those icons in the top pane in Figure 10.44. In the Metal

look-and-feel, they are small triangles. If you click one of them, the splitter moves all

the way in the direction to which the triangle is pointing, expanding one of the panes

completely.

To add this capability, call

 innerPane.setOneTouchExpandable(true);

The “continuous layout” feature continuously repaints the contents of both components

as the user adjusts the splitter. That looks classier, but it can be slow. You turn on that

feature with the call

 innerPane.setContinuousLayout(true);

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig044

In the example program, we left the bottom splitter at the default (no continuous layout).

When you drag it, you only move a black outline. When you release the mouse, the components

are repainted.

The straightforward program in Listing 10.29 populates a list box with planets. When the

user makes a selection, the planet image is displayed to the right and a description is

placed in the text area on the bottom. Run the program, adjust the splitters, and try out

the one-touch expansion and continuous layout features.

Listing 10.29 splitPane/SplitPaneFrame.java

 1 package splitPane;

 2

 3 import java.awt.*;

 4

 5 import javax.swing.*;

 6

 7 /**

 8 * This frame consists of two nested split panes to demonstrate planet images

and data.

 9 */

10 class SplitPaneFrame extends JFrame

11 {

12 private static final int DEFAULT_WIDTH = 300;

13 private static final int DEFAULT_HEIGHT = 300;

14

15 private Planet[] planets = { new Planet("Mercury", 2440, 0), new Planet("Venus",

6052, 0),

16 new Planet("Earth", 6378, 1), new Planet("Mars", 3397, 2),

17 new Planet("Jupiter", 71492, 16), new Planet("Saturn", 60268, 18),

18 new Planet("Uranus", 25559, 17), new Planet("Neptune", 24766, 8),

19 new Planet("Pluto", 1137, 1), };

20

21 public SplitPaneFrame()

22 {

23 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

24

25 // set up components for planet names, images, descriptions

26

27 final JList<Planet> planetList = new JList<>(planets);

28 final JLabel planetImage = new JLabel();

29 final JTextArea planetDescription = new JTextArea();

30

31 planetList.addListSelectionListener(event ->

32 {

33 Planet value = (Planet) planetList.getSelectedValue();

34

35 // update image and description

36

37 planetImage.setIcon(value.getImage());

38 planetDescription.setText(value.getDescription());

39 });

40

41 // set up split panes

42

43 JSplitPane innerPane = new

JSplitPane(JSplitPane.HORIZONTAL_SPLIT, planetList, planetImage);

44

45 innerPane.setContinuousLayout(true);

46 innerPane.setOneTouchExpandable(true);

47

48 JSplitPane outerPane = new JSplitPane(JSplitPane.VERTICAL_SPLIT,

innerPane,

49 planetDescription);

50

51 add(outerPane, BorderLayout.CENTER);

52 }

53 }

javax.swing.JSplitPane 1.2

• JSplitPane()

• JSplitPane(int direction)

• JSplitPane(int direction, boolean continuousLayout)

• JSplitPane(int direction, Component first, Component second)

• JSplitPane(int direction, boolean continuousLayout, Component first, Component second)

constructs a new split pane.

• boolean isOneTouchExpandable()

• void setOneTouchExpandable(boolean b)

gets or sets the “one-touch expandable” property. When this property is set, the splitter

has two icons to completely expand one or the other component.

• boolean isContinuousLayout()

• void setContinuousLayout(boolean b)

gets or sets the “continuous layout” property. When this property is set, then the

components are continuously updated when the splitter is moved.

• void setLeftComponent(Component c)

• void setTopComponent(Component c)

These operations have the same effect, setting c as the first component in the split pane.

• void setRightComponent(Component c)

• void setBottomComponent(Component c)

These operations have the same effect, setting c as the second component in the split pane.

10.6.2 Tabbed Panes

Tabbed panes are a familiar user interface device to break up a complex dialog box into

subsets of related options. You can also use tabs to let a user flip through a set of documents

or images (see Figure 10.45). That is what we do in our sample program.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig045

Figure 10.45 A tabbed pane

To create a tabbed pane, first construct a JTabbedPane object, then add tabs to it.

 JTabbedPane tabbedPane = new JTabbedPane();

 tabbedPane.addTab(title, icon, component);

The last parameter of the addTab method has type Component. To add multiple components into

the same tab, first pack them up in a container, such as a JPanel.

The icon is optional; for example, the addTab method does not require an icon:

 tabbedPane.addTab(title, component);

You can also add a tab in the middle of the tab collection with the insertTab method:

 tabbedPane.insertTab(title, icon, component, tooltip, index);

To remove a tab from the tab collection, use

 tabPane.removeTabAt(index);

When you add a new tab to the tab collection, it is not automatically displayed. You must

select it with the setSelectedIndex method. For example, here is how you show a tab that

you just added to the end:

 tabbedPane.setSelectedIndex(tabbedPane.getTabCount() - 1);

If you have a lot of tabs, they can take up quite a bit of space. Starting with Java SE

1.4, you can display the tabs in scrolling mode, in which only one row of tabs is displayed,

together with a set of arrow buttons that allow the user to scroll through the tab set (see

Figure 10.46).

Figure 10.46 A tabbed pane with scrolling tabs

Set the tab layout to wrapped or scrolling mode by calling

 tabbedPane.setTabLayoutPolicy(JTabbedPane.WRAP_TAB_LAYOUT);

or

 tabbedPane.setTabLayoutPolicy(JTabbedPane.SCROLL_TAB_LAYOUT);

The tab labels can have mnemonics, just like menu items. For example,

 int marsIndex = tabbedPane.indexOfTab("Mars");

 tabbedPane.setMnemonicAt(marsIndex, KeyEvent.VK_M);

Now the M is underlined, and users can select the tab by pressing Alt+M.

You can add arbitrary components into the tab titles. First, add the tab, then call

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig046

 tabbedPane.setTabComponentAt(index, component);

In our sample program, we add a “close box” to the Pluto tab (because, after all,

astronomers do not consider Pluto a planet). This is achieved by setting the tab component

to a panel containing two components: a label with the icon and tab text, and a checkbox

with an action listener that removes the tab.

The example program shows a useful technique with tabbed panes. Sometimes, you may want

to update a component just before it is displayed. In our example program, we load the planet

image only when the user actually clicks a tab.

To be notified whenever the user clicks on a tab, install a ChangeListener with the tabbed

pane. Note that you must install the listener with the tabbed pane itself, not with any

of the components.

 tabbedPane.addChangeListener(listener);

When the user selects a tab, the stateChanged method of the change listener is called. You

can retrieve the tabbed pane as the source of the event. Call the getSelectedIndex method

to find out which pane is about to be displayed.

 public void stateChanged(ChangeEvent event)

 {

 int n = tabbedPane.getSelectedIndex();

 loadTab(n);

 }

In Listing 10.30, we first set all tab components to null. When a new tab is selected, we

test whether its component is still null. If so, we replace it with the image. (This happens

instantaneously when you click on the tab. You will not see an empty pane.) Just for fun,

we also change the icon from a yellow ball to a red ball to indicate which panes have been

visited.

Listing 10.30 tabbedPane/TabbedPaneFrame.java

 1 package tabbedPane;

 2

 3 import java.awt.*;

 4

 5 import javax.swing.*;

 6

 7 /**

 8 * This frame shows a tabbed pane and radio buttons to switch between wrapped

and scrolling tab

 9 * layout.

10 */

11 public class TabbedPaneFrame extends JFrame

12 {

13 private static final int DEFAULT_WIDTH = 400;

14 private static final int DEFAULT_HEIGHT = 300;

15

16 private JTabbedPane tabbedPane;

17

18 public TabbedPaneFrame()

19 {

20 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

21

22 tabbedPane = new JTabbedPane();

23 // we set the components to null and delay their loading until the tab

is shown

24 // for the first time

25

26 ImageIcon icon = new

ImageIcon(getClass().getResource("yellow-ball.gif"));

27

28 tabbedPane.addTab("Mercury", icon, null);

29 tabbedPane.addTab("Venus", icon, null);

30 tabbedPane.addTab("Earth", icon, null);

31 tabbedPane.addTab("Mars", icon, null);

32 tabbedPane.addTab("Jupiter", icon, null);

33 tabbedPane.addTab("Saturn", icon, null);

34 tabbedPane.addTab("Uranus", icon, null);

35 tabbedPane.addTab("Neptune", icon, null);

36 tabbedPane.addTab("Pluto", null, null);

37

38 final int plutoIndex = tabbedPane.indexOfTab("Pluto");

39 JPanel plutoPanel = new JPanel();

40 plutoPanel.add(new JLabel("Pluto", icon, SwingConstants.LEADING));

41 JToggleButton plutoCheckBox = new JCheckBox();

42 plutoCheckBox.addActionListener(event ->

tabbedPane.remove(plutoIndex));

43 plutoPanel.add(plutoCheckBox);

44 tabbedPane.setTabComponentAt(plutoIndex, plutoPanel);

45

46 add(tabbedPane, "Center");

47

48 tabbedPane.addChangeListener(event ->

49 {

50 // check if this tab still has a null component

51

52 if (tabbedPane.getSelectedComponent() == null)

53 {

54 // set the component to the image icon

55

56 int n = tabbedPane.getSelectedIndex();

57 loadTab(n);

58 }

59 });

60

61 loadTab(0);

 62

63 JPanel buttonPanel = new JPanel();

64 ButtonGroup buttonGroup = new ButtonGroup();

65 JRadioButton wrapButton = new JRadioButton("Wrap tabs");

66 wrapButton.addActionListener(event ->

67 tabbedPane.setTabLayoutPolicy(JTabbedPane.WRAP_TAB_LAYOU

T));

68 buttonPanel.add(wrapButton);

69 buttonGroup.add(wrapButton);

70 wrapButton.setSelected(true);

71 JRadioButton scrollButton = new JRadioButton("Scroll tabs");

72 scrollButton.addActionListener(event ->

73 tabbedPane.setTabLayoutPolicy(JTabbedPane.SCROLL_TAB_LAY

OUT));

74 buttonPanel.add(scrollButton);

75 buttonGroup.add(scrollButton);

76 add(buttonPanel, BorderLayout.SOUTH);

77 }

78

79 /**

80 * Loads the tab with the given index.

81 * @param n the index of the tab to load

82 */

83 private void loadTab(int n)

84 {

85 String title = tabbedPane.getTitleAt(n);

86 ImageIcon planetIcon = new ImageIcon(getClass().getResource(title

+ ".gif"));

87 tabbedPane.setComponentAt(n, new JLabel(planetIcon));

88

89 // indicate that this tab has been visited--just for fun

90

91 tabbedPane.setIconAt(n, new

ImageIcon(getClass().getResource("red-ball.gif")));

92 }

93 }

javax.swing.JTabbedPane 1.2

• JTabbedPane()

• JTabbedPane(int placement)

constructs a tabbed pane.

• void addTab(String title, Component c)

• void addTab(String title, Icon icon, Component c)

• void addTab(String title, Icon icon, Component c, String tooltip)

adds a tab to the end of the tabbed pane.

• void insertTab(String title, Icon icon, Component c, String tooltip, int index)

inserts a tab to the tabbed pane at the given index.

• void removeTabAt(int index)

removes the tab at the given index.

• void setSelectedIndex(int index)

selects the tab at the given index.

• int getSelectedIndex()

returns the index of the selected tab.

• Component getSelectedComponent()

returns the component of the selected tab.

• String getTitleAt(int index)

• void setTitleAt(int index, String title)

• Icon getIconAt(int index)

• void setIconAt(int index, Icon icon)

• Component getComponentAt(int index)

• void setComponentAt(int index, Component c)

gets or sets the title, icon, or component at the given index.

• int indexOfTab(String title)

• int indexOfTab(Icon icon)

• int indexOfComponent(Component c)

returns the index of the tab with the given title, icon, or component.

• int getTabCount()

returns the total number of tabs in this tabbed pane.

• int getTabLayoutPolicy()

• void setTabLayoutPolicy(int policy) 1.4

gets or sets the tab layout policy. policy is one of JTabbedPane.WRAP_TAB_LAYOUT or

JTabbedPane.SCROLL_TAB_LAYOUT.

• int getMnemonicAt(int index) 1.4

• void setMnemonicAt(int index, int mnemonic)

gets or sets the mnemonic character at a given tab index. The character is specified as

a VK_X constant from the KeyEvent class. -1 means that there is no mnemonic.

• Component getTabComponentAt(int index) 6

• void setTabComponentAt(int index, Component c) 6

gets or sets the component that renders the title of the tab with the given index. If this

component is null, the tab icon and title are rendered. Otherwise, only the given component

is rendered in the tab.

• int indexOfTabComponent(Component c) 6

returns the index of the tab with the given title component.

• void addChangeListener(ChangeListener listener)

adds a change listener that is notified when the user selects a different tab.

10.6.3 Desktop Panes and Internal Frames

Many applications present information in multiple windows that are all contained inside

a large frame. If you minimize the application frame, all of its windows are hidden at the

same time. In the Windows environment, this user interface is sometimes called the multiple
document interface (MDI). Figure 10.47 shows a typical application using this interface.

Figure 10.47 A multiple document interface application

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig47

For a time, this user interface style was popular, but it has become less prevalent in recent

years. Nowadays, many applications simply display a separate top-level frame for each

document. Which is better? MDI reduces window clutter, but having separate top-level windows

means that you can use the buttons and hotkeys of the host windowing system to flip through

your windows.

In the world of Java, where you can’t rely on a rich host windowing system, it makes a

lot of sense to have your application manage its frames.

Figure 10.48 shows a Java application with three internal frames. Two of them have

decorations on the borders to maximize and iconify them. The third is in its iconified state.

Figure 10.48 A Java application with three internal frames

In the Metal look-and-feel, the internal frames have distinctive “grabber” areas that

you can use to move the frames around. You can resize the windows by dragging the resize

corners.

To achieve this capability, follow these steps:

1. Use a regular JFrame window for the application.

2. Add the JDesktopPane to the JFrame.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig048

 desktop = new JDesktopPane();

 add(desktop, BorderLayout.CENTER);

3. Construct JInternalFrame windows. You can specify whether you want the icons for resizing

or closing the frame. Normally, you want all icons.

 JInternalFrame iframe = new JInternalFrame(title,

 true, // resizable

 true, // closable

 true, // maximizable

 true); // iconifiable

4. Add components to the frame.

 iframe.add(c, BorderLayout.CENTER);

5. Set a frame icon. The icon is shown in the top left corner of the frame.

 iframe.setFrameIcon(icon);

NOTE:

In the current version of the Metal look-and-feel, the frame icon is not displayed in

iconified frames.

6. Set the size of the internal frame. As with regular frames, internal frames initially

have a size of 0 by 0 pixels. You don’t want internal frames to be displayed on top of

each other, so use a variable position for the next frame. Use the reshape method to set

both the position and size of the frame.

 iframe.reshape(nextFrameX, nextFrameY, width, height);

7. As with JFrame instances, you need to make the frame visible.

 iframe.setVisible(true);

NOTE:

In earlier versions of Swing, internal frames were automatically visible and this call was

not necessary.

8. Add the frame to the JDesktopPane.

 desktop.add(iframe);

9. You will probably want to make the new frame the selected frame. Of the internal frames
on the desktop, only the selected frame receives keyboard focus. In the Metal look-and-feel,

the selected frame has a blue title bar, whereas the other frames have gray title bars.

Use the setSelected method to select a frame. However, the “selected” property can be

vetoed—the currently selected frame can refuse to give up focus. In that case, the

setSelected method throws a PropertyVetoException that you need to handle.

 try

 {

 iframe.setSelected(true);

 }

 catch (PropertyVetoException ex)

 {

 // attempt was vetoed

 }

10. You will probably want to move the position of the next internal frame down so that

it won’t overlay the existing frame. A good distance between frames is the height of the

title bar, which you can obtain as

 int frameDistance = iframe.getHeight() - iframe.getContentPane().getHeight()

11. Use that distance to determine the next internal frame’s position.

 nextFrameX += frameDistance;

 nextFrameY += frameDistance;

 if (nextFrameX + width > desktop.getWidth())

 nextFrameX = 0;

 if (nextFrameY + height > desktop.getHeight())

 nextFrameY = 0;

10.6.4 Cascading and Tiling

In Windows, there are standard commands for cascading and tiling windows (see Figures 10.49
and 10.50). The Java JDesktopPane and JInternalFrame classes have no builtin support for

these operations. In Listing 10.31, we show you how you can implement these operations

yourself.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig49
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig50

Figure 10.49 Cascaded internal frames

Figure 10.50 Tiled internal frames

To cascade all windows, reshape windows to the same size and stagger their positions. The

getAllFrames method of the JDesktopPane class returns an array of all internal frames.

 JInternalFrame[] frames = desktop.getAllFrames();

However, you need to pay attention to the frame state. An internal frame can be in one of

three states:

• Icon

• Resizable

• Maximum

Use the isIcon method to find out which internal frames are currently icons and should be

skipped. However, if a frame is in the maximum state, you first need to set it to be resizable

by calling setMaximum(false). This is another property that can be vetoed, so you must catch

the PropertyVetoException.

The following loop cascades all internal frames on the desktop:

 {

 if (!frame.isIcon())

 {

 try

 {

 // try to make maximized frames resizable; this

might be vetoed

 frame.setMaximum(false);

 frame.reshape(x, y, width, height);

 x += frameDistance;

 y += frameDistance;

 // wrap around at the desktop edge

 if (x + width > desktop.getWidth()) x = 0;

 if (y + height > desktop.getHeight()) y = 0;

 }

 catch (PropertyVetoException ex)

 {}

 }

 }

Tiling frames is trickier, particularly if the number of frames is not a perfect square.

First, count the number of frames that are not icons. Compute the number of rows in the

first column as

 int rows = (int) Math.sqrt(frameCount);

Then the number of columns is

 int cols = frameCount / rows;

The last

 int extra = frameCount % rows

columns have rows + 1 rows.

Here is the loop for tiling all frames on the desktop:

 int width = desktop.getWidth() / cols;

 int height = desktop.getHeight() / rows;

 int r = 0;

 int c = 0;

 for (JInternalFrame frame : desktop.getAllFrames())

 {

 if (!frame.isIcon())

 {

 try

 {

 frame.setMaximum(false);

 frame.reshape(c * width, r * height, width, height);

 r++;

 if (r == rows)

 {

 r = 0;

 c++;

 if (c == cols - extra)

 {

 // start adding an extra row

 rows++;

 height = desktop.getHeight() / rows;

 }

 }

 }

 catch (PropertyVetoException ex)

 {}

 }

 }

The example program shows another common frame operation: moving the selection from the

current frame to the next frame that isn’t an icon. Traverse all frames and call isSelected

until you find the currently selected frame. Then, look for the next frame in the sequence

that isn’t an icon, and try to select it by calling

 frames[next].setSelected(true);

As before, that method can throw a PropertyVetoException, in which case you have to keep

looking. If you come back to the original frame, then no other frame was selectable, and

you give up. Here is the complete loop:

 JInternalFrame[] frames = desktop.getAllFrames();

 for (int i = 0; i < frames.length; i++)

 {

 if (frames[i].isSelected())

 {

 // find next frame that isn't an icon and can be selected

 int next = (i + 1) % frames.length;

 while (next != i)

 {

 if (!frames[next].isIcon())

 {

 try

 {

 // all other frames are icons or veto selection

 frames[next].setSelected(true);

 frames[next].toFront();

 frames[i].toBack();

 return;

 }

 catch (PropertyVetoException ex)

 {}

 }

 next = (next + 1) % frames.length;

 }

 }

 }

10.6.5 Vetoing Property Settings

Now that you have seen all these veto exceptions, you might wonder how your frames can issue

a veto. The JInternalFrame class uses a general JavaBeans mechanism for monitoring the
setting of properties. We discuss this mechanism in full detail in [Missing XREF!]. For

now, we just want to show you how your frames can veto requests for property changes.

Frames don’t usually want to use a veto to protest iconization or loss of focus, but it

is very common for frames to check whether it is OK to close them. You can close a frame
with the setClosed method of the JInternalFrame class. Since the method is vetoable, it

calls all registered vetoable change listeners before proceeding to make the change. That
gives each of the listeners the opportunity to throw a PropertyVetoException and thereby

terminate the call to setClosed before it changed any settings.

In our example program, we put up a dialog box to ask the user whether it is OK to close

the window (see Figure 10.51). If the user doesn’t agree, the window stays open.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10fig051

Figure 10.51 The user can veto the close property.

Here is how you achieve such a notification.

1. Add a listener object to each frame. The object must belong to some class that implements

the VetoableChangeListener interface. It is best to add the listener right after

constructing the frame. In our example, we use the frame class that constructs the internal

frames. Another option would be to use an anonymous inner class.

 iframe.addVetoableChangeListener(listener);

2. Implement the vetoableChange method, the only method required by the

VetoableChangeListener interface. The method receives a PropertyChangeEvent object. Use

the getName method to find the name of the property that is about to be changed (such as

"closed" if the method call to veto is setClosed(true). As you see in Chapter 8, you obtain

the property name by removing the "set" prefix from the method name and changing the next

letter to lower case.

3. Use the getNewValue method to get the proposed new value.

 String name = event.getPropertyName();

 Object value = event.getNewValue();

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch08.html#ch08

 if (name.equals("closed") && value.equals(true))

 {

 ask user for confirmation

 }

4. Simply throw a PropertyVetoException to block the property change. Return normally if

you don’t want to veto the change.

 class DesktopFrame extends JFrame

 implements VetoableChangeListener

 {

 ...

 public void vetoableChange(PropertyChangeEvent

event)

 throws PropertyVetoException

 {

 ...

 if (not ok)

 throw new

PropertyVetoException(reason, event);

 // return normally if ok

 }

 }

10.6.5.1 Dialogs in Internal Frames

If you use internal frames, you should not use the JDialog class for dialog boxes. Those

dialog boxes have two disadvantages:

• They are heavyweight because they create a new frame in the windowing system.

• The windowing system does not know how to position them relative to the internal frame

that spawned them.

Instead, for simple dialog boxes, use the showInternalXxxDialog methods of the JOptionPane
class. They work exactly like the showXxxDialog methods, except they position a lightweight
window over an internal frame.

As for more complex dialog boxes, construct them with a JInternalFrame. Unfortunately, you

then have no built-in support for modal dialog boxes.

In our sample program, we use an internal dialog box to ask the user whether it is OK to

close a frame.

 int result = JOptionPane.showInternalConfirmDialog(

 iframe, "OK to close?", "Select an Option",

JOptionPane.YES_NO_OPTION);

NOTE:

If you simply want to be notified when a frame is closed, you should not use the veto mechanism.
Instead, install an InternalFrameListener.An internal frame listener works just like a

WindowListener. When the internal frame is closing, the internalFrameClosing method is

called instead of the familiar windowClosing method. The other six internal frame

notifications (opened/closed, iconified/deiconified, activated/deactivated) also

correspond to the window listener methods.

10.6.5.2 Outline Dragging

One criticism that developers have leveled against internal frames is that performance has

not been great. By far the slowest operation is to drag a frame with complex content across

the desktop. The desktop manager keeps asking the frame to repaint itself as it is being

dragged, which is quite slow.

Actually, if you use Windows or X Windows with a poorly written video driver, you’ll

experience the same problem. Window dragging appears to be fast on most systems because

the video hardware supports the dragging operation by mapping the image inside the frame

to a different screen location during the dragging process.

To improve performance without greatly degrading the user experience, you can turn “outline

dragging” on. When the user drags the frame, only the outline of the frame is continuously

updated. The inside is repainted only when the frame is dropped to its final resting place.

To turn on outline dragging, call

 desktop.setDragMode(JDesktopPane.OUTLINE_DRAG_MODE);

This setting is the equivalent of “continuous layout” in the JSplitPane class.

NOTE:

In early versions of Swing, you had to use the magic incantation

 desktop.putClientProperty("JDesktopPane.dragMode", "outline");

to turn on outline dragging.

In the sample program, you can use the Window -> Drag Outline checkbox menu selection to

toggle outline dragging on or off.

NOTE:

The internal frames on the desktop are managed by a DesktopManager class. You don’t need

to know about this class for normal programming. It is possible to implement a different

desktop behavior by installing a new desktop manager, but we don’t cover that.

Listing 10.31 populates a desktop with internal frames that show HTML pages. The File ->

Open menu option pops up a file dialog box for reading a local HTML file into a new internal

frame. If you click on any link, the linked document is displayed in another internal frame.

Try out the Window -> Cascade and Window -> Tile commands.

Listing 10.31 internalFrame/DesktopFrame.java

 1 package internalFrame;

 2

 3 import java.awt.*;

 4 import java.beans.*;

 5

 6 import javax.swing.*;

 7

 8 /**

 9 * This desktop frame contains editor panes that show HTML documents.

10 */

11 public class DesktopFrame extends JFrame

12 {

13 private static final int DEFAULT_WIDTH = 600;

14 private static final int DEFAULT_HEIGHT = 400;

15 private static final String[] planets = { "Mercury", "Venus", "Earth", "Mars",

"Jupiter",

16 "Saturn", "Uranus", "Neptune", "Pluto", };

17

18 private JDesktopPane desktop;

19 private int nextFrameX;

20 private int nextFrameY;

21 private int frameDistance;

22 private int counter;

23

24 public DesktopFrame()

25 {

26 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

27

28 desktop = new JDesktopPane();

29 add(desktop, BorderLayout.CENTER);

30

31 // set up menus

32

33 JMenuBar menuBar = new JMenuBar();

34 setJMenuBar(menuBar);

35 JMenu fileMenu = new JMenu("File");

36 menuBar.add(fileMenu);

37 JMenuItem openItem = new JMenuItem("New");

38 openItem.addActionListener(event ->

39 {

40 createInternalFrame(new JLabel(

41 new

ImageIcon(getClass().getResource(planets[counter] + ".gif"))),

42 planets[counter]);

43 counter = (counter + 1) % planets.length;

44 });

45 fileMenu.add(openItem);

46 JMenuItem exitItem = new JMenuItem("Exit");

47 exitItem.addActionListener(event -> System.exit(0));

48 fileMenu.add(exitItem);

49 JMenu windowMenu = new JMenu("Window");

50 menuBar.add(windowMenu);

51 JMenuItem nextItem = new JMenuItem("Next");

52 nextItem.addActionListener(event -> selectNextWindow());

53 windowMenu.add(nextItem);

54 JMenuItem cascadeItem = new JMenuItem("Cascade");

55 cascadeItem.addActionListener(event -> cascadeWindows());

56 windowMenu.add(cascadeItem);

57 JMenuItem tileItem = new JMenuItem("Tile");

58 tileItem.addActionListener(event -> tileWindows());

59 windowMenu.add(tileItem);

60 final JCheckBoxMenuItem dragOutlineItem = new

JCheckBoxMenuItem("Drag Outline");

61 dragOutlineItem.addActionListener(event ->

62 desktop.setDragMode(dragOutlineItem.isSelected() ?

JDesktopPane.OUTLINE_DRAG_MODE

63 : JDesktopPane.LIVE_DRAG_MODE));

64 windowMenu.add(dragOutlineItem);

65 }

66

67 /**

68 * Creates an internal frame on the desktop.

69 * @param c the component to display in the internal frame

70 * @param t the title of the internal frame

71 */

72 public void createInternalFrame(Component c, String t)

73 {

74 final JInternalFrame iframe = new JInternalFrame(t, true, // resizable

75 true, // closable

76 true, // maximizable

77 true); // iconifiable

78

79 iframe.add(c, BorderLayout.CENTER);

80 desktop.add(iframe);

81

82 iframe.setFrameIcon(new

ImageIcon(getClass().getResource("document.gif")));

83

84 // add listener to confirm frame closing

85 iframe.addVetoableChangeListener(event ->

86 {

87 String name = event.getPropertyName();

88 Object value = event.getNewValue();

89

90 // we only want to check attempts to close a frame

91 if (name.equals("closed") && value.equals(true))

92 {

93 // ask user if it is ok to close

94 int result =

JOptionPane.showInternalConfirmDialog(iframe, "OK to close?",

95 "Select an Option",

JOptionPane.YES_NO_OPTION);

96

97 // if the user doesn't agree, veto the close

98 if (result != JOptionPane.YES_OPTION) throw

new PropertyVetoException(

99 "User canceled close", event);

100 }

101 });

102

103 // position frame

104 int width = desktop.getWidth() / 2;

105 int height = desktop.getHeight() / 2;

106 iframe.reshape(nextFrameX, nextFrameY, width, height);

107

108 iframe.show();

109

110 // select the frame--might be vetoed

111 try

112 {

113 iframe.setSelected(true);

114 }

115 catch (PropertyVetoException ex)

116 {

117 }

118

119 frameDistance = iframe.getHeight() -

iframe.getContentPane().getHeight();

120

121 // compute placement for next frame

122

123 nextFrameX += frameDistance;

124 nextFrameY += frameDistance;

125 if (nextFrameX + width > desktop.getWidth()) nextFrameX = 0;

126 if (nextFrameY + height > desktop.getHeight()) nextFrameY = 0;

127 }

128

129 /**

130 * Cascades the noniconified internal frames of the desktop.

131 */

132 public void cascadeWindows()

133 {

134 int x = 0;

135 int y = 0;

136 int width = desktop.getWidth() / 2;

137 int height = desktop.getHeight() / 2;

138

139 for (JInternalFrame frame : desktop.getAllFrames())

140 {

141 if (!frame.isIcon())

142 {

143 try

144 {

145 // try to make maximized frames resizable; this

might be vetoed

146 frame.setMaximum(false);

147 frame.reshape(x, y, width, height);

148

149 x += frameDistance;

150 y += frameDistance;

151 // wrap around at the desktop edge

152 if (x + width > desktop.getWidth()) x = 0;

153 if (y + height > desktop.getHeight()) y = 0;

154 }

155 catch (PropertyVetoException ex)

156 {

157 }

158 }

159 }

160 }

161

162 /**

163 * Tiles the noniconified internal frames of the desktop.

164 */

165 public void tileWindows()

166 {

167 // count frames that aren't iconized

168 int frameCount = 0;

169 for (JInternalFrame frame : desktop.getAllFrames())

170 if (!frame.isIcon()) frameCount++;

171 if (frameCount == 0) return;

172

173 int rows = (int) Math.sqrt(frameCount);

174 int cols = frameCount / rows;

175 int extra = frameCount % rows;

176 // number of columns with an extra row

177

178 int width = desktop.getWidth() / cols;

179 int height = desktop.getHeight() / rows;

180 int r = 0;

181 int c = 0;

182 for (JInternalFrame frame : desktop.getAllFrames())

183 {

184 if (!frame.isIcon())

185 {

186 try

187 {

188 frame.setMaximum(false);

189 frame.reshape(c * width, r * height, width,

height);

190 r++;

191 if (r == rows)

192 {

193 r = 0;

194 c++;

195 if (c == cols - extra)

196 {

197 // start adding an extra row

198 rows++;

199 height = desktop.getHeight() /

rows;

200 }

201 }

202 }

203 catch (PropertyVetoException ex)

204 {

205 }

206 }

207 }

208 }

209

210 /**

211 * Brings the next noniconified internal frame to the front.

212 */

213 public void selectNextWindow()

214 {

215 JInternalFrame[] frames = desktop.getAllFrames();

216 for (int i = 0; i < frames.length; i++)

217 {

218 if (frames[i].isSelected())

219 {

220 // find next frame that isn't an icon and can be selected

221 int next = (i + 1) % frames.length;

222 while (next != i)

223 {

224 if (!frames[next].isIcon())

225 {

226 try

227 {

228 // all other frames are icons or veto

selection

229 frames[next].setSelected(true);

230 frames[next].toFront();

231 frames[i].toBack();

232 return;

233 }

234 catch (PropertyVetoException ex)

235 {

236 }

237 }

238 next = (next + 1) % frames.length;

239 }

240 }

241 }

242 }

243 }

javax.swing.JDesktopPane 1.2

• JInternalFrame[] getAllFrames()

gets all internal frames in this desktop pane.

• void setDragMode(int mode)

sets the drag mode to live or outline drag mode.

javax.swing.JInternalFrame 1.2

• JInternalFrame()

• JInternalFrame(String title)

• JInternalFrame(String title, boolean resizable)

• JInternalFrame(String title, boolean resizable, boolean closable)

• JInternalFrame(String title, boolean resizable, boolean closable, boolean maximizable)

• JInternalFrame(String title, boolean resizable, boolean closable, boolean maximizable,

boolean iconifiable)

constructs a new internal frame.

• boolean isResizable()

• void setResizable(boolean b)

• boolean isClosable()

• void setClosable(boolean b)

• boolean isMaximizable()

• void setMaximizable(boolean b)

• boolean isIconifiable()

• void setIconifiable(boolean b)

gets or sets the resizable, closable, maximizable, and iconifiable properties. When the

property is true, an icon appears in the frame title to resize, close, maximize, or iconify

the internal frame.

• boolean isIcon()

• void setIcon(boolean b)

• boolean isMaximum()

• void setMaximum(boolean b)

• boolean isClosed()

• void setClosed(boolean b)

gets or sets the icon, maximum, or closed property.When this property is true, the internal

frame is iconified, maximized, or closed.

• boolean isSelected()

• void setSelected(boolean b)

gets or sets the selected property. When this property is true, the current internal frame

becomes the selected frame on the desktop.

• void moveToFront()

• void moveToBack()

moves this internal frame to the front or the back of the desktop.

• void reshape(int x, int y, int width, int height)

moves and resizes this internal frame.

• Container getContentPane()

• void setContentPane(Container c)

gets or sets the content pane of this internal frame.

• JDesktopPane getDesktopPane()

gets the desktop pane of this internal frame.

• Icon getFrameIcon()

• void setFrameIcon(Icon anIcon)

gets or sets the frame icon that is displayed in the title bar.

• boolean isVisible()

• void setVisible(boolean b)

gets or sets the “visible” property.

• void show()

makes this internal frame visible and brings it to the front.

javax.swing.JComponent 1.2

• void addVetoableChangeListener(VetoableChangeListener listener)

adds a vetoable change listener that is notified when an attempt is made to change a

constrained property.

java.beans.VetoableChangeListener 1.1

• void vetoableChange(PropertyChangeEvent event)

is called when the set method of a constrained property notifies the vetoable change

listeners.

java.beans.PropertyChangeEvent 1.1

• String getPropertyName()

returns the name of the property that is about to be changed.

• Object getNewValue()

returns the proposed new value for the property.

java.beans.PropertyVetoException 1.1

• PropertyVetoException(String reason, PropertyChangeEvent event)

constructs a property veto exception.

10.6.6 Layers

Java SE 1.7 introduces a feature that lets you place a layer over another component. You

can paint on the layer and listen to events of the underlying component. You can use layers

to add visual clues to your user interface. For example, you can decorate the current input,

invalid inputs, or disabled components.

The JLayer class associates a component with a LayerUI object that is in charge of painting

and event handling. The LayerUI class has a type parameter that must match the associated

component. For example, here we add a layer to a JPanel:

 JPanel panel = new JPanel();

 LayerUI<JPanel> layerUI = new PanelLayer();

 JLayer layer = new JLayer(panel, layerUI);

 frame.add(layer);

Note that you add the layer, not the panel, to the parent. Here, PanelLayer is a subclass

 class PanelLayer extends LayerUI<Panel>

 {

 public void paint(Graphics g, JComponent c)

 {

 ...

 }

 ...

 }

In the paint method, you can paint anything you like. Be sure to call super.paint to have

the component painted. Here, we draw a transparent color over the entire component:

 public void paint(Graphics g, JComponent c)

 {

 super.paint(g, c);

 Graphics2D g2 = (Graphics2D) g.create();

 g2.setComposite(AlphaComposite.getInstance(AlphaComposite.SRC_

OVER, .3f));

 g2.setPaint(color));

 g2.fillRect(0, 0, c.getWidth(), c.getHeight());

 g2.dispose();

 }

In order to listen to events from the associated component or any of its children, the LayerUI

class must set the layer’s event mask. This should be done in the installUI method, like

this:

 class PanelLayer extends LayerUI<JPanel>

 {

 public void installUI(JComponent c)

 {

 super.installUI(c);

 ((JLayer<?>) c).setLayerEventMask(AWTEvent.KEY_EVENT_MASK |

AWTEvent.FOCUS_EVENT_MASK);

 }

 public void uninstallUI(JComponent c)

 {

 ((JLayer<?>) c).setLayerEventMask(0);

 super.uninstallUI(c);

 }

 ...

 }

Now you will receive events in the methods named processXxxEvent. For example, in our sample
application, we repaint the layer after every keystroke:

 public class PanelLayer extends LayerUI<JPanel>

 {

 protected void processKeyEvent(KeyEvent e, JLayer<? extends JPanel> l)

 {

 l.repaint();

 }

 }

Our sample program in Listing 10.32 has three input fields for the RGB values of a color.

Whenever the user changes the values, the color is shown transparently over the panel. We

also trap focus events and show the text of the focused component in a bold font.

Listing 10.32 layer/ColorFrame.java

 1 package layer;

 2

 3 import java.awt.*;

 4 import java.awt.event.*;

 5 import javax.swing.*;

 6 import javax.swing.plaf.*;

 7

 8 /**

 9 * A frame with three text fields to set the background color.

10 */

11 public class ColorFrame extends JFrame

12 {

13 private JPanel panel;

14 private JTextField redField;

15 private JTextField greenField;

16 private JTextField blueField;

17

18 public ColorFrame()

19 {

20 panel = new JPanel();

21

22 panel.add(new JLabel("Red:"));

23 redField = new JTextField("255", 3);

24 panel.add(redField);

25

26 panel.add(new JLabel("Green:"));

27 greenField = new JTextField("255", 3);

28 panel.add(greenField);

29

30 panel.add(new JLabel("Blue:"));

31 blueField = new JTextField("255", 3);

32 panel.add(blueField);

33

34 LayerUI<JPanel> layerUI = new PanelLayer();

35 JLayer<JPanel> layer = new JLayer<JPanel>(panel, layerUI);

36

37 add(layer);

38 pack();

39 }

40

41 class PanelLayer extends LayerUI<JPanel>

42 {

43 public void installUI(JComponent c)

44 {

45 super.installUI(c);

46 ((JLayer<?>) c).setLayerEventMask(AWTEvent.KEY_EVENT_MASK |

AWTEvent.FOCUS_EVENT_MASK);

47 }

48

49 public void uninstallUI(JComponent c)

50 {

51 ((JLayer<?>) c).setLayerEventMask(0);

52 super.uninstallUI(c);

53 }

54

55 protected void processKeyEvent(KeyEvent e, JLayer<? extends JPanel>

l)

56 {

57 l.repaint();

58 }

59

60 protected void processFocusEvent(FocusEvent e, JLayer<? extends

JPanel> l)

61 {

62 if (e.getID() == FocusEvent.FOCUS_GAINED)

63 {

64 Component c = e.getComponent();

65 c.setFont(getFont().deriveFont(Font.BOLD));

66 }

67 if (e.getID() == FocusEvent.FOCUS_LOST)

68 {

69 Component c = e.getComponent();

70 c.setFont(getFont().deriveFont(Font.PLAIN));

71 }

72 }

73

74 public void paint(Graphics g, JComponent c)

75 {

76 super.paint(g, c);

77

78 Graphics2D g2 = (Graphics2D) g.create();

79 g2.setComposite(AlphaComposite.getInstance(AlphaCompos

ite.SRC_OVER, .3f));

80 int red = Integer.parseInt(redField.getText().trim());

81 int green =

Integer.parseInt(greenField.getText().trim());

82 int blue = Integer.parseInt(blueField.getText().trim());

83 g2.setPaint(new Color(red, green, blue));

84 g2.fillRect(0, 0, c.getWidth(), c.getHeight());

85 g2.dispose();

86 }

87 }

88 }

89

javax.swing.JLayer<V extends Component> 7

• JLayer(V view, LayerUI<V> ui) constructs a layer over the given view, delegating painting

and event handling to the ui object

• void setLayerEventMask(long layerEventMask) enables sending of all matching events, sent

to the associated component or any of it descendants, to the associated LayerUI. For the

event mask, combine any of the constants

 COMPONENT_EVENT_MASK

 FOCUS_EVENT_MASK

 HIERARCHY_BOUNDS_EVENT_MASK

 HIERARCHY_EVENT_MASK

 INPUT_METHOD_EVENT_MASK

 KEY_EVENT_MASK

 MOUSE_EVENT_MASK

 MOUSE_MOTION_EVENT_MASK

 MOUSE_WHEEL_EVENT_MASK

from the AWTEvent class.

javax.swing.plaf.LayerUI<V extends Component> 7

• void installUI(JComponent c)

• void uninstallUI(JComponent c)

Called when the LayerUI for the component c is installed or uninstalled. Override to set

or clear the layer event mask.

• void paint(Graphics g, JComponent c)

Called when the decorated component is painted. Override to call super.paint and paint

decorations.

• void processComponentEvent(ComponentEvent e, JLayer<? extends V> l)

• void processFocusEvent(FocusEvent e, JLayer<? extends V> l)

• void processHierarchyBoundsEvent(HierarchyEvent e, JLayer<? extends V> l)

• void processHierarchyEvent(HierarchyEvent e, JLayer<? extends V> l)

• void processInputMethodEvent(InputMethodEvent e, JLayer<? extends V> l)

• void processKeyEvent(KeyEvent e, JLayer<? extends V> l)

• void processMouseEvent(MouseEvent e, JLayer<? extends V> l)

• void processMouseMotionEvent(MouseEvent e, JLayer<? extends V> l)

• void processMouseWheelEvent(MouseWheelEvent e, JLayer<? extends V> l) Called when the

specified event is sent to this LayerUI.

You have now seen how to use the complex components that the Swing framework offers. In

the next chapter, we will turn to advanced AWT issues: complex drawing operations, image

manipulation, printing, and interfacing with the native windowing system.

Chapter 11. Advanced AWT

In this chapter

• 11.1 The Rendering Pipeline,

• 11.2 Shapes,

• 11.3 Areas,

• 11.4 Strokes,

• 11.5 Paint,

• 11.6 Coordinate Transformations,

• 11.7 Clipping,

• 11.8 Transparency and Composition,

• 11.9 Rendering Hints,

• 11.10 Readers and Writers for Images,

• 11.11 Image Manipulation,

• 11.12 Printing,

• 11.13 The Clipboard,

• 11.14 Drag and Drop,

• 11.15 Platform Integration,

You can use the methods of the Graphics class to create simple drawings. Those methods are

sufficient for simple applets and applications, but they fall short when you create complex

shapes or when you require complete control over the appearance of the graphics. The Java

2D API is a more sophisticated class library that you can use to produce high-quality

drawings. In this chapter, we will give you an overview of that API.

We’ll then turn to the topic of printing and show how you can implement printing

capabilities in your programs.

We will cover two techniques for transferring data between programs: the system clipboard

and the drag-and-drop mechanism. You can use these techniques to transfer data between two

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-6
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-7
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-8
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-9
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-10
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-11
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-12
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-13
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-14
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11lev11-15

Java applications or between a Java application and a native program. Finally, we cover

techniques for making Java applications feel more like native applications, such as

providing a splash screen and an icon in the system tray.

11.1 The Rendering Pipeline

The original JDK 1.0 had a very simple mechanism for drawing shapes. You selected color

and paint mode, and called methods of the Graphics class such as drawRect or fillOval. The

Java 2D API supports many more options.

• You can easily produce a wide variety of shapes.

• You have control over the stroke—the pen that traces shape boundaries.

• You can fill shapes with solid colors, varying hues, and repeating patterns.

• You can use transformations to move, scale, rotate, or stretch shapes.

• You can clip shapes to restrict them to arbitrary areas.

• You can select composition rules to describe how to combine the pixels of a new shape
with existing pixels.

• You can give rendering hints to make trade-offs between speed and drawing quality.

To draw a shape, you need to go through the following steps:

1. Obtain an object of the Graphics2D class. This class is a subclass of the Graphics class.

Ever since Java SE 1.2, methods such as paint and paintComponent automatically receive an

object of the Graphics2D class. Simply use a cast, as follows:

 public void paintComponent(Graphics g)

 {

 Graphics2D g2 = (Graphics2D) g;

 ...

 }

2. Use the setRenderingHints method to set rendering hints—trade-offs between speed and

drawing quality.

 RenderingHints hints = . . .;

 g2.setRenderingHints(hints);

3. Use the setStroke method to set the stroke. The stroke draws the outline of the shape.
You can select the thickness and choose among solid and dotted lines.

 Stroke stroke = . . .;

 g2.setStroke(stroke);

4. Use the setPaint method to set the paint. The paint fills areas such as the stroke path
or the interior of a shape. You can create solid color paint, paint with changing hues,

or tiled fill patterns.

 Paint paint = . . .;

 g2.setPaint(paint);

5. Use the clip method to set the clipping region.

 Shape clip = . . .;

 g2.clip(clip);

6. Use the transform method to set a transformation from user space to device space. Use
transformations if it is easier for you to define your shapes in a custom coordinate system

than by using pixel coordinates.

 AffineTransform transform = . . .;

 g2.transform(transform);

7. Use the setComposite method to set a composition rule that describes how to combine the
new pixels with the existing pixels.

 Composite composite = . . .;

 g2.setComposite(composite);

8. Create a shape. The Java 2D API supplies many shape objects and methods to combine shapes.

 Shape shape = . . .;

9. Draw or fill the shape. If you draw the shape, its outline is stroked. If you fill the

shape, the interior is painted.

 g2.draw(shape);

 g2.fill(shape);

Of course, in many practical circumstances, you don’t need all these steps. There are

reasonable defaults for the settings of the 2D graphics context; change the settings only

if you want to deviate from the defaults.

In the following sections, you will see how to describe shapes, strokes, paints,

transformations, and composition rules.

The various set methods simply set the state of the 2D graphics context. They don’t cause

any drawing. Similarly, when you construct Shape objects, no drawing takes place. A shape

is only rendered when you call draw or fill. At that time, the new shape is computed in

a rendering pipeline (see Figure 11.1).

