4 EClickHouse?

ClickHouseZ—1 AT E Lo T (OLAP)RZIRN &R A EE R 41 (DBMS),
EEFNTREEERSP, BRRNTIRFEME:

Row WatchID JavaEnable Title GoodEvent EventTime

#0 89354350662 1 Investor Relations 1 2016-05-18 05:19:20
#1 90329509958 0 Contact us 1 2016-05-18 08:10:20
#2 89953706054 1 Mission 1 2016-05-18 07:38:00
#N

T E—1THIIEUE SR IR FMEE—E.
ERTINEBIBERSE: MySQL. PostgresFIMS SQL Server,

HEINRBIEERGR, SRR THIRFZ0E:

Row: #0 #1 #2 #N
WatchiD: 89354350662 90329509958 89953706054

JavaEnable: 1 0 1

Title: Investor Relations Contactus Mission

GoodEvent: 1 1 1

EventTime: 2016-05-18 05:19:20 2016-05-18 08:10:20 2016-05-18 07:38:00

BRI RRR T SRR N BEERBIENA IR, MTEEmNS, JIABEES SRR —JINSEFMEE—E, 16
SINEIEt SR D FHFE.

= IHFIRXEIEESR:: Vertica. Paraccel (Actian Matrix, Amazon Redshift). SybaselQ. Exasol. Infobright.
InfiniDB. MonetDB (VectorWise, ActianVector), LucidDB. SAPHANA. Google Dremel. Google PowerDrill,
Druid, kdb+,

FRNEFEANEETENZR, XENEWHSREE: #1T7TMESEN, SAEWIRXUAREELEWNLES); SHER
B DEE——A7. JIAFT; ERBENSAREZBNXER; ERNEIEEXNNARMEERRENESES: 25
BESURENZUEHTIREN; RENEFNHSHRENTEBEER, SHEENERERNIERSFILESFSE,

AERENS, REEAHRMTEHCHBEE, FEEHBRTOWREA. RE— T AAREERTRETEANGS. W
RRARBATOZNGR, EREBENERT, MENHRINSRATERKILE, REBRLE—NBI1HR.
OLAPIZ R AR B4 IE

o RSBHZEIFFER

o EHESZAMEZARIHE(> 1000 rows)#HITE A

o TMERBRIAYERE

o BREWHMEIEERIZENAZNT, ERRNNEEDEMT]
« BR, IBTRESEAENT

- RONBINBRESERSFIESVHETEBHED)

o WFEREN, RAFERANS0EH

o FIRRBYEUBEXRN: BEFEMEFRIBWI, 8 DURL601MFTI)
o WEBIEHRNFTESELE (BTRSEFEVDEEHNH21T)

o« EBZTELIN

o WEUE—EUEERIR

o B—TEWRT —TARRIMIRN

o EWEARPENTREUE, BRUIER, HERTIESREGRBRENTRERSSFBNAEFF

REZFAIMEL, OLAPIRS EMIRITIHRWGIA, OLTPRK/V)ERAKNAE, ELBZEERAOLTPKey-ValueiEEERSN
MBS EBRIREREXN, fI2, ERAOLAPHIEEELEDTEREREMT(EMMongoDBHRedisELEDHTIER.

FX BB EEIESOLAPII=MRR

SINMIEEEES TOLAPHR(NTAZHEAMS, MEEEEDVIRST100S), TEIFAEBERTREGEIBRERHT
BEWEAR):

=
70

+ flata v spema + Permon + CMaprdoHsl
S

« Nara v Bpema « Pervon + Coaprdons

BIEHNT 4? TERBFANTBRATLASREZMER,

Input/output

1. 9 DEER, BERFERERERON—NBDT, ERNBURETRIURZBIRFTENLE. f2, WRIAFEIRLER
1005FRY5%Y, XRGHBHR &M 20fEH01/OHFE,

2. AT MRS EIT MM ERNN, MUERZIFEETZN. RITHERIIDFEXESSHEYE. —HRET1/0
HORAR,

3. BT I/ORIREMR, XBEHBE ZHEIERARAER.

flgn, BEBE RSN STFENCRBE FTEZRNT SFaID"X—7, EEREENERLTEEI1TFHHITEE. UR
AREDREAERE SFA, BLARX—INEDAIUNHERERRWESE. éx%l?&u—é’*ﬁ/i ENBEERERDETC
FRHORERELEEY . ROIER, XTEWTUERTRSR EUABDARANLHZTROREH#TLE, XLFREZ SIS
AOIRE

7wl

$ clickhouse-client

ClickHouse client version 0.0.52053.

Connecting to localhost:9000.

Connected to ClickHouse server version 0.0.52053.

:) SELECT CounterID, count() FROM hits GROUP BY CounterID ORDER BY count() DESC LIMIT 20

SELECT
CounterID,
count()
FROM hits
GROUP BY CounterID
ORDER BY count() DESC
LIMIT 20

r—CounterID—T—count()—

114208	56057344
115080	51619590
3228	44658301
38230	42045932
145263	42042158
91244	38297270
154139	26647572
150748	24112755
242232	21302571
338158	13507087
62180	12229491
82264	12187441
232261	12148031

146272	11438516
168777	11403636
4120072	11227824
10938808	10519739
74088	9047015
115079	8837972
337234	8205961
L 1 1

20 rows in set. Elapsed: 0.153 sec. Processed 1.00 billion rows, 4.00 GB (6.53 billion rows/s., 26.10
GB/s.)

:)

CPU

HTRT—TERFELEAENT, ALAERTEE FHTEIREBLEES T LRITMEREEMNSN. RN XEHE
FTEM—PM LB RARANERSIZ, MREAIEY, EREA—MIHER, FW5|ZEHAAERNEIECPURITS
5. A, & ;AGEBJUT?ﬁ%#ﬁhzﬁﬂﬂﬁ%?ﬁﬁf\xE’ﬂc

BRMIER AMEIR
1. ME5|%: FANREHRZENAEMIAZENREMEREN, SEREZS MHMEZBNTBREMEMNRBA, FEBRANMK

RERAUZRBEAI. RERBEES—MIANRIRRELL.,
2. BB EM—FBRIEE, BaERTRNMERE.

REAMIZE—TEREIEEPRINN, AAXEETHETENEREEXN, EZHERS, B, MemSQLERRS
ERFEDLIESQLEWRIER(RZN TR, STBEMEFEERTEMLNEELMAZER).

BER, NTRSCPUMER, EES0IEFIRER(SQLEMDX), HEED—TREJ, K), EWNZRBSRIER,
RIFHAITMAM

Distinctive Features of ClickHouse

True Column-Oriented DBMS

In a true column-oriented DBMS, no extra data is stored with the values. Among other things, this means that constant-
length values must be supported, to avoid storing their length "number" next to the values. As an example, a billion UInt8-
type values should actually consume around 1 GB uncompressed, or this will strongly affect the CPU use. It is very
important to store data compactly (without any "garbage") even when uncompressed, since the speed of decompression
(CPU usage) depends mainly on the volume of uncompressed data.

This is worth noting because there are systems that can store values of different columns separately, but that can't
effectively process analytical queries due to their optimization for other scenarios. Examples are HBase, BigTable,
Cassandra, and HyperTable. In these systems, you will get throughput around a hundred thousand rows per second, but
not hundreds of millions of rows per second.

It's also worth noting that ClickHouse is a database management system, not a single database. ClickHouse allows
creating tables and databases in runtime, loading data, and running queries without reconfiguring and restarting the
server.

Data Compression

Some column-oriented DBMSs (InfiniDB CE and MonetDB) do not use data compression. However, data compression does
play a key role in achieving excellent performance.

Disk Storage of Data

Mving a data physically sorted by primary key makes it possible to extract data for it's specific values or value ranges with
low latency, less than few dozen milliseconds.any column-oriented DBMSs (such as SAP HANA and Google PowerDrill) can
only work in RAM. This approach encourages the allocation of a larger hardware budget than is actually necessary for real-
time analysis. ClickHouse is designed to work on regular hard drives, which means the cost per GB of data storage is low,
but SSD and additional RAM are also fully used if available.

Parallel Processing on Multiple Cores

Large queries are parallelized in a natural way, taking all the necessary resources that available on the current server.

Distributed Processing on Multiple Servers

Almost none of the columnar DBMSs mentioned above have support for distributed query processing. In ClickHouse, data
canreside on different shards. Each shard can be a group of replicas that are used for fault tolerance. The query is
processed on all the shards in parallel. This is transparent for the user.

SQL Support

ClickHouse supports a declarative query language based on SQL that is identical to the SQL standard in many cases.
Supported queries include GROUP BY, ORDER BY, subqueries in FROM, IN, and JOIN clauses, and scalar subqueries.
Dependent subqueries and window functions are not supported.

Vector Engine

Datais not only stored by columns, but is processed by vectors (parts of columns). This allows us to achieve high CPU
efficiency.

Real-time Data Updates

ClickHouse supports tables with a primary key. In order to quickly perform queries on the range of the primary key, the
datais sorted incrementally using the merge tree. Due to this, data can continually be added to the table. No locks are
taken when new data is ingested.

Index

Having a data physically sorted by primary key makes it possible to extract data for it's specific values or value ranges with
low latency, less than few dozen milliseconds.

Suitable for Online Queries

Low latency means that queries can be processed without delay and without trying to prepare answer in advance, right at
the same moment while user interface page is loading. In other words, online.

Support for Approximated Calculations
ClickHouse provides various ways to trade accuracy for performance:

1. Aggregate functions for approximated calculation of the number of distinct values, medians, and quantiles.

2. Running a query based on a part (sample) of data and getting an approximated result. In this case, proportionally less
datais retrieved from the disk.

3. Running an aggregation for a limited number of random keys, instead of for all keys. Under certain conditions for key
distribution in the data, this provides a reasonably accurate result while using fewer resources.

Data replication and data integrity support

Uses asynchronous multimaster replication. After being written to any available replica, data is distributed to all the
remaining replicas in the background. The system maintains identical data on different replicas. Recovery after most
failures is performed automatically, and in complex cases — semi-automatically.

For more information, see the section Data replication [#table_engines-replication].

ClickHouserJ BAZ [RfR RV BE

1. RBTBNRS.

2. IRZ ASEREFEIE RS XS bR 2B N EIRIVEED . BHURBIFRFEFT I AT E RSB R, FIFEGDPR
[https://gdpr-info.eul,

3. BIRRS|{EFClickHouse N EA BT HRIURBITHREN,

https://gdpr-info.eu

Performance

According to internal testing results at Yandex, ClickHouse shows the best performance (both the highest throughput for
long queries and the lowest latency on short queries) for comparable operating scenarios among systems of its class that
were available for testing. You can view the test results on a separate page [https://clickhouse.yandex/benchmark.html].

This has also been confirmed by numerous independent benchmarks. They are not difficult to find using an internet
search, or you can see our small collection of related links[https://clickhouse.yandex/#independent-bookmarks].

Throughput for a Single Large Query

Throughput can be measured in rows per second or in megabytes per second. If the data is placed in the page cache, a
query that is not too complex is processed on modern hardware at a speed of approximately 2-10 GB/s of uncompressed
data on a single server (for the simplest cases, the speed may reach 30 GB/s). If data is not placed in the page cache, the
speed depends on the disk subsystem and the data compression rate. For example, if the disk subsystem allows reading
data at 400 MB/s, and the data compression rate is 3, the speed will be around 1.2 GB/s. To get the speed in rows per
second, divide the speed in bytes per second by the total size of the columns used in the query. For example, if 10 bytes of
columns are extracted, the speed will be around 100-200 million rows per second.

The processing speed increases almost linearly for distributed processing, but only if the number of rows resulting from
aggregation or sorting is not too large.

Latency When Processing Short Queries

If a query uses a primary key and does not select too many rows to process (hundreds of thousands), and does not use too
many columns, we can expect less than 50 milliseconds of latency (single digits of milliseconds in the best case) if data is
placed in the page cache. Otherwise, latency is calculated from the number of seeks. If you use rotating drives, for a
system that is not overloaded, the latency is calculated by this formula: seek time (10 ms) * number of columns queried *
number of data parts.

Throughput When Processing a Large Quantity of Short Queries

Under the same conditions, ClickHouse can handle several hundred queries per second on a single server (up to several
thousand in the best case). Since this scenario is not typical for analytical DBMSs, we recommend expecting a maximum of
100 queries per second.

Performance When Inserting Data

We recommend inserting data in packets of at least 1000 rows, or no more than a single request per second. When
inserting to a MergeTree table from a tab-separated dump, the insertion speed will be from 50 to 200 MB/s. If the inserted
rows are around 1 Kb in size, the speed will be from 50,000 to 200,000 rows per second. If the rows are small, the
performance will be higher in rows per second (on Banner System data - > 500,000 rows per second; on Graphite data - >
1,000,000 rows per second). To improve performance, you can make multiple INSERT queries in parallel, and performance
will increase linearly.

Yandex.Metrica Use Case

ClickHouse was originally developed to power Yandex.Metrica [https://metrica.yandex.com/], the second largest web
analytics platform in the world [http://w3techs.com/technologies/overview/traffic_analysis/all], and continues to be the
core component of this system. With more than 13 trillion records in the database and more than 20 billion events daily,
ClickHouse allows generating custom reports on the fly directly from non-aggregated data. This article briefly covers the
goals of ClickHouse in the early stages of its development.

https://clickhouse.yandex/benchmark.html
https://clickhouse.yandex/#independent-bookmarks
https://metrica.yandex.com/
http://w3techs.com/technologies/overview/traffic_analysis/all

Yandex.Metrica builds customized reports on the fly based on hits and sessions, with arbitrary segments defined by the
user. This often requires building complex aggregates, such as the number of unique users. New data for building a report
is received in real time.

As of April 2014, Yandex.Metrica was tracking about 12 billion events (page views and clicks) daily. All these events must be
stored in order to build custom reports. A single query may require scanning millions of rows within a few hundred
milliseconds, or hundreds of millions of rows in just a few seconds.

Usage in Yandex.Metrica and Other Yandex Services

ClickHouse is used for multiple purposes in Yandex.Metrica. Its main task is to build reports in online mode using non-
aggregated data. It uses a cluster of 374 servers, which store over 20.3 trillion rows in the database. The volume of
compressed data, without counting duplication and replication, is about 2 PB. The volume of uncompressed data (in TSV
format) would be approximately 17 PB.

ClickHouse is also used for:

Storing data for Session Replay from Yandex.Metrica.

e Processing intermediate data.

Building global reports with Analytics.

¢ Running queries for debugging the Yandex.Metrica engine.

Analyzing logs from the APl and the user interface.

ClickHouse has at least a dozen installations in other Yandex services: in search verticals, Market, Direct, business
analytics, mobile development, AdFox, personal services, and others.

Aggregated and Non-aggregated Data

There is a popular opinion that in order to effectively calculate statistics, you must aggregate data, since this reduces the
volume of data.

But data aggregation is a very limited solution, for the following reasons:

¢ You must have a pre-defined list of reports the user will need.

o The user can't make custom reports.

« When aggregating a large quantity of keys, the volume of data is not reduced, and aggregation is useless.
o Foralarge number of reports, there are too many aggregation variations (combinatorial explosion).

o When aggregating keys with high cardinality (such as URLSs), the volume of data is not reduced by much (less than
twofold).

¢ For this reason, the volume of data with aggregation might grow instead of shrink.
¢ Users do not view all the reports we generate for them. A large portion of calculations are useless.

¢ Thelogical integrity of data may be violated for various aggregations.
If we do not aggregate anything and work with non-aggregated data, this might actually reduce the volume of calculations.

However, with aggregation, a significant part of the work is taken offline and completed relatively calmly. In contrast,
online calculations require calculating as fast as possible, since the user is waiting for the result.

Yandex.Metrica has a specialized system for aggregating data called Metrage, which is used for the majority of reports.
Starting in 2009, Yandex.Metrica also used a specialized OLAP database for non-aggregated data called OLAPServer,
which was previously used for the report builder. OLAPServer worked well for non-aggregated data, but it had many
restrictions that did not allow it to be used for all reports as desired. These included the lack of support for data types (only
numbers), and the inability to incrementally update data in real-time (it could only be done by rewriting data daily).

OLAPServer is not a DBMS, but a specialized DB.

To remove the limitations of OLAPServer and solve the problem of working with non-aggregated data for all reports, we
developed the ClickHouse DBMS.

INEEL
MBAESOERLE, BERERCEMRS6_ AMERIRILinuG B THSSE 425555

HWERSEIFSSE4.2:

grep -q sse4 2 /proc/cpuinfo && echo "SSE 4.2 supported" || echo "SSE 4.2 not supported"

HAEEZFEAUbuntus & Debian, Kimdh J{ERUTF-84813,
EFromB AR R LMERE=ANZEE: https://packagecloud.io/altinity/clickhouse B & HiEZ 3 debianZ 2t 6,

ClickHouseiR] LATEFreeBSD5Mac OS X E T €, [EAYE r] LATE AT IFSSE 4.289x86_6419 22 F1AArch64 CPUs L4R 1%,

T

ATMRFF L, RETULRREE RS FAEEPCHLL.

J9Debian/Ubuntu® 3

T_/etc/apt/sources list ry@]i_/etc/apt/sources list.d/clickhouse. llstSZ#FyPum neE:

deb http://repo.yandex.ru/clickhouse/deb/stable/ main/

RARI(ER SRFRINILIRA, 1HERM testing' &ik'stable’,

RIEBIT:

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv E0C56BD4 # optional
sudo apt-get update
sudo apt-get install clickhouse-client clickhouse-server

R AMIXBF o FEZEE: https://repo.yandex.ru/clickhouse/deb/stable/main/
[https://repo.yandex.ru/clickhouse/deb/stable/main/],

ClickHouseB &5 024IEE, EAIITF users.xnl XRS5 configxml'BIEE). HIAERT, ﬁ,ﬁ-}}\{}ﬂi{ﬂﬁﬁﬁﬁ@jﬁ}\
#Y‘default’ FHFP I ZRBAYi58)ClickHouse, B ‘user/default/networks’, HXEZEZE, 1F2Z"Configuration files"84%

ERFBRR
BA4RiEH RIS Z build.md,
RAJARIEFAREEN], MEIMERERMAHTRE.

Client: dbms/programs/clickhouse-client
Server: dbms/programs/clickhouse-server

ERRS SR ABIEIRMNTER:

/opt/clickhouse/data/default/
/opt/clickhouse/metadata/default/

https://repo.yandex.ru/clickhouse/deb/stable/main/

(Ef1R] BATEserver configHh &,) AT EAFIE1T chown’
H &9 12 B LATEserver config (src/dbms/programs/server/config.xml) R E2 & .
HRESE

Dockerimage: https://hub.docker.com/r/yandex/clickhouse-server/ [https://hub.docker.com/r/yandex/clickhouse-
server/]

CentOSZ{RHELZZEE: https://github.com/Altinity/clickhouse-rpme-install [https://github.com/Altinity/clickhouse-rpm-
install]

Gentoo: emerge clickhouse

Bxh
AILAEITA N R E /e 8BRS
sudo service clickhouse-server start

E_[L\/W:E /var/log/clickhouse-server/ E%EPEEEEO
QD%HE%EQ;@E@, B ERE XY /etc/clickhouse-server/config.xml ,

R AR E R EREMRSS

clickhouse-server --config-file=/etc/clickhouse-server/config.xml

EXMIERT, BEBHITENRESI S, XEARKIEDREAE, NREEXHEHFIERERT, RAATRIERE --config-
file'sE., EBRIAMER . /config.xml’,

RA]BMER LT E P ImEREIARSS

clickhouse-client

BIAER N EER default B L BiBAY S localhost:9000/R Z I EE ., B IRth Al BT EEIRERSS, Hla:

clickhouse-client --host=example.com

BXEZER, 152 E"Command-line client"Z4),

milovidov@hostname:~/work/metrica/src/dbms/src/Client$./clickhouse-client
ClickHouse client version 0.0.18749.

Connecting to localhost:9000.

Connected to ClickHouse server version 0.0.18749.

:) SELECT 1

SELECT 1

—1l

[1
[

1 rows in set. Elapsed: 0.003 sec.

)

NE, RACEIEFET!

https://hub.docker.com/r/yandex/clickhouse-server/
https://github.com/Altinity/clickhouse-rpm-install

AT BREAITEL, RPIAEE T EINH RS,

(

ML § T2

THEE:
for s in “seq 1987 2017"
do
for m in “seq 1 12~
do

wget http://transtats.bts.gov/PREZIP/On_Time_On_ Time_Performance ${s}_${m}.zip
done
done

(31 https://github.com/Percona-Lab/ontime-airline-performance/blob/master/download.sh
[https://github.com/Percona-Lab/ontime-airline-performance/blob/master/download.sh])

BIZRGH:

CREATE TABLE “ontime~ (
“Year™ UlIntle,
“Quarter” UInts,
“Month™ UIntS8,
“DayofMonth™ UInt8,
“DayOfWeek™ UIntS8,
“FlightDate™ Date,
“UniqueCarrier™ FixedString(7),
“AirlineID” Int32,
“Carrier” FixedString(2),
“TailNum®~ String,
“FlightNum™ String,
“OriginAirportID~ Int32,
“OriginAirportSeqID”™ Int32,
“OriginCityMarketID™ Int32,
“Origin® FixedString(5),
“OriginCityName~ String,
“OriginState™ FixedString(2),
“OriginStateFips”~ String,
“OriginStateName™~ String,
“OriginWac™ Int32,
“DestAirportID™ Int32,
“DestAirportSeqID” Int32,
“DestCityMarketID™ Int32,
“Dest”~ FixedString(5),
“DestCityName~ String,
“DestState™ FixedString(2),
“DestStateFips~ String,
“DestStateName™ String,
“DestWac™ Int32,
“CRSDepTime”~ Int32,
“DepTime~ Int32,
“Depbelay™ Int32,
“DepDelayMinutes™ Int32,
“DepDell5™ Int32,
“DepartureDelayGroups™~ String,
“DepTimeBlk™ String,
“TaxiOut~ Int32,
“WheelsOff~ Int32,
“WheelsOn~ Int32,
“TaxiIn~ Int32,
“CRSArrTime~ Int32,
“ArrTime~ Int32,
“ArrDelay” Int32,
“ArrDelayMinutes™ Int32,
“ArrDell5” Int32,
“ArrivalDelayGroups Int32,
“ArrTimeBlk™ Strina.

https://github.com/Percona-Lab/ontime-airline-performance/blob/master/download.sh

) ENGINE =

S

“Cancelled™ UIntS,
“CancellationCode™
“Diverted” UInt8,
“CRSElapsedTime”
“ActualElapsedTime"
Int32,
Int32,
Int32,
“DistanceGroup”~ UInt8,
“CarrierDelay” Int32,
“WeatherDelay™ Int32,
"NASDelay™ Int32,
“SecurityDelay™ Int32,
“LateAircraftDelay”~ Int32,
“FirstDepTime~ String,
“TotalAddGTime~ String,
“LongestAddGTime™~ String,
“DivAirportLandings™ String,
“DivReachedDest™ String,
“DivActualElapsedTime~ String,

FixedString(1l),

Int32,
Int32,
“AirTime”
“Flights~
“Distance”

"DivArrDelay~ String,
“DivDistance™ String,
“DivlAirport™ String,
"DivlAirportID™ Int32,
“DivlAirportSeqID” Int32,
“DivlWheelsOn~ String,
"Div1TotalGTime ~ String,
“DivlLongestGTime~ String,
"DivlWheelsOff~ String,
"Div1TailNum~ String,
"Div2Airport” String,
"Div2AirportID™ Int32,
“Div2AirportSeqID” Int32,
“Div2WheelsOn~ String,
"Div2TotalGTime ™ String,
“Div2LongestGTime~ String,
“Div2WheelsOff~ String,
"Div2TailNum~ String,
“Div3Airport” String,
"Div3AirportID™ Int32,
“Div3AirportSeqID” Int32,
“Div3WheelsOn~ String,
"Div3TotalGTime ™ String,
“Div3LongestGTime~ String,
“Div3WheelsOff~ String,
"Div3TailNum~ String,
“Div4Airport™ String,
"Div4AirportID™ Int32,
“Div4AirportSeqID” Int32,
“Div4WheelsOn~ String,
"Div4TotalGTime™ String,
“Div4LongestGTime~ String,
“Div4WheelsOff~ String,
"Div4TailNum~ String,
“Div5Airport” String,
“Div5AirportID™ Int32,
“Div5AirportSeqID” Int32,
“Div5WheelsOn~ String,
"Div5TotalGTime™ String,
“Div5LongestGTime™ String,
"Div5WheelsOff"~ String,
"Div5TailNum™ String
MergeTree(FlightDate, (Year,

FlightDate), 8192)

POERESHE -

for i in *.zip; do echo $i; unzip -cq $i
perftest0lj --query="INSERT INTO ontime FORMAT CSVWithNames"

I

'* csv'

e

r

| sed 's/\.00//g'

done

| clickhouse-client --host=example-

QO.

select avg(cl) from (select Year, Month, count(*) as cl from ontime group by Year, Month);

Q1. B M2000FEI2008F B RAIANIIEL

SELECT DayOfWeek, count(*) AS c FROM ontime WHERE Year >= 2000 AND Year <= 2008 GROUP BY DayOfWeek ORDER BY c
DESC;

Q2. E1M2000F £I2008 F B FAFEIREBIT 107 HHAIRYIEL,

SELECT DayOfWeek, count(*) AS c FROM ontime WHERE DepDelay>10 AND Year >= 2000 AND Year <= 2008 GROUP BY
DayOfWeek ORDER BY c DESC

Q3. E182000F 2008 F B MMIHIEIRIBIT 107 £ IX_EAHIRER

SELECT Origin, count(*) AS c FROM ontime WHERE DepDelay>10 AND Year >= 2000 AND Year <= 2008 GROUP BY Origin
ORDER BY c¢ DESC LIMIT 10

Q4. EH2007FE BT AT IEIREBT 100 #h LA _EATRER

SELECT Carrier, count(*) FROM ontime WHERE DepDelay>10 AND Year = 2007 GROUP BY Carrier ORDER BY count(¥*)
DESC

Q5. Ei2007 F EMEABEIRBI 1009 IX LB DL

SELECT Carrier, c, c2, c*1000/c2 as c3
FROM
(
SELECT
Carrier,
count(*) AS c
FROM ontime
WHERE DepDelay>10
AND Year=2007
GROUP BY Carrier

ANY INNER JOIN

SELECT
Carrier,
count(*) AS c2
FROM ontime
WHERE Year=2007
GROUP BY Carrier
) USING Carrier
ORDER BY c¢3 DESC;

BIFRIEIDARAS :

SELECT Carrier, avg(DepDelay > 10) * 1000 AS c3 FROM ontime WHERE Year = 2007 GROUP BY Carrier ORDER BY
Carrier

Q6. B L —1MEW— AR EWTEEY AFJ20005FFI2008F

SELECT Carrier, c, c2, c*1000/c2 as c3
FROM
(
SELECT
Carrier,
count(*) AS c
FROM ontime
WHERE DepDelay>10
AND Year >= 2000 AND Year <= 2008
GROUP BY Carrier

ANY INNER JOIN

SELECT
Carrier,
count(*) AS c2
FROM ontime
WHERE Year >= 2000 AND Year <= 2008
GROUP BY Carrier
) USING Carrier
ORDER BY c3 DESC;

BIFAEIARAS :

SELECT Carrier, avg(DepDelay > 10) * 1000 AS c3 FROM ontime WHERE Year >= 2000 AND Year <= 2008 GROUP BY
Carrier ORDER BY Carrier

Q7. BEMIBEIRET 107 B S EE

SELECT Year, cl/c2
FROM
(
select
Year,
count(*)*1000 as cl
from ontime
WHERE DepDelay>10
GROUP BY Year
)
ANY INNER JOIN
(
select
Year,
count(*) as c2
from ontime
GROUP BY Year
) USING (Year)
ORDER BY Year

BB AR

SELECT Year, avg(DepDelay > 10) FROM ontime GROUP BY Year ORDER BY Year

Q8. FFERAEEMBE M

SELECT DestCityName, unigExact(OriginCityName) AS u FROM ontime WHERE Year >= 2000 and Year <= 2010 GROUP BY
DestCityName ORDER BY u DESC LIMIT 10;

Q9.

select Year, count(*) as cl from ontime group by Year;

Q10.

select

min(Year), max(Year), Carrier, count(*) as cnt,

sum(ArrDelayMinutes>30) as flights_delayed,

round (sum(ArrDelayMinutes>30)/count(*),2) as rate
FROM ontime

WHERE

DayOfWeek not in (6,7) and OriginState not in ('AK', 'HI', 'PR', 'VI')
and DestState not in ('AK', 'HI', 'PR', 'VI')
and FlightDate < '2010-01-01"

GROUP by Carrier

HAVING

cnt > 100000 and max(Year) > 1990

ORDER by rate DESC
LIMIT 1000;

Bonus:

SELECT

select

SELECT
10;

SELECT
c DESC

SELECT

avg(cnt) FROM (SELECT Year,Month,count(*) AS cnt FROM ontime WHERE DepDell5=1 GROUP BY Year,Month)
avg(cl) from (select Year,Month,count(*) as cl from ontime group by Year,Month)

DestCityName, unigExact(OriginCityName) AS u FROM ontime GROUP BY DestCityName ORDER BY u DESC LIMIT
OriginCityName, DestCityName, count() AS c FROM ontime GROUP BY OriginCityName, DestCityName ORDER BY
LIMIT 10;

OriginCityName, count() AS c FROM ontime GROUP BY OriginCityName ORDER BY c DESC LIMIT 10;

XANMEREME B Vadim TkachenkoiZ i, &

o https://www.percona.com/blog/2009/10/02/analyzing-air-traffic-performance-with-infobright-and-monetdb/

[https://www.percona.com/blog/2009/10/02/analyzing-air-traffic-performance-with-infobright-and-monetdb/]

o https://www.percona.com/blog/2009/10/26/air-traffic-queries-in-luciddb/
[https://www.percona.com/blog/2009/10/26/air-traffic-queries-in-luciddb/]

¢ https://www.percona.com/blog/2009/11/02/air-traffic-queries-in-infinidb-early-alpha/
[https://www.percona.com/blog/2009/11/02/air-traffic-queries-in-infinidb-early-alpha/]

o https://www.percona.com/blog/2014/04/21/using-apache-hadoop-and-impala-together-with-mysql-for-data-

analysis/ [https://www.percona.com/blog/2014/04/21/using-apache-hadoop-and-impala-together-with-mysql-for-

data-analysis/]

o https://www.percona.com/blog/2016/01/07/apache-spark-with-air-ontime-performance-data/
[https://www.percona.com/blog/2016/01/07/apache-spark-with-air-ontime-performance-data/]

o http://nickmakos.blogspot.ru/2012/08/analyzing-air-traffic-performance-with.html
[http://nickmakos.blogspot.ru/2012/08/analyzing-air-traffic-performance-with.html]

AN L HEEE
BESNRIGEIE

A IASEE https://github.com/toddwschneider/nyc-taxi-data [https://github.com/toddwschneider/nyc-taxi-
datalfhttp://tech.marksblogg.com/billion-nyc-taxi-rides-redshift.html [http://tech.marksblogg.com/billion-nyc-taxi-
rides-redshift.ntm|]EX FEIBE SRS EIE T 520,

RS B E227GBRICSVI ., RANFE TN THRE(1GhItERE T, H{T FHABME—FE). THEEEHRA
AUXf, AJBMEES M A/NAER NI,

BEXHHRES—EIRET, ERUMERNTIEDEEM]:

https://www.percona.com/blog/2009/10/02/analyzing-air-traffic-performance-with-infobright-and-monetdb/
https://www.percona.com/blog/2009/10/26/air-traffic-queries-in-luciddb/
https://www.percona.com/blog/2009/11/02/air-traffic-queries-in-infinidb-early-alpha/
https://www.percona.com/blog/2014/04/21/using-apache-hadoop-and-impala-together-with-mysql-for-data-analysis/
https://www.percona.com/blog/2016/01/07/apache-spark-with-air-ontime-performance-data/
http://nickmakos.blogspot.ru/2012/08/analyzing-air-traffic-performance-with.html
https://github.com/toddwschneider/nyc-taxi-data
http://tech.marksblogg.com/billion-nyc-taxi-rides-redshift.html

sed -E '/(.*,){18,}/d"' data/yellow_ tripdata 2010-02.csv > data/yellow_tripdata 2010-02.csv_
sed -E '/(.*,){18,}/d' data/yellow tripdata 2010-03.csv > data/yellow tripdata 2010-03.csv_
mv data/yellow tripdata 2010-02.csv_ data/yellow tripdata 2010-02.csv
mv data/yellow tripdata 2010-03.csv_ data/yellow tripdata 2010-03.csv

RIEIEIATNTEPostgreSQLATIAME X LEHE, XFEEZ LR PR (MEREMEFALTHTE) , AEEIERIOIN
El’lﬂhi&l?&?&ﬁ*éﬂmxﬂ—’\% JSERF ., BT TRIXERDERE, EREXRPostgreSQLAEIR L3 PostGISHET .

ﬁ?ﬁ' initialize database.sh qu/_]\lll\, #?ﬂi?ﬂ E IEE%@JLTF‘F[%%:Z
fEPostgreSQLALMES T AR ARANFTE20-300 1, SHARNFEAS/,
AT AR T ARG E TETE:

time psgl nyc-taxi-data -c "SELECT count(*) FROM trips;"
Count

1298979494

(1 row)

real 7m9.164s
(tRHEMark Litwintschik i RINBEEIREEIBEIE ZR111217)
PostgreSQLAME X LA E A T E370GBAYREEZ == (8],

MPostgreSQLHF S HEE:

COPY

SELECT trips.id,
trips.vendor_id,
trips.pickup_datetime,
trips.dropoff datetime,
trips.store_and fwd flag,
trips.rate code id,
trips.pickup longitude,
trips.pickup latitude,
trips.dropoff_ longitude,
trips.dropoff latitude,
trips.passenger_count,
trips.trip_distance,
trips.fare_amount,
trips.extra,
trips.mta_tax,
trips.tip amount,
trips.tolls_amount,
trips.ehail_fee,
trips.improvement_surcharge,
trips.total_ amount,
trips.payment_type,
trips.trip_ type,
trips.pickup,
trips.dropoff,

cab_types.type cab_type,

weather.precipitation_tenths_of_mm rain,
weather.snow_depth_mm,

weather.snowfall mm,
weather.max_temperature tenths degrees celsius max temp,
weather.min_ temperature tenths degrees celsius min_ temp,
weather.average_wind_ speed tenths_of meters_per_ second wind,

pick up.gid pickup nyct2010_gid,
pick_up.ctlabel pickup ctlabel,
pick_up.borocode pickup_borocode,
pick up.boroname pickup boroname,
pick up.ct2010 pickup ct2010,
pick_up.boroct2010 pickup boroct2010,
pick_up.cdeligibil pickup_cdeligibil,
pick_up.ntacode pickup_ ntacode,
pick_up.ntaname pickup ntaname,

pick _up.puma pickup_ puma,

drop off.gid dropoff nyct2010_gid,
drop off.ctlabel dropoff ctlabel,
drop off.borocode dropoff borocode,
drop_off.boroname dropoff_ boroname,
drop_off.ct2010 dropoff ct2010,
drop_off.boroct2010 dropoff boroct2010,
drop_off.cdeligibil dropoff cdeligibil,
drop_off.ntacode dropoff ntacode,
drop_off.ntaname dropoff ntaname,
drop_off.puma dropoff puma
FROM trips
LEFT JOIN cab_types
ON trips.cab_type id = cab_types.id
LEFT JOIN central park weather_observations_raw weather
ON weather.date = trips.pickup_datetime::date
LEFT JOIN nyct2010 pick up
ON pick up.gid = trips.pickup nyct2010_ gid
LEFT JOIN nyct2010 drop off
ON drop off.gid = trips.dropoff nyct2010 gid
) TO '/opt/milovidov/nyc-taxi-data/trips.tsv';

HIRIRBAIRIZRELNETS0MB, 7ECIEIRBAS, PostgreSQLIAEFZ028 MBRYIEE NI EIEZEVEUR, XALNEES N
B, RERERMTSVXE 7590612904969 bytes,

£ ClickHouseR Bl G E :

CREATE TABLE trips
(

trip_id

vendor_id
pickup_datetime
dropoff datetime
store_and_ fwd_flag
rate code_id
pickup_ longitude
pickup latitude
dropoff_longitude
dropoff_ latitude
passenger_count
trip_distance
fare_amount

extra

mta_tax

tip amount
tolls_amount
ehail_fee
improvement_surcharge
total_amount
payment_type

trip type

pickup

dropoff

cab_type
precipitation
snow_depth
snowfall
max_temperature
min_temperature
average wind_speed
pickup nyct2010_gid
pickup_ctlabel
pickup_borocode
pickup_boroname
pickup_ct2010
pickup_boroct2010
pickup cdeligibil
pickup_ ntacode
pickup ntaname
pickup_puma
dropoff nyct2010_gid
dropoff_ ctlabel
dropoff_ borocode
dropoff_ boroname
dropoff ct2010
dropoff boroct2010
dropoff cdeligibil
dropoff_ntacode
dropoff ntaname
dropoff_ puma

) ENGINE = Log;

UInt32,

String,

DateTime,
Nullable(DateTime),

Nullable(FixedString(1l)),

Nullable(UInt8),
Nullable(Floaté64),
Nullable(Floaté64),
Nullable(Float64),
Nullable(Floaté64),
Nullable(UInt8),
Nullable(Floaté64),
Nullable(Float32),
Nullable(Float32),
Nullable(Float32),
Nullable(Float32),
Nullable(Float32),
Nullable(Float32),
Nullable(Float32),
Nullable(Float32),
Nullable(String),
Nullable(UInt8),
Nullable(String),
Nullable(String),
Nullable(String),
Nullable(UInt8),
Nullable(UInt8),
Nullable(UInt8),
Nullable(UInt8),
Nullable(UInt8),
Nullable(UInt8),
Nullable(UInt8),
Nullable(String),
Nullable(UInt8),
Nullable(String),
Nullable(String),
Nullable(String),

Nullable(FixedString(1)),

Nullable(String),
Nullable(String),
Nullable(String),
Nullable(UInt8),

Nullable(String),
Nullable(UInt8),

Nullable(String),
Nullable(String),
Nullable(String),
Nullable(String),
Nullable(String),
Nullable(String),
Nullable(String)

E TR FBERFRIERANEEROSIERE, FAEAERENBERT, HFRNULL,

time clickhouse-client --query="INSERT INTO trips FORMAT TabSeparated" < trips.tsv

real 75m56.214s

FURADIZEURE 112-140 Mb/F), BIE XA EEIEMERILogRPFE760H, XTRPWIBIEZEF142 GBAYHY
2=,
(th el AEIZ(EA copy TO PROGRAM MPostgresFI S N\ #3E)

HTHIBEF S RSEXMFAELIE (precipitation.....average_wind_speed) #E7E TNULL, B, HATEMRELIEES
IR EA]

B, BERRERSHER, EERIIEEZETRIERER,

BIEREWHABNEIE:

CREATE TABLE trips mergetree
ENGINE = MergeTree(pickup date, pickup datetime, 8192)
AS SELECT

trip_id,

CAST(vendor_id AS Enum8('l' = 1, '2' =2, 'CMT' = 3, 'VrS' = 4, 'DDS' = 5, 'B02512' = 10, 'B02598' = 11,
'B02617' = 12, 'B02682' = 13, 'B02764' = 14)) AS vendor_ id,
toDate(pickup datetime) AS pickup date,

ifNull(pickup datetime, toDateTime(0)) AS pickup datetime,
toDate(dropoff datetime) AS dropoff date,

ifNull(dropoff datetime, toDateTime(0)) AS dropoff datetime,
assumeNotNull (store_and fwd flag) IN ('Y', 'l', '2') AS store_and fwd flag,
assumeNotNull (rate_code_id) AS rate code_id,
assumeNotNull (pickup longitude) AS pickup_ longitude,
assumeNotNull (pickup latitude) AS pickup latitude,
assumeNotNull (dropoff longitude) AS dropoff longitude,
assumeNotNull (dropoff latitude) AS dropoff latitude,
assumeNotNull (passenger count) AS passenger count,
assumeNotNull (trip distance) AS trip distance,

assumeNotNull (fare_amount) AS fare_ amount,

assumeNotNull (extra) AS extra,

assumeNotNull(mta_tax) AS mta_tax,

assumeNotNull (tip_amount) AS tip_ amount,
assumeNotNull(tolls_amount) AS tolls_amount,
assumeNotNull (ehail fee) AS ehail fee,

assumeNotNull (improvement surcharge) AS improvement surcharge,
assumeNotNull (total amount) AS total_ amount,

CAST((assumeNotNull (payment_type) AS pt) IN ('CSH', 'CASH', 'Cash', 'CAS', 'Cas', 'l') ? 'CSH' : (pt IN
('CRD', 'Credit', 'Cre', 'CRE', 'CREDIT', '2') ? 'CRE' : (pt IN ('NOC', 'No Charge', 'No', '3') ? 'NOC' : (pt
IN ('DIS', 'Dispute', 'Dis', '4') ? 'DIS' : 'UNK'))) AS Enum8('CSH' = 1, 'CRE' = 2, 'UNK' = 0, 'NoC' = 3,
'DIS' = 4)) AS payment_type_,

assumeNotNull (trip type) AS trip_ type,

ifNull(toFixedString(unhex(pickup), 25), toFixedString('', 25)) AS pickup,
ifNull(toFixedString(unhex(dropoff), 25), toFixedString('', 25)) AS dropoff,

CAST (assumeNotNull (cab_type) AS Enum8('yellow' = 1, 'green' = 2, 'uber' = 3)) AS cab_type,

assumeNotNull (pickup nyct2010_gid) AS pickup nyct2010_gid,

toFloat32 (ifNull(pickup_ctlabel, '0')) AS pickup ctlabel,

assumeNotNull (pickup borocode) AS pickup borocode,

CAST (assumeNotNull (pickup boroname) AS Enum8('Manhattan' = 1, 'Queens' = 4, 'Brooklyn' = 3, '' = 0, 'Bronx' =
2, 'Staten Island' = 5)) AS pickup boroname,

toFixedString(ifNull(pickup_ct2010, '000000'), 6) AS pickup_ct2010,

toFixedString(ifNull(pickup_boroct2010, '0000000'), 7) AS pickup_ boroct2010,

CAST (assumeNotNull (ifNull(pickup cdeligibil, ' ")) AS Enum8(' ' =0, 'E' =1, 'I' = 2)) AS pickup_cdeligibil,
toFixedString(ifNull(pickup_ntacode, '0000'), 4) AS pickup ntacode,

CAST (assumeNotNull (pickup ntaname) AS Enuml6('' = 0, 'Airport' = 1, 'Allerton-Pelham Gardens' = 2, 'Annadale-
Huguenot-Prince\'s Bay-Eltingville' = 3, 'Arden Heights' = 4, 'Astoria' = 5, 'Auburndale' = 6, 'Baisley Park'
= 7, 'Bath Beach' = 8, 'Battery Park City-Lower Manhattan' = 9, 'Bay Ridge' = 10, 'Bayside-Bayside Hills' =
11, 'Bedford' = 12, 'Bedford Park-Fordham North' = 13, 'Bellerose' = 14, 'Belmont' = 15, 'Bensonhurst East'
16, 'Bensonhurst West' = 17, 'Borough Park' = 18, 'Breezy Point-Belle Harbor-Rockaway Park-Broad Channel' =
19, 'Briarwood-Jamaica Hills' = 20, 'Brighton Beach' = 21, 'Bronxdale' = 22, 'Brooklyn Heights-Cobble Hill'
23, 'Brownsville' = 24, 'Bushwick North' = 25, 'Bushwick South' = 26, 'Cambria Heights' = 27, 'Canarsie' =
28, 'Carroll Gardens-Columbia Street-Red Hook' = 29, 'Central Harlem North-Polo Grounds' = 30, 'Central Harlem
South' = 31, 'Charleston-Richmond Valley-Tottenville' = 32, 'Chinatown' = 33, 'Claremont-Bathgate' = 34,
'Clinton' = 35, 'Clinton Hill' = 36, 'Co-op City' = 37, 'College Point' = 38, 'Corona' = 39, 'Crotona Park
East' = 40, 'Crown Heights North' = 41, 'Crown Heights South' = 42, 'Cypress Hills-City Line' = 43, 'DUMBO-
Vinegar Hill-Downtown Brooklyn-Boerum Hill' = 44, 'Douglas Manor-Douglaston-Little Neck' = 45, 'Dyker

Heights' = 46, 'East Concourse-Concourse Village' = 47, 'East Elmhurst' = 48, 'East Flatbush-Farragut' = 49,
'East Flushing' = 50, 'East Harlem North' = 51, 'East Harlem South' = 52, 'East New York' = 53, 'East New

York (Pennsylvania Ave)' = 54, 'East Tremont' = 55, 'East Village' = 56, 'East Williamsburg' = 57,

'Eastchester-Edenwald-Baychester' = 58, 'Elmhurst' = 59, 'Elmhurst-Maspeth' = 60, 'Erasmus' = 61, 'Far
Rockaway-Bayswater' = 62, 'Flatbush' = 63, 'Flatlands' = 64, 'Flushing' = 65, 'Fordham South' = 66, 'Forest
Hills' = 67, 'Fort Greene' = 68, 'Fresh Meadows-Utopia' = 69, 'Ft. Totten-Bay Terrace-Clearview' = 70,
'Georgetown-Marine Park-Bergen Beach-Mill Basin' = 71, 'Glen Oaks-Floral Park-New Hyde Park' = 72, 'Glendale'
= 73, 'Gramercy' = 74, 'Grasmere-Arrochar-Ft. Wadsworth' = 75, 'Gravesend' = 76, 'Great Kills' = 77,
'Greenpoint' = 78, 'Grymes Hill-Clifton-Fox Hills' = 79, 'Hamilton Heights' = 80, 'Hammels-Arverne-Edgemere' =
81, 'Highbridge' = 82, 'Hollis' = 83, 'Homecrest' = 84, 'Hudson Yards-Chelsea-Flatiron-Union Square' = 85,
'Hunters Point-Sunnyside-West Maspeth' = 86, 'Hunts Point' = 87, 'Jackson Heights' = 88, 'Jamaica' = 89,
'Jamaica Estates-Holliswood' = 90, 'Kensington-Ocean Parkway' = 91, 'Kew Gardens' = 92, 'Kew Gardens Hills' =

93, 'Kingsbridge Heights' = 94, 'Laurelton' = 95, 'Lenox Hill-Roosevelt Island' = 96, 'Lincoln Square' = 97,
'Lindenwood-Howard Beach' = 98, 'Longwood' = 99, 'Lower East Side' = 100, 'Madison' = 101, 'Manhattanville' =
102, 'Marble Hill-Inwood' = 103, 'Mariner\'s Harbor-Arlington-Port Ivory-Graniteville' = 104, 'Maspeth' =

105, 'Melrose South-Mott Haven North' = 106, 'Middle Village' = 107, 'Midtown-Midtown South' = 108, 'Midwood’
= 109, 'Morningside Heights' = 110, 'Morrisania-Melrose' = 111, 'Mott Haven-Port Morris' = 112, 'Mount Hope'

= 113, 'Murray Hill' = 114, 'Murray Hill-Kips Bay' = 115, 'New Brighton-Silver Lake' = 116, 'New Dorp-Midland
Beach' = 117, 'New Springville-Bloomfield-Travis' = 118, 'North Corona' = 119, 'North Riverdale-Fieldston-
Riverdale' = 120, 'North Side-South Side' = 121, 'Norwood' = 122, 'Oakland Gardens' = 123, 'Oakwood-Oakwood
Beach' = 124, 'Ocean Hill' = 125, 'Ocean Parkway South' = 126, 'Old Astoria' = 127, 'Old Town-Dongan Hills-
South Beach' = 128, 'Ozone Park' = 129, 'Park Slope-Gowanus' = 130, 'Parkchester' = 131, 'Pelham Bay-Country
Club-City Island' = 132, 'Pelham Parkway' = 133, 'Pomonok-Flushing Heights-Hillcrest' = 134, 'Port Richmond' =
135, 'Prospect Heights' = 136, 'Prospect Lefferts Gardens-Wingate' = 137, 'Queens Village' = 138, 'Queensboro
Hill' = 139, 'Queensbridge-Ravenswood-Long Island City' = 140, 'Rego Park' = 141, 'Richmond Hill' = 142,
'Ridgewood’' = 143, 'Rikers Island' = 144, 'Rosedale' = 145, 'Rossville-Woodrow' = 146, 'Rugby-Remsen Village'
= 147, 'Schuylerville-Throgs Neck-Edgewater Park' = 148, 'Seagate-Coney Island' = 149, 'Sheepshead Bay-
Gerritsen Beach-Manhattan Beach' = 150, 'SoHo-TriBeCa-Civic Center-Little Italy' = 151, 'Soundview-Bruckner'

= 152, 'Soundview-Castle Hill-Clason Point-Harding Park' = 153, 'South Jamaica' = 154, 'South Ozone Park' =
155, 'Springfield Gardens North' = 156, 'Springfield Gardens South-Brookville' = 157, 'Spuyten Duyvil-
Kingsbridge' = 158, 'St. Albans' = 159, 'Stapleton-Rosebank' = 160, 'Starrett City' = 161, 'Steinway' = 162,
'Stuyvesant Heights' = 163, 'Stuyvesant Town-Cooper Village' = 164, 'Sunset Park East' = 165, 'Sunset Park
West' = 166, 'Todt Hill-Emerson Hill-Heartland Village-Lighthouse Hill' = 167, 'Turtle Bay-East Midtown'
168, 'University Heights-Morris Heights' = 169, 'Upper East Side-Carnegie Hill' = 170, 'Upper West Side'
171, 'Van Cortlandt Village' = 172, 'Van Nest-Morris Park-Westchester Square' = 173, 'Washington Heights
North' = 174, 'Washington Heights South' = 175, 'West Brighton' = 176, 'West Concourse' = 177, 'West Farms-
Bronx River' = 178, 'West New Brighton-New Brighton-St. George' = 179, 'West Village' = 180, 'Westchester-

Unionport' = 181, 'Westerleigh' = 182, 'Whitestone' = 183, 'Williamsbridge-Olinville' = 184, 'Williamsburg' =
185, 'Windsor Terrace' = 186, 'Woodhaven' = 187, 'Woodlawn-Wakefield' = 188, 'Woodside' = 189, 'Yorkville' =
190, 'park-cemetery-etc-Bronx' = 191, 'park-cemetery-etc-Brooklyn' = 192, 'park-cemetery-etc-Manhattan' =
193, 'park-cemetery-etc-Queens' = 194, 'park-cemetery-etc-Staten Island' = 195)) AS pickup ntaname,

toUIntl6 (ifNull(pickup puma, '0')) AS pickup_ puma,

assumeNotNull (dropoff nyct2010_gid) AS dropoff nyct2010_gid,

toFloat32(ifNull(dropoff ctlabel, '0')) AS dropoff ctlabel,

assumeNotNull (dropoff borocode) AS dropoff borocode,

CAST (assumeNotNull (dropoff boroname) AS Enum8('Manhattan' = 1, 'Queens' = 4, 'Brooklyn' = 3, '' = 0, 'Bronx' =
2, 'Staten Island' = 5)) AS dropoff boroname,

toFixedString(ifNull(dropoff ct2010, '000000'), 6) AS dropoff ct2010,

toFixedString(ifNull(dropoff boroct2010, '0000000'), 7) AS dropoff boroct2010,

CAST (assumeNotNull (ifNull(dropoff cdeligibil, ' ")) AS Enum8(' ' =0, 'E' =1, 'I' = 2)) AS

dropoff cdeligibil,

toFixedString(ifNull(dropoff ntacode, '0000'), 4) AS dropoff ntacode,

CAST (assumeNotNull (dropoff ntaname) AS Enumlé6('' = 0, 'Airport' = 1, 'Allerton-Pelham Gardens' = 2, 'Annadale-
Huguenot-Prince\'s Bay-Eltingville' = 3, 'Arden Heights' = 4, 'Astoria' = 5, 'Auburndale' = 6, 'Baisley Park'
= 7, 'Bath Beach' = 8, 'Battery Park City-Lower Manhattan' = 9, 'Bay Ridge' = 10, 'Bayside-Bayside Hills' =
11, 'Bedford' = 12, 'Bedford Park-Fordham North' = 13, 'Bellerose' = 14, 'Belmont' = 15, 'Bensonhurst East' =
16, 'Bensonhurst West' = 17, 'Borough Park' = 18, 'Breezy Point-Belle Harbor-Rockaway Park-Broad Channel' =
19, 'Briarwood-Jamaica Hills' = 20, 'Brighton Beach' = 21, 'Bronxdale' = 22, 'Brooklyn Heights-Cobble Hill'
23, 'Brownsville' = 24, 'Bushwick North' = 25, 'Bushwick South' = 26, 'Cambria Heights' = 27, 'Canarsie' =
28, 'Carroll Gardens-Columbia Street-Red Hook' = 29, 'Central Harlem North-Polo Grounds' = 30, 'Central Harlem
South' = 31, 'Charleston-Richmond Valley-Tottenville' = 32, 'Chinatown' = 33, 'Claremont-Bathgate' = 34,
'Clinton' = 35, 'Clinton Hill' = 36, 'Co-op City' = 37, 'College Point' = 38, 'Corona' = 39, 'Crotona Park
East' = 40, 'Crown Heights North' = 41, 'Crown Heights South' = 42, 'Cypress Hills-City Line' = 43, 'DUMBO-
Vinegar Hill-Downtown Brooklyn-Boerum Hill' = 44, 'Douglas Manor-Douglaston-Little Neck' = 45, 'Dyker

Heights' = 46, 'East Concourse-Concourse Village' = 47, 'East Elmhurst' = 48, 'East Flatbush-Farragut' = 49,
'East Flushing' = 50, 'East Harlem North' = 51, 'East Harlem South' = 52, 'East New York' = 53, 'East New

York (Pennsylvania Ave)' = 54, 'East Tremont' = 55, 'East Village' = 56, 'East Williamsburg' = 57,
'Eastchester-Edenwald-Baychester' = 58, 'Elmhurst' = 59, 'Elmhurst-Maspeth' = 60, 'Erasmus' = 61, 'Far
Rockaway-Bayswater' = 62, 'Flatbush' = 63, 'Flatlands' = 64, 'Flushing' = 65, 'Fordham South' = 66, 'Forest
Hills' = 67, 'Fort Greene' = 68, 'Fresh Meadows-Utopia' = 69, 'Ft. Totten-Bay Terrace-Clearview' = 70,
'Georgetown-Marine Park-Bergen Beach-Mill Basin' = 71, 'Glen Oaks-Floral Park-New Hyde Park' = 72, 'Glendale’
= 73, 'Gramercy' = 74, 'Grasmere-Arrochar-Ft. Wadsworth' = 75, 'Gravesend' = 76, 'Great Kills' = 77,
'Greenpoint' = 78, 'Grymes Hill-Clifton-Fox Hills' = 79, 'Hamilton Heights' = 80, 'Hammels-Arverne-Edgemere' =

81, 'Highbridge' = 82, 'Hollis' = 83, 'Homecrest' = 84, 'Hudson Yards-Chelsea-Flatiron-Union Square' = 85,
'Hunters Point-Sunnyside-West Maspeth' = 86, 'Hunts Point' = 87, 'Jackson Heights' = 88, 'Jamaica' = 89,
'Jamaica Estates-Holliswood' = 90, 'Kensington-Ocean Parkway' = 91, 'Kew Gardens' = 92, 'Kew Gardens Hills'
93, 'Kingsbridge Heights' = 94, 'Laurelton' = 95, 'Lenox Hill-Roosevelt Island' = 96, 'Lincoln Square' = 97,
'Lindenwood-Howard Beach' = 98, 'Longwood' = 99, 'Lower East Side' = 100, 'Madison' = 101, 'Manhattanville' =
102, 'Marble Hill-Inwood' = 103, 'Mariner\'s Harbor-Arlington-Port Ivory-Graniteville' = 104, 'Maspeth' =
105, 'Melrose South-Mott Haven North' = 106, 'Middle Village' = 107, 'Midtown-Midtown South' = 108, 'Midwood'
109, 'Morningside Heights' = 110, 'Morrisania-Melrose' = 111, 'Mott Haven-Port Morris' = 112, 'Mount Hope'
= 113, 'Murray Hill' = 114, 'Murray Hill-Kips Bay' = 115, 'New Brighton-Silver Lake' = 116, 'New Dorp-Midland
Beach' = 117, 'New Springville-Bloomfield-Travis' = 118, 'North Corona' = 119, 'North Riverdale-Fieldston-

Rlveradale = 1ZU, 'North Slide-sSouth Side’ = 1lZl, ~Norwood = 1ZZ, ~vakland Gardens = 1Z3, Lakwood-Uakwood
Beach' = 124, 'Ocean Hill' = 125, 'Ocean Parkway South' = 126, 'Old Astoria' = 127, 'Old Town-Dongan Hills-
South Beach' = 128, 'Ozone Park' = 129, 'Park Slope-Gowanus' = 130, 'Parkchester' = 131, 'Pelham Bay-Country
Club-City Island' = 132, 'Pelham Parkway' = 133, 'Pomonok-Flushing Heights-Hillcrest' = 134, 'Port Richmond' =
135, 'Prospect Heights' = 136, 'Prospect Lefferts Gardens-Wingate' = 137, 'Queens Village' = 138, 'Queensboro
Hill' = 139, 'Queensbridge-Ravenswood-Long Island City' = 140, 'Rego Park' = 141, 'Richmond Hill' = 142,
'Ridgewood' = 143, 'Rikers Island' = 144, 'Rosedale' = 145, 'Rossville-Woodrow' = 146, 'Rugby-Remsen Village'
= 147, 'Schuylerville-Throgs Neck-Edgewater Park' = 148, 'Seagate-Coney Island' = 149, 'Sheepshead Bay-
Gerritsen Beach-Manhattan Beach' = 150, 'SoHo-TriBeCa-Civic Center-Little Italy' = 151, 'Soundview-Bruckner'
= 152, 'Soundview-Castle Hill-Clason Point-Harding Park' = 153, 'South Jamaica' = 154, 'South Ozone Park' =
155, 'Springfield Gardens North' 156, 'Springfield Gardens South-Brookville' = 157, 'Spuyten Duyvil-
Kingsbridge' = 158, 'St. Albans' = 159, 'Stapleton-Rosebank' = 160, 'Starrett City' = 161, 'Steinway' = 162,
'Stuyvesant Heights' = 163, 'Stuyvesant Town-Cooper Village' = 164, 'Sunset Park East' = 165, 'Sunset Park
West' = 166, 'Todt Hill-Emerson Hill-Heartland Village-Lighthouse Hill' = 167, 'Turtle Bay-East Midtown' =
168, 'University Heights-Morris Heights' = 169, 'Upper East Side-Carnegie Hill' = 170, 'Upper West Side' =

171, 'Van Cortlandt Village' = 172, 'Van Nest-Morris Park-Westchester Square' = 173, 'Washington Heights
North' = 174, 'Washington Heights South' = 175, 'West Brighton' = 176, 'West Concourse' = 177, 'West Farms-
Bronx River' = 178, 'West New Brighton-New Brighton-St. George' = 179, 'West Village' = 180, 'Westchester-
Unionport' = 181, 'Westerleigh' = 182, 'Whitestone' = 183, 'Williamsbridge-Olinville' = 184, 'Williamsburg' =
185, 'Windsor Terrace' = 186, 'Woodhaven' = 187, 'Woodlawn-Wakefield' = 188, 'Woodside' = 189, 'Yorkville' =
190, 'park-cemetery-etc-Bronx' = 191, 'park-cemetery-etc-Brooklyn' = 192, 'park-cemetery-etc-Manhattan' =
193, 'park-cemetery-etc-Queens' = 194, 'park-cemetery-etc-Staten Island' = 195)) AS dropoff ntaname,

toUIntl6 (ifNull(dropoff puma, '0')) AS dropoff puma

FROM trips

IXZEE3030%), FHELNEF428,0001T, EMRIEE, FILMEA Log 51 EE R MergeTree 5|2 RAIER, EXMEBERT,
TEIRERIT2007,

TREE(FA126GBIIETE],

:) SELECT formatReadableSize(sum(bytes)) FROM system.parts WHERE table = 'trips _mergetree' AND active

SELECT formatReadableSize(sum(bytes))
FROM system.parts
WHERE (table = 'trips mergetree') AND active

r—formatReadableSize(sum(bytes))—
| 126.18 GiB |

BRILbZ5h, {RIEPIMATEMergeTree EiZiTOPTIMIZEEIAGHITINM . EXTZUIM, ENEMEERBEHITHANBERTE
ARV ZRIFN,

PAN L=1= e/
BEMRFHITER
Q1:
SELECT cab_type, count(*) FROM trips_mergetree GROUP BY cab_type
0.490 seconds.
Q2:
SELECT passenger_count, avg(total_ amount) FROM trips_mergetree GROUP BY passenger_count
1.224 seconds.
Q3:

SELECT passenger_count, toYear(pickup date) AS year, count(*) FROM trips mergetree GROUP BY passenger count,
year

2.104 seconds.

Q4.

SELECT passenger_count, toYear(pickup_date) AS year, round(trip distance) AS distance, count(*)
FROM trips_mergetree

GROUP BY passenger_count, year, distance

ORDER BY year, count(*) DESC

3.593 seconds.
BIMERNRUN TEEMNRSE:
Two Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz, 16 physical kernels total, 128 GiB RAM,8x6 TB HD on hardware RAID-5

RTREZN=RETHRRFNE, ERMETIREBFE, EWMHNXERFNEFTIRESE. BRES/IRERALLE
ERERITERE.

A=aRSHEPEIEREN:
EBaRSHPET:

CREATE TABLE default.trips_mergetree_third (trip_ id UInt32, vendor_id Enum8('1l' =1, '2' = 2, 'CMT' = 3,
'vrs' = 4, 'DDS' = 5, 'B02512' = 10, 'B02598' = 11, 'B02617' = 12, 'B02682' = 13, 'B02764' = 14),

pickup date Date, pickup datetime DateTime, dropoff date Date, dropoff datetime DateTime,

store_and fwd_flag UInt8, rate code id UInt8, pickup longitude Float64, pickup latitude Floaté64,

dropoff longitude Float64, dropoff latitude Float64, passenger count UInt8, trip distance Floaté64,

fare amount Float32, extra Float32, mta_tax Float32, tip amount Float32, tolls_amount Float32, ehail fee
Float32, improvement surcharge Float32, total_ amount Float32, payment_type Enum8('UNK' = 0, 'CSH' =1,
'CRE' = 2, 'NOC' = 3, 'DIS' = 4), trip type UInt8, pickup FixedString(25), dropoff FixedString(25),
cab_type Enum8('yellow' = 1, 'green' = 2, 'uber' = 3), pickup nyct2010_gid UInt8, pickup ctlabel Float32,
pickup_borocode UInt8, pickup boroname Enum8('' = 0, 'Manhattan' = 1, 'Bronx' = 2, 'Brooklyn' = 3, 'Queens'
= 4, 'Staten Island' = 5), pickup ct2010 FixedString(6), pickup boroct2010 FixedString(7),

pickup cdeligibil Enum8(' ' = 0, 'E' =1, 'I' = 2), pickup ntacode FixedString(4), pickup ntaname Enumlé6(''
= 0, 'Airport' = 1, 'Allerton-Pelham Gardens' = 2, 'Annadale-Huguenot-Prince\'s Bay-Eltingville' = 3, 'Arden
Heights' = 4, 'Astoria' = 5, 'Auburndale' = 6, 'Baisley Park' = 7, 'Bath Beach' = 8, 'Battery Park City-Lower
Manhattan' = 9, 'Bay Ridge' = 10, 'Bayside-Bayside Hills' = 11, 'Bedford' = 12, 'Bedford Park-Fordham North'
= 13, 'Bellerose' = 14, 'Belmont' = 15, 'Bensonhurst East' = 16, 'Bensonhurst West' = 17, 'Borough Park' =
18, 'Breezy Point-Belle Harbor-Rockaway Park-Broad Channel' = 19, 'Briarwood-Jamaica Hills' = 20, 'Brighton
Beach' = 21, 'Bronxdale' = 22, 'Brooklyn Heights-Cobble Hill' = 23, 'Brownsville' = 24, 'Bushwick North' =
25, 'Bushwick South' = 26, 'Cambria Heights' = 27, 'Canarsie' = 28, 'Carroll Gardens-Columbia Street-Red Hook'
= 29, 'Central Harlem North-Polo Grounds' = 30, 'Central Harlem South' = 31, 'Charleston-Richmond Valley-
Tottenville' = 32, 'Chinatown' = 33, 'Claremont-Bathgate' = 34, 'Clinton' = 35, 'Clinton Hill' = 36, 'Co-op
City' = 37, 'College Point' = 38, 'Corona' = 39, 'Crotona Park East' = 40, 'Crown Heights North' = 41, 'Crown
Heights South' = 42, 'Cypress Hills-City Line' = 43, 'DUMBO-Vinegar Hill-Downtown Brooklyn-Boerum Hill' = 44,
'Douglas Manor-Douglaston-Little Neck' = 45, 'Dyker Heights' = 46, 'East Concourse-Concourse Village' = 47,
'East Elmhurst' = 48, 'East Flatbush-Farragut' = 49, 'East Flushing' = 50, 'East Harlem North' = 51, 'East
Harlem South' = 52, 'East New York' = 53, 'East New York (Pennsylvania Ave)' = 54, 'East Tremont' = 55, 'East
Village' 56, 'East Williamsburg' = 57, 'Eastchester-Edenwald-Baychester' = 58, 'Elmhurst' = 59, 'Elmhurst-
Maspeth' = 60, 'Erasmus' = 61, 'Far Rockaway-Bayswater' = 62, 'Flatbush' = 63, 'Flatlands' = 64, 'Flushing' =
65, 'Fordham South' = 66, 'Forest Hills' = 67, 'Fort Greene' = 68, 'Fresh Meadows-Utopia' = 69, 'Ft. Totten-
Bay Terrace-Clearview' = 70, 'Georgetown-Marine Park-Bergen Beach-Mill Basin' = 71, 'Glen Oaks-Floral Park-
New Hyde Park' = 72, 'Glendale' = 73, 'Gramercy' = 74, 'Grasmere-Arrochar-Ft. Wadsworth' = 75, 'Gravesend' =
76, 'Great Kills' = 77, 'Greenpoint' = 78, 'Grymes Hill-Clifton-Fox Hills' = 79, 'Hamilton Heights' = 80,
'Hammels-Arverne-Edgemere' = 81, 'Highbridge' = 82, 'Hollis' = 83, 'Homecrest' = 84, 'Hudson Yards-Chelsea-

Flatiron-Union Square' = 85, 'Hunters Point-Sunnyside-West Maspeth' = 86, 'Hunts Point' = 87, 'Jackson
Heights' = 88, 'Jamaica' = 89, 'Jamaica Estates-Holliswood' = 90, 'Kensington-Ocean Parkway' = 91, '
Gardens' = 92, 'Kew Gardens Hills' = 93, 'Kingsbridge Heights' = 94, 'Laurelton' = 95, 'Lenox Hill-Roosevelt
Island' = 96, 'Lincoln Square' = 97, 'Lindenwood-Howard Beach' = 98, 'Longwood' = 99, 'Lower East Side' =
100, 'Madison' = 101, 'Manhattanville' = 102, 'Marble Hill-Inwood' = 103, 'Mariner\'s Harbor-Arlington-Port
Ivory-Graniteville' = 104, 'Maspeth' = 105, 'Melrose South-Mott Haven North' = 106, 'Middle Village' = 107,
'Midtown-Midtown South' = 108, 'Midwood' = 109, 'Morningside Heights' = 110, 'Morrisania-Melrose' = 111,

Kew

'Mott Haven-Port Morris' = 112, 'Mount Hope' = 113, 'Murray Hill' = 114, 'Murray Hill-Kips Bay' = 115, 'New
Brighton-Silver Lake' = 116, 'New Dorp-Midland Beach' = 117, 'New Springville-Bloomfield-Travis' = 118,
'North Corona' = 119, 'North Riverdale-Fieldston-Riverdale' = 120, 'North Side-South Side' = 121, 'Norwood' =
122, 'Oakland Gardens' = 123, 'Oakwood-Oakwood Beach' = 124, 'Ocean Hill' = 125, 'Ocean Parkway South' = 126,
'0ld Astoria' = 127, 'Old Town-Dongan Hills-South Beach' = 128, 'Ozone Park' = 129, 'Park Slope-Gowanus' =
130, 'Parkchester' = 131, 'Pelham Bay-Country Club-City Island' = 132, 'Pelham Parkway' = 133, 'Pomonok-
Flushing Heights-Hillcrest' = 134, 'Port Richmond' = 135, 'Prospect Heights' = 136, 'Prospect Lefferts
Gardens-Wingate' = 137, 'Queens Village' = 138, 'Queensboro Hill' = 139, 'Queensbridge-Ravenswood-Long Island
City' = 140, 'Rego Park' = 141, 'Richmond Hill' = 142, 'Ridgewood' = 143, 'Rikers Island' = 144, 'Rosedale' =
145, 'Rossville-Woodrow' = 146, 'Rugby-Remsen Village' = 147, 'Schuylerville-Throgs Neck-Edgewater Park' =

148, 'Seagate-Coney Island' = 149, 'Sheepshead Bay-Gerritsen Beach-Manhattan Beach' = 150, 'SoHo-TriBeCa-
Civic Center-Little Italy' = 151, 'Soundview-Bruckner' = 152, 'Soundview-Castle Hill-Clason Point-Harding

Park' = 153, 'South Jamaica' = 154, 'South Ozone Park' = 155, 'Springfield Gardens North' = 156, 'Springfield

Gardens South-Brookville' = 157, 'Spuyten Duyvil-Kingsbridge' = 158, 'St. Albans' = 159, 'Stapleton-Rosebank
= 160, 'Starrett City' = 161, 'Steinway' = 162, 'Stuyvesant Heights' = 163, 'Stuyvesant Town-Cooper Village'
= 164, 'Sunset Park East' = 165, 'Sunset Park West' = 166, 'Todt Hill-Emerson Hill-Heartland Village-
Lighthouse Hill' = 167, 'Turtle Bay-East Midtown' = 168, 'University Heights-Morris Heights' = 169, 'Upper
East Side-Carnegie Hill' = 170, 'Upper West Side' = 171, 'Van Cortlandt Village' = 172, 'Van Nest-Morris
Park-Westchester Square' = 173, 'Washington Heights North' = 174, 'Washington Heights South' = 175, 'West
Brighton' = 176, 'West Concourse' = 177, 'West Farms-Bronx River' = 178, 'West New Brighton-New Brighton-St.
George' = 179, 'West Village' = 180, 'Westchester-Unionport' = 181, 'Westerleigh' = 182, 'Whitestone' = 183,
'Williamsbridge-Olinville' = 184, 'Williamsburg' = 185, 'Windsor Terrace' = 186, 'Woodhaven' = 187,
'Woodlawn-Wakefield' = 188, 'Woodside' = 189, 'Yorkville' = 190, 'park-cemetery-etc-Bronx' = 191, 'park-
cemetery-etc-Brooklyn' = 192, 'park-cemetery-etc-Manhattan' = 193, 'park-cemetery-etc-Queens' = 194, 'park-
cemetery-etc-Staten Island' = 195), pickup puma UIntl6, dropoff nyct2010_gid UInt8, dropoff ctlabel
Float32, dropoff borocode UInt8, dropoff boroname Enum8('' = 0, 'Manhattan' = 1, 'Bronx' = 2, 'Brooklyn' =
3, 'Queens' = 4, 'Staten Island' = 5), dropoff ct2010 FixedString(6), dropoff boroct2010 FixedString(7),
dropoff cdeligibil Enum8(' ' = 0, 'E' =1, 'I' = 2), dropoff ntacode FixedString(4), dropoff ntaname
Enuml6é('' = 0, 'Airport' = 1, 'Allerton-Pelham Gardens' = 2, 'Annadale-Huguenot-Prince\'s Bay-Eltingville'
3, 'Arden Heights' = 4, 'Astoria' = 5, 'Auburndale' = 6, 'Baisley Park' = 7, 'Bath Beach' = 8, 'Battery Park
City-Lower Manhattan' = 9, 'Bay Ridge' = 10, 'Bayside-Bayside Hills' = 11, 'Bedford' = 12, 'Bedford Park-
Fordham North' = 13, 'Bellerose' = 14, 'Belmont' = 15, 'Bensonhurst East' = 16, 'Bensonhurst West' = 17,
'Borough Park' = 18, 'Breezy Point-Belle Harbor-Rockaway Park-Broad Channel' = 19, 'Briarwood-Jamaica Hills'
= 20, 'Brighton Beach' = 21, 'Bronxdale' = 22, 'Brooklyn Heights-Cobble Hill' = 23, 'Brownsville' = 24,
'Bushwick North' = 25, 'Bushwick South' = 26, 'Cambria Heights' = 27, 'Canarsie' = 28, 'Carroll Gardens-
Columbia Street-Red Hook' = 29, 'Central Harlem North-Polo Grounds' = 30, 'Central Harlem South' = 31,
'Charleston-Richmond Valley-Tottenville' = 32, 'Chinatown' = 33, 'Claremont-Bathgate' = 34, 'Clinton' = 35,
'Clinton Hill' = 36, 'Co-op City' = 37, 'College Point' = 38, 'Corona' = 39, 'Crotona Park East' = 40, 'Crow
Heights North' = 41, 'Crown Heights South' = 42, 'Cypress Hills-City Line' = 43, 'DUMBO-Vinegar Hill-Downtow
Brooklyn-Boerum Hill' = 44, 'Douglas Manor-Douglaston-Little Neck' = 45, 'Dyker Heights' = 46, 'East
Concourse-Concourse Village' = 47, 'East Elmhurst' = 48, 'East Flatbush-Farragut' = 49, 'East Flushing' = 50
'East Harlem North' = 51, 'East Harlem South' = 52, 'East New York' = 53, 'East New York (Pennsylvania Ave)'

= 54, 'East Tremont' = 55, 'East Village' = 56, 'East Williamsburg' = 57, 'Eastchester-Edenwald-Baychester'
58, 'Elmhurst' = 59, 'Elmhurst-Maspeth' = 60, 'Erasmus' = 61, 'Far Rockaway-Bayswater' = 62, 'Flatbush' = 63
'Flatlands' = 64, 'Flushing' = 65, 'Fordham South' = 66, 'Forest Hills' = 67, 'Fort Greene' = 68, 'Fresh
Meadows-Utopia' = 69, 'Ft. Totten-Bay Terrace-Clearview' = 70, 'Georgetown-Marine Park-Bergen Beach-Mill
Basin' = 71, 'Glen Oaks-Floral Park-New Hyde Park' = 72, 'Glendale' = 73, 'Gramercy' = 74, 'Grasmere-
Arrochar-Ft. Wadsworth' = 75, 'Gravesend' = 76, 'Great Kills' = 77, 'Greenpoint' = 78, 'Grymes Hill-Clifton-
Fox Hills' = 79, 'Hamilton Heights' = 80, 'Hammels-Arverne-Edgemere' = 81, 'Highbridge' = 82, 'Hollis' = 83,
'Homecrest' = 84, 'Hudson Yards-Chelsea-Flatiron-Union Square' = 85, 'Hunters Point-Sunnyside-West Maspeth'
86, 'Hunts Point' = 87, 'Jackson Heights' = 88, 'Jamaica' = 89, 'Jamaica Estates-Holliswood' = 90,
'Kensington-Ocean Parkway' = 91, 'Kew Gardens' = 92, 'Kew Gardens Hills' = 93, 'Kingsbridge Heights' = 94,
'Laurelton' = 95, 'Lenox Hill-Roosevelt Island' = 96, 'Lincoln Square' = 97, 'Lindenwood-Howard Beach' = 98,
'Longwood' = 99, 'Lower East Side' = 100, 'Madison' = 101, 'Manhattanville' = 102, 'Marble Hill-Inwood' =
103, 'Mariner\'s Harbor-Arlington-Port Ivory-Graniteville' = 104, 'Maspeth' = 105, 'Melrose South-Mott Haven
North' = 106, 'Middle Village' = 107, 'Midtown-Midtown South' = 108, 'Midwood' = 109, 'Morningside Heights'
110, 'Morrisania-Melrose' = 111, 'Mott Haven-Port Morris' = 112, 'Mount Hope' = 113, 'Murray Hill' = 114,
'Murray Hill-Kips Bay' = 115, 'New Brighton-Silver Lake' = 116, 'New Dorp-Midland Beach' = 117, 'New
Springville-Bloomfield-Travis' = 118, 'North Corona' = 119, 'North Riverdale-Fieldston-Riverdale' = 120,
'North Side-South Side' = 121, 'Norwood' = 122, 'Oakland Gardens' = 123, 'Oakwood-Oakwood Beach' = 124,
'Ocean Hill' = 125, 'Ocean Parkway South' = 126, 'Old Astoria' = 127, '0Old Town-Dongan Hills-South Beach' =
128, 'Ozone Park' = 129, 'Park Slope-Gowanus' = 130, 'Parkchester' = 131, 'Pelham Bay-Country Club-City
Island' = 132, 'Pelham Parkway' = 133, 'Pomonok-Flushing Heights-Hillcrest' = 134, 'Port Richmond' = 135,
'Prospect Heights' = 136, 'Prospect Lefferts Gardens-Wingate' = 137, 'Queens Village' = 138, 'Queensboro Hil
= 139, 'Queensbridge-Ravenswood-Long Island City' = 140, 'Rego Park' = 141, 'Richmond Hill' = 142,
'Ridgewood' = 143, 'Rikers Island' = 144, 'Rosedale' = 145, 'Rossville-Woodrow' = 146, 'Rugby-Remsen Village
= 147, 'Schuylerville-Throgs Neck-Edgewater Park' = 148, 'Seagate-Coney Island' = 149, 'Sheepshead Bay-
Gerritsen Beach-Manhattan Beach' = 150, 'SoHo-TriBeCa-Civic Center-Little Italy' = 151, 'Soundview-Bruckner'
= 152, 'Soundview-Castle Hill-Clason Point-Harding Park' = 153, 'South Jamaica' = 154, 'South Ozone Park' =
155, 'Springfield Gardens North' = 156, 'Springfield Gardens South-Brookville' = 157, 'Spuyten Duyvil-
Kingsbridge' = 158, 'St. Albans' = 159, 'Stapleton-Rosebank' = 160, 'Starrett City' = 161, 'Steinway' = 162,
'Stuyvesant Heights' = 163, 'Stuyvesant Town-Cooper Village' = 164, 'Sunset Park East' = 165, 'Sunset Park
West' = 166, 'Todt Hill-Emerson Hill-Heartland Village-Lighthouse Hill' = 167, 'Turtle Bay-East Midtown'
168, 'University Heights-Morris Heights' = 169, 'Upper East Side-Carnegie Hill' = 170, 'Upper West Side'
171, 'vVan Cortlandt Village' = 172, 'Van Nest-Morris Park-Westchester Square' = 173, 'Washington Heights
North' = 174, 'Washington Heights South' = 175, 'West Brighton' = 176, 'West Concourse' = 177, 'West Farms-
Bronx River' = 178, 'West New Brighton-New Brighton-St. George' = 179, 'West Village' = 180, 'Westchester-
Unionport' = 181, 'Westerleigh' = 182, 'Whitestone' = 183, 'Williamsbridge-Olinville' = 184, 'Williamsburg'
185, 'Windsor Terrace' = 186, 'Woodhaven' = 187, 'Woodlawn-Wakefield' = 188, 'Woodside' = 189, 'Yorkville' =
190, 'park-cemetery-etc-Bronx' = 191, 'park-cemetery-etc-Brooklyn' = 192, 'park-cemetery-etc-Manhattan' =
193, 'park-cemetery-etc-Queens' = 194, 'park-cemetery-etc-Staten Island' = 195), dropoff puma UIntl6) ENGIN
= MergeTree(pickup_date, pickup_datetime, 8192)

n
n

’

’

1

E

£ BIAARSS 25 PIGeT

CREATE TABLE trips_mergetree x3 AS trips mergetree third ENGINE = Distributed(perftest, default,
trips_mergetree third, rand())

BTN TEREMD HEUE:

INSERT INTO trips mergetree x3 SELECT * FROM trips mergetree
XM EWFRIGT2454%,
E=aRSHEEFHPTITHER:
Q1:0.212 seconds. Q2: 0.438 seconds. Q3: 0.733 seconds. Q4: 1.241 seconds.
AHEHR, BEWIEEMT RN,
HANERE1408 RSB RFOEHTIZTHNER:

Q1:0.028 sec. Q2:0.043 sec. Q3: 0.051 sec. Q4: 0.072 sec.

