HI, JvREEREF~
AP E 2MEXRIT EHEXHEEBE , BRIEEEE 10004 Uit ENSHBFET.

Hig Rk C/C++, Java, Python, GOiESFEMHIZIES, TAMIRESASHE. BERR. Binie
B, HENRFEHR. GiEk. TENMRE. &iHEN, Bk, CRUARRBHRSHEES-

REFEARR, RERNRSZ2NHTENFEIBE, NRENERIIRESZRINBESERIRFH
B, RIWFIFHBRRSRSIFEA), BFREER.

HUREACERFINE, KEREDZLEFTENA, FEACHESEREBH T EEILEGT
—HERVNA. #F. EREN], ABLBRER—ARETRIARE—REK.

HiRftufil, (RETLIRY!

ACETLESESITENPE. SHEWPDFERLIRNAEICERRNSE, MBNEACEEENTE (&
RS [1GkFE]) FrE, BESEIRGissuesiBEXERE A Aforthespada@foxmail.com, B~

RORBHRLBERIRI, (RIIAEBR, REIHE, RMITLREETR.
E I — AR =TI BREXFF AT 3, ATMD3ET

QQEf: (DE¥$:1002342950, (9E¥$:826980895

é 1org
HTENEERZSROR HENRESHOR

B¥S 11002342950 B2 1 826980895

WEESXFE

https://github.com/forthespada/CS-Books
https://github.com/forthespada/CS-Books
https://github.com/forthespada/CS-Books
http://mp.weixin.qq.com/s?__biz=Mzg2MDU0ODM3MA==&mid=100000332&idx=1&sn=9dd24307b7e963174ee8429827542318&chksm=4e25fe3179527727ac563214c69fe6ac354ab4383c652d9b3e9e03d70dc48df4ad929e076ce3#rd
mailto:forthespada@foxmail.com

THE UNIVERSITY OF
SYDNEY

COMP2017/ COMP9017 Week 2 Tutorial

Introduction to C

Welcome to C!

In addition to bash scripts, you may have noticed a number of compiled files as you’ve been rummag-
ing around. These can be identified as unreadable messes of poorly rendered symbols. You can see
one by running cat on just about any file in /bin, for example cat /bin/grep.

This mess of symbols is a series of assembly instructions that indicate a number of operations that a
processor is to perform. Obviously writing this directly is a painful and time consuming exercise, so
programming languages have been developed that ‘compile’ down to this assembly.

As is often the starting point for learning a new language, the syntax for hello world in C is as follows:
#include <stdio.h>

int main () {
printf ("Hello World!\n");
return O;

}

We can also see that the function is named ‘main’. This is a special function name in C such that
when the code is run, the ‘main’ function will be the first one to be called. The print £ function is
one of the print statements in C and it sends a text stream to standard out, allowing it to interface with
the rest of linux.

While it is nice to have this sitting around in a file, in order to run this code we need to compile it.
There are two major (one might even say competing) C compilers: gcc and clang. The name of the
compiled file can be specified using the -o flag as follows.

gcc —o hello_world hello_world.c
or

clang -o hello_world hello_world.c
Then you can simply execute the compiled code.
./hello_world

Try writing, compiling and running hello world in c. What does the compiled file look like?

COMP2017 / COMP9017 Introduction to C

Question 1: Hello From C

You are to write a simple C program that will output Hel11lo World! to the terminal.

S ./hello
Hello World!

Question 2: Meet and Greet!

Like in previous semesters, you should be familiar with being able to query the user for data via
scanner.nextLine () or input () and retrieve arguments from the command line.

Write a program that will ask for the user’s name and output their name mixed with a command line
argument given.

$./greet Yo!
What is your name? David
Yo! David

For help on using the functions necessary to complete the question, you can retrieve information about
the following functions scanf and fgets by usingman 3 scanf andman 3 fgets.

Question 3: Repeat
Write a program that reads characters from stdin and outputs them to stdout. For example:

$./repeat
Hello there
Hello there
“D

Question 4: Echo 419

Write a program that outputs the arguments that are given to it. For example:

$./echo Echo 419 to Cortana, come in
Echo 419 to Cortana, come in

Systems Programming Page 2 of 8

COMP2017 / COMP9017 Introduction to C

C types

The C Programming language is a statically typed language, therefore any variable must have a type
associated with it. You can declare variables with following types and more:

* char and unsigned char

* int and unsigned int

* short and unsigned short
* long and unsigned long

¢ double

e float

However, each type is defined by the cpu architecture, platform and compiler. When writing portable
C code you may need to consider the differences of the primitive types between platform targets. C
exposes unsigned types which can be prepended to integer types to eliminate the usage of the sign
bit as part of the type encoding.