Figure 11.1 The rendering pipeline

In the rendering pipeline, the following steps take place to render a shape:

1. The path of the shape is stroked.

2. The shape is transformed.

3. The shape is clipped. If there is no intersection between the shape and the clipping

area, the process stops.

4. The remainder of the shape after clipping is filled.

5. The pixels of the filled shape are composed with the existing pixels. (In Figure 11.1,

the circle is part of the existing pixels, and the cup shape is superimposed over it.)

In the next section, you will see how to define shapes. Then, we will turn to the 2D graphics

context settings.

java.awt.Graphics2D 1.2

• void draw(Shape s)

draws the outline of the given shape with the current paint.

• void fill(Shape s)

fills the interior of the given shape with the current paint.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig01
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig01

11.2 Shapes

Here are some of the methods in the Graphics class to draw shapes:

 drawLine

 drawRectangle

 drawRoundRect

 draw3DRect

 drawPolygon

 drawPolyline

 drawOval

 drawArc

There are also corresponding fill methods. These methods have been in the Graphics class

ever since JDK 1.0. The Java 2D API uses a completely different, object-oriented approach.

Instead of methods, there are classes:

 Line2D

 Rectangle2D

 RoundRectangle2D

 Ellipse2D

 Arc2D

 QuadCurve2D

 CubicCurve2D

 GeneralPath

These classes all implement the Shape interface.

Finally, the Point2D class describes a point with an x and a y coordinate. Points are used
to define shapes, but they aren’t themselves shapes.

To draw a shape, first create an object of a class that implements the Shape interface and

then call the draw method of the Graphics2D class.

The Line2D, Rectangle2D, RoundRectangle2D, Ellipse2D, and Arc2D classes correspond to the

drawLine, drawRectangle, drawRoundRect, drawOval, and drawArc methods. (The concept of a

“3D rectangle” has died the death that it so richly deserved—there is no analog to the

draw3DRect method.) The Java 2D API supplies two additional classes, quadratic and cubic

curves, that we will discuss in this section. There is no Polygon2D class; instead, the

GeneralPath class describes paths made up from lines, quadratic and cubic curves. You can

use a GeneralPath to describe a polygon; we’ll show you how later in this section.

The classes

 Rectangle2D

 RoundRectangle2D

 Ellipse2D

 Arc2D

all inherit from a common superclass RectangularShape. Admittedly, ellipses and arcs are

not rectangular, but they have a bounding rectangle (see Figure 11.2).

Figure 11.2 The bounding rectangle of an ellipse and an arc

Each of the classes with a name ending in “2D” has two subclasses for specifying

coordinates as float or double quantities. In Volume I, you already encountered

Rectangle2D.Float and Rectangle2D.Double.

The same scheme is used for the other classes, such as Arc2D.Float and Arc2D.Double.

Internally, all graphics classes use float coordinates because float numbers use less

storage space but have sufficient precision for geometric computations. However, the Java

programming language makes it a bit more tedious to manipulate float numbers. For that reason,

most methods of the graphics classes use double parameters and return values. Only when

constructing a 2D object must you choose between the constructors with float and double

coordinates. For example,

 Rectangle2D floatRect = new Rectangle2D.Float(5F, 10F, 7.5F, 15F);

 Rectangle2D doubleRect = new Rectangle2D.Double(5, 10, 7.5, 15);

The Xxx2D.Float and Xxx2D.Double classes are subclasses of the Xxx2D classes. After object
construction, essentially no benefit accrues from remembering the subclass, and you can

just store the constructed object in a superclass variable as in the code example above.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig02

As you can see from the curious names, the Xxx2D.Float and Xxx2D.Double classes are also
inner classes of the Xxx2D classes. That is just a minor syntactical convenience to avoid
inflation of outer class names.

Figure 11.3 shows the relationships between the shape classes. However, the Double and Float

subclasses are omitted. Legacy classes from the pre-2D library are marked with a gray fill.

Figure 11.3 Relationships between the shape classes

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig03

11.2.1 Using the Shape Classes

You already saw how to use the Rectangle2D, Ellipse2D, and Line2D classes in Volume I,

Chapter 7. In this section, you will learn how to work with the remaining 2D shapes.

For the RoundRectangle2D shape, specify the top left corner, width, height, and the x and
y dimensions of the corner area that should be rounded (see Figure 11.4). For example, the
call

 RoundRectangle2D r = new RoundRectangle2D.Double(150, 200, 100, 50, 20, 20);

produces a rounded rectangle with circles of radius 20 at each of the corners.

Figure 11.4 Constructing a RoundRectangle2D

To construct an arc, specify the bounding box, the start angle, the angle swept out by the

arc (see Figure 11.5), and the closure type—one of Arc2D.OPEN, Arc2D.PIE, or Arc2D.CHORD.

 Arc2D a = new Arc2D(x, y, width, height, startAngle, arcAngle, closureType);

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch07.html#ch07
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig04
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig05

Figure 11.5 Constructing an elliptical arc

Figure 11.6 illustrates the arc types.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig06

Figure 11.6 Arc types

CAUTION:

If the arc is elliptical, the computation of the arc angles is not at all straightforward.The

API documentation states: “The angles are specified relative to the nonsquare framing

rectangle such that 45 degrees always falls on the line from the center of the ellipse to

the upper right corner of the framing rectangle. As a result, if the framing rectangle is

noticeably longer along one axis than the other, the angles to the start and end of the

arc segment will be skewed farther along the longer axis of the frame.” Unfortunately,

the documentation is silent on how to compute this “skew.” Here are the details:

Suppose the center of the arc is the origin and the point (x, y) lies on the arc. You can
get a skewed angle with the following formula:

 skewedAngle = Math.toDegrees(Math.atan2(-y * height, x * width));

The result is a value between -180 and 180. Compute the skewed start and end angles in this

way.Then, compute the difference between the two skewed angles. If the start angle or the

difference is negative, add 360 to the start angle. Then, supply the start angle and the

difference to the arc constructor.

If you run the example program at the end of this section, you can visually check that this

calculation yields the correct values for the arc constructor (see Figure 11.9).

The Java 2D API supports quadratic and cubic curves. In this chapter, we do not get into
the mathematics of these curves. We suggest you get a feel for how the curves look by running

the program in Listing 11.1. As you can see in Figures 11.7 and 11.8, quadratic and cubic

curves are specified by two end points and one or two control points. Moving the control
points changes the shape of the curves.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig09
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig07
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig08

Figure 11.7 A quadratic curve

Figure 11.8 A cubic curve

To construct quadratic and cubic curves, give the coordinates of the end points and the

control points. For example,

 QuadCurve2D q = new QuadCurve2D.Double(startX, startY, controlX, controlY, endX, endY);

 CubicCurve2D c = new CubicCurve2D.Double(startX, startY, control1X, control1Y,

 control2X, control2Y, endX, endY);

Quadratic curves are not very flexible, and they are not commonly used in practice. Cubic

curves (such as the Bézier curves drawn by the CubicCurve2D class) are, however, very common.

By combining many cubic curves so that the slopes at the connection points match, you can

create complex, smooth-looking curved shapes. For more information, we refer you to Computer
Graphics: Principles and Practice, Second Edition in C, by James D. Foley, Andries van Dam,
Steven K. Feiner, et al. (Addison-Wesley, 1995).

You can build arbitrary sequences of line segments, quadratic curves, and cubic curves,

and store them in a GeneralPath object. Specify the first coordinate of the path with the

moveTo method, for example

 GeneralPath path = new GeneralPath();

 path.moveTo(10, 20);

You can then extend the path by calling one of the methods lineTo, quadTo, or curveTo. These

methods extend the path by a line, a quadratic curve, or a cubic curve. To call lineTo,

supply the end point. For the two curve methods, supply the control points, then the end

point. For example,

 path.lineTo(20, 30);

 path.curveTo(control1X, control1Y, control2X, control2Y, endX, endY);

Close the path by calling the closePath method. It draws a line back to the starting point

of the path.

To make a polygon, simply call moveTo to go to the first corner point, followed by repeated

calls to lineTo to visit the other corner points. Finally, call closePath to close the

polygon. The program in Listing 11.1 shows this in more detail.

A general path does not have to be connected. You can call moveTo at any time to start a

new path segment.

Finally, you can use the append method to add arbitrary Shape objects to a general path.

The outline of the shape is added to the end to the path. The second parameter of the append

method is true if the new shape should be connected to the last point on the path, false

otherwise. For example, the call

 Rectangle2D r = . . .;

 path.append(r, false);

appends the outline of a rectangle to the path without connecting it to the existing path.

But

 path.append(r, true);

adds a straight line from the end point of the path to the starting point of the rectangle,

and then adds the rectangle outline to the path.

The program in Listing 11.1 lets you create sample paths. Figures 11.7 and 11.8 show sample

runs of the program. You can pick a shape maker from the combo box. The program contains

shape makers for

• Straight lines

• Rectangles, rounded rectangles, and ellipses

• Arcs (showing lines for the bounding rectangle and the start and end angles, in addition

to the arc itself)

• Polygons (using a GeneralPath)

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig07
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig08

• Quadratic and cubic curves

Use the mouse to adjust the control points. As you move them, the shape continuously repaints

itself.

The program is a bit complex because it handles multiple shapes and supports dragging of

the control points.

An abstract superclass ShapeMaker encapsulates the commonality of the shape maker classes.

Each shape has a fixed number of control points that the user can move around. The

getPointCount method returns that value. The abstract method

 Shape makeShape(Point2D[] points)

computes the actual shape, given the current positions of the control points. The toString

method returns the class name so that the ShapeMaker objects can simply be dumped into a

JComboBox.

To enable dragging of the control points, the ShapePanel class handles both mouse and mouse

motion events. If the mouse is pressed on top of a rectangle, subsequent mouse drags move

the rectangle.

The majority of the shape maker classes are simple—their makeShape methods just construct

and return the requested shapes. However, the ArcMaker class needs to compute the distorted

start and end angles. Furthermore, to demonstrate that the computation is indeed correct,

the returned shape is a GeneralPath containing the arc itself, the bounding rectangle, and

the lines from the center of the arc to the angle control points (see Figure 11.9).

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig09

Figure 11.9 The ShapeTest program

Listing 11.1 shape/ShapeTest.java

 1 package shape;

 2

 3 import java.awt.*;

 4 import java.awt.event.*;

 5 import java.awt.geom.*;

 6 import java.util.*;

 7 import javax.swing.*;

 8

 9 /**

10 * This program demonstrates the various 2D shapes.

11 * @version 1.03 2016-05-10

12 * @author Cay Horstmann

13 */

14 public class ShapeTest

15 {

16 public static void main(String[] args)

17 {

18 EventQueue.invokeLater(() ->

19 {

20 JFrame frame = new ShapeTestFrame();

21 frame.setTitle("ShapeTest");

22 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

23 frame.setVisible(true);

24 });

25 }

26 }

27

28 /**

29 * This frame contains a combo box to select a shape and a component to draw it.

30 */

31 class ShapeTestFrame extends JFrame

32 {

33 public ShapeTestFrame()

34 {

35 final ShapeComponent comp = new ShapeComponent();

36 add(comp, BorderLayout.CENTER);

37 final JComboBox<ShapeMaker> comboBox = new JComboBox<>();

38 comboBox.addItem(new LineMaker());

39 comboBox.addItem(new RectangleMaker());

40 comboBox.addItem(new RoundRectangleMaker());

41 comboBox.addItem(new EllipseMaker());

42 comboBox.addItem(new ArcMaker());

43 comboBox.addItem(new PolygonMaker());

44 comboBox.addItem(new QuadCurveMaker());

45 comboBox.addItem(new CubicCurveMaker());

46 comboBox.addActionListener(event ->

47 {

48 ShapeMaker shapeMaker =

comboBox.getItemAt(comboBox.getSelectedIndex());

49 comp.setShapeMaker(shapeMaker);

50 });

51 add(comboBox, BorderLayout.NORTH);

52 comp.setShapeMaker((ShapeMaker) comboBox.getItemAt(0));

53 pack();

54 }

55 }

56

57 /**

58 * This component draws a shape and allows the user to move the points that define

it.

59 */

60 class ShapeComponent extends JComponent

61 {

62 private static final int DEFAULT_WIDTH = 300;

63 private static final int DEFAULT_HEIGHT = 200;

64

65 private Point2D[] points;

66 private static Random generator = new Random();

67 private static int SIZE = 10;

68 private int current;

69 private ShapeMaker shapeMaker;

70

71 public ShapeComponent()

72 {

73 addMouseListener(new MouseAdapter()

74 {

75 public void mousePressed(MouseEvent event)

76 {

77 Point p = event.getPoint();

78 for (int i = 0; i < points.length; i++)

79 {

80 double x = points[i].getX() - SIZE /

2;

81 double y = points[i].getY() - SIZE /

2;

82 Rectangle2D r = new

Rectangle2D.Double(x, y, SIZE, SIZE);

83 if (r.contains(p))

84 {

85 current = i;

86 return;

87 }

88 }

89 }

90

91 public void mouseReleased(MouseEvent event)

92 {

93 current = -1;

94 }

95 });

96 addMouseMotionListener(new MouseMotionAdapter()

97 {

98 public void mouseDragged(MouseEvent event)

99 {

100 if (current == -1) return;

101 points[current] = event.getPoint();

102 repaint();

103 }

104 });

105 current = -1;

106 }

107

108 /**

109 * Set a shape maker and initialize it with a random point set.

110 * @param aShapeMaker a shape maker that defines a shape from a point set

111 */

112 public void setShapeMaker(ShapeMaker aShapeMaker)

113 {

114 shapeMaker = aShapeMaker;

115 int n = shapeMaker.getPointCount();

116 points = new Point2D[n];

117 for (int i = 0; i < n; i++)

118 {

119 double x = generator.nextDouble() * getWidth();

120 double y = generator.nextDouble() * getHeight();

121 points[i] = new Point2D.Double(x, y);

122 }

123 repaint();

124 }

125

126 public void paintComponent(Graphics g)

127 {

128 if (points == null) return;

129 Graphics2D g2 = (Graphics2D) g;

130 for (int i = 0; i < points.length; i++)

131 {

132 double x = points[i].getX() - SIZE / 2;

133 double y = points[i].getY() - SIZE / 2;

134 g2.fill(new Rectangle2D.Double(x, y, SIZE, SIZE));

135 }

136

137 g2.draw(shapeMaker.makeShape(points));

138 }

139

140 public Dimension getPreferredSize() { return new Dimension(DEFAULT_WIDTH,

DEFAULT_HEIGHT); }

141 }

142

143 /**

144 * A shape maker can make a shape from a point set. Concrete subclasses must return

a shape in the

145 * makeShape method.

146 */

147 abstract class ShapeMaker

148 {

149 public abstract Shape makeShape(Point2D[] p);

150 private int pointCount;

151

152 /**

153 * Constructs a shape maker.

154 * @param aPointCount the number of points needed to define this shape.

155 */

156 public ShapeMaker(int aPointCount)

157 {

158 pointCount = aPointCount;

159 }

160

161 /**

162 * Gets the number of points needed to define this shape.

163 * @return the point count

164 */

165 public int getPointCount()

166 {

167 return pointCount;

168 }

169

170 /**

171 * Makes a shape out of the given point set.

172 * @param p the points that define the shape

173 * @return the shape defined by the points

174 */

175

176 public String toString()

177 {

178 return getClass().getName();

179 }

180

181 }

182

183 /**

184 * Makes a line that joins two given points.

185 */

186 class LineMaker extends ShapeMaker

187 {

188 public LineMaker()

189 {

190 super(2);

191 }

192

193 public Shape makeShape(Point2D[] p)

194 {

195 return new Line2D.Double(p[0], p[1]);

196 }

197 }

198

199 /**

200 * Makes a rectangle that joins two given corner points.

201 */

202 class RectangleMaker extends ShapeMaker

203 {

204 public RectangleMaker()

205 {

206 super(2);

207 }

208

209 public Shape makeShape(Point2D[] p)

210 {

211 Rectangle2D s = new Rectangle2D.Double();

212 s.setFrameFromDiagonal(p[0], p[1]);

213 return s;

214 }

215 }

216

217 /**

218 * Makes a round rectangle that joins two given corner points.

219 */

220 class RoundRectangleMaker extends ShapeMaker

221 {

222 public RoundRectangleMaker()

223 {

224 super(2);

225 }

226

227 public Shape makeShape(Point2D[] p)

228 {

229 RoundRectangle2D s = new RoundRectangle2D.Double(0, 0, 0, 0, 20,

20);

230 s.setFrameFromDiagonal(p[0], p[1]);

231 return s;

232 }

233 }

234

235 /**

236 * Makes an ellipse contained in a bounding box with two given corner points.

237 */

238 class EllipseMaker extends ShapeMaker

239 {

240 public EllipseMaker()

241 {

242 super(2);

243 }

244

245 public Shape makeShape(Point2D[] p)

246 {

247 Ellipse2D s = new Ellipse2D.Double();

248 s.setFrameFromDiagonal(p[0], p[1]);

249 return s;

250 }

251 }

252

253 /**

254 * Makes an arc contained in a bounding box with two given corner points, and

with starting and

255 * ending angles given by lines emanating from the center of the bounding box

and ending in two

256 * given points. To show the correctness of the angle computation, the returned

shape contains the

257 * arc, the bounding box, and the lines.

258 */

259 class ArcMaker extends ShapeMaker

260 {

261 public ArcMaker()

262 {

263 super(4);

264 }

265

266 public Shape makeShape(Point2D[] p)

267 {

268 double centerX = (p[0].getX() + p[1].getX()) / 2;

269 double centerY = (p[0].getY() + p[1].getY()) / 2;

270 double width = Math.abs(p[1].getX() - p[0].getX());

271 double height = Math.abs(p[1].getY() - p[0].getY());

272

273 double skewedStartAngle =

Math.toDegrees(Math.atan2(-(p[2].getY() - centerY) * width,

274 (p[2].getX() - centerX) * height));

275 double skewedEndAngle = Math.toDegrees(Math.atan2(-(p[3].getY()

- centerY) * width,

276 (p[3].getX() - centerX) * height));

277 double skewedAngleDifference = skewedEndAngle -

skewedStartAngle;

278 if (skewedStartAngle < 0) skewedStartAngle += 360;

279 if (skewedAngleDifference < 0) skewedAngleDifference += 360;

280

281 Arc2D s = new Arc2D.Double(0, 0, 0, 0, skewedStartAngle,

skewedAngleDifference, Arc2D.OPEN);

282 s.setFrameFromDiagonal(p[0], p[1]);

283

284 GeneralPath g = new GeneralPath();

285 g.append(s, false);

286 Rectangle2D r = new Rectangle2D.Double();

287 r.setFrameFromDiagonal(p[0], p[1]);

288 g.append(r, false);

289 Point2D center = new Point2D.Double(centerX, centerY);

290 g.append(new Line2D.Double(center, p[2]), false);

291 g.append(new Line2D.Double(center, p[3]), false);

292 return g;

293 }

294 }

295

296 /**

297 * Makes a polygon defined by six corner points.

298 */

299 class PolygonMaker extends ShapeMaker

300 {

301 public PolygonMaker()

302 {

303 super(6);

304 }

305

306 public Shape makeShape(Point2D[] p)

307 {

308 GeneralPath s = new GeneralPath();

309 s.moveTo((float) p[0].getX(), (float) p[0].getY());

310 for (int i = 1; i < p.length; i++)

311 s.lineTo((float) p[i].getX(), (float) p[i].getY());

312 s.closePath();

313 return s;

314 }

315 }

316

317 /**

318 * Makes a quad curve defined by two end points and a control point.

319 */

320 class QuadCurveMaker extends ShapeMaker

321 {

322 public QuadCurveMaker()

323 {

324 super(3);

325 }

326

327 public Shape makeShape(Point2D[] p)

328 {

329 return new QuadCurve2D.Double(p[0].getX(), p[0].getY(),

p[1].getX(), p[1].getY(),

330 p[2].getX(), p[2].getY());

331 }

332 }

333

334 /**

335 * Makes a cubic curve defined by two end points and two control points.

336 */

337 class CubicCurveMaker extends ShapeMaker

338 {

339 public CubicCurveMaker()

340 {

341 super(4);

342 }

343

344 public Shape makeShape(Point2D[] p)

345 {

346 return new CubicCurve2D.Double(p[0].getX(), p[0].getY(),

p[1].getX(), p[1].getY(), p[2]

347 .getX(), p[2].getY(), p[3].getX(), p[3].getY());

348 }

349 }

java.awt.geom.RoundRectangle2D.Double 1.2

• RoundRectangle2D.Double(double x, double y, double width, double height, double arcWidth,

double arcHeight)

constructs a rounded rectangle with the given bounding rectangle and arc dimensions. See

Figure 11.4 for an explanation of the arcWidth and arcHeight parameters.

java.awt.geom.Arc2D.Double 1.2

• Arc2D.Double(double x, double y, double w, double h, double startAngle, double arcAngle,

int type)

constructs an arc with the given bounding rectangle, start and arc angle, and arc type.The

startAngle and arcAngle are explained on p. 781.The type is one of Arc2D.OPEN, Arc2D.PIE,

and Arc2D.CHORD.

java.awt.geom.QuadCurve2D.Double 1.2

• QuadCurve2D.Double(double x1, double y1, double ctrlx, double ctrly, double x2, double

y2)

constructs a quadratic curve from a start point, a control point, and an end point.

java.awt.geom.CubicCurve2D.Double 1.2

• CubicCurve2D.Double(double x1, double y1, double ctrlx1, double ctrly1, double ctrlx2,

double ctrly2, double x2, double y2)

constructs a cubic curve from a start point, two control points, and an end point.

java.awt.geom.GeneralPath 1.2

• GeneralPath()

constructs an empty general path.

java.awt.geom.Path2D.Float 6

• void moveTo(float x, float y)

makes (x, y) the current point—that is, the starting point of the next segment.

• void lineTo(float x, float y)

• void quadTo(float ctrlx, float ctrly, float x, float y)

• void curveTo(float ctrl1x, float ctrl1y, float ctrl2x, float ctrl2y, float x, float y)

draws a line, quadratic curve, or cubic curve from the current point to the end point (x,

y), and makes that end point the current point.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig04

java.awt.geom.Path2D 6

• void append(Shape s, boolean connect)

adds the outline of the given shape to the general path. If connect is true, the current

point of the general path is connected to the starting point of the added shape by a straight

line.

• void closePath()

closes the path by drawing a straight line from the current point to the first point in

the path.

11.3 Areas

In the preceding section, you saw how you can specify complex shapes by constructing general

paths composed of lines and curves. By using a sufficient number of lines and curves, you

can draw essentially any shape. For example, the shapes of characters in the fonts that

you see on the screen and on your printouts are all made up of lines and cubic curves.

Occasionally, it is easier to describe a shape by composing it from areas, such as rectangles,
polygons, or ellipses. The Java 2D API supports four constructive area geometry operations
that combine two areas into a new area:

• add: The combined area contains all points that are in the first or the second area.

• subtract: The combined area contains all points that are in the first but not the second

area.

• intersect: The combined area contains all points that are in the first and the second

area.

• exclusiveOr: The combined area contains all points that are in either the first or the

second area, but not in both.

Figure 11.10 shows these operations.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig010

Figure 11.10 Constructive area geometry operations

To construct a complex area, start with a default area object.

 Area a = new Area();

Then, combine the area with any shape.

 a.add(new Rectangle2D.Double(. . .));

 a.subtract(path);

 ...

The Area class implements the Shape interface. You can stroke the boundary of the area with

the draw method or paint the interior with the fill method of the Graphics2D class.

java.awt.geom.Area

• void add(Area other)

• void subtract(Area other)

• void intersect(Area other)

• void exclusiveOr(Area other)

carries out the constructive area geometry operation with this area and the other area and

sets this area to the result.

11.4 Strokes

The draw operation of the Graphics2D class draws the boundary of a shape by using the

currently selected stroke. By default, the stroke is a solid line that is 1 pixel wide.
You can select a different stroke by calling the setStroke method and supplying an object

of a class that implements the Stroke interface. The Java 2D API defines only one such class,

called BasicStroke. In this section, we’ll look at the capabilities of the BasicStroke

class.

You can construct strokes of arbitrary thickness. For example, here is how to draw lines

that are 10 pixels wide:

 g2.setStroke(new BasicStroke(10.0F));

 g2.draw(new Line2D.Double(. . .));

When a stroke is more than a pixel thick, the end of the stroke can have different styles.
Figure 11.11 shows these so-called end cap styles. You have three choices:

• A butt cap simply ends the stroke at its end point.

• A round cap adds a half-circle to the end of the stroke.

• A square cap adds a half-square to the end of the stroke.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig011

Figure 11.11 End cap styles

When two thick strokes meet, there are three choices for the join style (see Figure 11.12).

• A bevel join joins the strokes with a straight line that is perpendicular to the bisector
of the angle between the two strokes.

• A round join extends each stroke to have a round cap.

• A miter join extends both strokes by adding a “spike.”

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig012

Figure 11.12 Join styles

The miter join is not suitable for lines that meet at small angles. If two lines join with

an angle that is less than the miter limit, a bevel join is used instead, which prevents
extremely long spikes. By default, the miter limit is 10 degrees.

You can specify these choices in the BasicStroke constructor, for example:

 g2.setStroke(new BasicStroke(10.0F, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND));

 g2.setStroke(new BasicStroke(10.0F, BasicStroke.CAP_BUTT, BasicStroke.JOIN_MITER,

 15.0F /* miter limit */));

Finally, you can create dashed lines by setting a dash pattern. In the program in Listing
11.2, you can select a dash pattern that spells out SOS in Morse code. The dash pattern

is a float[] array of numbers that contains the lengths of the “on” and “off” intervals

(see Figure 11.13).

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig013

Figure 11.13 A dash pattern

You can specify the dash pattern and a dash phase when constructing the BasicStroke. The
dash phase indicates where in the dash pattern each line should start. Normally, you set

this value to 0.

 float[] dashPattern = { 10, 10, 10, 10, 10, 10, 30, 10, 30, . . . };

 g2.setStroke(new BasicStroke(10.0F, BasicStroke.CAP_BUTT, BasicStroke.JOIN_MITER,

 10.0F /* miter limit */, dashPattern, 0 /* dash phase */));

NOTE:

End cap styles are applied to the ends of each dash in a dash pattern.

The program in Listing 11.2 lets you specify end cap styles, join styles, and dashed lines

(see Figure 11.14). You can move the ends of the line segments to test the miter limit:

Select the miter join, then move the line segment to form a very acute angle. You will see

the miter join turn into a bevel join.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig014

Figure 11.14 The StrokeTest program

The program is similar to the program in Listing 11.1. The mouse listener remembers your

click on the end point of a line segment, and the mouse motion listener monitors the dragging

of the end point. A set of radio buttons signal the user choices for the end cap style,

join style, and solid or dashed line. The paintComponent method of the StrokePanel class

constructs a GeneralPath consisting of the two line segments that join the three points

that the user can move with the mouse. It then constructs a BasicStroke, according to the

selections the user made, and finally draws the path.

Listing 11.2 stroke/StrokeTest.java

 1 package stroke;

 2

 3 import java.awt.*;

 4 import java.awt.event.*;

 5 import java.awt.geom.*;

 6 import javax.swing.*;

 7

 8 /**

 9 * This program demonstrates different stroke types.

10 * @version 1.04 2016-05-10

11 * @author Cay Horstmann

12 */

13 public class StrokeTest

14 {

15 public static void main(String[] args)

16 {

17 EventQueue.invokeLater(() ->

18 {

19 JFrame frame = new StrokeTestFrame();

20 frame.setTitle("StrokeTest");

21 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

22 frame.setVisible(true);

23 });

24 }

25 }

26

27 /**

28 * This frame lets the user choose the cap, join, and line style, and shows the

resulting stroke.

29 */

30 class StrokeTestFrame extends JFrame

31 {

32 private StrokeComponent canvas;

33 private JPanel buttonPanel;

34

35 public StrokeTestFrame()

36 {

37 canvas = new StrokeComponent();

38 add(canvas, BorderLayout.CENTER);

39

40 buttonPanel = new JPanel();

41 buttonPanel.setLayout(new GridLayout(3, 3));

42 add(buttonPanel, BorderLayout.NORTH);

43

44 ButtonGroup group1 = new ButtonGroup();

45 makeCapButton("Butt Cap", BasicStroke.CAP_BUTT, group1);

46 makeCapButton("Round Cap", BasicStroke.CAP_ROUND, group1);

47 makeCapButton("Square Cap", BasicStroke.CAP_SQUARE, group1);

48

49 ButtonGroup group2 = new ButtonGroup();

50 makeJoinButton("Miter Join", BasicStroke.JOIN_MITER, group2);

51 makeJoinButton("Bevel Join", BasicStroke.JOIN_BEVEL, group2);

52 makeJoinButton("Round Join", BasicStroke.JOIN_ROUND, group2);

53

54 ButtonGroup group3 = new ButtonGroup();

55 makeDashButton("Solid Line", false, group3);

56 makeDashButton("Dashed Line", true, group3);

57 }

58

59 /**

60 * Makes a radio button to change the cap style.

61 * @param label the button label

62 * @param style the cap style

63 * @param group the radio button group

64 */

65 private void makeCapButton(String label, final int style, ButtonGroup group)

66 {

67 // select first button in group

68 boolean selected = group.getButtonCount() == 0;

69 JRadioButton button = new JRadioButton(label, selected);

70 buttonPanel.add(button);

71 group.add(button);

72 button.addActionListener(event -> canvas.setCap(style));

73 pack();

74 }

75

76 /**

77 * Makes a radio button to change the join style.

78 * @param label the button label

79 * @param style the join style

80 * @param group the radio button group

81 */

82 private void makeJoinButton(String label, final int style, ButtonGroup group)

83 {

84 // select first button in group

85 boolean selected = group.getButtonCount() == 0;

86 JRadioButton button = new JRadioButton(label, selected);

87 buttonPanel.add(button);

88 group.add(button);

89 button.addActionListener(event -> canvas.setJoin(style));

90 }

91

92 /**

93 * Makes a radio button to set solid or dashed lines

94 * @param label the button label

95 * @param style false for solid, true for dashed lines

96 * @param group the radio button group

97 */

98 private void makeDashButton(String label, final boolean style, ButtonGroup

group)

99 {

100 // select first button in group

101 boolean selected = group.getButtonCount() == 0;

102 JRadioButton button = new JRadioButton(label, selected);

103 buttonPanel.add(button);

104 group.add(button);

105 button.addActionListener(event -> canvas.setDash(style));

106 }

107 }

108

109 /**

110 * This component draws two joined lines, using different stroke objects, and

allows the user to

111 * drag the three points defining the lines.

112 */

113 class StrokeComponent extends JComponent

114 {

115 private static final int DEFAULT_WIDTH = 400;

116 private static final int DEFAULT_HEIGHT = 400;

117 private static int SIZE = 10;

118

119 private Point2D[] points;

120 private int current;

121 private float width;

122 private int cap;

123 private int join;

124 private boolean dash;

125

126 public StrokeComponent()

127 {

128 addMouseListener(new MouseAdapter()

129 {

130 public void mousePressed(MouseEvent event)

131 {

132 Point p = event.getPoint();

133 for (int i = 0; i < points.length; i++)

134 {

135 double x = points[i].getX() - SIZE / 2;

136 double y = points[i].getY() - SIZE / 2;

137 Rectangle2D r = new Rectangle2D.Double(x,

y, SIZE, SIZE);

138 if (r.contains(p))

139 {

140 current = i;

141 return;

142 }

143 }

144 }

145

146 public void mouseReleased(MouseEvent event)

147 {

148 current = -1;

149 }

150 });

151

152 addMouseMotionListener(new MouseMotionAdapter()

153 {

154 public void mouseDragged(MouseEvent event)

155 {

156 if (current == -1) return;

157 points[current] = event.getPoint();

158 repaint();

159 }

160 });

161

162 points = new Point2D[3];

163 points[0] = new Point2D.Double(200, 100);

164 points[1] = new Point2D.Double(100, 200);

165 points[2] = new Point2D.Double(200, 200);

166 current = -1;

167 width = 8.0F;

168 }

169

170 public void paintComponent(Graphics g)

171 {

172 Graphics2D g2 = (Graphics2D) g;

173 GeneralPath path = new GeneralPath();

174 path.moveTo((float) points[0].getX(), (float) points[0].getY());

175 for (int i = 1; i < points.length; i++)

176 path.lineTo((float) points[i].getX(), (float)

points[i].getY());

177 BasicStroke stroke;

178 if (dash)

179 {

180 float miterLimit = 10.0F;

181 float[] dashPattern = { 10F, 10F, 10F, 10F, 10F, 10F, 30F, 10F,

30F, 10F, 30F, 10F, 10F,

182 10F, 10F, 10F, 10F, 30F };

183 float dashPhase = 0;

184 stroke = new BasicStroke(width, cap, join, miterLimit,

dashPattern, dashPhase);

185 }

186 else stroke = new BasicStroke(width, cap, join);

187 g2.setStroke(stroke);

188 g2.draw(path);

189 }

190

191 /**

192 * Sets the join style.

193 * @param j the join style

194 */

195 public void setJoin(int j)

196 {

197 join = j;

198 repaint();

199 }

200

201 /**

202 * Sets the cap style.

203 * @param c the cap style

204 */

205 public void setCap(int c)

206 {

207 cap = c;

208 repaint();

209 }

210

211 /**

212 * Sets solid or dashed lines.

213 * @param d false for solid, true for dashed lines

214 */

215 public void setDash(boolean d)

216 {

217 dash = d;

218 repaint();

219 }

220

221 public Dimension getPreferredSize() { return new Dimension(DEFAULT_WIDTH,

DEFAULT_HEIGHT); }

222 }

java.awt.Graphics2D 1.2

• void setStroke(Stroke s)

sets the stroke of this graphics context to the given object that implements the Stroke

interface.

java.awt.BasicStroke 1.2

• BasicStroke(float width)

• BasicStroke(float width, int cap, int join)

• BasicStroke(float width, int cap, int join, float miterlimit)

• BasicStroke(float width, int cap, int join, float miterlimit, float[] dash, float

dashPhase)

constructs a stroke object with the given attributes.

11.5 Paint

When you fill a shape, its inside is covered with paint. Use the setPaint method to set
the paint style to an object with a class that implements the Paint interface. The Java

2D API provides three such classes:

• The Color class implements the Paint interface. To fill shapes with a solid color, simply

call setPaint with a Color object, such as

 g2.setPaint(Color.red);

• The GradientPaint class varies colors by interpolating between two given color values

(see Figure 11.15).

Figure 11.15 Gradient paint

• The TexturePaint class fills an area with repetitions of an image (see Figure 11.16).

Figure 11.16 Texture paint

You can construct a GradientPaint object by specifying two points and the colors that you

want at these two points.

 g2.setPaint(new GradientPaint(p1, Color.RED, p2, Color.YELLOW));

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig015
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig016

Colors are interpolated along the line joining the two points. Colors are constant along

lines perpendicular to that joining line. Points beyond an end point of the line are given

the color at the end point.

Alternatively, if you call the GradientPaint constructor with true for the cyclic parameter,

 g2.setPaint(new GradientPaint(p1, Color.RED, p2, Color.YELLOW, true));

then the color variation cycles and keeps varying beyond the end points.

To construct a TexturePaint object, specify a BufferedImage and an anchor rectangle.

 g2.setPaint(new TexturePaint(bufferedImage, anchorRectangle));

We will introduce the BufferedImage class later in this chapter when we discuss images in

detail. The simplest way of obtaining a buffered image is to read an image file:

 bufferedImage = ImageIO.read(new File("blue-ball.gif"));

The anchor rectangle is extended indefinitely in x and y directions to tile the entire
coordinate plane. The image is scaled to fit into the anchor and then replicated into each

tile.

java.awt.Graphics2D 1.2

• void setPaint(Paint s)

sets the paint of this graphics context to the given object that implements the Paint

interface.

java.awt.GradientPaint 1.2

• GradientPaint(float x1, float y1, Color color1, float x2, float y2, Color color2)

• GradientPaint(float x1, float y1, Color color1, float x2, float y2, Color color2, boolean

cyclic)

• GradientPaint(Point2D p1, Color color1, Point2D p2, Color color2)

• GradientPaint(Point2D p1, Color color1, Point2D p2, Color color2, boolean cyclic)

constructs a gradient paint object that fills shapes with color such that the start point

is colored with color1, the end point is colored with color2, and the colors in between

are linearly interpolated. Colors are constant along lines perpendicular to the line joining

the start and the end point. By default, the gradient paint is not cyclic—that is, points

beyond the start and end points are colored with the same color as the start and end point.

If the gradient paint is cyclic, then colors continue to be interpolated, first returning
to the starting point color and then repeating indefinitely in both directions.

java.awt.TexturePaint 1.2

• TexturePaint(BufferedImage texture, Rectangle2D anchor)

creates a texture paint object. The anchor rectangle defines the tiling of the space to

be painted; it is repeated indefinitely in x and y directions, and the texture image is
scaled to fill each tile.

11.6 Coordinate Transformations

Suppose you need to draw an object, such as an automobile. You know, from the manufacturer’s

specifications, the height, wheelbase, and total length. You could, of course, figure out

all pixel positions, assuming some number of pixels per meter. However, there is an easier

way: You can ask the graphics context to carry out the conversion for you.

 g2.scale(pixelsPerMeter, pixelsPerMeter);

 g2.draw(new Line2D.Double(coordinates in meters)); // converts to pixels and draws

scaled line

The scale method of the Graphics2D class sets the coordinate transformation of the graphics
context to a scaling transformation. That transformation changes user coordinates
(user-specified units) to device coordinates (pixels). Figure 11.17 shows how the
transformation works.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig017

Figure 11.17 User and device coordinates

Coordinate transformations are very useful in practice. They allow you to work with

convenient coordinate values. The graphics context takes care of the dirty work of

transforming them to pixels.

There are four fundamental transformations.

• Scaling: blowing up, or shrinking, all distances from a fixed point.

• Rotation: rotating all points around a fixed center.

• Translation: moving all points by a fixed amount.

• Shear: leaving one line fixed and “sliding” the lines parallel to it by an amount that

is proportional to the distance from the fixed line.

Figure 11.18 shows how these four fundamental transformations act on a unit square.

Figure 11.18 The fundamental transformations

The scale, rotate, translate, and shear methods of the Graphics2D class set the coordinate

transformation of the graphics context to one of these fundamental transformations.

You can compose the transformations. For example, you might want to rotate shapes and double
their size; supply both a rotation and a scaling transformation:

 g2.rotate(angle);

 g2.scale(2, 2);

 g2.draw(. . .);

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig018

In this case, it does not matter in which order you supply the transformations. However,

with most transformations, order does matter. For example, if you want to rotate and shear,

then it makes a difference which of the transformations you supply first. You need to figure

out what your intention is. The graphics context will apply the transformations in the order

opposite to that in which you supplied them—that is, the last transformation you supply

is applied first.

You can supply as many transformations as you like. For example, consider the following

sequence of transformations:

 g2.translate(x, y);

 g2.rotate(a);

 g2.translate(-x, -y);

The last transformation (which is applied first) moves the point (x, y) to the origin. The

second transformation rotates with an angle a around the origin. The final transformation

moves the origin back to (x, y). The overall effect is a rotation with center point (x,

y)—see Figure 11.19. Since rotating about a point other than the origin is such a common

operation, there is a shortcut:

 g2.rotate(a, x, y);

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig019

Figure 11.19 Composing transformations

If you know some matrix theory, you are probably aware that all rotations, translations,

scalings, shears, and their compositions can be expressed by transformation matrices of

the form:

Such a transformation is called an affine transformation. In the Java 2D API, the
AffineTransform class describes such a transformation. If you know the components of a

particular transformation matrix, you can construct it directly as

 AffineTransform t = new AffineTransform(a, b, c, d, e, f);

Additionally, the factory methods getRotateInstance, getScaleInstance,

getTranslateInstance, and getShearInstance construct the matrices that represent these

transformation types. For example, the call

 t = AffineTransform.getScaleInstance(2.0F, 0.5F);

returns a transformation that corresponds to the matrix

Finally, the instance methods setToRotation, setToScale, setToTranslation, and setToShear

set a transformation object to a new type. Here is an example:

 t.setToRotation(angle); // sets t to a rotation

You can set the coordinate transformation of the graphics context to an AffineTransform

object.

 g2.setTransform(t); // replaces current transformation

However, in practice, you shouldn’t call the setTransform operation, as it replaces any

existing transformation that the graphics context may have. For example, a graphics context

for printing in landscape mode already contains a 90-degree rotation transformation. If

you call setTransform, you obliterate that rotation. Instead, call the transform method.

 g2.transform(t); // composes current transformation with t

It composes the existing transformation with the new AffineTransform object.

If you just want to apply a transformation temporarily, first get the old transformation,

compose it with your new transformation, and finally restore the old transformation when

you are done.

 AffineTransform oldTransform = g2.getTransform(); // save old transform

 g2.transform(t); // apply temporary transform

 draw on g2

 g2.setTransform(oldTransform); // restore old transform

java.awt.geom.AffineTransform 1.2

• AffineTransform(double a, double b, double c, double d, double e, double f)

• AffineTransform(float a, float b, float c, float d, float e, float f)

constructs the affine transform with matrix

• AffineTransform(double[] m)

• AffineTransform(float[] m)

constructs the affine transform with matrix

• static AffineTransform getRotateInstance(double a)

creates a rotation around the origin by the angle a (in radians). The transformation matrix

is

If a is between 0 and / 2, the rotation moves the positive x axis toward the positive y
axis.

• static AffineTransform getRotateInstance(double a, double x, double y)

creates a rotation around the point (x,y) by the angle a (in radians).

• static AffineTransform getScaleInstance(double sx, double sy)

creates a scaling transformation that scales the x axis by sx and the y axis by sy. The
transformation matrix is

• static AffineTransform getShearInstance(double shx, double shy)

creates a shear transformation that shears the x axis by shx and the y axis by shy.The
transformation matrix is

• static AffineTransform getTranslateInstance(double tx, double ty)

creates a translation that moves the x axis by tx and the y axis by ty. The transformation
matrix is

• void setToRotation(double a)

• void setToRotation(double a, double x, double y)

• void setToScale(double sx, double sy)

• void setToShear(double sx, double sy)

• void setToTranslation(double tx, double ty)

sets this affine transformation to a basic transformation with the given parameters. See

the getXxxInstance methods for an explanation of the basic transformations and their
parameters.

java.awt.Graphics2D 1.2

• void setTransform(AffineTransform t)

replaces the existing coordinate transformation of this graphics context with t.

• void transform(AffineTransform t)

composes the existing coordinate transformation of this graphics context with t.

• void rotate(double a)

• void rotate(double a, double x, double y)

• void scale(double sx, double sy)

• void shear(double sx, double sy)

• void translate(double tx, double ty)

composes the existing coordinate transformation of this graphics context with a basic

transformation with the given parameters. See the AffineTransform.getXxxInstance method
for an explanation of the basic transformations and their parameters.

11.7 Clipping

By setting a clipping shape in the graphics context, you constrain all drawing operations
to the interior of that clipping shape.

 g2.setClip(clipShape); // but see below

 g2.draw(shape); // draws only the part that falls inside the clipping shape

However, in practice, you don’t want to call the setClip operation because it replaces

any existing clipping shape that the graphics context might have. For example, as you will

see later in this chapter, a graphics context for printing comes with a clip rectangle that

ensures that you don’t draw on the margins. Instead, call the clip method.

 g2.clip(clipShape); // better

The clip method intersects the existing clipping shape with the new one that you supply.

If you just want to apply a clipping area temporarily, you should first get the old clip,

add your new clip, and finally restore the old clip when you are done:

 Shape oldClip = g2.getClip(); // save old clip

 g2.clip(clipShape); // apply temporary clip

 draw on g2

 g2.setClip(oldClip); // restore old clip

In Figure 11.20, we show off the clipping capability with a rather dramatic drawing of a

line pattern clipped by a complex shape—namely, the outline of a set of letters.

Figure 11.20 Using letter shapes to clip a line pattern

To obtain the character outlines, you need a font render context. Use the
getFontRenderContext method of the Graphics2D class.

 FontRenderContext context = g2.getFontRenderContext();

Next, using a string, a font, and the font render context, create a TextLayout object:

 TextLayout layout = new TextLayout("Hello", font, context);

This text layout object describes the layout of a sequence of characters, as rendered by

a particular font render context. The layout depends on the font render context—the same

characters will look different on a screen or on a printer.

More important for our application, the getOutline method returns a Shape object that

describes the shape of the outline of the characters in the text layout. The outline shape

starts at the origin (0, 0), which might not be what you want. In that case, supply an affine

transform to the getOutline operation to specify where you would like the outline to appear.

 AffineTransform transform = AffineTransform.getTranslateInstance(0, 100);

 Shape outline = layout.getOutline(transform);

Then, append the outline to the clipping shape.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig020

 GeneralPath clipShape = new GeneralPath();

 clipShape.append(outline, false);

Finally, set the clipping shape and draw a set of lines. The lines appear only inside the

character boundaries.

 g2.setClip(clipShape);

 Point2D p = new Point2D.Double(0, 0);

 for (int i = 0; i < NLINES; i++)

 {

 double x = . . .;

 double y = . . .;

 Point2D q = new Point2D.Double(x, y);

 g2.draw(new Line2D.Double(p, q)); // lines are clipped

 }

java.awt.Graphics 1.0

• void setClip(Shape s) 1.2

sets the current clipping shape to the shape s.

• Shape getClip() 1.2

returns the current clipping shape.

java.awt.Graphics2D 1.2

• void clip(Shape s)

intersects the current clipping shape with the shape s.