AEXMIER T, EWLENEETSANSLTERHAE. FIMERLUTS=MYandexBUEROFNEFIHEMT RS HrA0%KR

BITEW, XEINTRA0ZMHITER.

&4 4

AN=0

servers

1 0.490 1.224 2.104 3.593
3 0.212 0.438 0.733 1.241
140 0.028 0.043 0.051 0.072

AMPLab KEGEE ENNL

S https://amplab.cs.berkeley.edu/benchmark/ [https://amplab.cs.berkeley.edu/benchmark/]

BEEBTENttps://aws.amazon.com [https://aws.amazon.comBEM—TREBNKS . JTHINEEEGRMERAF. HBFE.

H(ER., ZIEFA#Ehttps://console.aws.amazon.com/iam/home?nc2=h_m_sc#security_credential
[https://console.aws.amazon.com/iam/home?nc2=h_m_sc#security_credential FRERFTEYIH 0 25 %A

AEHRIBITU RS

sudo apt-get install s3cmd

mkdir tiny; cd tiny;

s3cmd sync s3://big-data-benchmark/pavlo/text-deflate/tiny/ .
cd ..

mkdir lnode; cd 1lnode;

s3cmd sync s3://big-data-benchmark/pavlo/text-deflate/lnode/ .
cd ..

mkdir 5nodes; cd 5nodes;

s3cmd sync s3://big-data-benchmark/pavlo/text-deflate/5nodes/ .
cd ..

TEClickHouseiz T F&1i8:

FBIE

https://amplab.cs.berkeley.edu/benchmark/
https://aws.amazon.com
https://console.aws.amazon.com/iam/home?nc2=h_m_sc#security_credential

CREATE TABLE rankings_tiny

(
pageURL String,
pageRank UInt32,
avgDuration UInt32

) ENGINE = Log;

CREATE TABLE uservisits_tiny

(
sourceIP String,
destinationURL String,
visitDate Date,
adRevenue Float32,
UserAgent String,
cCode FixedString(3),
1Code FixedString(6),
searchWord String,
duration UInt32

) ENGINE = MergeTree(visitDate, visitDate,

CREATE TABLE rankings_lnode

(
pageURL String,
pageRank UInt32,
avgDuration UInt32

) ENGINE = Log;

CREATE TABLE uservisits_lnode

(
sourceIP String,
destinationURL String,
visitDate Date,
adRevenue Float32,
UserAgent String,
cCode FixedString(3),
1Code FixedString(6),
searchWord String,
duration UInt32

) ENGINE = MergeTree(visitDate, visitDate,

CREATE TABLE rankings 5nodes_on_single
(

pageURL String,

pageRank UInt32,

avgDuration UInt32
) ENGINE = Log;

CREATE TABLE uservisits_5nodes_on_single
(

sourceIP String,

destinationURL String,

visitDate Date,

adRevenue Float32,

UserAgent String,

cCode FixedString(3),

1Code FixedString(6),

searchWord String,

duration UInt32
) ENGINE = MergeTree(visitDate, visitDate,

EFEHIETITO TGS

8192);

8192);

8192);

for i in tiny/rankings/*.deflate; do echo $i; zlib-flate -uncompress < $i | clickhouse-client --host=example-
perftest0lj --query="INSERT INTO rankings tiny FORMAT CSV"; done

for i in tiny/uservisits/*.deflate; do echo $i; zlib-flate -uncompress < $i | clickhouse-client --
host=example-perftest01lj --query="INSERT INTO uservisits_tiny FORMAT CSV"; done

for i in lnode/rankings/*.deflate; do echo $i; zlib-flate -uncompress < $i | clickhouse-client --
host=example-perftest01lj --query="INSERT INTO rankings_lnode FORMAT CSV"; done

for i in lnode/uservisits/*.deflate; do echo $i; zlib-flate -uncompress < $i | clickhouse-client --
host=example-perftest0lj --query="INSERT INTO uservisits_ lnode FORMAT CSV"; done

for i in 5nodes/rankings/*.deflate; do echo $i; zlib-flate -uncompress < $i | clickhouse-client --
host=example-perftest0lj --query="INSERT INTO rankings 5nodes_on_single FORMAT CSV"; done

for i in 5nodes/uservisits/*.deflate; do echo $i; zlib-flate -uncompress < $i | clickhouse-client --
host=example-perftest0lj --query="INSERT INTO uservisits_5nodes_on_single FORMAT CSV"; done

B ERAEIERA:

SELECT pageURL, pageRank FROM rankings_lnode WHERE pageRank > 1000

SELECT substring(sourceIP, 1, 8), sum(adRevenue) FROM uservisits_lnode GROUP BY substring(sourceIP, 1, 8)

SELECT
sourcelP,
sum(adRevenue) AS totalRevenue,
avg(pageRank) AS pageRank
FROM rankings_lnode ALL INNER JOIN
(
SELECT
sourcelP,
destinationURL AS pageURL,
adRevenue
FROM uservisits_lnode
WHERE (visitDate > '1980-01-01') AND (visitDate < '1980-04-01")
) USING pageURL
GROUP BY sourcelP
ORDER BY totalRevenue DESC
LIMIT 1

. \ 5&
RO EUE
S http://dumps.wikimedia.org/other/pagecounts-raw/ [http://dumps.wikimedia.org/other/pagecounts-raw/]
Bl RGN

CREATE TABLE wikistat
(
date Date,
time DateTime,
project String,
subproject String,
path String,
hits UInté64,
size UInté64
) ENGINE = MergeTree(date, (path, time), 8192);

IR

for i in {2007..2016}; do for j in {01..12}; do echo $i-$j >&2; curl -sSL
"http://dumps.wikimedia.org/other/pagecounts-raw/$i/$i-$j/" | grep -oE 'pagecounts-[0-9]+-[0-9]+\.gz'; done;
done | sort | unig | tee links.txt

cat links.txt | while read link; do wget http://dumps.wikimedia.org/other/pagecounts-raw/$(echo $link | sed -
r 's/pagecounts-([0-9]1{4})([0-91{2})[0-91{2}-[0-9]+\.gz/\1/"')/$(echo $link | sed -r 's/pagecounts-([0-9]1{4})
([0-91{2})[0-9]1{2}-[0-9]+\.gz/\1-\2/")/$1link; done

1s -1 /opt/wikistat/ | grep gz | while read i; do echo $i; gzip -cd /opt/wikistat/$i | ./wikistat-loader --
time="$(echo -n $i | sed -r 's/pagecounts-([0-9]1{4})([0-91{2})([0-91{2})-([0-91{2})([0-91{2})([0-9]
{2})\.gz/\1-\2-\3 \4-00-00/"')" | clickhouse-client --query="INSERT INTO wikistat FORMAT TabSeparated"; done

http://dumps.wikimedia.org/other/pagecounts-raw/

Criteo TBR A S EHHE

A BAMhttp://labs.criteo.com/downloads/download-terabyte-click-logs/ [http://labs.criteo.com/downloads/download-
terabyte-click-logs/]_E F &R

BIRRIA BRSNS LAY R 51 -

CREATE TABLE criteo_log (date Date, clicked UInt8, intl Int32, int2 Int32, int3 Int32, int4 Int32, int5
Int32, int6 Int32, int7 Int32, int8 Int32, int9 Int32, intl0 Int32, intll Int32, intl2 Int32, intl3 Int32,
catl String, cat2 String, cat3 String, cat4 String, cat5 String, cat6 String, cat7 String, cat8 String, cat9
String, catl0 String, catll String, catl2 String, catl3 String, catl4 String, catl5 String, catlé String,
catl7 String, catl8 String, catl9 String, cat20 String, cat2l String, cat22 String, cat23 String, cat24
String, cat25 String, cat26 String) ENGINE = Log

THHIE:

for i in {00..23}; do echo $i; zcat datasets/criteo/day ${i#0}.gz | sed -r 's/"/2000-01-'${i/00/24}'\t/"' |
clickhouse-client --host=example-perftest0lj --query="INSERT INTO criteo log FORMAT TabSeparated"; done

BB R EIEXS N ARG -

CREATE TABLE criteo

(
date Date,
clicked UIntS,
intl Int32,
int2 Int32,
int3 Int32,
int4 Int32,
int5 Int32,
int6 Int32,
int7 Int32,
int8 Int32,
int9 Int32,
intl0 Int32,
intll Int32,
intl2 Int32,
intl3 Int32,
icatl UInt32,
icat2 UInt32,
icat3 UInt32,
icat4 UInt32,
icat5 UInt32,
icat6 UInt32,
icat7 UInt32,
icat8 UInt32,
icat9 UInt32,
icatl0 UInt32,
icatll UInt32,
icatl2 UInt32,
icatl3 UInt32,
icatl4 UInt32,
icatl5 UInt32,
icatlé UInt32,
icatl7 UInt32,
icatl8 UInt32,
icatl9 UInt32,
icat20 UInt32,
icat2l UInt32,
icat22 UInt32,
icat23 UInt32,
icat24 UInt32,
icat25 UInt32,
icat26 UInt32

) ENGINE = MergeTree(date, intHash32(icatl), (date, intHash32(icatl)), 8192)

1B —RRARRIABIER A B AR B KR E:

http://labs.criteo.com/downloads/download-terabyte-click-logs/

INSERT INTO criteo SELECT date, clicked, intl, int2, int3, int4, int5, int6, int7, int8, int9, intlO0,

intl12, intl3, reinterpretAsUInt32(unhex(catl)) AS icatl, reinterpretAsUInt32(unhex(cat2)) AS icat2,
reinterpretAsUInt32(unhex(cat3)) AS icat3, reinterpretAsUInt32(unhex(cat4)) AS icat4,
reinterpretAsUInt32(unhex(cat5)) AS icat5, reinterpretAsUInt32(unhex(cat6)) AS icaté,
reinterpretAsUInt32(unhex(cat7)) AS icat7, reinterpretAsUInt32(unhex(cat8)) AS icats,
reinterpretAsUInt32(unhex(cat9)) AS icat9, reinterpretAsUInt32(unhex(catlO)) AS icatlo,
reinterpretAsUInt32(unhex(catll)) AS icatll, reinterpretAsUInt32(unhex(catl2)) AS icatl2,
reinterpretAsUInt32(unhex(catl3)) AS icatl3, reinterpretAsUInt32(unhex(catl4)) AS icatl4,
reinterpretAsUInt32(unhex(catl5)) AS icatl5, reinterpretAsUInt32(unhex(catl6)) AS icatlé,
reinterpretAsUInt32(unhex(catl7)) AS icatl7, reinterpretAsUInt32(unhex(catl8)) AS icatls,
reinterpretAsUInt32(unhex(catl9)) AS icatl9, reinterpretAsUInt32(unhex(cat20)) AS icat20,
reinterpretAsUInt32(unhex(cat2l)) AS icat2l, reinterpretAsUInt32(unhex(cat22)) AS icat22,
reinterpretAsUInt32(unhex(cat23)) AS icat23, reinterpretAsUInt32(unhex(cat24)) AS icat24,

intll,

reinterpretAsUInt32(unhex(cat25)) AS icat25, reinterpretAsUInt32(unhex(cat26)) AS icat26 FROM criteo_log;

DROP TABLE criteo_log;

Star Schema £ /&35
“®1% dbgen: https://github.com/vadimtk/ssb-dbgen [https://github.com/vadimtk/ssb-dbgen]

git clone git@github.com:vadimtk/ssb-dbgen.git
cd ssb-dbgen
make

ERFIRET AR E —LEE XZRIEEN.
¥ dogen # dists.dss E—RIHAEAKTF800GBEF
FFa4E BEE :

./dbgen -s 1000 -T c
./dbgen -s 1000 -T 1

TEClickHouseRr Bl i R 4544 :

https://github.com/vadimtk/ssb-dbgen

CREATE TABLE lineorder (

LO_ORDERKEY UInt32,
LO_LINENUMBER UInt8,
LO_CUSTKEY UInt32,
LO_PARTKEY UInt32,
LO_SUPPKEY UInt32,
LO_ORDERDATE Date,
LO_ORDERPRIORITY String,
LO_SHIPPRIORITY UInts8,
LO_QUANTITY UInts8,
LO_EXTENDEDPRICE UInt32,
LO_ORDTOTALPRICE UInt32,
LO_DISCOUNT UInts8,
LO_REVENUE UInt32,
LO_SUPPLYCOST UInt32,
LO_TAX UInt8,
LO_COMMITDATE Date,
LO_SHIPMODE String

)Engine=MergeTree(LO_ORDERDATE, (LO_ORDERKEY,LO_LINENUMBER,LO_ ORDERDATE),8192);

CREATE TABLE customer (

C_CUSTKEY UInt32,
C_NAME String,
C_ADDRESS String,
C_CITY String,
C_NATION String,
C_REGION String,
C_PHONE String,
C_MKTSEGMENT String,
C_FAKEDATE Date

)Engine=MergeTree (C_FAKEDATE, (C_CUSTKEY,C_ FAKEDATE),8192);

CREATE TABLE part (

P_PARTKEY UInt32,
P_NAME String,
P_MFGR String,
P_CATEGORY String,
P_BRAND String,
P_COLOR String,
P_TYPE String,
P _SIZE UInts8,
P_CONTAINER String,
P_FAKEDATE Date

)Engine=MergeTree(P_FAKEDATE, (P_PARTKEY,P FAKEDATE),8192);

CREATE TABLE lineorderd AS lineorder ENGINE = Distributed(perftest_3shards_lreplicas, default, lineorder,
rand());

CREATE TABLE customerd AS customer ENGINE = Distributed(perftest 3shards_lreplicas, default, customer,

rand());
CREATE TABLE partd AS part ENGINE = Distributed(perftest_ 3shards lreplicas, default, part, rand());

MR ZEHET APHTNE, BBAREEANENNAIMergeTreeR, MREEZT APHTHNE, BEEERE ST
BLE perftest 3shards lreplicas EEIMIERE. ABRESDTT SPE EIEMergeTreeZXMDistributedZ .,

THEUE (WREZDHIVNILAIEIE customer BN customerd')

cat customer.tbl | sed 's/$/2000-01-01/' | clickhouse-client --query "INSERT INTO customer FORMAT CSV"
cat lineorder.tbl | clickhouse-client --query "INSERT INTO lineorder FORMAT CSV"

1

=i
ClickHouse$2 {7 AMRAED (FEBHTNEEBRETLSHURBR M)

o HTTP[#http], ICRER, HTEMA.
o 7RI ATCP [#tcpl, XB®/DHIFFEH.

ERZHERT, BWERESNIASE, MAREEBESXETAEYEHRITRE., YandexIBAXIFNT: #<S7/7E
[#cli])DBCIREHFZF [#jdbc] * ODBCIRENFEF [#odbc]

RBEGFZE=HErH{ERClickHouse: ZFi#/ZE [#third-party/client_libraries] €& i [#third-party/integrations] * BJ 41 57 H
[#third-party/gui]

ANAA, ALl
LTI R s
B a2 173ih(a) ClickHouse, fERJLA{ER clickhouse-client

$ clickhouse-client

ClickHouse client version 0.0.26176.

Connecting to localhost:9000.

Connected to ClickHouse server version 0.0.26176.:)

ZEPIFRSSHRITSEMARBEX Y. EEES, 155 "IE [#interfaces_cli_configuration]”

ERA

RTEFHAIMERERRENSIFRER (HE) MR, ERMERN, BRE query S, WEREHIEE
stdin (ERNRE stdin F& Terminal) , EMMENER. E5 HTTPEROREM, HEA query SEREHIREE
stain B, BPIRERMEB—AT—ITH stain BAERN query NS, BMAXEAHMBRBNERPIFESE.

ERXTEF iHHEALIRERRA:

echo -ne "1, 'some text', '2016-08-14 00:00:00'\n2, 'some more text', '2016-08-14 00:00:01'" | clickhouse-
client --database=test --query="INSERT INTO test FORMAT CSV";

cat <<_EOF | clickhouse-client --database=test --query="INSERT INTO test FORMAT CSV";

3, 'some text', '2016-08-14 00:00:00'
4, 'some more text', '2016-08-14 00:00:01"
_EOF

cat file.csv | clickhouse-client --database=test --query="INSERT INTO test FORMAT CSV";

AHEENF, BIANEBUERINZ Tabseparated DRH, BRIMMRIBEEIDHRREIRE FORMAT 18X,

ZIABERAT, EERXPRENTENEIT, ITM— Script FHITZNEN, AIBMER --nultiquery S8, RT
INSERT iE8k4), XMAREEMAHER, EWNERSEEBEAEsRAEmE ., BEEN, ITHRITAIENE S, &
AR TEBERIT—IX clickhouse-client , {BIEFBEIEIRBE) clickhouse-client ZFEBEEEFE/LTEHIE.,

AREBEAT, sFEWTRE, MUNERRAT -FEBHL.

PIR multiline SRAIEE (RNANRIEE) @ ATHITEN, KT Enter BIF], EWEGAZLTERD SERE. WRFES
—NESONEMEY, TUERTZABMA—TRFL\, REELIET Enter /5, EMAMBASINEONT—TEN
TO

IR multiline BET: ATHATEN, FEUDSERHABERT Enter i, MRITRIREDS, HANIINEUHLER
ANTTMERBSEMAN T—1T,

HRETENEN, 2SEEHNMEATHSHRZE.

WAIETE \¢c RERSSHEEDSEHE, XRT vertical BWIER, EXMEXT, 8—MEBRITEERRNTH, X
MAANFRERKRRAE. X TAEILAFERN T RS MySQL a< mHNAY,

BRITEFPIHRET rcadline FE (history FEHE 1livedit FE, AAETHME, XEUATEFIHRNARIEN) . %REE
ﬁﬁ, EEJL‘/{ﬁﬁﬁﬁﬂﬁ&?&ﬁ’\]‘ﬂ%ﬁ%ﬁﬁiﬁ%ﬁfﬁl—‘X&ﬁE’%EE&ﬁ@o EEE@%%\E)\E ~/.clickhouse-client-history EPO

BIABERT, MBI RE prettycompact . A LIEIT FORMAT iR ERIBERARAZIRMELIER, EBIETIHRREIEE

\¢ FfF, WBIEGLITHER - format or ——vertical B, FERBFFIHNEENE,

%giﬁﬂj%)jﬁﬁ’ﬁ, {3 Ctrl+D (8 Ctrl+C) s FEMAUNTER—PGHEL: exit , quit, logout, yume , Mrme , mummre ,

exit;, quit;, logout; , yumex , MTmex , DWmrex, q, ¥, 9, Q, :q, i, W, Xi
SHIT—TEENRME, BERHRER:

1. #HE, #ESSVEM TR EUABRT) . ITRIRNEN, HEAERKENEER.
2. AT HREERET BRI ENEED,

3. HEEBANELLR.

4. MR ARVTERTE, 2T0E, MREWLENEE,

ERIGEE Crr+C REUE— T REIFENEI. A, BRAFESFRSIERPLILBR, EETHEREEENZT AR
B, WRERFEHBRIZT Cul+C, BEFIFKEZEE.

BROTEFPIRATFRIINEIEIE OMBIRRR) XKEW., ESHAXESR, B5E "IMIEIEEINLE [#external-data]".

(

BcE
ERAIMEIATAREANSEE clickhouse-client B (FABENSHEEIIAME) :
o BEAWLT
WLITSHRBEMNENEEXHNEE.
o BEEXH

FEXHNEERBEMIME

WwITEN
e ——host, -h -—PREZUHAY host BFR, BRIAR 'localhost’, #RBLAIEIR{EF host BFRENE IPv4 8¢ IPv6 Hitit,
o —-port - EIEMIGO, IME: 9000, SEEHTTP O TCP BAZEOREAAREIROMN.
o —-user, -u -fFAF&, BIME: default,
o --password - B, BRIME: =F/RH,
o ——query, -q - FRERATHEWIEG.
o -—-database, -d - BRIAHAHRIEREURERE. BOME: BRBHEIANEE (BAIAR default) .
o --multiline, -n -WRIBE, RFZTETEN (Enter (RENKRIRIT, TRREWETRE) .
o --multiquery, -n - MIRIEE, RFHERESHRNZIEN, REFREEATER.
o —-format, -f - {EAEENIIMELEHER.

o ——vertical, -k -WIRIEE, MNFRTMEREEBNMELR. X5 -format=Vertical' 8E, EXMERF, 8T
EEERIRNT LT, ZSMARNMERERRBERELY.

o —-time, -t —WIRIEE, IEREERNX TRITENEWNITAIRTEZ] ‘stderr' A,
e --stacktrace —tﬂ%?‘éfi, QD%':HH"JE“%*, %?TEME*%EEE?\%-E\O
e -config-file —HBEXﬁ:E(J%*Ro

BB
clickhouse-client 1§£ﬁ——F%_A§EE"]Y1¢ :

o BT -config-file SEIBTEMIH.

e ./clickhouse-client.xml

e \~/.clickhouse-client/config.xml

e /etc/clickhouse-client/config.xml
Fo & 4l

<config>
<user>username</user>
<password>password</password>
</config>

AN BTFHEL1TE i [#cll, BFoHhXXEENIBHENRSREERE, UKEMC+HER, AZ=NE, 4
ClickHousetp3GRi&E IEVBIFE, {BEERI IUAMClickHouseRUAS 1T R TREMX EFFiA
[https://github.com/yandex/ClickHouse/tree/master/dbms/src/Client]) F/si=&EF D HATCPARE.

HTTP & F i

HTTP #Z£0 8 BUHR @IS (EAITES REIZFIE=-(EMA ClickHouse, FA1M Java # Perl LAK shell BIASEi 8 E, fFEEMMAIER]
1, HTTPIZEOS A Perl, Python UK Go 1, HTTPIZEOLE TCP RAEOENBIR, BEE2HNAEHFNESE,

ZHIAEAT, clickhouse-server R7Ei#[1 8123 EWRIZHTTPIER (XrIAEEREHREH) . NRIREZET — M IESHN
GETiER, ESRE—1MERNSE "OK" (ZEERT) . AINEEREREOESHAS,

$ curl 'http://localhost:8123/'
ok.

BT URL R query SERRIZIEK, HEKREPOSTIER, HEWEWIFLEDMIE URLEY query SEF, HfthiElo
BAE POST (?*ZTI]%TEE%#HJH’AJX’f?HES(mﬁM\%E’J) o URL B9A/NEIRHITE 16 KB, FﬁLUi%ﬁi”EﬂETEEVULEE
ERo

RIBERAT), BRUKE 200 AIMRLAZSEBFANEN EARNER. URRETEDNREE, BEUKE] 500 A9NHRLAAZASF00 N
FHFNFEERMER.

S{EM GET HIEBEKE, readonly RWIRE, HEIER, HEFENEURNE, REERIEPOST HIENIER, AINKEN
BT POST £ KX, thAJEE URL K.

Examples:

$ curl 'http://localhost:8123/?query=SELECT%201'
$ wget -O- -g 'http://localhost:8123/?query=SELECT 1'
$ GET 'http://localhost:8123/?query=SELECT 1'

$ echo -ne 'GET /?query=SELECT$201 HTTP/1.0\r\n\r\n' | nc localhost 8123
HTTP/1.0 200 OK

Connection: Close

Date: Fri, 16 Nov 2012 19:21:50 GMT

1

AIUER, curl LHTERFEURLEN, FIKAZRAE. RE woet ap3turlffl 7 URL X, (BERIHAHZFER
ftb, FERTEHTTP 1.1 MY T{EA keep-alive] Transfer-Encoding: chunked L ZBi% B EH T EERIFEI TE,

https://github.com/yandex/ClickHouse/tree/master/dbms/src/Client

$ echo 'SELECT 1' | curl 'http://localhost:8123/' --data-binary @-

$ echo 'SELECT 1' | curl 'http://localhost:8123/?query=' --data-binary @-

$ echo 'l' | curl 'http://localhost:8123/2?query=SELECT' --data-binary @-

MR—EBDIERESBEISHRIEN, BI—EHET POST EARLZE, MEDEWZER—ITZITEA. BIRRHE):

Q

$ echo 'ECT 1' | curl 'http://localhost:8123/?query=SEL' --data-binary @-
Code: 59, e.displayText() = DB::Exception: Syntax error: failed at position 0: SEL
ECT 1

, expected One of: SHOW TABLES, SHOW DATABASES, SELECT, INSERT, CREATE, ATTACH, RENAME, DROP, DETACH, USE,
SET, OPTIMIZE., e.what() = DB::Exception

ROABR T, REIAVEYER TabSeparated 187U, BZ(EE, N "[EUEHE]" &0 . AIU{ER FORMAT IREEWHRIERA
&=\,

$ echo 'SELECT 1 FORMAT Pretty' | curl 'http://localhost:8123/?' --data-binary @-

INSERT iAJUiEId POST F5iERImAN LR, XARER T, (RAIBOEEBAFT LED A URL S8, AR POST £MENE
NBOMERE. BANBIERTINE, #M6F, MMySQL S AL tab 2 BIIERHE. EXM7F, INSERT LT LOAD
DATA LOCAL INFILE from MySQL,

il BIE— K

echo 'CREATE TABLE t (a UInt8) ENGINE = Memory' | POST 'http://localhost:8123/'

fEFAZEML INSERT B IRIBANEUE

echo 'INSERT INTO t VALUES (1),(2),(3)' | POST 'http://localhost:8123/'

FIETUMERREIRRIX

echo '(4),(5),(6)' | POST 'http://localhost:8123/2?query=INSERT INTO t VALUES'

FIEEEAEIEEN . ENBMNEAER « NENEINEE:

echo '(7),(8),(9)' | POST 'http://localhost:8123/2?query=INSERT INTO t FORMAT Values'

EEIBA tab D EINVEUE, FEEENAMEI:

echo -ne '10\nl1\nl2\n' | POST 'http://localhost:8123/?query=INSERT INTO t FORMAT TabSeparated'

MERFPERAS. BTFEBMERHITHN, BIEMBIIRRRESL.

$ GET 'http://localhost:8123/?query=SELECT a FROM t'

i[5

POST 'http://localhost:8123/?query=DROP TABLE t'

BINEREHAZREIEIE, RE— =R,
AIEE R EHEYE. EROBIEE —MMRERNRT, BIRFEEE— 1 E%HEEFFEERE(sudo apt-get install

compressor-metrika-yandex) .

IRFEURLHIETET compress=1 , RREZBEELENEIE, WRAEURLFIEET deconpress=1 , REZMBEEI POST
FERIEHIEIRE.

A BAOEE A B M EBIEHITILENE SR D AR IR E RPN EES .
FIIX$ERE 'database’ SEURIEE BAIAREURERE .

echo 'SELECT number FROM numbers LIMIT 10' | curl 'http://localhost:8123/?database=system' --data-binary @-

$
0
1
2
3
4
5
6
7
8
9

ZINEBERT, BRIAIEESERSWEETEM, BAUAR default , E, WA ERIZAMERA— 1 SFISTEEUIEE.
BAFBZE MBI UN TR A RIEE:
1. @it HTTP Basic Authentication, ffl:

echo 'SELECT 1' | curl 'http://user:password@localhost:8123/' -d @-

1. @3T URL S8k B 'user'] 'password', 7:5l:

echo 'SELECT 1' | curl 'http://localhost:8123/?user=users&password=password' -d @-

MRAFPBEBIEE, BMANAFR default , MIRBIESEIEE, RIANREHATER., AJUER URL SHIEEERENE IR
BENMLENXERABENEN, R http://localhost:8123/7?

profile=web&max rows to read=1000000000&query=SELECT+1

EZER, &0 "RE [#settings]" #39,

echo 'SELECT number FROM system.numbers LIMIT 10' | curl 'http://localhost:8123/?' --data-binary @-

$
0
1
2
3
4
5
6
7
8
9

BEZXTHMSBESR, 20 "2E [#settings]" 85,

AL TCP RAERO, HTTPEROAXBZENZERENED, AATFRLEES (R, REDHBERTRF) , FE
TEWGENHE. PTETHBESAHEERSHLE, WE LR TCPRAROERR,

AIER) query id SENATREH M query IDEN (ETAERER) . ESEL, S0 "I%E replace_running_query
[#replace-running-query]" 8%,

AJIERY quota key SEAREZ M quotakey BN (EEMFRH) . ES(ER, S0 "Il [#quotas] 5,

HTTP 2O R VHMENEIMOUEIE (SMBIRETR) KEW, BESER, SU "IMNIEIEZI04E [#external-data]" B39 .

[B) iz 2%)4
ﬂDXEHE%%%ﬁﬁuﬁEﬁﬁﬂﬁ]Még;qlo ?7%1#\7 buffer size 0 wait end of query R TURL SECRIALL B/,

buffer size RE T BWHRBAEMSAFPEPZSOTFHEE MRIMAFLERXMEHER, ZFXZEANE HTTP EE,
R THRBIELERAR HTTP EEH,

AT HRBENOLAEE SR, FILAURE wait end of query=1, XMIERT, BARFHEESREPEIRSIHH— IR
X,

il

curl -sS 'http://localhost:8123/?max_result bytes=4000000&buffer size=3000000&wait_end of query=1' -d 'SELECT
toUInt8(number) FROM system.numbers LIMIT 9000000 FORMAT RowBinary'

EWFRMIAVASIEHN HTTP AR EHEFiRE, EREFTWMELE, EREPXATNESXMERNELE. EXMIFR
T, MEEFNEREEA—FERER, MEE I, REEBRTMERIONENZER,

i

T N\ 5 E AR =
ClickHouse P AR S ZMEUER L, AJATE (1nserT) AK (sErecT) IBKAFEA.,
THIREIIE T SRR A RTE (1vsERT) AR (sELEcT) B RPERENN A,

=5 INSERT SELECT

TabSeparated [#tabseparated] v v
TabSeparatedRaw [#tabseparatedraw] X %4
TabSeparatedWithNames [#tabseparatedwithnames] v v
TabSeparatedWithNamesAndTypes [#tabseparatedwithnamesandtypes] v v
CSV [#csv] v (%4
CSVWithNames [#csvwithnames] 4 v
Values [#values] v v
Vertical [#vertical] X v
VerticalRaw [#verticalraw] X v
JSON [#json] X v
JSONCompact [#jsoncompact] X 4
JSONEachRow [#jsoneachrow] v v
TSKV [#tskv] v v
Pretty [#pretty] X v
PrettyCompact [#prettycompact] X v
PrettyCompactMonoBlock [#prettycompactmonoblock] X v
PrettyNoEscapes [#prettynoescapes] X v
PrettySpace [#prettyspace] X 4
RowBinary [#rowbinary] 4 v
Native [#native] (%4 v
Null [#null] X (%4
XML [#xml] X v
CapnProto [#capnproto] v v
i
TabSeparated

7£ TabSeparated 18X H, HIFZITEN. BTESHIRNIRENE. RTITPORE—E (GERRRTHN) 29, &
MEHMEE—THIRST ., EEAAEHTEREH Unix 21T, RE—TENAEREESRITR. EUXAEXR
5, T855|5, AREEERFN.

XA RIUA 1sv KRR,

TabSeparated 8N AFE HERT BEXZFHMALIELE, HTTP EFIRROKINGHARXMMEN, fITEFP LSRN
THEAZMER ., SMBRARTFETNEREREZEEMEIE. fla, MMYSQL ASHEIEAFS AR ClickHouse 1, &
ZIRe

TabSeparated A LM EEESE (MEA WITHTOTALS) ARIRE (X 'extremes' iZBEE1) . XMERT, =@M
WEMEEETHENEE. TENHE, BME, RESU—TTTRAF, Fa:

SELECT EventDate, count() AS c FROM test.hits GROUP BY EventDate WITH TOTALS ORDER BY EventDate FORMAT
TabSeparated™ "~

2014-03-17 1406958
2014-03-18 1383658
2014-03-19 1405797
2014-03-20 1353623
2014-03-21 1245779
2014-03-22 1031592
2014-03-23 1046491
0000-00-00 8873898
2014-03-17 1031592
2014-03-23 1406958

BRI

BHEUTHFITRABN . BFETRAINBETMN + 75 (B2, SAHRTER) . FRBTEEShS, ERX
i, RIFRE=FHEERBTATE, NE (NTHERFSHER) BNESHSNFHBRITAT., FRSHENEERENHFH
BB ATENEF, MASETRHERER.

FREUTHFIFEXNEN, fRSBENMIRDEN. FEHENS, Winf', +inf, -inffl'nan', FREEVENET AN
BRITEER. BANER, FRENBHETREZER. BINRE, RAEMEFESENS S MR TRHRIET
AOENE.

HEARA YYYY-MM-DD &R EANFET, ERUEAFFHHEANDRR . FREHNEHBESMUYYYY-MM-DD hh:mm:ss X5
ANFfEMT, BEMEAFEFIERNDRR. X—HAEEEFIHINRSBENNNAARX (BURTFH—FEXAEEE) .
MNFEAREMNBE, ERHEEXRIEE. Fib, MREBEEESINPERE, NERERSPRITELIE, BTEIEEH
H2—., EIREURIEHRE, AIEMMNBEMESRERN BRI MER 8RR HE BT E#HToR, MASEIEIRE
=]

IT\o

BTEISMER, Unix BIFEBASTC (10D RHIETF) S ERNEET AR, SRTENEKEXN. B YYYY-MM-DD
hh:mm:ssF] NNNNNNNNNN £ B51X 5.

FREURMEERXEHRFFEL . UWTEXFIIRTELE: \b, \f, \r, \n, \t, \0, \', \\, BFEX
Fi\a, \vMl\xmn (FNEFEXFR) NEQ \c 7, HP c B2EQUFRF (REFFIREHRT) . Eit, EREES
B AORHATRIE R \n 30\ OB, SERIT. BIEl, FRE Hello world HERIFZEHRITM AR ZAE A LABHT I ATE
Az

Hello\nworld

Hello\
world

FEMERNEXIF, ER MySQL iZEY tab-separated & N EIBEN MR L RERE.
£ TabSeparated R PEBHIBENFTEEXXNR/NFRERN: Tab, RITFF (LF) MRBHI.
RE—NAFSEHEN., (RANESHKE—TFRBEE, EXTREEEFRNEIRER.

HASELESANESHREIIRD. BERLT, RATNHAFIESEHE, (B0, HFiHENBBRNRFRFERE
A5 LEREREXANABES| S5 EE,

NULL [#null-literal] 38%HE R \v .

(1

TabSeparatedRaw

5 rabseparated BRAA—HIE, THEETSHKEXN, ZBXNEBTHLEEWER, ERNERTETEBN (KGR
BARERS)

BRMIBR AT MERBIR rsvrRaw ERR. []

TabSeparatedWithNames

5 rabseparated AL —FNE, FTZERIINBR, ERMIER, FTTEWBE., BREERIIZRBER
UESNNERERM. CRERBESIMABENTKITRINEE)

XISV RI DMER R Tsvini chnanes SRR, (]

TabSeparatedWithNamesAndTypes

5 ravseparated BAA—HIE, BITRETIINBR, BTOSERIINXE, ERITIRES, BTNETTRE
RS,

XFE AT MERRAFR TsviithNamesAndTypes RN, []

TSKV

5 TabSeparated 7f§it§'§1l)(, EEHENE nane=value HNER, B TabSeparated *%ﬁ-’fi?&i’s’)‘(, = ??&m%%&
123V

SearchPhrase= count ()=8267016

SearchPhrase=bathroom interior design count()=2166
SearchPhrase=yandex count ()=1655
SearchPhrase=2014 spring fashion count ()=1549
SearchPhrase=freeform photos count ()=1480
SearchPhrase=angelina jolie count ()=1245
SearchPhrase=omsk count()=1112
SearchPhrase=photos of dog breeds count()=1091
SearchPhrase=curtain designs count ()=1064
SearchPhrase=baku count ()=1000

NULL [#null-literal S84 9 \v .

SELECT * FROM t_null FORMAT TSKV

x=1 y=\N

SEAREN/NIIN, XS ZRMN, BEREERERE. EMAT Yandex ABIH—LEER T,

IR LA BT E S XIS . TR, EEIRFHIFAENNE, JUERELE, A - ®XR, ENERNEFT
ENRNRIME, EXMERT, SHZTHRBERIME. FARME, TIFRFEENERE.

MNFAEEFSHE, AIMAMINFR csrv RRR, ZMERT ERRATN. XHNIEZFRRZE, (]

Csv

IES D IRIEIERR IV (RFC [https://tools.ietf.org/html/rfc4180]),

https://tools.ietf.org/html/rfc4180

BRIEHER, TRAWSISHEERN., FREFHNGISEURING|SHhHE, RitZ/NBEMMNEEFRFEXT . B
BBt EUNG | S8E. AFNREAESIS, EE—TRENFHET, XTFHRIAZ | o TER Unix BT/
(LF) 28, #BARITMLA CSVMMINT: EFRGHARTILA TabSeparated I8N F R B, RAERERFRHEANEIS
BIEHIHEI CSV, CSVARANTAMFIIL HEIRNG BIENETEATHNREXRRZER)

clickhouse-client --format_csv_delimiter="|" --query="INSERT INTO test.csv FORMAT CSV" < data.csv

*FRANBER TEERIZ . , fEformat_csv_delimiter [#format_csv_delimiter] P R] AT B2 E ZEIIRFTECE.

FETRORME, PILMERSAMERS | SRENFIEE., XIEWNGISTHES|IS, THaAARE5|ISH5, EXMBERT, BN
R NESTIRITA (CRILF) . EERITA®TSI ST, HERRFCHMN, S2KIISHREMENTENGIRT. YTk
17, ©%%3H Unix (LF) , Windows (CRLF) #1Mac OS Classic (CRLF) .

NuLL EEIEN \v,

CSV 8L ZE 1 TabSeparated — #8975 Vi b S ELFIR(E.

CSVWithNames

%Eﬁﬂj%‘b%gﬂ?i’, *ﬂ TabSeparatedWithNames —$¥° []

JSON

DAJSON SN AR, IR 7T EIERZSN, EXRHEIIRIMAMEE AR —LEHNES: BETREHNRERSE LIMIT BRI
WERTE. B

SELECT SearchPhrase, count() AS c FROM test.hits GROUP BY SearchPhrase WITH TOTALS ORDER BY c DESC LIMIT 5
FORMAT JSON

"meta":
[
{
"name": "SearchPhrase",
"type": "String"
T
{
"name": "c",
"type": "UInt64"
}
1,
"data":
[
{
"SearchPhrase": ""
"c": "8267016"
}
{
"SearchPhrase": "bathroom interior design",
"c": "2166"
T
{
"SearchPhrase": "yandex",
"@"s "TiEE5"
}
{
"SearchPhrase": "spring 2014 fashion",
"c": "1549"
T
{
"SearchPhrase": "freeform photos",
"c": "1480"
}
1,
"totals":
{
"SearchPhrase": "",
"c": "8873898"
1

"extremes":

{
"min":
{
"SearchPhrase": ""
ne"s "1480"
}I
"max" s
{
"SearchPhrase": "",
"c": "8267016"
}
|

"rows": 5,

"rows_before limit at least": 141137

JSON 5 JavaScript ®#F ., N THAGRX—R, —LFREBIINEN: R / BN \/ BERRITR vi2028 § vi2029 &
TR — L 23R, BNISEENN \uxxxx , ASCIEHIFRMIEEN BIE, 80, %17, BEENKFRIRGHS R
N\b, \f, \n, \r, \t FERER \uxxxx [FFIRN00-1FEERNNEIRFT. TR UTF-8 RIIERABHRFR, ALt
HEXAEEEERRIUTF-8 5, I T 5 JavaScript ®F, FIAER T, Int64 FUInt64 BEAWS|S5(ER, BEFRZES]
5, AILABECE S output_format_json_quote_64bit_integers I &H0,

rows - ZEREHAVTEL,

rows before limit at least B LIMITIHEENR/MTIEH., REESHESE LIMIT £4MHEL . EE1BEE GROUP
BY, rows_before_limit_at_least Fl2Z=1E LIMIT i3I8 G R EMRITE,

totals - SME (H{EF TOTALS &M4HY) .

extremes —MR1E (& extremesiREN 107) .
ZENVERTREENER, ERERATHEMEAN FBIBEAZIRT) .
ClickHouse 3235 NULL [#null-literal], 7 JSON #& XA nu11 HHERT.
2% JSONEachRow #&.

(1

JSONCompact

5 JSON XA RMZEMRANSNMEER, MAZUEMIAR,

5l
{
"meta":
[
{
"name": "SearchPhrase",
"type": "String"
I
{
"name": "c",
"type": "UInté64"
}
1r
"data":
[
["", "8267016"7],
["bathroom interior design", "2166"],
["yandex", "1655"],
["fashion trends spring 2014", "1549"],
["freeform photo", "1480"]
1,
"totals": ["","8873898"],
"extremes":
{
"min": ["","1480"],
"max": ["","8267016"]
I
"rows": 5,
"rows_before limit at least": 141137
}

RMBERTRHLERSE, MAERTERT BEEBAZIRS) . 2% ssonpachrow B, (]

JSONEachRow

BEIRERB—1TLAISON £htg(Atit (#R175E) JISON ZEH(F) .

{"SearchPhrase":"","count()":"8267016"}

{"SearchPhrase": "bathroom interior design","count()": "2166"}
{"SearchPhrase": "yandex", "count()":"1655"}
{"SearchPhrase":"2014 spring fashion", "count()":"1549"}
{"SearchPhrase":"freeform photo","count()":"1480"}
{"SearchPhrase":"angelina jolie","count()":"1245"}
{"SearchPhrase":"omsk","count()":"1112"}

{"SearchPhrase": "photos of dog breeds","count()":"1091"}
{"SearchPhrase":"curtain designs","count()":"1064"}
{"SearchPhrase":"baku", "count()":"1000"}

5 JSON BAAFNZE, REBRIMNUTF-8F5, EA—AFTHAINUETRRL ., XZHEN, EI9XFHTER URE
AAMAZEREDER. EREXHNSISONIEE.

ST, EEIRFEHSIFARIE, TUESRELE - EMIEMAZITFENNERINME. EXMMERT, SN=1THBER
INME., EREINME, TR RPIETNERE, TR ZENTAFZMHAE., IRENRZENEES, BEEZAK, &
A—EDTEFHITOE. [

Native

REERIEN. FEET TAFBINNREITEAIEN. MTEMR, ZRPEITE, I, JIRIRMEEEURSIRERSD
BHRABACR, MEIER, XMENE JINVH - EXRBIERNIT. REATERSSZEHITRENAMRERER
AUREN, MTERGITE, IR CH EF I,

] DAME A AR T R A B R BEF ClickHouse DBMS ZEYAIHE T, B SAMBERXFMEXZSBEEXM. (]

Null

wEHL., B2, EWEAETE, HEERERAGITEF RN, MESERIIE E, XXATUE, SFE~ R,
ER, IMRARERTHL, TERTET. [

Pretty

BEEMRSTZ AL, BRI ER ANSI X FRELXIGETIRENE. EREH—TTBNRE, STHEERFEP SRR
7. B—TERRESUBBAREEE ., IZREVEN, MEERRTBEPERBL (BT MRAEREREN
MRERELHEN)

NULL [#null-literall EiH A9 vvze

SELECT * FROM t_null

X1 Y1
| 1 | NULL |

NBRFRSHIEEME LR, RITENRI10,0009T, WMRITHATEFT10,000, M= ETRER Showed first 10000”, %
BNERTHHEERER, EFERTETEA (BBIEBAZIRS) .

Prettyfl 8\ 5 o8 (S{EMA WITH TOTALS i) FMRME (2 extrenes IRENIN) . ARXERRAT, SEEMRER
FHRIEZFARIBNRETZ A L. R (M PrettyCompact SRV ER) :

SELECT EventDate, count() AS c FROM test.hits GROUP BY EventDate WITH TOTALS ORDER BY EventDate FORMAT
PrettyCompact

r—EventDate—T——c—

2014-03-17	1406958
2014-03-18	1383658
2014-03-19	1405797
2014-03-20	1353623
2014-03-21	1245779
2014-03-22	1031592
2014-03-23	1046491
L 1 1
Totals:

r—EventDate—r—c—
| 0000-00-00 | 8873898 |

Extremes:

r—EventDate—T—c—
| 2014-03-17 | 1031592 |
| 2014-03-23 | 1406958 |

(1

PrettyCompact

5 pretty AR —1FHIZE, PrettyCompact HIETITZEMNRBDEIL, X EREREMEEZ, IMBANSEREGS
T&EP IR FRUAMER. (]

PrettyCompactMonoBlock

5 prettyCompact BRAAR—FNZE, EXXHF 10,000 THIRES, AEWMEAE—TRED, FRBRKX D[]

PrettyNoEscapes
5 pretty AR —HE, ENMERANSIFREY, XEANRRZZREFEUREER vatcn BAMTTRARELEN,
5l
watch -nl "clickhouse-client --query='SELECT event, value FROM system.events FORMAT PrettyCompactNoEscapes'"
FEPTIAGEF HTTP $ECIRIREREE, BRENRERT,
PrettyCompactNoEscapes
RERM LR,
PrettySpaceNoEscapes

RIEERM LR, []

PrettySpace

5 prettyCompact (#prettycompact) BN A—HHIE, EEATHERENENERETEE. (]

RowBinary
M HBASVRITAR VBT IR, TAEESIIL, REDRR. SMBILE Native BB RK, AREZETITN.

B ERABEEKEN/NERTE, 3, Unt6d {EHESINFET, DateTime #FR A Ulnt32 R Unix BT E)84{E, Date R
TR UINt16 %R, ERMEN 1970-01-01BARMKRE., FRBRRAN varint KE (THFSLEB128

https://en.wikipedia.org/wiki/LEB128

[https://en.wikipedia.org/wiki/LEB128]) , [SIRFRIBIIF T, FixedString B REMRRIA—TFTFI,
BRI varint KE (FTLFFELEB128 [https://en.wikipedia.org/wiki/LEB128]) , FIRBERFHIHETE,

XJF NULL [#null-literall (9% #F, — DR 18 0 WFTRIES Nullable [#data_type-nullable] {ERIE. MR 1, BAZ
B2 v . WRANO0, MARRA L,

Values

EESHITHE—1T. THESSR. RE—1TZEEEES. BFSANELRESSR. BFUT#HEREL, 155!
5. BANFESHY. FENBNFRFS, HENNEASISEEMEH . B FRNEBIINIS TabSeparated
[#tabseparated KM, ERAAIREFR, FEATIMITHE, EBEBTEEFR, TREHRDTHKIHN RTHEERZ
SMIERE, XBAAFMN) o NULL [#null-literal] J§ nuLL o

PA Values i UE BB BB X NR/NENER: B5|SHRRBL.
X INSERT INTO t VALUES ... FARIDMERMER, EBELTEEBTFERER.

(

Vertical
FERIEENSRERMNIT LITENSME., WRBITHESKEZY, Wit EFITEI—1T5/11T.
NULL [#null-literal | Ei8 g wvze

5l

SELECT * FROM t_null FORMAT Vertical

Row 1:
x: 1
y: NULL

ZRVNERTREEBNER, EFERTEMEA SEEBAZIRT) .
(0

VerticalRaw

M vertical MATERET, TRISHIEXNN, IMBANVERTHL, ETNERTHEMTMA (KEEBAZIXR
) .

il

:) SHOW CREATE TABLE geonames FORMAT VerticalRaw;
Row 1:

statement: CREATE TABLE default.geonames (geonameid UInt32, date Date DEFAULT CAST('2017-12-08' AS Date))
ENGINE = MergeTree(date, geonameid, 8192)

:) SELECT 'string with \'quotes\' and \t with some special \n characters' AS test FORMAT VerticalRaw;
Row 1:

test: string with 'quotes' and with some special
characters

Vertical 8= 48LL:

https://en.wikipedia.org/wiki/LEB128

:) SELECT 'string with \'quotes\' and \t with some special \n characters' AS test FORMAT Vertical;
Row 1:

test: string with \'quotes\' and \t with some special \n characters

(1

XML
ZRANEBTREEWER, ENERTETMA, =AU

<?xml version='1.0' encoding='UTF-8' 2>

<result>
<meta>
<columns>
<column>
<name>SearchPhrase</name>
<type>String</type>
</column>
<column>
<name>count () </name>
<type>UInt64</type>
</column>
</columns>
</meta>
<data>
<row>
<SearchPhrase></SearchPhrase>
<field>8267016</field>
</row>
<row>
<SearchPhrase>bathroom interior design</SearchPhrase>
<field>2166</field>
</row>
<row>
<SearchPhrase>yandex</SearchPhrase>
<field>1655</field>
</row>
<row>
<SearchPhrase>2014 spring fashion</SearchPhrase>
<field>1549</field>
</row>
<row>
<SearchPhrase>freeform photos</SearchPhrase>
<field>1480</field>
</row>
<row>
<SearchPhrase>angelina jolie</SearchPhrase>
<field>1245</field>
</row>
<row>
<SearchPhrase>omsk</SearchPhrase>
<field>1112</field>
</row>
<row>
<SearchPhrase>photos of dog breeds</SearchPhrase>
<field>1091</field>
</row>
<row>
<SearchPhrase>curtain designs</SearchPhrase>
<field>1064</field>
</row>
<row>
<SearchPhrase>baku</SearchPhrase>
<field>1000</field>
</row>
</data>
<rows>10</rows>

<rows_before_limit_at_least>141137</rows_before_ limit_at_ least>
</result>

MRIBIRRBIIEZIEN, WRER el (EATRABM, BE, XMLEHENR JSON £, FIRISON—, FFI
A9 UTF-8 FRFERER IR, MERMEXARE BRI UTF-8 FRFF5,

BEFFRBER, FF < M & HEXH <M &,

i&éﬂﬁ@ﬂjﬂg <array> <elem> Hello </ elem> <elem> World </ elem> ... </ array>, ffZHﬁﬁHjﬂg <tuple> <elem>
Hello </ elem> <elem> World </ ELEM> ... </tuple> ,

(1

CapnProto

Cap'n Proto 22— Z #5248, 21 Protocol Buffers F Thriftis, {85 JSON 5 MessagePack &\ ~—#%.

Cap'n Proto JHBASNZMIRLEN, MARBRMR, XERECNIAFTEIMNBIIER ., XFAAE AT USSR A, FHEd
BT EWHITER.

SELECT SearchPhrase, count() AS c FROM test.hits
GROUP BY SearchPhrase FORMAT CapnProto SETTINGS schema = 'schema:Message'

E¢sﬁmawmpﬁﬁﬂ?z

struct Message {
SearchPhrase @0 :Text;
c @1 :Uint64;

}

BN EFEMEN BRI IAERS B E S format_schema_path [#server_settings-format_schema_path] 8§

Cap'n Proto RFFIL RSV, BETIEMALZNRE,

JDBC IXE]]

o ClickHouseE /A A JDBC B9IREN, MIXEE [https://github.com/yandex/clickhouse-jdbcl,
o =/12/HY IDBC IR ClickHouse-Native-JDBC [https://github.com/housepower/ClickHouse-Native-JDBC].

ODBC IXzf

o ClickHouseE /A A JDBC B9IREN, MIXEE [https://github.com/yandex/clickhouse-jdbcl,

E=HARNE
A BE

Yandex NP TETILMNE, thRBAHTEE ZHNNKNBRERE.

e Python
« infi.clickhouse_orm [https://github.com/Infinidat/infi.clickhouse_orm]
e clickhouse-driver [https://github.com/mymarilyn/clickhouse-driver]
¢ clickhouse-client [https://github.com/yurial/clickhouse-client]

¢ PHP

e phpClickHouse [https://github.com/smi2/phpClickHouse]

https://github.com/yandex/clickhouse-jdbc
https://github.com/housepower/ClickHouse-Native-JDBC
https://github.com/yandex/clickhouse-jdbc
https://github.com/Infinidat/infi.clickhouse_orm
https://github.com/mymarilyn/clickhouse-driver
https://github.com/yurial/clickhouse-client
https://github.com/smi2/phpClickHouse

e clickhouse-php-client [https://github.com/8bitov/clickhouse-php-client]
¢ clickhouse-client [https://github.com/bozerkins/clickhouse-client]

e PhpClickHouseClient [https://github.com/SevaCode/PhpClickHouseClient]

o clickhouse [https://github.com/kshvakov/clickhouse/]
¢ go-clickhouse [https://github.com/roistat/go-clickhouse]
¢ mailrugo-clickhouse [https://github.com/mailru/go-clickhouse]
¢ golang-clickhouse [https://github.com/leprosus/golang-clickhouse]
+ Nodels
¢ clickhouse (Nodels) [https://github.com/TimonKK/clickhouse]
o node-clickhouse [https://github.com/apla/node-clickhouse]
o Perl
o perl-DBD-ClickHouse [https://github.com/elcamlost/perl-DBD-ClickHouse]
o HTTP-ClickHouse [https://metacpan.org/release/HTTP-ClickHouse]
e AnyEvent-ClickHouse [https://metacpan.org/release/AnyEvent-ClickHouse]
¢ Ruby
« clickhouse (Ruby) [https://github.com/archan937/clickhouse]
¢ R
¢ clickhouse-r [https://github.com/hannesmuehleisen/clickhouse-r]
¢ RClickhouse [https://github.com/IMSMWU/RClickhouse]
o Java
o clickhouse-client-java [https://github.com/VirtusAl/clickhouse-client-java]
e Scala
¢ clickhouse-scala-client [https://github.com/crobox/clickhouse-scala-client]
o Kotlin
¢ AORMIhttps://github.com/TanVD/AORM]
o C#
¢ ClickHouse.Ado [https://github.com/killwort/ClickHouse-Net]
¢ ClickHouse.Net [https://github.com/ilyabreev/ClickHouse.Net]
o C++
e clickhouse-cpp [https://github.com/artpaul/clickhouse-cpp/]
o Elixir
¢ clickhousex [https://github.com/appodeal/clickhousex/]
o Nim

e nim-clickhouse [https://github.com/leonardoce/nim-clickhouse]

B=NEME
A BE

Yandex NP TESIHNE, WgBHTEA ZOMNKMHRERE,

https://github.com/8bitov/clickhouse-php-client
https://github.com/bozerkins/clickhouse-client
https://github.com/SevaCode/PhpClickHouseClient
https://github.com/kshvakov/clickhouse/
https://github.com/roistat/go-clickhouse
https://github.com/mailru/go-clickhouse
https://github.com/leprosus/golang-clickhouse
https://github.com/TimonKK/clickhouse
https://github.com/apla/node-clickhouse
https://github.com/elcamlost/perl-DBD-ClickHouse
https://metacpan.org/release/HTTP-ClickHouse
https://metacpan.org/release/AnyEvent-ClickHouse
https://github.com/archan937/clickhouse
https://github.com/hannesmuehleisen/clickhouse-r
https://github.com/IMSMWU/RClickhouse
https://github.com/VirtusAI/clickhouse-client-java
https://github.com/crobox/clickhouse-scala-client
https://github.com/TanVD/AORM
https://github.com/killwort/ClickHouse-Net
https://github.com/ilyabreev/ClickHouse.Net
https://github.com/artpaul/clickhouse-cpp/
https://github.com/appodeal/clickhousex/
https://github.com/leonardoce/nim-clickhouse

e Python
¢ SQLAIchemy [https://www.sqlalchemy.org]

¢ sqlalchemy-clickhouse [https://github.com/cloudflare/sqlalchemy-clickhouse] (uses infi.clickhouse_orm
[https://github.com/Infinidat/infi.clickhouse_orm])

e Java
¢ Hadoop [http://hadoop.apache.org]
e clickhouse-hdfs-loader [https://github.com/jaykelin/clickhouse-hdfs-loader] (uses JDBC [#jdbc])
e Scala
o Akka [https://akka.io]
o clickhouse-scala-client [https://github.com/crobox/clickhouse-scala-client]
o C#
e ADO.NET [https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ado-net-overview]
¢ ClickHouse.Ado [https://github.com/killwort/ClickHouse-Net]
e ClickHouse.Net [https://github.com/ilyabreev/ClickHouse.Net]
¢ ClickHouse.Net.Migrations [https://github.com/ilyabreev/ClickHouse.Net.Migrations]
o Elixir
e Ecto[https://github.com/elixir-ecto/ecto]

e clickhouse_ecto [https://github.com/appodeal/clickhouse_ecto]

B=HF RN ML HRE
Tabix
ClickHouse Web 52 Tabix [https://github.com/tabixio/tabix].
FEIfEE:
o NBTEZEZEE ClickHouse, NEELRERHMERME,
B=iE AR,
o« BmmSthE,
ERGLSHTHERE 2T IA.,
o EEEBA LN

Tabix 344 [https://tabix.io/doc/].

HouseOps

HouseOps [https://github.com/HouseOps/HouseOps] @— 13 E I UI/IDE TH, "ILAIGTTHE OSX, Linux and Windows
éq:o

FERE

o BUERIBERT, AIMURED JSON R EEHIE.

o XIFE W CSV 5 JSON 8L ERIE .

o TRHEETWHIITHIFE, ISKILLEHN,

o B ER, XSERBIBEFRENRNZINIFMER.,
o REREEFISANZE,

https://www.sqlalchemy.org
https://github.com/cloudflare/sqlalchemy-clickhouse
https://github.com/Infinidat/infi.clickhouse_orm
http://hadoop.apache.org
https://github.com/jaykelin/clickhouse-hdfs-loader
https://akka.io
https://github.com/crobox/clickhouse-scala-client
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ado-net-overview
https://github.com/killwort/ClickHouse-Net
https://github.com/ilyabreev/ClickHouse.Net
https://github.com/ilyabreev/ClickHouse.Net.Migrations
https://github.com/elixir-ecto/ecto
https://github.com/appodeal/clickhouse_ecto
https://github.com/tabixio/tabix
https://tabix.io/doc/
https://github.com/HouseOps/HouseOps

- RSBEE.
MUTFINGEIEET IR - BUREEE - AP EE - SNEUED T - SR kT - SR EE - MIZRIARER MK Kafka 5| 2%&

(]

G/t

ClickHouse A LAE BB R P18 S AR,

AT ClickHouse SHFHMIELT, REANETNENN (MREWE) WIREN,
i

UInt8, UInt16, UInt32, UInté4, Int8, Int16, Int32, Int64

BIE KENEE, SEENSEENLHTSEE,

3]

e Int8-[-128:127]

o Int16-[-32768 :32767]

o Int32-[-2147483648 : 2147483647]

o Int64 -[-9223372036854775808 : 9223372036854775807]

TR SEEEE
e UInt8-[0:255]
e UInt16-[0:65535]

o UInt32-[0:4294967295]
o UInt64 -[0:18446744073709551615]

Float32, Float64
‘F R E [https://en.wikipedia.org/wiki/IEEE_754],
ELRE5UT CESHLEZEREN:

e Float32 - float

e Float64 - double

HAVZWNERATE BB A EEUE. AN, SEERENEFERNERE, fIMNEHARENEMENERED NS
R

ERF RN
o WFRBHTIHHATLES RUSANNRE,

SELECT 1 - 0.9

https://en.wikipedia.org/wiki/IEEE_754

r———minus(1l, 0.9)—
| 0.09999999999999998 |

o WEMERIRTHESZE ((TENARNLIERSRKBNERLEH)

o SFRITEERTREREWELS K (wr) F"IEHRFE" (wav) , SHELRBITENMMRNIZEEEIX S,
o H—ITITENEZ R BHRR, FRBNERTENENRROERIEE.

NaN and Inf

5¥RESQLAALL, ClickHouse XiEA T BTS2

o Inf —1IELH

SELECT 0.5 / 0

r—divide(0.5, 0)—

| inf |
L 1

oa

e -Inf -TATSH

SELECT -0.5 / 0

r—divide(-0.5, 0)—

| —inf |
L]

o NaN - IEENFE

SELECT 0 / 0

r—divide(0, 0)—
| nan |

A LAZEORDER BY F4] [#query_language-queries-order_by] BEBE ZxTF nan HEFEHIHIN,

(]

Decimal(P, S), Decimal32(S), Decimal64(S), Decimal128(S)

BERNSHNERY, AJEM. BAFREZEIRFRIGEE. STHE RERAREFEREF (FaAN) .

N

£
o P-1BE. ARCERE: [1:38], REAUGZOTTHEIMT (BFEIHK) .
o S-ME. BRCEE: [0: Pl, REMFHVNEED PESHINEMNIEN,

I FARE P 258 Decimal B, UTHIFHERXEI: -Pfrom[1:9]- for Decimal32(S)-P from[10:18]- for
Decimal64(S) - P from [19: 38] - for Decimal128(S)

THFNESTCE

e Decimal32(S)-(-1*10%(9-S),1*10%(9-5S))
o Decimal64(S)-(-1*10%(18-S),1*10%(18-S))
o Decimal128(S)-(-1*10%(38-S),1*10%(38-5))

5190, Decimal32(4) B] AR -99999.9999 ZF 99999.9999 py#K{E, #1570.0001,

WERRTA

HEXASESURHARNENSBAEMH. XTHEREFPIMEESES T LARTEE, M String ¥iR3 HAHEBIHES
SN BIRE

HFMACPUART 11280 F, FItk Decimal128 ERVRIEHREREFIENL, FiIA Decimal128 B HREREIET
Decimal32/Decimalé4,

BEMEAREKE
fDecimalfy “HFIEHSHERNERLL (RRLSHNIRFNE) .

o Decimal64(S1) Decimal32(S2) -> Decimal64(S)
o Decimal128(S1) Decimal32(S2) -> Decimal128(S)
¢ Decimal128(S1) Decimal64(S2) -> Decimal128(S)

FEEZAININ -

o A%, WIE: S=max(S1,52),
o 3®K: S=S1+S2,
o [Ri&: S=51,

X3 F Decimal MIZBEZ BRIRLURIE, SRESSEANERR T,

HRIE X DecimalflFloat32/Float64 Z [B)HIRRER . EIATULZEIRIE, WRILAMER: toDecimal32. toDecimalé4. toDecimal128
gj toFloat32, toFloat64, FEZAMIEIREP—PSH, T8, ERBEAEREE, RBEIRESRRE,

Decimal - #—LERFUREIZE R F9Float64 (FIF0, vardistddev) , WFEAF—LE, E[itE A& EDecimald, XFLEER
¥, RELRERINEE, {EFloat64F1Decimal R iBEIEIEIIE R AIREARE,
pinguul A=)
7EXT Decimal ZEEIHITIRIERY, BETRESALERTY. PHPNEZHFEER (T2 AN) . BHHNISHEZBEEHE
':%"o

SELECT toDecimal32(2, 4) AS x, x / 3

r——x—T1—divide(toDecimal32(2, 4), 3)—
| 2.0000 | 0.6666 |

L 1 1

SELECT toDecimal32(4.2, 8) AS x, X * X

DB: :Exception: Scale is out of bounds.

SELECT toDecimal32(4.2, 8) AS x, 6 * x

DB: :Exception: Decimal math overflow.

*ﬁﬁ;ﬂ&l‘ﬂ%s é&i-l-%/xﬂ:q%o ﬂD%E%ﬂiﬁ‘EHﬂ:ﬂﬁE, mﬂﬂb{ﬁﬂlﬁﬁ decimal check overflow %%ﬁﬁﬁﬁﬁﬂjffﬁﬁ, Eigﬂl'%}ﬂ,
T, BEBSHERFIER:

4u 4u

SET decimal check overflow = 0;
SELECT toDecimal32(4.2, 8) AS x, 6 * x

T rmultiply(6, toDecimal32(4.2, 8))—
| 4.20000000 | -17.74967296 |

mENEMURERBARNEE L, BRERLEBREEL:

SELECT toDecimal32(1, 8) < 100

DB::Exception: Can't compare.

Boolean Values
ST B R RISRIE AR /R B, ATLMER Uint8 258, EVEMREIR 03 1,
I

String

FREANEERKEN. EMEEEENFTE, 88FFT. Eit, FBEREIUNEE{ DBMSs 189 VARCHAR,
BLOB., CLOB %:2£8!,

a3

7mhg

ClickHouse iR BRIBIEEE. FHHEANURERNFTE, REMNRANANHITEMENRL . SREFEXE, HIENE
R UTF-8 w8, £, MRMOKIHERUTF-8 (EF) , REREMARTERITEQRRERT . EF, WRRRENAE
ClickHouse B FRMEFFFHAIRE, LB, lengtn RYAIMUHTEFRHEENFHRANKE, AWM lengthurrs K
BRBRFAFHUUTF-8 w8, T EIEFAFHEEHI Unicode FRIAIKE.

FixedString(N)

BERKE NWNFHSH, NAAZTBNESARY. SRSIHEBKENT NOFFEE (FIZ0E2T INSERT £UER) , &
HAEFHSERERMZTFHHRAZIN FHRE, HRJSIMEMRKEAT N NFHFERE, BREERES. SRSHF5AN—
PEFRFE (B, = SELECT EMMER) i, NULLFTASMNFREREREE, mEfat. ERXMAXS
MYSQL #J CHAR £BIZAR—1¥8 (MYSQL MFR R MUTRIET, AEMENMMERZESRER) .

5 string KEMELE, MONRBEER rixedstring () , ELERERTKSE,

Date

HERRE, AMTFETEME, RIRM1970-01-01 (FFS) BIHRINBEME. RIFFMEM Unix Lo a2l BRE X LR
HEFE (BRI LRE2106%F, BRATEXIFNENH2105) , &/IVEHL0000-00-00,

HEFRRB RN RES.

DateTime

AEBER, BIUNET (EFSM) =68 Unix a8 . AFEFEES BERRBRTEEAMNE, &//VEJ 0000-00-00
00:00:00, EFEIBERERABAIT CRBEHY) .

A X
EREMNEFIRNRSHRTNRAFRX, NEBEMXAS (DBAHAM) RN TETIHFIRD., EXARAR, BXRXESHHN

EREER.

HIANERT, BEFRHEZIRSHNMESERRSIHNX, BaBIERAEFPIRMITIEIN —-use_client time zone 3K
REFERZEFImATIE,

b, EAIEXXABEARY (B9, EREXAEMEN) , BICEEELNERRERREFERY, URNEKREEN, NWeEE
FHRECREHIEE,

(]

Enum8, Enum16
@,?ﬁ Enum8 *D Enumlé6 §ﬂ° Enum f%ﬁ 'string'= integer E"]qu?&%o EC”CKHOUSG EF', E%ﬁﬁ}:‘ﬁﬁﬁﬁ’q,—%?ﬁ%ﬁ
£, BMBEEE enun ERINREHSIRBEIBHIVERNT. XEMREAELLER string FIEREERY,

e Enums FH 'String'= Int8 ﬂj?ﬁiﬁo

e Enumlé6 A 'String'= Intlé6 yj*ﬁiﬁo

&R Bl
BIE—THFE—THEE Enuns ('hello' = 1, 'world' = 2) FEEIHF:

CREATE TABLE t_enum

(
x Enum8('hello' = 1, 'world' = 2)

)
ENGINE = TinyLog

B x FIRBEFMEEBE X FIIHANE: 'hello! B 'world' . MREBEMRFEDTEME, ClickHouse HIEFRH.

:) INSERT INTO t_enum VALUES ('hello'), ('world'), ('hello')
INSERT INTO t_enum VALUES

Ok.

3 rows in set. Elapsed: 0.002 sec.

:) insert into t_enum values('a')

INSERT INTO t_enum VALUES

Exception on client:
Code: 49. DB::Exception: Unknown element 'a' for type Enum8('hello' = 1, 'world' = 2)

LIEMRPEWHIER, ClickHouse M Enun FEIHFERBE.