C provies access to memory allocations using array and pointer types. To declare an array in C you
need to specify the size. C does support variable length arrays with the C99 standard however, but it
typically considered bad practice.

int array_1[101];
int array_2[] = { 1, 2, 3, 4 };
int array_3[5]1 = {1, 2, 3}; // wWill still be 5 elements

Your code should not depend on this feature your compiler will typically warn you if it has been mis-
used. You will be able to dynamically allocate memory using functions such as malloc and navigating
them through a pointer type.

Systems Programming Page 3 of 8

COMP2017 / COMP9017 Introduction to C

Question 5: C Declarations and Initialisations

As a group, answer the following questions and discuss with your tutor about the following:

1. What are the differences between these declarations and initialisations?

const char * ptr = "hello";

const char array[] = "hello";

const char array2[] = { 'h', 'e', '1', '"1', 'o' };

const char array3[] = { 'h', 'e', '1', '1', 'o', '"\O' };
1 |l |

{ 'ht,

e 'll, ’l'l
{ 'h'l le’

const char array4[5] o)
, 'll, 'l', lOl

const char array5[6]

const char array6([20] = { 'h', 'e', '1', '1", o' };
const char array7[20] = { 0 };
const char array8[20] = "hello";

2. Given the code above, what does the following output?

printf ("%$zu %zu\n", sizeof (ptr), sizeof (array));
printf ("%$zu %zu\n", sizeof (array2), sizeof (array3));
printf ("%$zu %zu\n", sizeof (xptr), sizeof (sarray));
printf ("%$zu %zu\n", sizeof (s&array2), sizeof (&array3));

3. What does the following output, given that sizeof (int) is 4?

int x[] = { 1, 2, 3 };

int « pl = x;

int » p2 = x + 1;

printf ("%zu %zu\n", sizeof (x[0]), sizeof (x));

0
x) / sizeof (x[0]));
d

—

printf("length %zu", sizeof

printf ("pl value, p2 value: %d %d\n", xpl, *p2);
printf ("pl value with offset: %d\n", = (pl + 1));
printf("p value with offset: %d\n", *(p2 - 1));
printf ("pl value plus scalar: %d\n", (*pl) + 2);
printf ("pl plus offset followed: %d\n", x(pl + 2)
printf ("pl plus offset followed: %d\n", pl[2]);

Systems Programming Page 4 of 8

COMP2017 / COMP9017 Introduction to C

Question 6: Array and Pointer equivalence

The array and pointer type holds an address as its value, a common operation on a array and pointer
types are dereferencing operations (*) which allows retrieval of the value stored at the address.

We are able to retrieve the address from a value type (as well as array and pointer types) by using the
address operator (&). Supplying an integer value to the address, you can navigate the array or pointer
using integer arithmetic, referencing and derefering operations.

Given these pointer statements, can you provide an equivalent statement?

*p:

#(p+10) =

&r[20] =

&(g[0]) =

&*p =

p++=

(&(x[5DIS) =

What is the difference between pointers and arrays? Can we mix notation?

Systems Programming Page 5 of 8

COMP2017 / COMP9017 Introduction to C

Functions

As a programmer you are able to modularise your code into functions. Similar to variables, functions
have a type associated as part of the function signature.

The return type of a function requires a value of the same type to be passed back to the function caller.
Only void functions do not return any value.

Format:

<return type> <function_name> ([<parameter type> <parameter name>,]) {
//Function body

Example:

int add_two(int a, int b) {
return a + b;

Question 7: Swap
Implement the swap function, your function should swap the values of a and b respectively.

void swap(int a[], int b[]) {
//
// TODO
//

int main (void) {
int a = 2;
int b = 3;
swap(?, ?); //Specify the variables to swap
printf ("$d %d\n", a, b); // should print 3 2

return O;

Does your program execute differently if you change swap type parameters to int «?

Systems Programming Page 6 of 8

COMP2017 / COMP9017 Introduction to C

Question 8: atoi
Implement your own atoi function that converts a given string to an integer.

int atoi(const char s[]) {
//
// TODO
//

int main (void) {
printf ("%d\n", atoi
printf ("%d\n", atoi

""))

(

("0"));
"$d\n", atoi("0123"));

(

(

(
printf(
printf ("$d\n", atoi("1234"));
printf ("$d\n", atoi("-1234"));

return O;

Question 9: Reverse

Write a program that reverses every line of input, you may assume none of the input lines are longer
than 100 characters. Use the fget s function instead of scanf for this exercise because scanf does
not distinguish between spaces, newlines and tab characters. Refer to the isspace function for more
information.

Sample input:

abc 123
lorem ipsum
dolor sit amet

Sample output:

321 cba
muspi merol
tema tis rolod

Systems Programming Page 7 of 8

COMP2017 / COMP9017 Introduction to C

Question 10: Quiz - 1

In the last 10 minutes of the tutorial, you will be required to undertake a quiz that will test your
knowledge of the previous week’s content. It will be a simple assessment that corresponds to 1% of
your final grade. You can access the quiz on Canvas.

Systems Programming Page 8 of 8