• FontRenderContext getFontRenderContext()

returns a font render context that is necessary for constructing TextLayout objects.

java.awt.font.TextLayout 1.2

• TextLayout(String s, Font f, FontRenderContext context)

constructs a text layout object from a given string and font, using the font render context

to obtain font properties for a particular device.

• float getAdvance()

returns the width of this text layout.

• float getAscent()

• float getDescent()

returns the height of this text layout above and below the baseline.

• float getLeading()

returns the distance between successive lines in the font used by this text layout.

11.8 Transparency and Composition

In the standard RGB color model, every color is described by its red, green, and blue

components. However, it is also convenient to describe areas of an image that are transparent
or partially transparent. When you superimpose an image onto an existing drawing, the

transparent pixels do not obscure the pixels under them at all, whereas partially

transparent pixels are mixed with the pixels under them. Figure 11.21 shows the effect of

overlaying a partially transparent rectangle on an image. You can still see the details

of the image shine through from under the rectangle.

Figure 11.21 Overlaying a partially transparent rectangle on an image

In the Java 2D API, transparency is described by an alpha channel. Each pixel has, in addition
to its red, green, and blue color components, an alpha value between 0 (fully transparent)

and 1 (fully opaque). For example, the rectangle in Figure 11.21 was filled with a pale

yellow color with 50% transparency:

 new Color(0.7F, 0.7F, 0.0F, 0.5F);

Now let us look at what happens if you superimpose two shapes. You need to blend or compose
the colors and alpha values of the source and destination pixels. Porter and Duff, two

researchers in the field of computer graphics, have formulated 12 possible composition rules
for this blending process. The Java 2D API implements all of these rules. Before going any

further, we’d like to point out that only two of these rules have practical significance.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig021
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig021

If you find the rules arcane or confusing, just use the SRC_OVER rule. It is the default

rule for a Graphics2D object, and it gives the most intuitive results.

Here is the theory behind the rules. Suppose you have a source pixel with alpha value aS.

In the image, there is already a destination pixel with alpha value aD. You want to compose

the two. The diagram in Figure 11.22 shows how to design a composition rule.

Figure 11.22 Designing a composition rule

Porter and Duff consider the alpha value as the probability that the pixel color should

be used. From the perspective of the source, there is a probability aS that it wants to

use the source color and a probability of 1 – aS that it doesn’t care. The same holds

for the destination. When composing the colors, let us assume that the probabilities are

independent. Then there are four cases, as shown in Figure 11.22. If the source wants to

use the source color and the destination doesn’t care, then it seems reasonable to let

the source have its way. That’s why the upper right corner of the diagram is labeled “S”.

The probability for that event is aS · (1 – aD). Similarly, the lower left corner is labeled

“D”. What should one do if both destination and source would like to select their color?

That’s where the Porter–Duff rules come in. If we decide that the source is more important,

we label the lower right corner with an “S” as well. That rule is called SRC_OVER. In

that rule, you combine the source colors with a weight of aS and the destination colors

with a weight of (1 – aS) · aD.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig022
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig022

The visual effect is a blending of the source and destination, with preference given to

the source. In particular, if aS is 1, then the destination color is not taken into account

at all. If aS is 0, then the source pixel is completely transparent and the destination

color is unchanged.

The other rules depend on what letters you put in the boxes of the probability diagram.

Table 11.1 and Figure 11.23 show all rules that are supported by the Java 2D API. The images

in the figure show the results of the rules when a rectangular source region with an alpha

of 0.75 is combined with an elliptical destination region with an alpha of 1.0.

Table 11.1 The Porter–Duff Composition Rules

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11tab01
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig023

Figure 11.23 Porter–Duff composition rules

As you can see, most of the rules aren’t very useful. Consider, as an extreme case, the

DST_IN rule. It doesn’t take the source color into account at all, but it uses the alpha

of the source to affect the destination. The SRC rule is potentially useful—it forces the

source color to be used, turning off blending with the destination.

For more information on the Porter–Duff rules, see, for example, Computer Graphics:
Principles and Practice, Second Edition in C, by James D. Foley, Andries van Dam, Steven
K. Feiner, et al.

Use the setComposite method of the Graphics2D class to install an object of a class that

implements the Composite interface. The Java 2D API supplies one such class, AlphaComposite,

that implements all the Porter–Duff rules in Figure 11.23.

The factory method getInstance of the AlphaComposite class yields an AlphaComposite object.

You supply the rule and the alpha value to be used for source pixels. For example, consider

the following code:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig023

 int rule = AlphaComposite.SRC_OVER;

 float alpha = 0.5f;

 g2.setComposite(AlphaComposite.getInstance(rule, alpha));

 g2.setPaint(Color.blue);

 g2.fill(rectangle);

The rectangle is then painted with blue color and an alpha value of 0.5. Since the composition

rule is SRC_OVER, it is transparently overlaid on the existing image.

The program in Listing 11.3 lets you explore these composition rules. Pick a rule from the

combo box and use the slider to set the alpha value of the AlphaComposite object.

Furthermore, the program displays a verbal description of each rule. Note that the

descriptions are computed from the composition rule diagrams. For example, a "DS" in the

second row stands for “blends with destination.”

The program has one important twist. There is no guarantee that the graphics context that

corresponds to the screen has an alpha channel. (In fact, it generally does not.) When pixels

are deposited to a destination without an alpha channel, the pixel colors are multiplied

with the alpha value and the alpha value is discarded. Now, several of the Porter–Duff

rules use the alpha values of the destination, which means a destination alpha channel is

important. For that reason, we use a buffered image with the ARGB color model to compose

the shapes. After the images have been composed, we draw the resulting image to the screen.

 BufferedImage image = new BufferedImage(getWidth(), getHeight(),

BufferedImage.TYPE_INT_ARGB);

 Graphics2D gImage = image.createGraphics();

 // now draw to gImage

 g2.drawImage(image, null, 0, 0);

Listings 11.3 and 11.4 show the frame and component class. The Rule class in Listing 11.5

provides a brief explanation for each rule—see Figure 11.24. As you run the program, move

the alpha slider from left to right to see the effect on the composed shapes. In particular,

note that the only difference between the DST_IN and DST_OUT rules is how the destination

(!) color changes when you change the source alpha.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig024

Figure 11.24 The CompositeTest program

Listing 11.3 composite/CompositeTestFrame.java

 1 package composite;

 2

 3 import java.awt.*;

 4

 5 import javax.swing.*;

 6

 7 /**

 8 * This frame contains a combo box to choose a composition rule, a slider to

change the source alpha

 9 * channel, and a component that shows the composition.

10 */

11 class CompositeTestFrame extends JFrame

12 {

13 private static final int DEFAULT_WIDTH = 400;

14 private static final int DEFAULT_HEIGHT = 400;

15

16 private CompositeComponent canvas;

17 private JComboBox<Rule> ruleCombo;

18 private JSlider alphaSlider;

19 private JTextField explanation;

20

21 public CompositeTestFrame()

22 {

23 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

24

25 canvas = new CompositeComponent();

26 add(canvas, BorderLayout.CENTER);

27

28 ruleCombo = new JComboBox<>(new Rule[] { new Rule("CLEAR", " ",

" "),

29 new Rule("SRC", " S", " S"), new Rule("DST", " ", "DD"),

30 new Rule("SRC_OVER", " S", "DS"), new Rule("DST_OVER",

" S", "DD"),

31 new Rule("SRC_IN", " ", " S"), new Rule("SRC_OUT", "

S", " "),

32 new Rule("DST_IN", " ", " D"), new Rule("DST_OUT", "

", "D "),

33 new Rule("SRC_ATOP", " ", "DS"), new Rule("DST_ATOP",

" S", " D"),

34 new Rule("XOR", " S", "D "), });

35 ruleCombo.addActionListener(event ->

36 {

37 Rule r = (Rule) ruleCombo.getSelectedItem();

38 canvas.setRule(r.getValue());

39 explanation.setText(r.getExplanation());

40 });

41

42 alphaSlider = new JSlider(0, 100, 75);

43 alphaSlider.addChangeListener(event ->

canvas.setAlpha(alphaSlider.getValue()));

44 JPanel panel = new JPanel();

45 panel.add(ruleCombo);

46 panel.add(new JLabel("Alpha"));

47 panel.add(alphaSlider);

48 add(panel, BorderLayout.NORTH);

49

50 explanation = new JTextField();

51 add(explanation, BorderLayout.SOUTH);

52

53 canvas.setAlpha(alphaSlider.getValue());

54 Rule r = ruleCombo.getItemAt(ruleCombo.getSelectedIndex());

55 canvas.setRule(r.getValue());

56 explanation.setText(r.getExplanation());

57 }

58 }

Listing 11.4 composite/CompositeComponent.java

 1 package composite;

 2

 3 import java.awt.*;

 4 import java.awt.geom.*;

 5 import java.awt.image.*;

 6 import javax.swing.*;

 7

 8 /**

 9 * This component draws two shapes, composed with a composition rule.

10 */

11 class CompositeComponent extends JComponent

12 {

13 private int rule;

14 private Shape shape1;

15 private Shape shape2;

16 private float alpha;

17

18 public CompositeComponent()

19 {

20 shape1 = new Ellipse2D.Double(100, 100, 150, 100);

21 shape2 = new Rectangle2D.Double(150, 150, 150, 100);

22 }

23

24 public void paintComponent(Graphics g)

25 {

26 Graphics2D g2 = (Graphics2D) g;

27

28 BufferedImage image = new BufferedImage(getWidth(), getHeight(),

BufferedImage.TYPE_INT_ARGB);

29 Graphics2D gImage = image.createGraphics();

30 gImage.setPaint(Color.red);

31 gImage.fill(shape1);

32 AlphaComposite composite = AlphaComposite.getInstance(rule, alpha);

33 gImage.setComposite(composite);

34 gImage.setPaint(Color.blue);

35 gImage.fill(shape2);

36 g2.drawImage(image, null, 0, 0);

37 }

38

39 /**

40 * Sets the composition rule.

41 * @param r the rule (as an AlphaComposite constant)

42 */

43 public void setRule(int r)

44 {

45 rule = r;

46 repaint();

47 }

48

49 /**

50 * Sets the alpha of the source.

51 * @param a the alpha value between 0 and 100

52 */

53 public void setAlpha(int a)

54 {

55 alpha = (float) a / 100.0F;

56 repaint();

57 }

58 }

Listing 11.5 composite/Rule.java

1 package composite;

2

3 import java.awt.*;

4

5 /**

6 * This class describes a Porter-Duff rule.

7 */

8 class Rule

9 {

10 private String name;

11 private String porterDuff1;

12 private String porterDuff2;

13

14 /**

15 * Constructs a Porter-Duff rule.

16 * @param n the rule name

17 * @param pd1 the first row of the Porter-Duff square

18 * @param pd2 the second row of the Porter-Duff square

19 */

20 public Rule(String n, String pd1, String pd2)

21 {

22 name = n;

23 porterDuff1 = pd1;

24 porterDuff2 = pd2;

25 }

26

27 /**

28 * Gets an explanation of the behavior of this rule.

29 * @return the explanation

30 */

31 public String getExplanation()

32 {

33 StringBuilder r = new StringBuilder("Source ");

34 if (porterDuff2.equals(" ")) r.append("clears");

35 if (porterDuff2.equals(" S")) r.append("overwrites");

36 if (porterDuff2.equals("DS")) r.append("blends with");

37 if (porterDuff2.equals(" D")) r.append("alpha modifies");

38 if (porterDuff2.equals("D ")) r.append("alpha complement

modifies");

39 if (porterDuff2.equals("DD")) r.append("does not affect");

40 r.append(" destination");

41 if (porterDuff1.equals(" S")) r.append(" and overwrites empty

pixels");

42 r.append(".");

43 return r.toString();

44 }

45

46 public String toString()

47 {

48 return name;

49 }

50

51 /**

52 * Gets the value of this rule in the AlphaComposite class.

53 * @return the AlphaComposite constant value, or -1 if there is no matching

constant

54 */

55 public int getValue()

56 {

57 try

58 {

59 return (Integer)

AlphaComposite.class.getField(name).get(null);

60 }

61 catch (Exception e)

62 {

63 return -1;

64 }

65 }

66 }

java.awt.Graphics2D 1.2

• void setComposite(Composite s)

sets the composite of this graphics context to the given object that implements the Composite

interface.

java.awt.AlphaComposite 1.2

• static AlphaComposite getInstance(int rule)

• static AlphaComposite getInstance(int rule, float sourceAlpha)

constructs an alpha composite object. The rule is one of CLEAR, SRC, SRC_OVER, DST_OVER,

SRC_IN, SRC_OUT, DST_IN, DST_OUT, DST, DST_ATOP, SRC_ATOP, XOR.

11.9 Rendering Hints

In the preceding sections you have seen that the rendering process is quite complex. Although

the Java 2D API is surprisingly fast in most cases, sometimes you would like to have control

over trade-offs between speed and quality. You can achieve this by setting rendering hints.
The setRenderingHint method of the Graphics2D class lets you set a single hint. The hints’

keys and values are declared in the RenderingHints class. Table 11.2 summarizes the choices.

The values that end in _DEFAULT denote the defaults that are chosen by a particular

implementation as a good trade-off between performance and quality.

Table 11.2 Rendering Hints

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11tab02

The most useful of these settings involves antialiasing. This technique removes the
“jaggies” from slanted lines and curves. As you can see in Figure 11.25, a slanted line

must be drawn as a “staircase” of pixels. Especially on low-resolution screens, this line

can look ugly. But if, instead of drawing each pixel completely on or off, you color in

the pixels that are partially covered with the color value proportional to the area of the

pixel that the line covers, then the result looks much smoother. This technique is called

antialiasing. Of course, antialiasing takes a bit longer because it has to compute all those

color values.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig025

Figure 11.25 Antialiasing

For example, here is how you can request the use of antialiasing:

 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);

It also makes sense to use antialiasing for fonts.

 g2.setRenderingHint(RenderingHints.KEY_TEXT_ANTIALIASING,

 RenderingHints.VALUE_TEXT_ANTIALIAS_ON);

The other rendering hints are not as commonly used.

You can also put a bunch of key/value hint pairs into a map and set them all at once by

calling the setRenderingHints method. Any collection class implementing the map interface

will do, but you might as well use the RenderingHints class itself. It implements the Map

interface and supplies a default map implementation if you pass null to the constructor.

For example,

 RenderingHints hints = new RenderingHints(null);

 hints.put(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);

 hints.put(RenderingHints.KEY_TEXT_ANTIALIASING,

RenderingHints.VALUE_TEXT_ANTIALIAS_ON);

 g2.setRenderingHints(hints);

That is the technique we use in Listing 11.6. The program shows several rendering hints

that we found beneficial. Note the following:

• Antialiasing smooths the ellipse.

• Text antialiasing smooths the text.

• On some platforms, fractional text metrics move the letters a bit closer together.

• Selecting VALUE_RENDER_QUALITY smooths the scaled image. (You would get the same effect

by setting KEY_INTERPOLATION to VALUE_INTERPOLATION_BICUBIC).

• When antialiasing is turned off, selecting VALUE_STROKE_NORMALIZE changes the appearance

of the ellipse and the placement of the diagonal line in the square.

Figure 11.26 shows a screen capture of the program.

Figure 11.26 Testing the effect of rendering hints

Listing 11.6 renderQuality/RenderQualityTestFrame.java

 1 package renderQuality;

 2

 3 import java.awt.*;

 4 import java.awt.geom.*;

 5

 6 import javax.swing.*;

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig026

 7

 8 /**

 9 * This frame contains buttons to set rendering hints and an image that is drawn

with the selected

10 * hints.

11 */

12 public class RenderQualityTestFrame extends JFrame

13 {

14 private RenderQualityComponent canvas;

15 private JPanel buttonBox;

16 private RenderingHints hints;

17 private int r;

18

19 public RenderQualityTestFrame()

20 {

21 buttonBox = new JPanel();

22 buttonBox.setLayout(new GridBagLayout());

23 hints = new RenderingHints(null);

24

25 makeButtons("KEY_ANTIALIASING", "VALUE_ANTIALIAS_OFF",

"VALUE_ANTIALIAS_ON");

26 makeButtons("KEY_TEXT_ANTIALIASING", "VALUE_TEXT_ANTIALIAS_OFF",

"VALUE_TEXT_ANTIALIAS_ON");

27 makeButtons("KEY_FRACTIONALMETRICS", "VALUE_FRACTIONALMETRICS_OFF",

28 "VALUE_FRACTIONALMETRICS_ON");

29 makeButtons("KEY_RENDERING", "VALUE_RENDER_SPEED",

"VALUE_RENDER_QUALITY");

30 makeButtons("KEY_STROKE_CONTROL", "VALUE_STROKE_PURE",

"VALUE_STROKE_NORMALIZE");

31 canvas = new RenderQualityComponent();

32 canvas.setRenderingHints(hints);

33

34 add(canvas, BorderLayout.CENTER);

35 add(buttonBox, BorderLayout.NORTH);

36 pack();

37 }

38

39 /**

40 * Makes a set of buttons for a rendering hint key and values.

41 * @param key the key name

42 * @param value1 the name of the first value for the key

43 * @param value2 the name of the second value for the key

44 */

45 void makeButtons(String key, String value1, String value2)

46 {

47 try

48 {

49 final RenderingHints.Key k =

50 (RenderingHints.Key)

RenderingHints.class.getField(key).get(null);

51 final Object v1 =

RenderingHints.class.getField(value1).get(null);

52 final Object v2 =

RenderingHints.class.getField(value2).get(null);

53 JLabel label = new JLabel(key);

54

55 buttonBox.add(label, new GBC(0, r).setAnchor(GBC.WEST));

56 ButtonGroup group = new ButtonGroup();

57 JRadioButton b1 = new JRadioButton(value1, true);

58

59 buttonBox.add(b1, new GBC(1, r).setAnchor(GBC.WEST));

60 group.add(b1);

61 b1.addActionListener(event ->

62 {

63 hints.put(k, v1);

64 canvas.setRenderingHints(hints);

65 });

66 JRadioButton b2 = new JRadioButton(value2, false);

67

68 buttonBox.add(b2, new GBC(2, r).setAnchor(GBC.WEST));

69 group.add(b2);

70 b2.addActionListener(event ->

71 {

72 hints.put(k, v2);

73 canvas.setRenderingHints(hints);

74 });

75 hints.put(k, v1);

76 r++;

77 }

78 catch (Exception e)

79 {

80 e.printStackTrace();

81 }

82 }

83 }

84

85 /**

86 * This component produces a drawing that shows the effect of rendering hints.

87 */

88 class RenderQualityComponent extends JComponent

89 {

90 private static final int DEFAULT_WIDTH = 750;

91 private static final int DEFAULT_HEIGHT = 150;

92

93 private RenderingHints hints = new RenderingHints(null);

94 private Image image;

95

96 public RenderQualityComponent()

97 {

98 image = new

ImageIcon(getClass().getResource("face.gif")).getImage();

99 }

100

101 public void paintComponent(Graphics g)

102 {

103 Graphics2D g2 = (Graphics2D) g;

104 g2.setRenderingHints(hints);

105

106 g2.draw(new Ellipse2D.Double(10, 10, 60, 50));

107 g2.setFont(new Font("Serif", Font.ITALIC, 40));

108 g2.drawString("Hello", 75, 50);

109

110 g2.draw(new Rectangle2D.Double(200, 10, 40, 40));

111 g2.draw(new Line2D.Double(201, 11, 239, 49));

112

113 g2.drawImage(image, 250, 10, 100, 100, null);

114 }

115

116 /**

117 * Sets the hints and repaints.

118 * @param h the rendering hints

119 */

120 public void setRenderingHints(RenderingHints h)

121 {

122 hints = h;

123 repaint();

124 }

125

126 public Dimension getPreferredSize() { return new Dimension(DEFAULT_WIDTH,

DEFAULT_HEIGHT); }

127 }

java.awt.Graphics2D 1.2

• void setRenderingHint(RenderingHints.Key key, Object value)

sets a rendering hint for this graphics context.

• void setRenderingHints(Map m)

sets all rendering hints whose key/value pairs are stored in the map.

java.awt.RenderingHints 1.2

• RenderingHints(Map<RenderingHints.Key, ?> m)

constructs a rendering hints map for storing rendering hints. If m is null, a default map

implementation is provided.

11.10 Readers and Writers for Images

Prior to version 1.4, Java SE had very limited capabilities for reading and writing image

files. It was possible to read GIF and JPEG images, but there was no official support for

writing images at all.

This situation is now much improved. The javax.imageio package contains “out of the box”

support for reading and writing several common file formats, as well as a framework that

enables third parties to add readers and writers for other formats. As of Java SE 6, the

GIF, JPEG, PNG, BMP (Windows bitmap), and WBMP (wireless bitmap) file formats are supported.

In earlier versions, writing of GIF files was not supported because of patent issues.

The basics of the library are extremely straightforward. To load an image, use the static

read method of the ImageIO class:

 File f = . . .;

 BufferedImage image = ImageIO.read(f);

The ImageIO class picks an appropriate reader, based on the file type. It may consult the

file extension and the “magic number” at the beginning of the file for that purpose. If

no suitable reader can be found or the reader can’t decode the file contents, the read

method returns null.

Writing an image to a file is just as simple:

 File f = . . .;

 String format = . . .;

 ImageIO.write(image, format, f);

Here the format string is a string identifying the image format, such as "JPEG" or "PNG".

The ImageIO class picks an appropriate writer and saves the file.

11.10.1 Obtaining Readers and Writers for Image File Types

For more advanced image reading and writing operations that go beyond the static read and

write methods of the ImageIO class, you first need to get the appropriate ImageReader and

ImageWriter objects. The ImageIO class enumerates readers and writers that match one of

the following:

• An image format (such as “JPEG”)

• A file suffix (such as “jpg”)

• A MIME type (such as “image/jpeg”)

NOTE:

MIME is the Multipurpose Internet Mail Extensions standard. The MIME standard defines common

data formats such as "image/jpeg" and "application/pdf". For an HTML version of the Request

for Comments (RFC) that defines the MIME format, see

http://www.oac.uci.edu/indiv/ehood/MIME.

For example, you can obtain a reader that reads JPEG files as follows:

 ImageReader reader = null;

 Iterator<ImageReader> iter = ImageIO.getImageReadersByFormatName("JPEG");

 if (iter.hasNext()) reader = iter.next();

The getImageReadersBySuffix and getImageReadersByMIMEType methods enumerate readers that

match a file extension or MIME type.

It is possible that the ImageIO class can locate multiple readers that can all read a

particular image type. In that case, you have to pick one of them, but it isn’t clear how

you can decide which one is the best. To find out more information about a reader, obtain

its service provider interface:

 ImageReaderSpi spi = reader.getOriginatingProvider();

Then you can get the vendor name and version number:

 String vendor = spi.getVendor();

 String version = spi.getVersion();

http://www.oac.uci.edu/indiv/ehood/MIME

Perhaps that information can help you decide among the choices, or you might just present

a list of readers to your program users and let them choose. For now, we assume that the

first enumerated reader is adequate.

In the sample program in Listing 11.7, we want to find all file suffixes of all available

readers so that we can use them in a file filter. Use the static

ImageIO.getReaderFileSuffixes method for this purpose:

 String[] extensions = ImageIO.getWriterFileSuffixes();

 chooser.setFileFilter(new FileNameExtensionFilter("Image files", extensions));

For saving files, we have to work harder. We’d like to present the user with a menu of

all supported image types. Unfortunately, the getWriterFormatNames of the ImageIO class

returns a rather curious list with redundant names, such as

 jpg, BMP, bmp, JPG, jpeg, wbmp, png, JPEG, PNG, WBMP, GIF, gif

That’s not something one would want to present in a menu. What is needed is a list of

“preferred” format names. We supply a helper method getWriterFormats for this purpose

(see Listing 11.7). We look up the first writer associated with each format name. Then we

ask it what its format names are, in the hope that it will list the most popular one first.

Indeed, for the JPEG writer, this works fine—it lists "JPEG" before the other options.

(The PNG writer, on the other hand, lists "png" in lower case before "PNG". We hope this

behavior will be addressed at some time in the future. In the meantime, we force

all-lowercase names to upper case.) Once we pick a preferred name, we remove all alternate

names from the original set. We keep going until all format names are handled.

11.10.2 Reading and Writing Files with Multiple Images

Some files—in particular, animated GIF files—contain multiple images. The read method

of the ImageIO class reads a single image. To read multiple images, turn the input source

(for example, an input stream or file) into an ImageInputStream.

 InputStream in = . . .;

 ImageInputStream imageIn = ImageIO.createImageInputStream(in);

Then, attach the image input stream to the reader:

 reader.setInput(imageIn, true);

The second parameter indicates that the input is in “seek forward only” mode. Otherwise,

random access is used, either by buffering stream input as it is read or by using random

file access. Random access is required for certain operations. For example, to find out

the number of images in a GIF file, you need to read the entire file. If you then want to

fetch an image, the input must be read again.

This consideration is only important if you read from a stream, if the input contains

multiple images, and if the image format doesn’t have the information that you request

(such as the image count) in the header. If you read from a file, simply use

 File f = . . .;

 ImageInputStream imageIn = ImageIO.createImageInputStream(f);

 reader.setInput(imageIn);

Once you have a reader, you can read the images in the input by calling

 BufferedImage image = reader.read(index);

where index is the image index, starting with 0.

If the input is in the “seek forward only” mode, you keep reading images until the read

method throws an IndexOutOfBoundsException. Otherwise, you can call the getNumImages

method:

 int n = reader.getNumImages(true);

Here, the parameter indicates that you allow a search of the input to determine the number

of images. That method throws an IllegalStateException if the input is in the “seek forward

only” mode. Alternatively, you can set the “allow search” parameter to false. Then the

getNumImages method returns -1 if it can’t determine the number of images without a search.

In that case, you’ll have to switch to Plan B and keep reading images until you get an

IndexOutOfBoundsException.

Some files contain thumbnails—smaller versions of an image for preview purposes. You can

get the number of thumbnails of an image with the call

 int count = reader.getNumThumbnails(index);

Then you get a particular index as

 BufferedImage thumbnail = reader.getThumbnail(index, thumbnailIndex);

Sometimes you may want to get the image size before actually getting the image—in particular,

if the image is huge or comes from a slow network connection. Use the calls

 int width = reader.getWidth(index);

 int height = reader.getHeight(index);

to get the dimensions of an image with a given index.

To write a file with multiple images, you first need an ImageWriter. The ImageIO class can

enumerate the writers capable of writing a particular image format:

 String format = . . .;

 ImageWriter writer = null;

 Iterator<ImageWriter> iter = ImageIO.getImageWritersByFormatName(format);

 if (iter.hasNext()) writer = iter.next();

Next, turn an output stream or file into an ImageOutputStream and attach it to the writer.

For example,

 File f = . . .;

 ImageOutputStream imageOut = ImageIO.createImageOutputStream(f);

 writer.setOutput(imageOut);

You must wrap each image into an IIOImage object. You can optionally supply a list of

thumbnails and image metadata (such as compression algorithms and color information). In

this example, we just use null for both; see the API documentation for additional

information.

 IIOImage iioImage = new IIOImage(images[i], null, null);

To write out the first image, use the write method:

 writer.write(new IIOImage(images[0], null, null));

For subsequent images, use

 if (writer.canInsertImage(i))

 writer.writeInsert(i, iioImage, null);

The third parameter can contain an ImageWriteParam object to set image writing details such

as tiling and compression; use null for default values.

Not all file formats can handle multiple images. In that case, the canInsertImage method

returns false for i > 0, and only a single image is saved.

The program in Listing 11.7 lets you load and save files in the formats for which the Java

library supplies readers and writers. The program displays multiple images (see Figure

11.27), but not thumbnails.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig027
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig027

Figure 11.27 An animated GIF image

Listing 11.7 imageIO/ImageIOFrame.java

 1 package imageIO;

 2

 3 import java.awt.image.*;

 4 import java.io.*;

 5 import java.util.*;

 6

 7 import javax.imageio.*;

 8 import javax.imageio.stream.*;

 9 import javax.swing.*;

10 import javax.swing.filechooser.*;

11

12 /**

13 * This frame displays the loaded images. The menu has items for loading and saving

files.

14 */

15 public class ImageIOFrame extends JFrame

16 {

17 private static final int DEFAULT_WIDTH = 400;

18 private static final int DEFAULT_HEIGHT = 400;

19

20 private static Set<String> writerFormats = getWriterFormats();

21

22 private BufferedImage[] images;

23

24 public ImageIOFrame()

25 {

26 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

27

28 JMenu fileMenu = new JMenu("File");

29 JMenuItem openItem = new JMenuItem("Open");

30 openItem.addActionListener(event -> openFile());

31 fileMenu.add(openItem);

32

33 JMenu saveMenu = new JMenu("Save");

34 fileMenu.add(saveMenu);

35 Iterator<String> iter = writerFormats.iterator();

36 while (iter.hasNext())

37 {

38 final String formatName = iter.next();

39 JMenuItem formatItem = new JMenuItem(formatName);

40 saveMenu.add(formatItem);

41 formatItem.addActionListener(event -> saveFile(formatName));

42 }

43

44 JMenuItem exitItem = new JMenuItem("Exit");

45 exitItem.addActionListener(event -> System.exit(0));

46 fileMenu.add(exitItem);

47

48 JMenuBar menuBar = new JMenuBar();

49 menuBar.add(fileMenu);

50 setJMenuBar(menuBar);

51 }

52

53 /**

54 * Open a file and load the images.

55 */

56 public void openFile()

57 {

58 JFileChooser chooser = new JFileChooser();

59 chooser.setCurrentDirectory(new File("."));

60 String[] extensions = ImageIO.getReaderFileSuffixes();

61 chooser.setFileFilter(new FileNameExtensionFilter("Image files",

extensions));

62 int r = chooser.showOpenDialog(this);

63 if (r != JFileChooser.APPROVE_OPTION) return;

64 File f = chooser.getSelectedFile();

65 Box box = Box.createVerticalBox();

66 try

67 {

68 String name = f.getName();

69 String suffix = name.substring(name.lastIndexOf('.') + 1);

70 Iterator<ImageReader> iter =

ImageIO.getImageReadersBySuffix(suffix);

71 ImageReader reader = iter.next();

72 ImageInputStream imageIn =

ImageIO.createImageInputStream(f);

73 reader.setInput(imageIn);

74 int count = reader.getNumImages(true);

75 images = new BufferedImage[count];

76 for (int i = 0; i < count; i++)

77 {

78 images[i] = reader.read(i);

79 box.add(new JLabel(new ImageIcon(images[i])));

80 }

81 }

82 catch (IOException e)

83 {

84 JOptionPane.showMessageDialog(this, e);

85 }

86 setContentPane(new JScrollPane(box));

87 validate();

88 }

89

90 /**

91 * Save the current image in a file.

92 * @param formatName the file format

93 */

94 public void saveFile(final String formatName)

95 {

96 if (images == null) return;

97 Iterator<ImageWriter> iter =

ImageIO.getImageWritersByFormatName(formatName);

98 ImageWriter writer = iter.next();

99 JFileChooser chooser = new JFileChooser();

100 chooser.setCurrentDirectory(new File("."));

101 String[] extensions =

writer.getOriginatingProvider().getFileSuffixes();

102 chooser.setFileFilter(new FileNameExtensionFilter("Image files",

extensions));

103

104 int r = chooser.showSaveDialog(this);

105 if (r != JFileChooser.APPROVE_OPTION) return;

106 File f = chooser.getSelectedFile();

107 try

108 {

109 ImageOutputStream imageOut =

ImageIO.createImageOutputStream(f);

110 writer.setOutput(imageOut);

111

112 writer.write(new IIOImage(images[0], null, null));

113 for (int i = 1; i < images.length; i++)

114 {

115 IIOImage iioImage = new IIOImage(images[i], null,

null);

116 if (writer.canInsertImage(i))

writer.writeInsert(i, iioImage, null);

117 }

118 }

119 catch (IOException e)

120 {

121 JOptionPane.showMessageDialog(this, e);

122 }

123 }

124

125 /**

126 * Gets a set of "preferred" format names of all image writers. The

preferred format name is the

127 * first format name that a writer specifies.

128 * @return the format name set

129 */

130 public static Set<String> getWriterFormats()

131 {

132 Set<String> writerFormats = new TreeSet<>();

133 Set<String> formatNames = new TreeSet<>(

134 Arrays.asList(ImageIO.getWriterFormatNames()));

135 while (formatNames.size() > 0)

136 {

137 String name = formatNames.iterator().next();

138 Iterator<ImageWriter> iter =

ImageIO.getImageWritersByFormatName(name);

139 ImageWriter writer = iter.next();

140 String[] names =

writer.getOriginatingProvider().getFormatNames();

141 String format = names[0];

142 if (format.equals(format.toLowerCase())) format =

format.toUpperCase();

143 writerFormats.add(format);

144 formatNames.removeAll(Arrays.asList(names));

145 }

146 return writerFormats;

147 }

148 }

javax.imageio.ImageIO 1.4

• static BufferedImage read(File input)

• static BufferedImage read(InputStream input)

• static BufferedImage read(URL input)

reads an image from input.

• static boolean write(RenderedImage image, String formatName, File output)

• static boolean write(RenderedImage image, String formatName, OutputStream output)

writes an image in the given format to output. Returns false if no appropriate writer was

found.

• static Iterator<ImageReader> getImageReadersByFormatName(String formatName)

• static Iterator<ImageReader> getImageReadersBySuffix(String fileSuffix)

• static Iterator<ImageReader> getImageReadersByMIMEType(String mimeType)

• static Iterator<ImageWriter> getImageWritersByFormatName(String formatName)

• static Iterator<ImageWriter> getImageWritersBySuffix(String fileSuffix)

• static Iterator<ImageWriter> getImageWritersByMIMEType(String mimeType)

gets all readers and writers that are able to handle the given format (e.g., “JPEG”),

file suffix (e.g., “jpg”), or MIME type (e.g., “image/jpeg”).

• static String[] getReaderFormatNames()

• static String[] getReaderMIMETypes()

• static String[] getWriterFormatNames()

• static String[] getWriterMIMETypes()

• static String[] getReaderFileSuffixes() 6

• static String[] getWriterFileSuffixes() 6

gets all format names, MIME type names, and file suffixes supported by readers and writers.

• ImageInputStream createImageInputStream(Object input)

• ImageOutputStream createImageOutputStream(Object output)

creates an image input or image output stream from the given object. The object can be a

file, a stream, a RandomAccessFile, or another object for which a service provider exists.

Returns null if no registered service provider can handle the object.

javax.imageio.ImageReader 1.4

• void setInput(Object input)

• void setInput(Object input, boolean seekForwardOnly)

sets the input source of the reader.

• BufferedImage read(int index)

reads the image with the given image index (starting at 0). Throws an

IndexOutOfBoundsException if no such image is available.

• int getNumImages(boolean allowSearch)

gets the number of images in this reader. If allowSearch is false and the number of images

cannot be determined without reading forward, then -1 is returned. If

allowSearch is true and the reader is in the “seek forward only” mode, then an

IllegalStateException is thrown.

• int getNumThumbnails(int index)

gets the number of thumbnails of the image with the given index.

• BufferedImage readThumbnail(int index, int thumbnailIndex)

gets the thumbnail with index thumbnailIndex of the image with the given index.

• int getWidth(int index)

• int getHeight(int index)

gets the image width and height.Throws an IndexOutOfBoundsException if no such image is

available.

• ImageReaderSpi getOriginatingProvider()

gets the service provider that constructed this reader.

javax.imageio.spi.IIOServiceProvider 1.4

• String getVendorName()

• String getVersion()

gets the vendor name and version of this service provider.

javax.imageio.spi.ImageReaderWriterSpi 1.4

• String[] getFormatNames()

• String[] getFileSuffixes()

• String[] getMIMETypes()

gets the format names, file suffixes, and MIME types supported by the readers or writers

that this service provider creates.

javax.imageio.ImageWriter 1.4

• void setOutput(Object output)

sets the output target of this writer.

• void write(IIOImage image)

• void write(RenderedImage image)

writes a single image to the output.

• void writeInsert(int index, IIOImage image, ImageWriteParam param)

writes an image into a multi-image file.

• boolean canInsertImage(int index)

returns true if it is possible to insert an image at the given index.

• ImageWriterSpi getOriginatingProvider()

gets the service provider that constructed this writer.

javax.imageio.IIOImage 1.4

• IIOImage(RenderedImage image, List thumbnails, IIOMetadata metadata)

constructs an IIOImage from an image, optional thumbnails, and optional metadata.

11.11 Image Manipulation

Suppose you have an image and you would like to improve its appearance. You then need to

access the individual pixels of the image and replace them with other pixels. Or perhaps

you want to compute the pixels of an image from scratch—for example, to show the result

of physical measurements or a mathematical computation. The BufferedImage class gives you

control over the pixels in an image, and the classes that implement the BufferedImageOp

interface let you transform images.

NOTE:

JDK 1.0 had a completely different, and far more complex, imaging framework that was

optimized for incremental rendering of images downloaded from the Web, a scan line at a
time. However, it was difficult to manipulate those images. We do not discuss that framework

in this book.

11.11.1 Constructing Raster Images

Most of the images that you manipulate are simply read in from an image file—they were

either produced by a device such as a digital camera or scanner, or constructed by a drawing

program. In this section, we’ll show you a different technique for constructing an

image—namely, building it up a pixel at a time.

To create an image, construct a BufferedImage object in the usual way.

 image = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);

Now, call the getRaster method to obtain an object of type WritableRaster. You will use

this object to access and modify the pixels of the image.

 WritableRaster raster = image.getRaster();

The setPixel method lets you set an individual pixel. The complexity here is that you can’t

simply set the pixel to a Color value. You must know how the buffered image specifies color

values. That depends on the type of the image. If your image has a type of TYPE_INT_ARGB,
then each pixel is described by four values—red, green, blue, and alpha, each between 0

and 255. You have to supply them in an array of four integers:

 int[] black = { 0, 0, 0, 255 };

 raster.setPixel(i, j, black);

In the lingo of the Java 2D API, these values are called the sample values of the pixel.

CAUTION:

There are also setPixel methods that take array parameters of types float[] and double[].

However, the values that you need to place into these arrays are not normalized color values
between 0.0 and 1.0.

 float[] red = { 1.0F, 0.0F, 0.0F, 1.0F };

 raster.setPixel(i, j, red); // ERROR

You need to supply values between 0 and 255, no matter what the type of the array is.

You can supply batches of pixels with the setPixels method. Specify the starting pixel

position and the width and height of the rectangle that you want to set. Then, supply an

array that contains the sample values for all pixels. For example, if your buffered image

has a type of TYPE_INT_ARGB, supply the red, green, blue, and alpha value of the first pixel,

then the red, green, blue, and alpha value for the second pixel, and so on.

 int[] pixels = new int[4 * width * height];

 pixels[0] = . . . // red value for first pixel

 pixels[1] = . . . // green value for first pixel

 pixels[2] = . . . // blue value for first pixel

 pixels[3] = . . . // alpha value for first pixel

 ...

 raster.setPixels(x, y, width, height, pixels);

Conversely, to read a pixel, use the getPixel method. Supply an array of four integers to

hold the sample values.

 int[] sample = new int[4];

 raster.getPixel(x, y, sample);

 Color c = new Color(sample[0], sample[1], sample[2], sample[3]);

You can read multiple pixels with the getPixels method.

 raster.getPixels(x, y, width, height, samples);

If you use an image type other than TYPE_INT_ARGB and you know how that type represents

pixel values, you can still use the getPixel/setPixel methods. However, you have to know

the encoding of the sample values in the particular image type.

If you need to manipulate an image with an arbitrary, unknown image type, then you have

to work a bit harder. Every image type has a color model that can translate between sample
value arrays and the standard RGB color model.

NOTE:

The RGB color model isn’t as standard as you might think. The exact look of a color value

depends on the characteristics of the imaging device. Digital cameras, scanners, monitors,

and LCD displays all have their own idiosyncrasies. As a result, the same RGB value can

look quite different on different devices. The International Color Consortium

(www.color.org) recommends that all color data be accompanied by an ICC profile that
specifies how the colors map to a standard form such as the 1931 CIE XYZ color specification.

That specification was designed by the Commission Internationale de l’Eclairage, or CIE

(www.cie.co.at/cie), the international organization in charge of providing technical

http://www.color.org/
http://www.cie.co.at/cie

guidance in all matters of illumination and color. The specification is a standard method

for representing any color that the human eye can perceive as a triplet of coordinates called

X, Y, Z. (See, for example, Computer Graphics: Principles and Practice, Second Edition in
C, by James D. Foley, Andries van Dam, Steven K. Feiner, et al., Chapter 13, for more
information on the 1931 CIE XYZ specification.)

ICC profiles are complex, however. A simpler proposed standard, called sRGB

(www.w3.org/Graphics/Color/sRGB.html), specifies an exact mapping between RGB values and

the 1931 CIE XYZ values that was designed to work well with typical color monitors. The

Java 2D API uses that mapping when converting between RGB and other color spaces.

The getColorModel method returns the color model:

 ColorModel model = image.getColorModel();

To find the color value of a pixel, call the getDataElements method of the Raster class.

That call returns an Object that contains a color-model-specific description of the color

value.

 Object data = raster.getDataElements(x, y, null);

NOTE:

The object that is returned by the getDataElements method is actually an array of sample

values. You don’t need to know this to process the object, but it explains why the method

is called getDataElements.

The color model can translate the object to standard ARGB values. The getRGB method returns

an int value that has the alpha, red, green, and blue values packed in four blocks of eight

bits each. You can construct a Color value out of that integer with the Color(int argb,

boolean hasAlpha) constructor:

 int argb = model.getRGB(data);

 Color color = new Color(argb, true);

To set a pixel to a particular color, reverse these steps. The getRGB method of the Color

class yields an int value with the alpha, red, green, and blue values. Supply that value

to the getDataElements method of the ColorModel class. The return value is an Object that

contains the color-model-specific description of the color value. Pass the object to the

setDataElements method of the WritableRaster class.

http://www.w3.org/Graphics/Color/sRGB.html

 int argb = color.getRGB();

 Object data = model.getDataElements(argb, null);

 raster.setDataElements(x, y, data);

To illustrate how to use these methods to build an image from individual pixels, we bow

to tradition and draw a Mandelbrot set, as shown in Figure 11.28.

Figure 11.28 A Mandelbrot set

The idea of the Mandelbrot set is that each point of the plane is associated with a sequence

of numbers. If that sequence stays bounded, you color the point. If it “escapes to infinity,”

you leave it transparent.

Here is how you can construct the simplest Mandelbrot set. For each point (a, b), look at
sequences that start with (x, y) = (0, 0) and iterate:

 xnew = x2 - y2 + a

 ynew = 2 . x . y + b

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig028

It turns out that if x or y ever gets larger than 2, then the sequence escapes to infinity.
Only the pixels that correspond to points (a, b) leading to a bounded sequence are colored.
(The formulas for the number sequences come ultimately from the mathematics of complex

numbers; we’ll just take them for granted. For more on the mathematics of fractals, see,

for example, http://classes.yale.edu/fractals.)

Listing 11.8 shows the code. In this program, we demonstrate how to use the ColorModel class

for translating Color values into pixel data. That process is independent of the image type.

Just for fun, change the color type of the buffered image to TYPE_BYTE_GRAY. You don’t

need to change any other code—the color model of the image automatically takes care of

the conversion from colors to sample values.

Listing 11.8 rasterImage/RasterImageFrame.java

 1 package rasterImage;

 2

 3 import java.awt.*;

 4 import java.awt.image.*;

 5 import javax.swing.*;

 6

 7 /**

 8 * This frame shows an image with a Mandelbrot set.

 9 */

10 public class RasterImageFrame extends JFrame

11 {

12 private static final double XMIN = -2;

13 private static final double XMAX = 2;

14 private static final double YMIN = -2;

15 private static final double YMAX = 2;

16 private static final int MAX_ITERATIONS = 16;

17 private static final int IMAGE_WIDTH = 400;

18 private static final int IMAGE_HEIGHT = 400;

19

20 public RasterImageFrame()

21 {

22 BufferedImage image = makeMandelbrot(IMAGE_WIDTH, IMAGE_HEIGHT);

23 add(new JLabel(new ImageIcon(image)));

24 pack();

25 }

26

27 /**

28 * Makes the Mandelbrot image.

29 * @param width the width

30 * @parah height the height

31 * @return the image

http://classes.yale.edu/fractals

32 */

33 public BufferedImage makeMandelbrot(int width, int height)

34 {

35 BufferedImage image = new BufferedImage(width, height,

BufferedImage.TYPE_INT_ARGB);

36 WritableRaster raster = image.getRaster();

37 ColorModel model = image.getColorModel();

38

39 Color fractalColor = Color.red;

40 int argb = fractalColor.getRGB();

41 Object colorData = model.getDataElements(argb, null);

42

43 for (int i = 0; i < width; i++)

44 for (int j = 0; j < height; j++)

45 {

46 double a = XMIN + i * (XMAX - XMIN) / width;

47 double b = YMIN + j * (YMAX - YMIN) / height;

48 if (!escapesToInfinity(a, b))

raster.setDataElements(i, j, colorData);

49 }

50 return image;

51 }

52

53 private boolean escapesToInfinity(double a, double b)

54 {

55 double x = 0.0;

56 double y = 0.0;

57 int iterations = 0;

58 while (x <= 2 && y <= 2 && iterations < MAX_ITERATIONS)

59 {

60 double xnew = x * x - y * y + a;

61 double ynew = 2 * x * y + b;

62 x = xnew;

63 y = ynew;

64 iterations++;

65 }

66 return x > 2 || y > 2;

67 }

68 }

java.awt.image.BufferedImage 1.2

• BufferedImage(int width, int height, int imageType)

constructs a buffered image object.

• ColorModel getColorModel()

returns the color model of this buffered image.