SELECT * FROM t_enum

—x——
| hello |
| world |
| hello |

RFBEBINYNATHORME, MATE enun (EIEHRARECEEE,

SELECT CAST(x, 'Int8') FROM t_enum

—CAST(x, 'Int8')—
I 1|
I 2 |
I 1]
L]

EEWREIENEE, BEFEER cast,

SELECT toTypeName(CAST('a', 'Enum8(\'a\' =1, \'b\' = 2)"))
—toTypeName (CAST('a', 'Enum8(\'a\' =1, \'b\' = 2)'))—
| Enum8('a' =1, 'b' = 2) |
L]
RN K AR
Enums REWBMETEER -128 ... 127, Enumle XENBMETEER -32768 ... 32767 , MMBMNFREBHELNFE

DR A—HN, RFFESFAS, URED Enum REBIEE T (EREXNER) , BFANEERINF. &AM, HF
HAREBE.

Enum FRFERFBRFEVEEAEER NULL [#null-literal],
Enum BETE Nullable [#data_type-nullable] Z88idh, Att, MREEALEBEIE—TR

CREATE TABLE t_enum nullable
(
x Nullable(Enum8('hello' = 1, 'world' = 2))
)
ENGINE = TinyLog

RMYAILATESE 'hello'] 'world' , EBILATESE nuLL ,

INSERT INTO t_enum null Values('hello'),('world'), (NULL)

EAFHR, Boun JINFEARNSHENEIEN nes 31 1nc16 H8E,

HIUAXATGVRERIAR, ClickHouse I ERTMFHSREENBENSEEPERYNFHFH, WRIRFHKE, sHWER
W HERXAEANRE, SREZBEINFAEERINOME, MREHRE, SWHIE.

HUXARABAN, ClickHouse B ERITMFHEEAN. MRIIBIFEESHIRAE (FE2XREBEREGHNHF) , WL
. Enum EKERB THFNEERASANS RS mmes M tneie KEI—HAY,

RANMERRESR/WIE.

1 ORDER BY, GROUP BY, IN, DISTINCT HZHM, Enum BT RHSHENIEFHERE. i, REFHR, X TEXCER
FEEBEER, Enum W IENGS ENEEESE LN ITENSIERE,

KEMERRES BFE# TR, MBUUS EEFFRHTIER, RS ZHRNEFEAZEREUME, MESIAEE,
MEA IN GERFFEE—D Enum EFFETFEN Enum E£68%, ERESFN Enum EEAFRHERT.

RERABRFNFRENEEHTEATEnums; FIE0, Enum EERERM—MEUEEM. B2, EnumB—NREER
tostring R, EREENFHHE.

Enum BfER tor REATINERIRAMEERE, HRTE—THERE., & r BN Enum NEEHERE, XTERET
HFERY,

Enum SERIRTIUM ArTER FERAMEINESHE. FIMEE avter BRIEFIEMFTMER Enum IR (RERZERINX
8, MFBEREN) . (FARERE, NEZRERTR Enum AEMESRE.

B avter BIE, ATAE Bnuns BB Enunie, RZIFA, PR 1nts ¥ 1ntie —4E,

(1

Array(T)
B v RESTRAMNEA,
T IR ERRE, GSMARE, BREEFERSHIA, ClickHouse WZEHANZIFEIR, FIEl, TEEFMETE
MergeTree RETFIEZHEIA,
BlEEEN
ERIAE A array R E R B 2 20 4R -
array(T)
T RIINERBES:
(1
B EE R :

:) SELECT array(l, 2) AS x, toTypeName(x)

SELECT
[1, 2] AS x,
toTypeName (X)

—x—T1—toTypeName (array(1l, 2))—
| [1,2] | Array(UInt8) |

1 rows in set. Elapsed: 0.002 sec.

:) SELECT [1, 2] AS x, toTypeName(x)

SELECT
[1, 2] AS x,
toTypeName (X)

—x—T1toTypeName([1l, 2])—
| [1,2]1 | Array(UInt8) |
L 1

1 rows in set. Elapsed: 0.002 sec.

EREERE

ClickHouse® Bt A TR HIRIETRITE L FEXLE TR/ WEIERE, NRETEFPEFEENULL [#null-literal|SiTE
ENullable [#data_type-nullable]ZRBITTER, IBAEANTERENESTRNuUllable [#data_type-nullable],

902R ClickHouse TTiAMERIERE, ERTLERE. SRHEANEIZ—TEE8FRFENRFNRAN S REXMIE)

(SELECT array (1, 'a'))o
B e £ R B R Bl -

:) SELECT array(l, 2, NULL) AS x, toTypeName(Xx)

SELECT
[1, 2, NULL] AS x,
toTypeName (X)

—x————T1—toTypeName (array(l, 2, NULL))—
| [1,2,NULL] | Array(Nullable(UInt8)) |
L 1

1 rows in set. Elapsed: 0.002 sec.

AREENCIEFFRENEBIELREEA, ClickHouse 5|8 FH:

:) SELECT array(l, 'a')
SELECT [1, 'a']

Received exception from server (version 1.1.54388):
Code: 386. DB::Exception: Received from localhost:9000, 127.0.0.1. DB::Exception: There is no supertype for
types UInt8, String because some of them are String/FixedString and some of them are not.

0 rows in set. Elapsed: 0.246 sec.

AggregateFunction(name, types_of_arguments...)
RTRRERBPNPENIRS, JUERSREFET -State' BRFIBEE. EZELE, $F "AggregatingMergeTree",

(1

Tuple(T1, T2, ...)
o, EFRE o= ERIMA L5 [#data_types],

TEEERTDEFEMTA BRTRER) . EMNTUBRTIRRSISE, £F8F, INREAXHEIFTESERY lambda EREAT ASEXS
IGESBHITHE., BZEE, 556 IN #8/E7 [#in_operators] and Higher order functions [#higher_order_functions],

TAFNUREBNEGR., EXMBERT, YTISONDIMIXAER, ESHNERESHRR. EISONEIF, TAHENE
Pt (EAHESH) .

BlZE A
A DAfE R R 2R Bl T -

tuple(Tl, T2, ...)

BIRTTHRIRA:

:) SELECT tuple(l,'a') AS x, toTypeName(x)

SELECT
(1, 'a') AS x,
toTypeName (x)

r—x——T1—toTypeName (tuple(l, 'a'))—
| (1,'a') | Tuple(UInt8, String) |

1 rows in set. Elapsed: 0.021 sec.

TCAAP R EERE

EMSEIETAR, ClickHouse 2 BMANTANE— 1S F &/)\ AIRANEE, MRSEY NULL [#null-literal]l, BRIX
TEAN N TTEE Nullable [#data_type-nullable],

B e R BN R -

SELECT tuple(l, NULL) AS x, toTypeName(Xx)

SELECT
(1, NULL) AS x,
toTypeName (x)

—x——T1—toTypeName (tuple(l, NULL))—
| (1,NULL) | Tuple(UInt8, Nullable(Nothing)) |
L 1]

1 rows in set. Elapsed: 0.002 sec.

(1

Nullable(TypeName)

VFRFERATIC (NULL [#null-literal]) RIR"ERKIE", IS Typename RIIEREFH—EE. B9, Nullable(nts) HKEIH
SURTIATENE tnes KEUE, MRBEITRHEME voLL

IFF Typename , NEEFEFRESEIEZEE! Array [#data_typeis array] ¥ Tuple [#data_type-tuple], EEFIBEE A UEE
Nullable ZERUME, fBIU Array (Nullable (Int8)) o

Nullable REVFERAREEBERRSIF,

FRIETE ClickHouse RSZ23ECEF A B WA, B[N vurre BIEM nullable KEPIENAE,

FhgsTIE

BAERNTIFEZM vuilable KEUE, ClickHouse BT {ERHHERNEEXMI, TERFEHE v BIBRSRM MG, #H3
X4E9% B A 1F ClickHouse X8 1N RITHY von FIAENEIERBMEAME, BTFMINTHIMG, wullable FIS5EMAY
BB AL HRIINIFIEZ .,

W SERA B vullable JLFREXIMAEFE NN, ERITEUREIECEX—S
I X #FrRR9 % B R ClickHouse KA 8 M RATHII RIEIBL A0 NULL MBGABBR T ABUMOX A, "Nullable"§1 L &5
BEE S

AR

:) CREATE TABLE t null(x Int8, y Nullable(Int8)) ENGINE TinyLog

CREATE TABLE t_null

(
x Int8,
y Nullable(Int8)

)
ENGINE = TinyLog

Ok.

0 rows in set. Elapsed: 0.012 sec.

:) INSERT INTO t_null VALUES (1, NULL)
INSERT INTO t_null VALUES

Ok.

1 rows in set. Elapsed: 0.007 sec.

:) SELECT x + y FROM t_null

SELECT X + y
FROM t_null

r—plus(x, y)—
| NULL |

| 5 |
e —

2 rows in set. Elapsed: 0.144 sec.

REIIEEN

Nested(Name1l Typel, Name2 Type2, ...)

BREMESHEUTRER. REMESHNSH FIRMEERE) 5 CREATEEFXEN, 8MRIUEREEZTRELES
1,

I

CREATE TABLE test.visits
(
CounterID UInt32,
StartDate Date,
Sign Int8,
IsNew UInt8,
VisitID UInté64,
UserID UInté64,

Goals Nested

(
ID UInt32,
Serial UInt32,
EventTime DateTime,
Price Inté64,
OrderID String,
CurrencyID UInt32

)r

) ENGINE = CollapsingMergeTree(StartDate, intHash32(UserID), (CounterID, StartDate, intHash32(UserID),
VisitID), 8192, Sign)

ERRBIFRT coals XMRELRESN, EESVERNEXRNIE (FEFRZNET) . & visits' RPS—ATERIUX
NENHEET LR,

RAXBF—RRE. RELMTR, BINRMEHALE, PLZIEINSERAREEN, FAUABRBRERROIGR
[EBR (MergeTree 5| EFRAZHZ#XFFA951)

REBHIBRT, MERBELIREHN, IEE—TRIBNG, HTXEX, JINBMEE RSERENR, LML T —A
MLECKE, ERE—FBRERET, AANIIHEESHEENKE.

5l

SELECT
Goals.ID,
Goals.EventTime
FROM test.visits
WHERE CounterID = 101500 AND length(Goals.ID) < 5

LIMIT 10

r—Goals.ID T—Goals.EventTime
[1073752,591325,591325] | ['2014-03-17 16:38:10"','2014-03-17 16:38:48"','2014-03-17 16:42:27"]
[1073752] | ['2014-03-17 00:28:25"]
[1073752] | ['2014-03-17 10:46:20"']

[1073752,591325,591325,591325] | ['2014-03-17 13:59:20','2014-03-17 22:17:55','2014-03-17 22:18:07"','2014-

3-17 22:18:51'] |
[1] I 1]
[1073752,591325,591325] | ['2014-03-17 11:37:06','2014-03-17 14:07:47"','2014-03-17 14:36:21"]
[1] I 11
[1] I 1]
[591325,1073752] | ['2014-03-17 00:46:05"','2014-03-17 00:46:05"]

[1073752,591325,591325,591325] | ['2014-03-17 13:28:33','2014-03-17 13:30:26','2014-03-17 18:51:21','2014-
3-17 18:51:45"]

e T N N ey S

T AR A e B ER B BUR 451 S E AT A S R R BN ZTIEA.

SELECT &) R B 7E{EF ARRAY JOIN f9RMEA AT AIE E BN EFIREMNRIR, ESZEL, % "ARRAY JOIN ¥4G)", &
f5):

SELECT
Goal.ID,
Goal.EventTime
FROM test.visits
ARRAY JOIN Goals AS Goal
WHERE CounterID = 101500 AND length(Goals.ID) < 5
LIMIT 10

r—Goal.ID—T—Goal.EventTime—

1073752 2014-03-17 16:38:10
591325 2014-03-17 16:38:48
591325 2014-03-17 16:42:27

1073752 2014-03-17 00:28:25

1073752 2014-03-17 10:46:20

591325 2014-03-17 22:17:55
591325 2014-03-17 22:18:07
591325 2014-03-17 22:18:51
1073752 2014-03-17 11:37:06

| | |
| | |
| | |
| | |
| | |
| 1073752 | 2014-03-17 13:59:20 |
| | |
| | |
| | |
| | |
L 1 1

TEEN BN IR ELIBSINIT SELECT, RecRmiILETFE—E271,

33T INSERT &1, AIMSRMENMERELIESMFNINE (RUENZ2RMNIIKA) FEAIREF, RASK

ENREEHERNKE.
x$F DESCRIBE &1, HREFELMFRIIIZUERNARDHITIHRE.
ALTER E1X R EEBIRSMARIEIFERIR.

Special Data Types

BHRGIERENERTREFERP O EEERPRL, ETATERNTEER,

Expression

BTRTEHREFHLambdRIAT .

Set
ATIUFTE IN IR ES .
i

Nothing

HEERBENE—BNERTAESHEENER. AURELIE— nothing KEMYE.

BN, STAS NULL [#null-literal] B9ZEBY Nullable (Nothing) o JEIEIFEM Nullable [#data_type-nullable],

Nothing REBAARRRRTENA:

:) SELECT toTypeName(array())
SELECT toTypeName([])

—toTypeName (array())
| Array(Nothing) |

1 rows in set. Elapsed: 0.062 sec.

SQL Reference

o SELECT [#select]

o INSERT INTO [#queries-insert]

o CREATE [#create-database]

o ALTER[#query_language_queries_alter]

o Other types of queries [#miscellanous-queries]

SELECT Queries Syntax

seLECT performs data retrieval.

=

SELECT [DISTINCT] expr list
[FROM [db.]table | (subquery) | table_ function] [FINAL]
[SAMPLE sample coeff]
[ARRAY JOIN ...]
[GLOBAL] ANY|ALL INNER|LEFT JOIN (subquery) |table USING columns_list
[PREWHERE expr]
[WHERE expr]
[GROUP BY expr list] [WITH TOTALS]
[HAVING expr]
[ORDER BY expr list]
[LIMIT [n,]m]
[UNION ALL ...]
[INTO OUTFILE filename]
[FORMAT format]
[LIMIT n BY columns]

All the clauses are optional, except for the required list of expressions immediately after SELECT. The clauses below are
described in almost the same order as in the query execution conveyor.

If the query omits the pIsTINCT, GROUP BY and OrDER BY clausesandthe 1n and JoIn subqueries, the query will be
completely stream processed, using O(1) amount of RAM. Otherwise, the query might consume a lot of RAM if the
appropriate restrictions are not specified: max memory usage, max _rows to group by, max rows to sort,
max_rows_in distinct, max bytes in distinct, max rows in set, max bytes in set, max rows_ in join,
max_bytes in join, max bytes before external sort, max bytes before external group by.For more
information, see the section "Settings". It is possible to use external sorting (saving temporary tables to a disk) and
external aggregation. The system does not have "merge join".

FROM Clause

If the FROM clause is omitted, data will be read from the system.one table. The 'system.one' table contains exactly one
row (this table fulfills the same purpose as the DUAL table found in other DBMSs).

The FROM clause specifies the table to read data from, or a subquery, or a table function; ARRAY JOIN and the regular JOIN
may also be included (see below).

Instead of a table, the SELECT subquery may be specified in brackets. In this case, the subquery processing pipeline will be
built into the processing pipeline of an external query. In contrast to standard SQL, a synonym does not need to be
specified after a subquery. For compatibility, it is possible to write 'AS name' after a subquery, but the specified name isn't
used anywhere.

A table function may be specified instead of a table. For more information, see the section "Table functions".

To execute a query, all the columns listed in the query are extracted from the appropriate table. Any columns not needed
for the external query are thrown out of the subqueries. If a query does not list any columns (for example, SELECT count()
FROM t), some column is extracted from the table anyway (the smallest one is preferred), in order to calculate the number
of rows.

The FINAL modifier can be used only for a SELECT from a CollapsingMergeTree table. When you specify FINAL, datais
selected fully "collapsed". Keep in mind that using FINAL leads to a selection that includes columns related to the primary
key, in addition to the columns specified in the SELECT. Additionally, the query will be executed in a single stream, and data
will be merged during query execution. This means that when using FINAL, the query is processed more slowly. In most
cases, you should avoid using FINAL. For more information, see the section "CollapsingMergeTree engine".

SAMPLE Clause

The SAMPLE clause allows for approximated query processing. Approximated query processing is only supported by
MergeTree* type tables, and only if the sampling expression was specified during table creation (see the section
"MergeTree engine").

SsaMPLE hasthe format SAMPLE k,where k isadecimal number from0to 1, or saMPLE n,where 'n'is a sufficiently large
integer.

In the first case, the query will be executed on 'k’ percent of data. For example, savpLE 0.1 runs the query on 10% of data.
In the second case, the query will be executed on a sample of no more than 'n' rows. For example, saMPLE 10000000 runs
the query on a maximum of 10,000,000 rows.

Example:

SELECT
Title,
count() * 10 AS PageViews
FROM hits_ distributed
SAMPLE 0.1
WHERE
CounterID = 34
AND toDate(EventDate) >= toDate('2013-01-29")
AND toDate(EventDate) <= toDate('2013-02-04")
AND NOT DontCountHits
AND NOT Refresh
AND Title != "'
GROUP BY Title
ORDER BY PageViews DESC LIMIT 1000

In this example, the query is executed on a sample from 0.1 (10%) of data. Values of aggregate functions are not corrected
automatically, so to get an approximate result, the value 'count()' is manually multiplied by 10.

When using something like savMpLE 10000000 , thereisn't any information about which relative percent of data was
processed or what the aggregate functions should be multiplied by, so this method of writing is not always appropriate to
the situation.

A sample with a relative coefficient is "consistent": if we look at all possible data that could be in the table, a sample (when
using a single sampling expression specified during table creation) with the same coefficient always selects the same
subset of possible data. In other words, a sample from different tables on different servers at different times is made the
same way.

For example, a sample of user IDs takes rows with the same subset of all the possible user IDs from different tables. This
allows using the sample in subqueries in the IN clause, as well as for manually correlating results of different queries with
samples.

ARRAY JOIN Clause

Allows executing JOIN with an array or nested data structure. The intent is similar to the 'arrayJoin’ function, but its
functionality is broader.

ARRAY JOIN isessentially INNER JOIN with an array. Example:

:) CREATE TABLE arrays_test (s String, arr Array(UInt8)) ENGINE = Memory
CREATE TABLE arrays_test
(
s String,
arr Array(UInt8)
) ENGINE = Memory
Ok.
0 rows in set. Elapsed: 0.001 sec.
:) INSERT INTO arrays_test VALUES ('Hello', [1,2]), ('World', [3,4,5]), ('Goodbye', [])
INSERT INTO arrays_test VALUES
Ok.
3 rows in set. Elapsed: 0.001 sec.

:) SELECT * FROM arrays_test

SELECT *
FROM arrays_test

arr

T T 1
| Hello | [1,2] |
| World | 13,4,5]1 |
| Goodbye | [] |
L 1]

3 rows in set. Elapsed: 0.001 sec.
:) SELECT s, arr FROM arrays_test ARRAY JOIN arr
SELECT s, arr

FROM arrays_test
ARRAY JOIN arr

—S— T arr—
| Hello | 1|
| Hello | 2 |
| world | 3|
| world | 4 |
| world | 5 |
S I—

5 rows in set. Elapsed: 0.001 sec.

An alias can be specified for an array in the ARRAY JOIN clause. In this case, an array item can be accessed by this alias, but
the array itself by the original name. Example:

:) SELECT s, arr, a FROM arrays_test ARRAY JOIN arr AS a

SELECT s, arr, a
FROM arrays_test
ARRAY JOIN arr AS a

arr

S T a1
| Hello | [1,2] | 1|
| Hello | [1,2] [2 |
| world | [3,4,5] | 3 |
| world | [3,4,5] | 4 |
| world | [3,4,5]1 | 5 |
L 1 1]

5 rows in set. Elapsed: 0.001 sec.

Multiple arrays of the same size can be comma-separated in the ARRAY JOIN clause. In this case, JOIN is performed with
them simultaneously (the direct sum, not the direct product). Example:

:) SELECT s, arr, a, num, mapped FROM arrays_test ARRAY JOIN arr AS a, arrayEnumerate(arr) AS num, arrayMap(x
-> x + 1, arr) AS mapped

SELECT s, arr, a, num, mapped
FROM arrays_test
ARRAY JOIN arr AS a, arrayEnumerate(arr) AS num, arrayMap(lambda(tuple(x), plus(x, 1)), arr) AS mapped

S T—arr T a— T num—T mapped—|
| Hello | [1,2] [1| 1| 2 | |
| Hello | [1,2] [2 | 2 | 3 |
| world | [3,4,5] | 3 | 1| 4 |
| world | [3,4,5] | 4 | 2 | 5 |
| world | [3,4,51 | 5 | 3 | 6 |
L 1 1 1 1]

5 rows in set. Elapsed: 0.002 sec.
:) SELECT s, arr, a, num, arrayEnumerate(arr) FROM arrays_test ARRAY JOIN arr AS a, arrayEnumerate(arr) AS num
SELECT s, arr, a, num, arrayEnumerate(arr)

FROM arrays_test
ARRAY JOIN arr AS a, arrayEnumerate(arr) AS num

—s Tarr r—a—Tnum—T—arrayEnumerate(arr)—
| Hello | [1,2] [11 1| 11,27 | | |
| Hello | (1,21 | 21 2| [1,2] |
| world | [3,4,51 | 3 | 11 [1,2,3] |
| world | [3,4,5] | 4 | 2 | 11,2,3] |
| world | (3,4,51 | 51 31 [1,2,3] |
L 1 1 1 1 1

5 rows in set. Elapsed: 0.002 sec.

ARRAY JOIN also works with nested data structures. Example:

:) CREATE TABLE nested test (s String, nest Nested(x UInt8, y UInt32)) ENGINE = Memory
CREATE TABLE nested test
(
s String,
nest Nested(
x UInts8,
y UInt32)
) ENGINE = Memory
Ok.

0 rows in set. Elapsed: 0.006 sec.

:) INSERT INTO nested_test VALUES ('Hello', [1,2], [10,20]), ('World', [3,4,5], [30,40,50]), ('Goodbye', [1,
[1

INSERT INTO nested_test VALUES

Ok.

3 rows in set. Elapsed: 0.001 sec.
:) SELECT * FROM nested_ test

SELECT *
FROM nested_test

—s rnest.x—Ttnest.y 1
| Hello | 11,21 | [10,20] |
| world | [3,4,5] | [30,40,50] |
| Goodbye | [] I 11 |
L 1 1 1

3 rows in set. Elapsed: 0.001 sec.

:) SELECT s, nest.x, nest.y FROM nested_test ARRAY JOIN nest
SELECT s, nest.x , “nest.y’

FROM nested_test

ARRAY JOIN nest

—s——— Tt nest.Xx—Tnest.y—

| Hello | 1| 10 |
| Hello | 2 | 20 |
| world | 3 | 30 |
| World | 4 | 40 |
| World | 5 | 50 |
L 1 1]

5 rows in set. Elapsed: 0.001 sec.

When specifying names of nested data structures in ARRAY JOIN, the meaning is the same as ARRAY JOIN with all the array
elements that it consists of. Example:

:) SELECT s, nest.x, nest.y FROM nested test ARRAY JOIN nest.x, nest.y
SELECT s, nest.x , “nest.y’
FROM nested_test

ARRAY JOIN “nest.x , “nest.y

—s——— Tt nest.Xx—Tnest.y—

| Hello | 1| 10 |
| Hello | 2 | 20 |
| world | 3 | 30 |
| World | 4 | 40 |
| World | 5 | 50 |
L 1 1]

5 rows in set. Elapsed: 0.001 sec.

This variation also makes sense:

:) SELECT s, nest.x, nest.y FROM nested_test ARRAY JOIN nest.x
SELECT s, nest.x , “nest.y’
FROM nested_test

ARRAY JOIN “nest.x”

—s——— Tt nest.Xx—Tnest.y—

| Hello | 1| [10,20] |
| Hello | 2 | [10,20] |
| world | 3 | [30,40,507] |
| world | 4 | [30,40,507 |
| world | 5 | [30,40,507] |
L 1 1 1

5 rows in set. Elapsed: 0.001 sec.

An alias may be used for a nested data structure, in order to select either the JOIN result or the source array. Example:

:) SELECT s, n.x, n.y, nest.x, nest.y FROM nested_test ARRAY JOIN nest AS n

SELECT s, "n.x , ‘n.y , “nest.x , "nest.y
FROM nested_test
ARRAY JOIN nest AS n

rS— T n.XTn.yThnest.x—rnest.y 1
| Hello | 1] 10| [1,2] | [10,20] |
| Hello | 21 201 [1,2] | [10,20] |
| world | 3| 30| (3,4,51 | [30,40,50]
| world | 4| 40 | [3,4,5] | [30,40,50]
| world | 5 | 50 | [3,4,5] | [30,40,50]
L 1 1 1 1 1

5 rows in set. Elapsed: 0.001 sec.

Example of using the arrayEnumerate function:

:) SELECT s, n.x, n.y, nest.x, nest.y, num FROM nested_test ARRAY JOIN nest AS n, arrayEnumerate(nest.x) AS
num

SELECT s, "n.x , ‘n.y , "nest.x , "nest.y , num
FROM nested_test
ARRAY JOIN nest AS n, arrayEnumerate(nest.x) AS num

s~ T n.X— T h.y-Tnest.x—rtnest.y Tnum—]
| Hello | 1] 10| [1,2] | [10,20] | 1
| Hello | 2|1 20| [1,2] | [10,20] | 2 |
| Wworld | 3] 301 13,4,51 | [30,40,50] | 1
| world | 4 | 40 | [3,4,5] | [30,40,50] | 2 |
| world | 51 501 [3,4,5] | [30,40,50] | 3
L 1 1 L L 1 1

5 rows in set. Elapsed: 0.002 sec.

The query can only specify a single ARRAY JOIN clause.

The corresponding conversion can be performed before the WHERE/PREWHERE clause (if its result is needed in this
clause), or after completing WHERE/PREWHERE (to reduce the volume of calculations).

JOIN Clause

The normal JOIN, which is not related to ARRAY JOIN described above.

[GLOBAL] ANY|ALL INNER|LEFT [OUTER] JOIN (subquery)|table USING columns_ list

Performs joins with data from the subquery. At the beginning of query processing, the subquery specified after JOIN is

run, and its result is saved in memory. Then it is read from the "left" table specified in the FROM clause, and while it is being
read, for each of the read rows from the "left" table, rows are selected from the subquery results table (the "right" table)
that meet the condition for matching the values of the columns specified in USING.

The table name can be specified instead of a subquery. This is equivalent to the seLECT * FrROM table subquery, except
in a special case when the table has the Join engine — an array prepared for joining.

All columns that are not needed for the JOIN are deleted from the subquery.
There are several types of JOINs:

1NNER or LEFT type:lf INNER is specified, the result will contain only those rows that have a matching row in the right
table. If LEFT is specified, any rows in the left table that don't have matching rows in the right table will be assigned the
default value - zeros or empty rows. LEFT OUTER may be written instead of LEFT; the word OUTER does not affect
anything.

ANY or ALL stringency:If any is specified and the right table has several matching rows, only the first one found is joined.
If aLL is specified and the right table has several matching rows, the data will be multiplied by the number of these rows.

Using ALL corresponds to the normal JOIN semantic from standard SQL. Using ANY is optimal. If the right table has only
one matching row, the results of ANY and ALL are the same. You must specify either ANY or ALL (neither of them is
selected by default).

GLOBAL distribution:

When using a normal JOIN, the query is sent to remote servers. Subqueries are run on each of them in order to make the
right table, and the join is performed with this table. In other words, the right table is formed on each server separately.

When using cLoBAL ... JOIN, first the requestor server runs a subquery to calculate the right table. This temporary table
is passed to each remote server, and queries are run on them using the temporary data that was transmitted.

Be careful when using GLOBAL JOINs. For more information, see the section "Distributed subqueries".
Any combination of JOINs is possible. For example, GLOBAL ANY LEFT OUTER JOIN .

When running a JOIN, there is no optimization of the order of execution in relation to other stages of the query. The join (a
search in the right table) is run before filtering in WHERE and before aggregation. In order to explicitly set the processing
order, we recommend running a JOIN subquery with a subquery.

Example:

SELECT
CounterlID,
hits,
visits
FROM
(
SELECT
CounterID,
count() AS hits
FROM test.hits
GROUP BY CounterID
) ANY LEFT JOIN
(
SELECT
CounterID,
sum(Sign) AS visits
FROM test.visits
GROUP BY CounterID
) USING CounterID
ORDER BY hits DESC
LIMIT 10

r—CounterID—T——hits—T—visits—

| 1143050 | 523264 | 13665 |
| 731962 | 475698 | 102716 |
| 722545 | 337212 | 108187 |
| 722889 | 252197 | 10547 |
| 2237260 | 196036 | 9522 |
| 23057320 | 147211 | 7689 |
| 722818 | 90109 | 17847 |
| 48221 | 85379 | 4652 |
| 19762435 | 77807 | 7026 |
| 722884 | 77492 | 11056 |
L 1 1]

Subqueries don't allow you to set names or use them for referencing a column from a specific subquery. The columns
specified in USING must have the same names in both subqueries, and the other columns must be named differently. You
can use aliases to change the names of columns in subqueries (the example uses the aliases 'hits' and 'visits').

The USING clause specifies one or more columns to join, which establishes the equality of these columns. The list of
columns is set without brackets. More complex join conditions are not supported.

The right table (the subquery result) resides in RAM. If there isn't enough memory, you can't run a JOIN.
Only one JOIN can be specified in a query (on a single level). To run multiple JOINs, you can put them in subqueries.

Each time a query is run with the same JOIN, the subquery is run again - the result is not cached. To avoid this, use the
special 'Join' table engine, which is a prepared array for joining that is always in RAM. For more information, see the section
"Table engines, Join".

In some cases, it is more efficient to use IN instead of JOIN. Among the various types of JOINs, the most efficientis ANY
LEFT JOIN, then ANY INNER JOIN. The least efficient are ALL LEFT JOIN and ALL INNER JOIN.

If you need a JOIN for joining with dimension tables (these are relatively small tables that contain dimension properties,
such as names for advertising campaigns), a JOIN might not be very convenient due to the bulky syntax and the fact that
the right table is re-accessed for every query. For such cases, there is an "external dictionaries" feature that you should use
instead of JOIN. For more information, see the section "External dictionaries".

]
WHERE Clause

The JOIN behavior is affected by thejoin_use_nulls [#settings-join_use_nulls] setting. With join use nulls=1, JOIN
works like in standard SQL.

If the JOIN keys areNullable [#data_types-nullable] fields, the rows where at least one of the keys has the valueNULL
[#null-literal] are not joined.

If there is a WHERE clause, it must contain an expression with the UInt8 type. This is usually an expression with comparison
and logical operators. This expression will be used for filtering data before all other transformations.

If indexes are supported by the database table engine, the expression is evaluated on the ability to use indexes.
I
PREWHERE Clause

This clause has the same meaning as the WHERE clause. The difference is in which data is read from the table. When using
PREWHERE, first only the columns necessary for executing PREWHERE are read. Then the other columns are read that are
needed for running the query, but only those blocks where the PREWHERE expression is true.

It makes sense to use PREWHERE if there are filtration conditions that are not suitable for indexes that are used by a
minority of the columns in the query, but that provide strong data filtration. This reduces the volume of data to read.

For example, it is useful to write PREWHERE for queries that extract a large number of columns, but that only have
filtration for a few columns.

PREWHERE is only supported by tables from the *MergeTree family.
A query may simultaneously specify PREWHERE and WHERE. In this case, PREWHERE precedes WHERE.

Keep in mind that it does not make much sense for PREWHERE to only specify those columns that have an index, because
when using an index, only the data blocks that match the index are read.

If the 'optimize_move_to_prewhere' setting is set to 1 and PREWHERE is omitted, the system uses heuristics to
automatically move parts of expressions from WHERE to PREWHERE.

GROUP BY Clause
This is one of the most important parts of a column-oriented DBMS.

If there is a GROUP BY clause, it must contain a list of expressions. Each expression will be referred to here as a "key". All
the expressions in the SELECT, HAVING, and ORDER BY clauses must be calculated from keys or from aggregate
functions. In other words, each column selected from the table must be used either in keys or inside aggregate functions.

If a query contains only table columns inside aggregate functions, the GROUP BY clause can be omitted, and aggregation
by an empty set of keys is assumed.

Example:

SELECT
count(),
median(FetchTiming > 60 ? 60 : FetchTiming),
count() - sum(Refresh)

FROM hits

However, in contrast to standard SQL, if the table doesn't have any rows (either there aren't any at all, or there aren't any
after using WHERE to filter), an empty result is returned, and not the result from one of the rows containing the initial
values of aggregate functions.

As opposed to MySQL (and conforming to standard SQL), you can't get some value of some column that is not in a key or
aggregate function (except constant expressions). To work around this, you can use the 'any' aggregate function (get the
first encountered value) or 'min/max’.

Example:

SELECT

domainWithoutWWW (URL) AS domain,

count(),

any(Title) AS title -- getting the first occurred page header for each domain.
FROM hits
GROUP BY domain

For every different key value encountered, GROUP BY calculates a set of aggregate function values.
GROUP BY is not supported for array columns.

A constant can't be specified as arguments for aggregate functions. Example: sum(1). Instead of this, you can get rid of
the constant. Example: count () .

NULL PROCESSING
For grouping, ClickHouse interprets NULL [#null-literal] as a value, and NULL=NULL .

Here's an example to show what this means.

Assume you have this table:

The query SELECT sum(x), y FROM t null big GROUP BY y resultsin:

—sum (x) ———y—

You can see that crour By for v = NULL summedup x,asif NULL is this value.

If you pass several keys to Group BY , the result will give you all the combinations of the selection, as if NULL were a
specific value.

WITH TOTALS MODIFIER

If the WITH TOTALS modifier is specified, another row will be calculated. This row will have key columns containing default
values (zeros or empty lines), and columns of aggregate functions with the values calculated across all the rows (the "total"
values).

This extra row is output in JSON*, TabSeparated*, and Pretty* formats, separately from the other rows. In the other
formats, this row is not output.

In JISON* formats, this row is output as a separate 'totals' field. In TabSeparated* formats, the row comes after the main
result, preceded by an empty row (after the other data). In Pretty* formats, the row is output as a separate table after the
main result.

WITH TOTALS canberunin different ways when HAVING is present. The behavior depends on the 'totals_mode' setting.
By default, totals mode = 'before having' .Inthiscase, 'totals'is calculated across all rows, including the ones that
don't pass through HAVING and 'max_rows_to_group_by".

The other alternatives include only the rows that pass through HAVING in 'totals', and behave differently with the setting

max_rows_to _group by and group by overflow mode = 'any'.

after having exclusive —Don'tincluderows thatdidn't passthrough max rows to group by .Inother words, 'totals'
will have less than or the same number of rows as it would if max_rows to group by were omitted.

after having inclusive - Include all the rows that didn't pass through 'max_rows_to_group_by"in 'totals'. In other
words, 'totals' will have more than or the same number of rows as it would if max rows to group by were omitted.

after having auto —Count the number of rows that passed through HAVING. If it is more than a certain amount (by
default, 50%), include all the rows that didn't pass through 'max_rows_to_group_by' in 'totals'. Otherwise, do not include
them.

totals auto threshold - By default, 0.5. The coefficient for after having auto.

If max_rows to group by and group by overflow mode = 'any' arenotused,all variations of after having arethe
same, and you can use any of them (for example, after having auto).

You can use WITH TOTALS in subqueries, including subqueries in the JOIN clause (in this case, the respective total values

are combined).

GROUP BY IN EXTERNAL MEMORY

You can enable dumping temporary data to the disk to restrict memory usage during GROUP BY. The
max_bytes before external group by setting determines the threshold RAM consumption for dumping GROUP BY
temporary data to the file system. If set to 0 (the default), it is disabled.

When using max bytes before external group by, Werecommend that you set max_memory_usage about twice as
high. This is necessary because there are two stages to aggregation: reading the date and forming intermediate data (1)
and merging the intermediate data (2). Dumping data to the file system can only occur during stage 1. If the temporary
data wasn't dumped, then stage 2 might require up to the same amount of memory as in stage 1.

For example, if max memory usage was set to 10000000000 and you want to use external aggregation, it makes sense to
set max bytes before external group by to 10000000000, and max_memory_usage to 20000000000. When external
aggregation is triggered (if there was at least one dump of temporary data), maximum consumption of RAM is only slightly

more than max _bytes before external group by.

With distributed query processing, external aggregation is performed on remote servers. In order for the requestor server
to use only a small amount of RAM, set distributed aggregation memory efficient to1.

When merging data flushed to the disk, as well as when merging results from remote servers when the
distributed aggregation memory efficient Settingisenabled, consumes up to 1/256 * the number of threads from
the total amount of RAM.

When external aggregation is enabled, if there was less than max bytes before external group by of data (i.e. datawas
not flushed), the query runs just as fast as without external aggregation. If any temporary data was flushed, the run time
will be several times longer (approximately three times).

If you have an ORDER BY with a small LIMIT after GROUP BY, then the ORDER BY CLAUSE will not use significant amounts
of RAM. But if the ORDER BY doesn't have LIMIT, don't forget to enable external sorting

(maxibytesibeforeiexternalisortl

LIMIT N BY Clause

LIMIT N BY COLUMNS selects the top N rows for each group of COLUMNS. LIMIT N BY is not related to LIMIT; they can
both be used in the same query. The key for LIMIT N BY can contain any number of columns or expressions.

Example:

SELECT
domainWithoutWWw (URL) AS domain,
domainWithoutWWW (REFERRER_URL) AS referrer,
device_type,
count() cnt

FROM hits

GROUP BY domain, referrer, device type

ORDER BY cnt DESC

LIMIT 5 BY domain, device_ type

LIMIT 100

The query will select the top 5 referrers for each domain, device type pair, but not more than 100 rows (LTMIT n BY +
LIMIT).

HAVING Clause

Allows filtering the result received after GROUP BY, similar to the WHERE clause. WHERE and HAVING differ in that
WHERE is performed before aggregation (GROUP BY), while HAVING is performed after it. If aggregation is not
performed, HAVING can't be used.

(]

ORDER BY Clause

The ORDER BY clause contains a list of expressions, which can each be assigned DESC or ASC (the sorting direction). If the
direction is not specified, ASC is assumed. ASC is sorted in ascending order, and DESC in descending order. The sorting
direction applies to a single expression, not to the entire list. Example: ORDER BY Visits DESC, SearchPhrase

For sorting by String values, you can specify collation (comparison). Example: ORDER BY SearchPhrase COLLATE 'tr' - for
sorting by keyword in ascending order, using the Turkish alphabet, case insensitive, assuming that strings are UTF-8
encoded. COLLATE can be specified or not for each expression in ORDER BY independently. If ASC or DESC is specified,
COLLATE is specified after it. When using COLLATE, sorting is always case-insensitive.

We only recommend using COLLATE for final sorting of a small number of rows, since sorting with COLLATE is less
efficient than normal sorting by bytes.

Rows that have identical values for the list of sorting expressions are output in an arbitrary order, which can also be
nondeterministic (different each time). If the ORDER BY clause is omitted, the order of the rows is also undefined, and may
be nondeterministic as well.

NaN and NULL sorting order:

o With the modifier nurLLs FIRST — First NULL , then Nan, then other values.
o With the modifier nurLLs 1.asT — First the values, then ~an, then NULL .

o Default — The same as with the nuLLs 1.asT modifier.
Example:

For the table

nan

NULL

o o N o o w N

o o U1 w NN o

When floating point numbers are sorted, NaNs are separate from the other values. Regardless of the sorting order, NaNs

come at the end. In other words, for ascending sorting they are placed as if they are larger than all the other numbers, while
for descending sorting they are placed as if they are smaller than the rest.

Less RAM is used if a small enough LIMIT is specified in addition to ORDER BY. Otherwise, the amount of memory spentis
proportional to the volume of data for sorting. For distributed query processing, if GROUP BY is omitted, sorting is partially
done on remote servers, and the results are merged on the requestor server. This means that for distributed sorting, the
volume of data to sort can be greater than the amount of memory on a single server.

If there is not enough RAM, it is possible to perform sorting in external memory (creating temporary files on a disk). Use the
setting max bytes before external sort for thispurpose.Ifitis setto 0 (the default), external sorting is disabled. If it is
enabled, when the volume of data to sort reaches the specified number of bytes, the collected data is sorted and dumped
into a temporary file. After all data is read, all the sorted files are merged and the results are output. Files are written to the
/var/lib/clickhouse/tmp/ directory in the config (by default, but you can use the 'tmp_path' parameter to change this
setting).

Running a query may use more memory than 'max_bytes_before_external_sort'. For this reason, this setting must have a
value significantly smaller than 'max_memory_usage'. As an example, if your server has 128 GB of RAM and you need to
run a single query, set 'max_memory_usage' to 100 GB, and 'max_bytes_before_external_sort' to 80 GB.

External sorting works much less effectively than sorting in RAM.
SELECT Clause

The expressions specified in the SELECT clause are analyzed after the calculations for all the clauses listed above are
completed. More specifically, expressions are analyzed that are above the aggregate functions, if there are any aggregate
functions. The aggregate functions and everything below them are calculated during aggregation (GROUP BY). These
expressions work as if they are applied to separate rows in the result.

DISTINCT Clause

If DISTINCT is specified, only a single row will remain out of all the sets of fully matching rows in the result. The result will
be the same as if GROUP BY were specified across all the fields specified in SELECT without aggregate functions. But there
are several differences from GROUP BY:

¢ DISTINCT can be applied together with GROUP BY.

¢« When ORDER BY is omitted and LIMIT is defined, the query stops running immediately after the required number of
different rows has been read.

o Data blocks are output as they are processed, without waiting for the entire query to finish running.
DISTINCT is not supported if SELECT has at least one array column.
LIMIT Clause

LIMIT m allows you to select the first 'm' rows from the result. LIMIT n, m allows you to select the first 'm' rows from the
result after skipping the first 'n' rows.

'n'and 'm' must be non-negative integers.
If thereisn't an ORDER BY clause that explicitly sorts results, the result may be arbitrary and nondeterministic.

pIsTINCT workswith NULL [#null-literal] asif nuLL were a specific value, and NULL=NULL . In other words, in the
DISTINCT results, different combinations with nuLL only occur once.

UNION ALL Clause

You can use UNION ALL to combine any number of queries. Example:

SELECT CounterID, 1 AS table, toInt64(count()) AS c
FROM test.hits
GROUP BY CounterID

UNION ALL
SELECT CounterID, 2 AS table, sum(Sign) AS c
FROM test.visits

GROUP BY CounterID
HAVING c > 0

Only UNION ALL is supported. The regular UNION (UNION DISTINCT) is not supported. If you need UNION DISTINCT, you
can write SELECT DISTINCT from a subquery containing UNION ALL.

Queries that are parts of UNION ALL can be run simultaneously, and their results can be mixed together.

The structure of results (the number and type of columns) must match for the queries. But the column names can differ. In
this case, the column names for the final result will be taken from the first query. Type casting is performed for unions. For
example, if two queries being combined have the same field with non- Nullable and Nullable types from acompatible
type, theresulting unToN ALL hasa nullable type field.

Queries that are parts of UNION ALL can't be enclosed in brackets. ORDER BY and LIMIT are applied to separate queries,
not to the final result. If you need to apply a conversion to the final result, you can put all the queries with UNION ALL in a
subquery in the FROM clause.

INTO OUTFILE Clause

Add the INTO OUTFILE filename clause (where filenameis a string literal) to redirect query output to the specified file. In
contrast to MySQL, the file is created on the client side. The query will fail if a file with the same filename already exists.
This functionality is available in the command-line client and clickhouse-local (a query sent via HTTP interface will fail).

The default output format is TabSeparated (the same as in the command-line client batch mode).
FORMAT Clause

Specify 'FORMAT format' to get data in any specified format. You can use this for convenience, or for creating dumps. For
more information, see the section "Formats". If the FORMAT clause is omitted, the default format is used, which depends
on both the settings and the interface used for accessing the DB. For the HTTP interface and the command-line client in
batch mode, the default format is TabSeparated. For the command-line client in interactive mode, the default format is
PrettyCompact (it has attractive and compact tables).

When using the command-line client, data is passed to the client in an internal efficient format. The client independently
interprets the FORMAT clause of the query and formats the data itself (thus relieving the network and the server from the
load).

[l

IN Operators

The 1N, NOT IN, GLOBAL IN,and GLOBAL NOT IN operators are covered separately, since their functionality is quite rich.
The left side of the operator is either a single column or a tuple.

Examples:

SELECT UserID IN (123, 456) FROM ...
SELECT (CounterID, UserID) IN ((34, 123), (101500, 456)) FROM ...

If the left side is a single column that is in the index, and the right side is a set of constants, the system uses the index for
processing the query.

Don't list too many values explicitly (i.e. millions). If a data set is large, put it in a temporary table (for example, see the
section "External data for query processing"), then use a subquery.

The right side of the operator can be a set of constant expressions, a set of tuples with constant expressions (shown in the
examples above), or the name of a database table or SELECT subquery in brackets.

If the right side of the operator is the name of a table (for example, UserID IN users), thisis equivalent to the subquery
UserID IN (SELECT * FROM users) .Use this when working with external data that is sent along with the query. For
example, the query can be sent together with a set of user IDs loaded to the 'users' temporary table, which should be
filtered.

If the right side of the operator is a table name that has the Set engine (a prepared data set that is always in RAM), the data
set will not be created over again for each query.

The subquery may specify more than one column for filtering tuples. Example:

SELECT (CounterID, UserID) IN (SELECT CounterID, UserID FROM ...) FROM ...

The columns to the left and right of the IN operator should have the same type.

The IN operator and subquery may occur in any part of the query, including in aggregate functions and lambda functions.
Example:

SELECT
EventDate,
avg(UserID IN
(
SELECT UserID
FROM test.hits
WHERE EventDate = toDate('2014-03-17")
)) AS ratio
FROM test.hits
GROUP BY EventDate
ORDER BY EventDate ASC

r—EventDate—T—ratio—

| 2014-03-17 | 1|
| 2014-03-18 | 0.807696 |
| 2014-03-19 | 0.755406 |
| 2014-03-20 | 0.723218 |
| 2014-03-21 | 0.697021 |
| 2014-03-22 | 0.647851 |
| 2014-03-23 | 0.648416 |
L 1]

For each day after March 17th, count the percentage of pageviews made by users who visited the site on March 17th. A
subquery in the IN clause is always run just one time on a single server. There are no dependent subqueries.

NULL PROCESSING

During request processing, the IN operator assumes that the result of an operation withNULL [#null-literal] is always equal
to 0,regardless of whether nuLL is on the right or left side of the operator. nuLL values are not included in any dataset,
do not correspond to each other and cannot be compared.

Hereis an example with the t null table:

D

|1|NULL|

2] 3]
L

Running the query SELECT x FROM t null WHERE y IN (NULL,3) givesyou the following result:

You can see that the row in which y = nuLL is thrown out of the query results. This is because ClickHouse can't decide
whether nuLL isincludedinthe (NuLL,3) set,returns 0 astheresult of the operation,and serLecT excludes this row
from the final output.

*"TSELECT y IN (NULL, 3) FROM t_null

—in(y, tuple(NULL,3))— | O | | 1] !

(]

DISTRIBUTED SUBQUERIES

There are two options for IN-s with subqueries (similar to JOINs): normal 18 / 0IN and IN GLOBAL / GLOBAL JOIN.They
differ in how they are run for distributed query processing.

Attention

Remember that the algorithms described below may work differently depending on the settings [#settings-distributed_product_mode]
distributed product mode Setting.

When using the regular IN, the query is sent to remote servers, and each of them runs the subqueries in the 1n or Join
clause.

When using GLOBAL IN / GLOBAL JOINs , firstall the subqueries are run for GLOBAL IN / GLOBAL JOINs ,and theresults
are collected in temporary tables. Then the temporary tables are sent to each remote server, where the queries are run
using this temporary data.

For a non-distributed query, use the regular 1n / JoIN.
Be careful when using subqueriesinthe 1n / JoIn clauses for distributed query processing.

Let's look at some examples. Assume that each server in the cluster has a normallocal_table. Each server also has a
distributed_table table with the Distributed type, which looks at all the servers in the cluster.

For a query to thedistributed_table, the query will be sent to all the remote servers and run on them using thelocal_table.

For example, the query

SELECT uniqg(UserID) FROM distributed table

will be sent to all remote servers as

SELECT uniqg(UserID) FROM local_table

and run on each of them in parallel, until it reaches the stage where intermediate results can be combined. Then the
intermediate results will be returned to the requestor server and merged on it, and the final result will be sent to the client.

Now let's examine a query with IN:

SELECT uniq(UserID) FROM distributed table WHERE CounterID = 101500 AND UserID IN (SELECT UserID FROM
local_table WHERE CounterID = 34)

¢ Calculation of the intersection of audiences of two sites.

This query will be sent to all remote servers as

SELECT uniqg(UserID) FROM local table WHERE CounterID = 101500 AND UserID IN (SELECT UserID FROM local_table
WHERE CounterID = 34)

In other words, the data set in the IN clause will be collected on each server independently, only across the data that is
stored locally on each of the servers.

This will work correctly and optimally if you are prepared for this case and have spread data across the cluster servers such
that the data for a single UserID resides entirely on a single server. In this case, all the necessary data will be available
locally on each server. Otherwise, the result will be inaccurate. We refer to this variation of the query as "local IN".

To correct how the query works when data is spread randomly across the cluster servers, you could specify
distributed_table inside a subquery. The query would look like this:

SELECT uniq(UserID) FROM distributed table WHERE CounterID = 101500 AND UserID IN (SELECT UserID FROM
distributed table WHERE CounterID = 34)

This query will be sent to all remote servers as

SELECT uniq(UserID) FROM local table WHERE CounterID = 101500 AND UserID IN (SELECT UserID FROM
distributed table WHERE CounterID = 34)

The subquery will begin running on each remote server. Since the subquery uses a distributed table, the subquery that is
on each remote server will be resent to every remote server as

SELECT UserID FROM local_table WHERE CounterID = 34

For example, if you have a cluster of 100 servers, executing the entire query will require 10,000 elementary requests, which
is generally considered unacceptable.

In such cases, you should always use GLOBAL IN instead of IN. Let's look at how it works for the query

SELECT uniq(UserID) FROM distributed table WHERE CounterID = 101500 AND UserID GLOBAL IN (SELECT UserID FROM
distributed table WHERE CounterID = 34)

The requestor server will run the subquery

SELECT UserID FROM distributed_table WHERE CounterID = 34

and the result will be put in a temporary table in RAM. Then the request will be sent to each remote server as

SELECT uniq(UserID) FROM local table WHERE CounterID = 101500 AND UserID GLOBAL IN _datal

and the temporary table datal will be sent to every remote server with the query (the name of the temporary table is
implementation-defined).

This is more optimal than using the normal IN. However, keep the following points in mind:
1. When creating a temporary table, data is not made unique. To reduce the volume of data transmitted over the

network, specify DISTINCT in the subquery. (You don't need to do this for a normal IN.)

2. The temporary table will be sent to all the remote servers. Transmission does not account for network topology. For
example, if 10 remote servers reside in a datacenter that is very remote in relation to the requestor server, the data will
be sent 10 times over the channel to the remote datacenter. Try to avoid large data sets when using GLOBAL IN.

3. When transmitting data to remote servers, restrictions on network bandwidth are not configurable. You might
overload the network.

4. Try to distribute data across servers so that you don't need to use GLOBAL IN on a regular basis.

5. If you need to use GLOBAL IN often, plan the location of the ClickHouse cluster so that a single group of replicas

resides in no more than one data center with a fast network between them, so that a query can be processed entirely
within a single data center.

It also makes sense to specify alocal table in the cLoBal, 1N clause, in case this local table is only available on the
requestor server and you want to use data from it on remote servers.

Extreme Values

In addition to results, you can also get minimum and maximum values for the results columns. To do this, set theextremes
setting to 1. Minimums and maximums are calculated for numeric types, dates, and dates with times. For other columns,
the default values are output.

An extra two rows are calculated — the minimums and maximums, respectively. These extra two rows are output in JSON*,
TabSeparated*, and Pretty* formats, separate from the other rows. They are not output for other formats.

In JISON* formats, the extreme values are output in a separate 'extremes' field. In TabSeparated* formats, the row comes
after the main result, and after 'totals' if present. It is preceded by an empty row (after the other data). In Pretty* formats,
the row is output as a separate table after the main result, and after 'totals' if present.

Extreme values are calculated for rows that have passed through LIMIT. However, when using 'LIMIT offset, size', the rows
before 'offset’ are included in 'extremes'. In stream requests, the result may also include a small number of rows that
passed through LIMIT.

Notes

The crour BY and orDER BY clauses do not support positional arguments. This contradicts MySQL, but conforms to
standard SQL. For example, crour BY 1, 2 will beinterpreted as grouping by constants (i.e. aggregation of all rows into
one).

You can use synonyms (s aliases) in any part of a query.

You can put an asterisk in any part of a query instead of an expression. When the query is analyzed, the asterisk is
expanded to a list of all table columns (excluding the MATERIALIZED and aLIAS columns). There are only a few cases when
using an asterisk is justified:

o When creating a table dump.
o For tables containing just a few columns, such as system tables.

o For getting information about what columns are in a table. In this case, set LtmM1T 1 .Butitis better to use the pesc

TABLE query.
¢ When thereis strong filtration on a small number of columns using PREWHERE .

¢ Insubqueries (since columns that aren't needed for the external query are excluded from subqueries).

In all other cases, we don't recommend using the asterisk, since it only gives you the drawbacks of a columnar DBMS
instead of the advantages. In other words using the asterisk is not recommended.

(]

INSERT
IEFERINERSE o
BEAEEEN:

INSERT INTO [db.]table [(cl, c2, ¢3)] VALUES (vll, v12, v13), (v21, v22, v23),

LEEWREBIEEFRIFIRKREAN [(c1, c2, c3)1 . EXMERT, B THFERABUTHRIEAR:

o MEREXFIBEN peravir RARPITEHE.
o TEFE, WR peraviTt RIXNIKBEN.
WNE strict_insert_defaults=1 [#settings-strict_insert_defaults], &% DErFauULT ENXNFEENIIEEIHHIL.

AEE{AIClickHouseFR ST #FHIME T _E format [#formats] BUBRHE AR INSERTH. AR AT E X thig EEE B H:

INSERT INTO [db.]table [(cl, c2, c¢3)] FORMAT format_name data_set

Flan, MTFHERRINEEARN nserT ... vaLues WRASFEED:

INSERT INTO [db.]table [(cl, c2, c3)] FORMAT Values (vl11l, v12, v13), (v21l, v22, v23), ...

ClickHouse FEEUiE 2RI, MIBRATA=BARITIIRE). STH—TEIBN, FBHEFEERER ZEEEIREBAFHTE
REIEU=ETTIE, XREEMN).

5l

INSERT INTO t FORMAT TabSeparated
11 Hello, world!
22 Qwerty

{REEGZ I M B ERIFEALGE, BEHLSTHHTTPED. #—$E8E, 2 "Interfaces[#interfaces]".

Inserting The Results of sELECT

INSERT INTO [db.]table [(cl, c2, c3)] SELECT ...

£ SELECTIEGH, RIFFERAMERMET, A, AESELECTRARPHNBMARBAIEARR., WRHE, mJLUHITER
ik,

BT EMINEEEMEBIERBEAFEERERTARP, M nowo , 1+ 2, F, ERAAFERBRINEKIAR, BR
EATET, EAEXMERT, N7 7RSI,

A BREUE S XA EMW T : UPDATE, DELETE, REPLACE, MERGE, UPSERT, INSERT UPDATE , $AM, {REENS(E

F ALTER TABLE ... DROP PARTITION SEMIFRIBEUE.
Performance Considerations

isErT BEERKAFEYE, FEBEIRMKFOBREIES TP, IRBANBEERSHAN, SEEBRFR wserr
BARMERE. BRI SR

o KitEMOINENIE, @SR 100, 00017,
o ELEEUEZRI, BT BMmoARIE.

TEREMER R TFE:

o BUBTATHEN,

o HEREIEEI I EREEE.
Bl LR =
ﬁUE db name Q}Erﬁo

CREATE DATABASE [IF NOT EXISTS] db_name

BIEER— T E221TRNBZR, MRECREATE DATABASEIEGHFER 17 noT Ex1sTs, MEBIEEELFEENERATE
WHARREHEIR.

i

BIERE
CREATE TABLE 1BGHAJLM.

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] [db.]name [ON CLUSTER cluster]

(
namel [typel] [DEFAULT|MATERIALIZED |ALIAS exprl],
name2 [type2] [DEFAULT|MATERIALIZED |ALIAS expr2],

) ENGINE = engine

IR a0 IRBIRE, TEEUERE oo PESRIBEED, BIZ—1TRBN nane UK, HEESH engine SIERBELH, &
MEME—TIERFIR. MRSIZZIFRS, NWHITEERSIZHSH.
REMZB—TIIHERRTIR. WRSIEIFRS, WIIURSIZHSHERT.

ERERENER, — TR 2EE, FIU0: RegionIDUINt32, WFENIME, FRIAXLBEGEHE X,

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] [db.]name AS [db2.]name2 [ENGINE = engine]

BlE—1k, EEMSES—1TREE, REEBRNLREE—TTENSIZE, MRSIEZEWRIEE, HENGIZEHA
F db2, name?2 %J:o

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] [db.]name ENGINE = engine AS SELECT ...

BIE—1KR, HEMEMTF SELECT BEREMNER, &8 engine 5%, MSELECTEBHIBERE.

HEFBIERAT, 2R 1r ot ExisTs MIEE, MRREBZEFE, BEWHTRE-—MER, EXMERT, EWHAMUEESE
‘I‘EﬁEO

BRIME

FHEAREE REMANBISE— N RIAR, HP—PAEZ:DEFAULT expr, MATERIALIZED expr, ALIAS expr, fFa0:
URLDomain String DEFAULT domain(URL),

MRIINMEN—PRIANZEEN, NRFEEHNFTEE, HAMERBRENO, MREFFEE, NMREANTFRFS, H
HRRIMIIZ B) 0000-00-00 52 0000-00-00 00:00:00(E [E]%), NULLs M4,

MRBIARIEXWEN, FEREBIZONARN, WRKEIPANESCER, MEERZRIARIAIN. #20: EventDate DEFAULT
toDate(EventTime) — pate EELEHAT Eventbate FER,

WRFERBMBARIALWEIPREN, WRAIEERREREIR AT ERNSRE, F20: Hits UInt32 DEFAULT 0 5 Hits
UInt32 DEFAULT toUInt32(0) 2% M.

RNRBBABREX N —MEENREAR, IRNEENFER, HEIBNENRENN, ERRNEREARSEEREI.
3T INSERTIRIENIE, ERHNERANESAIFEN - MENFREIESEHITITE.

DEFAULT expr

EHHEIAME, MR INSERT EWHRBEEXNNNFE, BREIITENNARIANMRIET,
M RIA

MUERER., WEBRFERFSEREBANIERE, BRAELEERTHEES. ¥—TEANEE, TFBRIIR, BBARLEFERIE
REE, B, HE—DSELECTEWEIRERESH, WFERHATEEMR, XIERIEINSERT INTO SELECT * FROM B4~
AT,

AllBFTIAT

BB, WFEAFHEERFT. WINERBAZIRY, JE—ISELECTEEEORERESH, WFEHAWER, Tt
98F7E SELECTsH, MRFIDEETWRTEY R.

SEREREWRIN—THNFER, XEINIBEREEAN. Bk, MFBOEE, SIENAEN, RAVERITE. &
M, WRESITREAXNFENFNTFER, XEFEREHKIZN, EZMOREEXNEIER.

ARARRIN—THNFEREIRFR, AEHNEFENRMIARIARN, N TERNIBERERITHEE, EFRFEREL). 3
BITERGEN, ROSHBIERRNFREES AR GHEERS,

AERBEHRESMPIRERIMERT AT,
[HRES
AEEREARRT, MRIEBSRBISE, —MIRIRBKEIE. IRRRBUN T

o SRIEERGE, RITREGMER, HEERER.

o —NERRERAFRSIZERE, EMHNRSIZEFRZIFIRITR,

o BURERBEN—TIRIIRIEE. ©HEEEIIEEZIN.

o MR—PIGIRIRS BIMIRBERNBIR, —TEREETRBFLBEELEE, KEMRIRINE.,
o WTFoHAETWLHIE, EWFNIGRFRIGHEIBLITIERS R,

AERZHERT, RENRATEFILR, EISEWINEIRRER D HINER/(GLOBAL)INE, FIMEIRIRRR.

%L DDL &18 (ON CLUSTER clause)

CREATE,, DROP, ALTER, #l rENaME BISIFEER BT, Fla, W TFHNEBEERTINES MR = L0IE
7 all_hits Distributed &:

CREATE TABLE IF NOT EXISTS all_hits ON CLUSTER cluster (p Date, i Int32) ENGINE = Distributed(cluster,
default, hits)

AT E\PTIXEES, 8T TROTNBHEENSEERIREN T RIMLRSEE, FIMER zookeeper KEiR), XET /AL
##E|ZooKeeper BRS535. BEIEURES M TR LENIT, M avrer EERIEFAIGERST K(replicated table) EHAT,

CREATE VIEW

CREATE [MATERIALIZED] VIEW [IF NOT EXISTS] [db.]name [TO[db.]name] [ENGINE = engine] [POPULATE] AS SELECT ...

BIE—MIE, AMMPEENIE: EEUENYA(MATERIALIZED)MLE.
HEIE-TIARER, ROTHEERSIE - WRSIZATEFHEUE

— MR TERZN TAR: SIBARIERISELECT EWiEERNRTN, WALUESDEISELECTER S KL, &
RENFER,

ERFUENMRFEQEE, EATMMERRFENGE. 15, EBUETNEERERSERN—THGREZF. =M
— T LEREREUERN, LLEWAIINEME FROMBEGNFEN,

fign, ERIRIREZLIZ T — T IE:

CREATE VIEW view AS SELECT ...

57— EHE:

SELECT a, b, ¢ FROM view
WERTEENTFEN:
SELECT a, b, ¢ FROM (SELECT ...)

MM ERTFZHSELECTIE O B IRAVENIE .
SHEIE—TARER, RRFIEE—1 312 - FHEENBMGIE.

— M EERRZNT: SEBANBIEES] SELECT $8ERIRE, MABIEEI D BISELECT RELHR, EREREIEAZINE
.

WRIRIEE T POPULATE, ZHEIEES, IAMRLBUIBHENETMER, H£HMTF creaTE TABLE ... AS SELECT75
n, FRIENEZE, ERXE8ERFIBANEUE. HAIREINER POPULATE, EMECIEIES, HBAZIRDIEIERE
ANZIE,

— serecT B ABE DISTINCT, GROUP BY, ORDER BY, LIMIT, , . NMNMIFERESTHBR LEMIINT. 4
o, Y5 GROUPBY #IiRE, IEBEBANRETHITRE, ENEE—TEBARESY, ELBE—FRE., HEHR—
NB|ERY, WSummingMergeTree, ESMIIFITHIERS,

MEEERMIEEREE, fI20, {RAJBAER SHOW TABLESHKS|HIEIRBXER.

MAAER auter BHITIEREREF A LR, BEMERLTEARSE, NRLREFER 10 [(db, Jname, {REETS
peTacH fRE, EBIRKIBIT avter, #AF arrace ZBIHY peracH FE,

MEEERMEEREE, BIa, RAER snow tasies KIHMEREXER,
FEFH 2B — 1 BRIRMSQLIE D RMIFFIME. 97T MER—THRE, FIER prop taBLE
(]

ALTER

The ALTER query is only supported for *MergeTree tables, as well as Merge and pistributed . The query has several
variations.

Column Manipulations

Changing the table structure.

ALTER TABLE [db].name [ON CLUSTER cluster] ADD|DROP|MODIFY COLUMN ...

In the query, specify a list of one or more comma-separated actions. Each action is an operation on a column.

The following actions are supported:

ADD COLUMN name [type] [default expr] [AFTER name_after]

Adds a new column to the table with the specified name, type, and default _expr (see the section "Default expressions").
If you specify AFTER name after (the name of another column), the column is added after the specified one in the list of
table columns. Otherwise, the column is added to the end of the table. Note that there is no way to add a column to the
beginning of a table. For a chain of actions, 'name_after' can be the name of a column that is added in one of the previous
actions.

Adding a column just changes the table structure, without performing any actions with data. The data doesn't appear on
the disk after ALTER. If the data is missing for a column when reading from the table, it is filled in with default values (by
performing the default expression if there is one, or using zeros or empty strings). If the data is missing for a column when

reading from the table, it is filled in with default values (by performing the default expression if there is one, or using zeros
or empty strings). The column appears on the disk after merging data parts (see MergeTree).

This approach allows us to complete the ALTER query instantly, without increasing the volume of old data.

DROP COLUMN name

Deletes the column with the name 'name’. Deletes data from the file system. Since this deletes entire files, the query is
completed almost instantly.

MODIFY COLUMN name [type] [default expr]

Changes the 'name' column's type to 'type' and/or the default expression to 'default_expr'. When changing the type,
values are converted as if the 'toType' function were applied to them.

If only the default expression is changed, the query doesn't do anything complex, and is completed almost instantly.

Changing the column type is the only complex action - it changes the contents of files with data. For large tables, this may
take along time.

There are several processing stages:

Preparing temporary (new) files with modified data.
¢ Renaming old files.
e Renaming the temporary (new) files to the old names.

¢ Deleting the old files.

Only the first stage takes time. If there is a failure at this stage, the data is not changed. If there is a failure during one of
the successive stages, data can be restored manually. The exception is if the old files were deleted from the file system but
the data for the new files did not get written to the disk and was lost.

There is no support for changing the column type in arrays and nested data structures.

The ALTER query lets you create and delete separate elements (columns) in nested data structures, but not whole nested
data structures. To add a nested data structure, you can add columns with a name like name.nested name andthetype
Array (T) . A nested data structure is equivalent to multiple array columns with a name that has the same prefix before the
dot.

There is no support for deleting columns in the primary key or the sampling key (columns that are in the ENGINE
expression). Changing the type for columns that are included in the primary key is only possible if this change does not
cause the data to be modified (for example, it is allowed to add values to an Enum or change a type with pDateTime to

UInt32).

If the ALTER query is not sufficient for making the table changes you need, you can create a new table, copy the data to it
using the INSERT SELECT query, then switch the tables using the RENAME query and delete the old table.

The arTER query blocks all reads and writes for the table. In other words, if along seLECT is running at the time of the
ALTER query, the ALTER query will wait for it to complete. At the same time, all new queries to the same table will wait
while this ALTER is running.

For tables that don't store data themselves (such as Merge and pistributed), ALTER just changes the table structure,
and does not change the structure of subordinate tables. For example, when running ALTER fora pistributed table, you
will also need to run 2LTER for the tables on all remote servers.

The arTER query for changing columns is replicated. The instructions are saved in ZooKeeper, then each replica applies
them. All ALTER queries are run in the same order. The query waits for the appropriate actions to be completed on the
other replicas. However, a query to change columns in a replicated table can be interrupted, and all actions will be

performed asynchronously.
Manipulations With Partitions and Parts
It only works for tables in the MergeTree family. The following operations are available:

e DETACH PARTITION — Move a partition to the 'detached’ directory and forget it.

e DROP PARTITION — Delete a partition.

e ATTACH PART|PARTITION —Add anew partor partition from the detached directory to the table.
e FREEZE PARTITION - Create abackup of a partition.

e FETCH PARTITION — Download a partition from another server.
Each type of query is covered separately below.

A partition in a table is data for a single calendar month. This is determined by the values of the date key specified in the
table engine parameters. Each month's data is stored separately in order to simplify manipulations with this data.

A "part" in the table is part of the data from a single partition, sorted by the primary key.

You canusethe system.parts table toview the set of table parts and partitions:

SELECT * FROM system.parts WHERE active

active —Only count active parts. Inactive parts are, for example, source parts remaining after merging to a larger part -
these parts are deleted approximately 10 minutes after merging.

Another way to view a set of parts and partitions is to go into the directory with table data. Data directory:
/var/lib/clickhouse/data/database/table/ ,where /var/lib/clickhouse/ isthe path to the ClickHouse data,
'database’ is the database name, and 'table' is the table name. Example:

$ 1s -1 /var/lib/clickhouse/data/test/visits/
total 48
drwXrwxrwx clickhouse clickhouse 20480 May

2 02:58 20140317_20140323 2 2 0
drwxrwxrwx 2 clickhouse clickhouse 20480 May

2

1

02:58 20140317_20140323 4 4 0
02:55 detached
02:58 increment.txt

drwXrwxrwx clickhouse clickhouse 4096 May

(S BN C I C I G))

-rw-rw-rw- clickhouse clickhouse 2 May

Here, 20140317 20140323 2 2 0 and 20140317 20140323 4 4 0 arethe directories of data parts.
Let's break down the name of the first part: 20140317 20140323 2 2 0.

e 20140317 isthe minimum date of the data in the chunk.

e 20140323 isthe maximum date of the data in the chunk.

e 2 isthe minimum number of the data block.

e 2 isthe maximum number of the data block.

e 0 isthechunklevel (the depth of the merge tree it is formed from).

Each piece relates to a single partition and contains data for just one month. 201403 is the name of the partition. A
partition is a set of parts for a single month.

On an operating server, you can't manually change the set of parts or their data on the file system, since the server won't
know about it. For non-replicated tables, you can do this when the server is stopped, but we don't recommended it. For
replicated tables, the set of parts can't be changed in any case.

The detached directory contains parts that are not used by the server - detached from the table using the ALTER . ..
DETACH query. Parts that are damaged are also moved to this directory, instead of deleting them. You can add, delete, or
modify the data in the 'detached' directory at any time - the server won't know about this until you make the ALTER TARLE

. ATTACH query.

ALTER TABLE [db.]table DETACH PARTITION 'name'’

Move all data for partitions named 'name' to the 'detached’ directory and forget about them. The partition name is
specified in YYYYMM format. It can be indicated in single quotes or without them.

After the query is executed, you can do whatever you want with the data in the 'detached' directory — delete it from the file
system, or just leave it.

The query is replicated - data will be moved to the 'detached’ directory and forgotten on all replicas. The query can only be
sent to aleader replica. To find out if a replica is a leader, perform SELECT to the 'system.replicas' system table.
Alternatively, it is easier to make a query on all replicas, and all except one will throw an exception.

ALTER TABLE [db.]table DROP PARTITION 'name'’

The same as the peTacH operation. Deletes data from the table. Data parts will be tagged as inactive and will be
completely deleted in approximately 10 minutes. The query is replicated - data will be deleted on all replicas.

ALTER TABLE [db.]table ATTACH PARTITION|PART 'name’

Adds data to the table from the 'detached' directory.

Itis possible to add data for an entire partition or a separate part. For a part, specify the full name of the part in single
quotes.

The query is replicated. Each replica checks whether there is data in the 'detached' directory. If there is data, it checks the
integrity, verifies that it matches the data on the server that initiated the query, and then adds it if everything is correct. If
not, it downloads data from the query requestor replica, or from another replica where the data has already been added.

So you can put data in the 'detached' directory on one replica, and use the ALTER ... ATTACH query to add it to the table on
all replicas.

ALTER TABLE [db.]table FREEZE PARTITION 'name'’

Creates a local backup of one or multiple partitions. The name can be the full name of the partition (for example, 201403),
or its prefix (for example, 2014): then the backup will be created for all the corresponding partitions.

The query does the following: for a data snapshot at the time of execution, it creates hardlinks to table data in the directory
/var/lib/clickhouse/shadow/N/. ..

/var/lib/clickhouse/ isthe working ClickHouse directory from the config. v is the incremental number of the backup.

The same structure of directories is created inside the backup as inside /var/1ib/clickhouse/ . It also performs 'chmod'
for all files, forbidding writes to them.

The backup is created almost instantly (but first it waits for current queries to the corresponding table to finish running).
At first, the backup doesn't take any space on the disk. As the system works, the backup can take disk space, as data is
modified. If the backup is made for old enough data, it won't take space on the disk.

After creating the backup, data from /var/1ib/clickhouse/shadow/ Can be copied to the remote server and then deleted
on the local server. The entire backup process is performed without stopping the server.

The ALTER ... FREEZE PARTITION query is notreplicated. A local backup is only created on the local server.

As an alternative, you can manually copy data fromthe /var/lib/clickhouse/data/database/table directory.Butifyou
do this while the server is running, race conditions are possible when copying directories with files being added or
changed, and the backup may be inconsistent. You can do this if the server isn't running - then the resulting data will be

the same as after the ALTER TABLE t FREEZE PARTITION query.

ALTER TABLE ... FREEZE PARTITION only copies data, not table metadata. To make a backup of table metadata, copy
the file /var/lib/clickhouse/metadata/database/table.sql

To restore from a backup:

o Usethe CREATE query to create the table if it doesn't exist. The query can be taken from an .sql file (replace ATTACH
in it with CREATE).

o Copy the data from the data/database/table/ directory inside the backup to the
/var/lib/clickhouse/data/database/table/detached/ directory.

e Run ALTER TABLE ... ATTACH PARTITION YYYYMM queries, where yyyymm is the month, for every month.
In this way, data from the backup will be added to the table. Restoring from a backup doesn't require stopping the server.
Backups and Replication

Replication provides protection from device failures. If all data disappeared on one of your replicas, follow the instructions
in the "Restoration after failure" section to restore it.

For protection from device failures, you must use replication. For more information about replication, see the section "Data
replication”.

Backups protect against human error (accidentally deleting data, deleting the wrong data or in the wrong cluster, or
corrupting data). For high-volume databases, it can be difficult to copy backups to remote servers. In such cases, to
protect from human error, you can keep a backup on the same server (it will reside in /var/lib/clickhouse/shadow/).

ALTER TABLE [db.]table FETCH PARTITION 'name' FROM 'path-in-zookeeper'

This query only works for replicatable tables.

It downloads the specified partition from the shard that has its zookeeper path specifiedinthe rFrom clause, then puts it
inthe detached directory for the specified table.

Although the query is called ALTER TABLE, it does not change the table structure, and does not immediately change the
data available in the table.

Datais placed in the detached directory. You canuse the ALTER TABLE ... ATTACH query to attach the data.

The rroM clause specifies the pathin zookeeper . For example, /clickhouse/tables/01-01/visits .Before
downloading, the system checks that the partition exists and the table structure matches. The most appropriate replicais
selected automatically from the healthy replicas.

The ALTER ... FETCH PARTITION query is notreplicated. The partition will be downloaded to the 'detached’ directory
only on the local server. Note that if after this you use the ALTER TABLE ... ATTACH query to add data to the table, the
data will be added on all replicas (on one of the replicas it will be added from the 'detached' directory, and on the rest it will
be loaded from neighboring replicas).

Synchronicity of ALTER Queries

For non-replicatable tables, all ALTER queries are performed synchronously. For replicatable tables, the query just adds
instructions for the appropriate actions to zookeeper , and the actions themselves are performed as soon as possible.
However, the query can wait for these actions to be completed on all the replicas.

For ALTER ... ATTACH|DETACH|DROP queries,you canusethe replication alter partitions sync settingtosetup
waiting. Possible values: 0 - do not wait; 1 - only wait for own execution (default); 2 - wait for all.

(

Mutations

Mutations are an ALTER query variant that allows changing or deleting rows in a table. In contrast to standard uppATE and
DELETE queries that are intended for point data changes, mutations are intended for heavy operations that change a lot of
rows in atable.

The functionality is in beta stage and is available starting with the 1.1.54388 version. Currently *MergeTree table engines
are supported (both replicated and unreplicated).

Existing tables are ready for mutations as-is (no conversion necessary), but after the first mutation is applied to a table, its
metadata format becomes incompatible with previous server versions and falling back to a previous version becomes
impossible.

Currently available commands:

ALTER TABLE [db.]table DELETE WHERE filter expr

The filter expr mustbe of type UInt8. The query deletes rows in the table for which this expression takes a non-zero
value.

ALTER TABLE [db.]table UPDATE columnl = exprl [, ...] WHERE filter_ expr

The command is available starting with the 18.12.14 version. The filter expr must be of type UInt8. This query updates
values of specified columns to the values of corresponding expressions in rows for which the filter expr takesanon-
zero value. Values are casted to the column type using the casT operator. Updating columns that are used in the
calculation of the primary or the partition key is not supported.

One query can contain several commands separated by commas.

For *MergeTree tables mutations execute by rewriting whole data parts. There is no atomicity - parts are substituted for
mutated parts as soon as they are ready and a seLECT query that started executing during a mutation will see data from
parts that have already been mutated along with data from parts that have not been mutated yet.

Mutations are totally ordered by their creation order and are applied to each part in that order. Mutations are also partially
ordered with INSERTSs - data that was inserted into the table before the mutation was submitted will be mutated and data
that was inserted after that will not be mutated. Note that mutations do not block INSERTs in any way.

A mutation query returns immediately after the mutation entry is added (in case of replicated tables to ZooKeeper, for
nonreplicated tables - to the filesystem). The mutation itself executes asynchronously using the system profile settings.
To track the progress of mutations you can use the system.mutations table. A mutation that was successfully submitted
will continue to execute even if ClickHouse servers are restarted. There is no way to roll back the mutation once it is
submitted.

Entries for finished mutations are not deleted right away (the number of preserved entries is determined by the
finished mutations to keep Storage engine parameter). Older mutation entries are deleted.

SYSTEM.MUTATIONS TABLE

The table contains information about mutations of MergeTree tables and their progress. Each mutation command is
represented by a single row. The table has the following columns:

database, table - The name of the database and table to which the mutation was applied.

mutation_id - The ID of the mutation. For replicated tables these IDs correspond to znode names in the
<table path in zookeeper>/mutations/ directoryin ZooKeeper. For unreplicated tables the IDs correspond to file
names in the data directory of the table.

command - The mutation command string (the part of the query after ALTER TABLE [db.]table).

create_time - When this mutation command was submitted for execution.

block_numbers.partition_id, block_numbers.number - A Nested column. For mutations of replicated tables contains one
record for each partition: the partition ID and the block number that was acquired by the mutation (in each partition only
parts that contain blocks with numbers less than the block number acquired by the mutation in that partition will be
mutated). Because in non-replicated tables blocks numbers in all partitions form a single sequence, for mutatations of non-
replicated tables the column will contain one record with a single block number acquired by the mutation.

parts_to_do - The number of data parts that need to be mutated for the mutation to finish.

is_done - Is the mutation done? Note that evenif parts to do = 0 itis possible that a mutation of a replicated table is
not done yet because of a long-running INSERT that will create a new data part that will need to be mutated.

Miscellaneous Queries

ATTACH

This query is exactly the same as crReaTE , but

¢ instead of the word CREATE it uses the word ATTACH.

o The query doesn't create data on the disk, but assumes that data is already in the appropriate places, and just adds
information about the table to the server. After executing an ATTACH query, the server will know about the existence
of the table.

If the table was previously detached (pETACH), meaning that its structure is known, you can use shorthand without
defining the structure.

ATTACH TABLE [IF NOT EXISTS] [db.]name [ON CLUSTER cluster]

This query is used when starting the server. The server stores table metadata as files with ATTacH queries, which it simply
runs at launch (with the exception of system tables, which are explicitly created on the server).

DROP

This query has two types: DROP DATABASE and DROP TABLE .

DROP DATABASE [IF EXISTS] db [ON CLUSTER cluster]

Deletes all tables inside the 'db’ database, then deletes the 'db’ database itself. If 1r Ex1sTS is specified, it doesn't return
an error if the database doesn't exist.

DROP [TEMPORARY] TABLE [IF EXISTS] [db.]name [ON CLUSTER cluster]

Deletes the table. If 1r ExIsTs is specified, it doesn't return an error if the table doesn't exist or the database doesn't
exist.

DETACH
Deletes information about the 'name’ table from the server. The server stops knowing about the table's existence.

DETACH TABLE [IF EXISTS] [db.]name [ON CLUSTER cluster]

This does not delete the table's data or metadata. On the next server launch, the server will read the metadata and find out
about the table again. Similarly, a "detached" table can be re-attached using the atTacH query (with the exception of
system tables, which do not have metadata stored for them).

Thereisno DETACH DATABASE query.

RENAME

Renames one or more tables.

RENAME TABLE [dbll.]namell TO [dbl2.]namel2, [db2l.]name2l TO [db22.]name22, ... [ON CLUSTER cluster]

All tables are renamed under global locking. Renaming tables is a light operation. If you indicated another database after
TO, the table will be moved to this database. However, the directories with databases must reside in the same file system
(otherwise, an error is returned).

SHOW DATABASES

SHOW DATABASES [INTO OUTFILE filename] [FORMAT format]

Prints a list of all databases. This query is identical to SELECT name FROM system.databases [INTO OUTFILE filename]

[FORMAT format] .

See also the section "Formats".

SHOW TABLES

SHOW [TEMPORARY] TABLES [FROM db] [LIKE 'pattern'] [INTO OUTFILE filename] [FORMAT format]

Displays a list of tables

¢ tables from the current database, or from the 'db' database if "FROM db" is specified.

« all tables, or tables whose name matches the pattern, if "LIKE 'pattern'" is specified.

This query is identical to: SELECT name FROM system.tables WHERE database = 'db' [AND name LIKE 'pattern']

[INTO OUTFILE filename] [FORMAT format] .

See also the section "LIKE operator".

SHOW PROCESSLIST

SHOW PROCESSLIST [INTO OUTFILE filename] [FORMAT format]

Outputs a list of queries currently being processed, other than sHow PROCESSLIST queries.
Prints a table containing the columns:

user - The user who made the query. Keep in mind that for distributed processing, queries are sent to remote servers
under the 'default’ user. SHOW PROCESSLIST shows the username for a specific query, not for a query that this query
initiated.

address — The name of the host that the query was sent from. For distributed processing, on remote servers, this is the
name of the query requestor host. To track where a distributed query was originally made from, look at SHOW
PROCESSLIST on the query requestor server.

elapsed - The execution time, in seconds. Queries are output in order of decreasing execution time.

rows_read, bytes_read - How many rows and bytes of uncompressed data were read when processing the query. For
distributed processing, data is totaled from all the remote servers. This is the data used for restrictions and quotas.

memory_usage - Current RAM usage in bytes. See the setting ‘'max_memory_usage'.
query - The query itself. In INSERT queries, the data for insertion is not output.

query_id - The query identifier. Non-empty only if it was explicitly defined by the user. For distributed processing, the
query ID is not passed to remote servers.

This query is identical to: SELECT * FROM system.processes [INTO OUTFILE filename] [FORMAT format] .

Tip (execute in the console):

watch -nl "clickhouse-client --query='SHOW PROCESSLIST'"

SHOW CREATE TABLE

SHOW CREATE [TEMPORARY] TABLE [db.]table [INTO OUTFILE filename] [FORMAT format]

Returns a single string -type 'statement' column, which contains a single value - the creaTE query used for creating the
specified table.

DESCRIBE TABLE

DESC|DESCRIBE TABLE [db.]table [INTO OUTFILE filename] [FORMAT format]

Returns two string -type columns: name and type , which indicate the names and types of columns in the specified
table.

Nested data structures are output in "expanded" format. Each column is shown separately, with the name after a dot.

EXISTS

EXISTS [TEMPORARY] TABLE [db.]name [INTO OUTFILE filename] [FORMAT format]

Returns a single uInts -type column, which contains the single value o if the table or database doesn't exist, or 1 if the
table exists in the specified database.

USE

USE db

Lets you set the current database for the session. The current database is used for searching for tables if the database is
not explicitly defined in the query with a dot before the table name. This query can't be made when using the HTTP
protocol, since there is no concept of a session.

SET

SET param = value

Allows you to set param to value .You can also make all the settings from the specified settings profile in a single query.
To do this, specify 'profile’ as the setting name. For more information, see the section "Settings". The setting is made for
the session, or for the server (globally) if crLoBaL is specified. When making a global setting, the setting is not applied to
sessions already running, including the current session. It will only be used for new sessions.

When the server is restarted, global settings made using seT are lost. To make settings that persist after a server restart,
you can only use the server's config file.

OPTIMIZE

OPTIMIZE TABLE [db.]name [ON CLUSTER cluster] [PARTITION partition] [FINAL]

Asks the table engine to do something for optimization. Supported only by *MergeTree engines, in which this query
initializes a non-scheduled merge of data parts. If you specify a parTITION, Only the specified partition will be optimized.
If you specify rINAL , optimization will be performed even when all the data is already in one part.

Warning

OPTIMIZE can't fix the "Too many parts" error.

KILL QUERY

KILL QUERY [ON CLUSTER cluster]
WHERE <where expression to SELECT FROM system.processes query>
[SYNC |ASYNC | TEST]
[FORMAT format]

Attempts to forcibly terminate the currently running queries. The queries to terminate are selected from the
system.processes table using the criteria defined in the wHERE clause of the kK1LL query.

Examples:

-- Forcibly terminates all queries with the specified query id:
KILL QUERY WHERE query id='2-857d-4a57-9ee0-327da5d60a90"'

-- Synchronously terminates all queries run by 'username':
KILL QUERY WHERE user='username' SYNC

Read-only users can only stop their own queries.

By default, the asynchronous version of queries is used (async), which doesn't wait for confirmation that queries have
stopped.

The synchronous version (sync) waits for all queries to stop and displays information about each process as it stops. The
response contains the ki1l status column, which can take the following values:

1. 'finished' - The query was terminated successfully.
2. 'waiting' - Waiting for the query to end after sending it a signal to terminate.

3. The other values explain why the query can't be stopped.

Atest query (TEST) only checks the user's rights and displays a list of queries to stop.

Functions

There are at least* two types of functions - regular functions (they are just called "functions") and aggregate functions.
These are completely different concepts. Regular functions work as if they are applied to each row separately (for each
row, the result of the function doesn't depend on the other rows). Aggregate functions accumulate a set of values from
various rows (i.e. they depend on the entire set of rows).

In this section we discuss regular functions. For aggregate functions, see the section "Aggregate functions".

* - There s a third type of function that the 'arraylJoin’ function belongs to; table functions can also be mentioned
separately.*

Strong typing

In contrast to standard SQL, ClickHouse has strong typing. In other words, it doesn't make implicit conversions between
types. Each function works for a specific set of types. This means that sometimes you need to use type conversion
functions.

Common subexpression elimination

All expressions in a query that have the same AST (the same record or same result of syntactic parsing) are considered to
have identical values. Such expressions are concatenated and executed once. Identical subqueries are also eliminated this
way.

Types of results

All functions return a single return as the result (not several values, and not zero values). The type of result is usually
defined only by the types of arguments, not by the values. Exceptions are the tupleElement function (the a.N operator),
and the toFixedString function.

Constants

For simplicity, certain functions can only work with constants for some arguments. For example, the right argument of the
LIKE operator must be a constant. AlImost all functions return a constant for constant arguments. The exception is
functions that generate random numbers. The 'now’' function returns different values for queries that were run at different
times, but the result is considered a constant, since constancy is only important within a single query. A constant
expression is also considered a constant (for example, the right half of the LIKE operator can be constructed from multiple
constants).

Functions can be implemented in different ways for constant and non-constant arguments (different code is executed).
But the results for a constant and for a true column containing only the same value should match each other.

NULL processing

Functions have the following behaviors:

o If at least one of the arguments of the function is NULL , the function resultis also NULL .

o Special behavior that is specified individually in the description of each function. In the ClickHouse source code, these
functions have UsebDefaultImplementationForNulls=false .
Constancy
Functions can't change the values of their arguments - any changes are returned as the result. Thus, the result of
calculating separate functions does not depend on the order in which the functions are written in the query.
Error handling

Some functions might throw an exception if the data is invalid. In this case, the query is canceled and an error text is
returned to the client. For distributed processing, when an exception occurs on one of the servers, the other servers also
attempt to abort the query.

Evaluation of argument expressions

In almost all programming languages, one of the arguments might not be evaluated for certain operators. This is usually
the operators ss, || ,and 2: .Butin ClickHouse, arguments of functions (operators) are always evaluated. This is
because entire parts of columns are evaluated at once, instead of calculating each row separately.

Performing functions for distributed query processing

For distributed query processing, as many stages of query processing as possible are performed on remote servers, and
the rest of the stages (merging intermediate results and everything after that) are performed on the requestor server.

This means that functions can be performed on different servers. For example, in the query SELECT f (sum(g(x))) FROM
distributed table GROUP BY h(y),

o ifa distributed table hasatleast two shards, the functions 'g' and 'h' are performed on remote servers, and the
function 'f' is performed on the requestor server.

o ifa distributed table hasonly oneshard, all the'f','g", and 'h' functions are performed on this shard's server.

The result of a function usually doesn't depend on which server it is performed on. However, sometimes this is important.
For example, functions that work with dictionaries use the dictionary that exists on the server they are running on. Another
example is the hostName function, which returns the name of the server it is running on in order to make Grour By by
serversina SELECT query.

If a function in a query is performed on the requestor server, but you need to perform it on remote servers, you can wrap it
in an 'any' aggregate function or add it to a key in Grour BY.

Arithmetic functions

For all arithmetic functions, the result type is calculated as the smallest number type that the result fits in, if thereis such a
type. The minimum is taken simultaneously based on the number of bits, whether it is signed, and whether it floats. If
there are not enough bits, the highest bit type is taken.

Example:

SELECT toTypeName(0), toTypeName(0O + 0), toTypeName(0O + 0 + 0), toTypeName(0O + 0 + 0 + 0)

r—toTypeName (0)—T—toTypeName (plus(0, 0))—TtoTypeName(plus(plus(0, 0), 0))—T—toTypeName(plus(plus(plus(0, 0),
0), 0))—

| UInt8 | uIntle | UInt32 | UInté64

|

L 1 1 1

Arithmetic functions work for any pair of types from UInt8, UInt16, UInt32, UInt64, Int8, Int16, Int32, Inté64, Float32, or
Floaté4.

Overflow is produced the same way as in C++.

plus(a, b), a + b operator

Calculates the sum of the numbers. You can also add integer numbers with a date or date and time. In the case of a date,
adding an integer means adding the corresponding number of days. For a date with time, it means adding the
corresponding number of seconds.

minus(a, b), a - b operator

Calculates the difference. The result is always signed.

You can also calculate integer numbers from a date or date with time. The idea is the same - see above for 'plus’.

multiply(a, b), a * b operator

Calculates the product of the numbers.

divide(a, b), a /b operator

Calculates the quotient of the numbers. The result type is always a floating-point type. It is not integer division. For integer
division, use the 'intDiv' function. When dividing by zero you get 'inf', '-inf', or 'nan’.

intDiv(a, b)

Calculates the quotient of the numbers. Divides into integers, rounding down (by the absolute value). An exception is
thrown when dividing by zero or when dividing a minimal negative number by minus one.

intDivOrZero(a, b)

Differs from 'intDiv' in that it returns zero when dividing by zero or when dividing a minimal negative number by minus one.

modulo(a, b), a % b operator

Calculates the remainder after division. If arguments are floating-point numbers, they are pre-converted to integers by
dropping the decimal portion. The remainder is taken in the same sense as in C++. Truncated division is used for negative
numbers. An exception is thrown when dividing by zero or when dividing a minimal negative number by minus one.

negate(a), -a operator

Calculates a number with the reverse sign. The result is always signed.

abs(a)

Calculates the absolute value of the number (a). That is, if a < 0, it returns -a. For unsigned types it doesn't do anything. For
signed integer types, it returns an unsigned number.

gcd(a, b)

Returns the greatest common divisor of the numbers. An exception is thrown when dividing by zero or when dividing a
minimal negative number by minus one.

lcm(a, b)

Returns the least common multiple of the numbers. An exception is thrown when dividing by zero or when dividing a
minimal negative number by minus one.

Comparison functions

Comparison functions always return 0 or 1 (Uint8).

The following types can be compared:

e numbers
¢ strings and fixed strings
o dates

o dates with times
within each group, but not between different groups.

For example, you can't compare a date with a string. You have to use a function to convert the string to a date, or vice
versa.

Strings are compared by bytes. A shorter string is smaller than all strings that start with it and that contain at least one
more character.

Note. Up until version 1.1.54134, signed and unsigned numbers were compared the same way as in C++. In other words,
you could get an incorrect result in cases like SELECT 9223372036854775807 > -1. This behavior changed in version
1.1.54134 and is now mathematically correct.

equals, a=b and a==b operator
notEquals, a! operator=b and a<>b
less, < operator

greater, > operator

IessOrEquaIs, <= operator

greaterOrEquals, >= operator

Logical functions

Logical functions accept any numeric types, but return a UInt8 number equal to 0 or 1.

Zero as an argument is considered "false," while any non-zero value is considered "true".
and, AND operator

or, OR operator

not, NOT operator

XOor

Type conversion functions

toUInt8, toUInt16, toUInt32, toUlnt64

tolnt8, tolnt16, tolnt32, tolnt64

toFloat32, toFloat64

toUInt80rZero, toUInt160rZero, toUINt320rZero, toUInt640rZero, tolnt80OrZero, tolnt160rZero,
tolnt320rZero, tolnt640rZero, toFloat320rZero, toFloat640rZero

toDate, toDateTime

toDecimal32(value, S), toDecimal64(value, S), toDecimal128(value, S)

Converts value toDecimal[#data_type-decimal] of precision s.The value canbeanumber orastring. The s (scale)
parameter specifies the number of decimal places.

toString

Functions for converting between numbers, strings (but not fixed strings), dates, and dates with times. All these functions
accept one argument.

When converting to or from a string, the value is formatted or parsed using the same rules as for the TabSeparated format
(and almost all other text formats). If the string can't be parsed, an exception is thrown and the request is canceled.

When converting dates to numbers or vice versa, the date corresponds to the number of days since the beginning of the
Unix epoch. When converting dates with times to numbers or vice versa, the date with time corresponds to the number of
seconds since the beginning of the Unix epoch.

The date and date-with-time formats for the toDate/toDateTime functions are defined as follows:

YYYY-MM-DD
YYYY-MM-DD hh:mm:ss

As an exception, if converting from UInt32, Int32, UInté4, or Int64 numeric types to Date, and if the number is greater than
or equal to 65536, the number is interpreted as a Unix timestamp (and not as the number of days) and is rounded to the
date. This allows support for the common occurrence of writing 'toDate(unix_timestamp)', which otherwise would be an
error and would require writing the more cumbersome 'toDate(toDateTime(unix_timestamp))'.

Conversion between a date and date with time is performed the natural way: by adding a null time or dropping the time.
Conversion between numeric types uses the same rules as assignments between different numeric types in C++.

Additionally, the toString function of the DateTime argument can take a second String argument containing the name of
the time zone. Example: asia/Yekaterinburg Inthis case, the timeis formatted according to the specified time zone.

SELECT
now() AS now_local,
toString(now(), 'Asia/Yekaterinburg') AS now_yekat

r—————now_local—Tnow_yekat—————
| 2016-06-15 00:11:21 | 2016-06-15 02:11:21 |

Also see the tounixTimestamp function.

toFixedString(s, N)

Converts a String type argument to a FixedString(N) type (a string with fixed length N). N must be a constant. If the string
has fewer bytes than N, it is passed with null bytes to the right. If the string has more bytes than N, an exception is thrown.

toStringCutToZero(s)
Accepts a String or FixedString argument. Returns the String with the content truncated at the first zero byte found.

Example:

SELECT toFixedString('foo', 8) AS s, toStringCutToZero(s) AS s_cut

—s T—s_cut—
| £oo\0\0\0\0\O | foo |

L 1 1

SELECT toFixedString('foo\Obar', 8) AS s, toStringCutToZero(s) AS s_cut

—s—————————T—s_cut—
| foo\Obar\0 | foo |

L 1]

reinterpretAsUInt8, reinterpretAsUInt16, reinterpretAsUInt32, reinterpretAsUInt64

reinterpretAsInt8, reinterpretAsInt16, reinterpretAsint32, reinterpretAsint64

reinterpretAsFloat32, reinterpretAsFloat64

reinterpretAsDate, reinterpretAsDateTime

These functions accept a string and interpret the bytes placed at the beginning of the string as a number in host order
(little endian). If the string isn't long enough, the functions work as if the string is padded with the necessary number of null
bytes. If the string is longer than needed, the extra bytes are ignored. A date is interpreted as the number of days since the
beginning of the Unix Epoch, and a date with time is interpreted as the number of seconds since the beginning of the Unix
Epoch.

reinterpretAsString

This function accepts a number or date or date with time, and returns a string containing bytes representing the
corresponding value in host order (little endian). Null bytes are dropped from the end. For example, a UInt32 type value of
255 is a string that is one byte long.

CAST(x, 1)
Converts 'x' to the 't' data type. The syntax CAST(x AS t) is also supported.

Example:

SELECT
'2016-06-15 23:00:00' AS timestamp,
CAST(timestamp AS DateTime) AS datetime,
CAST(timestamp AS Date) AS date,
CAST(timestamp, 'String') AS string,
CAST(timestamp, 'FixedString(22)') AS fixed string

r—timestamp T datetime— date—T—string —fixed string—
| 2016-06-15 23:00:00 | 2016-06-15 23:00:00 | 2016-06-15 | 2016-06-15 23:00:00 | 2016-06-15 23:00:00\0\0\0 |

Conversion to FixedString(N) only works for arguments of type String or FixedString(N).

Type conversion to Nullable [#data_type-nullable] and back is supported. Example:

SELECT toTypeName(x) FROM t_null

—toTypeName (xX)—
| Int8 |
| Int8 |

SELECT toTypeName (CAST(x, 'Nullable(UIntl6)')) FROM t null

r—toTypeName (CAST(x, 'Nullable(UIntl6)'))—
| Nullable(UIntlé6) |
| Nullable(UIntl6) |
L

Functions for working with dates and times

Support for time zones

All functions for working with the date and time that have a logical use for the time zone can accept a second optional time
zone argument. Example: Asia/Yekaterinburg. In this case, they use the specified time zone instead of the local (default)
one.

SELECT
toDateTime('2016-06-15 23:00:00"') AS time,
toDate(time) AS date_ local,
toDate(time, 'Asia/Yekaterinburg') AS date_yekat,
toString(time, 'US/Samoa') AS time samoa

T time——date_ local—T—date_ yekat—T—time_samoa—
| 2016-06-15 23:00:00 | 2016-06-15 | 2016-06-16 | 2016-06-15 09:00:00 |

Only time zones that differ from UTC by a whole number of hours are supported.

toYear

Converts a date or date with time to a UInt16 number containing the year number (AD).

toMonth

Converts a date or date with time to a UInt8 number containing the month number (1-12).

toDayOfMonth

-Converts a date or date with time to a UInt8 number containing the number of the day of the month (1-31).

toDayOfWeek

Converts a date or date with time to a UInt8 number containing the number of the day of the week (Monday is 1, and
Sunday is 7).

toHour

Converts a date with time to a UInt8 number containing the number of the hour in 24-hour time (0-23). This function
assumes that if clocks are moved ahead, it is by one hour and occurs at 2 a.m., and if clocks are moved back, it is by one
hour and occurs at 3 a.m. (which is not always true — even in Moscow the clocks were twice changed at a different time).

toMinute

Converts a date with time to a UInt8 number containing the number of the minute of the hour (0-59).

toSecond

Converts a date with time to a UInt8 number containing the number of the second in the minute (0-59). Leap seconds are
not accounted for.

toMonday

Rounds down a date or date with time to the nearest Monday. Returns the date.

toStartOfMonth

Rounds down a date or date with time to the first day of the month. Returns the date.

Attention

The behavior of parsing incorrect dates is implementation specific. ClickHouse may return zero date, throw an exception or do "natural" overflow.

toStartOfQuarter

Rounds down a date or date with time to the first day of the quarter. The first day of the quarter is either 1 January, 1 April,
1 July, or 1 October. Returns the date.

toStartOfYear

Rounds down a date or date with time to the first day of the year. Returns the date.

toStartOfMinute

Rounds down a date with time to the start of the minute.

toStartOfFiveMinute

Rounds down a date with time to the start of the hour.

toStartOfFifteenMinutes
Rounds down the date with time to the start of the fifteen-minute interval.

Note: If you need to round a date with time to any other number of seconds, minutes, or hours, you can convertitintoa
number by using the toUInt32 function, then round the number using intDiv and multiplication, and convert it back using
the toDateTime function.

toStartOfHour

Rounds down a date with time to the start of the hour.

toStartOfDay

Rounds down a date with time to the start of the day.

toTime

Converts a date with time to a certain fixed date, while preserving the time.

toRelativeYearNum

Converts a date with time or date to the number of the year, starting from a certain fixed point in the past.

toRelativeMonthNum

Converts a date with time or date to the number of the month, starting from a certain fixed point in the past.

toRelativeWeekNum

Converts a date with time or date to the number of the week, starting from a certain fixed point in the past.

toRelativeDayNum

Converts a date with time or date to the number of the day, starting from a certain fixed point in the past.

toRelativeHourNum

Converts a date with time or date to the number of the hour, starting from a certain fixed point in the past.

toRelativeMinuteNum

Converts a date with time or date to the number of the minute, starting from a certain fixed point in the past.

toRelativeSecondNum

Converts a date with time or date to the number of the second, starting from a certain fixed point in the past.

now
Accepts zero arguments and returns the current time at one of the moments of request execution. This function returns a

constant, even if the request took a long time to complete.

today

Accepts zero arguments and returns the current date at one of the moments of request execution. The same as
'toDate(now())".

yesterday

Accepts zero arguments and returns yesterday's date at one of the moments of request execution. The same as 'today() -
1%

timeSlot

Rounds the time to the half hour. This function is specific to Yandex.Metrica, since half an hour is the minimum amount of
time for breaking a session into two sessions if a tracking tag shows a single user's consecutive pageviews that differ in
time by strictly more than this amount. This means that tuples (the tag ID, user ID, and time slot) can be used to search for
pageviews that are included in the corresponding session.

timeSlots(StartTime, Duration)

For a time interval starting at 'StartTime' and continuing for 'Duration’ seconds, it returns an array of moments in time,
consisting of points from this interval rounded down to the half hour. For example, timeSlots (toDateTime ('2012-01-01
12:20:00"), 600) = [toDateTime ('2012-01-01 12:00:00'), toDateTime ('2012-01-01 12:30:00'")] . Thisisnecessary
for searching for pageviews in the corresponding session.

formatDateTime(Time, Format[, Timezone])

Function formats a Time according given Format string. N.B.: Format is a constant expression, e.g. you can not have
multiple formats for single result column.

Supported modifiers for Format: ("Example" column shows formatting result for time 2018-01-02 22:33:44)

Modifier Description Example

%C year divided by 100 and truncated to integer (00-99) 20

%d day of the month, zero-padded (01-31) 02

%D Short MM/DD/YY date, equivalent to %m/%d/%y 01/02/2018
%e day of the month, space-padded (1-31) 2

%F short YYYY-MM-DD date, equivalent to %Y-%m-%d 2018-01-02
%H hour in 24h format (00-23) 22

%I hour in 12h format (01-12) 10

%j day of the year (001-366) 002

%m month as a decimal number (01-12) 01

%M minute (00-59) 33

%n new-line character ('\n')

%p AM or PM designation PM

%R 24-hour HH:MM time, equivalent to %H:%M 22:33
%S second (00-59) 44

%t horizontal-tab character ('\t')

%T I1SO 8601 time format (HH:MM:SS), equivalent to %H:%M:%S 22:33:44
%u 1SO 8601 weekday as number with Monday as 1 (1-7) 2

%V 1ISO 8601 week number (01-53) 01

%W weekday as a decimal number with Sunday as 0 (0-6) 2

%y Year, last two digits (00-99) 18

%Y Year 2018

%% a%sign %

Functions for working with strings
empty

Returns 1 for an empty string or 0 for a non-empty string. The result type is UInt8. A string is considered non-empty if it
contains at least one byte, even if this is a space or a null byte. The function also works for arrays.

notEmpty

Returns 0 for an empty string or 1 for a non-empty string. The result type is UInt8. The function also works for arrays.

length

Returns the length of a string in bytes (not in characters, and not in code points). The result type is UInt64. The function
also works for arrays.

lengthUTF8

Returns the length of a string in Unicode code points (not in characters), assuming that the string contains a set of bytes
that make up UTF-8 encoded text. If this assumption is not met, it returns some result (it doesn't throw an exception). The
result type is UInt64.

lower

Converts ASCII Latin symbols in a string to lowercase.

upper

Converts ASCII Latin symbols in a string to uppercase.

lowerUTF8

Converts a string to lowercase, assuming the string contains a set of bytes that make up a UTF-8 encoded text. It doesn't
detect the language. So for Turkish the result might not be exactly correct. If the length of the UTF-8 byte sequence is
different for upper and lower case of a code point, the result may be incorrect for this code point. If the string contains a
set of bytes that is not UTF-8, then the behavior is undefined.

upperUTF8

Converts a string to uppercase, assuming the string contains a set of bytes that make up a UTF-8 encoded text. It doesn't
detect the language. So for Turkish the result might not be exactly correct. If the length of the UTF-8 byte sequence is
different for upper and lower case of a code point, the result may be incorrect for this code point. If the string contains a
set of bytes that is not UTF-8, then the behavior is undefined.

reverse

Reverses the string (as a sequence of bytes).

reverseUTF8

Reverses a sequence of Unicode code points, assuming that the string contains a set of bytes representing a UTF-8 text.
Otherwise, it does something else (it doesn't throw an exception).

concat(sl,s2, ..)

Concatenates the strings listed in the arguments, without a separator.

substring(s, offset, length)

Returns a substring starting with the byte from the 'offset' index that is 'length’ bytes long. Character indexing starts from
one (as in standard SQL). The 'offset' and 'length' arguments must be constants.

substringUTF8(s, offset, length)

The same as 'substring’, but for Unicode code points. Works under the assumption that the string contains a set of bytes
representing a UTF-8 encoded text. If this assumption is not met, it returns some result (it doesn't throw an exception).
appendTrailingCharlfAbsent(s, c)

If the 's' string is non-empty and does not contain the 'c' character at the end, it appends the 'c' character to the end.

convertCharset(s, from, to)

Returns the string 's' that was converted from the encoding in 'from' to the encoding in 'to’.

base64Encode(s)

Encodes 's' string into base64

base64Decode(s)

Decode base64-encoded string 's' into original string. In case of failure raises an exception.

tryBase64Decode(s)

Similar to base64Decode, but in case of error an empty string would be returned.

Functions for searching strings

The search is case-sensitive in all these functions. The search substring or regular expression must be a constantin all
these functions.

position(haystack, needle)

Search for the substring needle inthestring haystack . Returns the position (in bytes) of the found substring, starting
from 1, or returns 0 if the substring was not found.

For a case-insensitive search, use the function positionCaseInsensitive.

positionUTF8(haystack, needle)

The same as position, butthe positionis returned in Unicode code points. Works under the assumption that the string
contains a set of bytes representing a UTF-8 encoded text. If this assumption is not met, it returns some result (it doesn't
throw an exception).

For a case-insensitive search, use the function positionCaseInsensitiveUTF8 .

match(haystack, pattern)

Checks whether the string matches the pattern regular expression. A re2 regular expression. The syntax
[https://github.com/google/re2/wiki/Syntax] of the re2 regular expressions is more limited than the syntax of the Perl
regular expressions.

Returns 0 if it doesn't match, or 1 if it matches.

https://github.com/google/re2/wiki/Syntax

Note that the backslash symbol (\) is used for escaping in the regular expression. The same symbol is used for escaping in
string literals. So in order to escape the symbol in a regular expression, you must write two backslashes (\) in a string literal.

The regular expression works with the string as if it is a set of bytes. The regular expression can't contain null bytes. For
patterns to search for substrings in a string, it is better to use LIKE or 'position’, since they work much faster.

extract(haystack, pattern)

Extracts a fragment of a string using a regular expression. If 'haystack' doesn't match the 'pattern’ regex, an empty string
is returned. If the regex doesn't contain subpatterns, it takes the fragment that matches the entire regex. Otherwise, it
takes the fragment that matches the first subpattern.

extractAll(haystack, pattern)

Extracts all the fragments of a string using a regular expression. If 'haystack' doesn't match the 'pattern' regex, an empty
string is returned. Returns an array of strings consisting of all matches to the regex. In general, the behavior is the same as
the 'extract’ function (it takes the first subpattern, or the entire expression if there isn't a subpattern).

like(haystack, pattern), haystack LIKE pattern operator

Checks whether a string matches a simple regular expression. The regular expression can contain the metasymbols ¢ and

**% indicates any quantity of any bytes (including zero characters).

_ indicates any one byte.

Use the backslash (\) for escaping metasymbols. See the note on escaping in the description of the 'match’ function.
For regular expressions like s¢needle% , the code is more optimal and works as fast as the position function. For other
regular expressions, the code is the same as for the 'match’ function.

notLike(haystack, pattern), haystack NOT LIKE pattern operator

The same thing as 'like’, but negative.

Functions for searching and replacing in strings

replaceOne(haystack, pattern, replacement)

Replaces the first occurrence, if it exists, of the 'pattern’ substring in 'haystack’ with the 'replacement’ substring.
Hereafter, 'pattern' and 'replacement’ must be constants.

replaceAll(haystack, pattern, replacement)

Replaces all occurrences of the 'pattern’ substring in 'haystack' with the 'replacement’ substring.

replaceRegexpOne(haystack, pattern, replacement)

Replacement using the 'pattern' regular expression. A re2 regular expression. Replaces only the first occurrence, if it
exists. A pattern can be specified as 'replacement’. This pattern can include substitutions \0-\9 . The substitution \0
includes the entire regular expression. Substitutions \1-\9 correspond to the subpattern numbers.To use the \
character in a template, escape it using \ . Also keep in mind that a string literal requires an extra escape.

Example 1. Converting the date to American format:

SELECT DISTINCT
EventDate,
replaceRegexpOne (toString(EventDate), '(\\d{4})-(\\d{2})-(\\d{2})"', '\\2/\\3/\\1') AS res
FROM test.hits
LIMIT 7
FORMAT TabSeparated

2014-03-17 03/17/2014
2014-03-18 03/18/2014
2014-03-19 03/19/2014
2014-03-20 03/20/2014
2014-03-21 03/21/2014
2014-03-22 03/22/2014
2014-03-23 03/23/2014

Example 2. Copying a string ten times:

SELECT replaceRegexpOne('Hello, World!', '.*', "\\0\\0\\0\\0\\0\\0\\0\\0\\0O\\0') AS res

—res

| Hello, World!Hello, World!Hello, World!Hello, World!Hello, World!Hello, World!Hello, World!Hello,
World!Hello, World!Hello, World! |

replaceRegexpAll(haystack, pattern, replacement)

This does the same thing, but replaces all the occurrences. Example:

SELECT replaceRegexpAll('Hello, World!', '.', '\\0\\0') AS res

—res 1

| HHeelllloo,, WwWoorrlldd!! |
L]

As an exception, if a regular expression worked on an empty substring, the replacement is not made more than once.
Example:

SELECT replaceRegexpAll('Hello, World!', '"', 'here: ') AS res

—res 1
| here: Hello, World! |

Conditional functions

if(cond, then, else), cond ? operator then : else

Returns then if cond != 0,0r else if cond = 0. cond must beof type uint8,and then and else musthavethe
lowest common type.

then and else canbe NULL

multilf

Allows you to write the CASE [#operator_case] operator more compactly in the query.

multiIf(cond_ 1, then_1, cond 2, then_2...else)

Parameters:

e cond N — The condition for the function to return then N.
e then N — Theresult of the function when executed.

e else — Theresult of the function if none of the conditions is met.
The function accepts 2n+1 parameters.
Returned values
The function returns one of the values then N or else, depending on the conditions cond N.
Example

Take the table

Xy
| 1 | NULL |

[2 | 3 |
IS S

Runthe query SELECT multiIf (isNull(y) x, y < 3, y, NULL) FROM t null.Result:

rmultiIf(isNull(y), x, less(y, 3), y, NULL)—
| 1|
| NULL |

Mathematical functions

All the functions return a Floaté4 number. The accuracy of the result is close to the maximum precision possible, but the
result might not coincide with the machine representable number nearest to the corresponding real number.

e()

Returns a Float64 number that is close to the number e.

pi()

Returns a Float64 number that is close to the number Tr.

exp(x)

Accepts a numeric argument and returns a Float64 number close to the exponent of the argument.

log(x)

Accepts a numeric argument and returns a Floaté4 number close to the natural logarithm of the argument.

exp2(x)

Accepts a numeric argument and returns a Float64 number close to 2 to the power of x.

log2(x)

Accepts a numeric argument and returns a Floaté4 number close to the binary logarithm of the argument.

exp10(x)

Accepts a numeric argument and returns a Float64 number close to 10 to the power of x.

log10(x)

Accepts a numeric argument and returns a Floaté4 number close to the decimal logarithm of the argument.

sqrt(x)

Accepts a numeric argument and returns a Float64 number close to the square root of the argument.

cbrt(x)

Accepts a numeric argument and returns a Floaté4 number close to the cubic root of the argument.

erf(x)

If 'X' is non-negative, then erf(x / G+/2) is the probability that a random variable having a normal distribution with standard
deviation '0" takes the value that is separated from the expected value by more than 'x'.

Example (three sigma rule):

SELECT erf(3 / sqrt(2))

r—erf(divide(3, sqrt(2)))—
| 0.9973002039367398 |

erfc(x)

Accepts a numeric argument and returns a Float64 number close to 1 - erf(x), but without loss of precision for large 'x'
values.

lgamma(x)

The logarithm of the gamma function.

tgamma(x)

Gamma function.

sin(x)

The sine.

cos(x)

The cosine.

tan(x)

The tangent.

asin(x)

The arcsine.

acos(x)

The arc cosine.

atan(x)

The arc tangent.

pow(x, y)

Takes two numeric arguments x and y. Returns a Float64 number close to x to the power of y.

Rounding functions

floor(x[, N])

Returns the largest round number that is less than or equal to x. A round number is a multiple of 1/10N, or the nearest
number of the appropriate data typeif 1 /10N isn't exact. 'N' is an integer constant, optional parameter. By default it is
zero, which means to round to an integer. 'N' may be negative.

Examples: floor (123.45, 1) = 123.4, floor(123.45, -1) = 120.

x IS any numeric type. The result is a number of the same type. For integer arguments, it makes sense to round with a
negative 'N' value (for non-negative 'N', the function doesn't do anything). If rounding causes overflow (for example, floor(-
128, -1)), an implementation-specific result is returned.

ceil(x[, N])

Returns the smallest round number that is greater than or equal to 'x'. In every other way, it is the same as the 'floor"
function (see above).

round(x[, N])

Implements banker's rounding [https://en.wikipedia.org/wiki/Rounding#Round_half_to_even], i.e., rounding to the
nearest even integer.

Function arguments:

¢ x —the number to berounded. Type [#data_types] — any number.

¢ N — the position of the number after the decimal point to round the number to.

https://en.wikipedia.org/wiki/Rounding#Round_half_to_even

Returned value:
The rounded number of the same type as the input number x

Example:

SELECT
number / 2 AS x,
round(x)
FROM system.numbers
LIMIT 10

r——x—T—round(divide (number, 2))—

[l o | (O
| 0.5 | o |
[1] 1|
| 1.5 | 2 |
2| 2 |
| 2.5 | 2 |
[3 3
| 3.5 | 4 |
I 4| 4 |
| 4.5 | 4 |
roundToExp2(num)

Accepts a number. If the number is less than one, it returns 0. Otherwise, it rounds the number down to the nearest (whole
non-negative) degree of two.
roundDuration(num)

Accepts a number. If the number is less than one, it returns 0. Otherwise, it rounds the number down to numbers from the
set: 1,10, 30, 60, 120, 180, 240, 300, 600, 1200, 1800, 3600, 7200, 18000, 36000. This function is specific to Yandex.Metrica
and used for implementing the report on session length

roundAge(num)

Accepts a number. If the number is less than 18, it returns 0. Otherwise, it rounds the number down to a number from the
set: 18, 25, 35, 45, 55. This function is specific to Yandex.Metrica and used for implementing the report on user age.

Functions for working with arrays
empty

Returns 1 for an empty array, or 0 for a non-empty array. The result type is UInt8. The function also works for strings.

notEmpty

Returns 0 for an empty array, or 1 for a non-empty array. The result type is UInt8. The function also works for strings.

length

Returns the number of items in the array. The result type is UInté4. The function also works for strings.

emptyArrayUInt8, emptyArrayUInt16, emptyArrayUInt32, emptyArrayUint64

emptyArrayInt8, emptyArrayInt16, emptyArrayInt32, emptyArraylnt64

emptyArrayFloat32, emptyArrayFloat64

emptyArrayDate, emptyArrayDateTime

emptyArrayString

Accepts zero arguments and returns an empty array of the appropriate type.

emptyArrayToSingle

Accepts an empty array and returns a one-element array that is equal to the default value.

range(N)

Returns an array of numbers from 0 to N-1. Just in case, an exception is thrown if arrays with a total length of more than
100,000,000 elements are created in a data block.

array(x1, ...), operator [x1, ...]

Creates an array from the function arguments. The arguments must be constants and have types that have the smallest
common type. At least one argument must be passed, because otherwise it isn't clear which type of array to create. That is,
you can't use this function to create an empty array (to do that, use the 'emptyArray*' function described above). Returns
an 'Array(T)' type result, where 'T' is the smallest common type out of the passed arguments.

arrayConcat

Combines arrays passed as arguments.
arrayConcat (arrays)
Parameters

e arrays — Arbitrary number of arguments of [Array][../../data_types/array.md#data_type-array] type.

Example

SELECT arrayConcat([1l, 2], [3, 41, [5, 6]) AS res

res———————— 1
| [11213141516] |

arrayElement(arr, n), operator arr[n]

Get the element with theindex n fromthearray arr. n must be any integer type. Indexes in an array begin from one.
Negative indexes are supported. In this case, it selects the corresponding element numbered from the end. For example,
arr[-1] isthelastiteminthe array.

If the index falls outside of the bounds of an array, it returns some default value (0 for numbers, an empty string for strings,
etc.).

has(arr, elem)
Checks whether the 'arr' array has the 'elem' element. Returns 0 if the the element is not in the array, or 1if it is.

NULL is processed as a value.

SELECT has([1l, 2, NULL], NULL)

—has([1, 2, NULL], NULL)
| 1

—
|
L 1

hasAll

Checks whether one array is a subset of another.

hasAll(set, subset)

Parameters

e set - Array of any type with a set of elements.

¢ subset - Array of any type with elements that should be tested to be a subset of set .

Return values

e 1,if set contains all of the elements from subset .

e 0,0therwise.
Peculiar properties

¢ Anempty array is a subset of any array.
e Null processedasavalue.

o Order of values in both of arrays doesn't matter.
Examples
SELECT hasAll ([], []) returns1.

SELECT hasAll([1, Null], [Null]) returns1.

SELECT hasAll([1.0, 2, 3, 41, [1, 31) returns1.

SELECT hasAll(['a', 'b']l, ['a'l) returns 1.

SELECT hasAll([1], ['a'l) returns 0.

SELECT hasAll([[1, 2], [3, 411, [I[l1, 2], [3, 511) returns 0.
hasAny

Checks whether two arrays have intersection by some elements.

hasAny(arrayl, array2)

Parameters

e arrayl —Array of any type with a set of elements.

e array2 - Array of any type with a set of elements.
Return values

e 1,if arrayl and array2 have one similar element at least.

e 0,o0therwise.
Peculiar properties

e Null processed asavalue.

¢ Order of values in both of arrays doesn't matter.
Examples
SELECT hasAny ([1], []) returns o.
SELECT hasAny ([Null], [Null, 1]) returns 1.
SELECT hasAny([-128, 1., 5121, [1]) returns 1.
SELECT hasAny([[1, 2], [3, 411, ['a', 'c']) returns 0.

SELECT hasAll([[1l, 21, [3, 411, [[1, 2], [1, 211) returns 1.

indexOf(arr, x)

Returns the index of the first 'x' element (starting from 1) if it is in the array, or O if it is not.

Example:

:) SELECT indexOf([1,3,NULL,NULL],NULL)
SELECT indexOf([1, 3, NULL, NULL], NULL)

—indexOf([1, 3, NULL, NULL], NULL)
| 3

—
|
L 1

Elements set to NuLL are handled as normal values.

countEqual(arr, x)

Returns the number of elements in the array equal to x. Equivalent to arrayCount (elem -> elem = x, arr).
NULL elements are handled as separate values.

Example:

SELECT countEqual([1, 2, NULL, NULL], NULL)

r—countEqual([1l, 2, NULL, NULL], NULL)—
2 |

arrayEnumerate(arr)
Returns thearray[1, 2, 3, ..., length (arr)]

This function is normally used with ARRAY JOIN. It allows counting something just once for each array after applying
ARRAY JOIN. Example:

SELECT
count() AS Reaches,
countIf(num = 1) AS Hits
FROM test.hits
ARRAY JOIN
GoalsReached,
arrayEnumerate(GoalsReached) AS num
WHERE CounterID = 160656
LIMIT 10

r—Reaches—T—Hits—
| 95606 | 31406 |

L 1]

In this example, Reaches is the number of conversions (the strings received after applying ARRAY JOIN), and Hits is the
number of pageviews (strings before ARRAY JOIN). In this particular case, you can get the same result in an easier way:

SELECT
sum(length(GoalsReached)) AS Reaches,
count() AS Hits
FROM test.hits
WHERE (CounterID = 160656) AND notEmpty(GoalsReached)

r—Reaches—T—Hits—
| 95606 | 31406 |

This function can also be used in higher-order functions. For example, you can use it to get array indexes for elements that
match a condition.

arrayEnumerateUniqg(arr, ...)

Returns an array the same size as the source array, indicating for each element what its position is among elements with
the same value. For example: arrayEnumerateUniq([10, 20, 10, 30])=[1,1, 2, 1].

This function is useful when using ARRAY JOIN and aggregation of array elements. Example:

SELECT
Goals.ID AS GoalID,
sum(Sign) AS Reaches,
sumIf(Sign, num = 1) AS Visits
FROM test.visits
ARRAY JOIN
Goals,
arrayEnumerateUnig(Goals.ID) AS num
WHERE CounterID = 160656
GROUP BY GoallD
ORDER BY Reaches DESC
LIMIT 10

r—GoalID—T—Reaches—TVisits—

| 53225 | 3214 | 1097 |
| 2825062 | 3188 | 1097 |
| 56600 | 2803 | 488 |
| 1989037 | 2401 | 365 |
| 2830064 | 2396 | 910 |
| 1113562 | 2372 | 373 |
| 3270895 | 2262 | 812 |
| 1084657 | 2262 | 345 |
| 56599 | 2260 | 799 |
| 3271094 | 2256 | 812 |
L 1 1]

In this example, each goal ID has a calculation of the number of conversions (each element in the Goals nested data

structure is a goal that was reached, which we refer to as a conversion) and the number of sessions. Without ARRAY JOIN,
we would have counted the number of sessions as sum(Sign). But in this particular case, the rows were multiplied by the
nested Goals structure, so in order to count each session one time after this, we apply a condition to the value of the
arrayEnumerateUniq(Goals.ID) function.

The arrayEnumerateUniq function can take multiple arrays of the same size as arguments. In this case, uniqueness is
considered for tuples of elements in the same positions in all the arrays.

SELECT arrayEnumerateUnig([(1, 1, 1, 2, 2, 2], [1, 1, 2, 1, 1, 2]) AS res

res——————————1
l 11,2,1,1,2,1] |

L 1

This is necessary when using ARRAY JOIN with a nested data structure and further aggregation across multiple elements
in this structure.

arrayPopBack

Removes the last item from the array.
arrayPopBack(array)
Parameters

e array —Array.

Example

SELECT arrayPopBack([1l, 2, 3]) AS res

—res——
I 11,27 |

arrayPopFront

Removes the first item from the array.
arrayPopFront (array)
Parameters

e array — Array.

Example

SELECT arrayPopFront([1l, 2, 3]) AS res

—res——
I 12,31 |

arrayPushBack

Adds one item to the end of the array.

arrayPushBack(array, single_value)

Parameters

e array —Array.

e single value - Asinglevalue. Only numbers can be added to an array with numbers, and only strings can be added
to an array of strings. When adding numbers, ClickHouse automatically sets the single value type for the datatype
of the array. For more information about the types of data in ClickHouse, see "Data types [#data_types]". Can be NULL .
The function adds a NULL element to an array, and the type of array elements converts to Nullable.

Example

SELECT arrayPushBack(['a']l, 'b') AS res

res———1
| ['a',‘b'] |

arrayPushFront

Adds one element to the beginning of the array.

arrayPushFront (array, single value)

Parameters

e array —Array.

e single value —Asinglevalue.Only numbers can be added to an array with numbers, and only strings can be added
to an array of strings. When adding numbers, ClickHouse automatically sets the single value type for the datatype
of the array. For more information about the types of data in ClickHouse, see "Data types [#data_types]". Can be nuLL .
The function adds a NULL element to an array, and the type of array elements converts to Nullable.

Example

SELECT arrayPushBack(['b'], 'a') AS res

res———1
| ['a',‘b'] |

arrayResize

Changes the length of the array.

arrayResize(array, size[, extender])

Parameters:

e array — Array.
e size — Required length of the array.
o If size islessthan the original size of the array, the array is truncated from the right.

o If size islarger than the initial size of the array, the array is extended to the right with extender values or default
values for the data type of the array items.

¢ extender — Value for extending an array. Can be NULL .
Returned value:
An array of length size .
Examples of calls

SELECT arrayResize([1l], 3)

r—arrayResize([1], 3)—
| [1,0,0] |

L 1

SELECT arrayResize([l1], 3, NULL)

r—arrayResize([1l], 3, NULL)—

| [1,NULL,NULL] |
L |

arraySlice

Returns a slice of the array.

arraySlice(array, offset[, length])

Parameters

e array — Array of data.

e offset —Indentfrom the edge of the array. A positive value indicates an offset on the left, and a negative value is an
indent on the right. Numbering of the array items begins with 1.

¢ length - Thelength of the required slice. If you specify a negative value, the function returns an open slice [offset,
array length - length) .lf you omitthevalue, the functionreturns theslice [offset, the end of array].

Example

SELECT arraySlice([l, 2, NULL, 4, 5], 2, 3) AS res

—res———1
| [2,NULL,4] |

e —

Array elements set to nuLL are handled as normal values.

arrayUniqg(arr, ...)

If one argument is passed, it counts the number of different elements in the array. If multiple arguments are passed, it
counts the number of different tuples of elements at corresponding positions in multiple arrays.

If you want to get a list of unique items in an array, you can use arrayReduce('groupUnigArray’, arr).

arrayJoin(arr)

A special function. See the section "ArrayJoin function" [#functions_arrayjoin].

Functions for splitting and merging strings and arrays

splitByChar(separator, s)

Splits a string into substrings separated by 'separator'.'separator' must be a string constant consisting of exactly one
character. Returns an array of selected substrings. Empty substrings may be selected if the separator occurs at the
beginning or end of the string, or if there are multiple consecutive separators.

splitByString(separator, s)

The same as above, but it uses a string of multiple characters as the separator. The string must be non-empty.

arrayStringConcat(arr[, separator])

Concatenates the strings listed in the array with the separator.'separator' is an optional parameter: a constant string, set
to an empty string by default. Returns the string.

alphaTokens(s)

Selects substrings of consecutive bytes from the ranges a-z and A-Z.Returns an array of substrings.

Example:

SELECT alphaTokens('abcalabc')

r—alphaTokens('abcalabc')—
| ['abca', 'abc'] |
L 1

Bit functions
Bit functions work for any pair of types from UInt8, UInt16, UInt32, UInté4, Int8, Int16, Int32, Inté64, Float32, or Float64.

The result type is an integer with bits equal to the maximum bits of its arguments. If at least one of the arguments is
signed, the result is a signed number. If an argument is a floating-point number, it is cast to Int64.

bitAnd(a, b)

bitOr(a, b)

bitXor(a, b)

bitNot(a)

bitShiftLeft(a, b)

bitShiftRight(a, b)

Hash functions

Hash functions can be used for deterministic pseudo-random shuffling of elements.

halfMD5

Calculates the MD5 from a string. Then it takes the first 8 bytes of the hash and interprets them as UInt64 in big endian.
Accepts a String-type argument. Returns Ulnt64. This function works fairly slowly (5 million short strings per second per
processor core). If you don't need MD5 in particular, use the 'sipHash64' function instead.

MD5

Calculates the MD5 from a string and returns the resulting set of bytes as FixedString(16). If you don't need MD5 in
particular, but you need a decent cryptographic 128-bit hash, use the 'sipHash128' function instead. If you want to get the
same result as output by the md5sum utility, use lower(hex(MD5(s))).

sipHash64

Calculates SipHash from a string. Accepts a String-type argument. Returns UInté64. SipHash is a cryptographic hash
function. It works at least three times faster than MD5. For more information, see the link: https://131002.net/siphash/
[https://131002.net/siphash/]

sipHash128

Calculates SipHash from a string. Accepts a String-type argument. Returns FixedString(16). Differs from sipHash64 in that
the final xor-folding state is only done up to 128 bytes.

cityHash64

Calculates CityHashé4 from a string or a similar hash function for any number of any type of arguments. For String-type
arguments, CityHash is used. This is a fast non-cryptographic hash function for strings with decent quality. For other types
of arguments, a decent implementation-specific fast non-cryptographic hash function is used. If multiple arguments are
passed, the function is calculated using the same rules and chain combinations using the CityHash combinator. For
example, you can compute the checksum of an entire table with accuracy up to the row order: seLECT

sum (cityHash64 (*)) FROM table.

intHash32

Calculates a 32-bit hash code from any type of integer. This is a relatively fast non-cryptographic hash function of average
quality for numbers.

intHash64

Calculates a 64-bit hash code from any type of integer. It works faster than intHash32. Average quality.

SHA1

SHA224

SHA256

Calculates SHA-1, SHA-224, or SHA-256 from a string and returns the resulting set of bytes as FixedString(20),
FixedString(28), or FixedString(32). The function works fairly slowly (SHA-1 processes about 5 million short strings per
second per processor core, while SHA-224 and SHA-256 process about 2.2 million). We recommend using this function
only in cases when you need a specific hash function and you can't select it. Even in these cases, we recommend applying

https://131002.net/siphash/

the function offline and pre-calculating values when inserting them into the table, instead of applying it in SELECTS.

URLHash(url[, N])

A fast, decent-quality non-cryptographic hash function for a string obtained from a URL using some type of normalization.
URLHash (s) — Calculates a hash from a string without one of the trailing symbols /, 2 or # atthe end, if present.

URLHash (s, N) - Calculates ahash from a string up to the N level in the URL hierarchy, without one of the trailing symbols
/, 2 or # attheend, if present. Levels are the same as in URLHierarchy. This function is specific to Yandex.Metrica.

Functions for generating pseudo-random numbers
Non-cryptographic generators of pseudo-random numbers are used.

All the functions accept zero arguments or one argument. If an argument is passed, it can be any type, and its value is not
used for anything. The only purpose of this argument is to prevent common subexpression elimination, so that two
different instances of the same function return different columns with different random numbers.

rand

Returns a pseudo-random Ulnt32 number, evenly distributed among all UInt32-type numbers. Uses a linear congruential
generator.

rand64

Returns a pseudo-random Ulnt64 number, evenly distributed among all UInt64-type numbers. Uses a linear congruential
generator.

Encoding functions

hex

Accepts arguments of types: string, unsigned integer, Date,Or DateTime .Returnsa string containing the
argument's hexadecimal representation. Uses uppercase letters A-r . Does not use 0x prefixesor n suffixes. For strings,
all bytes are simply encoded as two hexadecimal numbers. Numbers are converted to big endian ("human readable")
format. For numbers, older zeros are trimmed, but only by entire bytes. For example, hex (1) = '01'. pDate isencoded
as the number of days since the beginning of the Unix epoch. pateTime is encoded as the number of seconds since the
beginning of the Unix epoch.

unhex(str)

Accepts a string containing any number of hexadecimal digits, and returns a string containing the corresponding bytes.
Supports both uppercase and lowercase letters A-F. The number of hexadecimal digits does not have to be even. If it is
odd, the last digit is interpreted as the younger half of the 00-0F byte. If the argument string contains anything other than
hexadecimal digits, some implementation-defined result is returned (an exception isn't thrown). If you want to convert the
result to a number, you can use the 'reverse' and 'reinterpretAsType' functions.

UUIDStringToNum(str)

Accepts a string containing 36 characters in the format 123e4567-e89b-12d3-a456-426655440000 , and returnsit as a set
of bytes in a FixedString(16).

UUIDNumToString(str)

Accepts a FixedString(16) value. Returns a string containing 36 characters in text format.

bitmaskToList(num)

Accepts an integer. Returns a string containing the list of powers of two that total the source number when summed. They
are comma-separated without spaces in text format, in ascending order.

bitmaskToArray(num)

Accepts aninteger. Returns an array of UInt64 numbers containing the list of powers of two that total the source number
when summed. Numbers in the array are in ascending order.

Functions for working with URLs

All these functions don't follow the RFC. They are maximally simplified for improved performance.

Functions that extract part of a URL

If there isn't anything similar in a URL, an empty string is returned.
protocol

Returns the protocol. Examples: http, ftp, mailto, magnet...
domain

Gets the domain.

domainWithoutWWW

Returns the domain and removes no more than one 'www.' from the beginning of it, if present.
topLevelDomain

Returns the top-level domain. Example: .ru.
firstSignificantSubdomain

Returns the "first significant subdomain". This is a non-standard concept specific to Yandex.Metrica. The first significant
subdomain is a second-level domain if it is ‘com’, 'net’, ‘org’, or 'co'. Otherwise, it is a third-level domain. For example,
firstSignificantSubdomain (*https://news.yandex.ru/ [https://news.yandex.ru/]") = 'yandex ', firstSignificantSubdomain
(‘https://news.yandex.com.tr/ [https://news.yandex.com.tr/]") = 'yandex '. The list of "insignificant" second-level domains
and other implementation details may change in the future.

cutToFirstSignificantSubdomain

Returns the part of the domain that includes top-level subdomains up to the "first significant subdomain" (see the
explanation above).

For example, cutToFirstSignificantSubdomain ('https://news.yandex.com.tr/') = 'yandex.com.tr'.
path
Returns the path. Example: /top/news.html The path does not include the query string.

pathFull

https://news.yandex.ru/
https://news.yandex.com.tr/

The same as above, but including query string and fragment. Example: /top/news.html?page=2#comments
queryString

Returns the query string. Example: page=1&Ir=213. query-string does not include the initial question mark, as well as # and
everything after #.

fragment

Returns the fragment identifier. fragment does not include the initial hash symbol.
queryStringAndFragment

Returns the query string and fragment identifier. Example: page=1#29390.
extractURLParameter(URL, name)

Returns the value of the 'name’ parameter in the URL, if present. Otherwise, an empty string. If there are many parameters
with this name, it returns the first occurrence. This function works under the assumption that the parameter nameiis
encoded in the URL exactly the same way as in the passed argument.

extractURLParameters(URL)

Returns an array of name=value strings corresponding to the URL parameters. The values are not decoded in any way.
extractURLParameterNames(URL)

Returns an array of name strings corresponding to the names of URL parameters. The values are not decoded in any way.
URLHierarchy(URL)

Returns an array containing the URL, truncated at the end by the symbols /,? in the path and query-string. Consecutive
separator characters are counted as one. The cut is made in the position after all the consecutive separator characters.
Example:

URLPathHierarchy(URL)

The same as above, but without the protocol and host in the result. The / element (root) is not included. Example: the
function is used to implement tree reports the URL in Yandex. Metric.

URLPathHierarchy('https://example.com/browse/CONV-6788"') =
[

' /browse/ "',
' /browse/CONV-6788"'

decodeURLComponent(URL)

Returns the decoded URL. Example:

SELECT decodeURLComponent('http://127.0.0.1:8123/?query=SELECT%201%3B"') AS DecodedURL;

r—DecodedURL: 1
| http://127.0.0.1:8123/2query=SELECT 1; |

Functions that remove part of a URL.
If the URL doesn't have anything similar, the URL remains unchanged.

cutWww

Removes no more than one 'www.' from the beginning of the URL's domain, if present.

cutQueryString

Removes query string. The question mark is also removed.

cutFragment

Removes the fragment identifier. The number sign is also removed.

cutQueryStringAndFragment

Removes the query string and fragment identifier. The question mark and number sign are also removed.
cutURLParameter(URL, name)

Removes the 'name' URL parameter, if present. This function works under the assumption that the parameter name is
encoded in the URL exactly the same way as in the passed argument.

Functions for working with IP addresses

IPv4NumToString(num)

Takes a UInt32 number. Interprets it as an IPv4 address in big endian. Returns a string containing the corresponding IPv4
address in the format A.B.C.d (dot-separated numbers in decimal form).

IPv4StringToNum(s)

The reverse function of IPvANumToString. If the IPv4 address has an invalid format, it returns 0.

IPv4NumToStringClassC(num)
Similar to IPvdNumToString, but using xxx instead of the last octet.

Example:

SELECT
IPv4NumToStringClassC(ClientIP) AS k,
count() AS c

FROM test.hits

GROUP BY k

ORDER BY ¢ DESC

LIMIT 10

—k c—/
83.149.9.xxx 26238
217.118.81.xxx 26074
213.87.129.xxx 25481
83.149.8.xxx 24984

22354
213.87.131.xxx 21285
78.25.121.xxx 20887
188.162.65.xxx 19694
83.149.48.xxx 17406

T
| |
| |
| |
| |
| 217.118.83.xxx | 22797
| 78.25.120.xxx |
| |
| |
| |
| |
L 1

Since using 'xxx" is highly unusual, this may be changed in the future. We recommend that you don't rely on the exact
format of this fragment.

IPv6NumToString(x)

Accepts a FixedString(16) value containing the IPv6 address in binary format. Returns a string containing this address in
text format. IPv6-mapped IPv4 addresses are output in the format ::ffff:111.222.33.44. Examples:

SELECT IPv6NumToString(toFixedString(unhex('2A0206B8000000000000000000000011"), 16)) AS addr

r—addr———

| 2a02:6b8::11
-

SELECT
IPv6NumToString(ClientIP6 AS k),
count() AS c
FROM hits_all
WHERE EventDate = today() AND substring(ClientIP6, 1, 12) != unhex('00000000000000000000FFFF")
GROUP BY k
ORDER BY c DESC
LIMIT 10

r—IPv6NumToString(ClientIP6) c—/
2a02:2168:aaa:bbbb::2 24695
2a02:2698:abcd:abcd:abcd:abcd:8888:5555 22408
2a02:6b8:0:fff::ff 16389
2a01:4£f8:111:6666::2 16016

14774
2a02:8109:eee:ee:ececee:ecee:eecee:eeece 14443
2a02:810b:8888:888:8888:8888:8888:8888 14345
2a02:6b8:0:444:4444:4444:4444:4444 14279
2a01:7e00: :ffff:ffff:fEFfF:FEFF 13880

T
[|
| I
[|
| |
| 2202:2168:888:222::1 | 15896
| 2a01:7e00::ffff:fEFF:FFFF2222 |
[|
[|
[|
[|
L 1

SELECT
IPv6NumToString(ClientIP6 AS k),
count() AS c

FROM hits all

WHERE EventDate = today()

GROUP BY k

ORDER BY c DESC

LIMIT 10

r—IPv6NumToString(ClientIP6)—T——c—

::ffff:94.26.111.111 747440
::ff£f£:37.143.222.4 529483
::ffff:5.166.111.99 317707
::ffff:46.38.11.77 263086
::ff£f£:79.105.111.111 186611

::ffff:84.53.111.33 158709
::ff££:217.118.11.22 154004
::ff£f£:217.118.11.33 148449
::fff£f:217.118.11.44 148243

| | |
| | |
| | |
| | |
| | |
| ::ffff:93.92.111.88 | 176773 |
| | |
| | |
| | |
| | |
L 1]

IPv6StringToNum(s)

The reverse function of IPv6NumToString. If the IPv6 address has an invalid format, it returns a string of null bytes. HEX
can be uppercase or lowercase.

Functions for working with JSON

In Yandex.Metrica, JSON is transmitted by users as session parameters. There are some special functions for working with
this JSON. (Although in most of the cases, the JSONs are additionally pre-processed, and the resulting values are putin

separate columns in their processed format.) All these functions are based on strong assumptions about what the JSON
can be, but they try to do as little as possible to get the job done.

The following assumptions are made:

1. The field name (function argument) must be a constant.

2. The field name is somehow canonically encoded in JSON. For example: visitParamHas (' {"abc":"def"}', 'abc') =
1,but visitParamHas (' {"\\u0061\\u0062\\u0063":"def"}"', 'abc') = 0

3. Fields are searched for on any nesting level, indiscriminately. If there are multiple matching fields, the first occurrence
is used.

4. The JSON doesn't have space characters outside of string literals.

visitParamHas(params, name)

Checks whether thereis a field with the 'name' name.

visitParamExtractUInt(params, name)

Parses Ulnt64 from the value of the field named 'name’. If this is a string field, it tries to parse a number from the beginning
of the string. If the field doesn't exist, or it exists but doesn't contain a number, it returns 0.
visitParamExtractint(params, name)

The same as for Inté64.

visitParamExtractFloat(params, name)

The same as for Floaté4.

visitParamExtractBool(params, name)

Parses a true/false value. The result is UInt8.

visitParamExtractRaw(params, name)

Returns the value of a field, including separators.

Examples:
visitParamExtractRaw('{"abc":"\\n\\u0000"}"', 'abc') = '"\\n\\u0000"'
visitParamExtractRaw('{"abc":{"def":[1,2,3]}}', 'abc') = '{"def":[1,2,3]}"'

visitParamExtractString(params, name)
Parses the string in double quotes. The value is unescaped. If unescaping failed, it returns an empty string.

Examples:

visitParamExtractString('{"abc":"\\n\\u0000"}', 'abc') =
visitParamExtractString('{"abc":"\\u263a"}"', 'abc') = '@’
visitParamExtractString('{"abc":"\\u263"}', 'abc') = ''

"\n\0"'

visitParamExtractString('{"abc":"hello}', 'abc')

There is currently no support for code points in the format \uxxxx\uvvyy thatare not from the basic multilingual plane

(they are converted to CESU-8 instead of UTF-8).

Higher-order functions

-> operator, lambda(params, expr) function

Allows describing a lambda function for passing to a higher-order function. The left side of the arrow has a formal
parameter, which is any ID, or multiple formal parameters — any IDs in a tuple. The right side of the arrow has an expression
that can use these formal parameters, as well as any table columns.

Examples: x -> 2 * x, str -> str != Referer.
Higher-order functions can only accept lambda functions as their functional argument.

A lambda function that accepts multiple arguments can be passed to a higher-order function. In this case, the higher-
order function is passed several arrays of identical length that these arguments will correspond to.

For all functions other than 'arrayMap' and 'arrayFilter’, the first argument (the lambda function) can be omitted. In this
case, identical mapping is assumed.

arrayMap(func, arr1,...)

Returns an array obtained from the original application of the 'func’ function to each element in the 'arr' array.
arrayFilter(func, arr1, ...)

Returns an array containing only the elements in 'arr1' for which 'func' returns something other than 0.

Examples:

SELECT arrayFilter(x -> x LIKE '%World%', ['Hello', 'abc World']) AS res

—res—————————
| ['abc World'] |

L 1

SELECT
arrayFilter (
(i, x) -> x LIKE '%World%',
arrayEnumerate(arr),
['Hello', 'abc World'] AS arr)
AS res

—res—
I 121 |
arrayCount([func,] arr1,...)

Returns the number of elements in the arr array for which func returns something other than 0. If 'func' is not specified, it
returns the number of non-zero elements in the array.

arrayExists([func,] arr1,...)
Returns 1 if thereis at least one element in "arr' for which 'func' returns something other than 0. Otherwise, it returns 0.
arrayAll([func,] arr1,...)

Returns 1 if 'func' returns something other than 0 for all the elements in 'arr'. Otherwise, it returns 0.

arraySum([func,] arr1,...)

Returns the sum of the 'func' values. If the function is omitted, it just returns the sum of the array elements.
arrayFirst(func, arr1,...)

Returns the first element in the 'arr1' array for which 'func' returns something other than 0.
arrayFirstindex(func, arr1, ...)

Returns the index of the first element in the 'arr1' array for which 'func' returns something other than 0.
arrayCumSum([func,] arr1,...)

Returns an array of partial sums of elements in the source array (a running sum). If the func function is specified, then the
values of the array elements are converted by this function before summing.

Example:

SELECT arrayCumSum([1l, 1, 1, 1]) AS res

res——————1
I 11, 2, 3, 41 |
arraySort([func,] arr1,...)

Returns an array as result of sorting the elements of arr1 inascending order. If the func function is specified, sorting
order is determined by the result of the function func applied to the elements of array (arrays)

The Schwartzian transform [https://en.wikipedia.org/wiki/Schwartzian_transform] is used to impove sorting efficiency.

Example:

SELECT arraySort((x, y) -> y, ['hello', 'world']l, [2, 1]);

—res 1
| ['world', 'hello'] |

arrayReverseSort([func,] arr1,...)

Returns an array as result of sorting the elements of arr1 indescending order. If the func function is specified, sorting
order is determined by the result of the function func applied to the elements of array (arrays)

(]

Functions for working with external dictionaries

For information on connecting and configuring external dictionaries, see "External dictionaries [#dicts-external_dicts]".

dictGetUInt8, dictGetUINnt16, dictGetUInt32, dictGetUInt64
dictGetInt8, dictGetInt16, dictGetInt32, dictGetIint64

dictGetFloat32, dictGetFloat64

https://en.wikipedia.org/wiki/Schwartzian_transform

dictGetDate, dictGetDateTime
dictGetUUID

dictGetString
dictGetT ('dict name', 'attr name', id)

o Get the value of the attr_name attribute from the dict_name dictionary using the 'id' key. dict name and attr name
are constant strings. id must be UInté4. If thereis no id key in the dictionary, it returns the default value specified in
the dictionary description.

dictGetTOrDefault

dictGetT ('dict name', 'attr name', id, default)

The same as the dictGetT functions, but the default value is taken from the function's last argument.

dictlsIn
dictIsIn ('dict name', child id, ancestor_ id)

e Forthe'dict_name' hierarchical dictionary, finds out whether the 'child_id' key is located inside 'ancestor_id' (or
matches 'ancestor_id'). Returns UInt8.

dictGetHierarchy
dictGetHierarchy ('dict name', id)

o For the 'dict_name' hierarchical dictionary, returns an array of dictionary keys starting from 'id' and continuing along
the chain of parent elements. Returns Array(UInt64).

dictHas
dictHas ('dict name', id)

o Check whether the dictionary has the key. Returns a UInt8 value equal to 0 if there is no key and 1 if there is a key.

Functions for working with Yandex.Metrica dictionaries

In order for the functions below to work, the server config must specify the paths and addresses for getting all the
Yandex.Metrica dictionaries. The dictionaries are loaded at the first call of any of these functions. If the reference lists can't
be loaded, an exception is thrown.

For information about creating reference lists, see the section "Dictionaries"”.

Multiple geobases

ClickHouse supports working with multiple alternative geobases (regional hierarchies) simultaneously, in order to support
various perspectives on which countries certain regions belong to.

The 'clickhouse-server' config specifies the file with the regional

fﬂerarchy::<path7toiregionsihierarchyifile>/opt/geo/regionsihierarchy.txt</pathitoiregionsihierarchyifile>

Besides this file, it also searches for files nearby that have the _symbol and any suffix appended to the name (before the
file extension). For example, it will also find the file /opt/geo/regions hierarchy ua.txt,if present.

ua is called the dictionary key. For a dictionary without a suffix, the key is an empty string.