• WritableRaster getRaster()

gets the raster for accessing and modifying pixels of this buffered image.

java.awt.image.Raster 1.2

• Object getDataElements(int x, int y, Object data)

returns the sample data for a raster point, in an array whose element type and length depend

on the color model. If data is not null, it is assumed to be an array that is appropriate

for holding sample data, and it is filled. If data is null, a new array is allocated. Its

element type and length depend on the color model.

• int[] getPixel(int x, int y, int[] sampleValues)

• float[] getPixel(int x, int y, float[] sampleValues)

• double[] getPixel(int x, int y, double[] sampleValues)

• int[] getPixels(int x, int y, int width, int height, int[] sampleValues)

• float[] getPixels(int x, int y, int width, int height, float[] sampleValues)

• double[] getPixels(int x, int y, int width, int height, double[] sampleValues)

returns the sample values for a raster point, or a rectangle of raster points, in an array

whose length depends on the color model. If sampleValues is not null, it is assumed to be

sufficiently long for holding the sample values, and it is filled. If sampleValues is null,

a new array is allocated. These methods are only useful if you know the meaning of the sample

values for a color model.

java.awt.image.WritableRaster 1.2

• void setDataElements(int x, int y, Object data)

sets the sample data for a raster point. data is an array filled with the sample data for

a pixel. Its element type and length depend on the color model.

• void setPixel(int x, int y, int[] sampleValues)

• void setPixel(int x, int y, float[] sampleValues)

• void setPixel(int x, int y, double[] sampleValues)

• void setPixels(int x, int y, int width, int height, int[] sampleValues)

• void setPixels(int x, int y, int width, int height, float[] sampleValues)

• void setPixels(int x, int y, int width, int height, double[] sampleValues)

sets the sample values for a raster point or a rectangle of raster points.These methods

are only useful if you know the encoding of the sample values for a color model.

java.awt.image.ColorModel 1.2

• int getRGB(Object data)

returns the ARGB value that corresponds to the sample data passed in the data array. Its

element type and length depend on the color model.

• Object getDataElements(int argb, Object data);

returns the sample data for a color value. If data is not null, it is assumed to be an array

that is appropriate for holding sample data, and it is filled. If data is null, a

new array is allocated. data is an array filled with the sample data for a pixel. Its element

type and length depend on the color model.

java.awt.Color 1.0

• Color(int argb, boolean hasAlpha) 1.2

creates a color with the specified combined ARGB value if hasAlpha is true, or the specified

RGB value if hasAlpha is false.

• int getRGB()

returns the ARGB color value corresponding to this color.

11.11.2 Filtering Images

In the preceding section, you saw how to build up an image from scratch. However, often

you want to access image data for a different reason: You already have an image and you

want to improve it in some way.

Of course, you can use the getPixel/getDataElements methods that you saw in the preceding

section to read the image data, manipulate them, and write them back. But fortunately, the

Java 2D API already supplies a number of filters that carry out common image processing
operations for you.

The image manipulations all implement the BufferedImageOp interface. After you construct

the operation, you simply call the filter method to transform an image into another.

 BufferedImageOp op = . . .;

 BufferedImage filteredImage

 = new BufferedImage(image.getWidth(), image.getHeight(), image.getType());

 op.filter(image, filteredImage);

Some operations can transform an image in place (op.filter(image, image)), but most can’t.

Five classes implement the BufferedImageOp interface:

 AffineTransformOp

 RescaleOp

 LookupOp

 ColorConvertOp

 ConvolveOp

The AffineTransformOp carries out an affine transformation on the pixels. For example, here

is how you can rotate an image about its center:

 AffineTransform transform = AffineTransform.getRotateInstance(Math.toRadians(angle),

 image.getWidth() / 2, image.getHeight() / 2);

 AffineTransformOp op = new AffineTransformOp(transform, interpolation);

 op.filter(image, filteredImage);

The AffineTransformOp constructor requires an affine transform and an interpolation
strategy. Interpolation is necessary to determine pixels in the target image if the source

pixels are transformed somewhere between target pixels. For example, if you rotate source

pixels, then they will generally not fall exactly onto target pixels. There are two

interpolation strategies: AffineTransformOp.TYPE_BILINEAR and

AffineTransformOp.TYPE_NEAREST_NEIGHBOR. Bilinear interpolation takes a bit longer but

looks better.

The program in Listing 11.9 lets you rotate an image by 5 degrees (see Figure 11.29).

Figure 11.29 A rotated image

The RescaleOp carries out a rescaling operation

 xnew = a . x + b

for each of the color components in the image. (Alpha components are not affected.) The

effect of rescaling with a > 1 is to brighten the image. Construct the RescaleOp by specifying
the scaling parameters and optional rendering hints. In Listing 11.9, we use:

 float a = 1.1f;

 float b = 20.0f;

 RescaleOp op = new RescaleOp(a, b, null);

You can also supply separate scaling values for each color component—see the API notes.

The LookupOp operation lets you specify an arbitrary mapping of sample values. Supply a

table that specifies how each value should be mapped. In the example program, we compute

the negative of all colors, changing the color c to 255 – c.

The LookupOp constructor requires an object of type LookupTable and a map of optional hints.

The LookupTable class is abstract, with two concrete subclasses: ByteLookupTable and

ShortLookupTable. Since RGB color values are bytes, a ByteLookupTable should suffice.

However, because of the bug described in

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6183251, we will use a

ShortLookupTable instead. Here is how we construct the LookupOp for the example program:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig029
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6183251

 short negative[] = new short[256];

 for (int i = 0; i < 256; i++) negative[i] = (short) (255 - i);

 ShortLookupTable table = new ShortLookupTable(0, negative);

 LookupOp op = new LookupOp(table, null);

The lookup is applied to each color component separately, but not to the alpha component.

You can also supply different lookup tables for each color component—see the API notes.

NOTE:

You cannot apply a LookupOp to an image with an indexed color model. (In those images, each

sample value is an offset into a color palette.)

The ColorConvertOp is useful for color space conversions. We do not discuss it here.

The most powerful of the transformations is the ConvolveOp, which carries out a mathematical

convolution. We do not want to get too deeply into the mathematical details, but the basic
idea is simple. Consider, for example, the blur filter (see Figure 11.30).

Figure 11.30 Blurring an image

The blurring is achieved by replacing each pixel with the average value from the pixel and
its eight neighbors. Intuitively, it makes sense why this operation would blur out the

picture. Mathematically, the averaging can be expressed as a convolution operation with

the following kernel:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig030

The kernel of a convolution is a matrix that tells what weights should be applied to the

neighboring values. The kernel above leads to a blurred image. A different kernel carries

out edge detection, locating areas of color changes:

Edge detection is an important technique for analyzing photographic images (see Figure

11.31).

Figure 11.31 Edge detection and inversion

To construct a convolution operation, you first set up an array of the values for the kernel

and construct a Kernel object. Then, construct a ConvolveOp object from the kernel and use

it for filtering.

 float[] elements =

 {

 0.0f, -1.0f, 0.0f,

 -1.0f, 4.f, -1.0f,

 0.0f, -1.0f, 0.0f

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig031
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig031

 };

 Kernel kernel = new Kernel(3, 3, elements);

 ConvolveOp op = new ConvolveOp(kernel);

 op.filter(image, filteredImage);

The program in Listing 11.9 allows a user to load in a GIF or JPEG image and carry out the

image manipulations that we discussed. Thanks to the power of the image operations provided

by Java 2D API, the program is very simple.

Listing 11.9 imageProcessing/ImageProcessingFrame.java

 1 package imageProcessing;

 2

 3 import java.awt.*;

 4 import java.awt.geom.*;

 5 import java.awt.image.*;

 6 import java.io.*;

 7

 8 import javax.imageio.*;

 9 import javax.swing.*;

10 import javax.swing.filechooser.*;

11

12 /**

13 * This frame has a menu to load an image and to specify various transformations,

and a component to

14 * show the resulting image.

15 */

16 public class ImageProcessingFrame extends JFrame

17 {

18 private static final int DEFAULT_WIDTH = 400;

19 private static final int DEFAULT_HEIGHT = 400;

20

21 private BufferedImage image;

22

23 public ImageProcessingFrame()

24 {

25 setTitle("ImageProcessingTest");

26 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

27

28 add(new JComponent()

29 {

30 public void paintComponent(Graphics g)

31 {

32 if (image != null) g.drawImage(image, 0, 0, null);

33 }

34 });

35

36 JMenu fileMenu = new JMenu("File");

37 JMenuItem openItem = new JMenuItem("Open");

38 openItem.addActionListener(event -> openFile());

39 fileMenu.add(openItem);

40

41 JMenuItem exitItem = new JMenuItem("Exit");

42 exitItem.addActionListener(event -> System.exit(0));

43 fileMenu.add(exitItem);

44

45 JMenu editMenu = new JMenu("Edit");

46 JMenuItem blurItem = new JMenuItem("Blur");

47 blurItem.addActionListener(event ->

48 {

49 float weight = 1.0f / 9.0f;

50 float[] elements = new float[9];

51 for (int i = 0; i < 9; i++)

52 elements[i] = weight;

53 convolve(elements);

54 });

55 editMenu.add(blurItem);

56

57 JMenuItem sharpenItem = new JMenuItem("Sharpen");

58 sharpenItem.addActionListener(event ->

59 {

60 float[] elements = { 0.0f, -1.0f, 0.0f, -1.0f, 5.f,

-1.0f, 0.0f, -1.0f, 0.0f };

61 convolve(elements);

62 });

63 editMenu.add(sharpenItem);

64

65 JMenuItem brightenItem = new JMenuItem("Brighten");

66 brightenItem.addActionListener(event ->

67 {

68 float a = 1.1f;

69 float b = 20.0f;

70 RescaleOp op = new RescaleOp(a, b, null);

71 filter(op);

72 });

73 editMenu.add(brightenItem);

74

75 JMenuItem edgeDetectItem = new JMenuItem("Edge detect");

76 edgeDetectItem.addActionListener(event ->

77 {

78 float[] elements = { 0.0f, -1.0f, 0.0f, -1.0f, 4.f,

-1.0f, 0.0f, -1.0f, 0.0f };

79 convolve(elements);

80 });

81 editMenu.add(edgeDetectItem);

82

83 JMenuItem negativeItem = new JMenuItem("Negative");

84 negativeItem.addActionListener(event ->

85 {

86 short[] negative = new short[256 * 1];

87 for (int i = 0; i < 256; i++)

88 negative[i] = (short) (255 - i);

89 ShortLookupTable table = new ShortLookupTable(0,

negative);

90 LookupOp op = new LookupOp(table, null);

91 filter(op);

92 });

93 editMenu.add(negativeItem);

94

95 JMenuItem rotateItem = new JMenuItem("Rotate");

96 rotateItem.addActionListener(event ->

97 {

98 if (image == null) return;

99 AffineTransform transform =

AffineTransform.getRotateInstance(Math.toRadians(5),

100 image.getWidth() / 2, image.getHeight() /

2);

101 AffineTransformOp op = new AffineTransformOp(transform,

102 AffineTransformOp.TYPE_BICUBIC);

103 filter(op);

104 });

105 editMenu.add(rotateItem);

106

107 JMenuBar menuBar = new JMenuBar();

108 menuBar.add(fileMenu);

109 menuBar.add(editMenu);

110 setJMenuBar(menuBar);

111 }

112

113 /**

114 * Open a file and load the image.

115 */

116 public void openFile()

117 {

118 JFileChooser chooser = new JFileChooser(".");

119 chooser.setCurrentDirectory(new

File(getClass().getPackage().getName()));

120 String[] extensions = ImageIO.getReaderFileSuffixes();

121 chooser.setFileFilter(new FileNameExtensionFilter("Image files",

extensions));

122 int r = chooser.showOpenDialog(this);

123 if (r != JFileChooser.APPROVE_OPTION) return;

124

125 try

126 {

127 Image img = ImageIO.read(chooser.getSelectedFile());

128 image = new BufferedImage(img.getWidth(null),

img.getHeight(null),

129 BufferedImage.TYPE_INT_RGB);

130 image.getGraphics().drawImage(img, 0, 0, null);

131 }

132 catch (IOException e)

133 {

134 JOptionPane.showMessageDialog(this, e);

135 }

136 repaint();

137 }

138

139 /**

140 * Apply a filter and repaint.

141 * @param op the image operation to apply

142 */

143 private void filter(BufferedImageOp op)

144 {

145 if (image == null) return;

146 image = op.filter(image, null);

147 repaint();

148 }

149

150 /**

151 * Apply a convolution and repaint.

152 * @param elements the convolution kernel (an array of 9 matrix elements)

153 */

154 private void convolve(float[] elements)

155 {

156 Kernel kernel = new Kernel(3, 3, elements);

157 ConvolveOp op = new ConvolveOp(kernel);

158 filter(op);

159 }

160 }

java.awt.image.BufferedImageOp 1.2

• BufferedImage filter(BufferedImage source, BufferedImage dest)

applies the image operation to the source image and stores the result in the destination

image. If dest is null, a new destination image is created.The destination image is returned.

java.awt.image.AffineTransformOp 1.2

• AffineTransformOp(AffineTransform t, int interpolationType)

constructs an affine transform operator.The interpolation type is one of TYPE_BILINEAR,

TYPE_BICUBIC, or TYPE_NEAREST_NEIGHBOR.

java.awt.image.RescaleOp 1.2

• RescaleOp(float a, float b, RenderingHints hints)

• RescaleOp(float[] as, float[] bs, RenderingHints hints)

constructs a rescale operator that carries out the scaling operation xnew = a · x + b. When
using the first constructor, all color components (but not the alpha component) are scaled

with the same coefficients.When using the second constructor, you supply either the values

for each color component, in which case the alpha component is unaffected, or the values

for both alpha and color components.

java.awt.image.LookupOp 1.2

• LookupOp(LookupTable table, RenderingHints hints)

constructs a lookup operator for the given lookup table.

java.awt.image.ByteLookupTable 1.2

• ByteLookupTable(int offset, byte[] data)

• ByteLookupTable(int offset, byte[][] data)

constructs a lookup table for converting byte values. The offset is subtracted from the

input before the lookup. The values in the first constructor are applied to all color

components but not the alpha component.When using the second constructor, you supply either

the values for each color component, in which case the alpha component is unaffected, or

the values for both alpha and color components.

java.awt.image.ShortLookupTable 1.2

• ShortLookupTable(int offset, short[] data)

• ShortLookupTable(int offset, short[][] data)

constructs a lookup table for converting short values. The offset is subtracted from the

input before the lookup. The values in the first constructor are applied to all color

components but not the alpha component.When using the second constructor, you supply either

the values for each color component, in which case the alpha component is unaffected, or

the values for both alpha and color components.

java.awt.image.ConvolveOp 1.2

• ConvolveOp(Kernel kernel)

• ConvolveOp(Kernel kernel, int edgeCondition, RenderingHints hints)

constructs a convolution operator. The edge condition specified is one of EDGE_NO_OP and

EDGE_ZERO_FILL. Edge values need to be treated specially because they don’t have sufficient

neighboring values to compute the convolution.The default is EDGE_ZERO_FILL.

java.awt.image.Kernel 1.2

• Kernel(int width, int height, float[] matrixElements)

constructs a kernel for the given matrix.

11.12 Printing

The original JDK had no support for printing at all. It was not possible to print from applets,

and you had to get a third-party library if you wanted to print from an application. JDK

1.1 introduced very lightweight printing support, just enough to produce simple printouts,

as long as you were not too particular about the print quality. The 1.1 printing model was

designed to allow browser vendors to print the surface of an applet as it appears on a web

page (which, however, the browser vendors have not embraced).

Java SE 1.2 introduced the beginnings of a robust printing model that is fully integrated

with 2D graphics. Java SE 1.4 added important enhancements, such as discovery of printer

features and streaming print jobs for server-side print management.

In this section, we will show you how you can easily print a drawing on a single sheet of

paper, how you can manage a multipage printout, and how you can benefit from the elegance

of the Java 2D imaging model and easily generate a print preview dialog box.

11.12.1 Graphics Printing

In this section, we will tackle what is probably the most common printing situation: printing

a 2D graphic. Of course, the graphic can contain text in various fonts or even consist

entirely of text.

To generate a printout, you have to take care of these two tasks:

• Supply an object that implements the Printable interface

• Start a print job

The Printable interface has a single method:

 int print(Graphics g, PageFormat format, int page)

That method is called whenever the print engine needs to have a page formatted for printing.

Your code draws the text and the images to be printed onto the graphics context. The page

format tells you the paper size and the print margins. The page number tells you which page

to render.

To start a print job, use the PrinterJob class. First, call the static getPrinterJob method

to get a print job object. Then set the Printable object that you want to print.

 Printable canvas = . . .;

 PrinterJob job = PrinterJob.getPrinterJob();

 job.setPrintable(canvas);

CAUTION:

The class PrintJob handles JDK 1.1-style printing. That class is now obsolete. Do not confuse

it with the PrinterJob class.

Before starting the print job, you should call the printDialog method to display a print

dialog box (see Figure 11.32). That dialog box gives the user a chance to select the printer

to be used (in case multiple printers are available), the page range that should be printed,

and various printer settings.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig032

Figure 11.32 A cross-platform print dialog box

You collect printer settings in an object of a class that implements the

PrintRequestAttributeSet interface, such as the HashPrintRequestAttributeSet class.

 HashPrintRequestAttributeSet attributes = new HashPrintRequestAttributeSet();

Add attribute settings and pass the attributes object to the printDialog method.

The printDialog method returns true if the user clicked OK and false if the user canceled

the dialog box. If the user accepted, call the print method of the PrinterJob class to start

the printing process. The print method might throw a PrinterException. Here is the outline

of the printing code:

 if (job.printDialog(attributes))

 {

 try

 {

 job.print(attributes);

 }

 catch (PrinterException exception)

 {

 ...

 }

 }

NOTE:

Prior to JDK 1.4, the printing system used the native print and page setup dialog boxes

of the host platform. To show a native print dialog box, call the printDialog method with

no parameters. (There is no way to collect user settings in an attribute set.)

During printing, the print method of the PrinterJob class makes repeated calls to the print

method of the Printable object associated with the job.

Since the job does not know how many pages you want to print, it simply keeps calling the

print method. As long as the print method returns the value Printable.PAGE_EXISTS, the print

job keeps producing pages. When the print method returns Printable.NO_SUCH_PAGE, the print

job stops.

CAUTION:

The page numbers that the print job passes to the print method start with page 0.

Therefore, the print job doesn’t have an accurate page count until after the printout is

complete. For that reason, the print dialog box can’t display the correct page

range—instead it displays “Pages 1 to 1.” You will see in the next section how to avoid

this blemish by supplying a Book object to the print job.

During the printing process, the print job repeatedly calls the print method of the Printable

object. The print job is allowed to make multiple calls for the same page. You should
therefore not count pages inside the print method but always rely on the page number

parameter. There is a good reason why the print job might call the print method repeatedly

for the same page. Some printers, in particular dot-matrix and inkjet printers, use banding.
They print one band at a time, advance the paper, and then print the next band. The print

job might use banding even for laser printers that print a full page at a time—it gives

the print job a way of managing the size of the spool file.

If the print job needs the Printable object to print a band, it sets the clip area of the

graphics context to the requested band and calls the print method. Its drawing operations

are clipped against the band rectangle, and only those drawing elements that show up in

the band are rendered. Your print method need not be aware of that process, with one caveat:

It should not interfere with the clip area.

CAUTION:

The Graphics object that your print method gets is also clipped against the page margins.

If you replace the clip area, you can draw outside the margins. Especially in a printer

graphics context, the clipping area must be respected. Call clip, not setClip, to further

restrict the clipping area. If you must remove a clip area, make sure to call getClip at

the beginning of your print method and restore that clip area.

The PageFormat parameter of the print method contains information about the printed page.

The methods getWidth and getHeight return the paper size, measured in points. One point
is 1/72 of an inch. (An inch equals 25.4 millimeters.) For example, A4 paper is approximately

595 × 842 points, and US Letter paper is 612 × 792 points.

Points are a common measurement in the printing trade in the United States. Much to the

chagrin of the rest of the world, the printing package uses point units. There are two

purposes for that: paper sizes and paper margins are measured in points, and points are

the default unit for all print graphics contexts. You can verify that in the example program

at the end of this section. The program prints two lines of text that are 72 units apart.

Run the example program and measure the distance between the baselines; they are exactly

1 inch or 25.4 millimeters apart.

The getWidth and getHeight methods of the PageFormat class give you the complete paper size.

Not all of the paper area is printable. Users typically select margins, and even if they

don’t, printers need to somehow grip the sheets of paper on which they print and therefore

have a small unprintable area around the edges.

The methods getImageableWidth and getImageableHeight tell you the dimensions of the area

that you can actually fill. However, the margins need not be symmetrical, so you must also

know the top left corner of the imageable area (see Figure 11.33), which you obtain by the

methods getImageableX and getImageableY.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig033

Figure 11.33 Page format measurements

TIP:

The graphics context that you receive in the print method is clipped to exclude the margins,

but the origin of the coordinate system is nevertheless the top left corner of the paper.

It makes sense to translate the coordinate system to start at the top left corner of the

imageable area. Simply start your print method with

 g.translate(pageFormat.getImageableX(), pageFormat.getImageableY());

If you want your users to choose the settings for the page margins or to switch between

portrait and landscape orientation without setting other printing attributes, you can call

the pageDialog method of the PrinterJob class:

 PageFormat format = job.pageDialog(attributes);

NOTE:

One of the tabs of the print dialog box contains the page setup dialog (see Figure 11.34).

You might still want to give users an option to set the page format before printing,

especially if your program presents a “what you see is what you get” display of the pages

to be printed. The pageDialog method returns a PageFormat object with the user settings.

Figure 11.34 A cross-platform page setup dialog

The program in Listings 11.10 and 11.11 shows how to render the same set of shapes on the

screen and on the printed page. A subclass of JPanel implements the Printable interface.

Both the paintComponent and the print methods call the same method to carry out the actual

drawing.

 class PrintPanel extends JPanel implements Printable

 {

 public void paintComponent(Graphics g)

 {

 super.paintComponent(g);

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig034

 Graphics2D g2 = (Graphics2D) g;

 drawPage(g2);

 }

 public int print(Graphics g, PageFormat pf, int page)

 throws PrinterException

 {

 if (page >= 1) return Printable.NO_SUCH_PAGE;

 Graphics2D g2 = (Graphics2D) g;

 g2.translate(pf.getImageableX(), pf.getImageableY());

 drawPage(g2);

 return Printable.PAGE_EXISTS;

 }

 public void drawPage(Graphics2D g2)

 {

 // shared drawing code goes here

 ...

 }

 ...

 }

This example displays and prints the image shown in Figure 11.20—namely, the outline of

the message “Hello, World” used as a clipping area for a pattern of lines.

Click the Print button to start printing, or click the Page setup button to open the page

setup dialog box. Listing 11.10 shows the code.

NOTE:

To show a native page setup dialog box, pass a default PageFormat object to the pageDialog

method. The method clones that object, modifies it according to the user selections in the

dialog box, and returns the cloned object.

 PageFormat defaultFormat = printJob.defaultPage();

 PageFormat selectedFormat = printJob.pageDialog(defaultFormat);

Listing 11.10 print/PrintTestFrame.java

 1 package print;

 2

 3 import java.awt.*;

 4 import java.awt.print.*;

 5

 6 import javax.print.attribute.*;

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig020

 7 import javax.swing.*;

 8

 9 /**

10 * This frame shows a panel with 2D graphics and buttons to print the graphics

and to set up the

11 * page format.

12 */

13 public class PrintTestFrame extends JFrame

14 {

15 private PrintComponent canvas;

16 private PrintRequestAttributeSet attributes;

17

18 public PrintTestFrame()

19 {

20 canvas = new PrintComponent();

21 add(canvas, BorderLayout.CENTER);

22

23 attributes = new HashPrintRequestAttributeSet();

24

25 JPanel buttonPanel = new JPanel();

26 JButton printButton = new JButton("Print");

27 buttonPanel.add(printButton);

28 printButton.addActionListener(event ->

29 {

30 try

31 {

32 PrinterJob job = PrinterJob.getPrinterJob();

33 job.setPrintable(canvas);

34 if (job.printDialog(attributes))

job.print(attributes);

35 }

36 catch (PrinterException ex)

37 {

38 JOptionPane.showMessageDialog(PrintTestFrame

.this, ex);

39 }

40 });

41

42 JButton pageSetupButton = new JButton("Page setup");

43 buttonPanel.add(pageSetupButton);

44 pageSetupButton.addActionListener(event ->

45 {

46 PrinterJob job = PrinterJob.getPrinterJob();

47 job.pageDialog(attributes);

48 });

49

50 add(buttonPanel, BorderLayout.NORTH);

51 pack();

52 }

53 }

Listing 11.11 print/PrintComponent.java

 1 package print;

 2

 3 import java.awt.*;

 4 import java.awt.font.*;

 5 import java.awt.geom.*;

 6 import java.awt.print.*;

 7 import javax.swing.*;

 8

 9 /**

10 * This component generates a 2D graphics image for screen display and printing.

11 */

12 public class PrintComponent extends JComponent implements Printable

13 {

14 private static final int DEFAULT_WIDTH = 300;

15 private static final int DEFAULT_HEIGHT = 300;

16

17 public void paintComponent(Graphics g)

18 {

19 Graphics2D g2 = (Graphics2D) g;

20 drawPage(g2);

21 }

22

23 public int print(Graphics g, PageFormat pf, int page) throws PrinterException

24 {

25 if (page >= 1) return Printable.NO_SUCH_PAGE;

26 Graphics2D g2 = (Graphics2D) g;

27 g2.translate(pf.getImageableX(), pf.getImageableY());

28 g2.draw(new Rectangle2D.Double(0, 0, pf.getImageableWidth(),

pf.getImageableHeight()));

29

30 drawPage(g2);

31 return Printable.PAGE_EXISTS;

32 }

33

34 /**

35 * This method draws the page both on the screen and the printer graphics

context.

36 * @param g2 the graphics context

37 */

38 public void drawPage(Graphics2D g2)

39 {

40 FontRenderContext context = g2.getFontRenderContext();

41 Font f = new Font("Serif", Font.PLAIN, 72);

42 GeneralPath clipShape = new GeneralPath();

43

44 TextLayout layout = new TextLayout("Hello", f, context);

45 AffineTransform transform = AffineTransform.getTranslateInstance(0,

72);

46 Shape outline = layout.getOutline(transform);

47 clipShape.append(outline, false);

48

49 layout = new TextLayout("World", f, context);

50 transform = AffineTransform.getTranslateInstance(0, 144);

51 outline = layout.getOutline(transform);

52 clipShape.append(outline, false);

53

54 g2.draw(clipShape);

55 g2.clip(clipShape);

56

57 final int NLINES = 50;

58 Point2D p = new Point2D.Double(0, 0);

59 for (int i = 0; i < NLINES; i++)

60 {

61 double x = (2 * getWidth() * i) / NLINES;

62 double y = (2 * getHeight() * (NLINES - 1 - i)) / NLINES;

63 Point2D q = new Point2D.Double(x, y);

64 g2.draw(new Line2D.Double(p, q));

65 }

66 }

67

68 public Dimension getPreferredSize() { return new Dimension(DEFAULT_WIDTH,

DEFAULT_HEIGHT); }

69 }

java.awt.print.Printable 1.2

• int print(Graphics g, PageFormat format, int pageNumber)

renders a page and returns PAGE_EXISTS, or returns NO_SUCH_PAGE.

java.awt.print.PrinterJob 1.2

• static PrinterJob getPrinterJob()

returns a printer job object.

• PageFormat defaultPage()

returns the default page format for this printer.

• boolean printDialog(PrintRequestAttributeSet attributes)

• boolean printDialog()

opens a print dialog box to allow a user to select the pages to be printed and to change

print settings. The first method displays a cross-platform dialog box, the second a native

dialog box. The first method modifies the attributes object to reflect the user settings.

Both methods return true if the user accepts the dialog box.

• PageFormat pageDialog(PrintRequestAttributeSet attributes)

• PageFormat pageDialog(PageFormat defaults)

displays a page setup dialog box.The first method displays a cross-platform dialog box,

the second a native dialog box. Both methods return a PageFormat object with the format

that the user requested in the dialog box. The first method modifies the attributes object

to reflect the user settings.The second method does not modify the defaults object.

• void setPrintable(Printable p)

• void setPrintable(Printable p, PageFormat format)

sets the Printable of this print job and an optional page format.

• void print()

• void print(PrintRequestAttributeSet attributes)

prints the current Printable by repeatedly calling its print method and sending the rendered

pages to the printer, until no more pages are available.

java.awt.print.PageFormat 1.2

• double getWidth()

• double getHeight()

returns the width and height of the page.

• double getImageableWidth()

• double getImageableHeight()

returns the width and height of the imageable area of the page.

• double getImageableX()

• double getImageableY()

returns the position of the top left corner of the imageable area.

• int getOrientation()

returns one of PORTRAIT, LANDSCAPE, or REVERSE_LANDSCAPE. Page orientation is transparent

to programmers because the page format and graphics context settings automatically reflect

the page orientation.

11.12.2 Multiple-Page Printing

In practice, you usually shouldn’t pass a raw Printable object to a print job. Instead,

you should obtain an object of a class that implements the Pageable interface. The Java

platform supplies one such class, called Book. A book is made up of sections, each of which

is a Printable object. To make a book, add Printable objects and their page counts.

 Book book = new Book();

 Printable coverPage = . . .;

 Printable bodyPages = . . .;

 book.append(coverPage, pageFormat); // append 1 page

 book.append(bodyPages, pageFormat, pageCount);

Then, use the setPageable method to pass the Book object to the print job.

 printJob.setPageable(book);

Now the print job knows exactly how many pages to print, so the print dialog box displays

an accurate page range and the user can select the entire range or subranges.

CAUTION:

When the print job calls the print methods of the Printable sections, it passes the current

page number of the book, and not of each section, as the current page number. That is a
huge pain—each section must know the page counts of the preceding sections to make sense

of the page number parameter.

From your perspective as a programmer, the biggest challenge of using the Book class is

that you must know how many pages each section will have when you print it. Your Printable

class needs a layout algorithm that computes the layout of the material on the printed pages.
Before printing starts, invoke that algorithm to compute the page breaks and the page count.

You can retain the layout information so you have it handy during the printing process.

You must guard against the possibility that the user has changed the page format. If that

happens, you must recompute the layout, even if the information that you want to print has

not changed.

Listing 11.13 shows how to produce a multipage printout. This program prints a message in

very large characters on a number of pages (see Figure 11.35). You can then trim the margins

and tape the pages together to form a banner.

Figure 11.35 A banner

The layoutPages method of the Banner class computes the layout. We first lay out the message

string in a 72-point font. We then compute the height of the resulting string and compare

it with the imageable height of the page. We derive a scale factor from these two measurements.

When printing the string, we magnify it by that scale factor.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig035

CAUTION:

To lay out your information precisely, you usually need access to the printer graphics

context. Unfortunately, there is no way to obtain that graphics context before printing

actually starts. In our example program, we make do with the screen graphics context and

hope that the font metrics of the screen and printer match.

The getPageCount method of the Banner class first calls the layout method. Then it scales

up the width of the string and divides it by the imageable width of each page. The quotient,

rounded up to the next integer, is the page count.

It sounds like it might be difficult to print the banner because characters can be broken

across multiple pages. However, thanks to the power of the Java 2D API, this turns out not

to be a problem at all. When a particular page is requested, we simply use the translate

method of the Graphics2D class to shift the top left corner of the string to the left. Then,

we set a clip rectangle that equals the current page (see Figure 11.36). Finally, we scale

the graphics context with the scale factor that the layout method computed.

Figure 11.36 Printing a page of a banner

This example shows the power of transformations. The drawing code is kept simple, and the

transformation does all the work of placing the drawing at the appropriate place. Finally,

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig036

the clip cuts away the part of the image that falls outside the page. In the next section,

you will see another compelling use of transformations—to display a print preview.

11.12.3 Print Preview

Most professional programs have a print preview mechanism that lets you look at your pages

on the screen so that you won’t waste paper on a printout that you don’t like. The printing

classes of the Java platform do not supply a standard “print preview” dialog box, but

it is easy to design your own (see Figure 11.37). In this section, we’ll show you how.

The PrintPreviewDialog class in Listing 11.14 is completely generic—you can reuse it to

preview any kind of printout.

Figure 11.37 The print preview dialog, showing a banner page

To construct a PrintPreviewDialog, you supply either a Printable or a Book, together with

a PageFormat object. The dialog box contains a PrintPreviewCanvas (see Listing 11.15). As

you use the Next and Previous buttons to flip through the pages, the paintComponent method

calls the print method of the Printable object for the requested page.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig037

Normally, the print method draws the page context on a printer graphics context. However,

we supply the screen graphics context, suitably scaled so that the entire printed page fits

inside a small screen rectangle.

 float xoff = . . .; // left of page

 float yoff = . . .; // top of page

 float scale = . . .; // to fit printed page onto screen

 g2.translate(xoff, yoff);

 g2.scale(scale, scale);

 Printable printable = book.getPrintable(currentPage);

 printable.print(g2, pageFormat, currentPage);

The print method never knows that it doesn’t actually produce printed pages. It simply

draws onto the graphics context, producing a microscopic print preview on the screen. This

is a compelling demonstration of the power of the Java 2D imaging model.

Listing 11.12 contains the code for the banner printing program. Type “Hello, World!”

into the text field and look at the print preview, then print the banner.

Listing 11.12 book/BookTestFrame.java

 1 package book;

 2

 3 import java.awt.*;

 4 import java.awt.print.*;

 5

 6 import javax.print.attribute.*;

 7 import javax.swing.*;

 8

 9 /**

10 * This frame has a text field for the banner text and buttons for printing, page

setup, and print

11 * preview.

12 */

13 public class BookTestFrame extends JFrame

14 {

15 private JTextField text;

16 private PageFormat pageFormat;

17 private PrintRequestAttributeSet attributes;

18

19 public BookTestFrame()

20 {

21 text = new JTextField();

22 add(text, BorderLayout.NORTH);

23

24 attributes = new HashPrintRequestAttributeSet();

25

26 JPanel buttonPanel = new JPanel();

27

28 JButton printButton = new JButton("Print");

29 buttonPanel.add(printButton);

30 printButton.addActionListener(event ->

31 {

32 try

33 {

34 PrinterJob job = PrinterJob.getPrinterJob();

35 job.setPageable(makeBook());

36 if (job.printDialog(attributes))

37 {

38 job.print(attributes);

39 }

40 }

41 catch (PrinterException e)

42 {

43 JOptionPane.showMessageDialog(BookTestFrame.this,

e);

44 }

45 });

46

47 JButton pageSetupButton = new JButton("Page setup");

48 buttonPanel.add(pageSetupButton);

49 pageSetupButton.addActionListener(event ->

50 {

51 PrinterJob job = PrinterJob.getPrinterJob();

52 pageFormat = job.pageDialog(attributes);

53 });

54

55 JButton printPreviewButton = new JButton("Print preview");

56 buttonPanel.add(printPreviewButton);

57 printPreviewButton.addActionListener(event ->

58 {

59 PrintPreviewDialog dialog = new

PrintPreviewDialog(makeBook());

60 dialog.setVisible(true);

61 });

62

63 add(buttonPanel, BorderLayout.SOUTH);

64 pack();

65 }

66

67 /**

68 * Makes a book that contains a cover page and the pages for the banner.

69 */

70 public Book makeBook()

71 {

72 if (pageFormat == null)

73 {

74 PrinterJob job = PrinterJob.getPrinterJob();

75 pageFormat = job.defaultPage();

76 }

77 Book book = new Book();

78 String message = text.getText();

79 Banner banner = new Banner(message);

80 int pageCount = banner.getPageCount((Graphics2D) getGraphics(),

pageFormat);

81 book.append(new CoverPage(message + " (" + pageCount + " pages)"),

pageFormat);

82 book.append(banner, pageFormat, pageCount);

83 return book;

84 }

85 }

Listing 11.13 book/Banner.java

 1 package book;

 2

 3 import java.awt.*;

 4 import java.awt.font.*;

 5 import java.awt.geom.*;

 6 import java.awt.print.*;

 7

 8 /**

 9 * A banner that prints a text string on multiple pages.

10 */

11 public class Banner implements Printable

12 {

13 private String message;

14 private double scale;

15

16 /**

17 * Constructs a banner.

18 * @param m the message string

19 */

20 public Banner(String m)

21 {

22 message = m;

23 }

24

25 /**

26 * Gets the page count of this section.

27 * @param g2 the graphics context

28 * @param pf the page format

29 * @return the number of pages needed

30 */

31 public int getPageCount(Graphics2D g2, PageFormat pf)

32 {

33 if (message.equals("")) return 0;

34 FontRenderContext context = g2.getFontRenderContext();

35 Font f = new Font("Serif", Font.PLAIN, 72);

36 Rectangle2D bounds = f.getStringBounds(message, context);

37 scale = pf.getImageableHeight() / bounds.getHeight();

38 double width = scale * bounds.getWidth();

39 int pages = (int) Math.ceil(width / pf.getImageableWidth());

40 return pages;

41 }

42

43 public int print(Graphics g, PageFormat pf, int page) throws PrinterException

44 {

45 Graphics2D g2 = (Graphics2D) g;

46 if (page > getPageCount(g2, pf)) return Printable.NO_SUCH_PAGE;

47 g2.translate(pf.getImageableX(), pf.getImageableY());

48

49 drawPage(g2, pf, page);

50 return Printable.PAGE_EXISTS;

51 }

52

53 public void drawPage(Graphics2D g2, PageFormat pf, int page)

54 {

55 if (message.equals("")) return;

56 page--; // account for cover page

57

58 drawCropMarks(g2, pf);

59 g2.clip(new Rectangle2D.Double(0, 0, pf.getImageableWidth(),

pf.getImageableHeight()));

60 g2.translate(-page * pf.getImageableWidth(), 0);

61 g2.scale(scale, scale);

62 FontRenderContext context = g2.getFontRenderContext();

63 Font f = new Font("Serif", Font.PLAIN, 72);

64 TextLayout layout = new TextLayout(message, f, context);

65 AffineTransform transform = AffineTransform.getTranslateInstance(0,

layout.getAscent());

66 Shape outline = layout.getOutline(transform);

67 g2.draw(outline);

68 }

69

70 /**

71 * Draws 1/2" crop marks in the corners of the page.

72 * @param g2 the graphics context

73 * @param pf the page format

74 */

75 public void drawCropMarks(Graphics2D g2, PageFormat pf)

76 {

77 final double C = 36; // crop mark length = 1/2 inch

78 double w = pf.getImageableWidth();

79 double h = pf.getImageableHeight();

80 g2.draw(new Line2D.Double(0, 0, 0, C));

81 g2.draw(new Line2D.Double(0, 0, C, 0));

82 g2.draw(new Line2D.Double(w, 0, w, C));

83 g2.draw(new Line2D.Double(w, 0, w - C, 0));

84 g2.draw(new Line2D.Double(0, h, 0, h - C));

85 g2.draw(new Line2D.Double(0, h, C, h));

86 g2.draw(new Line2D.Double(w, h, w, h - C));

87 g2.draw(new Line2D.Double(w, h, w - C, h));

88 }

89 }

90

91 /**

92 * This class prints a cover page with a title.

93 */

94 class CoverPage implements Printable

95 {

96 private String title;

97

98 /**

99 * Constructs a cover page.

100 * @param t the title

101 */

102 public CoverPage(String t)

103 {

104 title = t;

105 }

106

107 public int print(Graphics g, PageFormat pf, int page) throws

PrinterException

108 {

109 if (page >= 1) return Printable.NO_SUCH_PAGE;

110 Graphics2D g2 = (Graphics2D) g;

111 g2.setPaint(Color.black);

112 g2.translate(pf.getImageableX(), pf.getImageableY());

113 FontRenderContext context = g2.getFontRenderContext();

114 Font f = g2.getFont();

115 TextLayout layout = new TextLayout(title, f, context);

116 float ascent = layout.getAscent();

117 g2.drawString(title, 0, ascent);

118 return Printable.PAGE_EXISTS;

119 }

120 }

Listing 11.14 book/PrintPreviewDialog.java

 1 package book;

 2

 3 import java.awt.*;

 4 import java.awt.print.*;

 5

 6 import javax.swing.*;

 7

 8 /**

 9 * This class implements a generic print preview dialog.

10 */

11 public class PrintPreviewDialog extends JDialog

12 {

13 private static final int DEFAULT_WIDTH = 300;

14 private static final int DEFAULT_HEIGHT = 300;

15

16 private PrintPreviewCanvas canvas;

17

18 /**

19 * Constructs a print preview dialog.

20 * @param p a Printable

21 * @param pf the page format

22 * @param pages the number of pages in p

23 */

24 public PrintPreviewDialog(Printable p, PageFormat pf, int pages)

25 {

26 Book book = new Book();

27 book.append(p, pf, pages);

28 layoutUI(book);

29 }

30

31 /**

32 * Constructs a print preview dialog.

33 * @param b a Book

34 */

35 public PrintPreviewDialog(Book b)

36 {

37 layoutUI(b);

38 }

39

40 /**

41 * Lays out the UI of the dialog.

42 * @param book the book to be previewed

43 */

44 public void layoutUI(Book book)

45 {

46 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

47

48 canvas = new PrintPreviewCanvas(book);

49 add(canvas, BorderLayout.CENTER);

50

51 JPanel buttonPanel = new JPanel();

52

53 JButton nextButton = new JButton("Next");

54 buttonPanel.add(nextButton);

55 nextButton.addActionListener(event -> canvas.flipPage(1));

56

57 JButton previousButton = new JButton("Previous");

58 buttonPanel.add(previousButton);

59 previousButton.addActionListener(event -> canvas.flipPage(-1));

60

61 JButton closeButton = new JButton("Close");

62 buttonPanel.add(closeButton);

63 closeButton.addActionListener(event -> setVisible(false));

64

65 add(buttonPanel, BorderLayout.SOUTH);

66 }

67 }

Listing 11.15 book/PrintPreviewCanvas.java

 1 package book;

 2

 3 import java.awt.*;

 4 import java.awt.geom.*;

 5 import java.awt.print.*;

 6 import javax.swing.*;

 7

 8 /**

 9 * The canvas for displaying the print preview.

10 */

11 class PrintPreviewCanvas extends JComponent

12 {

13 private Book book;

14 private int currentPage;

15

16 /**

17 * Constructs a print preview canvas.

18 * @param b the book to be previewed

19 */

20 public PrintPreviewCanvas(Book b)

21 {

22 book = b;

23 currentPage = 0;

24 }

25

26 public void paintComponent(Graphics g)

27 {

28 Graphics2D g2 = (Graphics2D) g;

29 PageFormat pageFormat = book.getPageFormat(currentPage);

30

31 double xoff; // x offset of page start in window

32 double yoff; // y offset of page start in window

33 double scale; // scale factor to fit page in window

34 double px = pageFormat.getWidth();

35 double py = pageFormat.getHeight();

36 double sx = getWidth() - 1;

37 double sy = getHeight() - 1;

38 if (px / py < sx / sy) // center horizontally

39 {

40 scale = sy / py;

41 xoff = 0.5 * (sx - scale * px);

42 yoff = 0;

43 }

44 else

45 // center vertically

46 {

47 scale = sx / px;

48 xoff = 0;

49 yoff = 0.5 * (sy - scale * py);

50 }

51 g2.translate((float) xoff, (float) yoff);

52 g2.scale((float) scale, (float) scale);

53

54 // draw page outline (ignoring margins)

55 Rectangle2D page = new Rectangle2D.Double(0, 0, px, py);

56 g2.setPaint(Color.white);

57 g2.fill(page);

58 g2.setPaint(Color.black);

59 g2.draw(page);

60

61 Printable printable = book.getPrintable(currentPage);

62 try

63 {

64 printable.print(g2, pageFormat, currentPage);

65 }

66 catch (PrinterException e)

67 {

68 g2.draw(new Line2D.Double(0, 0, px, py));

69 g2.draw(new Line2D.Double(px, 0, 0, py));

70 }

71 }

72

73 /**

74 * Flip the book by the given number of pages.

75 * @param by the number of pages to flip by. Negative values flip backwards.

76 */

77 public void flipPage(int by)

78 {

79 int newPage = currentPage + by;

80 if (0 <= newPage && newPage < book.getNumberOfPages())

81 {

82 currentPage = newPage;

83 repaint();

84 }

85 }

86 }

java.awt.print.PrinterJob 1.2

• void setPageable(Pageable p)

sets a Pageable (such as a Book) to be printed.

java.awt.print.Book 1.2

• void append(Printable p, PageFormat format)

• void append(Printable p, PageFormat format, int pageCount)

appends a section to this book. If the page count is not specified, the first page is added.

• Printable getPrintable(int page)

gets the printable for the specified page.

11.12.4 Print Services

So far, you have seen how to print 2D graphics. However, the printing API introduced in

Java SE 1.4 affords far greater flexibility. The API defines a number of data types and

lets you find print services that are able to print them. Among the data types are

• Images in GIF, JPEG, or PNG format

• Documents in text, HTML, PostScript, or PDF format

• Raw printer code data

• Objects of a class that implements Printable, Pageable, or RenderableImage

The data themselves can be stored in a source of bytes or characters such as an input stream,

a URL, or an array. A document flavor describes the combination of a data source and a data
type. The DocFlavor class defines a number of inner classes for the various data sources.

Each of the inner classes defines constants to specify the flavors. For example, the constant

 DocFlavor.INPUT_STREAM.GIF

describes a GIF image that is read from an input stream. Table 11.3 lists the combinations.

Table 11.3 Document Flavors for Print Services

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11tab03

Suppose you want to print a GIF image located in a file. First, find out whether there is

a print service that is capable of handling the task. The static lookupPrintServices method
of the PrintServiceLookup class returns an array of PrintService objects that can handle

the given document flavor.