All the dictionaries are re-loaded in runtime (once every certain number of seconds, as defined in the
builtin_dictionaries_reload_interval config parameter, or once an hour by default). However, the list of available dictionaries
is defined one time, when the server starts.

All functions for working with regions have an optional argument at the end - the dictionary key. It is referred to as the
geobase. Example:

regionToCountry(RegionID) — Uses the default dictionary: /opt/geo/regions_hierarchy.txt
regionToCountry(RegionID, '') — Uses the default dictionary: /opt/geo/regions_hierarchy.txt

regionToCountry(RegionID, 'ua') — Uses the dictionary for the 'ua' key: /opt/geo/regions_hierarchy ua.txt

regionToCity(id[, geobase])

Accepts a UInt32 number - the region ID from the Yandex geobase. If this region is a city or part of a city, it returns the
region ID for the appropriate city. Otherwise, returns 0.

regionToArea(id[, geobase])

Converts aregion to an area (type 5 in the geobase). In every other way, this function is the same as 'regionToCity".

SELECT DISTINCT regionToName (regionToArea (toUInt32(number), 'ua'))
FROM system.numbers
LIMIT 15

r—regionToName (regionToArea(toUInt32 (number), \'ua\'))—

| |
| Moscow and Moscow region |
| St. Petersburg and Leningrad region |
| Belgorod region |
| Ivanovsk region |
| Kaluga region |
| Kostroma region |
| Rursk region |
| Lipetsk region |
| orlov region |
| Ryazan region |
| smolensk region |
| Tambov region |
| Tver region |
| Tula region |
L]

regionToDistrict(id[, geobase])

Converts a region to a federal district (type 4 in the geobase). In every other way, this function is the same as
'regionToCity".

SELECT DISTINCT regionToName (regionToDistrict(toUInt32(number), 'ua'))
FROM system.numbers
LIMIT 15

r—regionToName (regionToDistrict (toUInt32 (number), \'ua\l'))—

| |
| Central federal district |
| Northwest federal district |
| Ssouth federal district |
| North Caucases federal district |
| Privolga federal district |
| Ural federal district |
| siberian federal district |
| Far East federal district |
| scotland |
| Faroe Islands |
| Flemish region |
| Brussels capital region |
| wallonia |
| Federation of Bosnia and Herzegovina |
L 1

regionToCountry(id[, geobase])

Converts aregion to a country. In every other way, this function is the same as 'regionToCity'. Example:
regionToCountry (toUInt32 (213)) = 225 converts Moscow (213) to Russia (225).

regionToContinent(id[, geobase])

Converts a region to a continent. In every other way, this function is the same as ‘regionToCity'. Example:
regionToContinent (toUInt32(213)) = 10001 converts Moscow (213) to Eurasia (10001).

regionToPopulation(id[, geobase])

Gets the population for a region. The population can be recorded in files with the geobase. See the section "External
dictionaries". If the population is not recorded for the region, it returns 0. In the Yandex geobase, the population might be
recorded for child regions, but not for parent regions.

regionin(lhs, rhs[, geobase])

Checks whether a 'lhs' region belongs to a 'rhs' region. Returns a UInt8 number equal to 1 if it belongs, or 0 if it doesn't
belong. The relationship is reflexive — any region also belongs to itself.

regionHierarchy(id[, geobase])

Accepts a UInt32 number - the region ID from the Yandex geobase. Returns an array of region IDs consisting of the passed
region and all parents along the chain. Example: regionHierarchy (toUInt32(213)) = [213,1,3,225,10001,10000] .

regionToName(id[, lang])

Accepts a UInt32 number - the region ID from the Yandex geobase. A string with the name of the language can be passed
as a second argument. Supported languages are: ru, en, ua, uk, by, kz, tr. If the second argument is omitted, the language
'ru'is used. If the language is not supported, an exception is thrown. Returns a string - the name of the region in the
corresponding language. If the region with the specified ID doesn't exist, an empty string is returned.

ua and uk both mean Ukrainian.

Functions for implementing the IN operator

in, notln, globalln, globalNotIn

See the section "IN operators”.

tuple(x, v, ...), operator (X, y, ...)

A function that allows grouping multiple columns. For columns with the types T1, T2, ..., it returns a Tuple(T1, T2, ...) type
tuple containing these columns. There is no cost to execute the function. Tuples are normally used as intermediate values
for an argument of IN operators, or for creating a list of formal parameters of lambda functions. Tuples can't be written to
atable.

tupleElement(tuple, n), operator x.N

A function that allows getting a column from a tuple. 'N' is the column index, starting from 1. N must be a constant. 'N'
must be a constant. 'N' must be a strict postive integer no greater than the size of the tuple. There is no cost to execute the
function.

(]

arrayJoin function

This is a very unusual function.

Normal functions don't change a set of rows, but just change the values in each row (map). Aggregate functions compress
a set of rows (fold or reduce). The 'arrayloin' function takes each row and generates a set of rows (unfold).

This function takes an array as an argument, and propagates the source row to multiple rows for the number of elements
in the array. All the values in columns are simply copied, except the values in the column where this function is applied; it is
replaced with the corresponding array value.

A query can use multiple arrayJoin functions. In this case, the transformation is performed multiple times.
Note the ARRAY JOIN syntaxin the SELECT query, which provides broader possibilities.

Example:

SELECT arrayJdoin([l, 2, 3] AS src) AS dst, 'Hello', src

—dst—\ 'Hello\'—T—src—

| 1 | Hello | 11,2,31 |
| 2 | Hello | 11,2,31 |
| 3 | Hello | 11,2,31 |
L 1 1]

Functions for working with geographical coordinates

greatCircleDistance

Calculate the distance between two points on the Earth's surface using the great-circle formula
[https://en.wikipedia.org/wiki/Great-circle_distance].

greatCircleDistance(lonlDeg, latlDeg, lon2Deg, lat2Deg)

Input parameters

e lonlDeg — Longitude of the first pointin degrees. Range: [-180°, 180°].
e latlDeg — Latitude of the first pointin degrees. Range: [-90°, 90°] .
e lon2Deg — Longitude of the second pointin degrees. Range: [-180°, 180°] .

e lat2Deg — Latitude of the second pointin degrees. Range: [-90°, 90°] .

Positive values correspond to North latitude and East longitude, and negative values correspond to South latitude and

https://en.wikipedia.org/wiki/Great-circle_distance

West longitude.

Returned value

The distance between two points on the Earth's surface, in meters.

Generates an exception when the input parameter values fall outside of the range.

Example

SELECT greatCircleDistance(55.755831, 37.617673, -55.755831, -37.617673)

r—greatCircleDistance(55.755831, 37.617673, -55.755831, -37.617673)—
| 14132374.194975413 |

pointinEllipses

Checks whether the point belongs to at least one of the ellipses.
pointInEllipses(x, y, Xo, yo, ao, bo,...,x[2], v[@, alz, b))

Input parameters

e x, y — Coordinates of a point on the plane.
e x;, yi — Coordinates of the center of the i -th ellipsis.

e a:, b: —Axesofthe i-thellipsisin meters.
The input parameters must be 2+4-n , where n is the number of ellipses.
Returned values
1 if the pointis inside at least one of the ellipses; o if it is not.

Example

SELECT pointInEllipses(55.755831, 37.617673, 55.755831, 37.617673, 1.0, 2.0)

—pointInEllipses(55.755831, 37.617673, 55.755831, 37.617673, 1., 2.)
| 1

—_
|
L 1

pointinPolygon

Checks whether the point belongs to the polygon on the plane.

pointInPolygon((x, y), [(a, b), (¢, d) ...1, ...)

Input values

e (x, y) — Coordinates of a point on the plane. Data type — Tuple [#data_type-tuple] — A tuple of two numbers.

e [(a, b), (c, d) ...] —Polygon vertices. Datatype — Array [#data_type-array]. Each vertex is represented by a
pair of coordinates (a, b) .Vertices should be specified in a clockwise or counterclockwise order. The minimum
number of vertices is 3. The polygon must be constant.

o The function also supports polygons with holes (cut out sections). In this case, add polygons that define the cut out
sections using additional arguments of the function. The function does not support non-simply-connected polygons.

Returned values

1 if the pointis inside the polygon, o if itis not. If the point is on the polygon boundary, the function may return either 0 or
1.

Example

SELECT pointInPolygon((3., 3.), [(6, 0), (8, 4), (5, 8), (0, 2)]) AS res

—res—
| 1]

Functions for working with Nullable aggregates
isNull
Checks whether the argument is NULL [#null-literal].

isNull(x)

Parameters
¢ x — Avalue with a non-compound data type.
Returned value

e 1 if xis NULL.

e 0 if x isnot NULL .
Example

Input table

Xy
| 1 | NULL |

[2 | 3 |
IS S

Query

:) SELECT x FROM t_null WHERE isNull(y)

SELECT x
FROM t_null
WHERE isNull(y)

X
11
[

1 rows in set. Elapsed: 0.010 sec.

isNotNull
Checks whether the argument is NULL [#null-literal].

isNotNull(x)

Parameters:
¢ x — Avalue with a non-compound data type.
Returned value

e 0 if x is NULL.

e 1 if x isnot NULL .
Example

Input table

Xy
| 1 | NULL |

[2 | 3 |
| IS I

Query

:) SELECT x FROM t null WHERE isNotNull(y)

SELECT x
FROM t_null
WHERE isNotNull(y)

X

I 21
[

1 rows in set. Elapsed: 0.010 sec.

coalesce

Checks from left to right whether NuLL arguments were passed and returns the first non- NULL argument.

coalesce(x,...)

Parameters:
¢ Any number of parameters of a non-compound type. All parameters must be compatible by data type.
Returned values

e The first non- NULL argument.

e NULL,if allarguments are NULL .

Example

Consider a list of contacts that may specify multiple ways to contact a customer.

r—name———T—mail—rT—phone————icg—
| client 1 | NULL | 123-45-67 | 123 |
| client 2 | NULL | NULL | NULL |

The mail and phone fields are of type String, but the icq fieldis uint32, soit needs to be converted to string.

Get the first available contact method for the customer from the contact list:

:) SELECT coalesce(mail, phone, CAST(icq, 'Nullable(String)')) FROM aBook

SELECT coalesce(mail, phone, CAST(icq, 'Nullable(String)'))
FROM aBook

r—name———T—coalesce(mail, phone, CAST(icq, 'Nullable(String)'))—
| client 1 | 123-45-67 |
| client 2 | NULL |

2 rows in set. Elapsed: 0.006 sec.

ifNull
Returns an alternative value if the main argumentis NULL .

ifNull(x,alt)

Parameters:

¢ x — Thevalueto check for nuLL .
e alt — Thevalue that the functionreturnsif x is NULL .

Returned values

e Thevalue x,if x isnot NULL .

e Thevalue alt,if x is NULL .

Example

SELECT ifNull('a', 'b')

r—ifNull('a', 'b')—
| a |
L]

SELECT ifNull(NULL, 'b")

—ifNull (NULL, 'b')—
| b I

nulllf
Returns nuLL if the arguments are equal.

nullIf(x, y)

Parameters:
x, y — Values for comparison. They must be compatible types, or ClickHouse will generate an exception.
Returned values

e NULL, if the arguments are equal.

¢ The x value, if the arguments are not equal.

Example

SELECT nullIf(1l, 1)

r—nullIf(l, 1)—
| NULL |
1

SELECT nullIf(1l, 2)

—nullIf(l, 2)—

| 1
N —

assumeNotNull

Results in a value of typeNullable [#data_type-nullable] for a non- Nullable, if the valueis not NULL .

assumeNotNull (x)

Parameters:
¢ x — Theoriginal value.
Returned values

o Theoriginal value from the non-nuliable type,ifitisnot nuLL .

o The default value for the non-nullable typeif the original value was NULL .
Example

Consider the t null table.

SHOW CREATE TABLE t_null

r—statement 1
| CREATE TABLE default.t null (x Int8, y Nullable(Int8)) ENGINE = TinyLog |

| IS — T |
| 1 | NULL |

| 2 | 3 |
| I I

Apply the resumenotnull functiontothe y column.

SELECT assumeNotNull(y) FROM t_null

r—assumeNotNull(y)—
| 0 |
| 3|

SELECT toTypeName (assumeNotNull(y)) FROM t_null

r—toTypeName (assumeNotNull(y))—
| Ints |
| Int8 |

toNullable

Converts the argument type to Nullable .

toNullable(x)

Parameters:

e x — The value of any non-compound type.
Returned value

e Theinputvaluewithanon-nNullable type.
Example

SELECT toTypeName(10)

r—toTypeName (10)—
| UInts |

SELECT toTypeName(toNullable(10))

r—toTypeName (toNullable(10))—

| Nullable(UInt8) |
L]

Other functions
hostName()

Returns a string with the name of the host that this function was performed on. For distributed processing, this is the
name of the remote server host, if the function is performed on a remote server.

visibleWidth(x)

Calculates the approximate width when outputting values to the console in text format (tab-separated). This function is
used by the system for implementing Pretty formats.

NULL is represented as a string corresponding to NULL in pretty formats.

SELECT visibleWidth(NULL)

—visibleWidth (NULL)
| 4

—
|
L I

toTypeName(x)
Returns a string containing the type name of the passed argument.

If NULL is passed to the function as input, then it returns the Nullable (Nothing) type, which corresponds to aninternal
NULL representation in ClickHouse.

blockSize()

Gets the size of the block. In ClickHouse, queries are always run on blocks (sets of column parts). This function allows
getting the size of the block that you called it for.

materialize(x)

Turns a constant into a full column containing just one value. In ClickHouse, full columns and constants are represented
differently in memory. Functions work differently for constant arguments and normal arguments (different code is
executed), although the result is almost always the same. This function is for debugging this behavior.

ignore(...)

Accepts any arguments, including nuLL . Always returns 0. However, the argument is still evaluated. This can be used for
benchmarks.

sleep(seconds)

Sleeps 'seconds' seconds on each data block. You can specify an integer or a floating-point number.

currentDatabase()

Returns the name of the current database. You can use this function in table engine parameters in a CREATE TABLE query
where you need to specify the database.

isFinite(x)

Accepts Float32 and Float64 and returns UInt8 equal to 1 if the argument is not infinite and not a NaN, otherwise 0.

isInfinite(x)

Accepts Float32 and Float64 and returns UInt8 equal to 1 if the argument is infinite, otherwise 0. Note that O is returned for
a NaN.

isNaN(x)

Accepts Float32 and Float64 and returns UInt8 equal to 1 if the argument is a NaN, otherwise 0.

hasColumninTable(['hostname'[, 'username’[, 'password’]],] 'database’, 'table’, 'column’)

Accepts constant strings: database name, table name, and column name. Returns a UInt8 constant expression equal to 1 if
thereis a column, otherwise 0. If the hostname parameter is set, the test will run on a remote server. The function throws
an exception if the table does not exist. For elements in a nested data structure, the function checks for the existence of a
column. For the nested data structure itself, the function returns 0.

bar

Allows building a unicode-art diagram.

bar (¢, min, max, width) draws aband with a width proportionalto (x - min) andequalto width characters when x

= max.
Parameters:

e x —Sizetodisplay.
e min, max — Integer constants. The value must fitin 1nté64 .

o width — Constant, positive integer, can be fractional.

The band is drawn with accuracy to one eighth of a symbol.

Example:

SELECT
toHour (EventTime) AS h,
count() AS c,
bar(c, 0, 600000, 20) AS bar
FROM test.hits
GROUP BY h
ORDER BY h ASC

r—h—T————c—Tbar |
[0 | 292907 | NNEEEEEEEY |
| 1 | 180563 | HENEEN | |
| 2 | 114861 | mmmll |
| 31 85069 | HEll |
| 4| 68543 | mm| |
| 5| 78lle | HH| |
| 6 | 113474 | mmmll |
| 7 1 170678 | nEEEEl |
[8 | 278380 | NEEEEEEEN| |
[9 | 391053 | HEEEEEEEEEEEN |
| 10 | 457681 | HNEEEEEEEEEEEER| |
| 11 | 493667 | HNEEEEEEEEEEEEER] |
| 12 | 509641 | INEEEEEEEEEEEEERE |
| 13 | 522947 | INEEEEEEEEEEEEEEE] |
| 14 | 539954 | INEEEEEEEEEEEEEERE |
| 15 | 528460 | HNNEEEEEENNEEEEEN] |
| 16 | 539201 | INEEEEEEEEEEEEEERE |
| 17 | 523539 | INNEEEEEEEEEEEEEE] |
| 18 | 506467 | INNEEEEEEEEEEEERE |
| 19 | 520915 | INEEEEEEEEEEEEEEN |
| 20 | 521665 | INEEEEEEEEEEEEEEE] |
| 21 | 542078 | HNEEEEEEEEENEEEEEE |
| 22 | 493642 | INNEEEENEEEEEEEN] |
| 23 | 400397 | HEEEEEEEEEEEE] |
L 1 1]
i
transform

Transforms a value according to the explicitly defined mapping of some elements to other ones. There are two variations
of this function:

1. transform(x, array from, array to, default)
x —What to transform.
array from —Constantarray of values for converting.
array to —Constantarray of values to convert the values in 'from' to.
default —Whichvaluetouseif 'x'is not equal to any of the values in 'from'.
array from and array to - Arrays of the same size.
Types:
transform(T, Array(T), Array(U), U) -> U

T and U can be numeric, string, or Date or DateTime types. Where the same letter is indicated (T or U), for numeric types
these might not be matching types, but types that have a common type. For example, the first argument can have the
Int64 type, while the second has the Array(Uint16) type.

If the 'x' value is equal to one of the elements in the 'array_from' array, it returns the existing element (that is numbered the
same) from the 'array_to' array. Otherwise, it returns 'default’. If there are multiple matching elements in 'array_from’, it
returns one of the matches.

Example:

SELECT
transform(SearchEngineID, [2, 3], ['Yandex', 'Google'], 'Other') AS title,
count() AS c

FROM test.hits

WHERE SearchEngineID != 0

GROUP BY title

ORDER BY ¢ DESC

—title——1——c—

| Yandex | 498635 |
| Google | 229872 |
| other | 104472 |
L 1 1

1. transform(x, array from, array to)

Differs from the first variation in that the 'default’ argument is omitted. If the 'x' value is equal to one of the elements in the
'array_from' array, it returns the matching element (that is numbered the same) from the 'array_to' array. Otherwise, it
returns 'x'.

Types:
transform(T, Array(T), Array(T)) -> T
Example:
SELECT
transform(domain(Referer), ['yandex.ru', 'google.ru', 'vk.com'], ['www.yandex',6 'example.com']) AS s,

count() AS c
FROM test.hits
GROUP BY domain(Referer)
ORDER BY count() DESC
LIMIT 10

—s T c—
| | 2906259 |
| www.yandex | 867767 |
| M . ru | 313599 |
| mail.yandex.ru | 107147 |
| . ru | 100355 |
| NN . ru | 65040 |
| news.yandex.ru | 64515 |
| MEEEEN.net | 59141 |
| example.com | 57316 |
L 1]

formatReadableSize(x)
Accepts the size (number of bytes). Returns a rounded size with a suffix (KiB, MiB, etc.) as a string.

Example:

SELECT
arrayJoin([1l, 1024, 1024*1024, 192851925]) AS filesize_ bytes,
formatReadableSize(filesize bytes) AS filesize

r—filesize bytes—t—filesize——
| 11 1.00 B I
| 1024 | 1.00 KiB |
[1048576 | 1.00 MiB |
| 192851925 | 183.92 MiB |
L

1]

least(a, b)

Returns the smallest value fromaand b.

greatest(a, b)

Returns the largest value of aand b.

uptime()

Returns the server's uptime in seconds.

version()

Returns the version of the server as a string.

rowNumberInAllBlocks()

Returns the ordinal number of the row in the data block. This function only considers the affected data blocks.

runningDifference(x)

Calculates the difference between successive row values in the data block. Returns 0 for the first row and the difference
from the previous row for each subsequent row.

The result of the function depends on the affected data blocks and the order of data in the block. If you make a subquery
with ORDER BY and call the function from outside the subquery, you can get the expected result.

Example:

SELECT
EventID,
EventTime,
runningDifference (EventTime) AS delta
FROM
(
SELECT
EventID,
EventTime
FROM events
WHERE EventDate = '2016-11-24"
ORDER BY EventTime ASC
LIMIT 5

—EventID—T—EventTime—T—delta—
| 1106 | 2016-11-24 00:00:04 | 0
| 1107 | 2016-11-24 00:00:05 |
| 1108 | 2016-11-24 00:00:05 |
| 1109 | 2016-11-24 00:00:09 |
| | |
L 1 1

= s O -

I
|
I
I
1110 | 2016-11-24 00:00:10 I
1

MACNumToString(num)

Accepts a UInté4 number. Interprets it as a MAC address in big endian. Returns a string containing the corresponding MAC
address in the format AA:BB:CC:DD:EE:FF (colon-separated numbers in hexadecimal form).

MACStringToNum(s)

The inverse function of MACNumToString. If the MAC address has an invalid format, it returns 0.

MACStringToOUI(s)

Accepts a MAC address in the format AA:BB:CC:DD:EE:FF (colon-separated numbers in hexadecimal form). Returns the
first three octets as a UInt64 number. If the MAC address has an invalid format, it returns 0.

getSizeOfEnumType

Returns the number of fields inEnum [#data_type-enum].

getSizeOfEnumType (value)

Parameters:
e value — Value of type Enum .
Returned values

e The number of fields with Enum input values.

e Anexceptionis thrown if the typeis not Enum .
Example

SELECT getSizeOfEnumType(CAST('a' AS Enum8('a' =1, 'b' =2))) AS x

—x—
[2|
(I

toColumnTypeName

Returns the name of the class that represents the data type of the column in RAM.

toColumnTypeName (value)

Parameters:
e value — Any type of value.
Returned values
o A string with the name of the class that is used for representing the value datatypein RAM.

Example of the difference between toTypeName ' and ' toColumnTypeName

:) select toTypeName(cast('2018-01-01 01:02:03' AS DateTime))

SELECT toTypeName(CAST('2018-01-01 01:02:03', 'DateTime'))

r—toTypeName (CAST('2018-01-01 01:02:03', 'DateTime'))—

| DateTime |
L]

1 rows in set. Elapsed: 0.008 sec.
:) select toColumnTypeName(cast('2018-01-01 01:02:03' AS DateTime))
SELECT toColumnTypeName (CAST('2018-01-01 01:02:03', 'DateTime'))

r—toColumnTypeName (CAST('2018-01-01 01:02:03', 'DateTime'))—
| Const(UInt32) |

The example shows that the pateTime datatypeis storedin memoryas Const (UTnt32) .

dumpColumnStructure

Outputs a detailed description of data structures in RAM

dumpColumnStructure(value)

Parameters:

e value — Any type of value.
Returned values

o Astring describing the structure that is used for representing the value datatypein RAM.
Example

SELECT dumpColumnStructure(CAST('2018-01-01 01:02:03', 'DateTime'))

r—dumpColumnStructure (CAST('2018-01-01 01:02:03', 'DateTime'))—

| DateTime, Const(size = 1, UInt32(size = 1)) |
L]

defaultValueOfArgumentType
Outputs the default value for the data type.

Does not include default values for custom columns set by the user.

defaultValueOfArgumentType (expression)

Parameters:
e expression — Arbitrary type of value or an expression that results in a value of an arbitrary type.
Returned values

e 0 for numbers.
o Empty string for strings.

e nurt forNullable [#data_type-nullable].

Example

:) SELECT defaultValueOfArgumentType(CAST(1 AS Int8))

SELECT defaultValueOfArgumentType(CAST(1l, 'Int8'))

r—defaultvValueOfArgumentType (CAST(1l, 'Int8'))—
| 0 |

1 rows in set. Elapsed: 0.002 sec.

:) SELECT defaultValueOfArgumentType(CAST(1 AS Nullable(Int8)))

SELECT defaultValueOfArgumentType(CAST(1l, 'Nullable(Int8)'))

r—defaultValueOfArgumentType(CAST(1l, 'Nullable(Int8)'))—
| NULL |

1 rows in set. Elapsed: 0.002 sec.

indexHint
Outputs data in the range selected by the index without filtering by the expression specified as an argument.

The expression passed to the function is not calculated, but ClickHouse applies the index to this expression in the same
way as if the expression was in the query without indexHint .

Returned value

Example

Here is a table with the test data for ontime [#example_datasets-ontime].

SELECT count() FROM ontime

r—count ()—

| 4276457 |
S —

The table has indexes for the fields (FlightDate, (Year, FlightDate)) .

Create a selection by date like this:

:) SELECT FlightDate AS k, count() FROM ontime GROUP BY k ORDER BY k

SELECT
FlightDate AS k,
count ()

FROM ontime

GROUP BY k

ORDER BY k ASC

———————k—T—count()—

| 2017-01-01 | 13970 |
| 2017-01-02 | 15882 |
| 2017-09-28 | 16411 |
| 2017-09-29 | 16384 |
| 2017-09-30 | 12520 |
L 1 1

273 rows in set. Elapsed: 0.072 sec. Processed 4.28 million rows, 8.55 MB (59.00 million rows/s., 118.01
MB/s.)

In this selection, the index is not used and ClickHouse processed the entire table (Processed 4.28 million rows). TO
apply the index, select a specific date and run the following query:

:) SELECT FlightDate AS k, count() FROM ontime WHERE k =

SELECT
FlightDate AS k,

count ()

FROM ontime

WHERE k =

GROUP BY k

ORDER BY k ASC

——————k—T—count()—

| 2017-09-15

'2017-09-15"

16428

1 rows in set. Elapsed:

0.014 sec.

Processed 32.74 thousand rows,

'2017-09-15"'" GROUP BY k ORDER BY k

65.49 KB (2.31 million rows/s.,

4.63 MB/s.)

The last line of output shows that by using the index, ClickHouse processed a significantly smaller number of rows

(Processed 32.74 thousand rows)

Now pass the expression k = '2017-09-15' tothe indexHint function:

:) SELECT FlightDate AS k, count() FROM ontime WHERE indexHint(k =

SELECT
FlightDate AS k,

count ()

FROM ontime

WHERE indexHint (k

GROUP BY k

ORDER BY k ASC

= '2017-09-15")

————————k—T—count ()—

2017-09-14
2017-09-15
2017-09-16
2017-09-30

7071
16428
1077
8167

rows in set. Elapsed:

0.004 sec.

Processed 32.74 thousand rows,

'2017-09-15") GROUP BY k ORDER BY k

65.49 KB (8.97 million rows/s.,

17.94 MB/s.)

The response to the request shows that ClickHouse applied the index in the same way as the previous time (Processed
32.74 thousand rows). However, the resulting set of rows shows that the expression k = '2017-09-15' was not used

when generating the result.

Because the index is sparse in ClickHouse, "extra" data ends up in the response when reading a range (in this case, the
adjacent dates). Use the indextint function to seeit.

replicate

Creates an array with a single value.

Used for internal implementation of arrayJoin [#functions_arrayjoin].

replicate(x, arr)

Parameters:

°

arr — Original array. ClickHouse creates a new array of the same length as the original and fills it with the value x .

x — The value that the resulting array will be filled with.

Output value

o Anarray filled with the value x .
Example

SELECT replicate(l, ['a', 'b', 'c'])

r—replicate(l, ['a', 'b', 'c¢'])—
l 11,1,1] |

L 1

(

Aggregate functions

Aggregate functions work in the normal [http://www.sql-tutorial.com/sgl-aggregate-functions-sql-tutorial]way as
expected by database experts.

ClickHouse also supports:

e Parametric aggregate functions [#aggregate_functions_parametric], which accept other parameters in addition to
columns.

e« Combinators [#aggregate_functions_combinators], which change the behavior of aggregate functions.

NULL processing
During aggregation, all nuLL s are skipped.
Examples:

Consider this table:

- S E— A |
[11 2 |
|2|NULL|
[31 2 |
| 31 3 |
|3|NULL|
| IS

Let's say you need to total the values in the y column:

:) SELECT sum(y) FROM t_null big

SELECT sum(y)
FROM t_null big

—sum(y)—

| 7 |
[|

1 rows in set. Elapsed: 0.002 sec.

The sum functioninterprets nULL as 0.In particular, this means that if the function receives input of a selection where all
the values are nuLL , then the result will be 0, not nuLL .

Now you can use the grouparray function to create an array from the y column:

http://www.sql-tutorial.com/sql-aggregate-functions-sql-tutorial

:) SELECT groupArray(y) FROM t_null big

SELECT groupArray(y)
FROM t_null big

r—groupArray(y)—i
| 12,2,3] |

1 rows in set. Elapsed: 0.002 sec.

groupArray does notinclude nuLL intheresulting array.

(]

Function reference

count()

Counts the number of rows. Accepts zero arguments and returns Ulnt64. The syntax COUNT (DISTINCT x) iSnot
supported. The separate uniq aggregate function exists for this purpose.

A SELECT count () FROM table query is not optimized, because the number of entries in the table is not stored
separately. It will select some small column from the table and count the number of values in it.

(]

any(x)

Selects the first encountered value. The query can be executed in any order and even in a different order each time, so the
result of this function is indeterminate. To get a determinate result, you can use the 'min’ or 'max' function instead of 'any’.

In some cases, you can rely on the order of execution. This applies to cases when SELECT comes from a subquery that uses
ORDER BY.

When a seLECT query hasthe croup BY clause or at least one aggregate function, ClickHouse (in contrast to MySQL)
requires that all expressionsinthe seLEcT, HAVING, and orDER BY clauses be calculated from keys or from aggregate
functions. In other words, each column selected from the table must be used either in keys or inside aggregate functions.
To get behavior like in MySQL, you can put the other columns in the any aggregate function.

anyHeavy(x)

Selects a frequently occurring value using the heavy hitters [http://www.cs.umd.edu/~samir/498/karp.pdf] algorithm. If
thereis a value that occurs more than in half the cases in each of the query's execution threads, this value is returned.
Normally, the result is nondeterministic.

anyHeavy (column)

Arguments
e column - Thecolumnname.
Example

Take the OnTime [#example_datasets-ontime] data set and select any frequently occurring value inthe 2irlineId
column.

http://www.cs.umd.edu/~samir/498/karp.pdf

SELECT anyHeavy(AirlineID) AS res
FROM ontime

—res—
| 19690 |

anylast(x)

Selects the last value encountered. The result is just as indeterminate as for the any function.

groupBitAnd

Applies bitwise anp for series of numbers.

groupBitAnd (expr)

Parameters
expr —Anexpressionthatresultsin uint* type.
Return value

Value of the uint* type.

Example

Test data:
binary decimal
00101100 = 44
00011100 = 28
00001101 = 13
01010101 = 85

Query:

SELECT groupBitAnd(num) FROM t
Where num is the column with the test data.
Result:

binary decimal
00000100 = 4

groupBitOr

Applies bitwise or for series of numbers.
groupBitOr (expr)

Parameters

expr —Anexpressionthatresultsin uint* type.

Return value

Value of the uint* type.

Example

Test data:
binary decimal
00101100 = 44
00011100 = 28
00001101 = 13
01010101 = 85

Query:

SELECT groupBitOr(num) FROM t
Where num is the column with the test data.
Result:

binary decimal

01111101 = 125
groupBitXor

Applies bitwise xor for series of numbers.

groupBitXor (expr)

Parameters
expr —Anexpressionthatresultsin uint* type.
Return value

Value of the uInt~* type.

Example

Test data:
binary decimal
00101100 = 44
00011100 = 28
00001101 = 13

01010101 = 85
Query:
SELECT groupBitXor (num) FROM t

Where nunm is the column with the test data.

Result:

binary decimal
01101000 = 104

min(x)

Calculates the minimum.

max(x)

Calculates the maximum.

argMin(arg, val)

Calculates the 'arg' value for a minimal 'val' value. If there are several different values of 'arg' for minimal values of 'val', the
first of these values encountered is output.

Example:

r—user———T—salary—

| director | 5000 |
| manager | 3000 |
| worker | 1000 |

]

L 1

SELECT argMin(user, salary) FROM salary

r—argMin(user, salary)—

| worker |
L 1

argMax(arg, val)

Calculates the 'arg' value for a maximum 'val' value. If there are several different values of 'arg' for maximum values of 'val',
the first of these values encountered is output.

(]

sum(x)

Calculates the sum. Only works for numbers.

sumWithOverflow(x)

Computes the sum of the numbers, using the same data type for the result as for the input parameters. If the sum exceeds
the maximum value for this data type, the function returns an error.

Only works for numbers.

(]

sumMap(key, value)

Totals the 'value' array according to the keys specified in the 'key' array. The number of elements in 'key' and 'value' must
be the same for each row that is totaled. Returns a tuple of two arrays: keys in sorted order, and values summed for the
corresponding keys.

Example:

CREATE TABLE sum_map (
date Date,
timeslot DateTime,
statusMap Nested(
status UIntlé6,
requests UInt64
)
) ENGINE = Log;
INSERT INTO sum map VALUES
('2000-01-01', '2000-01-01 0O:00:00', [1, 2, 3], [l0, 10, 101]),
('2000-01-01', '2000-01-01 0O:00:00', [3, 4, 5], [10, 10, 101]),
('2000-01-01', '2000-01-01 0O:01:00', [4, 5, 6], [10, 10, 101]),
('2000-01-01', '2000-01-01 0O:01:00', [6, 7, 8], [10, 10, 101);
SELECT
timeslot,
sumMap (statusMap.status, statusMap.requests)
FROM sum_map
GROUP BY timeslot

r——timeslot—T—sumMap(statusMap.status, statusMap.requests)—

| 2000-01-01 00:00:00 | ([1,2,3,4,5],[10,10,20,10,107) |

| 2000-01-01 00:01:00 | ([4,5,6,7,8],[10,10,20,10,107) |

L 1]
avg(x)

Calculates the average. Only works for numbers. The result is always Floaté4.

(]

uniq(x)

Calculates the approximate number of different values of the argument. Works for numbers, strings, dates, date-with-
time, and for multiple arguments and tuple arguments.

Uses an adaptive sampling algorithm: for the calculation state, it uses a sample of element hash values with a size up to
65536. This algorithm is also very accurate for data sets with low cardinality (up to 65536) and very efficient on CPU (when
computing not too many of these functions, using uniq is almost as fast as using other aggregate functions).

The result is determinate (it doesn't depend on the order of query processing).

This function provides excellent accuracy even for data sets with extremely high cardinality (over 10 billion elements). It is
recommended for default use.

unigCombined(HLL_precision)(x)

Calculates the approximate number of different values of the argument. Works for numbers, strings, dates, date-with-
time, and for multiple arguments and tuple arguments.

A combination of three algorithms is used: array, hash table and HyperLoglLog
[https://en.wikipedia.org/wiki/HyperLogLog] with an error correction table. For small number of distinct elements, the
array is used. When the set size becomes larger the hash table is used, while it is smaller than HyperLoglLog data structure.
For larger number of elements, the HyperLoglLog is used, and it will occupy fixed amount of memory.

The parameter "HLL_precision" is the base-2 logarithm of the number of cells in HyperLoglLog. You can omit the parameter
(omit first parens). The default value is 17, that is effectively 96 KiB of space (2*17 cells of 6 bits each). The memory
consumption is several times smaller than for the uniqg function, and the accuracy is several times higher. Performance is
slightly lower than for the unig function, but sometimes it can be even higher than it, such as with distributed queries that
transmit a large number of aggregation states over the network.

https://en.wikipedia.org/wiki/HyperLogLog

The result is deterministic (it doesn't depend on the order of query processing).

The unigcombined function is a good default choice for calculating the number of different values, but keep in mind that
the estimation error for large sets (200 million elements and more) will become larger than theoretical value due to poor
choice of hash function.

unigHLL12(x)

Uses the HyperLoglLog [https://en.wikipedia.org/wiki/HyperLoglLog] algorithm to approximate the number of different
values of the argument. 212 5-bit cells are used. The size of the state is slightly more than 2.5 KB. The result is not very
accurate (up to ~10% error) for small data sets (<10K elements). However, the result is fairly accurate for high-cardinality
data sets (10K-100M), with a maximum error of ~1.6%. Starting from 100M, the estimation error increases, and the
function will return very inaccurate results for data sets with extremely high cardinality (1B+ elements).

The result is determinate (it doesn't depend on the order of query processing).

We don't recommend using this function. In most cases, use the unig oOr unigCombined function.

unigExact(x)

Calculates the number of different values of the argument, exactly. There is no reason to fear approximations. It's better
tousethe unig function.Usethe unigExact function if you definitely need an exact result.

The unigexact function uses more memory thanthe uniqg function, because the size of the state has unbounded growth
as the number of different values increases.

groupArray(x), groupArray(max_size)(x)
Creates an array of argument values. Values can be added to the array in any (indeterminate) order.

The second version (with the max_size parameter)limits the size of the resulting array to max_size elements. For
example, groupArray (1) (x) isequivalentto [any (x)] .

In some cases, you can still rely on the order of execution. This applies to cases when seLEcT comes from a subquery that

uses ORDER BY.

(]

groupArraylnsertAt(x)
Inserts a value into the array in the specified position.

Accepts the value and position as input. If several values are inserted into the same position, any of them might end up in
the resulting array (the first one will be used in the case of single-threaded execution). If no value is inserted into a position,
the position is assigned the default value.

Optional parameters:

o The default value for substituting in empty positions.

o Thelength of the resulting array. This allows you to receive arrays of the same size for all the aggregate keys. When
using this parameter, the default value must be specified.

groupUnigArray(x)

Creates an array from different argument values. Memory consumption is the same as for the uniqgexact function.

https://en.wikipedia.org/wiki/HyperLogLog

quantile(level)(x)

Approximates the 1evel quantile. 1evel isaconstant, a floating-point number from 0 to 1. We recommend using a
level valueintherangeof [(0.01, 0.99] Don'tusea level valueequaltoOor1-usethe min and max functions for
these cases.

In this function, as well as in all functions for calculating quantiles, the 1evel parameter can be omitted. In this case, itis
assumed to be equal to 0.5 (in other words, the function will calculate the median).

Works for numbers, dates, and dates with times. Returns: for numbers - r1oaté64 ; for dates — a date; for dates with times
- adate with time.

Uses reservoir sampling [https://en.wikipedia.org/wiki/Reservoir_sampling] with a reservoir size up to 8192. If necessary,
the result is output with linear approximation from the two neighboring values. This algorithm provides very low accuracy.

Seealso: quantileTiming, quantileTDigest, quantileExact .
The result depends on the order of running the query, and is nondeterministic.

When using multiple quantile (and similar) functions with different levels in a query, the internal states are not combined
(thatis, the query works less efficiently than it could). In this case, use the quantiles (and similar) functions.

quantileDeterministic(level)(x, determinator)

Works the same way as the quantile function, but the result is deterministic and does not depend on the order of query
execution.

To achieve this, the function takes a second argument - the "determinator”. This is a number whose hash is used instead
of arandom number generator in the reservoir sampling algorithm. For the function to work correctly, the same
determinator value should not occur too often. For the determinator, you can use an event ID, user ID, and so on.

Don't use this function for calculating timings. There is a more suitable function for this purpose: quantileTiming.

quantileTiming(level)(x)

Computes the quantile of 'level with a fixed precision. Works for numbers. Intended for calculating quantiles of page
loading time in milliseconds.

If the value is greater than 30,000 (a page loading time of more than 30 seconds), the result is equated to 30,000.
If the total value is not more than about 5670, then the calculation is accurate.
Otherwise:

o if thetimeislessthan 1024 ms, then the calculation is accurate.

o otherwise the calculation is rounded to a multiple of 16 ms.
When passing negative values to the function, the behavior is undefined.

The returned value has the Float32 type. If no values were passed to the function (when using quantileTimingIf), 'nan'is
returned. The purpose of this is to differentiate these instances from zeros. See the note on sorting NaNs in "ORDER BY
clause".

Theresult is determinate (it doesn't depend on the order of query processing).

For its purpose (calculating quantiles of page loading times), using this function is more effective and the result is more
accurate than for the quantile function.

https://en.wikipedia.org/wiki/Reservoir_sampling

quantileTimingWeighted(level)(x, weight)

Differs from the quantileTiming functioninthat it has a second argument, "weights". Weight is a non-negative integer.
Theresultis calculated as if the x value were passed weight number of times to the quantileTiming function.

quantileExact(level)(x)

Computes the quantile of 'level' exactly. To do this, all the passed values are combined into an array, which is then partially
sorted. Therefore, the function consumes O(n) memory, where 'n' is the number of values that were passed. However, for a
small number of values, the function is very effective.

quantileExactWeighted(level)(x, weight)

Computes the quantile of 'level' exactly. In addition, each value is counted with its weight, as if it is present 'weight' times.
The arguments of the function can be considered as histograms, where the value 'x' corresponds to a histogram "column"
of the height 'weight', and the function itself can be considered as a summation of histograms.

A hash table is used as the algorithm. Because of this, if the passed values are frequently repeated, the function consumes
less RAM than quantileEkxact . You can use this functioninstead of quantileExact and specify the weight as 1.

quantileTDigest(level)(x)

Approximates the quantile level using thet-digest [https://github.com/tdunning/t-digest/blob/master/docs/t-digest-
paper/histo.pdf] algorithm. The maximum error is 1%. Memory consumption by State is proportional to the logarithm of
the number of passed values.

The performance of the function is lower than for quantile or quantileTiming.Interms of the ratio of State size to
precision, this function is much better than quantile.

The result depends on the order of running the query, and is nondeterministic.

median(x)

All the quantile functions have corresponding median functions: median, medianDeterministic, medianTiming,
medianTimingWeighted, medianExact , medianExactWeighted, medianTDigest . They are synonyms and their behavior is
identical.

quantiles(levell, level2, ...)(x)

All the quantile functions also have corresponding quantiles functions: quantiles, quantilesDeterministic,
quantilesTiming, quantilesTimingWeighted, quantilesExact, quantilesExactWeighted, quantilesTDigest . These
functions calculate all the quantiles of the listed levels in one pass, and return an array of the resulting values.

varSamp(x)

Calculates theamount = ((x - %)"*2) / (n - 1) ,where n isthe samplesize and x is the average value of x.

It represents an unbiased estimate of the variance of a random variable, if the values passed to the function are a sample
of this random amount.

Returns r1oat64 .When n <= 1,returns +e.

varPop(x)

https://github.com/tdunning/t-digest/blob/master/docs/t-digest-paper/histo.pdf

Calculates theamount = ((x - %)"*2) / (n - 1) ,where n isthe samplesize and x is the average value of x.

In other words, dispersion for a set of values. Returns Float64 .

stddevSamp(x)

The result is equal to the square root of varsamp (x) .

stddevPop(x)

The result is equal to the square root of varprop (x) .

topK(N)(column)

Returns an array of the most frequent values in the specified column. The resulting array is sorted in descending order of
frequency of values (not by the values themselves).

Implements the Filtered Space-Saving [http://www.I2f.inesc-id.pt/~fmmb/wiki/uploads/Work/misnis.refOa.pdf] algorithm
for analyzing TopK, based on the reduce-and-combine algorithm from Parallel Space Saving
[https://arxiv.org/pdf/1401.0702.pdf].

topK(N) (column)

This function doesn't provide a guaranteed result. In certain situations, errors might occur and it might return frequent
values that aren't the most frequent values.

We recommend using the n < 10 value; performance is reduced with large ~ values. Maximum value of N = 65536 .
Arguments

¢ 'N'is the number of values.

e 'X'-=Thecolumn.
Example

Take the OnTime [#example_datasets-ontime] data set and select the three most frequently occurring values in the
AirlineID column.

SELECT topK(3)(AirlineID) AS res
FROM ontime

—res 1
| [19393,19790,19805] |

L 1

covarSamp(x, y)
Calculates thevalueof s ((x -) (y - ¥)) / (n - 1) .

Returns Float64. When n <= 1,returns +oo.

covarPop(x, y)

Calculatesthevalueof s ((x - %) (y - v)) / n.

http://www.l2f.inesc-id.pt/~fmmb/wiki/uploads/Work/misnis.ref0a.pdf
https://arxiv.org/pdf/1401.0702.pdf

corr(x, y)
Calculates the Pearson correlation coefficient: s ((x - %) (y - 7)) / sqrt(2((x - X)"2) * $((y - 7)"2)) .

(]

Aggregate function combinators
The name of an aggregate function can have a suffix appended to it. This changes the way the aggregate function works.

(]

-If

The suffix -If can be appended to the name of any aggregate function. In this case, the aggregate function accepts an extra
argument - a condition (Uint8 type). The aggregate function processes only the rows that trigger the condition. If the
condition was not triggered even once, it returns a default value (usually zeros or empty strings).

Examples: sumIf (column, cond), countIf(cond), avgIf(x, cond), quantilesTimingIf (levell, level2) (x, cond),
argMinIf (arg, val, cond) and soon.

With conditional aggregate functions, you can calculate aggregates for several conditions at once, without using
subqueries and Jo1n s. For example, in Yandex.Metrica, conditional aggregate functions are used to implement the
segment comparison functionality.

-Array

The -Array suffix can be appended to any aggregate function. In this case, the aggregate function takes arguments of the
'Array(T)' type (arrays) instead of 'T' type arguments. If the aggregate function accepts multiple arguments, this must be
arrays of equal lengths. When processing arrays, the aggregate function works like the original aggregate function across
all array elements.

Example 1: sumArray (arr) - Totals all the elements of all 'arr' arrays. In this example, it could have been written more

simply: sum(arraySum(arr)) .

Example 2: unigarray (arr) — Count the number of unique elementsin all ‘arr' arrays. This could be done an easier way:
uniq(arrayJdoin(arr)) ,butit's notalways possible to add 'arrayloin’ to a query.

-If and -Array can be combined. However, 'Array' must come first, then 'lf'. Examples: unigArrayIf (arr, cond) ,
quantilesTimingArrayIf (levell, level2) (arr, cond) .Due to thisorder,the'cond'argumentcan't be anarray.

-State

If you apply this combinator, the aggregate function doesn't return the resulting value (such as the number of unique
values for the uniqg function), but an intermediate state of the aggregation (for uniq, this is the hash table for calculating
the number of unique values). This is an AggregateFunction(...) that can be used for further processing or stored in a table
to finish aggregating later. See the sections "AggregatingMergeTree" and "Functions for working with intermediate
aggregation states".

-Merge

If you apply this combinator, the aggregate function takes the intermediate aggregation state as an argument, combines
the states to finish aggregation, and returns the resulting value.

-MergeState.

Merges the intermediate aggregation states in the same way as the -Merge combinator. However, it doesn't return the
resulting value, but an intermediate aggregation state, similar to the -State combinator.

-ForEach

Converts an aggregate function for tables into an aggregate function for arrays that aggregates the corresponding array
items and returns an array of results. For example, sumrFortach forthearrays (1, 21, [3, 4, 5] and [6, 7] returnsthe
result (10, 13, 5] afteradding together the corresponding array items.

(]

Parametric aggregate functions

Some aggregate functions can accept not only argument columns (used for compression), but a set of parameters -
constants for initialization. The syntax is two pairs of brackets instead of one. The first is for parameters, and the second is
for arguments.

sequenceMatch(pattern)(time, cond1, cond?2, ...)

Pattern matching for event chains.

pattern isa string containing a pattern to match. The patternis similar to a regular expression.
time is the time of the event with the DateTime type.

condl, cond2 ...is fromone to 32 arguments of type UInt8 that indicate whether a certain condition was met for the
event.

The function collects a sequence of events in RAM. Then it checks whether this sequence matches the pattern. It returns
UInt8: 0 if the pattern isn't matched, or 1 if it matches.

ExanuﬂeisequenceMatch (' (?1).*%(?2)") (EventTime, URL LIKE '%company$%', URL LIKE '$cart%')

o whether there was a chain of events in which a pageview with 'company' in the address occurred earlier than a
pageview with ‘cart’ in the address.

This is a singular example. You could write it using other aggregate functions:

minIf(EventTime, URL LIKE '%company%') < maxIf(EventTime, URL LIKE '%cart%').

However, there is no such solution for more complex situations.
Pattern syntax:
(21) refers to the condition (any number can be used in place of 1).
.* isany number of any events.
(2t>=1800) is atime condition.
Any quantity of any type of events is allowed over the specified time.
Instead of >=, the following operators canbeused: <, >, <=.

Any number may be specified in place of 1800.

Events that occur during the same second can be put in the chain in any order. This may affect the result of the function.

sequenceCount(pattern)(time, cond1, cond2, ...)

Works the same way as the sequenceMatch function, but instead of returning whether there is an event chain, it returns
UInt64 with the number of event chains found. Chains are searched for without overlapping. In other words, the next chain
can start only after the end of the previous one.

windowFunnel(window)(timestamp, cond1, cond2, cond3, ...)

Searches for event chains in a sliding time window and calculates the maximum number of events that occurred from the
chain.

windowFunnel (window) (timestamp, condl, cond2, cond3, ...)

Parameters:

e window — Length of the sliding window in seconds.

e timestamp — Name of the column containing the timestamp. Data type: DateTime [#data_type-datetime] or UInt32
[#data_type-int].

e condl, cond? .. — Conditions or data describing the chain of events. Data type: uint8 . Values canbeOor 1.
Algorithm

o The function searches for data that triggers the first condition in the chain and sets the event counter to 1. This is the
moment when the sliding window starts.

o If events from the chain occur sequentially within the window, the counter is incremented. If the sequence of events is
disrupted, the counter isn't incremented.

o If the data has multiple event chains at varying points of completion, the function will only output the size of the
longest chain.

Returned value

¢ Integer. The maximum number of consecutive triggered conditions from the chain within the sliding time window. All
the chains in the selection are analyzed.

Example
Determine if one hour is enough for the user to select a phone and purchaseiit in the online store.
Set the following chain of events:

1. The user logged in to their account on the store (event1D=1001).
2. The user searches for aphone (eventID = 1003, product = 'phone').

3. Theuser placed an order (eventID = 1009).

To find out how far the user user id could get through the chainin an hour in January of 2017, make the query:

SELECT
level,
count() AS c
FROM

(
SELECT
user_ id,
windowFunnel (3600) (timestamp, eventID = 1001, eventID = 1003 AND product = 'phone', eventID = 1009)
AS level
FROM trend_ event
WHERE (event date >= '2017-01-01') AND (event_date <= '2017-01-31")
GROUP BY user_id

)
GROUP BY level
ORDER BY level

Simply, the level value could only be 0, 1, 2, 3, it means the maxium event action stage that one user could reach.

retention(cond1, cond2, ...)

Retention refers to the ability of a company or product to retain its customers over some specified periods.

condl, cond? ...isfromone to 32 arguments of type UInt8 that indicate whether a certain condition was met for the event
Example:

Consider you are doing a website analytics, intend to calculate the retention of customers

This could be easily calculate by retention

SELECT
sum(r[1l]) AS rl,
sum(r[2]) AS r2,
sum(r[3]) AS r3
FROM

(
SELECT

uid,

retention(date = '2018-08-10', date = '2018-08-11', date = '2018-08-12') AS r
FROM events
WHERE date IN ('2018-08-10', '2018-08-11', '2018-08-12")
GROUP BY uid

Simply, r1 means the number of unique visitors who met the cond1 condition, r2 means the number of unique visitors
who met condl and cond2 conditions, r3 means the number of unique visitors who met condl and cond3 conditions.

unigUpTo(N)(x)

Calculates the number of different argument values if it is less than or equal to N. If the number of different argument
values is greater than N, it returns N + 1.

Recommended for use with small Ns, up to 10. The maximum value of N is 100.

For the state of an aggregate function, it uses the amount of memory equal to 1 + N * the size of one value of bytes. For
strings, it stores a non-cryptographic hash of 8 bytes. That is, the calculation is approximated for strings.

The function also works for several arguments.

It works as fast as possible, except for cases when a large N value is used and the number of unique values is slightly less
than N.

Usage example:

Problem: Generate a report that shows only keywords that produced at least 5 unique users.
Solution: Write in the GROUP BY query SearchPhrase HAVING uniqUpTo(4)(UserID) >= 5

Table functions

Table functions can be specified in the FROM clause instead of the database and table names. Table functions can only be
used if 'readonly’ is not set. Table functions aren't related to other functions.

(1

file
Creates a table from afile.

file(path, format, structure)

Input parameters

e« path — Therelative path to the file fromuser_files_path [#user_files_path].
e format — The format[#formats]of the file.

e structure — Structure of the table. Format 'colunmnl name columnl ype, column2 name column2 type, ...'.

Returned value

A table with the specified structure for reading or writing data in the specified file.
Example

Setting user files path andthe contents of thefile test.csv:

$ grep user_files_path /etc/clickhouse-server/config.xml
<user_ files_path>/var/lib/clickhouse/user_files/</user files_ path>

$ cat /var/lib/clickhouse/user files/test.csv
1,2,3
3,2,1
78,43,45

Table from test.csv and selection of the first two rows from it:

SELECT *

FROM file('test.csv', 'CSV', 'columnl UInt32, column2 UInt32, column3 UInt32')
LIMIT 2

r—columnl—r—column2—r—column3—
| 1| 2 | 3 |
| 3 | 2 | 1|

-- getting the first 10 lines of a table that contains 3 columns of UInt32 type from a CSV file

SELECT * FROM file('test.csv', 'CSV', 'columnl UInt32, column2 UInt32, column3 UInt32') LIMIT 10
merge
merge (db_name, 'tables regexp') — Createsatemporary Merge table. For more information, see the section "Table

engines, Merge".

The table structure is taken from the first table encountered that matches the regular expression.

numbers

numbers (N) - Returns atable with the single 'number' column (UInt64) that contains integers from 0 to N-1. numbers (N,
M) - Returns atable with the single 'number' column (UInt64) that contains integers from N to (N + M- 1).

Similar to the system.numbers table, it can be used for testing and generating successive values, numbers (N, M) more
efficient than system.numbers.

The following queries are equivalent:

SELECT * FROM numbers(10);
SELECT * FROM numbers (0, 10);
SELECT * FROM system.numbers LIMIT 10;

Examples:

-- Generate a sequence of dates from 2010-01-01 to 2010-12-31
select toDate('2010-01-01") + number as d FROM numbers(365);

remote

Allows you to access remote servers without creating a pistributed table.

Signatures:

remote('addresses_expr', db, table[, 'user'[, 'password']])
remote('addresses_expr', db.table[, 'user'[, 'password']])

addresses_expr —Anexpression that generates addresses of remote servers. This may be just one server address. The
server address is host:port ,Orjust host . The host can be specified as the server name, or as the IPv4 or IPv6 address. An
IPv6 address is specified in square brackets. The port is the TCP port on the remote server. If the port is omitted, it uses
tep port fromthe server's config file (by default, 9000).

6 Important

The port is required for an IPv6 address.

Examples:

example01-01-1
example01-01-1:9000
localhost

127.0.0.1

[2:1:9000
[2a02:6b8:0:1111::111:9000

Multiple addresses can be comma-separated. In this case, ClickHouse will use distributed processing, so it will send the
query to all specified addresses (like to shards with different data).

Example:

example01-01-1,example01-02-1

Part of the expression can be specified in curly brackets. The previous example can be written as follows:
example01-0{1,2}-1

Curly brackets can contain a range of numbers separated by two dots (non-negative integers). In this case, the range is
expanded to a set of values that generate shard addresses. If the first number starts with zero, the values are formed with
the same zero alignment. The previous example can be written as follows:

example01-{01..02}-1

If you have multiple pairs of curly brackets, it generates the direct product of the corresponding sets.

Addresses and parts of addresses in curly brackets can be separated by the pipe symbol (]). In this case, the corresponding
sets of addresses are interpreted as replicas, and the query will be sent to the first healthy replica. However, the replicas
are iterated in the order currently set in the load_balancing [#settings-load_balancing] setting.

Example:

example01-{01..02}-{1]2}

This example specifies two shards that each have two replicas.
The number of addresses generated is limited by a constant. Right now this is 1000 addresses.

Using the remote table functionisless optimal than creating a pistributed table, because in this case, the server
connection is re-established for every request. In addition, if host names are set, the names are resolved, and errors are not
counted when working with various replicas. When processing a large number of queries, always create the pistributed
table ahead of time, and don't use the remote table function.

The remote table function can be useful in the following cases:

o Accessing a specific server for data comparison, debugging, and testing.
o Queries between various ClickHouse clusters for research purposes.
o Infrequent distributed requests that are made manually.

o Distributed requests where the set of servers is re-defined each time.
If the user is not specified, default isused. If the password is not specified, an empty password is used.

(]

url

url (URL, format, structure) -returnsatablecreatedfromthe UrL withgiven format and structure.
URL - HTTP or HTTPS server address, which can accept GeT and/or posT requests.

format - format [#formats] of the data.

structure - table structurein 'UserID UInt64, Name String' format. Determines column names and types.

Example

-— getting the first 3 lines of a table that contains columns of String and UInt32 type from HTTP-server
which answers in CSV format.
SELECT * FROM url('http://127.0.0.1:12345/', CSV, 'columnl String, column2 UInt32') LIMIT 3

jdbc
jdbc (jdbc_connection uri, schema, table) -returnstablethatisconnected via JDBC driver.

This table function requires separate clickhouse-jdbc-bridge program to be running. It supports Nullable types (based
on DDL of remote table that is queried).

Examples

SELECT * FROM jdbc('jdbc:mysqgl://localhost:3306/?user=root&password=root', 'schema',6 'table')
SELECT * FROM jdbc('mysqgl://localhost:3306/?user=root&password=root', 'schema',6 'table')

SELECT * FROM jdbc('datasource://mysqgl-local', 'schema', 'table')

Dictionaries
Adictionary isa mapping (key -> attributes)thatis convenient for various types of reference lists.

ClickHouse supports special functions for working with dictionaries that can be used in queries. It is easier and more
efficient to use dictionaries with functions thana Jorn with reference tables.

NULL [#null-literal] values can't be stored in a dictionary.
ClickHouse supports:

o Built-in dictionaries [#internal_dicts] with a specific set of functions [#ym_dict_functions].

¢ Plug-in (external) dictionaries [#dicts-external_dicts] with a set of functions [#ext_dict_functions].

External Dictionaries

You can add your own dictionaries from various data sources. The data source for a dictionary can be a local text or
executable file, an HTTP(s) resource, or another DBMS. For more information, see "Sources for external dictionaries
[#dicts-external_dicts_dict_sources]".

ClickHouse:

o Fully or partially stores dictionaries in RAM.

o Periodically updates dictionaries and dynamically loads missing values. In other words, dictionaries can be loaded
dynamically.

The configuration of external dictionaries is located in one or more files. The path to the configuration is specified in the
dictionaries_config [#server_settings-dictionaries_config] parameter.

Dictionaries can be loaded at server startup or at first use, depending on the dictionaries_lazy_load [#server_settings-
dictionaries_lazy_load] setting.

The dictionary config file has the following format:

<yandex>
<comment>An optional element with any content. Ignored by the ClickHouse server.</comment>

<!--Optional element. File name with substitutions-->
<include from>/etc/metrika.xml</include_from>

<dictionary>
<!-- Dictionary configuration -->
</dictionary>

<dictionary>
<!-- Dictionary configuration -->
</dictionary>
</yandex>

You can configure [#dicts-external_dicts_dict] any number of dictionaries in the same file. The file format is preserved even
if there is only one dictionary (i.e. <yandex><dictionary> <!--configuration -> </dictionary></yandex>).

See also "Functions for working with external dictionaries [#ext_dict_functions]".

A\ Attention

You can convert values for a small dictionary by describing itina serect query (see the transform [#other_functions-transform] function). This
functionality is not related to external dictionaries.

(

Configuring an External Dictionary
The dictionary configuration has the following structure:

<dictionary>
<name>dict_name</name>

<source>
<!-- Source configuration -->
</source>

<layout>
<!-- Memory layout configuration -->
</layout>

<structure>
<!-- Complex key configuration -->
</structure>

<lifetime>
<!-- Lifetime of dictionary in memory -->
</lifetime>
</dictionary>
+ name - The identifier that can be used to access the dictionary. Use the characters [a-z2-70-9 \-].
e source [#dicts-external_dicts_dict_sources] — Source of the dictionary.

o layout [#dicts-external_dicts_dict_layout] — Dictionary layout in memory.

o structure [#dicts-external_dicts_dict_structure] — Structure of the dictionary . A key and attributes that can be
retrieved by this key.

o lifetime[#dicts-external_dicts_dict_lifetime] — Frequency of dictionary updates.

(

Storing Dictionaries in Memory
There are avariety of ways|[#dicts-external_dicts_dict_layout-manner] to store dictionaries in memory.

We recommend flat [#dicts-external_dicts_dict_layout-flat], hashed [#dicts-external_dicts_dict_layout-
hashed]andcomplex_key_hashed [#dicts-external_dicts_dict_layout-complex_key_hashed]. which provide optimal
processing speed.

Caching is not recommended because of potentially poor performance and difficulties in selecting optimal parameters.
Read more in the section "cache [#dicts-external_dicts_dict_layout-cache]".

There are several ways to improve dictionary performance:

o Call the function for working with the dictionary after crour By .

o Mark attributes to extract as injective. An attribute is called injective if different attribute values correspond to
different keys. So when Grour BY uses a function that fetches an attribute value by the key, this function is
automatically taken out of Grour BY.

ClickHouse generates an exception for errors with dictionaries. Examples of errors:

o Thedictionary being accessed could not be loaded.

o Errorqueryinga cached dictionary.
You can view the list of external dictionaries and their statuses in the system.dictionaries table.

The configuration looks like this:

<yandex>
<dictionary>
<layout>
<layout_type>
<!-- layout settings -->
</layout_type>
</layout>
</dictionary>
</yandex>

Ways to Store Dictionaries in Memory

o flat [#dicts-external_dicts_dict_layout-flat]

¢ hashed [#dicts-external_dicts_dict_layout-hashed]

o cache [#dicts-external_dicts_dict_layout-cache]

¢ range_hashed [#dicts-external_dicts_dict_layout-range_hashed]

o complex_key_hashed [#dicts-external_dicts_dict_layout-complex_key_hashed]
« complex_key_cache [#dicts-external_dicts_dict_layout-complex_key_cache]

o ip_trie [#dicts-external_dicts_dict_layout-ip_trie]
1
flat

The dictionary is completely stored in memory in the form of flat arrays. How much memory does the dictionary use? The
amount is proportional to the size of the largest key (in space used).

The dictionary key has the uint64 type and the value is limited to 500,000. If a larger key is discovered when creating the
dictionary, ClickHouse throws an exception and does not create the dictionary.

All types of sources are supported. When updating, data (from a file or from a table) is read in its entirety.
This method provides the best performance among all available methods of storing the dictionary.

Configuration example:

<layout>
<flat />
</layout>

(

hashed

The dictionary is completely stored in memory in the form of a hash table. The dictionary can contain any number of
elements with any identifiers In practice, the number of keys can reach tens of millions of items.

All types of sources are supported. When updating, data (from a file or from a table) is read in its entirety.

Configuration example:

<layout>
<hashed />
</layout>

l
complex_key_hashed
This type of storage is for use with composite keys [#dicts-external_dicts_dict_structure]. Similar to nashed.

Configuration example:

<layout>
<complex key hashed />
</layout>

(

range_hashed

The dictionary is stored in memory in the form of a hash table with an ordered array of ranges and their corresponding
values.

This storage method works the same way as hashed and allows using date/time ranges in addition to the key, if they
appear in the dictionary.

Example: The table contains discounts for each advertiser in the format:

Frommoonamoannmos Sroccomcomnoccecoomnnos Promocmsamaamaamammns Srocoocons +
| advertiser id | discount start date | discount end date | amount |
| 123 | 2015-01-01 | 2015-01-15 | 0.15 |
Fommm oo mm = Fm e e S +
| 123 | 2015-01-16 | 2015-01-31 | 0.25 |
Srocmcomassaomaos foccccomcooccccommonas e N +
| 456 | 2015-01-01 | 2015-01-15 | 0.05 |
rommommamaammaos Sroccocoomaaemaeoaaonos e S +

To use a sample for date ranges, define the range min and range max elementsin the structure [#dicts-

external_dicts_dict_structurel].

Example:

<structure>
<id>
<name>Id</name>
</id>
<range_min>
<name>first</name>
</range_min>
<range_max>
<name>last</name>
</range_max>

To work with these dictionaries, you need to pass an additional date argument to the dictcetT function:

dictGetT('dict_name', 'attr_name', id, date)

This function returns the value for the specified id s and the date range that includes the passed date.
Details of the algorithm:

o Ifthe id is not found or arange is not found for the id, it returns the default value for the dictionary.
o If there are overlapping ranges, you can use any.
o If the range delimiter is nULL or aninvalid date (such as 1900-01-01 or 2039-01-01), the range is left open. The range

can be open on both sides.

Configuration example:

<yandex>
<dictionary>
<layout>
<range_hashed />
</layout>
<structure>
<id>
<name>Abcdef</name>
</id>
<range_min>
<name>StartDate</name>
</range_min>
<range_max>
<name>EndDate</name>
</range_max>
<attribute>
<name>XXXType</name>
<type>String</type>
<null_value />
</attribute>
</structure>
</dictionary>
</yandex>
1l
cache

The dictionary is stored in a cache that has a fixed number of cells. These cells contain frequently used elements.

When searching for a dictionary, the cache is searched first. For each block of data, all keys that are not found in the cache
or are outdated are requested from the source using SELECT attrs... FROM db.table WHERE id IN (kl1, k2, ...).
The received data is then written to the cache.

For cache dictionaries, the expirationlifetime [#dicts-external_dicts_dict_lifetime] of data in the cache can be set. If more
timethan 1ifetime has passed since loading the datain a cell, the cell's value is not used, and it is re-requested the next
time it needs to be used.

This is the least effective of all the ways to store dictionaries. The speed of the cache depends strongly on correct settings
and the usage scenario. A cache type dictionary performs well only when the hit rates are high enough (recommended 99%
and higher). You can view the average hit rate inthe system.dictionaries table.

To improve cache performance, use a subquery with .1M1T, and call the function with the dictionary externally.
Supported sources [#dicts-external_dicts_dict_sources]: MySQL, ClickHouse, executable, HTTP.

Example of settings:

<layout>
<cache>
<!-- The size of the cache, in number of cells. Rounded up to a power of two. -->
<size_in_cells>1000000000</size_in_cells>
</cache>
</layout>

Set a large enough cache size. You need to experiment to select the number of cells:

1. Set some value.

2. Run queries until the cache is completely full.

3. Assess memory consumption using the system.dictionaries table.

4. Increase or decrease the number of cells until the required memory consumption is reached.

Warning

Do not use ClickHouse as a source, because it is slow to process queries with random reads.

[

complex_key_cache

This type of storage is for use with composite keys [#dicts-external_dicts_dict_structure]. Similar to cache .
(

ip_trie

This type of storage is for mapping network prefixes (IP addresses) to metadata such as ASN.

Example: The table contains network prefixes and their corresponding AS number and country code:

oo oomcemmmoos Ao Ao +
| prefix | asn | cca2 |

| 202.79.32.0/20 | |
AP omeosonesases RS +
| 2620:0:870::/48 | |
P oo s +
| 2a02:6b8:1::/48 | |
Fomemeoonoosesanes + +
| 2001:db8::/32 | |
R I + +

When using this type of layout, the structure must have a composite key.

Example:

<structure>
<key>
<attribute>
<name>prefix</name>
<type>String</type>
</attribute>
</key>
<attribute>
<name>asn</name>
<type>UInt32</type>
<null_value />
</attribute>
<attribute>
<name>cca2</name>
<type>String</type>
<null_value>??</null_value>
</attribute>

The key must have only one String type attribute that contains an allowed IP prefix. Other types are not supported yet.

For queries, you must use the same functions (dictGetT with atuple) as for dictionaries with composite keys:

dictGetT('dict_name', 'attr_name', tuple(ip))

The function takes either urnt32 forIPv4, or FixedString(16) forIPv6:

dictGetString('prefix', 'asn', tuple(IPv6StringToNum('2001:db8::1')))

Other types are not supported yet. The function returns the attribute for the prefix that corresponds to this IP address. If
there are overlapping prefixes, the most specific one is returned.

Datais storedina trie .|t must completely fitinto RAM.

(]

Dictionary Updates

ClickHouse periodically updates the dictionaries. The update interval for fully downloaded dictionaries and the invalidation
interval for cached dictionaries are defined in the <1ifetime> tagin seconds.

Dictionary updates (other than loading for first use) do not block queries. During updates, the old version of a dictionary is
used. If an error occurs during an update, the error is written to the server log, and queries continue using the old version of
dictionaries.

Example of settings:
<dictionary>
<lifetime>300</lifetime>
</dictionary>
Setting <lifetime> 0</lifetime> prevents updating dictionaries.

You can set a time interval for upgrades, and ClickHouse will choose a uniformly random time within this range. This is
necessary in order to distribute the load on the dictionary source when upgrading on a large number of servers.

Example of settings:

<dictionary>
<lifetime>
<min>300</min>
<max>360</max>
</lifetime>
</dictionary>

When upgrading the dictionaries, the ClickHouse server applies different logic depending on the type of source [#dicts-
external_dicts_dict_sources]:

o For atext file, it checks the time of modification. If the time differs from the previously recorded time, the dictionary is
updated.

o For MyISAM tables, the time of modification is checked using a sHow TABLE STATUS query.

o Dictionaries from other sources are updated every time by default.

For MySQL (InnoDB), ODBC and ClickHouse sources, you can set up a query that will update the dictionaries only if they
really changed, rather than each time. To do this, follow these steps:

¢ Thedictionary table must have a field that always changes when the source data is updated.

o The settings of the source must specify a query that retrieves the changing field. The ClickHouse server interprets the
query result as a row, and if this row has changed relative to its previous state, the dictionary is updated. Specify the
queryinthe <invalidate query> fieldin the settings for thesource [#dicts-external_dicts_dict_sources].

Example of settings:

<dictionary>
<odbc>

<invalidate query>SELECT update time FROM dictionary source where id = 1</invalidate query>
</odbc>

</dictionary>

i

Sources of External Dictionaries

An external dictionary can be connected from many different sources.

The configuration looks like this:

<yandex>
<dictionary>

<source>
<source_type>
<!-- Source configuration -->
</source_type>
</source>
</dictionary>

</yandex>

The source is configured in the source section.

Types of sources (source type):

o Localfile[#dicts-external_dicts_dict_sources-local_file]
o Executable file [#dicts-external_dicts_dict_sources-executable]
o HTTP(s) [#dicts-external_dicts_dict_sources-http]
« DBMS
o MySQL [#dicts-external_dicts_dict_sources-mysql]
¢ ClickHouse [#dicts-external_dicts_dict_sources-clickhouse]
¢ MongoDB [#dicts-external_dicts_dict_sources-mongodb]

« ODBC[#dicts-external_dicts_dict_sources-odbc]

i

Local File

Example of settings:

<source>
<file>
<path>/opt/dictionaries/os.tsv</path>
<format>TabSeparated</format>
</file>
</source>

Setting fields:

e path — Theabsolute path to the file.

o format — The file format. All the formats described in "Formats [#formats]" are supported.

Executable File

Working with executable files depends on how the dictionary is stored in memory [#dicts-external_dicts_dict_layout]. If the
dictionary is stored using cache and complex key cache , ClickHouse requests the necessary keys by sending a request
to the executable file's sTpIn.

Example of settings:

<source>
<executable>
<command>cat /opt/dictionaries/os.tsv</command>
<format>TabSeparated</format>
</executable>
</source>

Setting fields:

¢ command - The absolute path to the executable file, or the file name (if the program directory is written to paTH).

o format — The file format. All the formats described in "Formats [#formats]" are supported.

HTTP(s)

Working with an HTTP(s) server depends on how the dictionary is stored in memory [#dicts-external_dicts_dict_layout]. If

the dictionary is stored using cache and complex key cache , ClickHouse requests the necessary keys by sending a
request via the posT method.

Example of settings:

<source>
<http>
<url>http://[::1]/0s.tsv</url>
<format>TabSeparated</format>
</http>
</source>

In order for ClickHouse to access an HTTPS resource, you must configure openSSL [#server_settings-openSSL] in the
server configuration.

Setting fields:

e url —Thesource URL.

o format - The file format. All the formats described in "Formats [#formats]" are supported.

(1

ODBC
You can use this method to connect any database that has an ODBC driver.

Example of settings:

<odbc>
<db>DatabaseName</db>
<table>ShemaName.TableName</table>
<connection_string>DSN=some_parameters</connection_ string>
<invalidate_ query>SQL QUERY</invalidate_ query>

</odbc>

Setting fields:

e db —Name of the database. Omit it if the database name is setin the <connection string> parameters.
e table —Name of the table and schema if exists.
e connection string - Connection string.

e invalidate query — Query for checking the dictionary status. Optional parameter. Read more in the sectionUpdating
dictionaries [#dicts-external_dicts_dict_lifetime].

ClickHouse receives quoting symbols from ODBC-driver and quote all settings in queries to driver, so it's necessary to set
table name accordingly to table name case in database.

Known vulnerability of the ODBC dictionary functionality

Attention

When connecting to the database through the ODBC driver connection parameter servername can be substituted. In this case values of UsSERNAME
and passworD from odbc.ini are sent to the remote server and can be compromised.

Example of insecure use

Let's configure unixODBC for PostgreSQL. Content of /etc/odbc.ini :

[gregtest]

Driver = /usr/lib/psqlodbca.so
Servername = localhost

PORT = 5432

DATABASE = test_db

##OPTION 3

USERNAME = test

PASSWORD = test

If you then make a query such as

SELECT * FROM odbc('DSN=gregtest;Servername=some-server.com', 'test db');
ODBC driver will send values of UsErRNAME and PASSWORD from odbc.ini tO some-server.com.
Example of Connecting PostgreSQL

Ubuntu OS.