 DocFlavor flavor = DocFlavor.INPUT_STREAM.GIF;

 PrintService[] services = PrintServiceLookup.lookupPrintServices(flavor, null);

The second parameter of the lookupPrintServices method is null to indicate that we don’t

want to constrain the search by specifying printer attributes. We’ll cover attributes in

the next section.

If the lookup yields an array with more than one element, you select from the listed print

services. You can call the getName method of the PrintService class to get the printer names,

and then let the user choose.

Next, get a document print job from the service:

 DocPrintJob job = services[i].createPrintJob();

For printing, you need an object that implements the Doc interface. The Java library supplies

a class SimpleDoc for that purpose. The SimpleDoc constructor requires the data source

object, the document flavor, and an optional attribute set. For example,

 InputStream in = new FileInputStream(fileName);

 Doc doc = new SimpleDoc(in, flavor, null);

Finally, you are ready to print:

 job.print(doc, null);

As before, the null parameter can be replaced by an attribute set.

Note that this printing process is quite different from that of the preceding section. There

is no user interaction through print dialog boxes. For example, you can implement a

server-side printing mechanism in which users submit print jobs through a web form.

The program in Listing 11.16 demonstrates how to use a print service to print an image file.

Listing 11.16 printService/PrintServiceTest.java

 1 package printService;

 2

 3 import java.io.*;

 4 import java.nio.file.*;

 5 import javax.print.*;

 6

 7 /**

 8 * This program demonstrates the use of print services. The program lets you print

a GIF image to

 9 * any of the print services that support the GIF document flavor.

10 * @version 1.10 2007-08-16

11 * @author Cay Horstmann

12 */

13 public class PrintServiceTest

14 {

15 public static void main(String[] args)

16 {

17 DocFlavor flavor = DocFlavor.URL.GIF;

18 PrintService[] services =

PrintServiceLookup.lookupPrintServices(flavor, null);

19 if (args.length == 0)

20 {

21 if (services.length == 0) System.out.println("No printer for

flavor " + flavor);

22 else

23 {

24 System.out.println("Specify a file of flavor " + flavor

25 + "\nand optionally the number of the

desired printer.");

26 for (int i = 0; i < services.length; i++)

27 System.out.println((i + 1) + ": " +

services[i].getName());

28 }

29 System.exit(0);

30 }

31 String fileName = args[0];

32 int p = 1;

33 if (args.length > 1) p = Integer.parseInt(args[1]);

34 if (fileName == null) return;

35 try (InputStream in = Files.newInputStream(Paths.get(fileName)))

36 {

37 Doc doc = new SimpleDoc(in, flavor, null);

38 DocPrintJob job = services[p - 1].createPrintJob();

39 job.print(doc, null);

40 }

41 catch (Exception ex)

42 {

43 ex.printStackTrace();

44 }

45 }

46 }

javax.print.PrintServiceLookup 1.4

• PrintService[] lookupPrintServices(DocFlavor flavor, AttributeSet attributes)

looks up the print services that can handle the given document flavor and attributes.

javax.print.PrintService 1.4

• DocPrintJob createPrintJob()

creates a print job for printing an object of a class that implements the Doc interface,

such as a SimpleDoc.

javax.print.DocPrintJob 1.4

• void print(Doc doc, PrintRequestAttributeSet attributes)

prints the given document with the given attributes.

javax.print.SimpleDoc 1.4

• SimpleDoc(Object data, DocFlavor flavor, DocAttributeSet attributes)

constructs a SimpleDoc object that can be printed with a DocPrintJob.

11.12.5 Stream Print Services

A print service sends print data to a printer. A stream print service generates the same

print data but instead sends them to a stream, perhaps for delayed printing or because the

print data format can be interpreted by other programs. In particular, if the print data

format is PostScript, it may be useful to save the print data to a file because many programs

can process PostScript files. The Java platform includes a stream print service that can

produce PostScript output from images and 2D graphics. You can use that service on all

systems, even if there are no local printers.

Enumerating stream print services is a bit more tedious than locating regular print services.

You need both the DocFlavor of the object to be printed and the MIME type of the stream

output. You then get a StreamPrintServiceFactory array of factories.

 DocFlavor flavor = DocFlavor.SERVICE_FORMATTED.PRINTABLE;

 String mimeType = "application/postscript";

 StreamPrintServiceFactory[] factories

 = StreamPrintServiceFactory.lookupStreamPrintServiceFactories(flavor,

mimeType);

The StreamPrintServiceFactory class has no methods that would help us distinguish any one

factory from another, so we just take factories[0]. We call the getPrintService method with

an output stream parameter to get a StreamPrintService object.

 OutputStream out = new FileOutputStream(fileName);

 StreamPrintService service = factories[0].getPrintService(out);

The StreamPrintService class is a subclass of PrintService. To produce a printout, simply

follow the steps of the preceding section.

javax.print.StreamPrintServiceFactory 1.4

• StreamPrintServiceFactory[] lookupStreamPrintServiceFactories(DocFlavor flavor, String

mimeType)

looks up the stream print service factories that can print the given document flavor and

produce an output stream of the given MIME type.

• StreamPrintService getPrintService(OutputStream out)

gets a print service that sends the printing output to the given output stream.

11.12.6 Printing Attributes

The print service API contains a complex set of interfaces and classes to specify various

kinds of attributes. There are four important groups of attributes. The first two specify

requests to the printer.

• Print request attributes request particular features for all doc objects in a print job,
such as two-sided printing or the paper size.

• Doc attributes are request attributes that apply only to a single doc object.

The other two attributes contain information about the printer and job status.

• Print service attributes give information about the print service, such as the printer
make and model or whether the printer is currently accepting jobs.

• Print job attributes give information about the status of a particular print job, such
as whether the job is already completed.

To describe the various attributes, there is an interface Attribute with subinterfaces:

 PrintRequestAttribute

 DocAttribute

 PrintServiceAttribute

 PrintJobAttribute

 SupportedValuesAttribute

Individual attribute classes implement one or more of these interfaces. For example, objects

of the Copies class describe the number of copies of a printout. That class implements both

the PrintRequestAttribute and the PrintJobAttribute interfaces. Clearly, a print request

can contain a request for multiple copies. Conversely, an attribute of the print job might

be how many of these copies were actually printed. That number might be lower, perhaps

because of printer limitations or because the printer ran out of paper.

The SupportedValuesAttribute interface indicates that an attribute value does not reflect

actual request or status data but rather the capability of a service. For example, the

CopiesSupported class implements the SupportedValuesAttribute interface. An object of that

class might describe that a printer supports 1 through 99 copies of a printout.

Figure 11.38 shows a class diagram of the attribute hierarchy.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig038

Figure 11.38 The attribute hierarchy

In addition to the interfaces and classes for individual attributes, the print service API

defines interfaces and classes for attribute sets. A superinterface, AttributeSet, has four

subinterfaces:

 PrintRequestAttributeSet

 DocAttributeSte

 PrintServiceAttributeSet

 PrintJobAttributeSet

Each of these interfaces has an implementing class, yielding the five classes:

 HashAttributeSet

 HashPrintRequestAttributeSet

 HashDocAttributeSet

 HashPrintServiceAttributeSet

 HashPrintJobAttributeSet

Figure 11.39 shows a class diagram of the attribute set hierarchy.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig039

Figure 11.39 The attribute set hierarchy

For example, you can construct a print request attribute set like this:

 PrintRequestAttributeSet attributes = new HashPrintRequestAttributeSet();

After constructing the set, you are freed from worrying about the Hash prefix.

Why have all these interfaces? They make it possible to check for correct attribute usage.

For example, a DocAttributeSet accepts only objects that implement the DocAttribute

interface. Any attempt to add another attribute results in a runtime error.

An attribute set is a specialized kind of map where the keys are of type Class and the values

belong to a class that implements the Attribute interface. For example, if you insert an

object

 new Copies(10)

into an attribute set, then its key is the Class object Copies.class. That key is called

the category of the attribute. The Attribute interface declares a method

 Class getCategory()

that returns the category of an attribute. The Copies class defines the method to return

the object Copies.class, but it isn’t a requirement that the category be the same as the

class of the attribute.

When an attribute is added to an attribute set, the category is extracted automatically.

You just add the attribute value:

 attributes.add(new Copies(10));

If you subsequently add another attribute with the same category, it overwrites the first

one.

To retrieve an attribute, you need to use the category as the key, for example:

 AttributeSet attributes = job.getAttributes();

 Copies copies = (Copies) attribute.get(Copies.class);

Finally, attributes are organized by the values they can have. The Copies attribute can

have any integer value. The Copies class extends the IntegerSyntax class that takes care

of all integer-valued attributes. The getValue method returns the integer value of the

attribute, for example:

 int n = copies.getValue();

The classes

 TextSyntax

 DateTimeSyntax

 URISyntax

encapsulate a string, date and time value, or a URI.

Finally, many attributes can take a finite number of values. For example, the PrintQuality

attribute has three settings: draft, normal, and high. They are represented by three

constants:

 PrintQuality.DRAFT

 PrintQuality.NORMAL

 PrintQuality.HIGH

Attribute classes with a finite number of values extend the EnumSyntax class, which provides

a number of convenience methods to set up these enumerations in a typesafe manner. You need

not worry about the mechanism when using such an attribute. Simply add the named values

to attribute sets:

 attributes.add(PrintQuality.HIGH);

Here is how you check the value of an attribute:

 if (attributes.get(PrintQuality.class) == PrintQuality.HIGH)

 ...

Table 11.4 lists the printing attributes. The second column lists the superclass of the

attribute class (for example, IntegerSyntax for the Copies attribute) or the set of

enumeration values for the attributes with a finite set of values. The last four columns

indicate whether the attribute class implements the DocAttribute (DA), PrintJobAttribute

(PJA), PrintRequestAttribute (PRA), and PrintServiceAttribute (PSA) interfaces.

Table 11.4 Printing Attributes

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11tab04

NOTE:

As you can see, there are lots of attributes, many of which are quite specialized. The source

for most of the attributes is the Internet Printing Protocol 1.1 (RFC 2911).

NOTE:

An earlier version of the printing API introduced the JobAttributes and PageAttributes

classes, whose purpose was similar to the printing attributes covered in this section. These

classes are now obsolete.

javax.print.attribute.Attribute 1.4

• Class getCategory()

gets the category of this attribute.

• String getName()

gets the name of this attribute.

javax.print.attribute.AttributeSet 1.4

• boolean add(Attribute attr)

adds an attribute to this set. If the set has another attribute with the same category,

that attribute is replaced by the given attribute. Returns true if the set changed as a

result of this operation.

• Attribute get(Class category)

retrieves the attribute with the given category key, or null if no such attribute exists.

• boolean remove(Attribute attr)

• boolean remove(Class category)

removes the given attribute, or the attribute with the given category, from the set. Returns

true if the set changed as a result of this operation.

• Attribute[] toArray()

returns an array with all attributes in this set.

javax.print.PrintService 1.4

• PrintServiceAttributeSet getAttributes()

gets the attributes of this print service.

javax.print.DocPrintJob 1.4

• PrintJobAttributeSet getAttributes()

gets the attributes of this print job.

This concludes our discussion on printing. You now know how to print 2D graphics and other

document types, how to enumerate printers and stream print services, and how to set and

retrieve attributes. Next, we turn to two important user interface issues: the clipboard

and the drag-and-drop mechanism.

11.13 The Clipboard

One of the most useful and convenient user interface mechanisms of GUI environments (such

as Windows and the X Window System) is cut and paste. You select some data in one program
and cut or copy them to the clipboard. Then, you switch to another program and paste the

clipboard contents into that application. Using the clipboard, you can transfer text, images,

or other data from one document to another or, of course, from one place in a document to

another in the same document. Cut and paste is so natural that most computer users never

think about it.

Even though the clipboard is conceptually simple, implementing clipboard services is

actually harder than you might think. Suppose you copy text from a word processor to the

clipboard. If you paste that text into another word processor, you expect the fonts and

formatting to stay intact. That is, the text in the clipboard needs to retain the formatting

information. However, if you paste the text into a plain text field, you expect that just

the characters are pasted in, without additional formatting codes. To support this

flexibility, the data provider must be able offer the clipboard data in multiple formats,

so the data consumer can pick one of them.

The system clipboard implementations of Microsoft Windows and the Macintosh are similar,

but, of course, there are slight differences. However, the X Window System clipboard

mechanism is much more limited—cutting and pasting of anything but plain text is only

sporadically supported. You should consider these limitations when trying out the programs

in this section.

NOTE:

Check out the file jre/lib/flavormap.properties on your platform to get an idea about what
kinds of objects can be transferred between Java programs and the system clipboard.

Often, programs need to support cut and paste of data types that the system clipboard cannot

handle. The data transfer API supports the transfer of arbitrary local object references

in the same virtual machine. Between different virtual machines, you can transfer serialized

objects and references to remote objects.

Table 11.5 summarizes the data transfer capabilities of the clipboard mechanism.

Table 11.5 Capabilities of the Java Data Transfer Mechanism

11.13.1 Classes and Interfaces for Data Transfer

Data transfer in Java is implemented in a package called java.awt.datatransfer. Here is

an overview of the most important classes and interfaces of that package:

• Objects that can be transferred via a clipboard must implement the Transferable interface.

• The Clipboard class describes a clipboard. Transferable objects are the only items that

can be put on or taken off a clipboard. The system clipboard is a concrete example of a

Clipboard.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11tab05

• The DataFlavor class describes data flavors that can be placed on the clipboard.

• The StringSelection class is a concrete class that implements the Transferable inter-face.

It transfers text strings.

• A class must implement the ClipboardOwner interface if it wants to be notified when the

clipboard contents have been overwritten by someone else. Clipboard ownership enables

“delayed formatting” of complex data. If a program transfers simple data (such as a string),

it simply sets the clipboard contents and moves on. However, if a program places onto the

clipboard complex data that can be formatted in multiple flavors, then it might not actually

want to prepare all the flavors, because there is a good chance that most of them will be

never needed. However, it then needs to hang on to the clipboard data so it can create the

flavors later when they are requested. The clipboard owner is notified (by a call to its

lostOwnership method) when the contents of the clipboard change. That tells it that the

information is no longer needed. In our sample programs, we don’t worry about clipboard

ownership.

11.13.2 Transferring Text

The best way to get comfortable with the data transfer classes is to start with the simplest

situation: transferring text to and from the system clipboard. First, get a reference to

the system clipboard:

 Clipboard clipboard = Toolkit.getDefaultToolkit().getSystemClipboard();

For strings to be transferred to the clipboard, they must be wrapped into StringSelection

objects.

 String text = . . .

 StringSelection selection = new StringSelection(text);

The actual transfer is done by a call to setContents, which takes a StringSelection object

and a ClipBoardOwner as parameters. If you are not interested in designating a clipboard

owner, set the second parameter to null.

 clipboard.setContents(selection, null);

Here is the reverse operation—reading a string from the clipboard:

 DataFlavor flavor = DataFlavor.stringFlavor;

 if (clipboard.isDataFlavorAvailable(flavor)

 String text = (String) clipboard.getData(flavor);

Listing 11.17 is a program that demonstrates cutting and pasting between a Java application

and the system clipboard. If you select some text in the text area and click Copy, the

selection is copied to the system clipboard. You can then paste it into any text editor

(see Figure 11.40). Conversely, when you copy text from the text editor, you can paste it

into our sample program.

Figure 11.40 The TextTransferTest program

Listing 11.17 transferText/TextTransferFrame.java

 1 package transferText;

 2

 3 import java.awt.*;

 4 import java.awt.datatransfer.*;

 5 import java.awt.event.*;

 6 import java.io.*;

 7 import javax.swing.*;

 8

 9 /**

10 * This frame has a text area and buttons for copying and pasting text.

11 */

12 public class TextTransferFrame extends JFrame

13 {

14 private JTextArea textArea;

15 private static final int TEXT_ROWS = 20;

16 private static final int TEXT_COLUMNS = 60;

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig040

17

18 public TextTransferFrame()

19 {

20 textArea = new JTextArea(TEXT_ROWS, TEXT_COLUMNS);

21 add(new JScrollPane(textArea), BorderLayout.CENTER);

22 JPanel panel = new JPanel();

23

24 JButton copyButton = new JButton("Copy");

25 panel.add(copyButton);

26 copyButton.addActionListener(event -> copy());

27

28 JButton pasteButton = new JButton("Paste");

29 panel.add(pasteButton);

30 pasteButton.addActionListener(event -> paste());

31

32 add(panel, BorderLayout.SOUTH);

33 pack();

34 }

35

36 /**

37 * Copies the selected text to the system clipboard.

38 */

39 private void copy()

40 {

41 Clipboard clipboard =

Toolkit.getDefaultToolkit().getSystemClipboard();

42 String text = textArea.getSelectedText();

43 if (text == null) text = textArea.getText();

44 StringSelection selection = new StringSelection(text);

45 clipboard.setContents(selection, null);

46 }

47

48 /**

49 * Pastes the text from the system clipboard into the text area.

50 */

51 private void paste()

52 {

53 Clipboard clipboard =

Toolkit.getDefaultToolkit().getSystemClipboard();

54 DataFlavor flavor = DataFlavor.stringFlavor;

55 if (clipboard.isDataFlavorAvailable(flavor))

56 {

57 try

58 {

59 String text = (String) clipboard.getData(flavor);

60 textArea.replaceSelection(text);

61 }

62 catch (UnsupportedFlavorException e | IOException ex)

63 {

64 JOptionPane.showMessageDialog(this, ex);

65 }

66 }

67 }

68 }

java.awt.Toolkit 1.0

• Clipboard getSystemClipboard() 1.1

gets the system clipboard.

java.awt.datatransfer.Clipboard 1.1

• Transferable getContents(Object requester)

gets the clipboard contents.

• void setContents(Transferable contents, ClipboardOwner owner)

puts contents on the clipboard.

• boolean isDataFlavorAvailable(DataFlavor flavor) 5.0

returns true if the clipboard has data in the given flavor.

• Object getData(DataFlavor flavor) 5.0

gets the data in the given flavor, or throws an UnsupportedFlavorException if no data are

available in the given flavor.

java.awt.datatransfer.ClipboardOwner 1.1

• void lostOwnership(Clipboard clipboard, Transferable contents)

notifies this object that it is no longer the owner of the contents of the clipboard.

java.awt.datatransfer.Transferable 1.1

• boolean isDataFlavorSupported(DataFlavor flavor)

returns true if the specified flavor is one of the supported data flavors, false other-wise.

• Object getTransferData(DataFlavor flavor)

returns the data, formatted in the requested flavor.Throws an UnsupportedFlavorException

if the flavor requested is not supported.

11.13.3 The Transferable Interface and Data Flavors

A DataFlavor is defined by two characteristics:

• A MIME type name (such as "image/gif")

• A representation class for accessing the data (such as java.awt.Image)

In addition, every data flavor has a human-readable name (such as "GIF Image").

The representation class can be specified with a class parameter in the MIME type, for

example,

 image/gif;class=java.awt.Image

NOTE:

This is just an example to show the syntax. There is no standard data flavor for transferring

GIF image data.

If no class parameter is given, then the representation class is InputStream.

Three MIME types are defined for transferring local, serialized, and remote Java objects:

 application/x-java-jvm-local-objectref

 application/x-java-serialized-object

 application/x-java-remote-object

NOTE:

The x- prefix indicates that this is an experimental name, not one that is sanctioned by

IANA, the organization that assigns standard MIME type names.

For example, the standard stringFlavor data flavor is described by the MIME type

 application/x-java-serialized-object;class=java.lang.String

You can ask the clipboard to list all available flavors:

 DataFlavor[] flavors = clipboard.getAvailableDataFlavors()

You can also install a FlavorListener onto the clipboard. The listener is notified when

the collection of data flavors on the clipboard changes. See the API notes for details.

java.awt.datatransfer.DataFlavor 1.1

• DataFlavor(String mimeType, String humanPresentableName)

creates a data flavor that describes stream data in a format described by a MIME type.

• DataFlavor(Class class, String humanPresentableName)

creates a data flavor that describes a Java platform class. Its MIME type is

application/x-java-serialized-object;class=className.

• String getMimeType()

returns the MIME type string for this data flavor.

• boolean isMimeTypeEqual(String mimeType)

tests whether this data flavor has the given MIME type.

• String getHumanPresentableName()

returns the human-presentable name for the data format of this data flavor.

• Class getRepresentationClass()

returns a Class object that represents the class of the object that a Transferable object

will return when called with this data flavor. This is either the class parameter of the

MIME type or InputStream.

java.awt.datatransfer.Clipboard 1.1

• DataFlavor[] getAvailableDataFlavors() 5.0

returns an array of the available flavors.

• void addFlavorListener(FlavorListener listener) 5.0

adds a listener that is notified when the set of available flavors changes.

java.awt.datatransfer.Transferable 1.1

• DataFlavor[] getTransferDataFlavors()

returns an array of the supported flavors.

java.awt.datatransfer.FlavorListener 5.0

• void flavorsChanged(FlavorEvent event)

is called when a clipboard’s set of available flavors changes.

11.13.4 Building an Image Transferable

Objects that you want to transfer via the clipboard must implement the Transferable

interface. The StringSelection class is currently the only public class in the Java standard

library that implements the Transferable interface. In this section, you will see how to

transfer images into the clipboard. Since Java does not supply a class for image transfer,

you must implement it yourself.

The class is completely trivial. It simply reports that the only available data format is

DataFlavor.imageFlavor, and it holds an image object.

 class ImageTransferable implements Transferable

 {

 private Image theImage;

 public ImageTransferable(Image image)

 {

 theImage = image;

 }

 public DataFlavor[] getTransferDataFlavors()

 {

 return new DataFlavor[] { DataFlavor.imageFlavor };

 }

 public boolean isDataFlavorSupported(DataFlavor flavor)

 {

 return flavor.equals(DataFlavor.imageFlavor);

 }

 public Object getTransferData(DataFlavor flavor)

 throws UnsupportedFlavorException

 {

 if(flavor.equals(DataFlavor.imageFlavor))

 {

 return theImage;

 }

 else

 {

 throw new UnsupportedFlavorException(flavor);

 }

 }

 }

NOTE:

Java SE supplies the DataFlavor.imageFlavor constant and does all the heavy lifting to

convert between Java images and native clipboard images. Curiously, however, it does not

supply the wrapper class that is necessary to place images onto the clipboard.

The program in Listing 11.18 demonstrates the transfer of images between a Java application

and the system clipboard. When the program starts, it generates an image containing a red

circle. Click the Copy button to copy the image to the clipboard and then paste it into

another application (see Figure 11.41). From another application, copy an image into the

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig041

system clipboard. Then click the Paste button and see the image being pasted into the example

program (see Figure 11.42).

Figure 11.41 Copying from a Java program to a native program

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig042

Figure 11.42 Copying from a native program to a Java program

The program is a straightforward modification of the text transfer program. The data flavor

is now DataFlavor.imageFlavor, and we use the ImageTransferable class to transfer an image

to the system clipboard.

Listing 11.18 imageTransfer/ImageTransferFrame.java

 1 package imageTransfer;

 2

 3 import java.awt.*;

 4 import java.awt.datatransfer.*;

 5 import java.awt.image.*;

 6 import java.io.*;

 7

 8 import javax.swing.*;

 9

10 /**

11 * This frame has an image label and buttons for copying and pasting an image.

12 */

13 class ImageTransferFrame extends JFrame

14 {

15 private JLabel label;

16 private Image image;

17 private static final int IMAGE_WIDTH = 300;

18 private static final int IMAGE_HEIGHT = 300;

19

20 public ImageTransferFrame()

21 {

22 label = new JLabel();

23 image = new BufferedImage(IMAGE_WIDTH, IMAGE_HEIGHT,

BufferedImage.TYPE_INT_ARGB);

24 Graphics g = image.getGraphics();

25 g.setColor(Color.WHITE);

26 g.fillRect(0, 0, IMAGE_WIDTH, IMAGE_HEIGHT);

27 g.setColor(Color.RED);

28 g.fillOval(IMAGE_WIDTH / 4, IMAGE_WIDTH / 4, IMAGE_WIDTH / 2,

IMAGE_HEIGHT / 2);

29

30 label.setIcon(new ImageIcon(image));

31 add(new JScrollPane(label), BorderLayout.CENTER);

32 JPanel panel = new JPanel();

33

34 JButton copyButton = new JButton("Copy");

35 panel.add(copyButton);

36 copyButton.addActionListener(event -> copy());

37

38 JButton pasteButton = new JButton("Paste");

39 panel.add(pasteButton);

40 pasteButton.addActionListener(event -> paste());

41

42 add(panel, BorderLayout.SOUTH);

43 pack();

44 }

45

46 /**

47 * Copies the current image to the system clipboard.

48 */

49 private void copy()

50 {

51 Clipboard clipboard =

Toolkit.getDefaultToolkit().getSystemClipboard();

52 ImageTransferable selection = new ImageTransferable(image);

53 clipboard.setContents(selection, null);

54 }

55

56 /**

57 * Pastes the image from the system clipboard into the image label.

58 */

59 private void paste()

60 {

61 Clipboard clipboard =

Toolkit.getDefaultToolkit().getSystemClipboard();

62 DataFlavor flavor = DataFlavor.imageFlavor;

63 if (clipboard.isDataFlavorAvailable(flavor))

64 {

65 try

66 {

67 image = (Image) clipboard.getData(flavor);

68 label.setIcon(new ImageIcon(image));

69 }

70 catch (UnsupportedFlavorException | IOException ex)

71 {

72 JOptionPane.showMessageDialog(this, ex);

73 }

74 }

75 }

76 }

11.13.5 Transferring Java Objects via the System Clipboard

Suppose you want to copy and paste objects from one Java application to another. You can

accomplish this task by placing serialized Java objects onto the system clipboard.

The program in Listing 11.19 demonstrates this capability. The program shows a color chooser.

The Copy button copies the current color to the system clipboard as a serialized Color object.

The Paste button checks whether the system clipboard contains a serialized Color object.

If so, it fetches the color and sets it as the current choice of the color chooser.

You can transfer the serialized object between two Java applications (see Figure 11.43).

Run two copies of the SerialTransferTest program. Click Copy in the first program, then

click Paste in the second program. The Color object is transferred from one virtual machine

to the other.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig043

Figure 11.43 Data are copied between two instances of a Java application.

To enable data transfer, the Java platform places the binary data of the serialized object

on the system clipboard. Another Java program—not necessarily of the same type as the one

that generated the clipboard data—can retrieve the clipboard data and deserialize the

object.

Of course, a non-Java application will not know what to do with the clipboard data. For

that reason, the example program offers the clipboard data in a second flavor—as text.

The text is simply the result of the toString method, applied to the transferred object.

To see the second flavor, run the program, click on a color, and then select the Paste command

in your text editor. A string such as

 java.awt.Color[r=255,g=0,b=51]

will be inserted into your document.

Essentially no additional programming is required to transfer a serializable object. Use

the MIME type

 application/x-java-serialized-object;class=className

As before, you have to build your own transfer wrapper—see the example code for details.

Listing 11.19 serialTransfer/SerialTransferFrame.java

 1 package serialTransfer;

 2

 3 import java.awt.*;

 4 import java.awt.datatransfer.*;

 5 import java.awt.event.*;

 6 import java.io.*;

 7 import javax.swing.*;

 8

 9 /**

10 * This frame contains a color chooser, and copy and paste buttons.

11 */

12 class SerialTransferFrame extends JFrame

13 {

14 private JColorChooser chooser;

15

16 public SerialTransferFrame()

17 {

18 chooser = new JColorChooser();

19 add(chooser, BorderLayout.CENTER);

20 JPanel panel = new JPanel();

21

22 JButton copyButton = new JButton("Copy");

23 panel.add(copyButton);

24 copyButton.addActionListener(event -> copy());

25

26 JButton pasteButton = new JButton("Paste");

27 panel.add(pasteButton);

28 pasteButton.addActionListener(event -> paste());

29

30 add(panel, BorderLayout.SOUTH);

31 pack();

32 }

33

34 /**

35 * Copies the chooser's color into the system clipboard.

36 */

37 private void copy()

38 {

39 Clipboard clipboard =

Toolkit.getDefaultToolkit().getSystemClipboard();

40 Color color = chooser.getColor();

41 SerialTransferable selection = new SerialTransferable(color);

42 clipboard.setContents(selection, null);

43 }

44

45 /**

46 * Pastes the color from the system clipboard into the chooser.

47 */

48 private void paste()

49 {

50 Clipboard clipboard =

Toolkit.getDefaultToolkit().getSystemClipboard();

51 try

52 {

53 DataFlavor flavor = new DataFlavor(

54 "application/x-java-serialized-object;clas

s=java.awt.Color");

55 if (clipboard.isDataFlavorAvailable(flavor))

56 {

57 Color color = (Color) clipboard.getData(flavor);

58 chooser.setColor(color);

59 }

60 }

61 catch (ClassNotFoundException | UnsupportedFlavorException |

IOException ex)

62 {

63 JOptionPane.showMessageDialog(this, ex);

64 }

65 }

66 }

67

68 /**

69 * This class is a wrapper for the data transfer of serialized objects.

70 */

71 class SerialTransferable implements Transferable

72 {

73 private Serializable obj;

74

75 /**

76 * Constructs the selection.

77 * @param o any serializable object

78 */

79 SerialTransferable(Serializable o)

80 {

81 obj = o;

82 }

83

84 public DataFlavor[] getTransferDataFlavors()

85 {

86 DataFlavor[] flavors = new DataFlavor[2];

87 Class<?> type = obj.getClass();

88 String mimeType = "application/x-java-serialized-object;class=" +

type.getName();

89 try

90 {

91 flavors[0] = new DataFlavor(mimeType);

92 flavors[1] = DataFlavor.stringFlavor;

93 return flavors;

94 }

95 catch (ClassNotFoundException e)

96 {

97 return new DataFlavor[0];

98 }

99 }

100

101 public boolean isDataFlavorSupported(DataFlavor flavor)

102 {

103 return DataFlavor.stringFlavor.equals(flavor)

104 || "application".equals(flavor.getPrimaryType())

105 &&

"x-java-serialized-object".equals(flavor.getSubType())

106 &&

flavor.getRepresentationClass().isAssignableFrom(obj.getClass());

107 }

108

109 public Object getTransferData(DataFlavor flavor) throws

UnsupportedFlavorException

110 {

111 if (!isDataFlavorSupported(flavor)) throw new

UnsupportedFlavorException(flavor);

112

113 if (DataFlavor.stringFlavor.equals(flavor)) return

obj.toString();

114

115 return obj;

116 }

117 }

11.13.6 Using a Local Clipboard to Transfer Object References

Occasionally, you might need to copy and paste a data type that isn’t one of the data types

supported by the system clipboard and that isn’t serializable. To transfer an arbitrary

Java object reference within the same JVM, use the MIME type

 application/x-java-jvm-local-objectref;class=className

You need to define a Transferable wrapper for this type. The process is entirely analogous

to the SerialTransferable wrapper of the preceding example.

An object reference is only meaningful within a single virtual machine. For that reason,

you cannot copy the shape object to the system clipboard. Instead, use a local clipboard:

 Clipboard clipboard = new Clipboard("local");

The construction parameter is the clipboard name.

However, using a local clipboard has one major disadvantage. You need to synchronize the

local and the system clipboard, so that users don’t confuse the two. Currently, the Java

platform doesn’t do that synchronization for you.

java.awt.datatransfer.Clipboard 1.1

• Clipboard(String name)

constructs a local clipboard with the given name.

11.14 Drag and Drop

When you use cut and paste to transmit information between two programs, the clipboard acts

as an intermediary. The drag and drop metaphor cuts out the middleman and lets two programs
communicate directly. The Java platform offers basic support for drag and drop. You can

carry out drag and drop operations between Java applications and native applications. This

section shows you how to write a Java application that is a drop target, and an application

that is a drag source.

Before going deeper into the Java platform support for drag and drop, let us quickly look

at the drag-and-drop user interface. We use the Windows Explorer and WordPad programs as

examples—on another platform, you can experiment with locally available programs with

drag-and-drop capabilities.

You initiate a drag operation with a gesture inside a drag source—by first selecting one

or more elements and then dragging the selection away from its initial location. When you

release the mouse button over a drop target that accepts the drop operation, the drop target

queries the drag source for information about the dropped elements and carries out an

appropriate operation. For example, if you drop a file icon from a file manager on top of

a directory icon, the file is moved into that directory. However, if you drag it to a text

editor, the text editor opens the file. (This requires, of course, that you use a file manager

and text editor that are capable of drag and drop, such as Explorer/WordPad in Windows or

Nautilus/gedit in Gnome).

If you hold down the Ctrl key while dragging, the type of the drop action changes from a

move action to a copy action, and a copy of the file is placed into the directory. If you
hold down both Shift and Ctrl keys, then a link to the file is placed into the directory.
(Other platforms might use other keyboard combinations for these operations.)

Thus, there are three types of drop actions with different gestures:

• Move

• Copy

• Link

The intention of the link action is to establish a reference to the dropped element. Such

links typically require support from the host operating system (such as symbolic links for

files, or object links for document components) and don’t usually make a lot of sense in

cross-platform programs. In this section, we focus on using drag and drop for copying and

moving.

There is usually some visual feedback for the drag operation. Minimally, the cursor shape

changes. As the cursor moves over possible drop targets, the cursor shape indicates whether
the drop is possible or not. If a drop is possible, the cursor shape also indicates the

type of the drop action. Table 11.6 shows several drop cursor shapes.

Table 11.6 Drop Cursor Shapes

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11tab06

You can also drag other elements besides file icons. For example, you can select text in

WordPad or gedit and drag it. Try dropping text fragments into willing drop targets and

see how they react.

NOTE:

This experiment shows a disadvantage of drag and drop as a user interface mechanism. It

can be difficult for users to anticipate what they can drag, where they can drop it, and

what happens when they do. Because the default “move” action can remove the original,

many users are understandably cautious about experimenting with drag and drop.

11.14.1 Data Transfer Support in Swing

Starting with Java SE 1.4, several Swing components have built-in support for drag and drop

(see Table 11.7). You can drag selected text from a number of components, and you can drop

text into text components. For backward compatibility, you must call the setDragEnabled

method to activate dragging. Dropping is always enabled.

Table 11.7 Data Transfer Support in Swing Components

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11tab07

NOTE:

The java.awt.dnd package provides a lower-level drag-and-drop API that forms the basis for

the Swing drag and drop. We do not discuss that API in this book.

The program in Listing 11.20 demonstrates the behavior. As you run the program, note these

points:

• You can select multiple items in the list, table, or tree (see Listing 11.21) and drag

them.

• Dragging items from the table is a bit awkward. You first select with the mouse, then

let go of the mouse button, then click it again, and then you drag.

• When you drop the items in the text area, you can see how the dragged information is

formatted. Table cells are separated by tabs, and each selected row is on a separate line

(see Figure 11.44).

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig044

Figure 11.44 The Swing drag-and-drop test program

• You can only copy, not move, items from the list, table, tree, file chooser, or color

chooser. Removing items from a list, table, or tree is not possible with all data models.

You will see in the next section how to implement this capability when the data model is

editable.

• You cannot drag into the list, table, tree, or file chooser.

• If you run two copies of the program, you can drag a color from one color chooser to the

other.

• You cannot drag text out of the text area because we didn’t call setDragEnabled on it.

The Swing package provides a potentially useful mechanism to quickly turn a component into

a drag source and drop target. You can install a transfer handler for a given property.
For example, in our sample program, we call

 textField.setTransferHandler(new TransferHandler("background"));

You can now drag a color into the text field, and its background color changes.

When a drop occurs, then the transfer handler checks whether one of the data flavors has

representation class Color. If so, it invokes the setBackground method.

By installing this transfer handler into the text field, you disable the standard transfer

handler. You can no longer cut, copy, paste, drag, or drop text in the text field. However,

you can now drag color out of this text field. You still need to select some text to initiate

the drag gesture. When you drag the text, you will find that you can drop it into the color

chooser and change its color value to the text field’s background color. However, you cannot

drop the text into the text area.

Listing 11.20 dnd/SwingDnDTest.java

 1 package dnd;

 2

 3 import java.awt.*;

 4 import javax.swing.*;

 5

 6 /**

 7 * This program demonstrates the basic Swing support for drag and drop.

 8 * @version 1.11 2016-05-10

 9 * @author Cay Horstmann

10 */

11 public class SwingDnDTest

12 {

13 public static void main(String[] args)

14 {

15 EventQueue.invokeLater(() ->

16 {

17 JFrame frame = new SwingDnDFrame();

18 frame.setTitle("SwingDnDTest");

19 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

20 frame.setVisible(true);

21 });

22 }

23 }

Listing 11.21 dnd/SampleComponents.java

 1 package dnd;

 2

 3 import java.awt.*;

 4

 5 import javax.swing.*;

 6 import javax.swing.tree.*;

 7

 8 public class SampleComponents

 9 {

10 public static JTree tree()

11 {

12 DefaultMutableTreeNode root = new DefaultMutableTreeNode("World");

13 DefaultMutableTreeNode country = new DefaultMutableTreeNode("USA");

14 root.add(country);

15 DefaultMutableTreeNode state = new

DefaultMutableTreeNode("California");

16 country.add(state);

17 DefaultMutableTreeNode city = new DefaultMutableTreeNode("San

Jose");

18 state.add(city);

19 city = new DefaultMutableTreeNode("Cupertino");

20 state.add(city);

21 state = new DefaultMutableTreeNode("Michigan");

22 country.add(state);

23 city = new DefaultMutableTreeNode("Ann Arbor");

24 state.add(city);

25 country = new DefaultMutableTreeNode("Germany");

26 root.add(country);

27 state = new DefaultMutableTreeNode("Schleswig-Holstein");

28 country.add(state);

29 city = new DefaultMutableTreeNode("Kiel");

30 state.add(city);

31 return new JTree(root);

32 }

33

34 public static JList<String> list()

35 {

36 String[] words = { "quick", "brown", "hungry", "wild", "silent",

"huge", "private",

37 "abstract", "static", "final" };

38

39 DefaultListModel<String> model = new DefaultListModel<>();

40 for (String word : words)

41 model.addElement(word);

42 return new JList<>(model);

43 }

44

45 public static JTable table()

46 {

47 Object[][] cells = { { "Mercury", 2440.0, 0, false, Color.YELLOW },

48 { "Venus", 6052.0, 0, false, Color.YELLOW },

49 { "Earth", 6378.0, 1, false, Color.BLUE }, { "Mars",

3397.0, 2, false, Color.RED },

50 { "Jupiter", 71492.0, 16, true, Color.ORANGE },

51 { "Saturn", 60268.0, 18, true, Color.ORANGE },

52 { "Uranus", 25559.0, 17, true, Color.BLUE },

53 { "Neptune", 24766.0, 8, true, Color.BLUE },

54 { "Pluto", 1137.0, 1, false, Color.BLACK } };

55

56 String[] columnNames = { "Planet", "Radius", "Moons", "Gaseous",

"Color" };

57 return new JTable(cells, columnNames);

58 }

59 }

javax.swing.JComponent 1.2

• void setTransferHandler(TransferHandler handler) 1.4

sets a transfer handler to handle data transfer operations (cut, copy, paste, drag, drop).

javax.swing.TransferHandler 1.4

• TransferHandler(String propertyName)

constructs a transfer handler that reads or writes the JavaBeans component property with

the given name when a data transfer operation is executed.

javax.swing.JFileChooser 1.2 javax.swing.JColorChooser 1.2

javax.swing.text.JTextComponent 1.2 javax.swing.JList 1.2 javax.swing.JTable 1.2

javax.swing.JTree 1.2

• void setDragEnabled(boolean b) 1.4

enables or disables dragging of data out of this component.

11.14.2 Drag Sources

In the previous section, you saw how to take advantage of the basic drag-and-drop support

in Swing. In this section, we’ll show you how to configure any component as a drag source.

In the next section, we’ll discuss drop targets and present a sample component that is

both a source and a target for images.

To customize the drag-and-drop behavior of a Swing component, subclass the TransferHandler

class. First, override the getSourceActions method to indicate which actions (copy, move,

link) your component supports. Next, override the createTransferable method that produces

a Transferable object, following the same process that you use for copying to the clipboard.

In our sample program, we drag images out of a JList that is filled with image icons (see

Figure 11.45). Here is the implementation of the createTransferable method. The selected

image is simply placed into an ImageTransferable wrapper.

 {

 JList list = (JList) source;

 int index = list.getSelectedIndex();

 if (index < 0) return null;

 ImageIcon icon = (ImageIcon) list.getModel().getElementAt(index);

 return new ImageTransferable(icon.getImage());

 }

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig045

Figure 11.45 The ImageList drag-and-drop application

In our example, we are fortunate that a JList is already wired for initiating a drag gesture.

You simply activate that mechanism by calling the setDragEnabled method. If you add drag

support to a component that does not recognize a drag gesture, you need to initiate the

transfer yourself. For example, here is how you can initiate dragging on a JLabel:

 label.addMouseListener(new MouseAdapter()

 {

 public void mousePressed(MouseEvent evt)

 {

 int mode;

 if ((evt.getModifiers() & (InputEvent.CTRL_MASK |

InputEvent.SHIFT_MASK)) != 0)

 mode = TransferHandler.COPY;

 else mode = TransferHandler.MOVE;

 JComponent comp = (JComponent) evt.getSource();

 TransferHandler th = comp.getTransferHandler();

 th.exportAsDrag(comp, evt, mode);

 }

 });

Here, we simply start the transfer when the user clicks on the label. A more sophisticated

implementation would watch for a mouse motion that drags the mouse by a small amount.

When the user completes the drop action, the exportDone method of the source transfer handler

is invoked. In that method, you need to remove the transferred object if the user carried

out a move action. Here is the implementation for the image list:

 protected void exportDone(JComponent source, Transferable data, int action)

 {

 if (action == MOVE)

 {

 JList list = (JList) source;

 int index = list.getSelectedIndex();

 if (index < 0) return;

 DefaultListModel model = (DefaultListModel) list.getModel();

 model.remove(index);

 }

 }

To summarize, to turn a component into a drag source, you have to add a transfer handler

that specifies the following:

• Which actions are supported

• Which data is transferred

• How the original data is removed after a move action

In addition, if your drag source is a component other than those listed in Table 11.7, you

need to watch for a mouse gesture and initiate the transfer.

javax.swing.TransferHandler 1.4

• int getSourceActions(JComponent c)

override to return the allowable source actions (bitwise or combination of COPY, MOVE, and

LINK) when dragging from the given component.

• protected Transferable createTransferable(JComponent source)

override to create the Transferable for the data that is to be dragged.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11tab07

• void exportAsDrag(JComponent comp, InputEvent e, int action)

starts a drag gesture from the given component. The action is COPY, MOVE, or LINK.

• protected void exportDone(JComponent source, Transferable data, int action)

override to adjust the drag source after a successful transfer.

11.14.3 Drop Targets

In this section, we’ll show you how to implement a drop target. Our example is again a

JList with image icons. We’ll add drop support so that users can drop images into the list.

To make a component into a drop target, set a TransferHandler and implement the canImport

and importData methods.

NOTE:

You can add a transfer handler to a JFrame. This is most commonly used for dropping files

into an application. Valid drop locations include the frame decorations and the menu bar,

but not components contained in the frame (which have their own transfer handlers).

The canImport method is called continuously as the user moves the mouse over the drop target

component. Return true if a drop is allowed. This information affects the cursor icon that

gives visual feedback whether the drop is allowed.

The canImport method has a parameter of type TransferHandler.TransferSupport. Through this

parameter, you can obtain the drop action chosen by the user, the drop location, and the

data to be transferred. (Before Java SE 6, a different canImport method was called that

only supplies a list of data flavors.)

In the canImport method, you can also override the user drop action. For example, if a user

chose the move action but it would be inappropriate to remove the original, you can force

the transfer handler to use a copy action instead.

Here is a typical example. The image list component is willing to accept drops of file lists

and images. However, if a file list is dragged into the component, a user-selected MOVE

action is changed into a COPY action, so that the image files do not get deleted.

 public boolean canImport(TransferSupport support)

 {

 if (support.isDataFlavorSupported(DataFlavor.javaFileListFlavor))

 {

 if (support.getUserDropAction() == MOVE) support.setDropAction(COPY);

 return true;

 }

 else return support.isDataFlavorSupported(DataFlavor.imageFlavor);

 }

A more sophisticated implementation could check that the files actually contain images.

The Swing components JList, JTable, JTree, and JTextComponent give visual feedback about

insertion positions as the mouse is moved over the drop target. By default, the selection

(for JList, JTable, and JTree) or the caret (for JTextComponent) is used to indicate the

drop location. That approach is neither user-friendly nor flexible, and it is the default

solely for backward compatibility. You should call the setDropMode method to choose a more

appropriate visual feedback.

You can control whether the dropped data should overwrite existing items or be inserted

between them. For example, in our sample program, we call

 setDropMode(DropMode.ON_OR_INSERT);

to allow the user to drop onto an item (thereby replacing it), or to insert between two

items (see Figure 11.46). Table 11.8 shows the drop modes supported by the Swing components.

Figure 11.46 Visual indicators for dropping onto an item and between two items

Table 11.8 Drop Modes

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig046
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11tab08

Once the user completes the drop gesture, the importData method is invoked. You need to

obtain the data from the drag source. Invoke the getTransferable method on the

TransferSupport parameter to obtain a reference to a Transferable object. This is the same

interface that is used for copy and paste.

One data type that is commonly used for drag and drop is the DataFlavor.javaFileListFlavor.