Installing unixODBC and the ODBC driver for PostgreSQL:

sudo apt-get install -y unixodbc odbcinst odbc-postgresgl

Configuring /etc/odbc.ini (Or ~/.odbc.ini):

[DEFAULT]
Driver = myconnection

[myconnection]

Description = PostgreSQL connection to my_db
Driver = PostgreSQL Unicode
Database = my_db

Servername = 127.0.0.1

UserName = username

Password = password

Port = 5432

Protocol = 9.3

ReadOnly = No

RowVersioning = No
ShowSystemTables = No

ConnSettings =

The dictionary configuration in ClickHouse:

<yandex>
<dictionary>
<name>table_name</name>

<source>
<odbc>
<!-- You can specify the following parameters in connection string: -->
<!-- DSN=myconnection;UID=username;PWD=password;HOST=127.0.0.1;PORT=5432;DATABASE=my db -->

<connection_string>DSN=myconnection</connection string>
<table>postgresql table</table>
</odbc>
</source>
<lifetime>
<min>300</min>
<max>360</max>
</lifetime>
<layout>
<hashed/>
</layout>
<structure>
<id>
<name>id</name>
</id>
<attribute>
<name>some_column</name>
<type>UInt64</type>
<null value>0</null value>
</attribute>
</structure>
</dictionary>
</yandex>

You may need to edit odbc.ini to specify the full path to the library with the driver

DRIVER=/usr/local/lib/psglodbcw.so .
Example of Connecting MS SQL Server
Ubuntu OS.

Installing the driver: :

sudo apt-get install tdsodbc freetds-bin sgsh

Configuring the driver: :

$ cat /etc/freetds/freetds.conf

[MSSQL]
host = 192.168.56.101
port = 1433

tds version = 7.0
client charset = UTF-8

$ cat /etc/odbcinst.ini

[FreeTDS]

Description = FreeTDS

Driver = /usr/1lib/x86_64-linux-gnu/odbc/libtdsodbc.so
Setup = /usr/1lib/x86_64-linux-gnu/odbc/libtdsS.so
FileUsage =1

UsageCount =5

$ cat ~/.odbc.ini

[MSSQL]
Description = FreeTDS
Driver = FreeTDS
Servername = MSSQL
Database = test
UID = test
PWD = test
Port = 1433

Configuring the dictionary in ClickHouse:

<yandex>
<dictionary>
<name>test</name>
<source>
<odbc>
<table>dict</table>
<connection_string>DSN=MSSQL;UID=test;PWD=test</connection_string>
</odbc>

</source>

<lifetime>
<min>300</min>
<max>360</max>

</lifetime>

<layout>
<flat />
</layout>

<structure>
<id>
<name>k</name>
</id>
<attribute>
<name>s</name>
<type>String</type>
<null_value></null_value>
</attribute>
</structure>
</dictionary>
</yandex>

DBMS

i

MySQL

Example of settings:

<source>
<mysql>
<port>3306</port>
<user>clickhouse</user>
<password>gwerty</password>
<replica>
<host>example0l-1</host>
<priority>1</priority>
</replica>
<replica>
<host>example01l-2</host>
<priority>l</priority>
</replica>
<db>db_name</db>
<table>table name</table>
<where>id=10</where>
<invalidate query>SQL QUERY</invalidate query>
</mysql>
</source>

Setting fields:

e« port —Theportonthe MySQL server. You can specify it for all replicas, or for each one individually (inside

<replica>).
¢ user —Name of the MySQL user. You can specify it for all replicas, or for each one individually (inside<replica>).

e password — Password of the MySQL user. You can specify it for all replicas, or for each one individually (inside

<replica>).
e replica — Section of replica configurations. There can be multiple sections.
e replica/host —The MySQL host.

* replica/priority — Thereplica priority. When attempting to connect, ClickHouse traverses the replicas in order of
priority. The lower the number, the higher the priority.

e db —Name of the database.
e table —Name of thetable.

e where — The selection criteria. Optional parameter.

e invalidate query — Query for checking the dictionary status. Optional parameter. Read more in the sectionUpdating

dictionaries [#dicts-external_dicts_dict_lifetime].

MySQL can be connected on alocal host via sockets. To do this, set host and socket .

Example of settings:

(1

<source>

<mysql>
<host>localhost</host>
<socket>/path/to/socket/file.sock</socket>
<user>clickhouse</user>
<password>gwerty</password>
<db>db_name</db>
<table>table name</table>
<where>id=10</where>
<invalidate_ query>SQL QUERY</invalidate query>
</mysql>

</source>

ClickHouse

Example of settings:

<source>
<clickhouse>
<host>example01-01-1</host>
<port>9000</port>
<user>default</user>
<password></password>
<db>default</db>
<table>ids</table>
<where>id=10</where>
</clickhouse>
</source>

Setting fields:
e host — The ClickHouse host. If it is a local host, the query is processed without any network activity. To improve fault
tolerance, you can create a Distributed [#table_engines-distributed] table and enter it in subsequent configurations.
e port — The porton the ClickHouse server.
o user —Name of the ClickHouse user.
e password — Password of the ClickHouse user.
e db — Name of the database.
e table —Name of the table.
e where — The selection criteria. May be omitted.
e invalidate query — Query for checking the dictionary status. Optional parameter. Read more in the sectionUpdating

dictionaries [#dicts-external_dicts_dict_lifetime].

1
MongoDB

Example of settings:

<source>
<mongodb>
<host>localhost</host>
<port>27017</port>
<user></user>
<password></password>
<db>test</db>
<collection>dictionary source</collection>
</mongodb>
</source>

Setting fields:

e host —TheMongoDB host.

e port — Theportonthe MongoDB server.

e user —Name of the MongoDB user.

e password — Password of the MongoDB user.
e db — Name of the database.

e collection — Name of the collection.

(1

Dictionary Key and Fields

The <structure> clause describes the dictionary key and fields available for queries.

Overall structure:

<dictionary>
<structure>
<id>
<name>Id</name>
</id>

<attribute>
<!-- Attribute parameters -->
</attribute>

</structure>
</dictionary>

Columns are described in the structure:

e <id> - keycolumn [#dicts-external_dicts_dict_structure-keyl].

e <attribute> -datacolumn [#dicts-external_dicts_dict_structure-attributes]. There can be a large number of
columns.

Key
ClickHouse supports the following types of keys:

o Numeric key. UInt64. Defined in the tag <ia> .

o Composite key. Set of values of different types. Defined in the tag <key> .

A structure can contain either <id> or <key> .

A Warning

The key doesn't need to be defined separately in attributes.

Numeric Key
Format: uinté4.

Configuration example:

<id>
<name>Id</name>
</id>

Configuration fields:
¢ name - The name of the column with keys.
Composite Key

Thekey canbea tuple fromany types of fields. Thelayout [#dicts-external_dicts_dict_layout]in this case must be

complex key hashed OF complex key cache.

O Tip

A composite key can consist of a single element. This makes it possible to use a string as the key, for instance.

The key structure is set in the element <key> . Key fields are specified in the same format as the dictionaryattributes
[#dicts-external_dicts_dict_structure-attributes]. Example:

<structure>
<key>

<attribute>
<name>fieldl</name>
<type>String</type>

</attribute>

<attribute>
<name>field2</name>
<type>UInt32</type>

</attribute>

</key>

Foraquerytothe dictcet* function, atupleis passed as the key. Example: dictGetString ('dict name', 'attr name',
tuple ('string for fieldl', num for field2)) .

i

Attributes

Configuration example:

<structure>

<attribute>
<name>Name</name>
<type>Type</type>
<null_value></null_value>
<expression>rand64()</expression>
<hierarchical>true</hierarchical>
<injective>true</injective>
<is_object_id>true</is_object_id>

</attribute>

</structure>

Configuration fields:

e name — Thecolumnname.

type — The column type. Sets the method for interpreting data in the source. For example, for MySQL, the field might
be TEXT, VARCHAR, Or BLOB inthe source table, butit can be uploaded as string.

e null value — Thedefaultvalue for a non-existing element. In the example, it is an empty string.
e expression — The attribute can be anexpression. The tagis not required.
e hierarchical - Hierarchical support. Mirrored to the parentidentifier. By default, faise.

e injective —Whetherthe id -> attribute imageisinjective. If true ,thenyou canoptimize the crour BY clause.
By default, false.

e is object id —Whetherthe query is executed for a MongoDB document by objectID.

i

Internal dictionaries

ClickHouse contains a built-in feature for working with a geobase.
This allows you to:

o Usearegion'sID to getits name in the desired language.

¢ Usearegion'sID to get the ID of a city, area, federal district, country, or continent.
o Check whether a region is part of another region.

¢ Get achain of parent regions.

All the functions support "translocality," the ability to simultaneously use different perspectives on region ownership. For
more information, see the section "Functions for working with Yandex.Metrica dictionaries".

The internal dictionaries are disabled in the default package. To enable them, uncomment the parameters
path to regions hierarchy file and path to regions names files inthe server configuration file.

The geobase is loaded from text files.

Placethe regions hierarchy*.txt filesintothe path to regions hierarchy file directory. This configuration
parameter must contain the path to the regions hierarchy.txt file (the default regional hierarchy), and the other files
(regions hierarchy ua.txt)must be located inthe same directory.

Putthe regions names *.txt filesinthe path to regions names files directory.
You can also create these files yourself. The file format is as follows:
regions hierarchy*.txt : TabSeparated (no header), columns:

e regionID(vuint32)
e parentregionID (uInt32)
e regiontype(uvint8):1-continent, 3 - country, 4 - federal district, 5 - region, 6 - city; other types don't have values

e population (vInt32) — optional column
regions names *.txt :TabSeparated (no header), columns:

e regionID(uInt32)

e regionname(string)— Can't contain tabs or line feeds, even escaped ones.
A flat array is used for storing in RAM. For this reason, IDs shouldn't be more than a million.

Dictionaries can be updated without restarting the server. However, the set of available dictionaries is not updated. For
updates, the file modification times are checked. If a file has changed, the dictionary is updated. The interval to check for
changes is configured inthe builtin dictionaries reload interval parameter. Dictionary updates (other than loading
at first use) do not block queries. During updates, queries use the old versions of dictionaries. If an error occurs during an
update, the error is written to the server log, and queries continue using the old version of dictionaries.

We recommend periodically updating the dictionaries with the geobase. During an update, generate new files and write
them to a separate location. When everything is ready, rename them to the files used by the server.

There are also functions for working with OS identifiers and Yandex.Metrica search engines, but they shouldn't be used.

Operators

All operators are transformed to the corresponding functions at the query parsing stage, in accordance with their
precedence and associativity. Groups of operators are listed in order of priority (the higher it is in the list, the earlier the
operator is connected to its arguments).

Access Operators
a[N] Accesstoanelementofanarray; arrayElement (a, N) function.

a.N —Access toatubleelement; tupleElement (a, N) function.

Numeric Negation Operator

-a —The negate (a) function.

Multiplication and Division Operators
a * b —The multiply (a, b) function.
a / b —The divide(a, b) function.

a % b -The modulo (a, b) function.

Addition and Subtraction Operators
a + b —The plus(a, b) function.

a - b —The minus (a, b) function.

Comparison Operators

a =b-The equals(a, b) function.

a == b - The equals(a, b) function.

a != b —-The notEquals(a, b) function.

a <> b —-The notEquals(a, b) function.

a <= b —The lessOrEquals(a, b) function.
a >= b —-The greaterOrEquals(a, b) function.
a < b —-The less(a, b) function.

a > b —-The greater(a, b) function.

a LIKE s —The like(a, b) function.

a NOT LIKE s — The notLike (a, b) function.

a BETWEEN b AND ¢ — Thesameas a >= b AND a <= c.

Operators for Working With Data Sets

See the section "IN operators”.

a IN ... —The in(a, b) function
a NOT IN ... —The notIn(a, b) function.
a GLOBAL IN ... —The globalln(a, b) function.

a GLOBAL NOT IN ... —The globalNotIn(a, b) function.

Logical Negation Operator

NOT a The not(a) function.

Logical AND Operator

a AND b —Theand(a, b) function.

Logical OR Operator

a OR b —The or(a, b) function.

Conditional Operator
a?b:c-The if(a, b, c) function.
Note:

The conditional operator calculates the values of b and ¢, then checks whether condition a is met, and then returns the
corresponding value. If b or c isan arrayloin() [#functions_arrayjoin] function, each row will be replicated regardless of

the "a" condition.

(1l

Conditional Expression

CASE [X]
WHEN a THEN b
[WHEN ... THEN ...]
[ELSE c]

END

If x is specified, then transform(x, [a, ...], [b, ...]1, c) functionisused.Otherwise - multiIf(a, b, ..., c).
If thereisno ELSE c clause in the expression, the default value is NULL .

The transform function does not work with NULL .

Concatenation Operator

sl || s2 —The concat (sl, s2) function.

Lambda Creation Operator
X —> expr -The lambda (x, expr) function.

The following operators do not have a priority, since they are brackets:

Array Creation Operator

[x1, ...] -The array(xl, ...) function.

Tuple Creation Operator

(x1, %2, ...) —The tuple(x2, x2, ...) function.

Associativity

All binary operators have left associativity. For example, 1 + 2 + 3 istransformedto plus (plus (1, 2), 3).Sometimes
this doesn't work the way you expect. For example, seLEcT 4 > 2 > 3 willresultinO.

For efficiency, the and and or functions accept any number of arguments. The corresponding chains of AxND and or
operators are transformed to a single call of these functions.

Checking fornurr

ClickHouse supports the 1s NULL and Is NOT NULL operators.
1l
(a

IS NULL

o For Nullable [#data_type-nullable] type values, the 1s NULL operator returns:
e 1,ifthevalueis NULL .
e 0 otherwise.

o Forothervalues, the 1s nNULL operator always returns 0.

:) SELECT x+100 FROM t_null WHERE y IS NULL
SELECT x + 100
FROM t_null

WHERE isNull(y)

r—plus(x, 100)—

| 101 |
e —

1 rows in set. Elapsed: 0.002 sec.

(1

ISNOT NULL

o For Nullable [#data_type-nullable] type values, the 1s NOT NULL operator returns:
e 0,ifthevalueis NULL .
e 1 otherwise.

o Forothervalues, the 1s NoT NULL operator always returns 1.

:) SELECT * FROM t_null WHERE y IS NOT NULL
SELECT *
FROM t_null

WHERE isNotNull(y)

XTTY T

[2| 3|
| I —

1 rows in set. Elapsed: 0.002 sec.

Syntax

There are two types of parsers in the system: the full SQL parser (a recursive descent parser), and the data format parser (a
fast stream parser). In all cases except the INSERT query, only the full SQL parser is used. The INSERT query uses both
parsers:

INSERT INTO t VALUES (1, 'Hello, world'), (2, 'abc'), (3, 'def')

The 1nNsERT INTO t VALUES fragmentis parsed by the full parser,andthedata (1, 'Hello, world'), (2, 'abc'), (3,
'def') is parsed by the fast stream parser. Data can have any format. When a query is received, the server calculates no
more than max query size bytes of the request in RAM (by default, 1 MB), and the rest is stream parsed. This means the
system doesn't have problems with large INSERT queries, like MySQL does.

When using the Values format in an INSERT query, it may seem that data is parsed the same as expressions ina SELECT
query, but this is not true. The Values format is much more limited.

Next we will cover the full parser. For more information about format parsers, see the section "Formats".

Spaces

There may be any number of space symbols between syntactical constructions (including the beginning and end of a
query). Space symbols include the space, tab, line feed, CR, and form feed.

Comments

SQL-style and C-style comments are supported. SQL-style comments: from -- to the end of the line. The space after --
can be omitted. Comments in C-style: from /* to */.These comments can be multiline. Spaces are not required here,
either.

Keywords

Keywords (such as seLECT) are not case-sensitive. Everything else (column names, functions, and so on), in contrast to
standard SQL, is case-sensitive. Keywords are not reserved (they are just parsed as keywords in the corresponding
context).

Identifiers

Identifiers (column names, functions, and data types) can be quoted or non-quoted. Non-quoted identifiers start with a
Latin letter or underscore, and continue with a Latin letter, underscore, or number. In other words, they must match the
regex ~[a-zA-Z_][0-9a-zA-7]*$.Examples: x, 1, x y 27123 .

Quoted identifiers are placed in reversed quotation marks “id" (the same asin MySQL), and can indicate any set of bytes

(non-empty). In addition, symbols (for example, the reverse quotation mark) inside this type of identifier can be backslash-
escaped. Escaping rules are the same as for string literals (see below). We recommend using identifiers that do not need to
be quoted.

Literals

There are numeric literals, string literals, and compound literals.
Numeric Literals

A numeric literal tries to be parsed:

o First as a 64-bit signed number, using the 'strtoull’ function.

o If unsuccessful, as a 64-bit unsigned number, using the 'strtoll' function.

¢ If unsuccessful, as a floating-point number using the 'strtod’ function.
e Otherwise, an error is returned.

The corresponding value will have the smallest type that the value fits in. For example, 1 is parsed as UInt8, but 256 is
parsed as UInt16. For more information, see "Data types".

Examples: 1, 18446744073709551615, OxDEADBEEF, 01, 0.1, 1€100, -1e-100, inf, nan.
String Literals

Only string literals in single quotes are supported. The enclosed characters can be backslash-escaped. The following

escape sequences have a corresponding special value: \b, \f, \r, \n, \t, \0, \a, \v, \xHH.Inall other cases, escape
sequences in the format \c, where "c" is any character, are converted to "c". This means that you can use the sequences
\' and \\ . The value will have the String type.

The minimum set of characters that you need to escape in string literals: ' and \ .
Compound Literals

Constructions are supported for arrays: [1, 2, 3] andtuples: (1, 'Hello, world!', 2) ..Actually,these are not
literals, but expressions with the array creation operator and the tuple creation operator, respectively. For more
information, see the section "Operators2". An array must consist of at least one item, and a tuple must have at least two
items. Tuples have a special purpose for use in the IN clause of a SELECT query. Tuples can be obtained as the result of a
query, but they can't be saved to a database (with the exception of Memory-type tables).

[l

NULL Literal

Indicates that the value is missing.

In order to store nNULL in atable field, it must be of theNullable [#data_type-nullable] type.

Depending on the data format (input or output), NULL may have a different representation. For more information, see the
documentation for data formats [#formats].

There are many nuances to processing NULL . For example, if at least one of the arguments of a comparison operation is
NULL , the result of this operation will also be nuLL . The sameiis true for multiplication, addition, and other operations. For
more information, read the documentation for each operation.

In queries, you can check nuLL using the IS NULL [#operator-is-null] and IS NOT NULL [#operator-is-not-null] operators
and the related functions isNull and isNotNull .

Functions

Functions are written like an identifier with a list of arguments (possibly empty) in brackets. In contrast to standard SQL,
the brackets are required, even for an empty arguments list. Example: now () . There are regular and aggregate functions
(see the section "Aggregate functions"). Some aggregate functions can contain two lists of arguments in brackets.
Example: quantile (0.9) (x) .Theseaggregate functions are called "parametric” functions, and the arguments in the
first list are called "parameters". The syntax of aggregate functions without parameters is the same as for regular
functions.

Operators

Operators are converted to their corresponding functions during query parsing, taking their priority and associativity into
account. For example, the expression 1 + 2 * 3 + 4 istransformedto plus (plus (1, multiply (2, 3)), 4) .Formore
information, see the section "Operators" below.

Data Types and Database Table Engines

Data types and table engines in the creATE query are written the same way as identifiers or functions. In other words, they

may or may not contain an arguments list in brackets. For more information, see the sections "Data types," "Table engines,’
and "CREATE".

Synonyms

In the SELECT query, expressions can specify synonyms using the AS keyword. Any expression is placed to the left of AS.
The identifier name for the synonym is placed to the right of AS. As opposed to standard SQL, synonyms are not only
declared on the top level of expressions:

SELECT (1 AS n) + 2, n

In contrast to standard SQL, synonyms can be used in all parts of a query, not just sELECT .

Asterisk

Ina seELECT query, an asterisk can replace the expression. For more information, see the section "SELECT".

Expressions

An expression is a function, identifier, literal, application of an operator, expression in brackets, subquery, or asterisk. It
can also contain a synonym. A list of expressions is one or more expressions separated by commas. Functions and
operators, in turn, can have expressions as arguments.

Operations

R
=35I (BIRMER) RET:
o HUBMNTEMARIME, B5EIME K MIFE EEEE
o TIFMRLEE G AN 15,
o FHEEIREIAMD,
o RE|NER (WREE) .
o BREUMHITSEIZIEK.
o HIEEFISEN,
FEIZENRY, S5|ZREZHMTFTEKRS], BERLERT, 5I1ZeAENINIE RIS GIBEE,
FWFRZHIEXRIES, Nix{FEFRMergeTreelkHHISIZE,

(]

MergeTree
The MergeTree engine and other engines of this family (*MergeTree) are the most robust ClickHouse table engines.

The basic idea for MergeTree engines family is the following. When you have tremendous amount of a data that should be
inserted into the table, you should write them quickly part by part and then merge parts by some rules in background. This

method is much more efficient than constantly rewriting data in the storage at the insert.
Main features:

o Stores data sorted by primary key.
This allows you to create a small sparse index that helps find data faster.
o This allows you to use partitions if the partitioning key [#table_engines-custom_partitioning_keyl]is specified.

ClickHouse supports certain operations with partitions that are more effective than general operations on the same
data with the same result. ClickHouse also automatically cuts off the partition data where the partitioning key is
specified in the query. This also increases the query performance.

o Data replication support.

The family of rReplicatedMergeTree tablesis used for this. For more information, see the Data replication
[#table_engines-replication] section.

o Data sampling support.

If necessary, you can set the data sampling method in the table.

© Info

The Merge [#table_engine-merge] engine does not belong to the *MergeTree family.

(

Creating a Table

CREATE TABLE [IF NOT EXISTS] [db.]table name [ON CLUSTER cluster]

(
namel [typel] [DEFAULT|MATERIALIZED|ALIAS exprl],

name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],

) ENGINE = MergeTree()
[PARTITION BY expr]

[ORDER BY expr]

[SAMPLE BY expr]

[SETTINGS name=value, ...]

For a description of request parameters, seerequest description [#query_language-queries-create_table].
Query clauses
¢ ENGINE - Name and parameters of the engine. ENGINE = MergeTree () . MergeTree €ngine does not have
parameters.
e ORDER BY — Primary key.

A tuple of columns or arbitrary expressions. Example: ORDER BY (CounterID, EventDate) .lf asamplingexpression
is used, the primary key must contain it. Example: ORDER BY (CounterID, EventDate, intHash32 (UserID)) .

e PARTITION BY — The partitioning key [#table_engines-custom_partitioning_key].

For partitioning by month, use the tovvyvMmM(date column) expression, where date column isacolumn with adate
of the type Date [#data_type-date]. The partition names here have the "vyvymu" format.

e SAMPLE BY — Anexpression for sampling. Example: intHash32 (UserID)) .
o SETTINGS — Additional parameters that control the behavior of the MergeTree :
e index granularity — The granularity of anindex. The number of data rows between the "marks" of an index. By

default, 8192.

Example of sections setting

ENGINE MergeTree() PARTITION BY toYYYYMM(EventDate) ORDER BY (CounterID, EventDate, intHash32(UserID)) SAMPLE
BY intHash32(UserID) SETTINGS index granularity=8192

In the example, we set partitioning by month.

We also set an expression for sampling as a hash by the user ID. This allows you to pseudorandomize the data in the table
foreach counterip and Eventbate . |f, when selecting the data, you define aSAMPLE [#select-section-sample] clause,
ClickHouse will return an evenly pseudorandom data sample for a subset of users.

index granularity could be omitted because 8192 is the default value.
2’ Deprecated Method for Creating a Table

Attention

Do not use this method in new projects and, if possible, switch the old projects to the method described above.

CREATE TABLE [IF NOT EXISTS] [db.]table name [ON CLUSTER cluster]

(
namel [typel] [DEFAULT|MATERIALIZED|ALIAS exprl],

name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],

) ENGINE [=] MergeTree(date-column [, sampling expression], (primary, key), index granularity)

MergeTree() parameters
o date-column — The name of a column of the type Date [#data_type-date]. ClickHouse automatically creates partitions by month on the basis
of this column. The partition names arein the "vyvvvmu" format.
e sampling expression — anexpression for sampling.

e (primary, key) — primary key. Type — Tuple() [#data_type-tuple]. It may consist of arbitrary expressions, but it typically is a tuple of
columns. It must include an expression for sampling if it is set. It must not include a column with a date-column date.

e index granularity — The granularity of anindex. The number of data rows between the "marks" of an index. The value 8192 is appropriate
for most tasks.

Example

MergeTree (EventDate, intHash32(UserID), (CounterID, EventDate, intHash32(UserID)), 8192)

The MergeTree engineis configured in the same way as in the example above for the main engine configuration method.

Data Storage
A table consists of data parts sorted by primary key.

When data is inserted in a table, separate data parts are created and each of them is lexicographically sorted by primary
key. For example, if the primary key is (CounterID, Date) ,thedatainthe partissorted by counter1in,and within each

CounterID,itisorderedby pate .

Data belonging to different partitions are separated into different parts. In the background, ClickHouse merges data parts
for more efficient storage. Parts belonging to different partitions are not merged. The merge mechanism does not
guarantee that all rows with the same primary key will be in the same data part.

For each data part, ClickHouse creates an index file that contains the primary key value for each index row ("mark"). Index
row numbers are definedas n * index granularity.Themaximumvalue n isequal to theinteger part of dividing the
total number of rows by the index granularity.Foreach column, the "marks" are also written for the same index rows as
the primary key. These "marks" allow you to find the data directly in the columns.

You can use a single large table and continually add data to it in small chunks - this is what the MergeTree engineis
intended for.

Primary Keys and Indexes in Queries

Let'stakethe (counteriD, Date) primary key. In this case, the sorting and index can be illustrated as follows:

Whole data: [-]

CounterID: [aaaaaaaaaaaaaaaaaabbbbcdeececececeececeecefgggggggghhhhhhhhhiiiiiiiiik11111111]
Date: [1111111222222233331233211111222222333211111112122222223111112223311122333]
Marks: | | ! | | | | | | | |
a,l a,2 a,3 19,3 e,2 e,3 g,1 2 i, 1 i,3 1,3
Marks numbers: 0 1 2 3 4 5 6 7 8 9 10
If the data query specifies:

e CounterID in ('a', 'h') ,theserverreadsthedataintherangesof marks (0, 3) and [6, 8).
e CounterID IN ('a', 'h') AND Date = 3,theserverreadsthedataintherangesof marks (1, 3) and [7, 8).

e Date = 3,theserverreadsthedataintherangeof marks (1, 107 .
The examples above show that it is always more effective to use an index than a full scan.

A sparse index allows extra strings to be read. When reading a single range of the primary key, up to index_granularity
* 2 extrarows in each data block can be read. In most cases, ClickHouse performance does not degrade when

index granularity = 8192.

Sparse indexes allow you to work with a very large number of table rows, because such indexes are always stored in the
computer's RAM.

ClickHouse does not require a unique primary key. You can insert multiple rows with the same primary key.
Selecting the Primary Key

The number of columns in the primary key is not explicitly limited. Depending on the data structure, you can include more
or fewer columns in the primary key. This may:

o Improve the performance of anindex.

If the primary keyis (a, b),thenaddinganother column c willimprove the performance if the following conditions
are met: - There are queries with a condition on column c . - Long data ranges (several times longer than the

index granularity)withidentical values for (a, b) are common. In other words, when adding another column
allows you to skip quite long data ranges.

e Improve data compression.
ClickHouse sorts data by primary key, so the higher the consistency, the better the compression.

e Provide additional logic when data parts merging in the CollapsingMergeTree [#table_engine-collapsingmergetree]
and SummingMergeTree [#table_engine-summingmergetree] engines.

You may need many fields in the primary key even if they are not necessary for the previous steps.

A long primary key will negatively affect the insert performance and memory consumption, but extra columns in the
primary key do not affect ClickHouse performance during seLECT queries.

Use of Indexes and Partitions in Queries

For serLECcT queries, ClickHouse analyzes whether an index can be used. An index can be used if the WHERE / PREWHERE
clause has an expression (as one of the conjunction elements, or entirely) that represents an equality or inequality
comparison operation, or if ithas 1N or L1kE with a fixed prefix on columns or expressions that are in the primary key or
partitioning key, or on certain partially repetitive functions of these columns, or logical relationships of these expressions.

Thus, it is possible to quickly run queries on one or many ranges of the primary key. In this example, queries will be fast
when run for a specific tracking tag; for a specific tag and date range; for a specific tag and date; for multiple tags with a
date range, and so on.

Let's look at the engine configured as follows:

ENGINE MergeTree() PARTITION BY toYYYYMM(EventDate) ORDER BY (CounterID, EventDate) SETTINGS
index granularity=8192

In this case, in queries:

SELECT count() FROM table WHERE EventDate = toDate(now()) AND CounterID = 34

SELECT count() FROM table WHERE EventDate = toDate(now()) AND (CounterID = 34 OR CounterID = 42)

SELECT count() FROM table WHERE ((EventDate >= toDate('2014-01-01') AND EventDate <= toDate('2014-01-31')) OR
EventDate = toDate('2014-05-01')) AND CounterID IN (101500, 731962, 160656) AND (CounterID = 101500 OR
EventDate != toDate('2014-05-01"))

ClickHouse will use the primary key index to trim improper data and the monthly partitioning key to trim partitions that are
inimproper date ranges.

The queries above show that the index is used even for complex expressions. Reading from the table is organized so that
using the index can't be slower than a full scan.

In the example below, the index can't be used.

SELECT count() FROM table WHERE CounterID = 34 OR URL LIKE 'S$upyachka%'

To check whether ClickHouse can use the index when running a query, use the settingsforce_index_by_date [#settings-
settings-force_index_by_date] and force_primary_key [#settings-settings-force_primary_key].

The key for partitioning by month allows reading only those data blocks which contain dates from the proper range. In this
case, the data block may contain data for many dates (up to an entire month). Within a block, data is sorted by primary key,
which might not contain the date as the first column. Because of this, using a query with only a date condition that does
not specify the primary key prefix will cause more data to be read than for a single date.

Concurrent Data Access

For concurrent table access, we use multi-versioning. In other words, when a table is simultaneously read and updated,
datais read from a set of parts that is current at the time of the query. There are no lengthy locks. Inserts do not get in the
way of read operations.

Reading from a table is automatically parallelized.

(1

Data Replication

Replication is only supported for tables in the MergeTree family:

o ReplicatedMergeTree

o ReplicatedSummingMergeTree

o ReplicatedReplacingMergeTree

o ReplicatedAggregatingMergeTree
o ReplicatedCollapsingMergeTree
o ReplicatedGraphiteMergeTree

Replication works at the level of an individual table, not the entire server. A server can store both replicated and non-
replicated tables at the same time.

Replication does not depend on sharding. Each shard has its own independent replication.

Compressed data for 1NSERT and ALTER queries is replicated (for more information, see the documentation for ALTER
[#query_language_queries_alter]).

CREATE, DROP, ATTACH, DETACH and RENAME queries are executed on a single server and are not replicated:

e The CREATE TABLE query creates anew replicatable table on the server where the query is run. If this table already
exists on other servers, it adds a new replica.

e The DROP TABLE query deletes the replicalocated on the server where the query is run.

e The RENAME queryrenames the table on one of the replicas. In other words, replicated tables can have different
names on different replicas.

To use replication, set the addresses of the ZooKeeper cluster in the config file. Example:

<zookeeper>
<node index="1">
<host>examplel</host>
<port>2181</port>
</node>
<node index="2">
<host>example2</host>
<port>2181</port>
</node>
<node index="3">
<host>example3</host>
<port>2181</port>
</node>
</zookeeper>

Use ZooKeeper version 3.4.5 or later.

You can specify any existing ZooKeeper cluster and the system will use a directory on it for its own data (the directory is
specified when creating a replicatable table).

If ZooKeeper isn't set in the config file, you can't create replicated tables, and any existing replicated tables will be read-
only.

ZooKeeperis not usedin seELECT queries because replication does not affect the performance of serLEcT and queries run
just as fast as they do for non-replicated tables. When querying distributed replicated tables, ClickHouse behavior is
controlled by the settings max_replica_delay_for_distributed_queries
[#settings_settings_max_replica_delay_for_distributed_queries] and fallback_to_stale_replicas_for_distributed_queries
[#settings-settings-fallback_to_stale_replicas_for_distributed_queries].

For each INSERT query, approximately ten entries are added to ZooKeeper through several transactions. (To be more
precise, this is for each inserted block of data; an INSERT query contains one block or one block per

max_insert block size = 1048576 rows.) Thisleads to slightly longer latencies for TnsErRT compared to non-replicated
tables. But if you follow the recommendations to insert data in batches of no more than one INsSERT per second, it doesn't
create any problems. The entire ClickHouse cluster used for coordinating one ZooKeeper cluster has a total of several
hundred 1nSERTs per second. The throughput on data inserts (the number of rows per second) is just as high as for non-
replicated data.

For very large clusters, you can use different ZooKeeper clusters for different shards. However, this hasn't proven
necessary on the Yandex.Metrica cluster (approximately 300 servers).

Replication is asynchronous and multi-master. 1NSERT queries (as well as ALTER) can be sent to any available server. Data
is inserted on the server where the query is run, and then it is copied to the other servers. Because it is asynchronous,
recently inserted data appears on the other replicas with some latency. If part of the replicas are not available, the data is
written when they become available. If a replica is available, the latency is the amount of time it takes to transfer the block
of compressed data over the network.

By default, an INSERT query waits for confirmation of writing the data from only one replica. If the data was successfully
written to only one replica and the server with this replica ceases to exist, the stored data will be lost. Tp enable getting
confirmation of data writes from multiple replicas, use the insert quorum option.

Each block of data is written atomically. The INSERT query is divided into blocks up to max_insert block size =
1048576 rows. In other words, if the TNsERT query has less than 1048576 rows, it is made atomically.

Data blocks are deduplicated. For multiple writes of the same data block (data blocks of the same size containing the same
rows in the same order), the block is only written once. The reason for this is in case of network failures when the client
application doesn't know if the data was written to the DB, so the 1NSERT query can simply be repeated. It doesn't matter
which replica INSERTs were sent to with identical data. 1NsERTs are idempotent. Deduplication parameters are controlled
by merge_tree [#server_settings-merge_tree] server settings.

During replication, only the source data to insert is transferred over the network. Further data transformation (merging) is
coordinated and performed on all the replicas in the same way. This minimizes network usage, which means that
replication works well when replicas reside in different datacenters. (Note that duplicating data in different datacenters is
the main goal of replication.)

You can have any number of replicas of the same data. Yandex.Metrica uses double replication in production. Each server
uses RAID-5 or RAID-6, and RAID-10 in some cases. This is a relatively reliable and convenient solution.

The system monitors data synchronicity on replicas and is able to recover after a failure. Failover is automatic (for small
differences in data) or semi-automatic (when data differs too much, which may indicate a configuration error).

(]

Creating Replicated Tables
The rReplicated prefixisadded to the table engine name. For example: ReplicatedMergeTree .
Replicated*MergeTree parameters

e zoo path — The path tothe tablein ZooKeeper.

e replica name — Thereplica nameinZooKeeper.

Example:

CREATE TABLE table_name
(
EventDate DateTime,
CounterID UInt32,
UserID UInt32
) ENGINE = ReplicatedMergeTree('/clickhouse/tables/{layer}-{shard}/hits', '{replica}')
PARTITION BY toYYYYMM(EventDate)
ORDER BY (CounterID, EventDate, intHash32(UserID))
SAMPLE BY intHash32(UserID)

Example in deprecated syntax:

CREATE TABLE table_name
(
EventDate DateTime,
CounterID UInt32,
UserID UInt32
) ENGINE = ReplicatedMergeTree('/clickhouse/tables/{layer}-{shard}/hits', '{replica}', EventDate,
intHash32(UserID), (CounterID, EventDate, intHash32(UserID), EventTime), 8192)

As the example shows, these parameters can contain substitutions in curly brackets. The substituted values are taken from
the 'macros' section of the configuration file. Example:

<macros>
<layer>05</layer>
<shard>02</shard>
<replica>example05-02-1.yandex.ru</replica>
</macros>

The path to the table in ZooKeeper should be unique for each replicated table. Tables on different shards should have
different paths. In this case, the path consists of the following parts:

/clickhouse/tables/ isthe common prefix. We recommend using exactly this one.

{layer}-{shard} isthe shardidentifier. In this example it consists of two parts, since the Yandex.Metrica cluster uses bi-
level sharding. For most tasks, you can leave just the {shard} substitution, which will be expanded to the shard identifier.

hits isthe name of the node for the table in ZooKeeper. It is a good idea to make it the same as the table name. It is
defined explicitly, because in contrast to the table name, it doesn't change after a RENAME query.

The replica name identifies different replicas of the same table. You can use the server name for this, as in the example. The
name only needs to be unique within each shard.

You can define the parameters explicitly instead of using substitutions. This might be convenient for testing and for
configuring small clusters. However, you can't use distributed DDL queries (on cLUSTER) in this case.

When working with large clusters, we recommend using substitutions because they reduce the probability of error.

Runthe creaTE TABLE queryon each replica. This query creates a new replicated table, or adds a new replica to an
existing one.

If you add a new replica after the table already contains some data on other replicas, the data will be copied from the other
replicas to the new one after running the query. In other words, the new replica syncs itself with the others.

To delete areplica, run pror TARLE . However, only one replica is deleted - the one that resides on the server where you
run the query.

Recovery After Failures

If ZooKeeper is unavailable when a server starts, replicated tables switch to read-only mode. The system periodically
attempts to connect to ZooKeeper.

If ZooKeeper is unavailable during an INSERT, or an error occurs when interacting with ZooKeeper, an exception is thrown.

After connecting to ZooKeeper, the system checks whether the set of data in the local file system matches the expected
set of data (ZooKeeper stores this information). If there are minor inconsistencies, the system resolves them by syncing
data with the replicas.

If the system detects broken data parts (with the wrong size of files) or unrecognized parts (parts written to the file system
but not recorded in ZooKeeper), it moves them to the 'detached’ subdirectory (they are not deleted). Any missing parts are
copied from the replicas.

Note that ClickHouse does not perform any destructive actions such as automatically deleting a large amount of data.

When the server starts (or establishes a new session with ZooKeeper), it only checks the quantity and sizes of all files. If the
file sizes match but bytes have been changed somewhere in the middle, this is not detected immediately, but only when
attempting to read the data fora serLEcT query. The query throws an exception about a non-matching checksum or size of
a compressed block. In this case, data parts are added to the verification queue and copied from the replicas if necessary.

If the local set of data differs too much from the expected one, a safety mechanism is triggered. The server enters this in
the log and refuses to launch. The reason for this is that this case may indicate a configuration error, such as if areplicaon a
shard was accidentally configured like a replica on a different shard. However, the thresholds for this mechanism are set

fairly low, and this situation might occur during normal failure recovery. In this case, data is restored semi-automatically -
by "pushing a button".

To start recovery, createthe node /path to table/replica name/flags/force restore data in ZooKeeper with any
content, or run the command to restore all replicated tables:

sudo -u clickhouse touch /var/lib/clickhouse/flags/force_restore_ data

Then restart the server. On start, the server deletes these flags and starts recovery.

Recovery After Complete Data Loss
If all data and metadata disappeared from one of the servers, follow these steps for recovery:
1. Install ClickHouse on the server. Define substitutions correctly in the config file that contains the shard identifier and

replicas, if you use them.

2. If you had unreplicated tables that must be manually duplicated on the servers, copy their data from a replica (in the
directory /var/lib/clickhouse/data/db _name/table name/).

3. Copy table definitions located in /var/lib/clickhouse/metadata/ fromareplica. If a shard or replicaidentifier is
defined explicitly in the table definitions, correct it so that it corresponds to this replica. (Alternatively, start the server
and make all the aTTacH TABLE queriesthat should have beeninthe .sqlfilesin /var/lib/clickhouse/metadata/ .)

4. To start recovery, create the ZooKeeper node /path to table/replica name/flags/force restore data Withany
content, or run the command to restore all replicated tables: sudo -u clickhouse touch

/var/lib/clickhouse/flags/force restore data
Then start the server (restart, if it is already running). Data will be downloaded from replicas.

An alternative recovery option is to delete information about the lost replica from ZooKeeper
(/path _to table/replica name), then create the replica again as described in "Creating replicatable tables
[#table_engines-replication-creation_of_rep_tables]".

There is no restriction on network bandwidth during recovery. Keep this in mind if you are restoring many replicas at once.

(]

Converting from MergeTree to ReplicatedMergeTree
We use the term MergeTree torefer toall table enginesinthe MergeTree family,the sameasfor ReplicatedMergeTree.

If you had a MergeTree table that was manually replicated, you can convert it to a replicatable table. You might need to do
this if you have already collected a large amount of dataina MergeTree table and now you want to enable replication.

If the data differs on various replicas, first sync it, or delete this data on all the replicas except one.

Rename the existing MergeTree table, then create a rReplicatedMergeTree table with the old name. Move the data from
the old table to the 'detached' subdirectory inside the directory with the new table data

(/var/lib/clickhouse/data/db name/table name/). Thenrun ALTER TABLE ATTACH PARTITION onone of thereplicas to
add these data parts to the working set.

Converting from ReplicatedMergeTree to MergeTree

Create a MergeTree table with a different name. Move all the data from the directory with the rReplicatedMergeTree table
data to the new table's data directory. Then delete the ReplicatedMergeTree table and restart the server.

If youwant to get rid of a ReplicatedMergeTree table without launching the server:

e Delete the corresponding .sql filein the metadata directory (/var/lib/clickhouse/metadata/).

 Delete the corresponding path in ZooKeeper (/path to table/replica name).

After this, you can launch the server, create a MergeTree table, move the data to its directory, and then restart the server.

Recovery When Metadata in The ZooKeeper Cluster is Lost or Damaged

If the data in ZooKeeper was lost or damaged, you can save data by moving it to an unreplicated table as described above.

(]

Custom Partitioning Key

The partition key can be an expression from the table columns, or a tuple of such expressions (similar to the primary key).
The partition key can be omitted. When creating a table, specify the partition key in the ENGINE description with the new
syntax:

ENGINE [=] Name(...) [PARTITION BY expr] [ORDER BY expr] [SAMPLE BY expr] [SETTINGS name=value, ...]

For MergeTree tables, the partition expression is specified after pARTITION BY, the primary key after orpER BY , the
sampling key after saMpLE BY,and SETTINGS canspecify index granularity (optional; the default valueis 8192), as well
as other settings from MergeTreeSettings.h
[https://github.com/yandex/ClickHouse/blob/master/dbms/src/Storages/MergeTree/MergeTreeSettings.h]. The other
engine parameters are specified in parentheses after the engine name, as previously. Example:

ENGINE = ReplicatedCollapsingMergeTree('/clickhouse/tables/name', 'replical', Sign)
PARTITION BY (toMonday(StartDate), EventType)
ORDER BY (CounterID, StartDate, intHash32(UserID))
SAMPLE BY intHash32(UserID)

The traditional partitioning by month is expressed as tovyyyMM (date column) .
You can't convert an old-style table to a table with custom partitions (only via INSERT SELECT).

After this table is created, merge will only work for data parts that have the same value for the partitioning expression.
Note: This means that you shouldn't make overly granular partitions (more than about a thousand partitions), or SELECT
will perform poorly.

To specify a partition in ALTER PARTITION commands, specify the value of the partition expression (or a tuple). Constants
and constant expressions are supported. Example:

ALTER TABLE table DROP PARTITION (toMonday(today()), 1)

Deletes the partition for the current week with event type 1. The same is true for the OPTIMIZE query. To specify the only
partition in a non-partitioned table, specify PARTITION tuple() .

Note: For old-style tables, the partition can be specified either as a number 201710 orastring '201710' . The syntax for
the new style of tables is stricter with types (similar to the parser for the VALUES input format). In addition, ALTER TABLE
FREEZE PARTITION uses exact match for new-style tables (not prefix match).

Inthe system.parts table, the partition column specifies the value of the partition expression to use in ALTER queries
(if quotas are removed). The name column should specify the name of the data part that has a new format.

Old: 20140317 20140323 2 2 0 (minimum date - maximum date - minimum block number - maximum block number -
level).

Now: 201403 2 2 0 (partition ID - minimum block number - maximum block number - level).

https://github.com/yandex/ClickHouse/blob/master/dbms/src/Storages/MergeTree/MergeTreeSettings.h

The partition ID is its string identifier (human-readable, if possible) that is used for the names of data parts in the file
system and in ZooKeeper. You can specify it in ALTER queries in place of the partition key. Example: Partition key
toYYYYMM (EventDate) ; ALTER can specify either PARTITION 201710 Or PARTITION ID '201710'.

For more examples, see the tests 00502 custom partitioning local
[https://github.com/yandex/ClickHouse/blob/master/dbms/tests/queries/0_stateless/00502_custom_partitioning_local.
sql]and 00502 custom partitioning replicated zookeeper
[https://github.com/yandex/ClickHouse/blob/master/dbms/tests/queries/0_stateless/00502_custom_partitioning_replic
ated_zookeeper.sqll.

ReplacingMergeTree

The engine differs from MergeTree [#table_engines-mergetree] in that it removes duplicate entries with the same primary
key value.

Data deduplication occurs only during a merge. Merging occurs in the background at an unknown time, so you can't plan
for it. Some of the data may remain unprocessed. Although you can run an unscheduled merge using the opTIMIZE query,
don't count on using it, because the opriMIZE query will read and write a large amount of data.

Thus, ReplacingMergeTree is suitable for clearing out duplicate data in the background in order to save space, but it
doesn't guarantee the absence of duplicates.

Creating a Table

CREATE TABLE [IF NOT EXISTS] [db.]table name [ON CLUSTER cluster]

(
namel [typel] [DEFAULT |MATERIALIZED|ALIAS exprl],
name2 [type2] [DEFAULT |MATERIALIZED|ALIAS expr2],

) ENGINE = ReplacingMergeTree([ver])
[PARTITION BY expr]
[ORDER BY expr]

[SAMPLE BY expr]
[SETTINGS name=value, ...]

For a description of request parameters, seerequest description [#query_language-queries-create_table].
ReplacingMergeTree Parameters

¢ ver —column with version. Type uInt*, Date Or DateTime .Optional parameter.

When merging, ReplacingMergeTree from all the rows with the same primary key leaves only one: - Last in the
selection, if ver not set. - With the maximum version, if ver specified.

Query clauses

When creating a ReplacingMergeTree table the sameclauses [#table_engines-mergetree-configuringlare required, as
when creatinga MergeTree table.

https://github.com/yandex/ClickHouse/blob/master/dbms/tests/queries/0_stateless/00502_custom_partitioning_local.sql
https://github.com/yandex/ClickHouse/blob/master/dbms/tests/queries/0_stateless/00502_custom_partitioning_replicated_zookeeper.sql

/’ Deprecated Method for Creating a Table

Attention

Do not use this method in new projects and, if possible, switch the old projects to the method described above.

CREATE TABLE [IF NOT EXISTS] [db.]table name [ON CLUSTER cluster]

(
namel [typel] [DEFAULT|MATERIALIZED |ALIAS exprl],
name2 [type2] [DEFAULT|MATERIALIZED |ALIAS expr2],

) ENGINE [=] ReplacingMergeTree(date-column [, sampling expression], (primary, key), index granularity,
[ver])

All of the parameters excepting ver have the same meaningasin MergeTree.

o ver -column with the version. Optional parameter. For a description, see the text above.

1

SummingMergeTree

The engine inherits from MergeTree [#table_engines-mergetree]. The difference is that when merging data parts for
summingMergeTree tables ClickHouse replaces all the rows with the same primary key with one row which contains

summarized values for the columns with the numeric data type. If the primary key is composed in a way that a single key

value corresponds to large number of rows, this significantly reduces storage volume and speeds up data selection.

We recommend to use the engine together with MergeTree . Store complete datain MergeTree table, and use
summingMergeTree foOr aggregated data storing, for example, when preparing reports. Such an approach will prevent you
from losing valuable data due to an incorrectly composed primary key.

Creating a Table

CREATE TABLE [IF NOT EXISTS] [db.]table name [ON CLUSTER cluster]

(
namel [typel] [DEFAULT|MATERIALIZED|ALIAS exprl],
name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],

) ENGINE = MergeTree()
[PARTITION BY expr]

[ORDER BY expr]

[SAMPLE BY expr]

[SETTINGS name=value, ...]

For a description of request parameters, seerequest description [#query_language-queries-create_table].
Parameters of SummingMergeTree

e columns -a tuple with the names of columns where values will be summarized. Optional parameter. The columns
must be of a numeric type and must not be in the primary key.
If columns not specified, ClickHouse summarizes the values in all columns with a numeric data type that are not in the
primary key.

Query clauses

When creating a summingMergeTree table the same clauses [#table_engines-mergetree-configuring]are required, as when
creatinga MergeTree table.

2’ Deprecated Method for Creating a Table

Attention

Do not use this method in new projects and, if possible, switch the old projects to the method described above.

CREATE TABLE [IF NOT EXISTS] [db.]table name [ON CLUSTER cluster]

(
namel [typel] [DEFAULT|MATERIALIZED|ALIAS exprl],
name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],

) ENGINE [=] SummingMergeTree(date-column [, sampling expression], (primary, key), index granularity,
[columns])

All of the parameters excepting columns have the same meaningasin MergeTree.

e columns — tuple with names of columns values of which will be summarized. Optional parameter. For a description, see the text above.

Usage Example

Consider the following table:

CREATE TABLE summtt

(
key UInt32,
value UInt32

)
ENGINE = SummingMergeTree()
ORDER BY key

Insert data toit:

:) INSERT INTO summtt Values(1l,1),(1,2),(2,1)

ClickHouse may sum all the rows not completely (see below [#summary-data-processing]), so we use an aggregate
function sum and GroOUP BY clausein the query.

SELECT key, sum(value) FROM summtt GROUP BY key

r—key—T—sum(value)—
2 1|
1] 3 |

(

Data Processing

When data are inserted into a table, they are saved as-is. Clickhouse merges the inserted parts of data periodically and this
is when rows with the same primary key are summed and replaced with one for each resulting part of data.

ClickHouse can merge the data parts so that different resulting parts of data cat consist rows with the same primary key,
i.e. the summation will be incomplete. Therefore (sSELECT) an aggregate function sum() [#agg_function-sum]and Group
BY clause should be used in a query as described in the example above.

Common rules for summation

The values in the columns with the numeric data type are summarized. The set of columns is defined by the parameter

columns .

If the values were 0 in all of the columns for summation, the row is deleted.

If column is not in the primary key and is not summarized, an arbitrary value is selected from the existing ones.
The values are not summarized for columns in the primary key.

The Summation in the AggregateFunction Columns

For columns of AggregateFunction type [#data_type-aggregatefunction] ClickHouse behaves as AggregatingMergeTree
[#table_engine-aggregatingmergetree] engine aggregating according to the function.

Nested Structures
Table can have nested data structures that are processed in a special way.
If the name of a nested table ends with Map and it contains at least two columns that meet the following criteria:

o thefirstcolumnisnumeric (*Int*, Date, DateTime) ,let'scallit key,

o theother columns are arithmetic (*Int*, Float32/64) ,let'scallit (values...),

then this nested table is interpreted as a mapping of key => (values...) ,and when merging its rows, the elements of
two data sets are merged by key with a summation of the corresponding (values...) .

Examples:
[(1, 100)] + [(2, 150)] -> [(1, 100), (2, 150)]
[(1, 100)] + [(1, 150)] -> [(1, 250)]
[(1, 100)] + [(1, 150), (2, 150)] -> [(1, 250), (2, 150)]
[(1, 100), (2, 150)] + [(1, -100)] -> [(2, 150)]

When requesting data, use the sumMap(key, value) [#agg_function-summary] function for aggregation of Map .
For nested data structure, you do not need to specify its columns in the tuple of columns for summation.

i

AggregatingMergeTree

The engine inherits from MergeTree [#table_engines-mergetree], altering the logic for data parts merging. ClickHouse
replaces all rows with the same primary key with a single row (within a one data part) that stores a combination of states of
aggregate functions.

You canuse AggregatingMergeTree tables forincremental data aggregation, including for aggregated materialized views.
The engine processes all columns with AggregateFunction [#data_type-aggregatefunction] type.

Itis appropriate to use AggregatingMergeTree if it reduces the number of rows by orders.

Creating a Table

CREATE TABLE [IF NOT EXISTS] [db.]table name [ON CLUSTER cluster]
(

namel [typel] [DEFAULT |MATERIALIZED|ALIAS exprl],

name2 [type2] [DEFAULT |MATERIALIZED|ALIAS expr2],

) ENGINE = AggregatingMergeTree()
[PARTITION BY expr]

[ORDER BY expr]

[SAMPLE BY expr]

[SETTINGS name=value, ...]

For a description of request parameters, seerequest description [#query_language-queries-create_table].
Query clauses

When creating a ReplacingMergeTree table the sameclauses [#table_engines-mergetree-configuring]are required, as
when creating a MergeTree table.

#' Deprecated Method for Creating a Table

A\ Attention

Do not use this method in new projects and, if possible, switch the old projects to the method described above.

CREATE TABLE [IF NOT EXISTS] [db.]table name [ON CLUSTER cluster]

(
namel [typel] [DEFAULT |MATERIALIZED |ALIAS exprl],
name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],

) ENGINE [=] AggregatingMergeTree(date-column [, sampling_expression], (primary, key), index_ granularity)

All of the parameters have the same meaning asin MergeTree.

SELECT and INSERT

Toinsert data, use INSERT SELECT [#queries-insert-select] query with aggregate -state - functions.

When selecting data from AggregatingMergeTree table,use GroUP By clause and the same aggregate functions as when
inserting data, but using -Merge suffix.

In the results of seLECT query the values of AggregateFunction type have implementation-specific binary
representation for all of the ClickHouse output formats. If dump data into, for example, Tabseparated format with
SELECT query then this dump can be loaded back using 1NSERT query.

Example of an Aggregated Materialized View
AggregatingMergeTree Mmaterialized view that watchesthe test.visits table:

CREATE MATERIALIZED VIEW test.basic
ENGINE = AggregatingMergeTree() PARTITION BY toYYYYMM(StartDate) ORDER BY (CounterID, StartDate)
AS SELECT
CounterlID,
StartDate,
sumState(Sign) AS Visits,
unigState(UserID) AS Users
FROM test.visits
GROUP BY CounterID, StartDate;

Inserting of datainto the test.visits table.

INSERT INTO test.visits

The data are inserted in both the table and view test.basic that will perform the aggregation.

To get the aggregated data, we need to execute a query such as SELECT ... GROUP BY ... fromtheview test.basic:

SELECT
StartDate,
sumMerge(Visits) AS Visits,
unigMerge(Users) AS Users
FROM test.basic
GROUP BY StartDate
ORDER BY StartDate;

CollapsingMergeTree

The engine inherits from MergeTree [#table_engines-mergetree] and adds the logic of rows collapsing to data parts merge
algorithm.

CollapsingMergeTree asynchronously deletes (collapses) pairs of rows if all of the fields in a row are equivalent excepting
the particular field sign whichcanhave 1 and -1 values. Rows without a pair are kept. For more details see the
Collapsing [#collapsingmergetree-collapsing] section of the document.

The engine may significantly reduce the volume of storage and increase efficiency of seLECT query as a consequence.

Creating a Table

CREATE TABLE [IF NOT EXISTS] [db.]table name [ON CLUSTER cluster]

(
namel [typel] [DEFAULT |MATERIALIZED|ALIAS exprl],
name2 [type2] [DEFAULT |MATERIALIZED|ALIAS expr2],

) ENGINE = CollapsingMergeTree(sign)
[PARTITION BY expr]
[ORDER BY expr]

[SAMPLE BY expr]
[SETTINGS name=value, ...]

For a description of request parameters, seerequest description [#query_language-queries-create_table].
CollapsingMergeTree Parameters

¢ sign —Name of the column with the type of row: 1 isa "state" row, -1 isa "cancel" row.

Column data type — 1nts8.
Query clauses

When creating a collapsingMergeTree table, the sameclauses [#table_engines-mergetree-configuring]are required, as
when creating a MergeTree table.

/’ Deprecated Method for Creating a Table

Attention

Do not use this method in new projects and, if possible, switch the old projects to the method described above.

CREATE TABLE [IF NOT EXISTS] [db.]table name [ON CLUSTER cluster]

(
namel [typel] [DEFAULT|MATERIALIZED |ALIAS exprl],
name2 [type2] [DEFAULT|MATERIALIZED |ALIAS expr2],

) ENGINE [=] CollapsingMergeTree(date-column [, sampling expression], (primary, key), index granularity,
sign)
All of the parameters excepting sign have the same meaningasin MergeTree.

o sign — Name of the column with the type of row: 1 — "state"row, -1 — "cancel" row.

Column Data Type — 1nts8.

Collapsing
Data

Consider the situation where you need to save continually changing data for some object. It sounds logical to have one row
for an object and update it at any change, but update operation is expensive and slow for DBMS because it requires
rewriting of the data in the storage. If you need to write data quickly, update not acceptable, but you can write the changes
of an object sequentially as follows.

Use the particular column sign whenwritingrow. If sign = 1 it means that the row is a state of an object, let's call it
"state" row.If sign = -1 it means the cancellation of the state of an object with the same attributes, let's call it "cancel"
row.

For example, we want to calculate how much pages users checked at some site and how long they were there. At some
moment of time we write the following row with the state of user activity:

———————UserID—T1—PageViews—rT—Duration——Sign—
| 4324182021466249494 | 5 | 146 | 1|

L 1 1 1 1

At some moment later we register the change of user activity and write it with the following two rows.

—————————UserID—T1—PageViews—rt—Duration——Sign—
| 4324182021466249494 | 5 | 146 | -1 |
| 4324182021466249494 | 6 | 185 | 1

The first row cancels the previous state of the object (user). It should copy all of the fields of the canceled state excepting
Sign.

The second row contains the current state.

As we need only the last state of user activity, the rows

r—————————————UserID—T—PageViews—TDuration——Sign—
| 4324182021466249494 | 5 | 146 | 1 |
| 4324182021466249494 | 5 | 146 | -1 |

can be deleted collapsing the invalid (old) state of an object. collapsingMergeTree does this while merging of the data
parts.

Why we need 2 rows for each change read in the "Algorithm" paragraph.
Peculiar properties of such approach

1. The program that writes the data should remember the state of an object to be able to cancel it. "Cancel" string should
be the copy of "state" string with the opposite sign .Itincreases the initial size of storage but allows to write the data
quickly.

2. Long growing arrays in columns reduce the efficiency of the engine due to load for writing. The more straightforward
data, the higher efficiency.

3. seLECT results depend strongly on the consistency of object changes history. Be accurate when preparing data for
inserting. You can get unpredictable results in inconsistent data, for example, negative values for non-negative
metrics such as session depth.

Algorithm

When ClickHouse merges data parts, each group of consecutive rows with the same primary key is reduced to not more
than two rows, one with sign = 1 ("state"row)and another with sign = -1 ("cancel" row). In other words, entries
collapse.

For each resulting data part ClickHouse saves:

1. Thefirst "cancel" and the last "state" rows, if the number of "state" and "cancel" rows matches.
. The last "state" row, if there is one more "state" row than "cancel" rows.

. Thefirst "cancel" row, if there is one more "cancel" row than "state" rows.

A W N

. None of the rows, in all other cases.

The merge continues, but ClickHouse treats this situation as a logical error and records it in the server log. This error
can occur if the same data were inserted more than once.

Thus, collapsing should not change the results of calculating statistics. Changes gradually collapsed so that in the end only
the last state of almost every object left.

The sign isrequired because the merging algorithm doesn't guarantee that all of the rows with the same primary key will
be in the same resulting data part and even on the same physical server. ClickHouse process seLECT queries with multiple
threads, and it can not predict the order of rows in the result. The aggregation is required if there is a need to get
completely "collapsed" data from cCollapsingMergeTree table.

To finalize collapsing write a query with Grour BY clause and aggregate functions that account for the sign. For example,
to calculate quantity, use sum(sign) instead of count () . To calculate the sum of something, use sum(sign * x) instead
of sum(x) ,andsoon,andalsoadd HAVING sum(Sign) > 0.

The aggregates count, sum and avg could be calculated this way. The aggregate unig could be calculated if an object
has at list one state not collapsed. The aggregates min and max could not be calculated because collapsingMergeTree
does not save values history of the collapsed states.

If you need to extract data without aggregation (for example, to check whether rows are present whose newest values
match certain conditions), you can use the r1naL modifier for the FroM clause. This approach is significantly less efficient.
Example of use

Example data:

r————————————UserID—T1—PageViews—TDuration——Sign—

| 4324182021466249494 | 5 | 146 | 1|
| 4324182021466249494 | 5 | 146 | -1 |
| 4324182021466249494 | 6 | 185 | 1|
L 1 1 1 1

Creation of the table:

CREATE TABLE UAct

(
UserID UInté64,
PageViews UIntS§,
Duration UIntS8,
Sign Int8

)
ENGINE = CollapsingMergeTree(Sign)
ORDER BY UserID

Insertion of the data:

INSERT INTO UAct VALUES (4324182021466249494, 5, 146, 1)

INSERT INTO UAct VALUES (4324182021466249494, 5, 146, -1),(4324182021466249494, 6, 185, 1)

We use two INSERT queries to create two different data parts. If we insert the data with one query ClickHouse creates one
data part and will not perform any merge ever.

Getting the data:

SELECT * FROM UAct

r————————UserID—TPageViews—Tt—Duration—T—Sign—
| 4324182021466249494 | 5 | 146 | 10
| 4324182021466249494 | 6 | 185 | 1

r————————————UserID—T—PageViews—TDuration——Sign—
| 4324182021466249494 | 5 | 146 | 1

L 1 1 1 1

What do we see and where is collapsing? With two INSERT queries, we created 2 data parts. The seLECT query was
performed in 2 threads, and we got a random order of rows. Collapsing not occurred because there was no merge of the
data parts yet. ClickHouse merges data part in an unknown moment of time which we can not predict.

Thus we need aggregation:

SELECT
UserlID,
sum(PageViews * Sign) AS PageViews,
sum(Duration * Sign) AS Duration
FROM UAct
GROUP BY UserID
HAVING sum(Sign) > 0

—————————UserID—T1—PageViews—rt—Duration—
| 4324182021466249494 | 6 | 185 |

If we do not need aggregation and want to force collapsing, we can use rinal, modifier for From clause.

SELECT * FROM UAct FINAL

r————————————UserID—T1—PageViews—TDuration——Sign—
| 4324182021466249494 | 6 | 185 | 1|

This way of selecting the data is very inefficient. Don't use it for big tables.

(1

GraphiteMergeTree

This engine is designed for rollup (thinning and aggregating/averaging) Graphite
[http://graphite.readthedocs.io/en/latest/index.html] data. It may be helpful to developers who want to use ClickHouse as
a data store for Graphite.

You can use any ClickHouse table engine to store the Graphite data if you don't need rollup, but if you need a rollup use
GraphiteMergeTree . The engine reduces the volume of storage and increases the efficiency of queries from Graphite.

The engine inherits properties from MergeTree [#table_engines-mergetree].

Creating a Table

CREATE TABLE [IF NOT EXISTS] [db.]table name [ON CLUSTER cluster]

(
Path String,
Time DateTime,
Value <Numeric_type>,
Version <Numeric_type>

) ENGINE = GraphiteMergeTree(config section)
[PARTITION BY expr]
[ORDER BY expr]

[SAMPLE BY expr]
[SETTINGS name=value, ...]

For a description of request parameters, seerequest description [#query_language-queries-create_table].
A table for the Graphite date should have the following columns:

o Column with the metric name (Graphite sensor). Data type: String.

o Column with the time for measuring the metric. Data type: DateTime .

o Column with the value of the metric. Data type: any numeric.

o Column with the version of the metric with the same name and time of measurement. Data type: any numeric.

ClickHouse saves the rows with the highest version or the last written if versions are the same. Other rows are deleted
during the merge of data parts.

The names of these columns should be set in the rollup configuration.
GraphiteMergeTree parameters

e config section — Name of the section in the configuration file, where are the rules of rollup set.
Query clauses

When creating a GraphiteMergeTree table, the sameclauses [#table_engines-mergetree-configuring] are required, as
when creating a MergeTree table.

http://graphite.readthedocs.io/en/latest/index.html

/’ Deprecated Method for Creating a Table

Attention

Do not use this method in new projects and, if possible, switch the old projects to the method described above.

CREATE TABLE [IF NOT EXISTS] [db.]table name [ON CLUSTER cluster]
(

EventDate Date,

Path String,

Time DateTime,

Value <Numeric_type>,

Version <Numeric_ type>

) ENGINE [=] GraphiteMergeTree(date-column [, sampling expression], (primary, key), index_granularity,
config_section)

All of the parameters excepting config section havethe same meaningasin MergeTree.

e config section — Name of the section in the configuration file, where are the rules of rollup set.

Rollup configuration

The settings for rollup are defined by thegraphite_rollup [#server_settings-graphite_rollup] parameter in the server
configuration. The name of the parameter could be any. You can create several configurations and use them for different
tables.

Rollup configuration structure:

required-columns
pattern

regexp

function

age + precision
pattern

default
function
age + precision

When processing a row, ClickHouse checks the rules in the pattern section. If the metric name matches the regexp, the
rules from the pattern section are applied; otherwise, the rules from the default section are used.

The rules are defined with fields function and age + precision.
Fields for pattern and default sections:

e regexp — A pattern for the metric name.

e age — The minimum age of the data in seconds.

e precision —How precisely to define the age of the data in seconds.

e function — The name of the aggregating function to apply to data whose age falls within the range [age, age +
precision] .

The required-columns :

e path column name — Column with the metric name (Graphite sensor).
e time column name — Column with the time for measuring the metric.

e value column name — Column with the value of the metric at the time setin time column name.

e version column name — Column with the version timestamp of the metric with the same name and time remains in
the database.

Example of settings:

<graphite rollup>
<path_column_name>Path</path_column_name>
<time_column_name>Time</time_column_name>
<value_column_name>Value</value_ column_name>
<version_column_name>Version</version_ column_ name>
<pattern>
<regexp>click_cost</regexp>
<function>any</function>
<retention>
<age>0</age>
<precision>5</precision>
</retention>
<retention>
<age>86400</age>
<precision>60</precision>
</retention>
</pattern>
<default>
<function>max</function>
<retention>
<age>0</age>
<precision>60</precision>
</retention>
<retention>
<age>3600</age>
<precision>300</precision>
</retention>
<retention>
<age>86400</age>
<precision>3600</precision>
</retention>
</default>
</graphite_ rollup>

TinyLog

The simplest table engine, which stores data on a disk. Each column is stored in a separate compressed file. When writing,
datais appended to the end of files.

Concurrent data access is not restricted in any way:

o |If you are simultaneously reading from a table and writing to it in a different query, the read operation will complete
with an error.

o If you are writing to a table in multiple queries simultaneously, the data will be broken.
The typical way to use this table is write-once: first just write the data one time, then read it as many times as needed.
Queries are executed in a single stream. In other words, this engine is intended for relatively small tables (recommended up
to 1,000,000 rows). It makes sense to use this table engine if you have many small tables, since it is simpler than the Log
engine (fewer files need to be opened). The situation when you have a large number of small tables guarantees poor

productivity, but may already be used when working with another DBMS, and you may find it easier to switch to using
TinyLog types of tables. Indexes are not supported.

In Yandex.Metrica, TinyLog tables are used for intermediary data that is processed in small batches.

Log

Log differs from TinyLog in that a small file of "marks" resides with the column files. These marks are written on every data

block and contain offsets that indicate where to start reading the file in order to skip the specified number of rows. This
makes it possible to read table data in multiple threads. For concurrent data access, the read operations can be performed
simultaneously, while write operations block reads and each other. The Log engine does not support indexes. Similarly, if
writing to a table failed, the table is broken, and reading from it returns an error. The Log engine is appropriate for
temporary data, write-once tables, and for testing or demonstration purposes.

Memory

The Memory engine stores data in RAM, in uncompressed form. Data is stored in exactly the same form as it is received
when read. In other words, reading from this table is completely free. Concurrent data access is synchronized. Locks are
short: read and write operations don't block each other. Indexes are not supported. Reading is parallelized. Maximal
productivity (over 10 GB/sec) is reached on simple queries, because there is no reading from the disk, decompressing, or
deserializing data. (We should note that in many cases, the productivity of the MergeTree engine is almost as high.) When
restarting a server, data disappears from the table and the table becomes empty. Normally, using this table engine is not
justified. Howeuver, it can be used for tests, and for tasks where maximum speed is required on a relatively small number of
rows (up to approximately 100,000,000).

The Memory engine is used by the system for temporary tables with external query data (see the section "External data for
processing a query"), and for implementing GLOBAL IN (see the section "IN operators").

Buffer

Buffers the data to write in RAM, periodically flushing it to another table. During the read operation, data is read from the
buffer and the other table simultaneously.

Buffer(database, table, num layers, min time, max time, min rows, max_rows, min bytes, max bytes)

Engine parameters:database, table — The table to flush data to. Instead of the database name, you can use a constant
expression that returns a string.num_layers — Parallelism layer. Physically, the table will be represented as 'num_layers' of
independent buffers. Recommended value: 16.min_time, max_time, min_rows, max_rows, min_bytes, and max_bytes are
conditions for flushing data from the buffer.

Datais flushed from the buffer and written to the destination table if all the 'min' conditions or at least one 'max' condition
are met.min_time, max_time — Condition for the time in seconds from the moment of the first write to the buffer.min_rows,
max_rows — Condition for the number of rows in the buffer.min_bytes, max_bytes — Condition for the number of bytes in
the buffer.

During the write operation, data is inserted to a 'num_layers' number of random buffers. Or, if the data part to insert is
large enough (greater than 'max_rows' or 'max_bytes'), it is written directly to the destination table, omitting the buffer.

The conditions for flushing the data are calculated separately for each of the 'num_layers' buffers. For example, if
num_layers =16 and max_bytes =100000000, the maximum RAM consumptionis 1.6 GB.

Example:

CREATE TABLE merge.hits_buffer AS merge.hits ENGINE = Buffer(merge, hits, 16, 10, 100, 10000, 1000000,
10000000, 100000000)

Creating a 'merge.hits_buffer' table with the same structure as 'merge.hits' and using the Buffer engine. When writing to
this table, data is buffered in RAM and later written to the 'merge.hits' table. 16 buffers are created. The data in each of
them is flushed if either 100 seconds have passed, or one million rows have been written, or 100 MB of data have been
written; or if simultaneously 10 seconds have passed and 10,000 rows and 10 MB of data have been written. For example,
if just one row has been written, after 100 seconds it will be flushed, no matter what. But if many rows have been written,
the data will be flushed sooner.

When the server is stopped, with DROP TABLE or DETACH TABLE, buffer data is also flushed to the destination table.

You can set empty strings in single quotation marks for the database and table name. This indicates the absence of a
destination table. In this case, when the data flush conditions are reached, the buffer is simply cleared. This may be useful
for keeping a window of data in memory.

When reading from a Buffer table, data is processed both from the buffer and from the destination table (if there is one).
Note that the Buffer tables does not support an index. In other words, data in the buffer is fully scanned, which might be
slow for large buffers. (For data in a subordinate table, the index that it supports will be used.)

If the set of columns in the Buffer table doesn't match the set of columns in a subordinate table, a subset of columns that
exist in both tables is inserted.

If the types don't match for one of the columns in the Buffer table and a subordinate table, an error message is entered in
the server log and the buffer is cleared. The same thing happens if the subordinate table doesn't exist when the buffer is
flushed.

If you need to run ALTER for a subordinate table and the Buffer table, we recommend first deleting the Buffer table,
running ALTER for the subordinate table, then creating the Buffer table again.

If the server is restarted abnormally, the data in the buffer is lost.

PREWHERE, FINAL and SAMPLE do not work correctly for Buffer tables. These conditions are passed to the destination
table, but are not used for processing data in the buffer. Because of this, we recommend only using the Buffer table for
writing, while reading from the destination table.

When adding data to a Buffer, one of the buffers is locked. This causes delays if a read operation is simultaneously being
performed from the table.

Data that is inserted to a Buffer table may end up in the subordinate table in a different order and in different blocks.
Because of this, a Buffer table is difficult to use for writing to a CollapsingMergeTree correctly. To avoid problems, you can
set 'num_layers'to 1.

If the destination table is replicated, some expected characteristics of replicated tables are lost when writing to a Buffer
table. The random changes to the order of rows and sizes of data parts cause data deduplication to quit working, which
means it is not possible to have a reliable 'exactly once' write to replicated tables.

Due to these disadvantages, we can only recommend using a Buffer table in rare cases.

A Buffer table is used when too many INSERTSs are received from a large number of servers over a unit of time and data
can't be buffered before insertion, which means the INSERTs can't run fast enough.

Note that it doesn't make sense to insert data one row at a time, even for Buffer tables. This will only produce a speed of a
few thousand rows per second, while inserting larger blocks of data can produce over a million rows per second (see the
section "Performance").

(]

External Data for Query Processing

ClickHouse allows sending a server the data that is needed for processing a query, together with a SELECT query. This data
is put in a temporary table (see the section "Temporary tables") and can be used in the query (for example, in IN operators).

For example, if you have a text file with important user identifiers, you can upload it to the server along with a query that
uses filtration by this list.

If you need to run more than one query with a large volume of external data, don't use this feature. It is better to upload the
data to the DB ahead of time.

External data can be uploaded using the command-line client (in non-interactive mode), or using the HTTP interface.

In the command-line client, you can specify a parameters section in the format

--external --file=... [--name=...] [--format=...] [--types=...|--structure=...]

You may have multiple sections like this, for the number of tables being transmitted.

--external - Marks the beginning of a clause.--file - Path to the file with the table dump, or -, which refers to stdin. Only a
single table can be retrieved from stdin.

The following parameters are optional: --name- Name of the table. If omitted, _data is used.--format - Data format in the
file. If omitted, TabSeparated is used.

One of the following parameters is required:--types - A list of comma-separated column types. For example:
UInt64,String. The columns willbe named _1,_2,...--structure- The table structure in the format userId UInt64, URL
string . Defines the column names and types.

The files specified in 'file’ will be parsed by the format specified in 'format', using the data types specified in 'types' or
'structure’. The table will be uploaded to the server and accessible there as a temporary table with the name in ‘name’.

Examples:
echo -ne "1\n2\n3\n" | clickhouse-client --query="SELECT count() FROM test.visits WHERE TraficSourceID IN
_data" --external --file=- --types=Int8
849897
cat /etc/passwd | sed 's/:/\t/g' | clickhouse-client --query="SELECT shell, count() AS c FROM passwd GROUP BY
shell ORDER BY c DESC" --external --file=- --name=passwd --structure='login String, unused String, uid
UIntl6, gid UIntl6, comment String, home String, shell String'
/bin/sh 20
/bin/false 5
/bin/bash 4
/usr/sbin/nologin 1
/bin/sync 1

When using the HTTP interface, external data is passed in the multipart/form-data format. Each table is transmitted as a
separate file. The table name is taken from the file name. The 'query_string' is passed the parameters 'name_format',
'name_types', and 'name_structure’, where 'name' is the name of the table that these parameters correspond to. The
meaning of the parameters is the same as when using the command-line client.

Example:

cat /etc/passwd | sed 's/:/\t/g' > passwd.tsv

curl -F 'passwd=@passwd.tsv;' 'http://localhost:8123/?
query=SELECT+shell, +count () +AS+c+FROM+passwd+GROUP+BY+shell+ORDER+BY+c+DESC&passwd_structure=login+String, tunuse

/bin/sh 20

/bin/false 5
/bin/bash 4
/usr/sbin/nologin 1
/bin/sync 1

For distributed query processing, the temporary tables are sent to all the remote servers.

i

Distributed

The Distributed engine does not store data itself, but allows distributed query processing on multiple servers. Reading is
automatically parallelized. During a read, the table indexes on remote servers are used, if there are any. The Distributed

engine accepts parameters: the cluster name in the server's config file, the name of a remote database, the name of a
remote table, and (optionally) a sharding key. Example:

Distributed(logs, default, hits[, sharding_key])

Data will be read from all servers in the 'logs' cluster, from the default.hits table located on every server in the cluster. Data
is not only read, but is partially processed on the remote servers (to the extent that this is possible). For example, for a
query with GROUP BY, data will be aggregated on remote servers, and the intermediate states of aggregate functions will
be sent to the requestor server. Then data will be further aggregated.

Instead of the database name, you can use a constant expression that returns a string. For example: currentDatabase().
logs — The cluster name in the server's config file.

Clusters are set like this:

<remote_servers>
<logs>
<shard>
<!-- Optional. Shard weight when writing data. Default: 1. -->
<weight>1</weight>
<!-- Optional. Whether to write data to just one of the replicas. Default: false (write data to
all replicas). -->
<internal replication>false</internal replication>
<replica>
<host>example01-01-1</host>
<port>9000</port>
</replica>
<replica>
<host>example01-01-2</host>
<port>9000</port>
</replica>
</shard>
<shard>
<weight>2</weight>
<internal replication>false</internal replication>
<replica>
<host>example01-02-1</host>
<port>9000</port>
</replica>
<replica>
<host>example01-02-2</host>
<secure>1</secure>
<port>9440</port>
</replica>
</shard>
</logs>
</remote_servers>

Here a cluster is defined with the name 'logs' that consists of two shards, each of which contains two replicas. Shards refer
to the servers that contain different parts of the data (in order to read all the data, you must access all the shards). Replicas
are duplicating servers (in order to read all the data, you can access the data on any one of the replicas).

Cluster names must not contain dots.
The parameters host , port ,and optionally user, password, secure, compression are specified for each server:

e host — Theaddress of the remote server. You can use either the domain or the IPv4 or IPv6 address. If you specify
the domain, the server makes a DNS request when it starts, and the result is stored as long as the server is running.
If the DNS request fails, the server doesn't start. If you change the DNS record, restart the server.

e port — The TCP port for messenger activity (‘tcp_port' in the config, usually set to 9000). Do not confuse it with
http_port.

e user — Name of the user for connecting to a remote server. Default value: default. This user must have access to
connect to the specified server. Access is configured in the users.xml file. For more information, see the section

"Access rights".
e password - The password for connecting to a remote server (not masked). Default value: empty string.

e secure -Use sslfor connection, usually you also should define port =9440. Server should listen on 9440 and
have correct certificates.

e compression - Use datacompression. Default value: true.

When specifying replicas, one of the available replicas will be selected for each of the shards when reading. You can
configure the algorithm for load balancing (the preference for which replica to access) - see the 'load_balancing' setting. If
the connection with the server is not established, there will be an attempt to connect with a short timeout. If the
connection failed, the next replica will be selected, and so on for all the replicas. If the connection attempt failed for all the
replicas, the attempt will be repeated the same way, several times. This works in favor of resiliency, but does not provide
complete fault tolerance: a remote server might accept the connection, but might not work, or work poorly.

You can specify just one of the shards (in this case, query processing should be called remote, rather than distributed) or
up to any number of shards. In each shard, you can specify from one to any number of replicas. You can specify a different
number of replicas for each shard.

You can specify as many clusters as you wish in the configuration.
To view your clusters, use the 'system.clusters' table.

The Distributed engine allows working with a cluster like a local server. However, the cluster is inextensible: you must write
its configuration in the server config file (even better, for all the cluster's servers).

There is no support for Distributed tables that look at other Distributed tables (except in cases when a Distributed table
only has one shard). As an alternative, make the Distributed table look at the "final" tables.

The Distributed engine requires writing clusters to the config file. Clusters from the config file are updated on the fly,
without restarting the server. If you need to send a query to an unknown set of shards and replicas each time, you don't
need to create a Distributed table - use the 'remote’ table function instead. See the section "Table functions".

There are two methods for writing data to a cluster:

First, you can define which servers to write which data to, and perform the write directly on each shard. In other words,
perform INSERT in the tables that the distributed table "looks at". This is the most flexible solution - you can use any
sharding scheme, which could be non-trivial due to the requirements of the subject area. This is also the most optimal
solution, since data can be written to different shards completely independently.

Second, you can perform INSERT in a Distributed table. In this case, the table will distribute the inserted data across
servers itself. In order to write to a Distributed table, it must have a sharding key set (the last parameter). In addition, if
there is only one shard, the write operation works without specifying the sharding key, since it doesn't have any meaning in
this case.

Each shard can have a weight defined in the config file. By default, the weight is equal to one. Data is distributed across
shards in the amount proportional to the shard weight. For example, if there are two shards and the first has a weight of 9
while the second has a weight of 10, the first will be sent 9 / 19 parts of the rows, and the second will be sent 10/ 19.

Each shard can have the 'internal_replication' parameter defined in the config file.

If this parameter is set to 'true’, the write operation selects the first healthy replica and writes data to it. Use this alternative
if the Distributed table "looks at" replicated tables. In other words, if the table where data will be written is going to
replicate them itself.

If itis set to 'false' (the default), data is written to all replicas. In essence, this means that the Distributed table replicates
dataitself. This is worse than using replicated tables, because the consistency of replicas is not checked, and over time
they will contain slightly different data.

To select the shard that a row of data is sent to, the sharding expression is analyzed, and its remainder is taken from

dividing it by the total weight of the shards. The row is sent to the shard that corresponds to the half-interval of the
remainders from 'prev_weight' to 'prev_weights + weight', where 'prev_weights' is the total weight of the shards with the
smallest number, and 'weight' is the weight of this shard. For example, if there are two shards, and the first has a weight of
9 while the second has a weight of 10, the row will be sent to the first shard for the remainders from the range [0, 9), and to
the second for the remainders from the range [9, 19).

The sharding expression can be any expression from constants and table columns that returns an integer. For example,
you can use the expression 'rand()' for random distribution of data, or 'UserID' for distribution by the remainder from
dividing the user's ID (then the data of a single user will reside on a single shard, which simplifies running IN and JOIN by
users). If one of the columns is not distributed evenly enough, you can wrap it in a hash function: intHash64(UserID).

A simple remainder from division is a limited solution for sharding and isn't always appropriate. It works for medium and
large volumes of data (dozens of servers), but not for very large volumes of data (hundreds of servers or more). In the latter
case, use the sharding scheme required by the subject area, rather than using entries in Distributed tables.

SELECT queries are sent to all the shards, and work regardless of how data is distributed across the shards (they can be
distributed completely randomly). When you add a new shard, you don't have to transfer the old data to it. You can write
new data with a heavier weight - the data will be distributed slightly unevenly, but queries will work correctly and
efficiently.

You should be concerned about the sharding scheme in the following cases:

o Queries are used that require joining data (IN or JOIN) by a specific key. If data is sharded by this key, you can use local
IN or JOIN instead of GLOBAL IN or GLOBAL JOIN, which is much more efficient.

o Alarge number of servers is used (hundreds or more) with a large number of small queries (queries of individual clients
- websites, advertisers, or partners). In order for the small queries to not affect the entire cluster, it makes sense to
locate data for a single client on a single shard. Alternatively, as we've done in Yandex.Metrica, you can set up bi-level
sharding: divide the entire cluster into "layers", where a layer may consist of multiple shards. Data for a single client is
located on a single layer, but shards can be added to a layer as necessary, and data is randomly distributed within
them. Distributed tables are created for each layer, and a single shared distributed table is created for global queries.

Datais written asynchronously. For an INSERT to a Distributed table, the data block is just written to the local file system.
The datais sent to the remote servers in the background as soon as possible. You should check whether data is sent
successfully by checking the list of files (data waiting to be sent) in the table directory:
/var/lib/clickhouse/data/database/table/.

If the server ceased to exist or had a rough restart (for example, after a device failure) after an INSERT to a Distributed
table, the inserted data might be lost. If a damaged data part is detected in the table directory, it is transferred to the
'broken’' subdirectory and no longer used.

When the max_parallel_replicas option is enabled, query processing is parallelized across all replicas within a single shard.
For more information, see the section "Settings, max_parallel_replicas".

(]

Dictionary

The pictionary engine displays the dictionary [#dicts-external_dicts] data as a ClickHouse table.

As an example, consider a dictionary of products with the following configuration:

<dictionaries>
<dictionary>
<name>products</name>
<source>
<odbc>
<table>products</table>
<connection_string>DSN=some-db-server</connection_string>
</odbc>
</source>
<lifetime>
<min>300</min>
<max>360</max>
</lifetime>
<layout>
<flat/>
</layout>
<structure>
<id>
<name>product_id</name>
</id>
<attribute>
<name>title</name>
<type>String</type>
<null_value></null_value>
</attribute>
</structure>
</dictionary>
</dictionaries>

Query the dictionary data:

select name, type, key, attribute.names, attribute.types, bytes_allocated, element_count,source from
system.dictionaries where name = 'products';

SELECT
name,
type,
key,
attribute.names,
attribute.types,
bytes_allocated,
element_count,
source
FROM system.dictionaries
WHERE name = 'products'

rname———T—type—T—key——T—attribute.names—rt—attribute.types—T—bytes_allocated—T—element_count—T—source

| products | Flat | UInt64 | ['title')] | ['String'] | 23065376 | 175032 | ODBC:
.products |
L 1 1 1 1 1 1 1

You can use the dictGet* [#ext_dict_functions] function to get the dictionary data in this format.

This view isn't helpful when you need to get raw data, or when performing a JoIn operation. For these cases, you can use
the pictionary engine, which displays the dictionary datain a table.

Syntax:
CREATE TABLE %table name% (%fields%) engine = Dictionary(%dictionary name%)"

Usage example:

create table products (product_id UInté64, title String) Engine = Dictionary(products);

CREATE TABLE products

(
product_id UInté64,
title String,

)
ENGINE = Dictionary(products)

Ok.

0 rows in set. Elapsed: 0.004 sec.

Take alook at what's in the table.

select * from products limit 1;

SELECT *
FROM products
LIMIT 1

——product_id—Ttitle———————
| 152689 | Some item

L 1 1

1 rows in set. Elapsed: 0.006 sec.

Merge

The Merge engine (not to be confused with MergeTree) does not store data itself, but allows reading from any number of
other tables simultaneously. Reading is automatically parallelized. Writing to a table is not supported. When reading, the
indexes of tables that are actually being read are used, if they exist. The Merge engine accepts parameters: the database
name and a regular expression for tables.

Example:

Merge(hits, '“WatchLog')

Data will be read from the tables in the nhits database that have names that match the regular expression ' ~watchLog ".
Instead of the database name, you can use a constant expression that returns a string. For example, currentbatabase () .

Regular expressions —re2 [https://github.com/google/re2] (supports a subset of PCRE), case-sensitive. See the notes
about escaping symbols in regular expressions in the "match" section.

When selecting tables to read, the Merge tableitself will not be selected, even if it matches the regex. This is to avoid
loops. Itis possible to create two Merge tables that will endlessly try to read each others' data, but this is not a good idea.

The typical way to use the Merge engineis for working with a large number of TinyLog tables as if with a single table.
Example 2:

Let's say you have a old table (WatchLog_old) and decided to change partitioning without moving data to a new table
(WatchLog_new) and you need to see data from both tables.

https://github.com/google/re2

CREATE TABLE WatchLog old(date Date, UserId Int64, EventType String, Cnt UInté64)
ENGINE=MergeTree(date, (UserId, EventType), 8192);
INSERT INTO WatchLog old VALUES ('2018-01-01', 1, 'hit', 3);

CREATE TABLE WatchLog_new(date Date, UserId Int64, EventType String, Cnt UInté64)
ENGINE=MergeTree PARTITION BY date ORDER BY (UserId, EventType) SETTINGS index granularity=8192;
INSERT INTO WatchLog new VALUES ('2018-01-02', 2, 'hit', 3);

CREATE TABLE WatchLog as WatchLog old ENGINE=Merge(currentDatabase(), '“WatchLog');

SELECT *
FROM WatchLog

r———date—T—UserId—T—EventType—T—Cnt—
| 2018-01-01 | 1 | hit I 31

r———date—T—UserId—T—EventType—T—Cnt—
| 2018-01-02 | 2 | hit 31

Virtual Columns

Virtual columns are columns that are provided by the table engine, regardless of the table definition. In other words, these
columns are not specified in cREATE TABLE , but they are accessible for seLECT .

Virtual columns differ from normal columns in the following ways:

¢ They are not specified in table definitions.
o Datacan't be added to them with TNSERT.
o Whenusing 1nseErT without specifying the list of columns, virtual columns are ignored.
e They are not selected when using the asterisk (seLECT *).
o Virtual columns are not shownin sHow CREATE TABLE and DESC TABLE queries.
The Merge type table containsavirtual table column of the string type. (If the table already hasa table column, the

virtual columnis called tablel ;ifyoualready have tablel,it'scalled table2,andsoon.)ltcontains the name of the
table that data was read from.

If the wHERE/PREWHERE clause contains conditions for the table column that do not depend on other table columns (as
one of the conjunction elements, or as an entire expression), these conditions are used as an index. The conditions are
performed on a data set of table names to read data from, and the read operation will be performed from only those
tables that the condition was triggered on.

i

File(InputFormat)
The data source is a file that stores data in one of the supported input formats (TabSeparated, Native, etc.).
Usage examples:

o Data export from ClickHouse to file.
o Convert data from one format to another.

o Updating data in ClickHouse via editing a file on a disk.

Usage in ClickHouse Server

File(Format)

Format Should be supported for either 1nseErRT and seLEcT . For the full list of supported formats seeFormats [#formats].

ClickHouse does not allow to specify filesystem path for ri1e . It will use folder defined by path [#server_settings-path]
setting in server configuration.

When creating table using rile (Format) it creates empty subdirectory in that folder. When data is written to that table,
it's putinto data.Format fileinthat subdirectory.

You may manually create this subfolder and file in server filesystem and then ATTACH [#queries-attach] it to table
information with matching name, so you can query data from that file.

Warning

Be careful with this funcionality, because ClickHouse does not keep track of external changes to such files. The result of simultaneous writes via
ClickHouse and outside of ClickHouse is undefined.

Example:

1.Setupthe file engine table table:

CREATE TABLE file engine_table (name String, value UInt32) ENGINE=File(TabSeparated)

By default ClickHouse will create folder /var/lib/clickhouse/data/default/file engine table.
2.Manually create /var/lib/clickhouse/data/default/file engine table/data.TabSeparated containing:

$ cat data.TabSeparated
one 1
two 2

3. Query the data:

SELECT * FROM file engine_table

r—name—r—value—
| one | 1|
| two | 2 |

S —
Usage in Clickhouse-local

In clickhouse-local [#utils-clickhouse-local] File engine accepts file path in addition to Format . Default input/output
streams can be specified using numeric or human-readable names like 0 or stdin, 1 Or stdout.

Example:

$ echo -e "1,2\n3,4" | clickhouse-local -q "CREATE TABLE table (a Int64, b Int64) ENGINE = File(CSV, stdin);
SELECT a, b FROM table; DROP TABLE table"

Details of Implementation

o Reads can be parallel, but not writes

o Not supported:
e ALTER
e SELECT ... SAMPLE

Indices

o Replication

Null

When writing to a Null table, data is ignored. When reading from a Null table, the response is empty.

However, you can create a materialized view on a Null table. So the data written to the table will end up in the view.

Set

A data set that is always in RAM. It is intended for use on the right side of the IN operator (see the section "IN operators").

You can use INSERT to insert data in the table. New elements will be added to the data set, while duplicates will be ignored.
But you can't perform SELECT from the table. The only way to retrieve data is by using it in the right half of the IN operator.

Datais always located in RAM. For INSERT, the blocks of inserted data are also written to the directory of tables on the
disk. When starting the server, this data is loaded to RAM. In other words, after restarting, the data remains in place.

For a rough server restart, the block of data on the disk might be lost or damaged. In the latter case, you may need to
manually delete the file with damaged data.

Join
A prepared data structure for JOIN that is always located in RAM.

Join(ANY|ALL, LEFT|INNER, k1[, k2, ...])

Engine parameters: ANy |ALL - strictness; LEFT | INNER - type. These parameters are set without quotes and must match
the JOIN that the table will be used for. k1, k2, ... are the key columns from the USING clause that the join will be made on.

The table can't be used for GLOBAL JOINs.

You can use INSERT to add data to the table, similar to the Set engine. For ANY, data for duplicated keys will be ignored.
For ALL, it will be counted. You can't perform SELECT directly from the table. The only way to retrieve data is to use it as
the "right-hand" table for JOIN.

Storing data on the disk is the same as for the Set engine.

(]

URL(URL, Format)

Manages data on aremote HTTP/HTTPS server. This engine is similar to theri1e [#] engine.

Using the engine in the ClickHouse server

The format Must be one that ClickHouse canusein seLECT queries and, if necessary, in INsERTs . For the full list of
supported formats, see Formats [#formats].

The URL must conform to the structure of a Uniform Resource Locator. The specified URL must point to a server that
uses HTTP or HTTPS. This does not require any additional headers for getting a response from the server.

INSERT and SELECT queries are transformed to posT and GET requests, respectively. For processing posT requests, the
remote server must support Chunked transfer encoding [https://en.wikipedia.org/wiki/Chunked_transfer_encoding].

https://en.wikipedia.org/wiki/Chunked_transfer_encoding

Example:

1.Createa url engine table tableontheserver:

CREATE TABLE url engine table (word String, value UInté64)
ENGINE=URL('http://127.0.0.1:12345/', CSV)

2. Create a basic HTTP server using the standard Python 3 tools and start it:

from http.server import BaseHTTPRequestHandler, HTTPServer

class CSVHTTPServer (BaseHTTPRequestHandler):
def do_GET(self):
self.send response(200)
self.send header('Content-type', 'text/csv')
self.end headers()

self.wfile.write(bytes('Hello, 1l]\nWorld,2\n', "utf-8"))

if _name_ == "_ _main_":
server_address = ('127.0.0.1', 12345)
HTTPServer (server_address, CSVHTTPServer).serve_forever()

python3 server.py

3. Request data:

SELECT * FROM url_engine_ table

r—word—T—value—
| Hello | 1]
| world | 2 |

L 1 1

Details of Implementation

o Reads and writes can be parallel

o Not supported:
e ALTER and SELECT...SAMPLE operations.
¢ Indexes.

¢ Replication.

View

Used for implementing views (for more information, see the crREATE VIEW query). |t does not store data, but only stores
the specified seLecT query. When reading from a table, it runs this query (and deletes all unnecessary columns from the

query).

MaterializedView

Used for implementing materialized views (for more information, see CREATE TABLE [#query_language-queries-
create_table]). For storing data, it uses a different engine that was specified when creating the view. When reading from a
table, it just uses this engine.

Kafka

This engine works with Apache Kafka [http://kafka.apache.org/].
Kafka lets you:

o Publish or subscribe to data flows.
¢ Organize fault-tolerant storage.

o Process streams as they become available.

Old format:

Kafka(kafka _broker list, kafka topic_ list, kafka group name, kafka_ format
[, kafka_row delimiter, kafka schema, kafka num consumers])

New format:

Kafka SETTINGS

kafka broker list = 'localhost:9092',
kafka topic_list = 'topicl,topic2',
kafka group name = 'groupl',
kafka_format = 'JSONEachRow',
kafka_row_delimiter = '\n'
kafka_schema = '',
kafka num consumers = 2

Required parameters:

e kafka broker list —Acomma-separated list of brokers(1ocalhost:9092).
e kafka topic list —Alistof Kafka topics(my topic).

e kafka group name — A group of Kafka consumers (groupl). Reading margins are tracked for each group separately. If
you don't want messages to be duplicated in the cluster, use the same group name everywhere.

e kafka format —Message format. Uses the same notation as the SQL rorvaT function, such as JsonEachrow . For
more information, see the "Formats" section.

Optional parameters:

e kafka row delimiter -Character-delimiter of records (rows), which ends the message.

e kafka schema —Anoptional parameter that must be used if the format requires a schema definition. For example,
Cap'n Proto[https://capnproto.org/] requires the path to the schema file and the name of the root

schema.capnp:Message Object.

e kafka num consumers — Thenumber of consumers per table. Default: 1 . Specify more consumers if the throughput
of one consumer is insufficient. The total number of consumers should not exceed the number of partitions in the
topic, since only one consumer can be assigned per partition.

Examples:

http://kafka.apache.org/
https://capnproto.org/

CREATE TABLE queue (
timestamp UInt64,
level String,
message String
) ENGINE = Kafka('localhost:9092', 'topic', 'groupl', 'JSONEachRow');

SELECT * FROM queue LIMIT 5;

CREATE TABLE queue2 (
timestamp UInt64,
level String,
message String

) ENGINE = Kafka SETTINGS kafka_ broker list = 'localhost:9092',
kafka topic_list = 'topic',
kafka_group name = 'groupl',
kafka_format = 'JSONEachRow',

kafka num_consumers = 4;

CREATE TABLE queue2 (
timestamp UInté64,
level String,
message String
) ENGINE = Kafka('localhost:9092', 'topic', 'groupl')
SETTINGS kafka format = 'JSONEachRow',
kafka num_consumers = 4;

The delivered messages are tracked automatically, so each message in a group is only counted once. If you want to get the
data twice, then create a copy of the table with another group name.

Groups are flexible and synced on the cluster. For instance, if you have 10 topics and 5 copies of a table in a cluster, then
each copy gets 2 topics. If the number of copies changes, the topics are redistributed across the copies automatically. Read
more about this at http://kafka.apache.org/intro [http://kafka.apache.org/introl.

SELECT is not particularly useful for reading messages (except for debugging), because each message can be read only
once. It is more practical to create real-time threads using materialized views. To do this:

1. Use the engine to create a Kafka consumer and consider it a data stream.
2. Create a table with the desired structure.

3. Create a materialized view that converts data from the engine and puts it into a previously created table.

When the MATERTALIZED VIEW joins the engine, it starts collecting data in the background. This allows you to continually
receive messages from Kafka and convert them to the required format using seLECT

Example:

CREATE TABLE queue (
timestamp UInté64,
level String,
message String
) ENGINE = Kafka('localhost:9092', 'topic', 'groupl', 'JSONEachRow');

CREATE TABLE daily (
day Date,
level String,
total UInt64
) ENGINE = SummingMergeTree(day, (day, level), 8192);

CREATE MATERIALIZED VIEW consumer TO daily
AS SELECT toDate(toDateTime(timestamp)) AS day, level, count() as total

FROM queue GROUP BY day, level;

SELECT level, sum(total) FROM daily GROUP BY level;

To improve performance, received messages are grouped into blocks the size of max_insert_block_size [#settings-
settings-max_insert_block_size]. If the block wasn't formed withinstream_flush_interval_ms [#settings-

http://kafka.apache.org/intro

settings_stream_flush_interval_ms] milliseconds, the data will be flushed to the table regardless of the completeness of
the block.

To stop receiving topic data or to change the conversion logic, detach the materialized view:

DETACH TABLE consumer;
ATTACH MATERIALIZED VIEW consumer;

If you want to change the target table by using ALTER , we recommend disabling the material view to avoid discrepancies
between the target table and the data from the view.

Configuration

Similar to GraphiteMergeTree, the Kafka engine supports extended configuration using the ClickHouse config file. There
are two configuration keys that you can use: global (kafka) and topic-level (xafka *). The global configuration is applied
first, and then the topic-level configuration is applied (if it exists).

<!-- Global configuration options for all tables of Kafka engine type -->
<kafka>
<debug>cgrp</debug>
<auto_offset_reset>smallest</auto_offset_ reset>
</kafka>
<!-- Configuration specific for topic "logs" -->

<kafka_logs>
<retry_backoff ms>250</retry backoff ms>
<fetch_min bytes>100000</fetch min_bytes>
</kafka_logs>

For alist of possible configuration options, see thelibrdkafka configuration reference
[https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md]. Use the underscore () instead of a dot in
the ClickHouse configuration. For example, check.crcs=true Willbe <check crcs>true</check crecs>.

(1

MySQL
The MySQL engine allows you to perform seLECT queries on data that is stored on a remote MySQL server.

Call format:

MySQL('host:port', 'database', 'table', 'user', 'password'[, replace query, 'on_duplicate clause']);

Call parameters

e host:port — Address of the MySQL server.

e database — Database name onthe MySQL server.
e table — Name of the table.

e user — The MySQL User.

e password — User password.

e replace query — Flagthat sets query substitution INSERT INTO to REPLACE INTO.If replace query=1,thequery
is replaced.

e on duplicate clause —Addsthe ON DUPLICATE KEY on duplicate clause expressiontothe INSERT query.

EXanuﬂe:INSERT INTO t (cl,c2) VALUES ('a', 2) ON DUPLICATE KEY UPDATE c2 = c2 + 1 JNhere
on duplicate clause IS UPDATE c2 = c2 + 1.SeeMySQL documentation to find which on duplicate clause you

https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md

canuse with oN DUPLICATE KEY clause.

To specify on duplicate clause youheedtopass 0 tothe replace query parameter. If you simultaneously pass
replace query = 1 and on duplicate clause,ClickHouse generates an exception.

At this time, simple wHERE clausessuchas =, '=, >, >=, <, <= areexecutedonthe MySQL server.

The rest of the conditions and the n1MIT sampling constraint are executed in ClickHouse only after the query to MySQL
finishes.

The MysoL engine does not support the Nullable [#data_type-nullable] data type, so when reading data from MySQL
tables, NULL is converted to default values for the specified column type (usually 0 or an empty string).

Access Rights

Users and access rights are set up in the user config. This is usually users.xml .

Users are recorded in the users section. Hereis a fragment of the users.xm1 file:

<!-- Users and ACL. -->

<users>
<!-- If the user name is not specified, the 'default' user is used. -->
<default>

<!-- Password could be specified in plaintext or in SHA256 (in hex format).

If you want to specify password in plaintext (not recommended), place it in 'password' element.
Example: <password>gwerty</password>.
Password could be empty.

If you want to specify SHA256, place it in 'password sha256_ hex' element.
Example:
<password sha256 hex>65e84be33532fb784c48129675f9eff3a682b27168c0ea744b2cf58ee02337c5</password sha256 hex>

How to generate decent password:
Execute: PASSWORD=$(base64 < /dev/urandom | head -c8); echo "S$SPASSWORD"; echo -n "$PASSWORD" |
sha256sum | tr -d '-'
In first line will be password and in second - corresponding SHA256.
=

<password></password>

<!-- A list of networks that access is allowed from.
Each list item has one of the following forms:
<ip> The IP address or subnet mask. For example: 198.51.100.0/24 or 2001:DB8::/32.
<host> Host name. For example: example0l. A DNS query is made for verification, and all addresses
obtained are compared with the address of the customer.
<host_regexp> Regular expression for host names. For example, “example\d\d-\d\d-\d\.yandex\.ru$
To check it, a DNS PTR request is made for the client's address and a regular expression is
applied to the result.
Then another DNS query is made for the result of the PTR query, and all received address are
compared to the client address.
We strongly recommend that the regex ends with \.yandex\.rus$.

If you are installing ClickHouse yourself, specify here:
<networks>
<ip>::/0</ip>
</networks>
-

<networks incl="networks" />

<!-- Settings profile for the user. -->
<profile>default</profile>

<!-- Quota for the user. -->

<quota>default</quota>
</default>
<!-- For requests from the Yandex.Metrica user interface via the API for data on specific counters. -->
<web>

<password></password>

<networks incl="networks" />

<profile>web</profile>

<quota>default</quota>

<allow_databases>
<database>test</database>

</allow_databases>

</web>

You can see a declaration from two users: default and web . We added the web user separately.

The default userischosenin cases when the usernameis not passed. The default useris also used for distributed
query processing, if the configuration of the server or cluster doesn't specify the user and password (see the section on
the Distributed [#table_engines-distributed] engine).

The user that is used for exchanging information between servers combined in a cluster must not have substantial
restrictions or quotas - otherwise, distributed queries will fail.

The password is specified in clear text (not recommended) or in SHA-256. The hash isn't salted. In this regard, you should
not consider these passwords as providing security against potential malicious attacks. Rather, they are necessary for
protection from employees.

A list of networks is specified that access is allowed from. In this example, the list of networks for both users is loaded
from a separate file (/etc/metrika.xml) containing the networks substitution. Here is a fragment of it:

<yandex>

<networks>
<ip>::/64</ip>
<ip>203.0.113.0/24</ip>
<ip>2001:DB8::/32</ip>

</networks>
</yandex>

You could define this list of networks directly in users.xml ,orinafilein the users.d directory (for more information, see
the section "Configuration files [#configuration_files]").

The config includes comments explaining how to open access from everywhere.

For use in production, only specify ip elements (IP addresses and their masks), since using host and hoost regexp
might cause extra latency.

Next the user settings profile is specified (see the section "Settings profiles [#settings_profiles]"). You can specify the
default profile, default' . The profile can have any name. You can specify the same profile for different users. The most
important thing you can write in the settings profile is readonly=1, which ensures read-only access.

Then specify the quota to be used (see the section "Quotas [#quotas]"). You can specify the default quota: default . Itis
set in the config by default to only count resource usage, without restricting it. The quota can have any name. You can
specify the same quota for different users - in this case, resource usage is calculated for each user individually.

In the optional <allow databases> section, you can also specify a list of databases that the user can access. By default, all
databases are available to the user. You can specify the default database. In this case, the user will receive access to the
database by default.

Access tothe system database is always allowed (since this database is used for processing queries).

The user can get a list of all databases and tables in them by using sHow queries or system tables, even if access to
individual databases isn't allowed.

Database access is not related to thereadonly [#query_complexity_readonly] setting. You can't grant full access to one
database and readonly accessto another one.

(]

Configuration Files
The main server config fileis config.xml . ltresidesinthe /etc/clickhouse-server/ directory.

Individual settings can be overridden inthe *.xm1 and *.conf filesinthe conf.d and config.d directories next to the
config file.

The replace or remove attributes can be specified for the elements of these config files.

If neither is specified, it combines the contents of elements recursively, replacing values of duplicate children.
If replace isspecified, it replaces the entire element with the specified one.

If remove is specified, it deletes the element.

The config can also define "substitutions”. If an element has the inc1 attribute, the corresponding substitution from the

file will be used as the value. By default, the path to the file with substitutionsis /etc/metrika.xml . Thiscan be changed
inthe include_from [#server_settings-include_from] element in the server config. The substitution values are specified in
/yandex/substitution name elementsin this file. If a substitution specifiedin inc1 does not exist, it is recorded in the
log. To prevent ClickHouse from logging missing substitutions, specify the optional="true" attribute (for example,
settings for macros [#server_settings-macros]).

Substitutions can also be performed from ZooKeeper. To do this, specify the attribute from zk = "/path/to/node" .The
element value is replaced with the contents of the node at /path/to/node in ZooKeeper. You can also put an entire XML
subtree on the ZooKeeper node and it will be fully inserted into the source element.

The config.xml file can specify a separate config with user settings, profiles, and quotas. The relative path to this config
is setin the 'users_config' element. By default, itis users.xml .If users config isomitted, the user settings, profiles, and
quotas are specified directly in config.xml .

Inaddition, users config may have overrides in files from the users config.d directory (for example, users.d)and
substitutions. For example, you can have separate config file for each user like this:

$ cat /etc/clickhouse-server/users.d/alice.xml
<yandex>
<users>
<alice>
<profile>analytics</profile>
<networks>
<ip>::/0</ip>
</networks>
<password_sha256_hex>...</password_sha256_ hex>
<quota>analytics</quota>
</alice>
</users>
</yandex>

For each config file, the server also generates file-preprocessed.xml files when starting. These files contain all the
completed substitutions and overrides, and they are intended for informational use. If ZooKeeper substitutions were used
in the config files but ZooKeeper is not available on the server start, the server loads the configuration from the
preprocessed file.

The server tracks changes in config files, as well as files and ZooKeeper nodes that were used when performing
substitutions and overrides, and reloads the settings for users and clusters on the fly. This means that you can modify the
cluster, users, and their settings without restarting the server.

(]

Quotas

Quotas allow you to limit resource usage over a period of time, or simply track the use of resources. Quotas are set up in
the user config. This is usually 'users.xml'.

The system also has a feature for limiting the complexity of a single query. See the section "Restrictions on query
complexity").

In contrast to query complexity restrictions, quotas:

o Placerestrictions on a set of queries that can be run over a period of time, instead of limiting a single query.

¢ Account for resources spent on all remote servers for distributed query processing.

Let's look at the section of the 'users.xml' file that defines quotas.

<!-- Quotas -->
<quotas>
<!-- Quota name. -->
<default>
<!-- Restrictions for a time period. You can set many intervals with different restrictions. -->
<interval>
<!-- Length of the interval. -->
<duration>3600</duration>

<!-- Unlimited. Just collect data for the specified time interval. -->
<queries>0</queries>
<errors>0</errors>
<result_rows>0</result_rows>
<read_rows>0</read_rows>
<execution_time>0</execution_time>
</interval>
</default>

By default, the quota just tracks resource consumption for each hour, without limiting usage. The resource consumption
calculated for each interval is output to the server log after each request.

<statbox>
<!-- Restrictions for a time period. You can set many intervals with different restrictions. -->
<interval>
<!-- Length of the interval. -->

<duration>3600</duration>

<queries>1000</queries>

<errors>100</errors>

<result_rows>1000000000</result_ rows>

<read_rows>100000000000</read_rows>

<execution_ time>900</execution_time>
</interval>

<interval>
<duration>86400</duration>

<queries>10000</queries>
<errors>1000</errors>
<result_rows>5000000000</result_rows>
<read_rows>500000000000</read_rows>
<execution_time>7200</execution_time>
</interval>
</statbox>

For the 'statbox' quota, restrictions are set for every hour and for every 24 hours (86,400 seconds). The time interval is
counted starting from an implementation-defined fixed moment in time. In other words, the 24-hour interval doesn't
necessarily begin at midnight.

When the interval ends, all collected values are cleared. For the next hour, the quota calculation starts over.
Here are the amounts that can be restricted:

queries — Thetotal number of requests.

errors — The number of queries that threw an exception.

result rows — Thetotal number of rows given as the result.

read rows - Thetotal number of source rows read from tables for running the query, on all remote servers.
execution time — The total query execution time, in seconds (wall time).

If the limit is exceeded for at least one time interval, an exception is thrown with a text about which restriction was
exceeded, for which interval, and when the new interval begins (when queries can be sent again).

Quotas can use the "quota key" feature in order to report on resources for multiple keys independently. Here is an example

of this:

<!-- For the global reports designer. -->
<web_global>
<!-- keyed — The quota_ key "key" is passed in the query parameter,
and the quota is tracked separately for each key value.
For example, you can pass a Yandex.Metrica username as the key,
so the quota will be counted separately for each username.
Using keys makes sense only if quota_key is transmitted by the program, not by a user.

You can also write <keyed by ip /> so the IP address is used as the quota key.
(But keep in mind that users can change the IPv6 address fairly easily.)
-—>

<keyed />

The quotais assigned to users in the 'users' section of the config. See the section "Access rights".

For distributed query processing, the accumulated amounts are stored on the requestor server. So if the user goes to
another server, the quota there will "start over".

When the server is restarted, quotas are reset.

System tables

System tables are used for implementing part of the system's functionality, and for providing access to information about
how the system is working. You can't delete a system table (but you can perform DETACH). System tables don't have files
with data on the disk or files with metadata. The server creates all the system tables when it starts. System tables are read-
only. They are located in the 'system' database.[]

system.asynchronous_metrics

Contain metrics used for profiling and monitoring. They usually reflect the number of events currently in the system, or the
total resources consumed by the system. Example: The number of SELECT queries currently running; the amount of
memory in use. system.asynchronous metrics and system.metrics differin their sets of metrics and how they are
calculated.

system.clusters

Contains information about clusters available in the config file and the servers in them. Columns:

cluster String — The cluster name.

shard num UInt32 — The shard number in the cluster, starting from 1.
shard weight UInt32 — The relative weight of the shard when writing data.
replica_num UInt32 — The replica number in the shard, starting from 1.
host_name String — The host name, as specified in the config.

String host_address — The host IP address obtained from DNS.

port UIntlé — The port to use for connecting to the server.

user String — The name of the user for connecting to the server.

system.columns

Contains information about the columns in all tables. You can use this table to get information similar to DESCRIBE TABLE,
but for multiple tables at once.

database String — The name of the database the table is in.

table String — Table name.

name String — Column name.

type String — Column type.

default_type String — Expression type (DEFAULT, MATERIALIZED, ALIAS) for the default value, or an empty
string if it is not defined.

default_expression String — Expression for the default value, or an empty string if it is not defined.

system.databases

This table contains a single String column called ‘'name' - the name of a database. Each database that the server knows
about has a corresponding entry in the table. This system table is used for implementing the ssHow DATABASES query.

system.dictionaries
Contains information about external dictionaries.
Columns:

e name String — Dictionary name.

e type sString — Dictionary type: Flat, Hashed, Cache.

e origin String — Path to the configuration file that describes the dictionary.

e attribute.names Array(String) — Array of attribute names provided by the dictionary.

e attribute.types Array(String) — Corresponding array of attribute types that are provided by the dictionary.
e has hierarchy UInt8 — Whether the dictionary is hierarchical.

e Dbytes allocated UInt64 — Theamount of RAM the dictionary uses.

e hit rate Float64 — Forcache dictionaries, the percentage of uses for which the value was in the cache.

e clement count UInt64 — Thenumber of items stored in the dictionary.

e load factor Float64 — The percentage full of the dictionary (for a hashed dictionary, the percentage filled in the
hash table).

e creation time DateTime — Thetime when the dictionary was created or last successfully reloaded.

e last exception string — Textof the error that occurs when creating or reloading the dictionary if the dictionary
couldn't be created.

e source String — Textdescribing the data source for the dictionary.

Note that the amount of memory used by the dictionary is not proportional to the number of items stored init. So for flat
and cached dictionaries, all the memory cells are pre-assigned, regardless of how full the dictionary actually is. []

system.events

Contains information about the number of events that have occurred in the system. This is used for profiling and
monitoring purposes. Example: The number of processed SELECT queries. Columns: ‘event String' — the event name, and
'value UInt64' - the quantity.

system.functions
Contains information about normal and aggregate functions.

Columns:

e name (String) - The name of the function.

e is aggregate (UInt8)— Whether the function is aggregate.

system.merges
Contains information about merges currently in process for tables in the MergeTree family.
Columns:

e database String — The name of the database the tableisin.

e table String — Table name.

e elapsed Float64 — Thetime elapsed (in seconds) since the merge started.

e progress Float64 — The percentage of completed work from0to 1.

e num parts UInt64 — The number of pieces to be merged.

e result part name String — Thename of the part that will be formed as the result of merging.
e total size bytes compressed UInté64 — The total size of the compressed data in the merged chunks.
e total size marks UInt64 — Thetotal number of marksinthe merged partss.

e Dbytes read uncompressed UInt64 — Number of bytesread, uncompressed.

e rows read UInt64 — Number of rows read.

e Dbytes written uncompressed UInt64 — Number of bytes written, uncompressed.

e rows written UInt64 — Number of lines rows written.[]

system.metrics

system.numbers

This table contains a single UInt64 column named 'number’ that contains almost all the natural numbers starting from zero.
You can use this table for tests, or if you need to do a brute force search. Reads from this table are not parallelized.
system.numbers_mt

The same as 'system.numbers' but reads are parallelized. The numbers can be returned in any order. Used for tests.

system.one

This table contains a single row with a single '"dummy' UInt8 column containing the value 0. This table is used if a SELECT
query doesn't specify the FROM clause. This is similar to the DUAL table found in other DBMSs.

system.parts

Contains information about parts of MergeTree [#table_engines-mergetree] tables.
Each row describes one part of the data.

Columns:

o partition (String) - The partition name. To learn what a partition is, see the description of theALTER
[#query_language_queries_alter] query.

Formats: - yyyvymum for automatic partitioning by month. - any string when partitioning manually.

e name (String) - Name of the data part.

 active (UInt8) - Indicates whether the part is active. If a part is active, it is used in a table; otherwise, it will be deleted.
Inactive data parts remain after merging.

o marks (UInt64) - The number of marks. To get the approximate number of rows in a data part, multiplymarks by the
index granularity (usually 8192).

o marks_size (UInt64) - The size of the file with marks.
« rows (UInt64) - The number of rows.
o bytes (UInt64) - The number of bytes when compressed.

« modification_time (DateTime) - The modification time of the directory with the data part. This usually corresponds to
the time of data part creation.|

« remove_time (DateTime) - The time when the data part became inactive.

o refcount (UInt32) - The number of places where the data part is used. A value greater than 2 indicates that the data
part is used in queries or merges.

« min_date (Date) - The minimum value of the date key in the data part.

¢ max_date (Date) - The maximum value of the date key in the data part.

o min_block_number (UInt64) - The minimum number of data parts that make up the current part after merging.

o max_block_number (UInt64) - The maximum number of data parts that make up the current part after merging.

o level (UInt32) - Depth of the merge tree. If a merge was not performed, level=0.

o primary_key_bytes_in_memory (UInt64) - The amount of memory (in bytes) used by primary key values.

o primary_key_bytes_in_memory_allocated (UInt64) - The amount of memory (in bytes) reserved for primary key values.
o database (String) - Name of the database.

o table (String) - Name of the table.

o engine (String) — Name of the table engine without parameters.

system.processes

This system table is used for implementing the siow processnLIsT query.Columns:

user String — Name of the user who made the request. For distributed query processing, this is
the user who helped the requestor server send the query to this server, not the user who made the distributed
request on the requestor server.

address String - The IP address the request was made from. The same for distributed processing.
elapsed Float64 - The time in seconds since request execution started.
rows_read UInté64 - The number of rows read from the table. For distributed processing, on the

requestor server, this is the total for all remote servers.

bytes_read UInt64 - The number of uncompressed bytes read from the table. For distributed processing,
on the requestor server, this is the total for all remote servers.

total rows_approx UInt64 - The approximation of the total number of rows that should be read. For distributed
processing, on the requestor server, this is the total for all remote servers. It can be updated during
request processing, when new sources to process become known.

memory_usage UInt64 - How much memory the request uses. It might not include some types of dedicated
memory .

query String - The query text. For INSERT, it doesn't include the data to insert.

query_id String - Query ID, if defined.

system.replicas

Contains information and status for replicated tables residing on the local server. This table can be used for monitoring.
The table contains a row for every Replicated* table.

Example:
SELECT *
FROM system.replicas
WHERE table = 'visits'

FORMAT Vertical

Row 1:

database: merge

table: visits

engine: ReplicatedCollapsingMergeTree

is_leader: 1

is_readonly: 0

is_session_expired: 0

future parts: 1

parts_to_check: 0

zookeeper path: /clickhouse/tables/01-06/visits
replica_name: example01-06-1.yandex.ru
replica_path: /clickhouse/tables/01-06/visits/replicas/example01-06-1.yandex.ru
columns_version: 9

queue_size: 1

inserts_in_queue: 0

merges_in_queue: 1

log_max_index: 596273

log_pointer: 596274

total replicas: 2

active_replicas: 2

Columns:

database: Database name

table: Table name
engine: Table engine name
is_leader: Whether the replica is the leader.

Only one replica at a time can be the leader. The leader is responsible for selecting background merges to
perform.

Note that writes can be performed to any replica that is available and has a session in ZK, regardless of
whether it is a leader.

is_readonly: Whether the replica is in read-only mode.
This mode is turned on if the config doesn't have sections with ZooKeeper, if an unknown error occurred when
reinitializing sessions in ZooKeeper, and during session reinitialization in ZooKeeper.

is_session_expired: Whether the session with ZooKeeper has expired.
Basically the same as 'is_readonly'.

future parts: The number of data parts that will appear as the result of INSERTs or merges that haven't
been done yet.

parts_to_check: The number of data parts in the queue for verification.
A part is put in the verification queue if there is suspicion that it might be damaged.

zookeeper path: Path to table data in ZooKeeper.
replica_name: Replica name in ZooKeeper. Different replicas of the same table have different names.
replica_path: Path to replica data in ZooKeeper. The same as concatenating

'zookeeper path/replicas/replica path'.

columns_version: Version number of the table structure.
Indicates how many times ALTER was performed. If replicas have different versions, it means some replicas
haven't made all of the ALTERs yet.

queue_size: Size of the queue for operations waiting to be performed.
Operations include inserting blocks of data, merges, and certain other actions.
It usually coincides with 'future_parts'.

inserts_in_queue: Number of inserts of blocks of data that need to be made.
Insertions are usually replicated fairly quickly. If this number is large, it means something is wrong.

merges_in_queue: The number of merges waiting to be made.
Sometimes merges are lengthy, so this value may be greater than zero for a long time.

The next 4 columns have a non-zero value only where there is an active session with ZK.

log_max_index: Maximum entry number in the log of general activity.

log_pointer: Maximum entry number in the log of general activity that the replica copied to its
execution queue, plus one.

If log pointer is much smaller than log max_index, something is wrong.

total replicas: The total number of known replicas of this table.

active_replicas: The number of replicas of this table that have a session in ZooKeeper (i.e., the number
of functioning replicas).

If you request all the columns, the table may work a bit slowly, since several reads from ZooKeeper are made for each row.
If you don't request the last 4 columns (log_max_index, log_pointer, total_replicas, active_replicas), the table works quickly.

For example, you can check that everything is working correctly like this:

SELECT
database,
table,
is_leader,
is_readonly,
is_session_expired,
future parts,
parts_to_check,
columns_version,
queue_size,
inserts_in_queue,
merges_in_queue,
log_max index,
log_pointer,
total replicas,
active_replicas

FROM system.replicas

WHERE

is_readonly

OR is_session_expired
OR future_parts > 20
OR parts_to_check > 10
OR queue_size > 20
OR inserts_in queue > 10
OR log max_index - log_pointer > 10
OR total replicas < 2
OR active_replicas < total_replicas

If this query doesn't return anything, it means that everything is fine.

system.settings

Contains information about settings that are currently in use. l.e. used for executing the query you are using to read from
the system.settings table.

Columns:
name String — Setting name.
value String — Setting value.

changed UInt8 — Whether the setting was explicitly defined in the config or explicitly changed.

Example:

SELECT *
FROM system.settings
WHERE changed

r—name —value r—changed—
| max threads | 8 | 1
| use_uncompressed_cache | 0 | 11
| load balancing | random | 1|
| max_memory usage | 10000000000 | 1

L 1 1]

system.tables

This table contains the String columns 'database’, 'name’, and 'engine’. The table also contains three virtual columns:
metadata_modification_time (DateTime type), create_table_query, and engine_full (String type). Each table that the server
knows about is entered in the 'system.tables' table. This system table is used for implementing SHOW TABLES queries.

system.zookeeper

The table does not exist if ZooKeeper is not configured. Allows reading data from the ZooKeeper cluster defined in the

config. The query must have a 'path' equality condition in the WHERE clause. This is the path in ZooKeeper for the children
that you want to get data for.

The query SELECT * FROM system.zookeeper WHERE path = '/clickhouse' outputsdata forall children on the
/clickhouse node. To output data for all root nodes, write path ='/". If the path specified in 'path' doesn't exist, an
exception will be thrown.

Columns:

e name String — The name of the node.

e path String — The path to the node.

e value String — Node value.

e dataLength Int32 — Size of the value.

e numChildren Int32 — Number of descendants.

e czxid Int64 — ID of the transaction that created the node.

e mzxid Int64 — ID of the transaction that last changed the node.

e pzxid Int64 — ID of the transaction that last deleted or added descendants.
e ctime DateTime — Time of node creation.

e mtime DateTime — Time of the last modification of the node.

e version Int32 — Node version: the number of times the node was changed.
e cversion Int32 —Number of added or removed descendants.

e aversion Int32 — Number of changes to the ACL.

e ecphemeralOwner Int64 — Forephemeral nodes, the ID of hte session that owns this node.

Example:
SELECT *
FROM system.zookeeper
WHERE path = '/clickhouse/tables/01-08/visits/replicas'’

FORMAT Vertical

Row 1:

name: example(01-08-1.yandex.ru
value:

czxid: 932998691229

mzxid: 932998691229

ctime: 2015-03-27 16:49:51
mtime: 2015-03-27 16:49:51
version: 0

cversion: 47

aversion: 0

ephemeralOwner: 0

dataLength: 0

numChildren: 7

pzxid: 987021031383

path: /clickhouse/tables/01-08/visits/replicas
Row 2:

name: example01-08-2.yandex.ru

value:

czxid: 933002738135

mzxid: 933002738135

ctime: 2015-03-27 16:57:01

mtime: 2015-03-27 16:57:01

version: 0

cversion: 37

aversion: 0

ephemeralOwner: 0

dataLength: 0

numChildren: 7

pzxid: 987021252247

path: /clickhouse/tables/01-08/visits/replicas

Usage Recommendations

CPU
The SSE 4.2 instruction set must be supported. Modern processors (since 2008) support it.

When choosing a processor, prefer a large number of cores and slightly slower clock rate over fewer cores and a higher
clock rate. For example, 16 cores with 2600 MHz is better than 8 cores with 3600 MHz.

Hyper-threading

Don't disable hyper-threading. It helps for some queries, but not for others.

Turbo Boost

Turbo Boost is highly recommended. It significantly improves performance with a typical load. You can use turbostat to
view the CPU's actual clock rate under a load.

CPU Scaling Governor

Always use the performance scaling governor. The on-demand scaling governor works much worse with constantly high
demand.

sudo echo 'performance' | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling governor

CPU Limitations

Processors can overheat. Use dmesg to seeif the CPU's clock rate was limited due to overheating. The restriction can also
be set externally at the datacenter level. You can use turbostat to monitor it under aload.

RAM

For small amounts of data (up to \~200 GB compressed), it is best to use as much memory as the volume of data. For large
amounts of data and when processing interactive (online) queries, you should use a reasonable amount of RAM (128 GB or
more) so the hot data subset will fit in the cache of pages. Even for data volumes of \~50 TB per server, using 128 GB of
RAM significantly improves query performance compared to 64 GB.

Do not disable overcommit. The value cat /proc/sys/vm/overcommit memory Should be 0 or1.Run

echo 0 | sudo tee /proc/sys/vm/overcommit memory

Swap File

Always disable the swap file. The only reason for not doing this is if you are using ClickHouse on your personal laptop.

Huge Pages

Always disable transparent huge pages. It interferes with memory allocators, which leads to significant performance
degradation.

echo 'never' | sudo tee /sys/kernel/mm/transparent hugepage/enabled

Use perf top towatch the time spentin the kernel for memory management. Permanent huge pages also do not need to
be allocated.

Storage Subsystem
If your budget allows you to use SSD, use SSD. If not, use HDD. SATA HDDs 7200 RPM will do.

Give preference to a lot of servers with local hard drives over a smaller number of servers with attached disk shelves. But
for storing archives with rare queries, shelves will work.

RAID

When using HDD, you can combine their RAID-10, RAID-5, RAID-6 or RAID-50. For Linux, software RAID is better (with
mdadm). We don't recommend using LVM. When creating RAID-10, select the far layout. If your budget allows, choose
RAID-10.

If you have more than 4 disks, use RAID-6 (preferred) or RAID-50, instead of RAID-5. When using RAID-5, RAID-6 or RAID-
50, always increase stripe_cache_size, since the default value is usually not the best choice.

echo 4096 | sudo tee /sys/block/md2/md/stripe cache size

Calculate the exact number from the number of devices and the block size, using the formula: 2 * num devices *
chunk size in bytes / 4096.

A block size of 1024 KB is sufficient for all RAID configurations. Never set the block size too small or too large.
You can use RAID-0 on SSD. Regardless of RAID use, always use replication for data security.

Enable NCQ with along queue. For HDD, choose the CFQ scheduler, and for SSD, choose noop. Don't reduce the
'readahead' setting. For HDD, enable the write cache.

File System

Ext4 is the most reliable option. Set the mount options noatime, nobarrier .XFSis also suitable, but it hasn't been as
thoroughly tested with ClickHouse. Most other file systems should also work fine. File systems with delayed allocation
work better.

Linux Kernel

Don't use an outdated Linux kernel.

Network

If you are using IPv6, increase the size of the route cache. The Linux kernel prior to 3.2 had a multitude of problems with
IPv6 implementation.

Use at least a 10 GB network, if possible. 1 Gb will also work, but it will be much worse for patching replicas with tens of
terabytes of data, or for processing distributed queries with a large amount of intermediate data.

ZooKeeper

You are probably already using ZooKeeper for other purposes. You can use the same installation of ZooKeeper, if it isn't
already overloaded.

It's best to use a fresh version of ZooKeeper - 3.4.9 or later. The version in stable Linux distributions may be outdated.

You should never use manually written scripts to transfer data between different ZooKeeper clusters, because the result
will be incorrect for sequential nodes. Never use the "zkcopy" utility for the same reason:
https://github.com/ksprojects/zkcopy/issues/15

If you want to divide an existing ZooKeeper cluster into two, the correct way is to increase the number of its replicas and
then reconfigure it as two independent clusters.

Do not run ZooKeeper on the same servers as ClickHouse. Because ZooKeeper is very sensitive for latency and ClickHouse
may utilize all available system resources.

With the default settings, ZooKeeper is a time bomb:

The ZooKeeper server won't delete files from old snapshots and logs when using the default configuration (see
autopurge), and this is the responsibility of the operator.

This bomb must be defused.
The ZooKeeper (3.5.1) configuration below is used in the Yandex.Metrica production environment as of May 20, 2017:

zoo.cfg:

http://hadoop.apache.org/zookeeper/docs/current/zookeeperAdmin.html

The number of milliseconds of each tick
tickTime=2000

The number of ticks that the initial

synchronization phase can take

initLimit=30000

The number of ticks that can pass between

sending a request and getting an acknowledgement
syncLimit=10

maxClientCnxns=2000

maxSessionTimeout=60000000

the directory where the snapshot is stored.

dataDir=/opt/zookeeper/{{ cluster['name'] }}/data

Place the dataLogDir to a separate physical disc for better performance
dataLogDir=/opt/zookeeper/{{ cluster['name'] }}/logs

autopurge.snapRetainCount=10
autopurge.purgelnterval=1

To avoid seeks ZooKeeper allocates space in the transaction log file in

blocks of preAllocSize kilobytes. The default block size is 64M. One reason
for changing the size of the blocks is to reduce the block size if snapshots
are taken more often. (Also, see snapCount).

preAllocSize=131072

Clients can submit requests faster than ZooKeeper can process them,

especially if there are a lot of clients. To prevent ZooKeeper from running
out of memory due to queued requests, ZooKeeper will throttle clients so that
there is no more than globalOutstandingLimit outstanding requests in the

system. The default limit is 1,000.ZooKeeper logs transactions to a

transaction log. After snapCount transactions are written to a log file a

snapshot is started and a new transaction log file is started. The default

snapCount is 10,000.

snapCount=3000000

If this option is defined, requests will be will logged to a trace file named
traceFile.year.month.day.
##traceFile=

Leader accepts client connections. Default value is "yes". The leader machine
coordinates updates. For higher update throughput at thes slight expense of
read throughput the leader can be configured to not accept clients and focus
on coordination.

leaderServes=yes

standaloneEnabled=false
dynamicConfigFile=/etc/zookeeper-{{ cluster['name'] }}/conf/zoo.cfg.dynamic

Javaversion:

Java(TM) SE Runtime Environment (build 1.8.0_25-bl7)
Java HotSpot(TM) 64-Bit Server VM (build 25.25-b02, mixed mode)

JVM parameters:

NAME=zookeeper-{{ cluster['name'] }}
ZOOCFGDIR=/etc/$NAME/conf

TODO this is really ugly

How to find out, which jars are needed?

seems, that log4j requires the logdj.properties file to be in the classpath
CLASSPATH="$ZOOCFGDIR: /usr/build/classes:/usr/build/lib/*.jar:/usr/share/zookeeper/zookeeper-3.5.1-
metrika.jar:/usr/share/zookeeper/slf4j-logdjl2-1.7.5.jar:/usr/share/zookeeper/slfdj-api-
1.7.5.jar:/usr/share/zookeeper/servlet-api-2.5-20081211.jar:/usr/share/zookeeper/netty-
3.7.0.Final.jar:/usr/share/zookeeper/log4j-1.2.16.jar:/usr/share/zookeeper/jline-
2.11.jar:/usr/share/zookeeper/jetty-util-6.1.26.jar:/usr/share/zookeeper/jetty-
6.1.26.jar:/usr/share/zookeeper/javacc.jar:/usr/share/zookeeper/jackson-mapper-asl-
1.9.11.jar:/usr/share/zookeeper/jackson-core-asl-1.9.11.jar:/usr/share/zookeeper/commons-cli-
1.2.jar:/usr/src/java/lib/*.jar:/usr/etc/zookeeper"

ZOOCFG="$Z00CFGDIR/zoo.cfg"

Z00_LOG_DIR=/var/log/$NAME

USER=zookeeper

GROUP=zookeeper

PIDDIR=/var/run/$NAME

PIDFILE=$PIDDIR/$NAME.pid

SCRIPTNAME=/etc/init.d/$NAME

JAVA=/usr/bin/java

ZOOMAIN="org.apache.zookeeper.server.quorum.QuorumPeerMain"

Z0O_LOG4J_ PROP="INFO,ROLLINGFILE"

JMXLOCALONLY=false

JAVA _OPTS="-Xms{{ cluster.get('xzms','128M') }} \
-Xmx{{ cluster.get('zmx','1G') }} \
-Xloggc:/var/log/$NAME/zookeeper-gc.log \
-XX:+UseGCLogFileRotation \
-XX:NumberOfGCLogFiles=16 \
-XX:GCLogFileSize=16M \
-verbose:gc \
-XX:+PrintGCTimeStamps \
-XX:+PrintGCDateStamps \
-XX:+PrintGCDetails
-XX:+PrintTenuringDistribution \
-XX:+PrintGCApplicationStoppedTime \
-XX:+PrintGCApplicationConcurrentTime \
-XX:+PrintSafepointStatistics \
-XX:+UseParNewGC \
-XX:+UseConcMarkSweepGC \

-XX:+CMSParallelRemarkEnabled"

Saltinit:

description "zookeeper-{{ cluster['name'] }} centralized coordination service"

start on runlevel [2345]
stop on runlevel [!2345]

respawn

limit nofile 8192 8192

pre-start script

[-r "/etc/zookeeper-{{ cluster['name'] }}/conf/environment"] || exit 0
/etc/zookeeper-{{ cluster['name'] }}/conf/environment
[-d $Z00_LOG DIR] || mkdir -p $Z00_LOG_DIR

chown $USER:$GROUP $7Z00_LOG_DIR
end script

script
/etc/zookeeper-{{ cluster|['name'] }}/conf/environment
[-r /etc/default/zookeeper] && . /etc/default/zookeeper
if [-z "$JMXDISABLE"]; then
JAVA_OPTS="$JAVA OPTS -Dcom.sun.management.jmxremote -
Dcom.sun.management. jmxremote.local.only=$JMXLOCALONLY"
fi
exec start-stop-daemon --start -c SUSER --exec S$JAVA --name zookeeper-{{ cluster['name'] }} \
-- -cp $CLASSPATH $JAVA OPTS -Dzookeeper.log.dir=${z00_LOG_DIR} \
-Dzookeeper.root.logger=${z200_LOG4J_PROP} $ZOOMAIN $ZOOCFG
end script

(1

Server configuration parameters

This section contains descriptions of server settings that cannot be changed at the session or query level.
These settings are stored inthe config.xml file on the ClickHouse server.
Other settings are described in the "Settings [#settings]" section.

Before studying the settings, read the Configuration files [#configuration_files] section and note the use of substitutions
(the incl and optional attributes).

Server settings

i

builtin_dictionaries_reload_interval
The interval in seconds before reloading built-in dictionaries.

ClickHouse reloads built-in dictionaries every x seconds. This makes it possible to edit dictionaries "on the fly" without
restarting the server.

Default value: 3600.

Example

<builtin_dictionaries_reload interval>3600</builtin_dictionaries_reload interval>

1

compression

Data compression settings.

A Warning

Don't use it if you have just started using ClickHouse.

The configuration looks like this:

<compression>
<case>
<parameters/>
</case>

</compression>

You can configure multiple sections <case> .
Block field <case>:

e min part size — The minimum size of a table part.
e min part size ratio — Theratioof the minimum size of a table part to the full size of the table.

e method — Compression method. Acceptable values: 1z4 or zstd (experimental).

ClickHouse checks min part size and min part size ratio and processesthe case blocksthat match these
conditions. If none of the <case> matches, ClickHouse applies the 1z4 compression algorithm.

Example

<compression incl="clickhouse_compression">
<case>
<min_part_size>10000000000</min_part_size>
<min_part_size_ratio>0.01</min_part_ size_ratio>
<method>zstd</method>
</case>

</compression>

(1

default_database
The default database.
To get a list of databases, use the SHOW DATABASES [#query_language_queries_show_databases] query.

Example

<default_database>default</default_database>

default_profile
Default settings profile.
Settings profiles are located in the file specified in the parameteruser_config [#server_settings-users_config].

Example

<default profile>default</default profile>

1

dictionaries_config
The path to the config file for external dictionaries.
Path:

o Specify the absolute path or the path relative to the server config file.

e The path can contain wildcards * and ?.
See also "External dictionaries [#dicts-external_dicts]".

Example

<dictionaries config>*_dictionary.xml</dictionaries config>

i

dictionaries_lazy_load
Lazy loading of dictionaries.

If true,theneach dictionaryis created on first use. If dictionary creation failed, the function that was using the dictionary
throws an exception.

If false,all dictionaries are created when the server starts, and if there is an error, the server shuts down.
The defaultis true.

Example

<dictionaries_lazy load>true</dictionaries_lazy load>

1

format_schema_path

The path to the directory with the schemes for the input data, such as schemas for theCapnProto [#format_capnproto]
format.

Example

<!-- Directory containing schema files for various input formats. -->
<format_schema_path>format_schemas/</format_schema_ path>

i

graphite
Sending data to Graphite [https://github.com/graphite-project].
Settings:

o host - The Graphite server.

https://github.com/graphite-project

e port - The port on the Graphite server.

o interval — Theinterval for sending, in seconds.

o timeout - The timeout for sending data, in seconds.

e root_path — Prefix for keys.

o metrics — Sending data from a :ref: system tables-system.metrics table.
o events - Sending data from a :ref: system tables-system.events table.

e asynchronous_metrics - Sending data from a:ref: system tables-system.asynchronous metrics table.

You can configure multiple <grapnhite> clauses. For instance, you can use this for sending different data at different
intervals.

Example

<graphite>
<host>localhost</host>
<port>42000</port>
<timeout>0.1</timeout>
<interval>60</interval>
<root_path>one min</root_ path>
<metrics>true</metrics>
<events>true</events>
<asynchronous_metrics>true</asynchronous_metrics>
</graphite>

i

graphite_rollup
Settings for thinning data for Graphite.
For more details, see GraphiteMergeTree [#table_engines-graphitemergetree].

Example

<graphite rollup_example>
<default>
<function>max</function>
<retention>
<age>0</age>
<precision>60</precision>
</retention>
<retention>
<age>3600</age>
<precision>300</precision>
</retention>
<retention>
<age>86400</age>
<precision>3600</precision>
</retention>
</default>
</graphite_rollup example>

http_port/https_port
The port for connecting to the server over HTTP(s).

If https port isspecified, openSSL [#server_settings-openSSL] must be configured.

If http port is specified, the openSSL configuration is ignored even if it is set.

Example

<https>0000</https>

i

http_server_default_response
The page that is shown by default when you access the ClickHouse HTTP(s) server.
Example

Opens https://tabix.io/ whenaccessing http://localhost: http port .

<http_server_default_response>

<![CDATA[<html ng-app="SMI2"><head><base href="http://ui.tabix.io/"></head><body><div ui-view=""
class="content-ui"></div><script src="http://loader.tabix.io/master.js"></script></body></html>]]>
</http_server default response>

include_from
The path to the file with substitutions.
For more information, see the section "Configuration files [#configuration_files]".

Example

<include_from>/etc/metrica.xml</include_from>

(1

interserver_http_port
Port for exchanging data between ClickHouse servers.

Example

<interserver_http port>9009</interserver_http_port>

(1

interserver_http_host

The host name that can be used by other servers to access this server.
If omitted, it is defined in the same way as the hostname-f command.
Useful for breaking away from a specific network interface.

Example

<interserver_http host>example.yandex.ru</interserver_ http host>

i

keep_alive_timeout
The number of seconds that ClickHouse waits for incoming requests before closing the connection. Defaults to 10 seconds

Example

<keep_alive_timeout>10</keep_alive_timeout>

listen_host
Restriction on hosts that requests can come from. If you want the server to answer all of them, specify : : .

Examples:

<listen_host>::1</listen_host>
<listen_host>127.0.0.1</listen_host>

logger
Logging settings.
Keys:

¢ level - Logging level. Acceptable values: trace, debug, information, warning, error.
¢ log - Thelog file. Contains all the entries according to 1evel .
o errorlog - Error log file.

o size - Size of the file. Applies to 1og and errorlog . Once the file reaches size , ClickHouse archives and renames it,
and creates a new log file in its place.

e count - The number of archived log files that ClickHouse stores.

Example

<logger>
<level>trace</level>
<log>/var/log/clickhouse-server/clickhouse-server.log</log>
<errorlog>/var/log/clickhouse-server/clickhouse-server.err.log</errorlog>
<size>1000M</size>
<count>10</count>

</logger>

Writing to the syslog is also supported. Config example:

<logger>
<use_syslog>1</use syslog>
<syslog>
<address>syslog.remote:10514</address>
<hostname>myhost.local</hostname>
<facility>LOG_LOCAL6</facility>
<format>syslog</format>
</syslog>
</logger>

Keys:

o user_syslog — Required setting if you want to write to the syslog.
¢ address — The host[:nopT] of syslogd. If omitted, the local daemon is used.
¢ hostname — Optional. The name of the host that logs are sent from.

o facility — The syslog facility keyword [https://en.wikipedia.org/wiki/Syslog#Facility] in uppercase letters with the
"LOG_" prefix: (L.oG_USER, LOG DAEMON , LOG LOCAL3 ,and so on). Default value: 1.oc UseR if address is specified,

LOG_DAEMON otherwise.

o format - Message format. Possible values: bsd and syslog.

i

Macros

Parameter substitutions for replicated tables.

Can be omitted if replicated tables are not used.

For more information, see the section "Creating replicated tables [#table_engines-replication-creation_of_rep_tables]".

Example

<macros incl="macros" optional="true" />

(1

mark_cache_size
Approximate size (in bytes) of the cache of "marks" used by MergeTree [#table_engines-mergetree].
The cache is shared for the server and memory is allocated as needed. The cache size must be at least 5368709120.

Example

<mark_cache_size>5368709120</mark_cache_size>

(

max_concurrent_queries
The maximum number of simultaneously processed requests.

Example

<max_concurrent_queries>100</max_concurrent_queries>

(1

max_connections
The maximum number of inbound connections.

Example

<max_connections>4096</max_connections>

i

https://en.wikipedia.org/wiki/Syslog#Facility

max_open_files

The maximum number of open files.

By default: maximum .

We recommend using this option in Mac OS X, since the getrilimit () functionreturnsanincorrect value.

Example

<max_open_files>262144</max_open_files>

max_table_size_to_drop
Restriction on deleting tables.

If the size of aMergeTree [#table_engines-mergetree] table exceeds max table size to drop (inbytes), youcan't delete
it using a DROP query.

If you still need to delete the table without restarting the ClickHouse server, create the <clickhouse-
path>/flags/force drop table fileandrunthe DROP query.

Default value: 50 GB.
The value 0 means that you can delete all tables without any restrictions.

Example

<max_table_size_to_drop>0</max_table_ size_ to_drop>

i

merge_tree
Fine tuning for tables in the MergeTree [#table_engines-mergetree].
For more information, see the MergeTreeSettings.h header file.

Example

<merge_tree>
<max_suspicious_broken parts>5</max_suspicious_broken_ parts>
</merge_tree>

1

openSSL
SSL client/server configuration.

Support for SSL is provided by the 1ibpoco library. Theinterface is described in the fileSSLManager.h
[https://github.com/ClickHouse-Extras/poco/blob/master/NetSSL_OpenSSL/include/Poco/Net/SSLManager.h]

Keys for server/client settings:

o privateKeyFile — The path to the file with the secret key of the PEM certificate. The file may contain a key and certificate

https://github.com/ClickHouse-Extras/poco/blob/master/NetSSL_OpenSSL/include/Poco/Net/SSLManager.h

at the same time.

o certificateFile — The path to the client/server certificate file in PEM format. You can omit it if privateKeyFile contains
the certificate.

o caConfig — The path to the file or directory that contains trusted root certificates.

o verificationMode - The method for checking the node's certificates. Details are in the description of theContext
[https://github.com/ClickHouse-Extras/poco/blob/master/NetSSL_OpenSSL/include/Poco/Net/Context.h] class.
Possible values: none , relaxed, strict, once.

o verificationDepth - The maximum length of the verification chain. Verification will fail if the certificate chain length
exceeds the set value.

o |loadDefaultCAFile - Indicates that built-in CA certificates for OpenSSL will be used. Acceptable values: true, false.
o cipherList - Supported OpenSSL encryptions. For example: ALL: !ADH: ! LOW: !EXP: !MD5: @STRENGTH .

o cacheSessions — Enables or disables caching sessions. Must be used in combination with sessionTdContext .
Acceptablevalues: true, false.

o sessionldContext — A unique set of random characters that the server appends to each generated identifier. The
length of the string must not exceed ssiL_MAX SSL_SESSION ID LENGTH . This parameter is always recommended,
since it helps avoid problems both if the server caches the session and if the client requested caching. Default value:

$S{application.name} .

« sessionCacheSize - The maximum number of sessions that the server caches. Default value: 1024*20. 0 - Unlimited
sessions.

¢ sessionTimeout — Time for caching the session on the server.

o extendedVerification — Automatically extended verification of certificates after the session ends. Acceptable values:

true, false.

o requireTLSv1 - Require a TLSv1 connection. Acceptable values: true, false.

o requireTLSv1_1 - Require a TLSv1.1 connection. Acceptable values: true, false.

e requireTLSv1 - Require a TLSv1.2 connection. Acceptable values: true, false.

o fips - Activates OpenSSL FIPS mode. Supported if the library's OpenSSL version supports FIPS.

o privateKeyPassphraseHandler - Class (PrivateKeyPassphraseHandler subclass) that requests the passphrase for
accessing the private key. For example: <privateKeyPassphraseHandler>, <name>KeyFileHandler</name> ,

<options><password>test</password></options>, </privateKeyPassphraseHandler>.

o invalidCertificateHandler — Class (subclass of CertificateHandler) for verifying invalid certificates. For example:

<invalidCertificateHandler> <name>ConsoleCertificateHandler</name> </invalidCertificateHandler> .
o disableProtocols - Protocols that are not allowed to use.

o preferServerCiphers - Preferred server ciphers on the client.

Example of settings:

https://github.com/ClickHouse-Extras/poco/blob/master/NetSSL_OpenSSL/include/Poco/Net/Context.h

<openSSL>
<server>
<!-- openssl req -subj "/CN=localhost" -new -newkey rsa:2048 -days 365 -nodes -x509 -keyout
/etc/clickhouse-server/server.key -out /etc/clickhouse-server/server.crt -->
<certificateFile>/etc/clickhouse-server/server.crt</certificateFile>
<privateKeyFile>/etc/clickhouse-server/server.key</privateKeyFile>
<!-- openssl dhparam -out /etc/clickhouse-server/dhparam.pem 4096 -->
<dhParamsFile>/etc/clickhouse-server/dhparam.pem</dhParamsFile>
<verificationMode>none</verificationMode>
<loadDefaultCAFile>true</loadDefaultCAFile>
<cacheSessions>true</cacheSessions>
<disableProtocols>sslv2,sslv3</disableProtocols>
<preferServerCiphers>true</preferServerCiphers>
</server>
<client>
<loadDefaultCAFile>true</loadDefaultCAFile>
<cacheSessions>true</cacheSessions>
<disableProtocols>sslv2,sslv3</disableProtocols>
<preferServerCiphers>true</preferServerCiphers>
<!-- Use for self-signed: <verificationMode>none</verificationMode> -->
<invalidCertificateHandler>
<l-- Use for self-signed: <name>AcceptCertificateHandler</name> -->
<name>RejectCertificateHandler</name>
</invalidCertificateHandler>
</client>
</openSSL>

(1

part_log

Logging events that are associated with MergeTree [#table_engines-mergetree). For instance, adding or merging data.
You can use the log to simulate merge algorithms and compare their characteristics. You can visualize the merge process.