A file list describes a set of files that is dropped onto the target. The transfer data

is an object of type List<File>. Here is the code for retrieving the files:

 DataFlavor[] flavors = transferable.getTransferDataFlavors();

 if (Arrays.asList(flavors).contains(DataFlavor.javaFileListFlavor))

 {

 List<File> fileList = (List<File>)

transferable.getTransferData(DataFlavor.javaFileListFlavor);

 for (File f : fileList)

 {

 do something with f;

 }

 }

When dropping into one of the components listed in Table 11.8, you need to know precisely

where to drop the data. Invoke the getDropLocation method on the TransferSupport parameter

to find where the drop occurred. This method returns an object of a subclass of

TransferHandler.DropLocation. The JList, JTable, JTree, and JTextComponent classes define

subclasses that specify location in the particular data model. For example, a location in

a list is simply an integer index, but a location in a tree is a tree path. Here is how

we obtain the drop location in our image list:

 int index;

 if (support.isDrop())

 {

 JList.DropLocation location = (JList.DropLocation) support.getDropLocation();

 index = location.getIndex();

 }

 else index = model.size();

The JList.DropLocation subclass has a method getIndex that returns the index of the drop.

(The JTree.DropLocation subclass has a method getPath instead.)

The importData method is also called when data is pasted into the component with the Ctrl+V

keystroke. In that case, the getDropLocation method would throw an IllegalStateException.

Therefore, if the isDrop method returns false, we simply append the pasted data to the end

of the list.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11tab08

When inserting into a list, table, or tree, you also need to check whether the data is

supposed to be inserted between items or whether it should replace the item at the drop

location. For a list, invoke the isInsert method of the JList.DropLocation.

For the other components, see the API notes for their drop location classes at the end of

this section.

To summarize, to turn a component into a drop target, add a transfer handler that specifies

the following:

• When a dragged item can be accepted

• How the dropped data is imported

In addition, if you add drop support to a JList, JTable, JTree, or JTextComponent, you should

set the drop mode.

Listing 11.22 shows the frame class of the program. Note that the ImageList class is both

a drag source and a drop target. Try dragging images between the two lists. You can also

drag image files from a file chooser of another program into the lists.

Listing 11.22 dndImage/imageListDnDFrame.java

 1 package dndImage;

 2

 3 import java.awt.*;

 4 import java.awt.datatransfer.*;

 5 import java.io.*;

 6 import java.nio.file.*;

 7 import java.util.*;

 8 import java.util.List;

 9 import javax.imageio.*;

10 import javax.swing.*;

11

12 public class ImageListDnDFrame extends JFrame

13 {

14 private static final int DEFAULT_WIDTH = 600;

15 private static final int DEFAULT_HEIGHT = 500;

16

17 private ImageList list1;

18 private ImageList list2;

19

20 public ImageListDnDFrame()

21 {

22 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

23

24 list1 = new

ImageList(Paths.get(getClass().getPackage().getName(), "images1"));

25 list2 = new

ImageList(Paths.get(getClass().getPackage().getName(), "images2"));

26

27 setLayout(new GridLayout(2, 1));

28 add(new JScrollPane(list1));

29 add(new JScrollPane(list2));

30 }

31 }

32

33 class ImageList extends JList<ImageIcon>

34 {

35 public ImageList(Path dir)

36 {

37 DefaultListModel<ImageIcon> model = new DefaultListModel<>();

38 try (DirectoryStream<Path> entries = Files.newDirectoryStream(dir))

39 {

40 for (Path entry : entries)

41 model.addElement(new ImageIcon(entry.toString()));

42 }

43 catch (IOException ex)

44 {

45 ex.printStackTrace();

46 }

47

48 setModel(model);

49 setVisibleRowCount(0);

50 setLayoutOrientation(JList.HORIZONTAL_WRAP);

51 setDragEnabled(true);

52 setDropMode(DropMode.ON_OR_INSERT);

53 setTransferHandler(new ImageListTransferHandler());

54 }

55 }

56

57 class ImageListTransferHandler extends TransferHandler

58 {

59 // support for drag

60

61 public int getSourceActions(JComponent source)

62 {

63 return COPY_OR_MOVE;

64 }

65

66 protected Transferable createTransferable(JComponent source)

67 {

68 ImageList list = (ImageList) source;

69 int index = list.getSelectedIndex();

70 if (index < 0) return null;

71 ImageIcon icon = list.getModel().getElementAt(index);

72 return new ImageTransferable(icon.getImage());

73 }

74

75 protected void exportDone(JComponent source, Transferable data, int

action)

76 {

77 if (action == MOVE)

78 {

79 ImageList list = (ImageList) source;

80 int index = list.getSelectedIndex();

81 if (index < 0) return;

82 DefaultListModel<?> model = (DefaultListModel<?>)

list.getModel();

83 model.remove(index);

84 }

85 }

86

87 // support for drop

88

89 public boolean canImport(TransferSupport support)

90 {

91 if (support.isDataFlavorSupported(DataFlavor.javaFileListFlavor))

92 {

93 if (support.getUserDropAction() == MOVE)

support.setDropAction(COPY);

94 return true;

95 }

96 else return support.isDataFlavorSupported(DataFlavor.imageFlavor);

97 }

98

99 public boolean importData(TransferSupport support)

100 {

101 ImageList list = (ImageList) support.getComponent();

102 DefaultListModel<ImageIcon> model = (DefaultListModel<ImageIcon>)

list.getModel();

103

104 Transferable transferable = support.getTransferable();

105 List<DataFlavor> flavors =

Arrays.asList(transferable.getTransferDataFlavors());

106

107 List<Image> images = new ArrayList<>();

108

109 try

110 {

111 if (flavors.contains(DataFlavor.javaFileListFlavor))

112 {

113 @SuppressWarnings("unchecked") List<File> fileList

114 = (List<File>)

transferable.getTransferData(DataFlavor.javaFileListFlavor);

115 for (File f : fileList)

116 {

117 try

118 {

119 images.add(ImageIO.read(f));

120 }

121 catch (IOException ex)

122 {

123 // couldn't read image--skip

124 }

125 }

126 }

127 else if (flavors.contains(DataFlavor.imageFlavor))

128 {

129 images.add((Image)

transferable.getTransferData(DataFlavor.imageFlavor));

130 }

131

132 int index;

133 if (support.isDrop())

134 {

135 JList.DropLocation location = (JList.DropLocation)

support.getDropLocation();

136 index = location.getIndex();

137 if (!location.isInsert()) model.remove(index); //

replace location

138 }

139 else index = model.size();

140 for (Image image : images)

141 {

142 model.add(index, new ImageIcon(image));

143 index++;

144 }

145 return true;

146 }

147 catch (IOException | UnsupportedFlavorException ex)

148 {

149 return false;

150 }

151 }

152 }

javax.swing.TransferHandler 1.4

• boolean canImport(TransferSupport support) 6

override to indicate whether the target component can accept the drag described by the

TransferSupport parameter.

• boolean importData(TransferSupport support) 6

override to carry out the drop or paste gesture described by the TransferSupport parameter,

and return true if the import was successful.

javax.swing.JFrame 1.2

• void setTransferHandler(TransferHandler handler) 6

sets a transfer handler to handle drop and paste operations only

javax.swing.JList 1.2

javax.swing.JTable 1.2

javax.swing.JTree 1.2

javax.swing.text.JTextComponent 1.2

• void setDropMode(DropMode mode) 6

set the drop mode of this component to one of the values specified in Table 11.8.

javax.swing.TransferHandler.TransferSupport 6

• Component getComponent()

gets the target component of this transfer.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11tab08

• DataFlavor[] getDataFlavors()

gets the data flavors of the data to be transferred.

• boolean isDrop()

true if this transfer is a drop, false if it is a paste.

• int getUserDropAction()

gets the drop action chosen by the user (MOVE, COPY, or LINK).

• getSourceDropActions()

gets the drop actions that are allowed by the drag source.

• getDropAction()

• setDropAction()

gets or sets the drop action of this transfer. Initially, this is the user drop action,

but it can be overridden by the transfer handler.

• DropLocation getDropLocation()

gets the location of the drop, or throws an IllegalStateException if this transfer is not

a drop.

javax.swing.TransferHandler.DropLocation 6

• Point getDropPoint()

gets the mouse location of the drop in the target component.

javax.swing.JList.DropLocation 6

• boolean isInsert()

returns true if the data are to be inserted before a given location, false if they are to

replace existing data.

• int getIndex()

gets the model index for the insertion or replacement.

javax.swing.JTable.DropLocation 6

• boolean isInsertRow()

• boolean isInsertColumn()

returns true if data are to be inserted before a row or column.

• int getRow()

• int getColumn()

gets the model row or column index for the insertion or replacement, or -1 if the drop

occurred in an empty area.

javax.swing.JTree.DropLocation 6

• TreePath getPath()

• int getChildIndex()

returns the tree path and child that, together with the drop mode of the target component,

define the drop location, as described below.

javax.swing.text.JTextComponent.DropLocation 6

• int getIndex()

the index at which to insert the data.

11.15 Platform Integration

We finish this chapter with several features for making Java applications feel more like

native applications. The splash screen feature allows your application to display a splash

screen as the virtual machine starts up. The java.awt.Desktop class lets you launch native

applications such as the default browser and e-mail program. Finally, you now have access

to the system tray and can clutter it up with icons, just like so many native applications

do.

11.15.1 Splash Screens

A common complaint about Java applications is their long startup time. The Java virtual

machine takes some time to load all required classes, particularly for a Swing application

that needs to pull in large amounts of Swing and AWT library code. Users dislike applications

that take a long time to bring up an initial screen, and they might even try launching the

application multiple times if they suspect the first launch was unsuccessful. The remedy

is a splash screen—a small window that appears quickly, telling the user that the

application has been launched successfully.

Of course, you can put up a window as soon as your main method starts. However, the main

method is only launched after the class loader has loaded all dependent classes, which might

take a while.

Instead, you can ask the virtual machine to show an image immediately on launch. There are

two mechanisms for specifying that image. You can use the -splash command-line option:

 java -splash:myimage.png MyApp

Alternatively, you can specify it in the manifest of a JAR file:

 Main-Class: MyApp

 SplashScreen-Image: myimage.gif

The image is displayed immediately and automatically disappears when the first AWT window

is made visible. You can supply any GIF, JPEG, or PNG image. Animation (in GIF) and

transparency (GIF and PNG) are supported.

If your application is ready to go as soon as it reaches main, you can skip the remainder

of this section. However, many applications use a plug-in architecture in which a small

core loads a set of plugins at startup. Eclipse and NetBeans are typical examples. In that

case, you can indicate the loading progress on the splash screen.

There are two approaches. You can draw directly on the splash screen, or you can replace

it with a borderless frame with identical contents and then draw inside the frame. Our sample

program shows both techniques.

To draw directly on the splash screen, get a reference to the splash screen and get its

graphics context and dimensions:

 SplashScreen splash = SplashScreen.getSplashScreen();

 Graphics2D g2 = splash.createGraphics();

 Rectangle bounds = splash.getBounds();

You can now draw in the usual way. When you are done, call update to ensure that the drawing

is refreshed. Our sample program draws a simple progress bar, as seen in the left image

in Figure 11.47.

 g.fillRect(x, y, width * percent / 100, height);

 splash.update();

Figure 11.47 The initial splash screen and a borderless follow-up window

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig047

NOTE:

The splash screen is a singleton object. You cannot construct your own. If no splash screen

was set on the command line or in the manifest, the getSplashScreen method returns null.

Drawing directly on the splash screen has a drawback. It is tedious to compute all pixel

positions, and your progress indicator won’t match the native progress bar. To avoid these

problems, you can replace the initial splash screen with a follow-up window of the same

size and content as soon as the main method starts. That window can contain arbitrary Swing

components.

Our sample program in Listing 11.23 demonstrates this technique. The right image in Figure

11.47 shows a borderless frame with a panel that paints the splash screen and contains a

JProgressBar. Now we have full access to the Swing API and can easily add message strings

without having to fuss with pixel positions.

Note that we do not need to remove the initial splash screen. It is automatically removed

as soon as the follow-up window is made visible.

CAUTION:

Unfortunately, there is a noticeable flash when the splash screen is replaced by the

follow-up window.

Listing 11.23 splashScreen/SplashScreenTest.java

 1 package splashScreen;

 2

 3 import java.awt.*;

 4 import java.util.List;

 5 import javax.swing.*;

 6

 7 /**

 8 * This program demonstrates the splash screen API.

 9 * @version 1.01 2016-05-10

10 * @author Cay Horstmann

11 */

12 public class SplashScreenTest

13 {

14 private static final int DEFAULT_WIDTH = 300;

15 private static final int DEFAULT_HEIGHT = 300;

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig047
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig047

16

17 private static SplashScreen splash;

18

19 private static void drawOnSplash(int percent)

20 {

21 Rectangle bounds = splash.getBounds();

22 Graphics2D g = splash.createGraphics();

23 int height = 20;

24 int x = 2;

25 int y = bounds.height - height - 2;

26 int width = bounds.width - 4;

27 Color brightPurple = new Color(76, 36, 121);

28 g.setColor(brightPurple);

29 g.fillRect(x, y, width * percent / 100, height);

30 splash.update();

31 }

32

33 /**

34 * This method draws on the splash screen.

35 */

36 private static void init1()

37 {

38 splash = SplashScreen.getSplashScreen();

39 if (splash == null)

40 {

41 System.err.println("Did you specify a splash image with -splash

or in the manifest?");

42 System.exit(1);

43 }

44

45 try

46 {

47 for (int i = 0; i <= 100; i++)

48 {

49 drawOnSplash(i);

50 Thread.sleep(100); // simulate startup work

51 }

52 }

53 catch (InterruptedException e)

54 {

55 }

56 }

57

58 /**

59 * This method displays a frame with the same image as the splash screen.

60 */

61 private static void init2()

62 {

63 final Image img = new ImageIcon(splash.getImageURL()).getImage();

64

65 final JFrame splashFrame = new JFrame();

66 splashFrame.setUndecorated(true);

67

68 final JPanel splashPanel = new JPanel()

69 {

70 public void paintComponent(Graphics g)

71 {

72 g.drawImage(img, 0, 0, null);

73 }

74 };

75

76 final JProgressBar progressBar = new JProgressBar();

77 progressBar.setStringPainted(true);

78 splashPanel.setLayout(new BorderLayout());

79 splashPanel.add(progressBar, BorderLayout.SOUTH);

80

81 splashFrame.add(splashPanel);

82 splashFrame.setBounds(splash.getBounds());

83 splashFrame.setVisible(true);

84

85 new SwingWorker<Void, Integer>()

86 {

87 protected Void doInBackground() throws Exception

88 {

89 try

90 {

91 for (int i = 0; i <= 100; i++)

92 {

93 publish(i);

94 Thread.sleep(100);

95 }

96 }

97 catch (InterruptedException e)

98 {

99 }

100 return null;

101 }

102

103 protected void process(List<Integer> chunks)

104 {

105 for (Integer chunk : chunks)

106 {

107 progressBar.setString("Loading module " + chunk);

108 progressBar.setValue(chunk);

109 splashPanel.repaint(); // because img is loaded

asynchronously

110 }

111 }

112

113 protected void done()

114 {

115 splashFrame.setVisible(false);

116

117 JFrame frame = new JFrame();

118 frame.setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

119 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE

);

120 frame.setTitle("SplashScreenTest");

121 frame.setVisible(true);

122 }

123 }.execute();

124 }

125

126 public static void main(String args[])

127 {

128 init1();

129 EventQueue.invokeLater(() -> init2());

130 }

131 }

java.awt.SplashScreen 6

• static SplashScreen getSplashScreen()

gets a reference to the splash screen, or null if no splash screen is present.

• URL getImageURL()

• void setImageURL(URL imageURL)

gets or sets the URL of the splash screen image. Setting the image updates the splash screen.

• Rectangle getBounds()

gets the bounds of the splash screen.

• Graphics2D createGraphics()

gets a graphics context for drawing on the splash screen.

• void update()

updates the display of the splash screen.

• void close()

closes the splash screen. The splash screen is automatically closed when the first AWT window

is made visible.

11.15.2 Launching Desktop Applications

The java.awt.Desktop class lets you launch the default browser and e-mail program. You can

also open, edit, and print files, using the applications that are registered for the file

type.

The API is very straightforward. First, call the static isDesktopSupported method. If it

returns true, the current platform supports the launching of desktop applications. Then

call the static getDesktop method to obtain a Desktop instance.

Not all desktop environments support all API operations. For example, in the Gnome desktop

on Linux, it is possible to open files, but you cannot print them. (There is no support

for “verbs” in file associations.) To find out what is supported on your platform, call

the isSupported method, passing a value in the Desktop.Action enumeration. Our sample

program contains tests such as the following:

 if (desktop.isSupported(Desktop.Action.PRINT)) printButton.setEnabled(true);

To open, edit, or print a file, first check that the action is supported, and then call

the open, edit, or print method. To launch the browser, pass a URI. (See Chapter 4 for more

information on URIs.) You can simply call the URI constructor with a string containing an

http or https URL.

To launch the default e-mail program, you need to construct a URI of a particular format,

namely

 mailto:recipient?query

Here recipient is the e-mail address of the recipient, such as president@whitehouse.gov,
and query contains &-separated name=value pairs, with percent-encoded values. (Percent

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04
mailto:president@whitehouse.gov

encoding is essentially the same as the URL encoding algorithm described in Chapter 4, but

a space is encoded as %20, not +). An example is

subject=dinner%20RSVP&bcc=putin%40kremvax.ru. The format is documented in RFC 2368

(www.ietf.org/rfc/rfc2368.txt). Unfortunately, the URI class does not know anything about

mailto URIs, so you have to assemble and encode your own.

Our sample program in Listing 11.24 lets you open, edit, or print a file of your choice,

browse a URL, or launch your e-mail program (see Figure 11.48).

Figure 11.48 Launching a desktop application

Listing 11.24 desktopApp/DesktopAppFrame.java

 1 package desktopApp;

 2

 3 import java.awt.*;

 4 import java.io.*;

 5 import java.net.*;

 6

 7 import javax.swing.*;

 8

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04
http://www.ietf.org/rfc/rfc2368.txt
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig048

 9 class DesktopAppFrame extends JFrame

10 {

11 public DesktopAppFrame()

12 {

13 setLayout(new GridBagLayout());

14 final JFileChooser chooser = new JFileChooser();

15 JButton fileChooserButton = new JButton("...");

16 final JTextField fileField = new JTextField(20);

17 fileField.setEditable(false);

18 JButton openButton = new JButton("Open");

19 JButton editButton = new JButton("Edit");

20 JButton printButton = new JButton("Print");

21 final JTextField browseField = new JTextField();

22 JButton browseButton = new JButton("Browse");

23 final JTextField toField = new JTextField();

24 final JTextField subjectField = new JTextField();

25 JButton mailButton = new JButton("Mail");

26

27 openButton.setEnabled(false);

28 editButton.setEnabled(false);

29 printButton.setEnabled(false);

30 browseButton.setEnabled(false);

31 mailButton.setEnabled(false);

32

33 if (Desktop.isDesktopSupported())

34 {

35 Desktop desktop = Desktop.getDesktop();

36 if (desktop.isSupported(Desktop.Action.OPEN))

openButton.setEnabled(true);

37 if (desktop.isSupported(Desktop.Action.EDIT))

editButton.setEnabled(true);

38 if (desktop.isSupported(Desktop.Action.PRINT))

printButton.setEnabled(true);

39 if (desktop.isSupported(Desktop.Action.BROWSE))

browseButton.setEnabled(true);

40 if (desktop.isSupported(Desktop.Action.MAIL))

mailButton.setEnabled(true);

41 }

42

43 fileChooserButton.addActionListener(event ->

44 {

45 if (chooser.showOpenDialog(DesktopAppFrame.this) ==

JFileChooser.APPROVE_OPTION)

46 fileField.setText(chooser.getSelectedFile().getAbs

olutePath());

47 });

48

49 openButton.addActionListener(event ->

50 {

51 try

52 {

53 Desktop.getDesktop().open(chooser.getSelectedFile(

));

54 }

55 catch (IOException ex)

56 {

57 ex.printStackTrace();

58 }

59 });

60

61 editButton.addActionListener(event ->

62 {

63 try

64 {

65 Desktop.getDesktop().edit(chooser.getSelectedFile(

));

66 }

67 catch (IOException ex)

68 {

69 ex.printStackTrace();

70 }

71 });

72

73 printButton.addActionListener(event ->

74 {

75 try

76 {

77 Desktop.getDesktop().print(chooser.getSelectedFi

le());

78 }

79 catch (IOException ex)

80 {

81 ex.printStackTrace();

82 }

83 });

84

85 browseButton.addActionListener(event ->

86 {

87 try

88 {

89 Desktop.getDesktop().browse(new

URI(browseField.getText()));

90 }

91 catch (URISyntaxException | IOException ex)

92 {

93 ex.printStackTrace();

94 }

95 });

96

97 mailButton.addActionListener(event ->

98 {

99 try

100 {

101 String subject =

percentEncode(subjectField.getText());

102 URI uri = new URI("mailto:" + toField.getText() +

"?subject=" + subject);

103

104 System.out.println(uri);

105 Desktop.getDesktop().mail(uri);

106 }

107 catch (URISyntaxException | IOException ex)

108 {

109 ex.printStackTrace();

110 }

111 });

112

113 JPanel buttonPanel = new JPanel();

114 ((FlowLayout) buttonPanel.getLayout()).setHgap(2);

115 buttonPanel.add(openButton);

116 buttonPanel.add(editButton);

117 buttonPanel.add(printButton);

118

119 add(fileChooserButton, new GBC(0,

0).setAnchor(GBC.EAST).setInsets(2));

120 add(fileField, new GBC(1, 0).setFill(GBC.HORIZONTAL));

121 add(buttonPanel, new GBC(2,

0).setAnchor(GBC.WEST).setInsets(0));

122 add(browseField, new GBC(1, 1).setFill(GBC.HORIZONTAL));

123 add(browseButton, new GBC(2,

1).setAnchor(GBC.WEST).setInsets(2));

124 add(new JLabel("To:"), new GBC(0,

2).setAnchor(GBC.EAST).setInsets(5, 2, 5, 2));

125 add(toField, new GBC(1, 2).setFill(GBC.HORIZONTAL));

126 add(mailButton, new GBC(2,

2).setAnchor(GBC.WEST).setInsets(2));

127 add(new JLabel("Subject:"), new GBC(0,

3).setAnchor(GBC.EAST).setInsets(5, 2, 5, 2));

128 add(subjectField, new GBC(1, 3).setFill(GBC.HORIZONTAL));

129

130 pack();

131 }

132

133 private static String percentEncode(String s)

134 {

135 try

136 {

137 return URLEncoder.encode(s, "UTF-8").replaceAll("[+]",

"%20");

138 }

139 catch (UnsupportedEncodingException ex)

140 {

141 return null; // UTF-8 is always supported

142 }

143 }

144 }

java.awt.Desktop 6

• static boolean isDesktopSupported()

returns true if launching desktop applications is supported on this platform.

• static Desktop getDesktop()

returns the Desktop object for launching desktop operations. Throws an

UnsupportedOperationException if this platform does not support launching desktop

operations.

• boolean isSupported(Desktop.Action action)

returns true if the given action is supported. action is one of OPEN, EDIT, PRINT, BROWSE,

or MAIL.

• void open(File file)

launches the application that is registered for viewing the given file.

• void edit(File file)

launches the application that is registered for editing the given file.

• void print(File file)

prints the given file.

• void browse(URI uri)

launches the default browser with the given URI.

• void mail()

• void mail(URI uri)

launches the default mailer. The second version can be used to fill in parts of the e-mail

message.

11.15.3 The System Tray

Many desktop environments have an area for icons of programs that run in the background

and occasionally notify users of events. In Windows, this area is called the system tray,
and the icons are called tray icons. The Java API adopts the same terminology. A typical
example of such a program is a monitor that checks for software updates. If new updates

are available, the monitor program can change the appearance of the icon or display a message

near the icon.

Frankly, the system tray is somewhat overused, and computer users are not usually filled

with joy when they discover yet another tray icon. Our sample system tray application—a

program that dispenses virtual fortune cookies—is no exception to that rule.

The java.awt.SystemTray class is the cross-platform conduit to the system tray. As in the

Desktop class discussed in the preceding section, you first call the static isSupported

method to check that the local Java platform supports the system tray. If so, you get a

SystemTray singleton by calling the static getSystemTray method.

The most important method of the SystemTray class is the add method that lets you add a

TrayIcon instance. A tray icon has three key properties:

• The icon image

• The tooltip that is visible when the mouse hovers over the icon

• The pop-up menu that is displayed when the user clicks on the icon with the right mouse

button

The pop-up menu is an instance of the PopupMenu class of the AWT library, representing a

native pop-up menu, not a Swing menu. Fill it out with AWT MenuItem instances, each having

an action listener just like the Swing counterpart.

Finally, a tray icon can display notifications to the user (see Figure 11.49). Call the

displayMessage method of the TrayIcon class and specify the caption, message, and message

type.

 trayIcon.displayMessage("Your Fortune", fortunes.get(index),

TrayIcon.MessageType.INFO);

Figure 11.49 A notification from a tray icon

Listing 11.25 shows the application that places a fortune cookie icon into the system tray.

The program reads a fortune cookie file (from the venerable UNIX fortune program) in which

each fortune is terminated by a line containing a % character. It displays a message every

ten seconds. Mercifully, there is a pop-up menu with a command to exit the application.

If only all tray icons were so considerate!

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch11.html#ch11fig049

Listing 11.25 systemTray/SystemTrayTest.java

 1 package systemTray;

 2

 3 import java.awt.*;

 4 import java.io.*;

 5 import java.util.*;

 6 import java.util.List;

 7

 8 import javax.swing.*;

 9 import javax.swing.Timer;

10

11 /**

12 * This program demonstrates the system tray API.

13 * @version 1.02 2016-05-10

14 * @author Cay Horstmann

15 */

16 public class SystemTrayTest

17 {

18 public static void main(String[] args)

19 {

20 SystemTrayApp app = new SystemTrayApp();

21 app.init();

22 }

23 }

24

25 class SystemTrayApp

26 {

27 public void init()

28 {

29 final TrayIcon trayIcon;

30

31 if (!SystemTray.isSupported())

32 {

33 System.err.println("System tray is not supported.");

34 return;

35 }

36

37 SystemTray tray = SystemTray.getSystemTray();

38 Image image = new

ImageIcon(getClass().getResource("cookie.png")).getImage();

39

40 PopupMenu popup = new PopupMenu();

41 MenuItem exitItem = new MenuItem("Exit");

42 exitItem.addActionListener(event -> System.exit(0));

43 popup.add(exitItem);

44

45 trayIcon = new TrayIcon(image, "Your Fortune", popup);

46

47 trayIcon.setImageAutoSize(true);

48 trayIcon.addActionListener(event ->

49 {

50 trayIcon.displayMessage("How do I turn this off?",

51 "Right-click on the fortune cookie and select

Exit.",

52 TrayIcon.MessageType.INFO);

53 });

54

55 try

56 {

57 tray.add(trayIcon);

58 }

59 catch (AWTException e)

60 {

61 System.err.println("TrayIcon could not be added.");

62 return;

63 }

64

65 final List<String> fortunes = readFortunes();

66 Timer timer = new Timer(10000, event ->

67 {

68 int index = (int) (fortunes.size() * Math.random());

69 trayIcon.displayMessage("Your Fortune",

fortunes.get(index),

70 TrayIcon.MessageType.INFO);

71 });

72 timer.start();

73 }

74

75 private List<String> readFortunes()

76 {

77 List<String> fortunes = new ArrayList<>();

78 try (InputStream inStream =

getClass().getResourceAsStream("fortunes"))

79 {

80 Scanner in = new Scanner(inStream, "UTF-8");

81 StringBuilder fortune = new StringBuilder();

82 while (in.hasNextLine())

83 {

84 String line = in.nextLine();

85 if (line.equals("%"))

86 {

87 fortunes.add(fortune.toString());

88 fortune = new StringBuilder();

89 }

90 else

91 {

92 fortune.append(line);

93 fortune.append(' ');

94 }

95 }

96 }

97 catch (IOException ex)

98 {

99 ex.printStackTrace();

100 }

101 return fortunes;

102 }

103 }

java.awt.SystemTray 6

• static boolean isSupported()

returns true if system tray access is supported on this platform.

• static SystemTray getSystemTray()

returns the SystemTray object for accessing the system tray. Throws an

UnsupportedOperationException if this platform does not support system tray access.

• Dimension getTrayIconSize()

gets the dimensions for an icon in the system tray.

• void add(TrayIcon trayIcon)

• void remove(TrayIcon trayIcon)

adds or removes a system tray icon.

java.awt.TrayIcon 6

• TrayIcon(Image image)

• TrayIcon(Image image, String tooltip)

• TrayIcon(Image image, String tooltip, PopupMenu popupMenu)

constructs a tray icon with the given image, tooltip, and pop-up menu.

• Image getImage()

• void setImage(Image image)

• String getTooltip()

• void setTooltip(String tooltip)

• PopupMenu getPopupMenu()

• void setPopupMenu(PopupMenu popupMenu)

gets or sets the image, tooltip, or pop-up menu of this tooltip.

• boolean isImageAutoSize()

• void setImageAutoSize(boolean autosize)

gets or sets the imageAutoSize property. If set, the image is scaled to fit the tooltip

icon area; if not (the default), it is cropped (if too large) or centered (if too small).

• void displayMessage(String caption, String text, TrayIcon.MessageType messageType)

displays a message near the tray icon.The message type is one of INFO, WARNING, ERROR, or

NONE.

• public void addActionListener(ActionListener listener)

• public void removeActionListener(ActionListener listener)

adds or removes an action listener when the listener called is platform-dependent. Typical

cases are clicking on a notification or double-clicking on the tray icon.

You have now reached the end of this long chapter covering advanced AWT features. In the

final chapter, we will turn to a different aspect of Java programming: interacting, on the

same machine, with “native” code in a different programming language.

Chapter 12. Native Methods

In this chapter

• 12.1 Calling a C Function from a Java Program,

• 12.2 Numeric Parameters and Return Values,

• 12.3 String Parameters,

• 12.4 Accessing Fields,

• 12.5 Encoding Signatures,

• 12.6 Calling Java Methods,

• 12.7 Accessing Array Elements,

• 12.8 Handling Errors,

• 12.9 Using the Invocation API,

• 12.10 A Complete Example: Accessing the Windows Registry,

While a “100% Pure Java” solution is nice in principle, there are situations in which

you will want to write (or use) code written in another language. (Such code is usually

called native code.)

Particularly in the early days of Java, many people assumed that it would be a good idea

to use C or C++ to speed up critical parts of a Java application. However, in practice,

this was rarely useful. A presentation at the 1996 JavaOne conference showed this clearly.

The implementors of the cryptography library at Sun Microsystems reported that a pure Java

platform implementation of their cryptographic functions was more than adequate. It was

true that the code was not as fast as a C implementation would have been, but it turned

out not to matter. The Java platform implementation was far faster than the network I/O.

This turned out to be the real bottleneck.

Of course, there are drawbacks to going native. If a part of your application is written

in another language, you must supply a separate native library for every platform you want

to support. Code written in C or C++ offers no protection against overwriting memory through

invalid pointer usage. It is easy to write native methods that corrupt your program or infect

the operating system.

Thus, we suggest using native code only when you need to. In particular, there are three

reasons why native code might be the right choice:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12lev12-1
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12lev12-2
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12lev12-3
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12lev12-4
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12lev12-5
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12lev12-6
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12lev12-7
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12lev12-8
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12lev12-9
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12lev12-10

• Your application requires access to system features or devices that are not accessible

through the Java platform.

• You have substantial amounts of tested and debugged code in another language, and you

know how to port it to all desired target platforms.

• You have found, through benchmarking, that the Java code is much slower than the equivalent

code in another language.

The Java platform has an API for interoperating with native C code called the Java Native

Interface (JNI). We’ll discuss JNI programming in this chapter.

C++ NOTE:

You can also use C++ instead of C to write native methods. There are a few advantages—type

checking is slightly stricter, and accessing the JNI functions is a bit more convenient.

However, JNI does not support any mapping between Java and C++ classes.

12.1 Calling a C Function from a Java Program

Suppose you have a C function that does something you like and, for one reason or another,

you don’t want to bother reimplementing it in Java. For the sake of illustration, we’ll

start with a simple C function that prints a greeting.

The Java programming language uses the keyword native for a native method, and you will

obviously need to place a method in a class. The result is shown in Listing 12.1.

The native keyword alerts the compiler that the method will be defined externally. Of course,

native methods will contain no code in the Java programming language, and the method header

is followed immediately by a terminating semicolon. Therefore, native method declarations

look similar to abstract method declarations.

Listing 12.1 helloNative/HelloNative.java

 1 /**

 2 * @version 1.11 2007-10-26

 3 * @author Cay Horstmann

 4 */

 5 class HelloNative

 6 {

 7 public static native void greeting();

 8 }

NOTE:

As in the previous chapter, we do not use packages here to keep examples simple.

In this particular example, the native method is also declared as static. Native methods

can be both static and nonstatic. We’ll start with a static method because we do not yet

want to deal with parameter passing.

You can actually compile this class, but if you try to use it in a program, the virtual

machine will tell you it doesn’t know how to find greeting—reporting an

UnsatisfiedLinkError. To implement the native code, write a corresponding C function. You

must name that function exactly the way the Java virtual machine expects. Here are the rules:

1. Use the full Java method name, such as HelloNative.greeting. If the class is in a package,

prepend the package name, such as com.horstmann.HelloNative.greeting.

2. Replace every period with an underscore, and append the prefix Java_. For example,

Java_HelloNative_greeting or Java_com_horstmann_HelloNative_greeting.

3. If the class name contains characters that are not ASCII letters or digits—that is,

'_', '$', or Unicode characters with codes greater than '\u007F'—replace them with _0xxxx,
where xxxx is the sequence of four hexadecimal digits of the character’s Unicode value.

NOTE:

If you overload native methods—that is, if you provide multiple native methods with the

same name—you must append a double underscore followed by the encoded argument types.

(We’ll describe the encoding of the argument types later in this chapter.) For example,

if you have a native method greeting and another native method greeting(int repeat), then

the first one is called Java_HelloNative_greeting__, and the second,

Java_HelloNative_greeting__I.

Actually, nobody does this by hand; instead, run the javah utility which automatically

generates the function names. To use javah, first compile the source file in Listing 12.1:

 javac HelloNative.java

Next, call the javah utility, which produces a C header file from the class file. The javah

executable can be found in the jdk/bin directory. Invoke it with the name of the class,
just as you would start a Java program:

 javah HelloNative

This command creates a header file, HelloNative.h, shown in Listing 12.2.

Listing 12.2 helloNative/HelloNative.h

 1 /* DO NOT EDIT THIS FILE - it is machine generated */

 2 #include <jni.h>

 3 /* Header for class HelloNative */

 4

 5 #ifndef _Included_HelloNative

 6 #define _Included_HelloNative

 7 #ifdef __cplusplus

 8 extern "C" {

 9 #endif

10 /*

11 * Class: HelloNative

12 * Method: greeting

13 * Signature: ()V

14 */

15 JNIEXPORT void JNICALL Java_HelloNative_greeting

16 (JNIEnv *, jclass);

17

18 #ifdef __cplusplus

19 }

20 #endif

21 #endif

As you can see, this file contains the declaration of a function Java_HelloNative_greeting.

(The macros JNIEXPORT and JNICALL are defined in the header file jni.h. They denote

compiler-dependent specifiers for exported functions that come from a dynamically loaded

library.)

Now, simply copy the function prototype from the header file into the source file and give

the implementation code for the function, as shown in Listing 12.3.

Listing 12.3 helloNative/HelloNative.c

 1 /*

 2 @version 1.10 1997-07-01

 3 @author Cay Horstmann

 4 */

 5

 6 #include "HelloNative.h"

 7 #include <stdio.h>

 8

 9 JNIEXPORT void JNICALL Java_HelloNative_greeting(JNIEnv* env, jclass cl)

10 {

11 printf("Hello Native World!\n");

12 }

In this simple function, ignore the env and cl arguments. You’ll see their use later.

C++ NOTE:

You can use C++ to implement native methods. However, you must then declare the functions

that implement the native methods as extern "C". (This stops the C++ compiler from “mangling”

the method name.) For example,

 extern "C"

 JNIEXPORT void JNICALL Java_HelloNative_greeting(JNIEnv* env, jclass cl)

 {

 cout << "Hello, Native World!" << endl;

 }

Compile the native C code into a dynamically loaded library. The details depend on your

compiler.

For example, with the Gnu C compiler on Linux, use these commands:

 gcc -fPIC -I jdk/include -I jdk/include/linux -shared -o libHelloNative.so

HelloNative.c

With the Sun compiler under the Solaris Operating System, the command is

 cc -G -I jdk/include -I jdk/include/solaris -o libHelloNative.so HelloNative.c

With the Microsoft compiler under Windows, the command is

 cl -I jdk\include -I jdk\include\win32 -LD HelloNative.c -FeHelloNative.dll

Here, jdk is the directory that contains the JDK.

TIP:

If you use the Microsoft compiler from a command shell, first run the batch file vcvars32.bat

or vsvars32.bat.That batch file sets up the path and the environment variables needed by

the compiler. You can find it in the directory c:\Program Files\Microsoft Visual Studio .NET

2003\Common7\tools, c:\Program Files\Microsoft Visual Studio 8\VC, or a similar

monstrosity.

You can also use the freely available Cygwin programming environment from www.cygwin.com.

It contains the Gnu C compiler and libraries for UNIX-style programming on Windows. With

Cygwin, use the command

 gcc -mno-cygwin -D __int64="long long" -I jdk/include/ -I jdk/include/win32

 -shared -Wl,--add-stdcall-alias -o HelloNative.dll HelloNative.c

Type the entire command on a single line.

NOTE:

The Windows version of the header file jni_md.h contains the type declaration

 typedef __int64 jlong;

which is specific to the Microsoft compiler. If you use the Gnu compiler, you might want

to edit that file, for example,

 #ifdef __GNUC__

 typedef long long jlong;

 #else

 typedef __int64 jlong;

 #endif

Alternatively, compile with -D __int64="long long", as shown in the sample compiler

invocation.

Finally, add a call to the System.loadLibrary method in your program. To ensure that the

virtual machine will load the library before the first use of the class, use a static

initialization block, as in Listing 12.4.

Figure 12.1 gives a summary of the native code processing.

http://www.cygwin.com/
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12fig01

Figure 12.1 Processing native code

Listing 12.4 helloNative/HelloNativeTest.java

 1 /**

 2 * @version 1.11 2007-10-26

 3 * @author Cay Horstmann

 4 */

 5 class HelloNativeTest

 6 {

 7 public static void main(String[] args)

 8 {

 9 HelloNative.greeting();

10 }

11

12 static

13 {

14 System.loadLibrary("HelloNative");

15 }

16 }

After you compile and run this program, the message “Hello, Native World!” is displayed

in a terminal window.

NOTE:

If you run Linux, you must add the current directory to the library path. Either set the

LD_LIBRARY_PATH environment variable:

 export LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH

or set the java.library.path system property:

 java -Djava.library.path=. HelloNativeTest

Of course, this is not particularly impressive by itself. However, keep in mind that this

message is generated by the C printf command and not by any Java programming language code.

We have taken the first steps toward bridging the gap between the two languages!

In summary, follow these steps to link a native method to a Java program:

1. Declare a native method in a Java class.

2. Run javah to get a header file with a C declaration for the method.

3. Implement the native method in C.

4. Place the code in a shared library.

5. Load that library in your Java program.

java.lang.System 1.0

• void loadLibrary(String libname)

loads the library with the given name. The library is located in the library search path.

The exact method for locating the library is operating system dependent.

NOTE:

Some shared libraries for native code must execute certain initializations. You can place

any initialization code into a JNI_OnLoad method. Similarly, when the virtual machine (VM)

shuts down, it will call the JNI_OnUnload method if you provide it. The prototypes are

 jint JNI_OnLoad(JavaVM* vm, void* reserved);

 void JNI_OnUnload(JavaVM* vm, void* reserved);

The JNI_OnLoad method needs to return the minimum version of the VM it requires, such as

JNI_VERSION_1_2.

12.2 Numeric Parameters and Return Values

When passing numbers between C and Java, you should understand which types correspond to

each other. For example, although C does have data types called int and long, their

implementation is platform-dependent. On some platforms, an int is a 16-bit quantity, on

others it is a 32-bit quantity. In the Java platform, of course, an int is always a 32-bit
integer. For that reason, JNI defines types jint, jlong, and so on.

Table 12.1 shows the correspondence between Java types and C types.

Table 12.1 Java Types and C Types

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12tab01

In the header file jni.h, these types are declared with typedef statements as the equivalent

types on the target platform. That header file also defines the constants JNI_FALSE = 0

and JNI_TRUE = 1.

12.2.1 Using printf for Formatting Numbers

Until Java SE 5.0, Java had no direct analog of the C printf function. In the following

examples, we will suppose you are stuck with an ancient JDK release and decide to implement

the same functionality by calling the C printf function in a native method.

Listing 12.5 shows a class called Printf1 that uses a native method to print a floating-point

number with a given field width and precision.

Listing 12.5 printf1/Printf1.java

 1 /**

 2 * @version 1.10 1997-07-01

 3 * @author Cay Horstmann

 4 */

 5 class Printf1

 6 {

 7 public static native int print(int width, int precision, double x);

 8

 9 static

10 {

11 System.loadLibrary("Printf1");

12 }

13 }

Notice that when the method is implemented in C, all int and double parameters are changed

to jint and jdouble, as shown in Listing 12.6.

Listing 12.6 printf1/Printf1.c

 1 /**

 2 @version 1.10 1997-07-01

 3 @author Cay Horstmann

 4 */

 5

 6 #include "Printf1.h"

 7 #include <stdio.h>

 8

 9 JNIEXPORT jint JNICALL Java_Printf1_print(JNIEnv* env, jclass cl,

10 jint width, jint precision, jdouble x)

11 {

12 char fmt[30];

13 jint ret;

14 sprintf(fmt, "%%%d.%df", width, precision);

15 ret = printf(fmt, x);

16 fflush(stdout);

17 return ret;

18 }

19

The function simply assembles a format string "%w.pf" in the variable fmt, then calls printf.
It returns the number of characters printed.

Listing 12.7 shows the test program that demonstrates the Printf1 class.

Listing 12.7 printf1/Printf1Test.java

 1 /**

 2 * @version 1.10 1997-07-01

 3 * @author Cay Horstmann

 4 */

 5 class Printf1Test

 6 {

 7 public static void main(String[] args)

 8 {

 9 int count = Printf1.print(8, 4, 3.14);

10 count += Printf1.print(8, 4, count);

11 System.out.println();

12 for (int i = 0; i < count; i++)

13 System.out.print("-");

14 System.out.println();

15 }

16 }

12.3 String Parameters

Next, we want to consider how to transfer strings to and from native methods. Strings are

quite different in the two languages: In Java they are sequences of UTF-16 code points

whereas C strings are null-terminated sequences of bytes. JNI has two sets of functions

for manipulating strings: One converts Java strings to “modified UTF-8” byte sequences

and another converts them to arrays of UTF-16 values—that is, to jchar arrays. (The UTF-8,

“modified UTF-8,” and UTF-16 formats were discussed in Chapter 2. Recall that the UTF-8

and “modified UTF-8” encodings leave ASCII characters unchanged, but all other Unicode

characters are encoded as multibyte sequences.)

NOTE:

The standard UTF-8 encoding and the “modified UTF-8” encoding differ only for

“supplementary” characters with codes higher than 0xFFFF. In the standard UTF-8 encoding,

these characters are encoded as 4-byte sequences. In the “modified” encoding, each such

character is first encoded as a pair of “surrogates” in the UTF-16 encoding, and then

each surrogate is encoded with UTF-8, yielding a total of 6 bytes. This is clumsy, but it

is a historical accident—the JVM specification was written when Unicode was still limited

to 16 bits.

If your C code already uses Unicode, you’ll want to use the second set of conversion

functions. On the other hand, if all your strings are restricted to ASCII characters, you

can use the “modified UTF-8” conversion functions.

A native method with a String parameter actually receives a value of an opaque type called

jstring. A native method with a return value of type String must return a value of type

jstring. JNI functions read and construct these jstring objects. For example, the

NewStringUTF function makes a new jstring object out of a char array that contains ASCII

characters or, more generally, “modified UTF-8”-encoded byte sequences.

JNI functions have a somewhat odd calling convention. Here is a call to the NewStringUTF

function:

 JNIEXPORT jstring JNICALL Java_HelloNative_getGreeting(JNIEnv* env, jclass cl)

 {

 jstring jstr;

 char greeting[] = "Hello, Native World\n";

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02

 jstr = (*env)->NewStringUTF(env, greeting);

 return jstr;

 }

NOTE:

Unless explicitly mentioned otherwise, all code in this chapter is C code.

All calls to JNI functions use the env pointer that is the first argument of every native

method. The env pointer is a pointer to a table of function pointers (see Figure 12.2).

Therefore, you must prefix every JNI call with (*env)-> to actually dereference the function

pointer. Furthermore, env is the first parameter of every JNI function.

Figure 12.2 The env pointer

C++ NOTE:

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12fig02

It is simpler to access JNI functions in C++. The C++ version of the JNIEnv class has inline

member functions that take care of the function pointer lookup for you. For example, you

can call the NewStringUTF function as

 jstr = env->NewStringUTF(greeting);

Note that you omit the JNIEnv pointer from the parameter list of the call.

The NewStringUTF function lets you construct a new jstring. To read the contents of an

existing jstring object, use the GetStringUTFChars function. This function returns a const

jbyte* pointer to the “modified UTF-8” characters that describe the character string.

Note that a specific virtual machine is free to choose this character encoding for its

internal string representation, so you might get a character pointer into the actual Java

string. Since Java strings are meant to be immutable, it is very important that you treat
the const seriously and do not try to write into this character array. On the other hand,

if the virtual machine uses UTF-16 or UTF-32 characters for its internal string

representation, this function call allocates a new memory block that will be filled with

the “modified UTF-8” equivalents.

The virtual machine must know when you are finished using the string so that it can

garbage-collect it. (The garbage collector runs in a separate thread, and it can interrupt

the execution of native methods.) For that reason, you must call the ReleaseStringUTFChars

function.

Alternatively, you can supply your own buffer to hold the string characters by calling the

GetStringRegion or GetStringUTFRegion methods.

Finally, the GetStringUTFLength function returns the number of characters needed for the

“modified UTF-8” encoding of the string.

NOTE:

You can find the JNI API at http://docs.oracle.com/javase/7/docs/technotes/guides/jni.

Accessing Java Strings from C Code

• jstring NewStringUTF(JNIEnv* env, const char bytes[])

returns a new Java string object from a zero byte-terminated “modified UTF-8” byte

sequence, or NULL if the string cannot be constructed.

• jsize GetStringUTFLength(JNIEnv* env, jstring string)

http://docs.oracle.com/javase/7/docs/technotes/guides/jni

returns the number of bytes required for the “modified UTF-8” encoding (not counting the

zero byte terminator).

• const jbyte* GetStringUTFChars(JNIEnv* env, jstring string, jboolean* isCopy)

returns a pointer to the “modified UTF-8” encoding of a string, or NULL if the character

array cannot be constructed. The pointer is valid until ReleaseStringUTFChars is called.

isCopy points to a jboolean filled with JNI_TRUE if a copy is made, with JNI_FALSE

other-wise.

• void ReleaseStringUTFChars(JNIEnv* env, jstring string, const jbyte bytes[])

informs the virtual machine that the native code no longer needs access to the Java string

through bytes (a pointer returned by GetStringUTFChars).

• void GetStringRegion(JNIEnv *env, jstring string, jsize start, jsize length, jchar

*buffer)

copies a sequence of UTF-16 double bytes from a string to a user-supplied buffer of size

at least 2 × length.

• void GetStringUTFRegion(JNIEnv *env, jstring string, jsize start, jsize length, jbyte

*buffer)

copies a sequence of “modified UTF-8” bytes from a string to a user-supplied buffer. The

buffer must be long enough to hold the bytes. In the worst case, 3 × length bytes are copied.

• jstring NewString(JNIEnv* env, const jchar chars[], jsize length)

returns a new Java string object from a Unicode string, or NULL if the string cannot be

constructed.

• jsize GetStringLength(JNIEnv* env, jstring string)

returns the number of characters in the string.

• const jchar* GetStringChars(JNIEnv* env, jstring string, jboolean* isCopy)

returns a pointer to the Unicode encoding of a string, or NULL if the character array cannot

be constructed. The pointer is valid until ReleaseStringChars is called. isCopy is either

NULL or points to a jboolean filled with JNI_TRUE if a copy is made, with JNI_FALSE otherwise.

• void ReleaseStringChars(JNIEnv* env, jstring string, const jchar chars[])

informs the virtual machine that the native code no longer needs access to the Java string

through chars (a pointer returned by GetStringChars).

Let us put these functions to work and write a class that calls the C function sprintf.

We would like to call the function as shown in Listing 12.8.

Listing 12.8 printf2/Printf2Test.java

 1 /**

 2 * @version 1.10 1997-07-01

 3 * @author Cay Horstmann

 4 */

 5 class Printf2Test

 6 {

 7 public static void main(String[] args)

 8 {

 9 double price = 44.95;

10 double tax = 7.75;

11 double amountDue = price * (1 + tax / 100);

12

13 String s = Printf2.sprint("Amount due = %8.2f", amountDue);

14 System.out.println(s);

15 }

16 }

Listing 12.9 shows the class with the native sprint method.

Listing 12.9 printf2/Printf2.java

 1 /**

 2 * @version 1.10 1997-07-01

 3 * @author Cay Horstmann

 4 */

 5 class Printf2

 6 {

 7 public static native String sprint(String format, double x);

 8

 9 static

10 {

11 System.loadLibrary("Printf2");

12 }

13 }

Therefore, the C function that formats a floating-point number has the prototype

 JNIEXPORT jstring JNICALL Java_Printf2_sprint(JNIEnv* env, jclass cl, jstring format,

jdouble x)

Listing 12.10 shows the code for the C implementation. Note the calls to GetStringUTFChars

to read the format argument, NewStringUTF to generate the return value, and

ReleaseStringUTFChars to inform the virtual machine that access to the string is no longer

required.

Listing 12.10 printf2/Printf2.c

 1 /**

 2 @version 1.10 1997-07-01

 3 @author Cay Horstmann

 4 */

 5

 6 #include "Printf2.h"

 7 #include <string.h>

 8 #include <stdlib.h>

 9 #include <float.h>

10

11 /**

12 @param format a string containing a printf format specifier

13 (such as "%8.2f"). Substrings "%%" are skipped.

14 @return a pointer to the format specifier (skipping the '%')

15 or NULL if there wasn't a unique format specifier

16 */

17 char* find_format(const char format[])

18 {

19 char* p;

20 char* q;

21

22 p = strchr(format, '%');

23 while (p != NULL && *(p + 1) == '%') /* skip %% */

24 p = strchr(p + 2, '%');

25 if (p == NULL) return NULL;

26 /* now check that % is unique */

27 p++;

28 q = strchr(p, '%');

29 while (q != NULL && *(q + 1) == '%') /* skip %% */

30 q = strchr(q + 2, '%');

31 if (q != NULL) return NULL; /* % not unique */

32 q = p + strspn(p, " -0+#"); /* skip past flags */

33 q += strspn(q, "0123456789"); /* skip past field width */

34 if (*q == '.') { q++; q += strspn(q, "0123456789"); }

35 /* skip past precision */

36 if (strchr("eEfFgG", *q) == NULL) return NULL;

37 /* not a floating-point format */

38 return p;

39 }

40

41 JNIEXPORT jstring JNICALL Java_Printf2_sprint(JNIEnv* env, jclass cl,

42 jstring format, jdouble x)

43 {

44 const char* cformat;

45 char* fmt;

46 jstring ret;

47

48 cformat = (*env)->GetStringUTFChars(env, format, NULL);

49 fmt = find_format(cformat);

50 if (fmt == NULL)

51 ret = format;

52 else

53 {

54 char* cret;

55 int width = atoi(fmt);

56 if (width == 0) width = DBL_DIG + 10;

57 cret = (char*) malloc(strlen(cformat) + width);

58 sprintf(cret, cformat, x);

59 ret = (*env)->NewStringUTF(env, cret);

60 free(cret);

61 }

62 (*env)->ReleaseStringUTFChars(env, format, cformat);

63 return ret;

64 }

65

In this function, we chose to keep error handling simple. If the format code to print a

floating-point number is not of the form %w.pc, where c is one of the characters e, E, f,

g, or G, then we simply do not format the number. We’ll show you later how to make a native

method throw an exception.

12.4 Accessing Fields

All the native methods you saw so far were static methods with number and string parameters.

We’ll now consider native methods that operate on objects. As an exercise, we will

reimplement as native a method of the Employee class that was introduced in Volume I, Chapter

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04

4. Again, this is not something you would normally want to do, but it does illustrate how

to access fields from a native method when you need to do so.

12.4.1 Accessing Instance Fields

To see how to access instance fields from a native method, we will reimplement the

raiseSalary method. Here is the code in Java:

 public void raiseSalary(double byPercent)

 {

 salary *= 1 + byPercent / 100;

 }

Let us rewrite this as a native method. Unlike the previous examples of native methods,

this is not a static method. Running javah gives the following prototype:

 JNIEXPORT void JNICALL Java_Employee_raiseSalary(JNIEnv *, jobject, jdouble);

Note the second argument. It is no longer of type jclass but of type jobject. In fact, it

is an equivalent of the this reference. Static methods obtain a reference to the class,

whereas nonstatic methods obtain a reference to the implicit this argument object.

Now we access the salary field of the implicit argument. In the “raw” Java-to-C binding

of Java 1.0, this was easy—a programmer could directly access object data fields. However,

direct access requires all virtual machines to expose their internal data layout. For that

reason, the JNI requires programmers to get and set the values of data fields by calling

special JNI functions.

In our case, we need to use the GetDoubleField and SetDoubleField functions because the

type of salary is double. There are other functions—GetIntField/SetIntField,

GetObjectField/SetObjectField, and so on for other field types. The general syntax is:

 x = (*env)->GetXxxField(env, this_obj, fieldID);

 (*env)->SetXxxField(env, this_obj, fieldID, x);

Here, fieldID is a value of a special type, jfieldID, that identifies a field in a structure,

and Xxx represents a Java data type (Object, Boolean, Byte, and so on). To obtain the fieldID,
you must first get a value representing the class, which you can do in one of two ways.

The GetObjectClass function returns the class of any object. For example:

 jclass class_Employee = (*env)->GetObjectClass(env, this_obj);

The FindClass function lets you specify the class name as a string (curiously, with /

characters instead of periods as package name separators).

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch04.html#ch04

 jclass class_String = (*env)->FindClass(env, "java/lang/String");

Use the GetFieldID function to obtain the fieldID. You must supply the name of the field

and its signature, an encoding of its type. For example, here is the code to obtain the
field ID of the salary field:

 jfieldID id_salary = (*env)->GetFieldID(env, class_Employee, "salary", "D");

The string "D" denotes the type double. You’ll learn the complete rules for encoding

signatures in the next section.

You might be thinking that accessing a data field seems quite convoluted. The designers

of the JNI did not want to expose the data fields directly, so they had to supply functions

for getting and setting field values. To minimize the cost of these functions, computing

the field ID from the field name—which is the most expensive step—is factored out into

a separate step. That is, if you repeatedly get and set the value of a particular field,

you can incur the cost of computing the field identifier only once.

Let us put all the pieces together. The following code reimplements the raiseSalary method

as a native method:

 JNIEXPORT void JNICALL Java_Employee_raiseSalary(JNIEnv* env, jobject this_obj,

jdouble byPercent)

 {

 /* get the class */

 jclass class_Employee = (*env)->GetObjectClass(env, this_obj);

 /* get the field ID */

 jfieldID id_salary = (*env)->GetFieldID(env, class_Employee, "salary", "D");

 /* get the field value */

 jdouble salary = (*env)->GetDoubleField(env, this_obj, id_salary);

 salary *= 1 + byPercent / 100;

 /* set the field value */

 (*env)->SetDoubleField(env, this_obj, id_salary, salary);

 }

CAUTION

Class references are only valid until the native method returns. Thus, you cannot cache

the return values of GetObjectClass in your code. Do not store away a class reference for
reuse in a later method call.You must call GetObjectClass every time the native method

executes. If this is intolerable, you can lock the reference with a call to NewGlobalRef:

 static jclass class_X = 0;

 static jfieldID id_a;

 ...

 if (class_X == 0)

 {

 jclass cx = (*env)->GetObjectClass(env, obj);

 class_X = (*env)->NewGlobalRef(env, cx);

 id_a = (*env)->GetFieldID(env, cls, "a", ". . .");

 }

Now you can use the class reference and field IDs in subsequent calls. When you are done

using the class, make sure to call

 (*env)->DeleteGlobalRef(env, class_X);

Listings 12.11 and 12.12 show the Java code for a test program and the Employee class. Listing

12.13 contains the C code for the native raiseSalary method.

Listing 12.11 employee/EmployeeTest.java

 1 /**

 2 * @version 1.10 1999-11-13

 3 * @author Cay Horstmann

 4 */

 5

 6 public class EmployeeTest

 7 {

 8 public static void main(String[] args)

 9 {

10 Employee[] staff = new Employee[3];

11

12 staff[0] = new Employee("Harry Hacker", 35000);

13 staff[1] = new Employee("Carl Cracker", 75000);

14 staff[2] = new Employee("Tony Tester", 38000);

15

16 for (Employee e : staff)

17 e.raiseSalary(5);

18 for (Employee e : staff)

19 e.print();

20 }

21 }

Listing 12.12 employee/Employee.java

 1 /**

 2 * @version 1.10 1999-11-13

 3 * @author Cay Horstmann

 4 */

 5

 6 public class Employee

 7 {

 8 private String name;

 9 private double salary;

10

11 public native void raiseSalary(double byPercent);

12

13 public Employee(String n, double s)

14 {

15 name = n;

16 salary = s;

17 }

18

19 public void print()

20 {

21 System.out.println(name + " " + salary);

22 }

23

24 static

25 {

26 System.loadLibrary("Employee");

27 }

28 }

Listing 12.13 employee/Employee.c

 1 /**

 2 @version 1.10 1999-11-13

 3 @author Cay Horstmann

 4 */

 5

 6 #include "Employee.h"

 7

 8 #include <stdio.h>

 9

10 JNIEXPORT void JNICALL Java_Employee_raiseSalary(JNIEnv* env, jobject this_obj,

jdouble byPercent)

11 {

12 /* get the class */

13 jclass class_Employee = (*env)->GetObjectClass(env, this_obj);

14

15 /* get the field ID */

16 jfieldID id_salary = (*env)->GetFieldID(env, class_Employee, "salary",

"D");

17

18 /* get the field value */

19 jdouble salary = (*env)->GetDoubleField(env, this_obj, id_salary);

20

21 salary *= 1 + byPercent / 100;

22

23 /* set the field value */

24 (*env)->SetDoubleField(env, this_obj, id_salary, salary);

25 }

26

12.4.2 Accessing Static Fields

Accessing static fields is similar to accessing nonstatic fields. Use the GetStaticFieldID

and GetStaticXxxField/SetStaticXxxField functions that work almost identically to their
nonstatic counterparts, with two differences:

• As you have no object, you must use FindClass instead of GetObjectClass to obtain the

class reference.

• You have to supply the class, not the instance object, when accessing the field.

For example, here is how you can get a reference to System.out:

 /* get the class */

 jclass class_System = (*env)->FindClass(env, "java/lang/System");

 /* get the field ID */

 jfieldID id_out = (*env)->GetStaticFieldID(env, class_System, "out",

 "Ljava/io/PrintStream;");

 /* get the field value */

 jobject obj_out = (*env)->GetStaticObjectField(env, class_System,

id_out);

Accessing Fields

• jfieldID GetFieldID(JNIEnv *env, jclass cl, const char name[], const char

fieldSignature[])

returns the identifier of a field in a class.

• Xxx GetXxxField(JNIEnv *env, jobject obj, jfieldID id)

returns the value of a field. The field type Xxx is one of Object, Boolean, Byte, Char,
Short, Int, Long, Float, or Double.

• void SetXxxField(JNIEnv *env, jobject obj, jfieldID id, Xxx value)

sets a field to a new value.The field type Xxx is one of Object, Boolean, Byte, Char, Short,
Int, Long, Float, or Double.

• jfieldID GetStaticFieldID(JNIEnv *env, jclass cl, const char name[], const char

fieldSignature[])

returns the identifier of a static field in a class.

• Xxx GetStaticXxxField(JNIEnv *env, jclass cl, jfieldID id)

returns the value of a static field. The field type Xxx is one of Object, Boolean, Byte,
Char, Short, Int, Long, Float, or Double.

• void SetStaticXxxField(JNIEnv *env, jclass cl, jfieldID id, Xxx value)

sets a static field to a new value. The field type Xxx is one of Object, Boolean, Byte,
Char, Short, Int, Long, Float, or Double.

12.5 Encoding Signatures

To access instance fields and call methods defined in the Java programming language, you

need to learn the rules for “mangling” the names of data types and method signatures.

(A method signature describes the parameters and return type of the method.) Here is the

encoding scheme:

To describe an array type, use a [. For example, an array of strings is

 [Ljava/lang/String;

A float[][] is mangled into

 [[F

For the complete signature of a method, list the parameter types inside a pair of parentheses

and then list the return type. For example, a method receiving two integers and returning

an integer is encoded as

 (II)I

The print method that we used in the preceding example has a mangled signature of

 (Ljava/lang/String;)V

That is, the method receives a string and returns void.

Note that the semicolon at the end of the L expression is the terminator of the type

expression, not a separator between parameters. For example, the constructor

 Employee(java.lang.String, double, java.util.Date)

has a signature

 "(Ljava/lang/String;DLjava/util/Date;)V"

Note that there is no separator between the D and Ljava/util/Date;. Also note that in this

encoding scheme, you must use / instead of . to separate the package and class names. The

V at the end denotes a return type of void. Even though you don’t specify a return type

for constructors in Java, you need to add a V to the virtual machine signature.

TIP:

You can use the javap command with option -s to generate the method signatures from class

files. For example, run

 javap -s -private Employee

You will get the following output, displaying the signatures of all fields and methods.

 Compiled from "Employee.java"

 public class Employee extends java.lang.Object{

 private java.lang.String name;

 Signature: Ljava/lang/String;

 private double salary;

 Signature: D

 public Employee(java.lang.String, double);

 Signature: (Ljava/lang/String;D)V

 public native void raiseSalary(double);

 Signature: (D)V

 public void print();

 Signature: ()V

 static {};

 Signature: ()V

 }

NOTE:

There is no rationale whatsoever for forcing programmers to use this mangling scheme for

signatures. The designers of the native calling mechanism could have just as easily written

a function that reads signatures in the Java programming language style, such as

void(int,java.lang.String), and encodes them into whatever internal representation they

prefer. Then again, using the mangled signatures lets you partake in the mystique of

programming close to the virtual machine.

12.6 Calling Java Methods

Of course, Java programming language functions can call C functions—that is what native

methods are for. Can we go the other way? Why would we want to do this anyway? It often

happens that a native method needs to request a service from an object that was passed to

it. We’ll first show you how to do it for instance methods, then for static methods.

12.6.1 Instance Methods

As an example of calling a Java method from native code, let’s enhance the Printf class

and add a method that works similarly to the C function fprintf. That is, it should be able

to print a string on an arbitrary PrintWriter object. Here is the definition of the method

in Java:

 class Printf3

 {

 public native static void fprint(PrintWriter out, String s, double x);

 ...

 }

We’ll first assemble the string to be printed into a String object str, as in the sprint

method that we already implemented. Then, from the C function that implements the native

method, we’ll call the print method of the PrintWriter class.

You can call any Java method from C by using the function call

 (*env)->CallXxxMethod(env, implicit parameter, methodID, explicit parameters)

Replace Xxx with Void, Int, Object, and so on, depending on the return type of the method.
Just as you need a fieldID to access a field of an object, you need a method ID to call

a method. To obtain a method ID, call the JNI function GetMethodID and supply the class,

the name of the method, and the method signature.

In our example, we want to obtain the ID of the print method of the PrintWriter class. As

you saw in Volume I, Chapter 12, the PrintWriter class has several overloaded methods called

print. For that reason, you must also supply a string describing the parameters and the

return value of the specific function that you want to use. For example, we want to use

void print(java.lang.String). As described in the preceding section, we must now “mangle”

the signature into the string "(Ljava/lang/String;)V".

Here is the complete code to make the method call, by

1. Obtaining the class of the implicit parameter

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12

2. Obtaining the method ID

3. Making the call

 /* get the class */

 class_PrintWriter = (*env)->GetObjectClass(env, out);

 /* get the method ID */

 id_print = (*env)->GetMethodID(env, class_PrintWriter, "print",

"(Ljava/lang/String;)V");

 /* call the method */

 (*env)->CallVoidMethod(env, out, id_print, str);

Listings 12.14 and 12.15 show the Java code for a test program and the Printf3 class. Listing

12.16 contains the C code for the native fprint method.

NOTE:

The numerical method IDs and field IDs are conceptually similar to Method and Field objects

in the reflection API. You can convert between them with the following functions:

 jobject ToReflectedMethod(JNIEnv* env, jclass class,

jmethodID methodID);

 // returns Method object

 methodID FromReflectedMethod(JNIEnv* env, jobject method);

 jobject ToReflectedField(JNIEnv* env, jclass class,

jfieldID fieldID);

 // returns Field object

 fieldID FromReflectedField(JNIEnv* env, jobject field);

12.6.2 Static Methods

Calling static methods from native methods is similar to calling instance methods. There

are two differences:

• Use the GetStaticMethodID and CallStaticXxxMethod functions

• Supply a class object, not an implicit parameter object, when invoking the method

As an example of this, let’s make the call to the static method

 System.getProperty("java.class.path")

from a native method. The return value of this call is a string that gives the current class

path.

First, we have to find the class to use. As we have no object of the class System readily

available, we use FindClass rather than GetObjectClass.

 jclass class_System = (*env)->FindClass(env, "java/lang/System");

Next, we need the ID of the static getProperty method. The encoded signature of that method

is

 "(Ljava/lang/String;)Ljava/lang/String;"

because both the parameter and the return value are strings. Hence, we obtain the method

ID as follows:

 jmethodID id_getProperty = (*env)->GetStaticMethodID(env, class_System,

"getProperty",

 "(Ljava/lang/String;)Ljava/lang/String;");

Finally, we can make the call. Note that the class object is passed to the

CallStaticObjectMethod function.

 jobject obj_ret = (*env)->CallStaticObjectMethod(env, class_System, id_getProperty,

 (*env)->NewStringUTF(env, "java.class.path"));

The return value of this method is of type jobject. If we want to manipulate it as a string,

we must cast it to jstring:

 jstring str_ret = (jstring) obj_ret;

C++ NOTE:

In C, the types jstring and jclass, as well as the array types to be introduced later, are

all type-equivalent to jobject. The cast of the preceding example is therefore not strictly

necessary in C. But in C++, these types are defined as pointers to “dummy classes” that

have the correct inheritance hierarchy. For example, assigning a jstring to a jobject is

legal without a cast in C++, but an assignment from a jobject to a jstring requires a cast.

12.6.3 Constructors

A native method can create a new Java object by invoking its constructor. Invoke the

constructor by calling the NewObject function.

 jobject obj_new = (*env)->NewObject(env, class, methodID, construction parameters);

You can obtain the method ID needed for this call from the GetMethodID function by specifying

the method name as "<init>" and the encoded signature of the constructor (with return type

void). For example, here is how a native method can create a FileOutputStream object.

 const char[] fileName = ". . .";

 jstring str_fileName = (*env)->NewStringUTF(env, fileName);

 jclass class_FileOutputStream = (*env)->FindClass(env,

"java/io/FileOutputStream");

 jmethodID id_FileOutputStream

 = (*env)->GetMethodID(env, class_FileOutputStream, "<init>",

"(Ljava/lang/String;)V");

 jobject obj_stream

 = (*env)->NewObject(env, class_FileOutputStream,

id_FileOutputStream, str_fileName);

Note that the signature of the constructor takes a parameter of type java.lang.String and

has a return type of void.

12.6.4 Alternative Method Invocations

Several variants of the JNI functions can be used to call a Java method from native code.

These are not as important as the functions that we already discussed, but they are

occasionally useful.

The CallNonvirtualXxxMethod functions receive an implicit argument, a method ID, a class
object (which must correspond to a superclass of the implicit argument), and explicit

arguments. The function calls the version of the method in the specified class, bypassing

the normal dynamic dispatch mechanism.

All call functions have versions with suffixes “A” and “V” that receive the explicit

parameters in an array or a va_list (as defined in the C header stdarg.h).

Listing 12.14 printf3/Printf3Test.java

 1 import java.io.*;

 2

 3 /**

 4 * @version 1.10 1997-07-01

 5 * @author Cay Horstmann

 6 */

 7 class Printf3Test

 8 {

 9 public static void main(String[] args)

10 {

11 double price = 44.95;

12 double tax = 7.75;

13 double amountDue = price * (1 + tax / 100);

14 PrintWriter out = new PrintWriter(System.out);

15 Printf3.fprint(out, "Amount due = %8.2f\n", amountDue);

16 out.flush();

17 }

18 }

Listing 12.15 printf3/Printf3.java

 1 import java.io.*;

 2

 3 /**

 4 * @version 1.10 1997-07-01

 5 * @author Cay Horstmann

 6 */

 7 class Printf3

 8 {

 9 public static native void fprint(PrintWriter out, String format, double

x);

10

11 static

12 {

13 System.loadLibrary("Printf3");

14 }

15 }

Listing 12.16 printf3/Printf3.c

 1 /**

 2 @version 1.10 1997-07-01

 3 @author Cay Horstmann

 4 */

 5

 6 #include "Printf3.h"

 7 #include <string.h>

 8 #include <stdlib.h>

 9 #include <float.h>

10

11 /**

12 @param format a string containing a printf format specifier

13 (such as "%8.2f"). Substrings "%%" are skipped.

14 @return a pointer to the format specifier (skipping the '%')

15 or NULL if there wasn't a unique format specifier

16 */

17 char* find_format(const char format[])

18 {

19 char* p;

20 char* q;

21

22 p = strchr(format, '%');

23 while (p != NULL && *(p + 1) == '%') /* skip %% */

24 p = strchr(p + 2, '%');

25 if (p == NULL) return NULL;

26 /* now check that % is unique */

27 p++;

28 q = strchr(p, '%');

29 while (q != NULL && *(q + 1) == '%') /* skip %% */

30 q = strchr(q + 2, '%');

31 if (q != NULL) return NULL; /* % not unique */

32 q = p + strspn(p, " -0+#"); /* skip past flags */

33 q += strspn(q, "0123456789"); /* skip past field width */

34 if (*q == '.') { q++; q += strspn(q, "0123456789"); }

35 /* skip past precision */

36 if (strchr("eEfFgG", *q) == NULL) return NULL;

37 /* not a floating-point format */

38 return p;

39 }

40

41 JNIEXPORT void JNICALL Java_Printf3_fprint(JNIEnv* env, jclass cl,

42 jobject out, jstring format, jdouble x)

43 {

44 const char* cformat;

45 char* fmt;

46 jstring str;

47 jclass class_PrintWriter;

48 jmethodID id_print;

49

50 cformat = (*env)->GetStringUTFChars(env, format, NULL);

51 fmt = find_format(cformat);

52 if (fmt == NULL)

53 str = format;

54 else

55 {

56 char* cstr;

57 int width = atoi(fmt);

58 if (width == 0) width = DBL_DIG + 10;

59 cstr = (char*) malloc(strlen(cformat) + width);

60 sprintf(cstr, cformat, x);

61 str = (*env)->NewStringUTF(env, cstr);

62 free(cstr);

63 }

64 (*env)->ReleaseStringUTFChars(env, format, cformat);

65

66 /* now call ps.print(str) */

67

68 /* get the class */

69 class_PrintWriter = (*env)->GetObjectClass(env, out);

70

71 /* get the method ID */

72 id_print = (*env)->GetMethodID(env, class_PrintWriter, "print",

"(Ljava/lang/String;)V");

73

74 /* call the method */

75 (*env)->CallVoidMethod(env, out, id_print, str);

76 }

77

78

Executing Java Methods

• jmethodID GetMethodID(JNIEnv *env, jclass cl, const char name[], const char

methodSignature[])

returns the identifier of a method in a class.

• Xxx CallXxxMethod(JNIEnv *env, jobject obj, jmethodID id, args)

• Xxx CallXxxMethodA(JNIEnv *env, jobject obj, jmethodID id, jvalue args[])

• Xxx CallXxxMethodV(JNIEnv *env, jobject obj, jmethodID id, va_list args)

calls a method.The return type Xxx is one of Object, Boolean, Byte, Char, Short, Int, Long,
Float, or Double. The first function has a variable number of arguments—simply append the

method parameters after the method ID. The second function receives the method arguments

in an array of jvalue, where jvalue is a union defined as

 typedef union jvalue

 {

 jboolean z;

 jbyte b;

 jchar c;

 jshort s;

 jint i;

 jlong j;

 jfloat f;

 jdouble d;

 jobject l;

 } jvalue;

• The third function receives the method parameters in a va_list, as defined in the C header

stdarg.h.

• Xxx CallNonvirtualXxxMethod(JNIEnv *env, jobject obj, jclass cl, jmethodID id, args)

• Xxx CallNonvirtualXxxMethodA(JNIEnv *env, jobject obj, jclass cl, jmethodID id, jvalue
args[])

• Xxx CallNonvirtualXxxMethodV(JNIEnv *env, jobject obj, jclass cl, jmethodID id, va_list
args)

calls a method, bypassing dynamic dispatch. The return type Xxx is one of Object, Boolean,
Byte, Char, Short, Int, Long, Float, or Double. The first function has a variable number

of arguments—simply append the method parameters after the method ID. The second function

receives the method arguments in an array of jvalue. The third function receives the method

parameters in a va_list, as defined in the C header stdarg.h.

• jmethodID GetStaticMethodID(JNIEnv *env, jclass cl, const char name[], const char

methodSignature[])

returns the identifier of a static method in a class.

• Xxx CallStaticXxxMethod(JNIEnv *env, jclass cl, jmethodID id, args)

• Xxx CallStaticXxxMethodA(JNIEnv *env, jclass cl, jmethodID id, jvalue args[])

• Xxx CallStaticXxxMethodV(JNIEnv *env, jclass cl, jmethodID id, va_list args)

calls a static method. The return type Xxx is one of Object, Boolean, Byte, Char, Short,
Int, Long, Float, or Double.The first function has a variable number of arguments—simply

append the method parameters after the method ID.The second function receives the method

arguments in an array of jvalue.The third function receives the method parameters in a

va_list, as defined in the C header stdarg.h.

• jobject NewObject(JNIEnv *env, jclass cl, jmethodID id, args)

• jobject NewObjectA(JNIEnv *env, jclass cl, jmethodID id, jvalue args[])

• jobject NewObjectV(JNIEnv *env, jclass cl, jmethodID id, va_list args)

calls a constructor.The method ID is obtained from GetMethodID with a method name of "<init>"

and a return type of void. The first function has a variable number of arguments—simply

append the method parameters after the method ID.The second function receives the method

arguments in an array of jvalue. The third function receives the method parameters in a

va_list, as defined in the C header stdarg.h.

12.7 Accessing Array Elements

All array types of the Java programming language have corresponding C types, as shown in

Table 12.2.

Table 12.2 Correspondence between Java Array Types and C Types

C++ NOTE:

In C, all these array types are actually type synonyms of jobject. In C++, however, they

are arranged in the inheritance hierarchy shown in Figure 12.3. The type jarray denotes

a generic array.

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12tab02
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12fig03

Figure 12.3 Inheritance hierarchy of array types

The GetArrayLength function returns the length of an array.

 jarray array = . . .;

 jsize length = (*env)->GetArrayLength(env, array);

How you access elements in an array depends on whether the array stores objects or a primitive

type (bool, char, or a numeric type). To access elements in an object array, use the

GetObjectArrayElement and SetObjectArrayElement methods.

 jobjectArray array = . . .;

 int i, j;

 jobject x = (*env)->GetObjectArrayElement(env, array, i);

 (*env)->SetObjectArrayElement(env, array, j, x);

Although simple, this approach is also clearly inefficient; you want to be able to access

array elements directly, especially when doing vector and matrix computations.

The GetXxxArrayElements function returns a C pointer to the starting element of an array.
As with ordinary strings, you must remember to call the corresponding

ReleaseXxxArrayElements function to tell the virtual machine when you no longer need that
pointer. Here, the type Xxx must be a primitive type—that is, not Object. You can then

read and write the array elements directly. However, since the pointer might point to a
copy, any changes that you make are guaranteed to be reflected in the original array only
when you call the corresponding ReleaseXxxArrayElements function!

NOTE:

You can find out if an array is a copy by passing a pointer to a jboolean variable as the

third parameter to a GetXxxArrayElements method. The variable is filled with JNI_TRUE if
the array is a copy. If you aren’t interested in that information, just pass a NULL pointer.

Here is a code sample that multiplies all elements in an array of double values by a constant.

We obtain a C pointer a into the Java array and then access individual elements as a[i].

 jdoubleArray array_a = . . .;

 double scaleFactor = . . .;

 double* a = (*env)->GetDoubleArrayElements(env, array_a, NULL);

 for (i = 0; i < (*env)->GetArrayLength(env, array_a); i++)

 a[i] = a[i] * scaleFactor;

 (*env)->ReleaseDoubleArrayElements(env, array_a, a, 0);

Whether the virtual machine actually copies the array depends on how it allocates arrays

and does its garbage collection. Some “copying” garbage collectors routinely move objects

around and update object references. That strategy is not compatible with “pinning” an

array to a particular location, because the collector cannot update the pointer values in

native code.

NOTE:

In the Sun JVM implementation, boolean arrays are represented as packed arrays of 32-bit

words. The GetBooleanArrayElements method copies them into unpacked arrays of jboolean

values.

To access just a few elements of a large array, use the GetXxxArrayRegion and
SetXxxArrayRegion methods that copy a range of elements from the Java array into a C array
and back.

You can create new Java arrays in native methods with the NewXxxArray function. To create
a new array of objects, specify the length, the type of the array elements, and an initial

element for all entries (typically, NULL). Here is an example:

 jclass class_Employee = (*env)->FindClass(env, "Employee");

 jobjectArray array_e = (*env)->NewObjectArray(env, 100, class_Employee, NULL);

Arrays of primitive types are simpler: just supply the length of the array.

 jdoubleArray array_d = (*env)->NewDoubleArray(env, 100);

The array is then filled with zeroes.

NOTE:

Java SE 1.4 added three methods to the JNI API:

 jobject NewDirectByteBuffer(JNIEnv* env, void* address, jlong capacity)

 void* GetDirectBufferAddress(JNIEnv* env, jobject buf)

 jlong GetDirectBufferCapacity(JNIEnv* env, jobject buf)

Direct buffers are used in the java.nio package to support more efficient input/output

operations and to minimize the copying of data between native and Java arrays.

Manipulating Java Arrays

• jsize GetArrayLength(JNIEnv *env, jarray array)

returns the number of elements in the array.

• jobject GetObjectArrayElement(JNIEnv *env, jobjectArray array, jsize index)

returns the value of an array element.

• void SetObjectArrayElement(JNIEnv *env, jobjectArray array, jsize index, jobject value)

sets an array element to a new value.

• Xxx* GetXxxArrayElements(JNIEnv *env, jarray array, jboolean* isCopy)

yields a C pointer to the elements of a Java array.The field type Xxx is one of Boolean,
Byte, Char, Short, Int, Long, Float, or Double. The pointer must be passed to

ReleaseXxxArrayElements when it is no longer needed.isCopy is either NULL or points to a
jboolean that is filled with JNI_TRUE if a copy is made, with JNI_FALSE otherwise.

• void ReleaseXxxArrayElements(JNIEnv *env, jarray array, Xxx elems[], jint mode)

notifies the virtual machine that a pointer obtained by GetXxxArrayElements is no longer
needed.mode is one of 0 (free the elems buffer after updating the array elements), JNI_COMMIT

(do not free the elems buffer after updating the array elements), or JNI_ABORT (free the

elems buffer without updating the array elements).

• void GetXxxArrayRegion(JNIEnv *env, jarray array, jint start, jint length, Xxx elems[])

copies elements from a Java array to a C array. The field type Xxx is one of Boolean, Byte,
Char, Short, Int, Long, Float, or Double.

• void SetXxxArrayRegion(JNIEnv *env, jarray array, jint start, jint length, Xxx elems[])

copies elements from a C array to a Java array. The field type Xxx is one of Boolean, Byte,
Char, Short, Int, Long, Float, or Double.

12.8 Handling Errors

Native methods are a significant security risk to Java programs. The C runtime system has

no protection against array bounds errors, indirection through bad pointers, and so on.

It is particularly important that programmers of native methods handle all error conditions

to preserve the integrity of the Java platform. In particular, when your native method

diagnoses a problem that it cannot handle, it should report this problem to the Java virtual

machine.

Normally, you would throw an exception in this situation. However, C has no exceptions.

Instead, you must call the Throw or ThrowNew function to create a new exception object.

When the native method exits, the Java virtual machine throws that exception.

To use the Throw function, call NewObject to create an object of a subtype of Throwable.

For example, here we allocate an EOFException object and throw it:

 jclass class_EOFException = (*env)->FindClass(env, "java/io/EOFException");

 jmethodID id_EOFException = (*env)->GetMethodID(env, class_EOFException,

"<init>", "()V");

 /* ID of no-argument constructor */

 jthrowable obj_exc = (*env)->NewObject(env, class_EOFException, id_EOFException);

 (*env)->Throw(env, obj_exc);

It is usually more convenient to call ThrowNew, which constructs an exception object, given

a class and a “modified UTF-8” byte sequence.

 (*env)->ThrowNew(env, (*env)->FindClass(env, "java/io/EOFException"), "Unexpected

end of file");

Both Throw and ThrowNew merely post the exception; they do not interrupt the control flow
of the native method. Only when the method returns does the Java virtual machine throw the

exception. Therefore, every call to Throw and ThrowNew should always be immediately followed

by a return statement.

C++ NOTE:

If you implement native methods in C++, you cannot throw a Java exception object in your

C++ code. In a C++ binding, it would be possible to implement a translation between

exceptions in the C++ and Java programming languages; however, this is not currently done.

Use Throw or ThrowNew to throw a Java exception in a native C++ method, and make sure that

your native methods throw no C++ exceptions.

Normally, native code need not be concerned with catching Java exceptions. However, when

a native method calls a Java method, that method might throw an exception. Moreover, a number

of the JNI functions throw exceptions as well. For example, SetObjectArrayElement throws

an ArrayIndexOutOfBoundsException if the index is out of bounds, and an ArrayStoreException

if the class of the stored object is not a subclass of the element class of the array. In

situations like these, a native method should call the ExceptionOccurred method to determine

whether an exception has been thrown. The call

 jthrowable obj_exc = (*env)->ExceptionOccurred(env);

returns NULL if no exception is pending, or a reference to the current exception object.

If you just want to check whether an exception has been thrown, without obtaining a reference

to the exception object, use

 jboolean occurred = (*env)->ExceptionCheck(env);

Normally, a native method should simply return when an exception has occurred so that the

virtual machine can propagate it to the Java code. However, a native method may analyze
the exception object to determine if it can handle the exception. If it can, then the function

 (*env)->ExceptionClear(env);

must be called to turn off the exception.

In our next example, we implement the fprint native method with all the paranoia appropriate

for a native method. Here are the exceptions that we throw:

• A NullPointerException if the format string is NULL

• An IllegalArgumentException if the format string doesn’t contain a % specifier that is

appropriate for printing a double

• An OutOfMemoryError if the call to malloc fails

Finally, to demonstrate how to check for an exception when calling a Java method from a

native method, we send the string to the stream, a character at a time, and call

ExceptionOccurred after each call. Listing 12.17 shows the code for the native method, and

Listing 12.18 shows the definition of the class containing the native method. Notice that

the native method does not immediately terminate when an exception occurs in the call to

PrintWriter.print—it first frees the cstr buffer. When the native method returns, the

virtual machine again raises the exception. The test program in Listing 12.19 demonstrates

how the native method throws an exception when the formatting string is not valid.

Listing 12.17 printf4/Printf4.c

 1 /**

 2 @version 1.10 1997-07-01

 3 @author Cay Horstmann

 4 */

 5

 6 #include "Printf4.h"

 7 #include <string.h>

 8 #include <stdlib.h>

 9 #include <float.h>

10

11 /**

12 @param format a string containing a printf format specifier

13 (such as "%8.2f"). Substrings "%%" are skipped.

14 @return a pointer to the format specifier (skipping the '%')

15 or NULL if there wasn't a unique format specifier

16 */

17 char* find_format(const char format[])

18 {

19 char* p;

20 char* q;

21

22 p = strchr(format, '%');

23 while (p != NULL && *(p + 1) == '%') /* skip %% */

24 p = strchr(p + 2, '%');

25 if (p == NULL) return NULL;

26 /* now check that % is unique */

27 p++;

28 q = strchr(p, '%');

29 while (q != NULL && *(q + 1) == '%') /* skip %% */

30 q = strchr(q + 2, '%');

31 if (q != NULL) return NULL; /* % not unique */

32 q = p + strspn(p, " -0+#"); /* skip past flags */

33 q += strspn(q, "0123456789"); /* skip past field width */

34 if (*q == '.') { q++; q += strspn(q, "0123456789"); }

35 /* skip past precision */

36 if (strchr("eEfFgG", *q) == NULL) return NULL;

37 /* not a floating-point format */

38 return p;

39 }

40

41 JNIEXPORT void JNICALL Java_Printf4_fprint(JNIEnv* env, jclass cl,

42 jobject out, jstring format, jdouble x)

43 {

44 const char* cformat;

45 char* fmt;

46 jclass class_PrintWriter;

47 jmethodID id_print;

48 char* cstr;

49 int width;

50 int i;

51

52 if (format == NULL)

53 {

54 (*env)->ThrowNew(env,

55 (*env)->FindClass(env,

56 "java/lang/NullPointerException"),

57 "Printf4.fprint: format is null");

58 return;

59 }

60

61 cformat = (*env)->GetStringUTFChars(env, format, NULL);

62 fmt = find_format(cformat);

63

64 if (fmt == NULL)

65 {

66 (*env)->ThrowNew(env,

67 (*env)->FindClass(env,

68 "java/lang/IllegalArgumentException"),

69 "Printf4.fprint: format is invalid");

70 return;

71 }

72

73 width = atoi(fmt);

74 if (width == 0) width = DBL_DIG + 10;

75 cstr = (char*)malloc(strlen(cformat) + width);

76

77 if (cstr == NULL)

78 {

79 (*env)->ThrowNew(env,

80 (*env)->FindClass(env, "java/lang/OutOfMemoryError"),

81 "Printf4.fprint: malloc failed");

82 return;

83 }

84

85 sprintf(cstr, cformat, x);

86

87 (*env)->ReleaseStringUTFChars(env, format, cformat);

88

89 /* now call ps.print(str) */

90

91 /* get the class */

92 class_PrintWriter = (*env)->GetObjectClass(env, out);

93

94 /* get the method ID */

95 id_print = (*env)->GetMethodID(env, class_PrintWriter, "print",

"(C)V");

96

97 /* call the method */

98 for (i = 0; cstr[i] != 0 && !(*env)->ExceptionOccurred(env); i++)

99 (*env)->CallVoidMethod(env, out, id_print, cstr[i]);

100

101 free(cstr);

102 }

103

 104

105

 106

107

Listing 12.18 printf4/Printf4.java

 1 import java.io.*;

 2

 3 /**

 4 * @version 1.10 1997-07-01

 5 * @author Cay Horstmann

 6 */

 7 class Printf4

 8 {

 9 public static native void fprint(PrintWriter ps, String format, double

x);

10

11 static

12 {

13 System.loadLibrary("Printf4");

14 }

15 }

Listing 12.19 printf4/Printf4Test.java

 1 import java.io.*;

 2

 3 /**

 4 * @version 1.10 1997-07-01

 5 * @author Cay Horstmann

 6 */

 7 class Printf4Test

 8 {

 9 public static void main(String[] args)

10 {

11 double price = 44.95;

12 double tax = 7.75;

13 double amountDue = price * (1 + tax / 100);

14 PrintWriter out = new PrintWriter(System.out);

15 /* This call will throw an exception--note the %% */

16 Printf4.fprint(out, "Amount due = %%8.2f\n", amountDue);

17 out.flush();

18 }

19 }

Handling Java Exceptions

• jint Throw(JNIEnv *env, jthrowable obj)

prepares an exception to be thrown upon exiting from the native code. Returns 0 on success,

a negative value on failure.

• jint ThrowNew(JNIEnv *env, jclass cl, const char msg[])

prepares an exception of type cl to be thrown upon exiting from the native code. Returns

0 on success, a negative value on failure. msg is a “modified UTF-8” byte sequence denoting

the String construction argument of the exception object.

• jthrowable ExceptionOccurred(JNIEnv *env)

returns the exception object if an exception is pending, or NULL otherwise.

• jboolean ExceptionCheck(JNIEnv *env)

returns true if an exception is pending.

• void ExceptionClear(JNIEnv *env)

clears any pending exceptions.

12.9 Using the Invocation API

Up to now, we have considered programs in the Java programming language that made a few

C calls, presumably because C was faster or allowed access to functionality inaccessible

from the Java platform. Suppose you are in the opposite situation. You have a C or C++ program

and would like to make calls to Java code. The invocation API enables you to embed the Java
virtual machine into a C or C++ program. Here is the minimal code that you need to initialize

a virtual machine:

 JavaVMOption options[1];

 JavaVMInitArgs vm_args;

 JavaVM *jvm;

 JNIEnv *env;

 options[0].optionString = "-Djava.class.path=.";

 memset(&vm_args, 0, sizeof(vm_args));

 vm_args.version = JNI_VERSION_1_2;

 vm_args.nOptions = 1;

 vm_args.options = options;

 JNI_CreateJavaVM(&jvm, (void**) &env, &vm_args);

The call to JNI_CreateJavaVM creates the virtual machine and fills in a pointer jvm to the

virtual machine and a pointer env to the execution environment.

You can supply any number of options to the virtual machine. Simply increase the size of

the options array and the value of vm_args.nOptions. For example,

 options[i].optionString = "-Djava.compiler=NONE";

deactivates the just-in-time compiler.

TIP:

When you run into trouble and your program crashes, refuses to initialize the JVM, or can’t

load your classes, turn on the JNI debugging mode. Set an option to

 options[i].optionString = "-verbose:jni";

You will see a flurry of messages that indicate the progress in initializing the JVM. If

you don’t see your classes loaded, check both your path and class path settings.

Once you have set up the virtual machine, you can call Java methods as described in the

preceding sections. Simply use the env pointer in the usual way.

You’ll need the jvm pointer only to call other functions in the invocation API. Currently,

there are only four such functions. The most important one is the function to terminate

the virtual machine:

 (*jvm)->DestroyJavaVM(jvm);

Unfortunately, under Windows, it has become difficult to dynamically link to the

JNI_CreateJavaVM function in the jre/bin/client/jvm.dll library, due to the changed linking

rules in Vista and Oracle’s reliance on an older C runtime library. Our sample program

overcomes this problem by loading the library manually. This is the same approach used by

the java program—see the file launcher/java_md.c in the src.jar file that is a part of

the JDK.

The C program in Listing 12.20 sets up a virtual machine and calls the main method of the

Welcome class, which was discussed in Volume I, Chapter 2. (Make sure to compile the

Welcome.java file before starting the invocation test program.)

Listing 12.20 invocation/InvocationTest.c

 1 /**

 2 @version 1.20 2007-10-26

 3 @author Cay Horstmann

 4 */

 5

 6 #include <jni.h>

 7 #include <stdlib.h>

 8

 9 #ifdef _WINDOWS

10

11 #include <windows.h>

12 static HINSTANCE loadJVMLibrary(void);

13 typedef jint (JNICALL *CreateJavaVM_t)(JavaVM **, void **, JavaVMInitArgs *);

14

15 #endif

16

17 int main()

18 {

19 JavaVMOption options[2];

20 JavaVMInitArgs vm_args;

21 JavaVM *jvm;

22 JNIEnv *env;

23 long status;

24

25 jclass class_Welcome;

26 jclass class_String;

27 jobjectArray args;

28 jmethodID id_main;

29

30 #ifdef _WINDOWS

31 HINSTANCE hjvmlib;

32 CreateJavaVM_t createJavaVM;

33 #endif

34

35 options[0].optionString = "-Djava.class.path=.";

36

37 memset(&vm_args, 0, sizeof(vm_args));

38 vm_args.version = JNI_VERSION_1_2;

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch02.html#ch02

39 vm_args.nOptions = 1;

40 vm_args.options = options;

41

 42

43 #ifdef _WINDOWS

44 hjvmlib = loadJVMLibrary();

45 createJavaVM = (CreateJavaVM_t) GetProcAddress(hjvmlib,

"JNI_CreateJavaVM");

46 status = (*createJavaVM)(&jvm, (void **) &env, &vm_args);

47 #else

48 status = JNI_CreateJavaVM(&jvm, (void **) &env, &vm_args);

49 #endif

50

51 if (status == JNI_ERR)

52 {

53 fprintf(stderr, "Error creating VM\n");

54 return 1;

55 }

56

57 class_Welcome = (*env)->FindClass(env, "Welcome");

58 id_main = (*env)->GetStaticMethodID(env, class_Welcome, "main",

"([Ljava/lang/String;)V");

59

60 class_String = (*env)->FindClass(env, "java/lang/String");

61 args = (*env)->NewObjectArray(env, 0, class_String, NULL);

62 (*env)->CallStaticVoidMethod(env, class_Welcome, id_main, args);

63

64 (*jvm)->DestroyJavaVM(jvm);

65

66 return 0;

67 }

68

69 #ifdef _WINDOWS

70

71 static int GetStringFromRegistry(HKEY key, const char *name, char *buf, jint

bufsize)

72 {

73 DWORD type, size;

74

75 return RegQueryValueEx(key, name, 0, &type, 0, &size) == 0

76 && type == REG_SZ

77 && size < (unsigned int) bufsize

78 && RegQueryValueEx(key, name, 0, 0, buf, &size) == 0;

79 }

80

81 static void GetPublicJREHome(char *buf, jint bufsize)

82 {

83 HKEY key, subkey;

84 char version[MAX_PATH];

85

86 /* Find the current version of the JRE */

87 char *JRE_KEY = "Software\\JavaSoft\\Java Runtime Environment";

88 if (RegOpenKeyEx(HKEY_LOCAL_MACHINE, JRE_KEY, 0, KEY_READ, &key) != 0)

89 {

90 fprintf(stderr, "Error opening registry key '%s'\n", JRE_KEY);

91 exit(1);

92 }

93

94 if (!GetStringFromRegistry(key, "CurrentVersion", version,

sizeof(version)))

95 {

96 fprintf(stderr, "Failed reading value of registry

key:\n\t%s\\CurrentVersion\n", JRE_KEY);

97 RegCloseKey(key);

98 exit(1);

99 }

100

101 /* Find directory where the current version is installed. */

102 if (RegOpenKeyEx(key, version, 0, KEY_READ, &subkey) != 0)

103 {

104 fprintf(stderr, "Error opening registry key '%s\\%s'\n", JRE_KEY,

version);

105 RegCloseKey(key);

106 exit(1);

107 }

108

109 if (!GetStringFromRegistry(subkey, "JavaHome", buf, bufsize))

110 {

111 fprintf(stderr, "Failed reading value of registry

key:\n\t%s\\%s\\JavaHome\n",

112 JRE_KEY, version);

113 RegCloseKey(key);

114 RegCloseKey(subkey);

115 exit(1);

116 }

117

118 RegCloseKey(key);

119 RegCloseKey(subkey);

120 }

121

122 static HINSTANCE loadJVMLibrary(void)

123 {

124 HINSTANCE h1, h2;

125 char msvcdll[MAX_PATH];

126 char javadll[MAX_PATH];

127 GetPublicJREHome(msvcdll, MAX_PATH);

128 strcpy(javadll, msvcdll);

129 strncat(msvcdll, "\\bin\\msvcr71.dll", MAX_PATH - strlen(msvcdll));

130 msvcdll[MAX_PATH - 1] = '\0';

131 strncat(javadll, "\\bin\\client\\jvm.dll", MAX_PATH - strlen(javadll));

132 javadll[MAX_PATH - 1] = '\0';

133

134 h1 = LoadLibrary(msvcdll);

135 if (h1 == NULL)

136 {

137 fprintf(stderr, "Can't load library msvcr71.dll\n");

138 exit(1);

139 }

140

141 h2 = LoadLibrary(javadll);

142 if (h2 == NULL)

143 {

144 fprintf(stderr, "Can't load library jvm.dll\n");

145 exit(1);

146 }

147 return h2;

148 }

149

150 #endif

To compile this program under Linux, use

 gcc -I jdk/include -I jdk/include/linux -o InvocationTest

 -L jdk/jre/lib/i386/client -ljvm InvocationTest.c

Under Solaris, use

 cc -I jdk/include -I jdk/include/solaris -o InvocationTest

 -L jdk/jre/lib/sparc -ljvm InvocationTest.c

When compiling in Windows with the Microsoft compiler, use the command line

 cl -D_WINDOWS -I jdk\include -I jdk\include\win32 InvocationTest.c jdk\lib\jvm.lib

advapi32.lib

You will need to make sure that the INCLUDE and LIB environment variables include the paths

to the Windows API header and library files.

With Cygwin, compile with

 gcc -D_WINDOWS -mno-cygwin -I jdk\include -I jdk\include\win32

-D__int64="long long"

 -I c:\cygwin\usr\include\w32api -o InvocationTest

Before you run the program under Linux/UNIX, make sure that the LD_LIBRARY_PATH contains

the directories for the shared libraries. For example, if you use the bash shell on Linux,

issue the following command:

 export LD_LIBRARY_PATH=jdk/jre/lib/i386/client:$LD_LIBRARY_PATH

Invocation API Functions

• jint JNI_CreateJavaVM(JavaVM** p_jvm, void** p_env, JavaVMInitArgs* vm_args)

initializes the Java virtual machine. The function returns 0 if successful, JNI_ERR on

failure.

• jint DestroyJavaVM(JavaVM* jvm)

destroys the virtual machine. Returns 0 on success, a negative number on failure. This

function must be called through a virtual machine pointer, i.e.,

(*jvm)->DestroyJavaVM(jvm).

12.10 A Complete Example: Accessing the Windows Registry

In this section, we describe a full, working example that covers everything we discussed

in this chapter: using native methods with strings, arrays, objects, constructor calls,

and error handling. We’ll show you how to put a Java platform wrapper around a subset of

the ordinary C-based API used to work with the Windows registry. Of course, the Windows

registry being a Windows-specific feature, such a program is inherently nonportable. For

that reason, the standard Java library has no support for the registry, and it makes sense

to use native methods to gain access to it.

12.10.1 Overview of the Windows Registry

The Windows registry is a data depository that holds configuration information for the

Windows operating system and application programs. It provides a single point for

administration and backup of system and application preferences. On the downside, the

registry is also a single point of failure—if you mess up the registry, your computer could

malfunction or even fail to boot!

We don’t suggest that you use the registry to store configuration parameters for your Java

programs. The Java preferences API is a better solution (see Volume I, Chapter 10 for more

information). We’ll simply use the registry to demonstrate how to wrap a nontrivial native

API into a Java class.

The principal tool for inspecting the registry is the registry editor. Because of the
potential for error by naive but enthusiastic users, there is no icon for launching the

registry editor. Instead, start a DOS shell (or open the Start —> Run dialog box) and type

regedit. Figure 12.4 shows the registry editor in action.

Figure 12.4 The registry editor

https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch10.html#ch10
https://www.safaribooksonline.com/library/view/core-java-volume/9780134177878/ch12.html#ch12fig04

The left side shows the keys, which are arranged in a tree structure. Note that each key

starts with one of the HKEY nodes like

 HKEY_CLASSES_ROOT

 HKEY_CURRENT_USER

 HKEY_LOCAL_MACHINE

 ...

The right side shows the name/value pairs associated with a particular key. For example,

if you installed Java SE 7, the key

 HKEY_LOCAL_MACHINE\Software\JavaSoft\Java Runtime Environment

contains a name/value pair such as

 CurrentVersion="1.7.0_10"

In this case, the value is a string. The values can also be integers or arrays of bytes.

12.10.2 A Java Platform Interface for Accessing the Registry

We create a simple interface to access the registry from Java code, and then implement this

interface with native code. Our interface allows only a few registry operations; to keep

the code size down, we omitted some important operations such as adding, deleting, and

enumerating keys. (It should be easy to add the remaining registry API functions.)

Even with the limited subset that we supply, you can

• Enumerate all names stored in a key

• Read the value stored with a name

• Set the value stored with a name

Here is the Java class that encapsulates a registry key:

 public class Win32RegKey

 {

 public Win32RegKey(int theRoot, String thePath) { . . . }

 public Enumeration names() { . . . }

 public native Object getValue(String name);

 public native void setValue(String name, Object value);

 public static final int HKEY_CLASSES_ROOT = 0×80000000;

 public static final int HKEY_CURRENT_USER = 0×80000001;

 public static final int HKEY_LOCAL_MACHINE = 0×80000002;

 ...

 }

The names method returns an enumeration that holds all the names stored with the key. You

can get at them with the familiar hasMoreElements/nextElement methods. The getValue method

returns an object that is either a string, an Integer object, or a byte array. The value

parameter of the setValue method must also be of one of these three types.

12.10.3 Implementation of Registry Access Functions as Native Methods

We need to implement three actions:

• Get the value of a name

• Set the value of a name

• Iterate through the names of a key

Fortunately, you have seen essentially all the tools that are required, such as the

conversion between Java strings and arrays and those of C. You also saw how to raise a Java

exception in case something goes wrong.

Two issues make these native methods more complex than the preceding examples. The getValue

and setValue methods deal with the type Object, which can be one of String, Integer, or

byte[]. The enumeration object stores the state between successive calls to hasMoreElements

and nextElement.

Let us first look at the getValue method. The method (shown in Listing 12.22) goes through

the following steps:

1. Opens the registry key. To read their values, the registry API requires that keys be

open.

2. Queries the type and size of the value associated with the name.

3. Reads the data into a buffer.

4. Calls NewStringUTF to create a new string with the value data if the type is REG_SZ (a

string).

5. Invokes the Integer constructor if the type is REG_DWORD (a 32-bit integer).

6. Calls NewByteArray to create a new byte array, then SetByteArrayRegion to copy the value

data into the byte array, if the type is REG_BINARY.

7. If the type is none of these or if an error occurred when an API function was called,

throws an exception and releases all resources that had been acquired up to that point.

8. Closes the key and returns the object (String, Integer, or byte[]) that had been created.

As you can see, this example illustrates quite nicely how to generate Java objects of

different types.

In this native method, coping with the generic return type is not difficult. The jstring,

jobject, or jarray reference is simply returned as a jobject. However, the setValue method

receives a reference to an Object and must determine the Object’s exact type to save the

Object as a string, integer, or byte array. We can make this determination by querying the

class of the value object, finding the class references for java.lang.String,

java.lang.Integer, and byte[], and comparing them with the IsAssignableFrom function.

If class1 and class2 are two class references, then the call

 (*env)->IsAssignableFrom(env, class1, class2)

returns JNI_TRUE when class1 and class2 are the same class or when class1 is a subclass

of class2. In either case, references to objects of class1 can be cast to class2. For example,

when

 (*env)->IsAssignableFrom(env, (*env)->GetObjectClass(env, value),

(*env)->FindClass(env, "[B"))

is true, we know that value is a byte array.

Here is an overview of the steps in the setValue method:

1. Open the registry key for writing.

2. Find the type of the value to write.

3. Call GetStringUTFChars to get a pointer to the characters if the type is String.

4. Call the intValue method to get the integer stored in the wrapper object if the type

is Integer.

5. Call GetByteArrayElements to get a pointer to the bytes if the type is byte[].

6. Pass the data and length to the registry.

7. Close the key.

8. Release the pointer to the data if the type is String or byte[].

Finally, let us turn to the native methods that enumerate keys. These are methods of the

Win32RegKeyNameEnumeration class (see Listing 12.21). When the enumeration process starts,

we must open the key. For the duration of the enumeration, we must retain the key handle—that

is, the key handle must be stored with the enumeration object. The key handle is of type

DWORD (a 32-bit quantity), so it can be stored in a Java integer. We store it in the hkey

field of the enumeration class. When the enumeration starts, the field is initialized with

SetIntField. Subsequent calls read the value with GetIntField.

In this example, we store three other data items with the enumeration object. When the

enumeration first starts, we can query the registry for the count of name/value pairs and

the length of the longest name, which we need so we can allocate C character arrays to hold

the names. These values are stored in the count and maxsize fields of the enumeration object.

Finally, the index field is initialized with -1 to indicate the start of the enumeration,

is set to 0 once the other instance fields are initialized, and is incremented after every

enumeration step.

Let’s walk through the native methods that support the enumeration. The hasMoreElements

method is simple:

1. Retrieve the index and count fields.

2. If the index is -1, call the startNameEnumeration function, which opens the key, queries

the count and maximum length, and initializes the hkey, count, maxsize, and index fields.

3. Return JNI_TRUE if index is less than count, and JNI_FALSE otherwise.

The nextElement method needs to work a little harder:

1. Retrieve the index and count fields.

2. If the index is -1, call the startNameEnumeration function, which opens the key, queries

the count and maximum length, and initializes the hkey, count, maxsize, and index fields.

3. If index equals count, throw a NoSuchElementException.

4. Read the next name from the registry.

5. Increment index.

6. If index equals count, close the key.

Before compiling, remember to run javah on both Win32RegKey and Win32RegKeyNameEnumeration.

The complete command line for the Microsoft compiler is

 cl -I jdk\include -I jdk\include\win32 -LD Win32RegKey.c advapi32.lib

-FeWin32RegKey.dll

With Cygwin, use

 gcc -mno-cygwin -D __int64="long long" -I jdk\include -I jdk\include\win32

 -I c:\cygwin\usr\include\w32api -shared -Wl,--add-stdcall-alias -o

Win32RegKey.dll

 Win32RegKey.c

As the registry API is specific to Windows, this program will not work on other operating

systems.

Listing 12.23 shows a program to test our new registry functions. We add three name/value

pairs, a string, an integer, and a byte array to the key

 HKEY_CURRENT_USER\Software\JavaSoft\Java Runtime Environment

We then enumerate all names of that key and retrieve their values. The program will print

 Default user=Harry Hacker

 Lucky number=13

 Small primes=2 3 5 7 11 13

Although adding these name/value pairs to that key probably does no harm, you might want

to use the registry editor to remove them after running this program.

Listing 12.21 win32reg/Win32RegKey.java

 1 import java.util.*;

 2

 3 /**

 4 * A Win32RegKey object can be used to get and set values of a registry key

in the Windows registry.

 5 * @version 1.00 1997-07-01

 6 * @author Cay Horstmann

 7 */

 8 public class Win32RegKey

 9 {

10 public static final int HKEY_CLASSES_ROOT = 0x80000000;

11 public static final int HKEY_CURRENT_USER = 0x80000001;

12 public static final int HKEY_LOCAL_MACHINE = 0x80000002;

13 public static final int HKEY_USERS = 0x80000003;

14 public static final int HKEY_CURRENT_CONFIG = 0x80000005;

15 public static final int HKEY_DYN_DATA = 0x80000006;

16

17 private int root;

18 private String path;

19

20 /**

21 * Gets the value of a registry entry.

22 * @param name the entry name

23 * @return the associated value

24 */

25 public native Object getValue(String name);

26

27 /**

28 * Sets the value of a registry entry.

29 * @param name the entry name

30 * @param value the new value

31 */

32 public native void setValue(String name, Object value);

33

34 /**

35 * Construct a registry key object.

36 * @param theRoot one of HKEY_CLASSES_ROOT, HKEY_CURRENT_USER,

HKEY_LOCAL_MACHINE, HKEY_USERS,

37 * HKEY_CURRENT_CONFIG, HKEY_DYN_DATA

38 * @param thePath the registry key path

39 */

40 public Win32RegKey(int theRoot, String thePath)

41 {

42 root = theRoot;

43 path = thePath;

44 }

45

46 /**

47 * Enumerates all names of registry entries under the path that this object

describes.

48 * @return an enumeration listing all entry names

49 */

50 public Enumeration<String> names()

51 {

52 return new Win32RegKeyNameEnumeration(root, path);

53 }

54

55 static

56 {

57 System.loadLibrary("Win32RegKey");

58 }

59 }

60

61 class Win32RegKeyNameEnumeration implements Enumeration<String>

62 {

63 public native String nextElement();

64 public native boolean hasMoreElements();

65 private int root;

66 private String path;

67 private int index = -1;

68 private int hkey = 0;

69 private int maxsize;

70 private int count;

71

72 Win32RegKeyNameEnumeration(int theRoot, String thePath)

73 {

74 root = theRoot;

75 path = thePath;

76 }

77 }

78

79 class Win32RegKeyException extends RuntimeException

80 {

81 public Win32RegKeyException()

82 {

83 }

84

85 public Win32RegKeyException(String why)

86 {

87 super(why);

88 }

89 }

Listing 12.22 win32reg/Win32RegKey.c

 1 /**

 2 @version 1.00 1997-07-01

 3 @author Cay Horstmann

 4 */

 5

 6 #include "Win32RegKey.h"

 7 #include "Win32RegKeyNameEnumeration.h"

 8 #include <string.h>

 9 #include <stdlib.h>

10 #include <windows.h>

11

12 JNIEXPORT jobject JNICALL Java_Win32RegKey_getValue(JNIEnv* env, jobject this_obj,

jobject name)

13 {

14 const char* cname;

15 jstring path;

16 const char* cpath;

17 HKEY hkey;

18 DWORD type;

19 DWORD size;

20 jclass this_class;

21 jfieldID id_root;

22 jfieldID id_path;

23 HKEY root;

24 jobject ret;

25 char* cret;

26

27 /* get the class */

28 this_class = (*env)->GetObjectClass(env, this_obj);

29

30 /* get the field IDs */

31 id_root = (*env)->GetFieldID(env, this_class, "root", "I");

32 id_path = (*env)->GetFieldID(env, this_class, "path", "Ljava/lang/String;");

33

34 /* get the fields */

35 root = (HKEY) (*env)->GetIntField(env, this_obj, id_root);

36 path = (jstring)(*env)->GetObjectField(env, this_obj, id_path);

37 cpath = (*env)->GetStringUTFChars(env, path, NULL);

38

39 /* open the registry key */

40 if (RegOpenKeyEx(root, cpath, 0, KEY_READ, &hkey) != ERROR_SUCCESS)

41 {

42 (*env)->ThrowNew(env, (*env)->FindClass(env, "Win32RegKeyException"),

43 "Open key failed");

44 (*env)->ReleaseStringUTFChars(env, path, cpath);

45 return NULL;

46 }

47

48 (*env)->ReleaseStringUTFChars(env, path, cpath);

49 cname = (*env)->GetStringUTFChars(env, name, NULL);

50

51 /* find the type and size of the value */

52 if (RegQueryValueEx(hkey, cname, NULL, &type, NULL, &size) != ERROR_SUCCESS)

53 {

54 (*env)->ThrowNew(env, (*env)->FindClass(env, "Win32RegKeyException"),

55 "Query value key failed");

56 RegCloseKey(hkey);

57 (*env)->ReleaseStringUTFChars(env, name, cname);

58 return NULL;

59 }

60

61 /* get memory to hold the value */

62 cret = (char*)malloc(size);

63

64 /* read the value */

65 if (RegQueryValueEx(hkey, cname, NULL, &type, cret, &size) !=

ERROR_SUCCESS)

66 {

67 (*env)->ThrowNew(env, (*env)->FindClass(env,

"Win32RegKeyException"),

68 "Query value key failed");

69 free(cret);

70 RegCloseKey(hkey);

71 (*env)->ReleaseStringUTFChars(env, name, cname);

72 return NULL;

73 }

74

75 /* depending on the type, store the value in a string,

76 integer or byte array */

77 if (type == REG_SZ)

78 {

79 ret = (*env)->NewStringUTF(env, cret);

80 }

81 else if (type == REG_DWORD)

82 {

83 jclass class_Integer = (*env)->FindClass(env,

"java/lang/Integer");

84 /* get the method ID of the constructor */

85 jmethodID id_Integer = (*env)->GetMethodID(env, class_Integer,

"<init>", "(I)V");

86 int value = *(int*) cret;

87 /* invoke the constructor */

88 ret = (*env)->NewObject(env, class_Integer, id_Integer, value);

89 }

90 else if (type == REG_BINARY)

91 {

92 ret = (*env)->NewByteArray(env, size);

93 (*env)->SetByteArrayRegion(env, (jarray) ret, 0, size, cret);

94 }

95 else

96 {

97 (*env)->ThrowNew(env, (*env)->FindClass(env,

"Win32RegKeyException"),

98 "Unsupported value type");

99 ret = NULL;

100 }

101

102 free(cret);

103 RegCloseKey(hkey);

104 (*env)->ReleaseStringUTFChars(env, name, cname);

105

106 return ret;

107 }

108

109 JNIEXPORT void JNICALL Java_Win32RegKey_setValue(JNIEnv* env, jobject this_obj,

110 jstring name, jobject value)

111 {

112 const char* cname;

113 jstring path;

114 const char* cpath;

115 HKEY hkey;

116 DWORD type;

117 DWORD size;

118 jclass this_class;

119 jclass class_value;

120 jclass class_Integer;

121 jfieldID id_root;

122 jfieldID id_path;

123 HKEY root;

124 const char* cvalue;

125 int ivalue;

126

127 /* get the class */

128 this_class = (*env)->GetObjectClass(env, this_obj);

129

130 /* get the field IDs */

131 id_root = (*env)->GetFieldID(env, this_class, "root", "I");

132 id_path = (*env)->GetFieldID(env, this_class, "path", "Ljava/lang/String;");

133

134 /* get the fields */

135 root = (HKEY)(*env)->GetIntField(env, this_obj, id_root);

136 path = (jstring)(*env)->GetObjectField(env, this_obj, id_path);

137 cpath = (*env)->GetStringUTFChars(env, path, NULL);

138

139 /* open the registry key */

140 if (RegOpenKeyEx(root, cpath, 0, KEY_WRITE, &hkey) != ERROR_SUCCESS)

141 {

142 (*env)->ThrowNew(env, (*env)->FindClass(env, "Win32RegKeyException"),

143 "Open key failed");

144 (*env)->ReleaseStringUTFChars(env, path, cpath);

145 return;

146 }

147

148 (*env)->ReleaseStringUTFChars(env, path, cpath);

149 cname = (*env)->GetStringUTFChars(env, name, NULL);

150

151 class_value = (*env)->GetObjectClass(env, value);

152 class_Integer = (*env)->FindClass(env, "java/lang/Integer");

153 /* determine the type of the value object */

154 if ((*env)->IsAssignableFrom(env, class_value, (*env)->FindClass(env,

"java/lang/String")))

155 {

156 /* it is a string--get a pointer to the characters */

157 cvalue = (*env)->GetStringUTFChars(env, (jstring) value, NULL);

158 type = REG_SZ;

159 size = (*env)->GetStringLength(env, (jstring) value) + 1;

160 }

161 else if ((*env)->IsAssignableFrom(env, class_value, class_Integer))

162 {

163 /* it is an integer--call intValue to get the value */

164 jmethodID id_intValue = (*env)->GetMethodID(env, class_Integer,

"intValue", "()I");

165 ivalue = (*env)->CallIntMethod(env, value, id_intValue);

166 type = REG_DWORD;

167 cvalue = (char*)&ivalue;

168 size = 4;

169 }

170 else if ((*env)->IsAssignableFrom(env, class_value, (*env)->FindClass(env,

"[B")))

171 {

172 /* it is a byte array--get a pointer to the bytes */

173 type = REG_BINARY;

174 cvalue = (char*)(*env)->GetByteArrayElements(env, (jarray) value,

NULL);

175 size = (*env)->GetArrayLength(env, (jarray) value);

176 }

177 else

178 {

179 /* we don't know how to handle this type */

180 (*env)->ThrowNew(env, (*env)->FindClass(env, "Win32RegKeyException"),

181 "Unsupported value type");

182 RegCloseKey(hkey);

183 (*env)->ReleaseStringUTFChars(env, name, cname);

184 return;

185 }

186

187 /* set the value */

188 if (RegSetValueEx(hkey, cname, 0, type, cvalue, size) != ERROR_SUCCESS)

189 {

190 (*env)->ThrowNew(env, (*env)->FindClass(env, "Win32RegKeyException"),

191 "Set value failed");

192 }

193

194 RegCloseKey(hkey);

195 (*env)->ReleaseStringUTFChars(env, name, cname);

196

197 /* if the value was a string or byte array, release the pointer */

198 if (type == REG_SZ)

199 {

200 (*env)->ReleaseStringUTFChars(env, (jstring) value, cvalue);

201 }

202 else if (type == REG_BINARY)

203 {

204 (*env)->ReleaseByteArrayElements(env, (jarray) value, (jbyte*)

cvalue, 0);

205 }

206 }

207

208 /* helper function to start enumeration of names */

209 static int startNameEnumeration(JNIEnv* env, jobject this_obj, jclass this_class)

210 {

211 jfieldID id_index;

212 jfieldID id_count;

213 jfieldID id_root;

214 jfieldID id_path;

215 jfieldID id_hkey;

216 jfieldID id_maxsize;

217

218 HKEY root;

219 jstring path;

220 const char* cpath;

221 HKEY hkey;

222 DWORD maxsize = 0;

223 DWORD count = 0;

224

225 /* get the field IDs */

226 id_root = (*env)->GetFieldID(env, this_class, "root", "I");

227 id_path = (*env)->GetFieldID(env, this_class, "path",

"Ljava/lang/String;");

228 id_hkey = (*env)->GetFieldID(env, this_class, "hkey", "I");

229 id_maxsize = (*env)->GetFieldID(env, this_class, "maxsize", "I");

230 id_index = (*env)->GetFieldID(env, this_class, "index", "I");

231 id_count = (*env)->GetFieldID(env, this_class, "count", "I");

232

233 /* get the field values */

234 root = (HKEY)(*env)->GetIntField(env, this_obj, id_root);

235 path = (jstring)(*env)->GetObjectField(env, this_obj, id_path);

236 cpath = (*env)->GetStringUTFChars(env, path, NULL);

237

238 /* open the registry key */

239 if (RegOpenKeyEx(root, cpath, 0, KEY_READ, &hkey) != ERROR_SUCCESS)

240 {

241 (*env)->ThrowNew(env, (*env)->FindClass(env,

"Win32RegKeyException"),

242 "Open key failed");

243 (*env)->ReleaseStringUTFChars(env, path, cpath);

244 return -1;

245 }

246 (*env)->ReleaseStringUTFChars(env, path, cpath);

247

248 /* query count and max length of names */

249 if (RegQueryInfoKey(hkey, NULL, NULL, NULL, NULL, NULL, NULL, &count,

&maxsize,

250 NULL, NULL, NULL) != ERROR_SUCCESS)

251 {

252 (*env)->ThrowNew(env, (*env)->FindClass(env,

"Win32RegKeyException"),

253 "Query info key failed");

254 RegCloseKey(hkey);

255 return -1;

256 }

257

258 /* set the field values */

259 (*env)->SetIntField(env, this_obj, id_hkey, (DWORD) hkey);

260 (*env)->SetIntField(env, this_obj, id_maxsize, maxsize + 1);

261 (*env)->SetIntField(env, this_obj, id_index, 0);

262 (*env)->SetIntField(env, this_obj, id_count, count);

263 return count;

264 }

265

266 JNIEXPORT jboolean JNICALL

Java_Win32RegKeyNameEnumeration_hasMoreElements(JNIEnv* env,

267 jobject this_obj)

268 { jclass this_class;

269 jfieldID id_index;

270 jfieldID id_count;

271 int index;

272 int count;

273 /* get the class */

274 this_class = (*env)->GetObjectClass(env, this_obj);

275

276 /* get the field IDs */

277 id_index = (*env)->GetFieldID(env, this_class, "index", "I");

278 id_count = (*env)->GetFieldID(env, this_class, "count", "I");

279

280 index = (*env)->GetIntField(env, this_obj, id_index);

281 if (index == -1) /* first time */

282 {

283 count = startNameEnumeration(env, this_obj, this_class);

284 index = 0;

285 }

286 else

287 count = (*env)->GetIntField(env, this_obj, id_count);

288 return index < count;

289 }

290

291 JNIEXPORT jobject JNICALL Java_Win32RegKeyNameEnumeration_nextElement(JNIEnv*

env,

292 jobject this_obj)

293 {

294 jclass this_class;

295 jfieldID id_index;

296 jfieldID id_hkey;

297 jfieldID id_count;

298 jfieldID id_maxsize;

299

300 HKEY hkey;

301 int index;

302 int count;

303 DWORD maxsize;

304

305 char* cret;

306 jstring ret;

307

308 /* get the class */

309 this_class = (*env)->GetObjectClass(env, this_obj);

310

311 /* get the field IDs */

312 id_index = (*env)->GetFieldID(env, this_class, "index", "I");

313 id_count = (*env)->GetFieldID(env, this_class, "count", "I");

314 id_hkey = (*env)->GetFieldID(env, this_class, "hkey", "I");

315 id_maxsize = (*env)->GetFieldID(env, this_class, "maxsize", "I");

316

317 index = (*env)->GetIntField(env, this_obj, id_index);

318 if (index == -1) /* first time */

319 {

320 count = startNameEnumeration(env, this_obj, this_class);

321 index = 0;

322 }

323 else

324 count = (*env)->GetIntField(env, this_obj, id_count);

325

326 if (index >= count) /* already at end */

327 {

328 (*env)->ThrowNew(env, (*env)->FindClass(env,

"java/util/NoSuchElementException"),

329 "past end of enumeration");

330 return NULL;

331 }

332

333 maxsize = (*env)->GetIntField(env, this_obj, id_maxsize);

334 hkey = (HKEY)(*env)->GetIntField(env, this_obj, id_hkey);

335 cret = (char*)malloc(maxsize);

336

337 /* find the next name */

338 if (RegEnumValue(hkey, index, cret, &maxsize, NULL, NULL, NULL, NULL) !=

ERROR_SUCCESS)

339 {

340 (*env)->ThrowNew(env, (*env)->FindClass(env, "Win32RegKeyException"),

341 "Enum value failed");

342 free(cret);

343 RegCloseKey(hkey);

344 (*env)->SetIntField(env, this_obj, id_index, count);

345 return NULL;

346 }

347

348 ret = (*env)->NewStringUTF(env, cret);

349 free(cret);

350

351 /* increment index */

352 index++;

353 (*env)->SetIntField(env, this_obj, id_index, index);

354

355 if (index == count) /* at end */

356 {

357 RegCloseKey(hkey);

358 }

359

360 return ret;

361 }

362

 363

Listing 12.23 win32reg/Win32RegKeyTest.java

 1 import java.util.*;

 2

 3 /**

 4 @version 1.02 2007-10-26

 5 @author Cay Horstmann

 6 */

 7 public class Win32RegKeyTest

 8 {

 9 public static void main(String[] args)

10 {

11 Win32RegKey key = new Win32RegKey(

12 Win32RegKey.HKEY_CURRENT_USER, "Software\\JavaSoft\\Java

Runtime Environment");

13

14 key.setValue("Default user", "Harry Hacker");

15 key.setValue("Lucky number", new Integer(13));

16 key.setValue("Small primes", new byte[] { 2, 3, 5, 7, 11 });

17

18 Enumeration<String> e = key.names();

19

20 while (e.hasMoreElements())

21 {

22 String name = e.nextElement();

23 System.out.print(name + "=");

24

25 Object value = key.getValue(name);

26

27 if (value instanceof byte[])

28 for (byte b : (byte[]) value) System.out.print((b & 0xFF)

+ " ");

29 else

30 System.out.print(value);

31

32 System.out.println();

33 }

34 }

35 }

Type Inquiry Functions

• jboolean IsAssignableFrom(JNIEnv *env, jclass cl1, jclass cl2)

returns JNI_TRUE if objects of the first class can be assigned to objects of the second

class, and JNI_FALSE otherwise.This tests if the classes are the same, or cl1 is a subclass

of cl2, or cl2 represents an interface implemented by cl1 or one of its superclasses.

• jclass GetSuperclass(JNIEnv *env, jclass cl)

returns the superclass of a class. If cl represents the class Object or an interface, returns

NULL.

You have now reached the end of the second volume of Core Java, completing a long journey
in which you encountered many advanced APIs. We started out with topics that every Java

programmer needs to know: streams, XML, networking, databases, and internationalization.

Three long chapters covered graphics and GUI programming. We concluded with very technical

chapters on security, remote methods, annotation processing, and native methods. We hope

that you enjoyed your tour through the vast breadth of the Java APIs, and that you will

be able to apply your newly gained knowledge in your projects.

	Core Java® Volume II—Advanced Features, Tenth Edition
	Book Description
	Contents
	Preface
	About This Book
	Conventions

	Chapter 1. The Java SE 8 Stream Library
	1.1. From Iterating to Stream Operations
	1.2. Stream Creation
	1.3. The filter, map, and flatMap Methods
	1.4. Extracting Substreams and Combining Streams
	1.5. Other Stream Transformations
	1.6. Simple Reductions
	1.7. The Optional Type
	1.7.1. How to Work With Optional Values
	1.7.2. How Not to Work With Optional Values
	1.7.3. Creating Optional Values
	1.7.4. Composing Optional Value Functions with flatMap

	1.8. Collecting Results
	1.9. Collecting into Maps
	1.10. Grouping and Partitioning
	1.11. Downstream Collectors
	1.12. Reduction Operations
	1.13. Primitive Type Streams
	1.14. Parallel Streams

	Chapter 2. Input and Output
	2.1 Input/Output Streams
	2.1.1 Reading and Writing Bytes
	2.1.2 The Complete Stream Zoo
	2.1.3 Combining Input/Output Stream Filters

	2.2 Text Input and Output
	2.2.1 How to Write Text Output
	2.2.2 How to Read Text Input
	2.2.3 Saving Objects in Text Format
	2.2.4 Character Encodings

	2.3 Reading and Writing Binary Data
	2.3.1 The DataInput and DataOutput interfaces
	2.3.2 Random-Access Files
	2.3.3 ZIP Archives

	2.4 Object Input/Output Streams and Serialization
	2.4.1 Understanding the Object Serialization File Format
	2.4.2 Modifying the Default Serialization Mechanism
	2.4.3 Serializing Singletons and Typesafe Enumerations
	2.4.4 Versioning
	2.4.5 Using Serialization for Cloning

	2.5 Working with Files
	2.5.1 Paths
	2.5.2 Reading and Writing Files
	2.5.3 Creating Files and Directories
	2.5.4 Copying, Moving, and Deleting Files
	2.5.5 Getting File Information
	2.5.6 Visiting Directory Entries
	2.5.7 Using Directory Streams
	2.5.8 ZIP File Systems

	2.6 Memory-Mapped Files
	2.6.1 The Buffer Data Structure
	2.6.2 File Locking

	2.7 Regular Expressions

	Chapter 3. XML
	3.1 Introducing XML
	3.1.1 The Structure of an XML Document

	3.2 Parsing an XML Document
	3.3 Validating XML Documents
	3.3.1 Document Type Definitions
	3.3.2 XML Schema
	3.3.3 A Practical Example

	3.4 Locating Information with XPath
	3.5 Using Namespaces
	3.6 Streaming Parsers
	3.6.1 Using the SAX Parser
	3.6.2 Using the StAX Parser

	3.7 Generating XML Documents
	3.7.1 Documents without Namespaces
	3.7.2 Documents with Namespaces
	3.7.3 Writing Documents
	3.7.4 An Example: Generating an SVG File
	3.7.5 Writing an XML Document with StAX

	3.8 XSL Transformations

	Chapter 4. Networking
	4.1 Connecting to a Server
	4.1.1 Socket Timeouts
	4.1.2 Internet Addresses

	4.2 Implementing Servers
	4.2.1 Serving Multiple Clients
	4.2.2 Half-Close

	4.3 Interruptible Sockets
	4.4 Getting Web Data
	4.4.1 URLs and URIs
	4.4.2 Using a URLConnection to Retrieve Information
	4.4.3 Posting Form Data

	4.5 Sending E-Mail

	Chapter 5. Database Programming
	5.1 The Design of JDBC
	5.1.1 JDBC Driver Types
	5.1.2 Typical Uses of JDBC

	5.2 The Structured Query Language
	5.3 JDBC Configuration
	5.3.1 Database URLs
	5.3.2 Driver JAR Files
	5.3.3 Starting the Database
	5.3.4 Registering the Driver Class
	5.3.5 Connecting to the Database

	5.4 Executing SQL Statements
	5.4.1 Managing Connections, Statements, and Result Sets
	5.4.2 Analyzing SQL Exceptions
	5.4.3 Populating a Database

	5.5 Query Execution
	5.5.1 Prepared Statements
	5.5.2 Reading and Writing LOBs
	5.5.3 SQL Escapes
	5.5.4 Multiple Results
	5.5.5 Retrieving Autogenerated Keys

	5.6 Scrollable and Updatable Result Sets
	5.6.1 Scrollable Result Sets
	5.6.2 Updatable Result Sets

	5.7 Row Sets
	5.7.1 Constructing Row Sets
	5.7.2 Cached Row Sets

	5.8 Metadata
	5.9 Transactions
	5.9.1 Save Points
	5.9.2 Batch Updates
	5.9.3 Advanced SQL Types

	5.10 Connection Management in Web and Enterprise Applications

	Chapter 6. The Date and Time API
	6.1 The Time Line
	6.2 Local Dates
	6.3 Date Adjusters
	6.4 Local Time
	6.5 Zoned Time
	6.6 Formatting and Parsing
	6.7 Interoperating with Legacy Code

	Chapter 7. Internationalization
	7.1 Locales
	7.2 Number Formats
	7.3 Currencies
	7.4 Date and Time
	7.5 Collation and Normalization
	7.6 Message Formatting
	7.6.1 Formatting Numbers and Dates
	7.6.2 Choice Formats

	7.7 Text Input and Output
	7.7.1 Text Files
	7.7.2 Line Endings
	7.7.3 The Console
	7.7.4 Log Files
	7.7.5 The UTF-8 Byte Order Mark
	7.7.6 Character Encoding of Source Files

	7.8 Resource Bundles
	7.8.1 Locating Resource Bundles
	7.8.2 Property Files
	7.8.3 Bundle Classes

	7.9 A Complete Example

	Chapter 8. Scripting, Compiling, and Annotation Processing
	8.1 Scripting for the Java Platform
	8.1.1 Getting a Scripting Engine
	8.1.2 Script Evaluation and Bindings
	8.1.3 Redirecting Input and Output
	8.1.4 Calling Scripting Functions and Methods
	8.1.5 Compiling a Script
	8.1.6 An Example: Scripting GUI Events

	8.2 The Compiler API
	8.2.1 Compiling the Easy Way
	8.2.2 Using Compilation Tasks
	8.2.3 An Example: Dynamic Java Code Generation

	8.3 Using Annotations
	8.3.1 An Introduction into Annotations
	8.3.2 An Example: Annotating Event Handlers

	8.4 Annotation Syntax
	8.4.1 Annotation Interfaces
	8.4.2 Annotations
	8.4.3 Annotating Declarations
	8.4.4 Annotating Type Uses
	8.4.5 Annotating this

	8.5 Standard Annotations
	8.5.1 Annotations for Compilation
	8.5.2 Annotations for Managing Resources
	8.5.3 Meta-Annotations

	8.6 Source-Level Annotation Processing
	8.6.1 Annotation Processors
	8.6.2 The Language Model API
	8.6.3 Using Annotations to Generate Source Code

	8.7 Bytecode Engineering
	8.7.1 Modifying Class Files
	8.7.2 Modifying Bytecodes at Load Time

	Chapter 9. Security
	9.1 Class Loaders
	9.1.1 The Class Loading Process
	9.1.2 The Class Loader Hierarchy
	9.1.3 Using Class Loaders as Namespaces
	9.1.4 Writing Your Own Class Loader
	9.1.5 Bytecode Verification

	9.2 Security Managers and Permissions
	9.2.1 Permission Checking
	9.2.2 Java Platform Security
	9.2.3 Security Policy Files
	9.2.4 Custom Permissions
	9.2.5 Implementation of a Permission Class

	9.3 User Authentication
	9.3.1 The JAAS Framework
	9.3.2 JAAS Login Modules

	9.4 Digital Signatures
	9.4.1 Message Digests
	9.4.2 Message Signing
	9.4.3 Verifying a Signature
	9.4.4 The Authentication Problem
	9.4.5 Certificate Signing
	9.4.6 Certificate Requests
	9.4.7 Code Signing

	9.5 Encryption
	9.5.1 Symmetric Ciphers
	9.5.2 Key Generation
	9.5.3 Cipher Streams
	9.5.4 Public Key Ciphers

	Chapter 10. Advanced Swing
	10.1 Lists
	10.1.1 The JList Component
	10.1.2 List Models
	10.1.3 Inserting and Removing Values
	10.1.4 Rendering Values

	10.2 Tables
	10.2.1 A Simple Table
	10.2.2 Table Models
	10.2.3 Working with Rows and Columns
	10.2.3.1 Column Classes
	10.2.3.2 Accessing Table Columns
	10.2.3.3 Resizing Columns
	10.2.3.4 Resizing Rows
	10.2.3.5 Selecting Rows, Columns, and Cells
	10.2.3.6 Sorting Rows
	10.2.3.7 Filtering Rows
	10.2.3.8 Hiding and Displaying Columns

	10.2.4 Cell Rendering and Editing
	10.2.4.1 Rendering the Header
	10.2.4.2 Cell Editing
	10.2.4.3 Custom Editors

	10.3 Trees
	10.3.1 Simple Trees
	10.3.1.1 Editing Trees and Tree Paths

	10.3.2 Node Enumeration
	10.3.3 Rendering Nodes
	10.3.4 Listening to Tree Events
	10.3.5 Custom Tree Models

	10.4 Text Components
	10.4.1 Change Tracking in Text Components
	10.4.2 Formatted Input Fields
	10.4.2.1 Integer Input
	10.4.2.2 Behavior on Loss of Focus
	10.4.2.3 Filters
	10.4.2.4 Verifiers
	10.4.2.5 Other Standard Formatters
	10.4.2.6 Custom Formatters

	10.4.3 The JSpinner Component
	10.4.4 Displaying HTML with the JEditorPane

	10.5 Progress Indicators
	10.5.1 Progress Bars
	10.5.2 Progress Monitors
	10.5.3 Monitoring the Progress of Input Streams

	10.6 Component Organizers and Decorators
	10.6.1 Split Panes
	10.6.2 Tabbed Panes
	10.6.3 Desktop Panes and Internal Frames
	10.6.4 Cascading and Tiling
	10.6.5 Vetoing Property Settings
	10.6.5.1 Dialogs in Internal Frames
	10.6.5.2 Outline Dragging

	10.6.6 Layers

	Chapter 11. Advanced AWT
	11.1 The Rendering Pipeline
	11.2 Shapes
	11.2.1 Using the Shape Classes

	11.3 Areas
	11.4 Strokes
	11.5 Paint
	11.6 Coordinate Transformations
	11.7 Clipping
	11.8 Transparency and Composition
	11.9 Rendering Hints
	11.10 Readers and Writers for Images
	11.10.1 Obtaining Readers and Writers for Image File Types
	11.10.2 Reading and Writing Files with Multiple Images

	11.11 Image Manipulation
	11.11.1 Constructing Raster Images
	11.11.2 Filtering Images

	11.12 Printing
	11.12.1 Graphics Printing
	11.12.2 Multiple-Page Printing
	11.12.3 Print Preview
	11.12.4 Print Services
	11.12.5 Stream Print Services
	11.12.6 Printing Attributes

	11.13 The Clipboard
	11.13.1 Classes and Interfaces for Data Transfer
	11.13.2 Transferring Text
	11.13.3 The Transferable Interface and Data Flavors
	11.13.4 Building an Image Transferable
	11.13.5 Transferring Java Objects via the System Clipboard
	11.13.6 Using a Local Clipboard to Transfer Object References

	11.14 Drag and Drop
	11.14.1 Data Transfer Support in Swing
	11.14.2 Drag Sources
	11.14.3 Drop Targets

	11.15 Platform Integration
	11.15.1 Splash Screens
	11.15.2 Launching Desktop Applications
	11.15.3 The System Tray

	Chapter 12. Native Methods
	12.1 Calling a C Function from a Java Program
	12.2 Numeric Parameters and Return Values
	12.2.1 Using printf for Formatting Numbers

	12.3 String Parameters
	12.4 Accessing Fields
	12.4.1 Accessing Instance Fields
	12.4.2 Accessing Static Fields

	12.5 Encoding Signatures
	12.6 Calling Java Methods
	12.6.1 Instance Methods
	12.6.2 Static Methods
	12.6.3 Constructors
	12.6.4 Alternative Method Invocations

	12.7 Accessing Array Elements
	12.8 Handling Errors
	12.9 Using the Invocation API
	12.10 A Complete Example: Accessing the Windows Registry
	12.10.1 Overview of the Windows Registry
	12.10.2 A Java Platform Interface for Accessing the Registry
	12.10.3 Implementation of Registry Access Functions as Native Methods