Queries are logged in the ClickHouse table, not in a separate file.
Columnsin the log:

¢ event_time - Date of the event.
o duration_ms - Duration of the event.

o event_type - Type of event. 1 - new data part; 2 — merge result; 3 - data part downloaded from replica; 4 - data part
deleted.

o database_name - The name of the database.

o table_name - Name of the table.

o part_name - Name of the data part.

o partition_id — The identifier of the partition.

¢ size_in_bytes - Size of the data part in bytes.

« merged_from - An array of names of data parts that make up the merge (also used when downloading a merged part).

¢ merge_time_ms - Time spent on the merge.
Use the following parameters to configure logging:

o database - Name of the database.
o table - Name of the table.
e partition_by - Sets acustom partitioning key [#custom-partitioning-key].

o flush_interval_milliseconds - Interval for flushing data from the buffer in memory to the table.

Example

<part_log>
<database>system</database>
<table>part_log</table>
<partition_by>toMonday(event_date)</partition_by>
<flush_interval milliseconds>7500</flush interval milliseconds>
</part_log>

(

path

The path to the directory containing data.

/" Note

The trailing slash is mandatory.

Example

<path>/var/lib/clickhouse/</path>

query_log

Setting for logging queries received with thelog_queries=1 [#settings_settings-log_gueries] setting.
Queries are logged in the ClickHouse table, not in a separate file.

Use the following parameters to configure logging:

o database - Name of the database.
o table - Name of the table.
o partition_by - Sets acustom partitioning key [#custom-partitioning-key].

o flush_interval_milliseconds - Interval for flushing data from the buffer in memory to the table.

If the table doesn't exist, ClickHouse will create it. If the structure of the query log changed when the ClickHouse server was
updated, the table with the old structure is renamed, and a new table is created automatically.

Example

<query_log>
<database>system</database>
<table>query log</table>
<partition_by>toMonday(event_date)</partition_by>
<flush_interval milliseconds>7500</flush interval milliseconds>
</query_log>

(1

remote_servers
Configuration of clusters used by the Distributed table engine.
For more information, see the section "Table engines/Distributed [#table_engines-distributed]".

Example

<remote_servers incl="clickhouse remote servers" />

For the value of the inc1 attribute, see the section "Configuration files [#configuration_files]".

(1

timezone
The server's time zone.
Specified as an IANA identifier for the UTC time zone or geographic location (for example, Africa/Abidjan).

The time zone is necessary for conversions between String and DateTime formats when DateTime fields are output to text
format (printed on the screen or in a file), and when getting DateTime from a string. In addition, the time zone is used in
functions that work with the time and date if they didn't receive the time zone in the input parameters.

Example

<timezone>Europe/Moscow</timezone>

tcp_port
Port for communicating with clients over the TCP protocol.

Example

<tcp_port>9000</tcp_port>

tmp_path
Path to temporary data for processing large queries.

/" Note

The trailing slash is mandatory.

Example

<tmp path>/var/lib/clickhouse/tmp/</tmp path>

(1

uncompressed_cache_size
Cache size (in bytes) for uncompressed data used by table engines from the MergeTree [#table_engines-mergetree].

There is one shared cache for the server. Memory is allocated on demand. The cache is used if the option
use_uncompressed_cache [#settings-use_uncompressed_cache] is enabled.

The uncompressed cache is advantageous for very short queries in individual cases.

Example

<uncompressed_cache_size>8589934592</uncompressed_cache_size>

user_files_path
The directory with user files. Used in the table function file() [#table_functions-file].

Example

<user_files path>/var/lib/clickhouse/user_files/</user files path>

i

users_config
Path to the file that contains:

o User configurations.

o Accessrights.

L]

Settings profiles.

o Quota settings.

Example

<users_config>users.xml</users_config>

i

zookeeper

Configuration of ZooKeeper servers.

ClickHouse uses ZooKeeper for storing replica metadata when using replicated tables.
This parameter can be omitted if replicated tables are not used.

For more information, see the section "Replication [#table_engines-replication]”.

Example

<zookeeper incl="zookeeper-servers" optional="true" />

Settings

There are multiple ways to make all the settings described below. Settings are configured in layers, so each subsequent
layer redefines the previous settings.

Ways to configure settings, in order of priority:

¢ Settingsinthe users.xml server configuration file.
Setinthe element <profiles>.

o Session settings.

Send sSET setting=value from the ClickHouse console client in interactive mode. Similarly, you can use ClickHouse
sessions in the HTTP protocol. To do this, you need to specify the session id HTTP parameter.

o Query settings.
o When starting the ClickHouse console client in non-interactive mode, set the startup parameter --setting=value .

¢ When using the HTTP API, pass CGl parameters (URL?setting 1=valuegsetting 2=value...).
Settings that can only be made in the server config file are not covered in this section.

(

Permissions for queries
Queries in ClickHouse can be divided into several groups:

1. Read data queries: SELECT, SHOW, DESCRIBE, EXISTS.
. Write data queries: INSERT, OPTIMIZE .

. Change settings queries: seT, USE.

A W N

. DDL [https://en.wikipedia.org/wiki/Data_definition_language] queries: CREATE, ALTER, RENAME , ATTACH, DETACH,

DROP TRUNCATE .

5. Particular queries: KILL QUERY .
The following settings regulate user permissions for the groups of queries:

o readonly [#settings_readonly] — Restricts permissions for all groups of queries excepting DDL.

o allow_ddl [#settings_allow_ddI] — Restricts permissions for DDL queries.
KILL QUERY performs with any settings.

(1

readonly

Restricts permissions for read data, write data and change settings queries.
See above [#permissions_for_queries] for the division of queries into groups.
Possible values

o 0 — Allqueries are allowed. Default value.
¢ 1 —Read data queries only are allowed.

¢ 2 —Read data and change settings queries are allowed.
After setting readonly = 1,ausercan'tchange readonly and allow ddl settingsinthe current session.

When using the GeT method inthe HTTP interface [#http_interface], readonly = 1 issetautomatically. To modify data
use the posT method.

(1

allow_ddI

Allows/denies DDL [https://en.wikipedia.org/wiki/Data_definition_language] queries.

See above [#permissions_for_queries] for the division of queries into groups.

https://en.wikipedia.org/wiki/Data_definition_language
https://en.wikipedia.org/wiki/Data_definition_language

Possible values

o 0 — DDL queries are not allowed.

o 1 —DDL queries are allowed. Default value.

You can not execute ST allow ddl = 1 if allow ddl = 0 forcurrentsession.

Restrictions on query complexity

Restrictions on query complexity are part of the settings. They are used in order to provide safer execution from the user
interface. Almost all the restrictions only apply to serLecT . For distributed query processing, restrictions are applied on
each server separately.

ClickHouse checks the restrictions for data parts, not for each row. It means that you can exceed the value of restriction
with a size of the data part.

Restrictions on the "maximum amount of something" can take the value 0, which means "unrestricted". Most restrictions
also have an 'overflow_mode' setting, meaning what to do when the limit is exceeded. It can take one of two values: throw
or break . Restrictions on aggregation (group_by_overflow_mode) also have the value any .

throw — Throw an exception (default).
break — Stop executing the query and return the partial result, as if the source data ran out.

any (only for group by overflow mode) — Continuing aggregation for the keys that got into the set, but don't add new
keys to the set.

(]

max_memory_usage
The maximum amount of RAM to use for running a query on a single server.
In the default configuration file, the maximum is 10 GB.

The setting doesn't consider the volume of available memory or the total volume of memory on the machine. The
restriction applies to a single query within a single server. You can use sHOW PROCESSLIST to see the current memory
consumption for each query. In addition, the peak memory consumption is tracked for each query and written to the log.

Memory usage is not monitored for the states of certain aggregate functions.

Memory usage is not fully tracked for states of the aggregate functions min, max, any, anylLast, argMin, argMax from
String and Array arguments.

Memory consumption is also restricted by the parameters max _memory usage for user and

max _memory usage for all queries.

max_memory_usage_for_user
The maximum amount of RAM to use for running a user's queries on a single server.

Default values are defined in Settings.h
[https://github.com/yandex/ClickHouse/blob/master/dbms/src/Interpreters/Settings.h#L244]. By default, the amount is
not restricted (max_memory usage for user = 0).

See also the description of max_memory_usage [#settings_max_memory_usage].

https://github.com/yandex/ClickHouse/blob/master/dbms/src/Interpreters/Settings.h#L244

max_memory_usage_for_all_queries
The maximum amount of RAM to use for running all queries on a single server.

Default values are defined in Settings.h
[https://github.com/yandex/ClickHouse/blob/master/dbms/src/Interpreters/Settings.h#L245]. By default, the amount is
not restricted (max_memory usage for all queries = 0).

See also the description of max_memory_usage [#settings_max_memory_usagel.

max_rows_to_read

The following restrictions can be checked on each block (instead of on each row). That is, the restrictions can be broken a
little. When running a query in multiple threads, the following restrictions apply to each thread separately.

Maximum number of rows that can be read from a table when running a query.

max_bytes_to_read

Maximum number of bytes (uncompressed data) that can be read from a table when running a query.

read_overflow_mode

What to do when the volume of data read exceeds one of the limits: 'throw' or 'break’. By default, throw.

max_rows_to_group_by

Maximum number of unique keys received from aggregation. This setting lets you limit memory consumption when
aggregating.

group_by_overflow_mode

What to do when the number of unique keys for aggregation exceeds the limit: 'throw’, 'break’, or 'any'. By default, throw.
Using the 'any' value lets you run an approximation of GROUP BY. The quality of this approximation depends on the
statistical nature of the data.

max_rows_to_sort

Maximum number of rows before sorting. This allows you to limit memory consumption when sorting.

max_bytes_to_sort

Maximum number of bytes before sorting.

sort_overflow_mode

What to do if the number of rows received before sorting exceeds one of the limits: 'throw' or 'break’. By default, throw.

max_result_rows

Limit on the number of rows in the result. Also checked for subqueries, and on remote servers when running parts of a
distributed query.

https://github.com/yandex/ClickHouse/blob/master/dbms/src/Interpreters/Settings.h#L245

max_result_bytes

Limit on the number of bytes in the result. The same as the previous setting.

result_overflow_mode

What to do if the volume of the result exceeds one of the limits: 'throw' or 'break’. By default, throw. Using 'break’ is similar
to using LIMIT.

max_execution_time

Maximum query execution time in seconds. At this time, it is not checked for one of the sorting stages, or when merging
and finalizing aggregate functions.

timeout_overflow_mode

What to doif the query is run longer than 'max_execution_time': ‘throw' or 'break’. By default, throw.

min_execution_speed

Minimal execution speed in rows per second. Checked on every data block when
'timeout_before_checking_execution_speed' expires. If the execution speed is lower, an exception is thrown.
timeout_before_checking_execution_speed

Checks that execution speed is not too slow (no less than 'min_execution_speed’), after the specified time in seconds has
expired.

max_columns_to_read

Maximum number of columns that can be read from a table in a single query. If a query requires reading a greater number
of columns, it throws an exception.

max_temporary_columns

Maximum number of temporary columns that must be kept in RAM at the same time when running a query, including
constant columns. If there are more temporary columns than this, it throws an exception.
max_temporary_non_const_columns

The same thing as 'max_temporary_columns', but without counting constant columns. Note that constant columns are
formed fairly often when running a query, but they require approximately zero computing resources.
max_subquery_depth

Maximum nesting depth of subqueries. If subqueries are deeper, an exception is thrown. By default, 100.

max_pipeline_depth

Maximum pipeline depth. Corresponds to the number of transformations that each data block goes through during query
processing. Counted within the limits of a single server. If the pipeline depth is greater, an exception is thrown. By default,
1000.

max_ast_depth

Maximum nesting depth of a query syntactic tree. If exceeded, an exception is thrown. At this time, it isn't checked during
parsing, but only after parsing the query. That is, a syntactic tree that is too deep can be created during parsing, but the
query will fail. By default, 1000.

max_ast_elements

Maximum number of elements in a query syntactic tree. If exceeded, an exception is thrown. In the same way as the
previous setting, it is checked only after parsing the query. By default, 10,000.

Max_rows_in_set

Maximum number of rows for a data set in the IN clause created from a subquery.

max_bytes_in_set

Maximum number of bytes (uncompressed data) used by a set in the IN clause created from a subquery.

set_overflow_mode

What to do when the amount of data exceeds one of the limits: 'throw' or 'break’. By default, throw.

max_rows_in_distinct

Maximum number of different rows when using DISTINCT.

max_bytes_in_distinct

Maximum number of bytes used by a hash table when using DISTINCT.

distinct_overflow_mode

What to do when the amount of data exceeds one of the limits: 'throw' or 'break’. By default, throw.

max_rows_to_transfer

Maximum number of rows that can be passed to a remote server or saved in a temporary table when using GLOBAL IN.

max_bytes_to_transfer

Maximum number of bytes (uncompressed data) that can be passed to a remote server or saved in a temporary table when
using GLOBAL IN.

transfer_overflow_mode

What to do when the amount of data exceeds one of the limits: 'throw' or 'break’. By default, throw.

Settings

(]

distributed_product_mode
Changes the behavior of distributed subqueries [#queries-distributed-subrequests].

ClickHouse applies this setting when the query contains the product of distributed tables, i.e. when the query for a
distributed table contains a non-GLOBAL subquery for the distributed table.

Restrictions:

o Only applied for IN and JOIN subqueries.
o Only if the FROM section uses a distributed table containing more than one shard.
o |If the subquery concerns a distributed table containing more than one shard,

+ Not used for a table-valued remote [#table_functions-remote] function.
The possible values are:

e deny — Default value. Prohibits using these types of subqueries (returns the "Double-distributed in/JOIN subqueries
is denied" exception).

e local —Replaces the database and table in the subquery with local ones for the destination server (shard), leaving
the normal 1N / JoIN.

e global —Replacesthe 1v / JoIn query with GLOBAL IN / GLOBAL JOIN.

e allow — Allows the use of these types of subqueries.

fallback_to_stale_replicas_for_distributed_queries

Forces a query to an out-of-date replica if updated data is not available. See "Replication [#table_engines-replication]".
ClickHouse selects the most relevant from the outdated replicas of the table.

Used when performing serLecT from a distributed table that points to replicated tables.

By default, 1 (enabled).

(]

force_index_by_date
Disables query execution if the index can't be used by date.
Works with tables in the MergeTree family.

If force index by date=1,ClickHouse checks whether the query has a date key condition that can be used for restricting
dataranges. If there is no suitable condition, it throws an exception. However, it does not check whether the condition
actually reduces the amount of data to read. For example, the condition pate != ' 2000-01-01 ' isacceptable even
when it matches all the data in the table (i.e., running the query requires a full scan). For more information about ranges of
datain MergeTree tables, see "MergeTree [#table_engines-mergetree]”.

(]

force_primary_key
Disables query execution if indexing by the primary key is not possible.

Works with tables in the MergeTree family.

If force primary key=1,ClickHouse checks to see if the query has a primary key condition that can be used for restricting
dataranges. If there is no suitable condition, it throws an exception. However, it does not check whether the condition
actually reduces the amount of data to read. For more information about data ranges in MergeTree tables, see "MergeTree
[#table_engines-mergetree]".

(]

fsync_metadata
Enable or disable fsync when writing .sql files. Enabled by default.

It makes sense to disable it if the server has millions of tiny table chunks that are constantly being created and destroyed.

input_format_allow_errors_num

Sets the maximum number of acceptable errors when reading from text formats (CSV, TSV, etc.).

The default value is 0.

Always pair it with input format allow errors ratio.To skiperrors, both settings must be greater than 0.

If an error occurred while reading rows but the error counter is still less than input format allow errors num,
ClickHouse ignores the row and moves on to the next one.

If input format allow errors numisexceeded, ClickHouse throws an exception.

input_format_allow_errors_ratio

Sets the maximum percentage of errors allowed when reading from text formats (CSV, TSV, etc.). The percentage of errors
is set as a floating-point number between 0 and 1.

The default value is 0.
Always pair it with input format allow errors num.To skip errors, both settings must be greater than 0.

If an error occurred while reading rows but the error counter is still less than input format allow errors ratio,
ClickHouse ignores the row and moves on to the next one.

If input format allow errors ratio isexceeded, ClickHouse throws an exception.

max_block_size

In ClickHouse, data is processed by blocks (sets of column parts). The internal processing cycles for a single block are
efficient enough, but there are noticeable expenditures on each block. max block size isarecommendation for what size
of block (in number of rows) to load from tables. The block size shouldn't be too small, so that the expenditures on each
block are still noticeable, but not too large, so that the query with LIMIT that is completed after the first block is processed
quickly, so that too much memory isn't consumed when extracting a large number of columns in multiple threads, and so
that at least some cache locality is preserved.

By default, 65,536.
Blocks the size of max block size are notalwaysloaded from the table. If it is obvious that less data needs to be

retrieved, a smaller block is processed.

preferred_block_size_bytes

Used for the same purpose as max_block size,butitsetsthe recommended block size in bytes by adapting it to the
number of rows in the block. However, the block size cannot be more than max block size rows. Disabled by default (set
to 0). It only works when reading from MergeTree engines.

(]

log_queries
Setting up query logging.

Queries sent to ClickHouse with this setup are logged according to the rules in thequery_log [#server_settings-query_log]
server configuration parameter.

Example:

log_gqueries=1

max_insert_block_size

The size of blocks to form for insertion into a table. This setting only applies in cases when the server forms the blocks. For
example, for an INSERT via the HTTP interface, the server parses the data format and forms blocks of the specified size.
But when using clickhouse-client, the client parses the data itself, and the 'max_insert_block_size' setting on the server
doesn't affect the size of the inserted blocks. The setting also doesn't have a purpose when using INSERT SELECT, since
datais inserted using the same blocks that are formed after SELECT.

By default, it is 1,048,576.

This is slightly more than max block size.Thereason for this is because certain table engines (*MergeTree) form adata
part on the disk for each inserted block, which is a fairly large entity. Similarly, *MergeTree tables sort data during
insertion, and a large enough block size allows sorting more data in RAM.

(]

max_replica_delay_for_distributed_queries

Disables lagging replicas for distributed queries. See "Replication [#table_engines-replication]".
Sets the time in seconds. If a replica lags more than the set value, this replica is not used.
Default value: 0 (off).

Used when performing serLecT from a distributed table that points to replicated tables.

max_threads
The maximum number of query processing threads
o excluding threads for retrieving data from remote servers (see the 'max_distributed_connections' parameter).

This parameter applies to threads that perform the same stages of the query processing pipeline in parallel. For example, if
reading from a table, evaluating expressions with functions, filtering with WHERE and pre-aggregating for GROUP BY can
all be done in parallel using at least 'max_threads' number of threads, then 'max_threads' are used.

By default, 8.

If less than one SELECT query is normally run on a server at a time, set this parameter to a value slightly less than the actual
number of processor cores.

For queries that are completed quickly because of a LIMIT, you can set a lower 'max_threads'. For example, if the necessary
number of entries are located in every block and max_threads = 8, 8 blocks are retrieved, although it would have been
enough toread just one.

The smaller the max_threads value, the less memory is consumed.

max_compress_block_size

The maximum size of blocks of uncompressed data before compressing for writing to a table. By default, 1,048,576 (1
MiB). If the size is reduced, the compression rate is significantly reduced, the compression and decompression speed
increases slightly due to cache locality, and memory consumption is reduced. There usually isn't any reason to change this
setting.

Don't confuse blocks for compression (a chunk of memory consisting of bytes) and blocks for query processing (a set of
rows from a table).

min_compress_block_size

For MergeTree [#table_engines-mergetree]” tables. In order to reduce latency when processing queries, a block is
compressed when writing the next mark if its size is at least 'min_compress_block_size'. By default, 65,536.

The actual size of the block, if the uncompressed data is less than 'max_compress_block_size', is no less than this value and
no less than the volume of data for one mark.

Let's look at an example. Assume that 'index_granularity' was set to 8192 during table creation.

We are writing a UInt32-type column (4 bytes per value). When writing 8192 rows, the total will be 32 KB of data. Since
min_compress_block_size = 65,536, a compressed block will be formed for every two marks.

We are writing a URL column with the String type (average size of 60 bytes per value). When writing 8192 rows, the average
will be slightly less than 500 KB of data. Since this is more than 65,536, a compressed block will be formed for each mark. In
this case, when reading data from the disk in the range of a single mark, extra data won't be decompressed.

There usually isn't any reason to change this setting.

max_query_size

The maximum part of a query that can be taken to RAM for parsing with the SQL parser. The INSERT query also contains
data for INSERT that is processed by a separate stream parser (that consumes O(1) RAM), which is not included in this
restriction.

The default is 256 KiB.

interactive_delay
The interval in microseconds for checking whether request execution has been canceled and sending the progress.

By default, 100,000 (check for canceling and send progress ten times per second).

connect_timeout

receive_timeout

send_timeout
Timeouts in seconds on the socket used for communicating with the client.

By default, 10, 300, 300.

poll_interval
Lock in a wait loop for the specified number of seconds.

By default, 10.

max_distributed_connections

The maximum number of simultaneous connections with remote servers for distributed processing of a single query to a
single Distributed table. We recommend setting a value no less than the number of servers in the cluster.

By default, 100.

The following parameters are only used when creating Distributed tables (and when launching a server), so there is no
reason to change them at runtime.

distributed_connections_pool_size

The maximum number of simultaneous connections with remote servers for distributed processing of all queries to a
single Distributed table. We recommend setting a value no less than the number of servers in the cluster.

By default, 128.

connect_timeout_with_failover_ms

The timeout in milliseconds for connecting to a remote server for a Distributed table engine, if the 'shard' and 'replica’
sections are used in the cluster definition. If unsuccessful, several attempts are made to connect to various replicas.

By default, 50.

connections_with_failover_max_tries
The maximum number of connection attempts with each replica, for the Distributed table engine.

By default, 3.

extremes

Whether to count extreme values (the minimums and maximums in columns of a query result). Accepts 0 or 1. By default, 0
(disabled). For more information, see the section "Extreme values".

(]

use_uncompressed_cache

Whether to use a cache of uncompressed blocks. Accepts 0 or 1. By default, 0 (disabled). The uncompressed cache (only for
tables in the MergeTree family) allows significantly reducing latency and increasing throughput when working with a large
number of short queries. Enable this setting for users who send frequent short requests. Also pay attention to the
'uncompressed_cache_size' configuration parameter (only set in the config file) - the size of uncompressed cache blocks.

By default, it is 8 GiB. The uncompressed cache is filled in as needed; the least-used data is automatically deleted.

For queries that read at least a somewhat large volume of data (one million rows or more), the uncompressed cache is
disabled automatically in order to save space for truly small queries. So you can keep the 'use_uncompressed_cache'
setting always setto 1.

replace_running_query

When using the HTTP interface, the 'query_id' parameter can be passed. This is any string that serves as the query
identifier. If a query from the same user with the same 'query_id" already exists at this time, the behavior depends on the
'replace_running_query' parameter.

0 (default) - Throw an exception (don't allow the query to run if a query with the same 'query_id' is already running).
1 — Cancel the old query and start running the new one.

Yandex.Metrica uses this parameter set to 1 for implementing suggestions for segmentation conditions. After entering
the next character, if the old query hasn't finished yet, it should be canceled.

schema

This parameter is useful when you are using formats that require a schema definition, such asCap'n Proto
[https://capnproto.org/]. The value depends on the format.

(]

stream_flush_interval_ms

Works for tables with streaming in the case of a timeout, or when a thread generatesnax_insert_block_size [#settings-
settings-max_insert_block_size] rows.

The default value is 7500.
The smaller the value, the more often data is flushed into the table. Setting the value too low leads to poor performance.

(]

load_balancing
Which replicas (among healthy replicas) to preferably send a query to (on the first attempt) for distributed processing.
random (default)

The number of errors is counted for each replica. The query is sent to the replica with the fewest errors, and if there are
several of these, to any one of them. Disadvantages: Server proximity is not accounted for; if the replicas have different
data, you will also get different data.

nearest_hostname

The number of errors is counted for each replica. Every 5 minutes, the number of errors is integrally divided by 2. Thus, the
number of errors is calculated for a recent time with exponential smoothing. If there is one replica with a minimal number
of errors (i.e. errors occurred recently on the other replicas), the query is sent to it. If there are multiple replicas with the
same minimal number of errors, the query is sent to the replica with a host name that is most similar to the server's host
name in the config file (for the number of different characters in identical positions, up to the minimum length of both host
names).

For instance, example01-01-1 and example01-01-2.yandex.ru are different in one position, while example01-01-1 and

https://capnproto.org/

example01-02-2 differ in two places. This method might seem a little stupid, but it doesn't use external data about
network topology, and it doesn't compare IP addresses, which would be complicated for our IPv6 addresses.

Thus, if there are equivalent replicas, the closest one by name is preferred. We can also assume that when sending a query
to the same server, in the absence of failures, a distributed query will also go to the same servers. So even if different data
is placed on the replicas, the query will return mostly the same results.

in_order

Replicas are accessed in the same order as they are specified. The number of errors does not matter. This method is
appropriate when you know exactly which replica is preferable.

totals_mode

How to calculate TOTALS when HAVING is present, as well as when max_rows_to_group_by and group_by_overflow_mode
='any' are present. See the section "WITH TOTALS modifier".

totals_auto_threshold

The threshold for totals mode = 'auto' .See the section "WITH TOTALS modifier".

default_sample

Floating-point number from 0 to 1. By default, 1. Allows you to set the default sampling ratio for all SELECT queries. (For
tables that do not support sampling, it throws an exception.) If set to 1, sampling is not performed by default.

max_parallel_replicas

The maximum number of replicas for each shard when executing a query. For consistency (to get different parts of the
same data split), this option only works when the sampling key is set. Replica lag is not controlled.

compile
Enable compilation of queries. By default, 0 (disabled).

Compilation is only used for part of the query-processing pipeline: for the first stage of aggregation (GROUP BY). If this
portion of the pipeline was compiled, the query may run faster due to deployment of short cycles and inlining aggregate
function calls. The maximum performance improvement (up to four times faster in rare cases) is seen for queries with
multiple simple aggregate functions. Typically, the performance gain is insignificant. In very rare cases, it may slow down
query execution.

min_count_to_compile

How many times to potentially use a compiled chunk of code before running compilation. By default, 3. If the value is zero,
then compilation runs synchronously and the query waits for the end of the compilation process before continuing
execution. This can be used for testing; otherwise, use values starting with 1. Compilation normally takes about 5-10
seconds. If the value is 1 or more, compilation occurs asynchronously in a separate thread. The result will be used as soon
asitisready, including by queries that are currently running.

Compiled code is required for each different combination of aggregate functions used in the query and the type of keys in
the GROUP BY clause. The results of compilation are saved in the build directory in the form of .so files. There is no
restriction on the number of compilation results, since they don't use very much space. Old results will be used after server
restarts, except in the case of a server upgrade - in this case, the old results are deleted.

input_format_skip_unknown_fields

If the value is true, running INSERT skips input data from columns with unknown names. Otherwise, this situation will
generate an exception. It works for JSONEachRow and TSKV formats.

output_format_json_quote_64bit_integers

If the value is true, integers appear in quotes when using JSON* Int64 and Ulnt64 formats (for compatibility with most
JavaScript implementations); otherwise, integers are output without the quotes.

(]

format_csv_delimiter
The character interpreted as a delimiter in the CSV data. By default, the delimiter s , .

(]

join_use_nulls
Affects the behavior of JOIN [#query_language-join].

With join use nulls=1, JOIN behaves likein standard SQL,i.e.if empty cells appear when merging, the type of the
corresponding field is converted to Nullable [#data_type-nullable], and empty cells are filled with NULL [#null-literal].

(]

insert_quorum
Enables quorum writes.

e If insert quorum < 2 ,thequorum writes are disabled.

o If insert quorum >= 2,the quorum writes are enabled.
The default valueis 0.
Quorum writes

INSERT succeeds only when ClickHouse manages to correctly write data tothe insert quorum of replicas during the
insert quorum timeout .lf for any reason the number of replicas with successful writes does not reach the

insert quorum, the writeis considered failed and ClickHouse will delete the inserted block from all the replicas where data
has already been written.

All the replicas in the quorum are consistent, i.e., they contain data from all previous INsERT queries. The INSERT
sequence is linearized.

When reading the data written from the insert guorum,you can use theselect_sequential_consistency [#setting-
select_sequential_consistency] option.

ClickHouse generates an exception

o If the number of available replicas at the time of the query is less than the insert quorum.

o Atan attempt to write data when the previous block has not yet been inserted in the insert guorum of replicas. This
situation may occur if the user tries to perform an 1nserT before the previous one with the insert quorum is
completed.

See also the following parameters:

e insert_quorum_timeout [#setting-insert_quorum_timeout]

« select_sequential_consistency [#setting-select_sequential_consistency]

i

insert_quorum_timeout

Quorum write timeout in seconds. If the timeout has passed and no write has taken place yet, ClickHouse will generate an
exception and the client must repeat the query to write the same block to the same or any other replica.

By default, 60 seconds.
See also the following parameters:

e insert_quorum [#setting-insert_quorum]

¢ select_sequential_consistency [#setting-select_sequential_consistency]

select_sequential_consistency
Enables/disables sequential consistency for seLECT queries:

o 0 —disabled. The default valueis 0.

e 1 —enabled.

When sequential consistency is enabled, ClickHouse allows the client to execute the serLEcT query only for those replicas
that contain data from all previous INSERT queries executed with insert quorum.If the client refers to a partial replica,
ClickHouse will generate an exception. The SELECT query will not include data that has not yet been written to the quorum
of replicas.

See also the following parameters:

o insert_quorum [#setting-insert_quorum]

e insert_quorum_timeout [#setting-insert_quorum_timeout]

(1

Settings profiles

A settings profile is a collection of settings grouped under the same name. Each ClickHouse user has a profile. To apply all
the settings in a profile, set the profile setting.

Example:

Install the web profile.

SET profile = 'web'

Settings profiles are declared in the user config file. Thisis usually users.xml .

Example:

<!-- Settings profiles -->

<profiles>

<!-- Default settings -->

<default>
<!-- The maximum number of threads when running a single query. -->
<max_threads>8</max_threads>

</default>

<!-- Settings for quries from the user interface -->

<web>

<max_rows_to_read>1000000000</max_rows_to_read>
<max_bytes_to_read>100000000000</max bytes_to_read>

<max_rows_to_group_by>1000000</max_rows_to_group_by>
<group_by overflow mode>any</group by overflow mode>

<max_rows_to_sort>1000000</max_rows_to_sort>
<max_bytes_to_sort>1000000000</max_bytes_to_sort>

<max_result_rows>100000</max_result_rows>
<max_result bytes>100000000</max_result_bytes>
<result_overflow mode>break</result_ overflow mode>

<max_execution_time>600</max_execution_time>
<min_execution_speed>1000000</min_execution_ speed>
<timeout_before_checking execution_speed>15</timeout_before_ checking execution_speed>

<max_columns_to_read>25</max_columns_to_read>
<max_temporary_columns>100</max_temporary_columns>

<max_temporary non_const columns>50</max_temporary non const_ columns>
<max_subquery depth>2</max_subquery_ depth>

<max pipeline depth>25</max pipeline depth>
<max_ast_depth>50</max_ast_depth>
<max_ast_elements>100</max_ast_elements>

<readonly>1</readonly>

</web>
</profiles>

The example specifies two profiles: default and web.The default profile has a special purpose: it must always be
present and is applied when starting the server. In other words, the default profile contains default settings. The web
profile is a regular profile that can be set using the set query or using a URL parameter inan HTTP query.

Settings profiles can inherit from each other. To use inheritance, indicate the profile setting before the other settings
that are listed in the profile.

ClickHouse Utility

o clickhouse-local [#utils-clickhouse-local] — Allows running SQL queries on data without stopping the ClickHouse
server, similar to how awk does this.

o clickhouse-copier [#utils-clickhouse-copier] — Copies (and reshards) data from one cluster to another cluster.

(1

clickhouse-copier

Copies data from the tables in one cluster to tables in another (or the same) cluster.

You can run multiple clickhouse-copier instances on different servers to perform the same job. ZooKeeper is used for
syncing the processes.

After starting, clickhouse-copier :

o Connects to ZooKeeper and receives:
e Copying jobs.
¢ The state of the copying jobs.

o |t performs the jobs.

Each running process chooses the "closest" shard of the source cluster and copies the data into the destination
cluster, resharding the data if necessary.

clickhouse-copier tracksthe changesin ZooKeeper and applies them on the fly.

To reduce network traffic, we recommend running clickhouse-copier onthe same server where the source datais
located.

Running clickhouse-copier

The utility should be run manually:
clickhouse-copier copier --daemon --config zookeeper.xml --task-path /task/path --base-dir /path/to/dir

Parameters:

e daemon — Starts clickhouse-copier indaemon mode.
e config — Thepathtothe zookeeper.xml file with the parameters for the connection to ZooKeeper.

e task-path — The path to the ZooKeeper node. This node is used for syncing clickhouse-copier processesand
storing tasks. Tasks are stored in $task-path/description .

e base-dir — The path tologs and auxiliary files. When it starts, clickhouse-copier Creates clickhouse-
copier YYYYMMHHSS <PID> subdirectoriesin sbase-dir .If this parameteris omitted, the directories are created in the
directory where clickhouse-copier waslaunched.

Format of zookeeper.xml

<yandex>
<zookeeper>
<node index="1">
<host>127.0.0.1</host>
<port>2181</port>
</node>
</zookeeper>
</yandex>

Configuration of copying tasks

<yandex>
<!-- Configuration of clusters as in an ordinary server config -->
<remote_servers>
<source_ cluster>
<shard>
<internal replication>false</internal replication>
<replica>
<host>127.0.0.1</host>
<port>9000</port>
</replica>
</shard>

</source_cluster>
<destination_cluster>

</destination_cluster>

</remote_servers>

<!-- How many simultaneously active workers are possible. If you run more workers superfluous workers will

sleep. —--—>

<max_workers>2</max_workers>

<!-- Setting used to fetch (pull) data from source cluster tables -->
<settings_pull>

<readonly>1</readonly>
</settings pull>

<!-- Setting used to insert (push) data to destination cluster tables -->
<settings_push>

<readonly>0</readonly>
</settings_push>

<!-— Common setting for fetch (pull) and insert (push) operations. Also, copier process context uses it.
They are overlaid by <settings pull/> and <settings push/> respectively. -->
<settings>
<connect_timeout>3</connect_timeout>
<!-- Sync insert is set forcibly, leave it here just in case. -->
<insert_distributed sync>1</insert_distributed sync>
</settings>
<!-- Copying tasks description.

You could specify several table task in the same task description (in the same ZooKeeper node), they

will be performed

sequentially.
-—
<tables>
<!-- A table task, copies one table. -->
<table_hits>
<!-- Source cluster name (from <remote servers/> section) and tables in it that should be copied

<cluster pull>source_cluster</cluster_pull>
<database pull>test</database_pull>
<table_pull>hits</table_pull>

<!-- Destination cluster name and tables in which the data should be inserted -->
<cluster_push>destination_ cluster</cluster_ push>
<database_push>test</database_push>

<table_push>hits2</table_push>

<!-- Engine of destination tables.
If destination tables have not be created, workers create them using columns definition from

source tables and engine

definition from here.

NOTE: If the first worker starts insert data and detects that destination partition is not

empty then the partition will

be dropped and refilled, take it into account if you already have some data in destination

tables. You could directly

specify partitions that should be copied in <enabled_partitions/>, they should be in quoted

format like partition column of

system.parts table.
==
<engine>
ENGINE=ReplicatedMergeTree('/clickhouse/tables/{cluster}/{shard}/hits2', '{replica}')
PARTITION BY toMonday(date)
ORDER BY (CounterID, EventDate)
</engine>

<!-- Sharding key used to insert data to destination cluster -->
<sharding key>jumpConsistentHash(intHashé64 (UserID), 2)</sharding key>

<!-- Optional expression that filter data while pull them from source servers -->
<where_condition>CounterID != 0</where_condition>

<!-- This section specifies partitions that should be copied, other partition will be ignored.
Partition names should have the same format as
partition column of system.parts table (i.e. a quoted text).
Since partition key of source and destination cluster could be different,
these partition names specify destination partitions.

NOTE: In spite of this section is optional (if it is not specified, all partitions will be
copied),
it is strictly recommended to specify them explicitly.
If you already have some ready paritions on destination cluster they
will be removed at the start of the copying since they will be interpeted
as unfinished data from the previous copying!!!
——>
<enabled partitions>
<partition>'2018-02-26"'</partition>
<partition>'2018-03-05"'</partition>

</enabled partitions>
</table_hits>

<!-- Next table to copy. It is not copied until previous table is copying. -->
</table_visits>

</table_visits>
</tables>
</yandex>

clickhouse-copier tracksthechangesin /task/path/description and appliesthem on the fly. Forinstance, if you
change the value of max workers, the number of processes running tasks will also change.

i

clickhouse-local

The clickhouse-local program enables you to perform fast processing on local files, without having to deploy and
configure the ClickHouse server.

Accepts data that represent tables and queries them using ClickHouse SQL dialect [#queries].

clickhouse-local uses the same core as ClickHouse server, so it supports most of the features and the same set of
formats and table engines.

By default clickhouse-local does not have access to data on the same host, but it supports loading server configuration
using --config-file argument.

A\, Warning

Itis not recommended to load production server configurationinto clickhouse-local because data canbe damaged in case of human error.

Usage

Basic usage:

clickhouse-local --structure "table structure" --input-format "format of incoming data" -gq "query"

Arguments:

e -5, --structure — table structure for input data.

e -if, ——input-format —inputformat, Tsv by default.

e -f,--file —pathtodata, stdin by default.

e -g --query — queries to execute with ; as delimeter.

e -N, --table —table name where to put output data, table by default.

e -of, -—format, —-—output-format — output format, Tsv by default.

e --stacktrace — whetherto dump debug outputin case of exception.
e --verbose — more details on query execution.
e -s —disables stderr logging.

e --config-file — path to configuration file in same format as for ClickHouse server, by default the configuration
empty.

e --help ——argunﬂentsreferencesfor clickhouse-local.

Also there are arguments for each ClickHouse configuration variable which are more commonly used instead of --config-
file.

Examples

echo -e "1,2\n3,4" | clickhouse-local -S "a Int64, b Int64" -if "CSV" -gq "SELECT * FROM table"
Read 2 rows, 32.00 B in 0.000 sec., 5182 rows/sec., 80.97 KiB/sec.

1 2

3 4

Previous example is the same as:

$ echo -e "1,2\n3,4" | clickhouse-local -q "CREATE TABLE table (a Int64, b Int64) ENGINE = File(CSV, stdin);
SELECT a, b FROM table; DROP TABLE table"

Read 2 rows, 32.00 B in 0.000 sec., 4987 rows/sec., 77.93 KiB/sec.

1 2

3 4

Now let's output memory user for each Unix user:

$ ps aux | tail -n +2 | awk '{ printf("$s\t%s\n", $1, $4) }' | clickhouse-local -S "user String, mem Float64"
-qg "SELECT user, round(sum(mem), 2) as memTotal FROM table GROUP BY user ORDER BY memTotal DESC FORMAT Pretty"
Read 186 rows, 4.15 KiB in 0.035 sec., 5302 rows/sec., 118.34 KiB/sec.

I
| user | memTotal |
| = |
| bayonet | 113.5 |
f f !
| root | 8.8 |
L l]
I T 1
AL T N E
= I |o) 2

P AR ERBMapReduce Z £/ G@IE?

FATTUEMapReduceXEMRARTRN DN ITE RS, HreducelREET oM HF., EPEE NNFRE RS E
£ Apache Hadoop [http://hadoop.apache.org]l, Yandex{EBMMIMAZRER RS RYT,

REAFABEELEN, EAENNERS. RIER, ENFEREWebIZONGERARS . XERSN T XN BIEERZ
RERAN, IRRENSRIMBEFEER (WRENIE) UTETRSZF[OAEFR, WD HRNHFETEZR TreducelR(FrVER
FHX, EXEERELEWNERL. AXMBERT, BERENITreducelR(FRIRES I, Miftmap-reducefSHERT
ERERAFPNRAREITIRE (Bipreduce) , BPFHNTIMMLEE. 2HAHFRIZITREEMap-reducefE55HY
MR RINEERRZ—.

RZ#HMapReduce AR RIFEEER FHTEERB. B2, FEYEEESFE/OLAP, MAEFEREIZITIR, 4l
i, Hadoop&&HiveflPig, ClouderalmpaladiShark (iZBt) for Spark, LAKSpark SQL. PrestoflApache Drill, 5%&\l
AEELE, BITHRESHNMEEIEEARIEE, FLEXLERFGAEWebZONEIRRSEAMEN, ANEREBENRS.

http://hadoop.apache.org

ClickHouse Development

Overview of ClickHouse Architecture

ClickHouse is a true column-oriented DBMS. Data is stored by columns, and during the execution of arrays (vectors or
chunks of columns). Whenever possible, operations are dispatched on arrays, rather than on individual values. This is
called "vectorized query execution," and it helps lower the cost of actual data processing.

This idea is nothing new. It dates back to the apr. programming language and its descendants: A +, J, K,and ¢.Array
programming is used in scientific data processing. Neither is this idea something new in relational databases: for

example, itis used inthe vectorwise system.

There are two different approaches for speeding up the query processing: vectorized query execution and runtime code
generation. In the latter, the code is generated for every kind of query on the fly, removing all indirection and dynamic
dispatch. Neither of these approaches is strictly better than the other. Runtime code generation can be better when it's
fuses many operations together, thus fully utilizing CPU execution units and the pipeline. Vectorized query execution can
be less practical, because it involves the temporary vectors that must be written to the cache and read back. If the
temporary data does not fit in the L2 cache, this becomes an issue. But vectorized query execution more easily utilizes the
SIMD capabilities of the CPU. A research paper [http://15721.courses.cs.cmu.edu/spring2016/papers/p5-sompolski.pdf]
written by our friends shows that it is better to combine both approaches. ClickHouse uses vectorized query execution and
has limited initial support for runtime code.

Columns

To represent columns in memory (actually, chunks of columns), the 1column interface is used. This interface provides
helper methods for implementation of various relational operators. Almost all operations are immutable: they do not
modify the original column, but create a new modified one. For example, the 1column :: filter method accepts a filter
byte mask. It is used for the wHERE and HAVING relational operators. Additional examples: the 1column :: permute
method to support orDER BY,the IColumn :: cut methodtosupport LiMIT,and soon.

Various 1column implementations (ColumnUInt8, ColumnString and soon)are responsible for the memory layout of
columns. Memory layout is usually a contiguous array. For the integer type of columns it is just one contiguous array, like
std :: vector.For string and array columns, itis two vectors: one for all array elements, placed contiguously, and a
second one for offsets to the beginning of each array. Thereis also columnconst that stores just one value in memory, but
looks like a column.

Field

Nevertheless, it is possible to work with individual values as well. To represent an individual value, the rield is used.
Field isjustadiscriminated unionof UInt64, Int64, Float64, String and Array. IColumn hasthe operator|]
method to get then-thvalueasa rield,andthe insert methodtoappenda rield tothe end of a column. These
methods are not very efficient, because they require dealing with temporary rield objects representing an individual
value. There are more efficient methods, such as insertFrom, insertRangeFrom,and soon.

Field doesn't have enough information about a specific data type for a table. For example, uint8, UInt16, UInt32,and
UInt64 areallrepresentedas uInt64 ina Field.

Leaky Abstractions

1column has methods for common relational transformations of data, but they don't meet all needs. For example,
ColumnUInt64 doesn't have a method to calculate the sum of two columns, and columnstring doesn't have a method to
run a substring search. These countless routines are implemented outside of 1column .

http://15721.courses.cs.cmu.edu/spring2016/papers/p5-sompolski.pdf

Various functions on columns can be implemented in a generic, non-efficient way using 1column methods to extract
Field values, orin a specialized way using knowledge of inner memory layout of data in a specific T1column
implementation. To do this, functions are cast to a specific 1column type and deal with internal representation directly.
For example, columnuint64 hasthe getbata method that returns a reference to aninternal array, then a separate routine
reads or fills that array directly. In fact, we have "leaky abstractions" to allow efficient specializations of various routines.

Data Types

IDataType IS responsible for serialization and deserialization: for reading and writing chunks of columns or individual
values in binary or text form. IpataType directly corresponds to data types in tables. For example, there are

DataTypeUInt32, DataTypeDateTime, DataTypeString and soon.

IDataType and IColumn areonlyloosely related to each other. Different data types can be represented in memory by the
same IColumn implementations. For example, DataTypeUInt32 and DataTypeDateTime are both represented by
ColumnUInt32 OF ColumnConstUInt32 .Inaddition, the same data type can be represented by different 1column
implementations. For example, pataTypeUInt8 can be represented by columnUInt8 Or ColumnConstUInt8.

IDataType only stores metadata. Forinstance, pataTypeUInt8 doesn't store anything at all (except vptr) and
DataTypeFixedString storesjust N (the size of fixed-size strings).

IDataType has helper methods for various data formats. Examples are methods to serialize a value with possible quoting,
to serialize a value for JSON, and to serialize a value as part of XML format. There is no direct correspondence to data
formats. For example, the different data formats pretty and TabSeparated canusethesame serializeTextEscaped
helper method from the IpataType interface.

Block

A Block isacontainer that represents a subset (chunk) of a table in memory. It is just a set of triples: (Icolumn,
IDataType, column name) .During query execution, datais processed by Block s. If we have a Block , we have data (in
the 1column object), we have information about its type (in IpataType) that tells us how to deal with that column, and we
have the column name (either the original column name from the table, or some artificial name assigned for getting
temporary results of calculations).

When we calculate some function over columns in a block, we add another column with its result to the block, and we don't
touch columns for arguments of the function because operations are immutable. Later, unneeded columns can be
removed from the block, but not modified. This is convenient for elimination of common subexpressions.

Blocks are created for every processed chunk of data. Note that for the same type of calculation, the column names and
types remain the same for different blocks, and only column data changes. It is better to split block data from the block
header, because small block sizes will have a high overhead of temporary strings for copying shared_ptrs and column
names.

Block Streams

Block streams are for processing data. We use streams of blocks to read data from somewhere, perform data
transformations, or write data to somewhere. IBlockInputStream hasthe read method to fetch the next block while
available. 1Blockoutputstream hasthe write method to push the block somewhere.

Streams are responsible for:

1. Reading or writing to a table. The table just returns a stream for reading or writing blocks.

2. Implementing data formats. For example, if you want to output data to a terminal in pretty format, you create a block
output stream where you push blocks, and it formats them.

3. Performing data transformations. Let's say you have IBlockInputStream and want to create a filtered stream. You

create FilterBlockInputStream and initialize it with your stream. Then when you pull a block from
FilterBlockInputStrean, it pulls a block from your stream, filters it, and returns the filtered block to you. Query
execution pipelines are represented this way.

There are more sophisticated transformations. For example, when you pull from AggregatingBlockInputStream, it reads
all data from its source, aggregates it, and then returns a stream of aggregated data for you. Another example:
UnionBlockInputStream accepts many input sources in the constructor and also a number of threads. It launches
multiple threads and reads from multiple sources in parallel.

Block streams use the "pull" approach to control flow: when you pull a block from the first stream, it consequently pulls
the required blocks from nested streams, and the entire execution pipeline will work. Neither "pull" nor "push" is the best
solution, because control flow is implicit, and that limits implementation of various features like simultaneous execution
of multiple queries (merging many pipelines together). This limitation could be overcome with coroutines or just running
extra threads that wait for each other. We may have more possibilities if we make control flow explicit: if we locate the
logic for passing data from one calculation unit to another outside of those calculation units. Read this article
[http://journal.stuffwithstuff.com/2013/01/13/iteration-inside-and-out/] for more thoughts.

We should note that the query execution pipeline creates temporary data at each step. We try to keep block size small
enough so that temporary data fits in the CPU cache. With that assumption, writing and reading temporary data is almost
free in comparison with other calculations. We could consider an alternative, which is to fuse many operations in the
pipeline together, to make the pipeline as short as possible and remove much of the temporary data. This could be an
advantage, but it also has drawbacks. For example, a split pipeline makes it easy to implement caching intermediate data,
stealing intermediate data from similar queries running at the same time, and merging pipelines for similar queries.

Formats

Data formats are implemented with block streams. There are "presentational” formats only suitable for output of data to
the client, such as pretty format, which provides only 1BlockoutputsStream.And there are input/output formats, such as

TabSeparated OF JSONEachRow .

There are also row streams: IRowInputStream and IRowOutputStream. They allow you to pull/push data by individual
rows, not by blocks. And they are only needed to simplify implementation of row-oriented formats. The wrappers
BlockInputStreamFromRowInputStream and BlockOutputStreamFromRowOutputStream allow you to convert row-
oriented streams to regular block-oriented streams.

1/O

For byte-oriented input/output, there are rReadBuffer and wWriteBuffer abstract classes. They are used instead of C++
iostream's. Don't worry: every mature C++ project is using something other than iostream's for good reasons.

ReadBuffer and wWriteBuffer arejusta contiguous bufferand a cursor pointing to the position in that buffer.
Implementations may own or not own the memory for the buffer. There is a virtual method to fill the buffer with the
following data (for readBuffer)or to flush the buffer somewhere (for writeBuffer). The virtual methods are rarely
called.

Implementations of rReadBuffer / WriteBuffer areused for working with files and file descriptors and network sockets,
for implementing compression (CompressediriteBuffer is initialized with another WriteBuffer and performs
compression before writing data toit), and for other purposes - the names concatReadBuffer, LimitReadBuffer ,and
HashingWriteBuffer speak for themselves.

Read/WriteBuffers only deal with bytes. To help with formatted input/output (for instance, to write a number in decimal
format), there are functions from ReadHelpers and writeHelpers header files.

Let's look at what happens when you want to write a result set in gson format to stdout. You have a result set ready to be
fetched from IBlockInputStream.YOU Create WriteBufferFromFileDescriptor (STDOUT FILENO) to write bytesto
stdout. You create JsoNRowOutputStream, initialized with that writeBuffer, to writerowsin Jgson to stdout. You create

http://journal.stuffwithstuff.com/2013/01/13/iteration-inside-and-out/

BlockOutputStreamFromRowOutputStream on top of it, to representitas IBlockoutputStream. Thenyou call copybata to
transfer data from IBlockInputStream tO IBlockOutputStream,and everything works. Internally, JSONRowOutputStream
will write various JSON delimiters and call the 1DataType: :serializeTextJsoN method with areferenceto 1column and

the row number as arguments. Consequently, IDataType::serializeTextJSON Will calla method from wWriteHelpers.h:
for example, writeText for numeric typesand writeJsoNString for DataTypeString.

Tables

Tables are represented by the 1storage interface. Different implementations of that interface are different table engines.
Examples are storageMergeTree, StorageMemory ,and so on. Instances of these classes are just tables.

The most important Istorage methods are read and write.Therearealso alter, rename, drop,andsoon.The read
method accepts the following arguments: the set of columns to read from a table, the asT query to consider, and the
desired number of streams to return. It returns one or multiple IBlockInputStream objectsand information about the
stage of data processing that was completed inside a table engine during query execution.

In most cases, the read method is only responsible for reading the specified columns from a table, not for any further data
processing. All further data processing is done by the query interpreter and is outside the responsibility of Istorage .

But there are notable exceptions:

e The AST query is passed to the read method and the table engine can use it to derive index usage and to read less
data from a table.

o« Sometimes the table engine can process data itself to a specific stage. For example, storagebdistributed cansenda
query to remote servers, ask them to process data to a stage where data from different remote servers can be
merged, and return that preprocessed data. The query interpreter then finishes processing the data.

The table's read method canreturn multiple 1BlockInputstream objects to allow parallel data processing. These
multiple block input streams can read from a table in parallel. Then you can wrap these streams with various
transformations (such as expression evaluation or filtering) that can be calculated independently and create a
UnionBlockInputStream ontop of them, to read from multiple streams in parallel.

There are also Tablerunction s. These are functions that return atemporary Istorage objecttouseinthe rrom clause of
aquery.

To get a quick idea of how to implement your own table engine, look at something simple, like storageMemory or

StorageTinyLog.

As theresult of the read method, Istorage returns QueryProcessingStage — information about what parts of the
query were already calculated inside storage. Currently we have only very coarse granularity for that information. There
is no way for the storage to say "l have already processed this part of the expression in WHERE, for this range of data".
We need to work on that.

Parsers

A query is parsed by a hand-written recursive descent parser. For example, ParserselectQuery justrecursively calls the
underlying parsers for various parts of the query. Parsers create an AsT.The asT is represented by nodes, which are
instances of 1AsT .

Parser generators are not used for historical reasons.

Interpreters

Interpreters are responsible for creating the query execution pipeline from an ast . There are simple interpreters, such as
InterpreterExistsQuery and InterpreterDropQuery ,Or the more sophisticated InterpreterSelectQuery . The query
execution pipeline is a combination of block input or output streams. For example, the result of interpreting the serLecT

queryisthe 1BlockInputStream toread the result set from; the result of the INSERT query is the 1BlockOutputStream to
write data for insertion to; and the result of interpreting the INSERT SELECT queryisthe IBlockInputStream thatreturns
an empty result set on the first read, but that copies data from serLEcT to INSERT at the same time.

InterpreterSelectQuery USES ExpressionAnalyzer and ExpressionActions machinery forquery analysis and
transformations. This is where most rule-based query optimizations are done. ExpressionAnalyzer iSquite messy and
should be rewritten: various query transformations and optimizations should be extracted to separate classes to allow
modular transformations or query.

Functions
There are ordinary functions and aggregate functions. For aggregate functions, see the next section.

Ordinary functions don't change the number of rows - they work as if they are processing each row independently. In fact,
functions are not called for individual rows, but for B1ock 's of data to implement vectorized query execution.

There are some miscellaneous functions, like blocksize , rowNumberInBlock,and runningAccumulate ,that exploit block
processing and violate the independence of rows.

ClickHouse has strong typing, so implicit type conversion doesn't occur. If a function doesn't support a specific
combination of types, an exception will be thrown. But functions can work (be overloaded) for many different
combinations of types. For example, the p1us function (toimplement the + operator) works for any combination of
numeric types: UInt8 + Float32, UIntl6 + Int8,and soon.Also, some variadic functions can accept any number of
arguments, such as the concat function.

Implementing a function may be slightly inconvenient because a function explicitly dispatches supported data types and
supported 1columns . For example, the p1us function has code generated by instantiation of a C++ template for each
combination of numeric types, and for constant or non-constant left and right arguments.

This is a nice place to implement runtime code generation to avoid template code bloat. Also, it will make it possible to
add fused functions like fused multiply-add, or to make multiple comparisons in one loop iteration.

Due to vectorized query execution, functions are not short-circuit. For example, if you write wHERE f (x) AND g (y) , both
sides will be calculated, even for rows, when £ (x) iszero (except when £ (x) isazeroconstant expression). But if
selectivity of the f (x) conditionis high, and calculation of £ (x) is much cheaperthan g(y) ,it's better toimplement
multi-pass calculation: first calculate f (x) , then filter columns by the result, and then calculate g (y) only for smaller,
filtered chunks of data.

Aggregate Functions

Aggregate functions are stateful functions. They accumulate passed values into some state, and allow you to get results
from that state. They are managed with the TaggregateFunction interface. States can be rather simple (the state for
AggregateFunctionCount iSjustasingle uinte4 value)or quite complex (the state of AggregateFunctionUnigCombined
is a combination of a linear array, a hash table and a #yperLogLog probabilistic data structure).

To deal with multiple states while executing a high-cardinality crour BY query, states are allocated in Arena (a memory
pool), or they could be allocated in any suitable piece of memory. States can have a non-trivial constructor and destructor:
for example, complex aggregation states can allocate additional memory themselves. This requires some attention to
creating and destroying states and properly passing their ownership, to keep track of who and when will destroy states.

Aggregation states can be serialized and deserialized to pass over the network during distributed query execution or to
write them on disk where there is not enough RAM. They can even be stored in a table with the
DataTypeAggregateFunction to allow incremental aggregation of data.

The serialized data format for aggregate function states is not versioned right now. This is ok if aggregate states are only
stored temporarily. But we have the aggregatingMergeTree table engine for incremental aggregation, and people are
already using it in production. This is why we should add support for backward compatibility when changing the

serialized format for any aggregate function in the future.

Server
The server implements several different interfaces:

o AnHTTP interface for any foreign clients.

o ATCP interface for the native ClickHouse client and for cross-server communication during distributed query
execution.

o Aninterface for transferring data for replication.

Internally, it is just a basic multithreaded server without coroutines, fibers, etc. Since the server is not designed to process
a high rate of simple queries but is intended to process a relatively low rate of complex queries, each of them can process a
vast amount of data for analytics.

The server initializes the context class with the necessary environment for query execution: the list of available
databases, users and access rights, settings, clusters, the process list, the query log, and so on. This environment is used
by interpreters.

We maintain full backward and forward compatibility for the server TCP protocol: old clients can talk to new servers and
new clients can talk to old servers. But we don't want to maintain it eternally, and we are removing support for old versions
after about one year.

For all external applications, we recommend using the HTTP interface because it is simple and easy to use. The TCP
protocol is more tightly linked to internal data structures: it uses an internal format for passing blocks of data and it uses
custom framing for compressed data. We haven't released a C library for that protocol because it requires linking most
of the ClickHouse codebase, which is not practical.

Distributed Query Execution

Servers in a cluster setup are mostly independent. You can createa pistributed table on one or all serversin a cluster.
The pistributed table does not store dataitself - it only provides a "view" to all local tables on multiple nodes of a
cluster. When you SELECT froma pistributed table, it rewrites that query, chooses remote nodes according to load
balancing settings, and sends the query to them. The pistributed table requests remote servers to process a query just
up to a stage where intermediate results from different servers can be merged. Then it receives the intermediate results
and merges them. The distributed table tries to distribute as much work as possible to remote servers, and does not send
much intermediate data over the network.

Things become more complicated when you have subqueries in IN or JOIN clauses and each of them uses a
Distributed table. We have different strategies for execution of these queries.

There is no global query plan for distributed query execution. Each node has its own local query plan for its part of the job.
We only have simple one-pass distributed query execution: we send queries for remote nodes and then merge the results.
But this is not feasible for difficult queries with high cardinality GROUP BYs or with a large amount of temporary data for
JOIN: in such cases, we need to "reshuffle" data between servers, which requires additional coordination. ClickHouse does
not support that kind of query execution, and we need to work onit.

Merge Tree

MergeTree isafamily of storage engines that supports indexing by primary key. The primary key can be an arbitary tuple
of columns or expressions. Dataina MergeTree tableis storedin "parts”. Each part stores data in the primary key order
(datais ordered lexicographically by the primary key tuple). All the table columns are stored in separate column.bin filesin
these parts. The files consist of compressed blocks. Each block is usually from 64 KB to 1 MB of uncompressed data,
depending on the average value size. The blocks consist of column values placed contiguously one after the other. Column

values are in the same order for each column (the order is defined by the primary key), so when you iterate by many
columns, you get values for the corresponding rows.

The primary key itself is "sparse". It doesn't address each single row, but only some ranges of data. A separate
primary.idx file hasthe value of the primary key for each N-th row, where N is called index_granularity (usually,N=
8192). Also, for each column, we have column.mrk files with "marks," which are offsets to each N-th row in the data file.
Each mark is a pair: the offset in the file to the beginning of the compressed block, and the offset in the decompressed
block to the beginning of data. Usually compressed blocks are aligned by marks, and the offset in the decompressed block
is zero. Data for primary.idx always residesin memory and data for column.mrk filesis cached.

When we are going to read something from a partin MergeTree , we look at primary.idx dataand locate ranges that
could possibly contain requested data, then look at column.mrk dataand calculate offsets for where to start reading
those ranges. Because of sparseness, excess data may be read. ClickHouse is not suitable for a high load of simple point
queries, because the entire range with index granularity rows must beread for each key, and the entire compressed
block must be decompressed for each column. We made the index sparse because we must be able to maintain trillions of
rows per single server without noticeable memory consumption for the index. Also, because the primary key is sparse, it is
not unique: it cannot check the existence of the key in the table at INSERT time. You could have many rows with the same
keyin atable.

Whenyou INsSERT abunch of datainto MergeTree , that bunchis sorted by primary key order and forms a new part. To
keep the number of parts relatively low, there are background threads that periodically select some parts and merge them
to asingle sorted part. That's why it is called MergeTree . Of course, merging leads to "write amplification”. All parts are
immutable: they are only created and deleted, but not modified. When SELECT is run, it holds a snapshot of the table (a set
of parts). After merging, we also keep old parts for some time to make recovery after failure easier, so if we see that some
merged part is probably broken, we can replace it with its source parts.

MergeTree iSnotanLSM tree because it doesn't contain "memtable" and "log": inserted data is written directly to the
filesystem. This makes it suitable only to INSERT data in batches, not by individual row and not very frequently - about
once per second is ok, but a thousand times a second is not. We did it this way for simplicity's sake, and because we are
already inserting data in batches in our applications.

MergeTree tables can only have one (primary) index: there aren't any secondary indices. It would be nice to allow
multiple physical representations under one logical table, for example, to store data in more than one physical order or
even to allow representations with pre-aggregated data along with original data.

There are MergeTree engines that are doing additional work during background merges. Examples are
CollapsingMergeTree and AggregatingMergeTree . This could be treated as special support for updates. Keep in mind
that these are not real updates because users usually have no control over the time when background merges will be
executed, and dataina MergeTree tableisalmost always stored in more than one part, not in completely merged form.

Replication

Replication in ClickHouse is implemented on a per-table basis. You could have some replicated and some non-replicated
tables on the same server. You could also have tables replicated in different ways, such as one table with two-factor
replication and another with three-factor.

Replication is implemented in the rReplicatedMergeTree storage engine. The pathin zookeeper is specifiedasa
parameter for the storage engine. All tables with the same pathin zookeeper become replicas of each other: they
synchronize their data and maintain consistency. Replicas can be added and removed dynamically simply by creating or
dropping a table.

Replication uses an asynchronous multi-master scheme. You can insert data into any replica that has a session with
zooKeeper ,and data is replicated to all other replicas asynchronously. Because ClickHouse doesn't support UPDATEs,
replication is conflict-free. As there is no quorum acknowledgment of inserts, just-inserted data might be lost if one node
fails.

Metadata for replication is stored in ZooKeeper. There is a replication log that lists what actions to do. Actions are: get part;
merge parts; drop partition, etc. Each replica copies the replication log to its queue and then executes the actions from the
queue. For example, on insertion, the "get part" action is created in the log, and every replica downloads that part. Merges
are coordinated between replicas to get byte-identical results. All parts are merged in the same way on all replicas. To
achieve this, one replicais elected as the leader, and that replica initiates merges and writes "merge parts" actions to the

log.

Replication is physical: only compressed parts are transferred between nodes, not queries. To lower the network cost (to
avoid network amplification), merges are processed on each replica independently in most cases. Large merged parts are
sent over the network only in cases of significant replication lag.

In addition, each replica stores its state in ZooKeeper as the set of parts and its checksums. When the state on the local
filesystem diverges from the reference state in ZooKeeper, the replica restores its consistency by downloading missing
and broken parts from other replicas. When there is some unexpected or broken data in the local filesystem, ClickHouse
does not remove it, but moves it to a separate directory and forgets it.

The ClickHouse cluster consists of independent shards, and each shard consists of replicas. The cluster is not elastic, so
after adding a new shard, data is not rebalanced between shards automatically. Instead, the cluster load will be uneven.
This implementation gives you more control, and it is fine for relatively small clusters such as tens of nodes. But for
clusters with hundreds of nodes that we are using in production, this approach becomes a significant drawback. We
should implement a table engine that will span its data across the cluster with dynamically replicated regions that could
be split and balanced between clusters automatically.

How to Build ClickHouse Release Package

Install Git and Pbuilder

sudo apt-get update
sudo apt-get install git pbuilder debhelper lsb-release fakeroot sudo debian-archive-keyring debian-keyring

Checkout ClickHouse Sources

git clone --recursive --branch stable https://github.com/yandex/ClickHouse.git
cd ClickHouse

Run Release Script

./release

How to Build ClickHouse for Development

Build should work on Ubuntu Linux. With appropriate changes, it should also work on any other Linux distribution. The
build process is not intended to work on Mac OS X. Only x86_64 with SSE 4.2 is supported. Support for AArché4 is
experimental.

To test for SSE 4.2, do

grep -q sse4 2 /proc/cpuinfo && echo "SSE 4.2 supported" || echo "SSE 4.2 not supported"

Install Git and CMake

sudo apt-get install git cmake ninja-build

Or cmake3 instead of cmake on older systems.

Install GCC 7

There are several ways to do this.

Install from a PPA Package

sudo apt-get install software-properties-common
sudo apt-add-repository ppa:ubuntu-toolchain-r/test
sudo apt-get update

sudo apt-get install gcc-7 g++-7

Install from Sources

Look at ci/build-gcc-from-sources.sh [https://github.com/yandex/ClickHouse/blob/master/ci/build-gcc-from-sources.sh]

Use GCC 7 for Builds

export CC=gcc-7
export CXX=g++-7

Install Required Libraries from Packages

sudo apt-get install libicu-dev libreadline-dev

Checkout ClickHouse Sources

git clone --recursive git@github.com:yandex/ClickHouse.git
or: git clone --recursive https://github.com/yandex/ClickHouse.git

cd ClickHouse

For the latest stable version, switch to the stable branch.

Build ClickHouse

mkdir build
cd build
cmake ..
ninja

@6l oo

To create an executable, run ninja clickhouse . This will create the dbms/programs/clickhouse executable, which can
be used with client Or server arguments.

How to Build ClickHouse on Mac OS X

Build should work on Mac OS X 10.12. If you're using earlier version, you can try to build ClickHouse using Gentoo Prefix
and clang slin this instruction. With appropriate changes, it should also work on any other Linux distribution.

Install Homebrew

https://github.com/yandex/ClickHouse/blob/master/ci/build-gcc-from-sources.sh

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Install Required Compilers, Tools, and Libraries

brew install cmake ninja gcc icud4c mariadb-connector-c openssl libtool gettext readline

Checkout ClickHouse Sources

git clone --recursive git@github.com:yandex/ClickHouse.git
or: git clone --recursive https://github.com/yandex/ClickHouse.git

cd ClickHouse

For the latest stable version, switch to the stable branch.

Build ClickHouse

mkdir build

cd build

cmake .. —DCMAKE_CXX_COMPILER=\which g++-8" —DCMAKE_C_COMPILER=\which gcc-8~
ninja

&Cl oo

Caveats

If you intend to run clickhouse-server, make sure to increase the system's maxfiles variable.

© Note

You'll need to use sudo.

To do so, create the following file:

/Library/LaunchDaemons/limit.maxfiles.plist:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>limit.maxfiles</string>
<key>ProgramArguments</key>
<array>
<string>launchctl</string>
<string>limit</string>
<string>maxfiles</string>
<string>524288</string>
<string>524288</string>
</array>
<key>RunAtLoad</key>
<true/>
<key>ServiceIPC</key>
<false/>
</dict>
</plist>

Execute the following command:

$ sudo chown root:wheel /Library/LaunchDaemons/limit.maxfiles.plist

Reboot.

To check if it's working, you canuse ulimit -n command.

How to Write C++ Code

General Recommendations
1. The following are recommendations, not requirements.
2. If you are editing code, it makes sense to follow the formatting of the existing code.

3. Code style is needed for consistency. Consistency makes it easier to read the code, and it also makes it easier to search
the code.

4. Many of the rules do not have logical reasons; they are dictated by established practices.

Formatting
1. Most of the formatting will be done automatically by clang-format .
2.Indents are 4 spaces. Configure your development environment so that a tab adds four spaces.

3. Opening and closing curly brackets must be on a separate line.

inline void readBoolText (bool & x, ReadBuffer & buf)

{
char tmp = '0';
readChar(tmp, buf);
X = tmp != '0';

4. If the entire function body is a single statement , it can be placed on a single line. Place spaces around curly braces
(besides the space at the end of the line).

inline size_t mask() const { return buf_size() - 1; }
inline size_t place(HashValue x) const { return x & mask(); }

5. For functions. Don't put spaces around brackets.
void reinsert(const Value & Xx)
memcpy (&buf[place value], &x, sizeof(x));

6.In if, for, while and other expressions, a space isinserted in front of the opening bracket (as opposed to function

calls).
for (size t i = 0; i < rows; i += storage.index granularity)
7. Add spaces around binary operators (+, -, *, /, %,...)and the ternary operator 2: .
UIntlé year = (s[0] - '0') * 1000 + (s[1] - '0") * 100 + (s[2] - '0"') * 10 + (s[3] - '0");
UInt8 month = (s[5] - '0') * 10 + (s[6] - '0');
UInt8 day = (s[8] - '0') * 10 + (s[9] - '0');

8.If aline feed is entered, put the operator on a new line and increase the indent before it.

if (elapsed_ns)
message << " ("

<< rows_read_on_server * 1000000000 / elapsed ns << rows/s.,

<< bytes_read on_server * 1000.0 / elapsed ns << " MB/s.) ";

9. You can use spaces for alignment within a line, if desired.

dst.ClickLogID
dst.ClickEventID
dst.ClickGoodEvent

click.LogID;
click.EventID;
click.GoodEvent;

10. Don't use spaces around the operators ., ->.

If necessary, the operator can be wrapped to the next line. In this case, the offset in front of it is increased.
11. Do not use a space to separate unary operators (--, ++, *, &,...) fromthe argument.

12. Put a space after a comma, but not before it. The same rule goes for a semicolon inside afor expression.
13. Do not use spaces to separate the [] operator.

14.Ina template <...> expression, use aspace between template and <;nospaces after < or before >.

template <typename TKey, typename TValue>
struct AggregatedStatElement
{}

15. In classes and structures, write public, private ,and protected onthesamelevelas class/struct ,andindentthe
rest of the code.

template <typename T>
class Multiversion

{

public:
/// Version of object for usage. shared ptr manage lifetime of version.
using Version = std::shared ptr<const T>;

16. If the same namespace isused for the entire file, and there isn't anything else significant, an offset is not necessary
inside namespace .

17.If the block foran if, for, while,Or other expression consists of a single statement , the curly brackets are optional.
Place the statement onaseparateline, instead. This ruleis also valid for nested if, for, while,...

Butif theinner statement contains curly brackets or e1se , the external block should be written in curly brackets.

/// Finish write.
for (auto & stream : streams)
stream.second->finalize();

18. There shouldn't be any spaces at the ends of lines.
19. Source files are UTF-8 encoded.

20. Non-ASCll characters can be used in string literals.

<< ", " << (timer.elapsed() / chunks_stats.hits) << " psec/hit.";

21 Do not write multiple expressions in a single line.

22. Group sections of code inside functions and separate them with no more than one empty line.
23. Separate functions, classes, and so on with one or two empty lines.

24. » const (related to a value) must be written before the type name.

//correct

const char * pos
const std::string & s
//incorrect

char const * pos

25. When declaring a pointer or reference, the * and & symbols should be separated by spaces on both sides.

//correct

const char * pos
//incorrect
const char* pos
const char *pos

26. When using template types, alias them with the using keyword (except in the simplest cases).
In other words, the template parameters are specified only in using and aren't repeated in the code.

using can be declared locally, such as inside a function.

//correct

using FileStreams = std::map<std::string, std::shared ptr<Stream>>;
FileStreams streams;

//incorrect

std: :map<std::string, std::shared ptr<Stream>> streams;

27. Do not declare several variables of different types in one statement.

//incorrect
int x, *y;

28. Do not use C-style casts.

//incorrect

std::cerr << (int)c <<; std::endl;

//correct

std::cerr << static_cast<int>(c) << std::endl;

29. In classes and structs, group members and functions separately inside each visibility scope.
30. For small classes and structs, it is not necessary to separate the method declaration from the implementation.
The same is true for small methods in any classes or structs.

For templated classes and structs, don't separate the method declarations from the implementation (because otherwise
they must be defined in the same translation unit).

31. You can wrap lines at 140 characters, instead of 80.

32. Always use the prefix increment/decrement operators if postfix is not required.

for (Names::const_ iterator it = column_names.begin(); it != column_names.end(); ++it)

Comments

1. Be sure to add comments for all non-trivial parts of code.

This is very important. Writing the comment might help you realize that the code isn't necessary, or that it is designed
wrong.

/*%* Part of piece of memory, that can be used.

* For example, if internal buffer is 1MB, and there was only 10 bytes loaded to buffer from file for
reading,

* then working buffer will have size of only 10 bytes

* (working buffer.end() will point to position right after those 10 bytes available for read).

&/

2. Comments can be as detailed as necessary.

3. Place comments before the code they describe. In rare cases, comments can come after the code, on the same line.

/** Parses and executes the query.
*/
void executeQuery (
ReadBuffer & istr, /// Where to read the query from (and data for INSERT, if applicable)
WriteBuffer & ostr, /// Where to write the result
Context & context, /// DB, tables, data types, engines, functions, aggregate functions...
BlockInputStreamPtr & query plan, /// Here could be written the description on how query was executed
QueryProcessingStage: :Enum stage = QueryProcessingStage::Complete /// Up to which stage process the
SELECT query
)

4. Comments should be written in English only.
5. If you are writing a library, include detailed comments explaining it in the main header file.

6. Do not add comments that do not provide additional information. In particular, do not leave empty comments like this:

* Procedure Name:

* Original procedure name:
* Author:

* Date of creation:

* Dates of modification:
* Modification authors:
* Original file name:

* Purpose:

* Intent:

* Designation:

* Classes used:

* Constants:

* Local variables:

* Parameters:

* Date of creation:

* Purpose:

The example is borrowed from the resource http://home.tamk.fi/~jaalto/course/coding-style/doc/unmaintainable-code/
[http://home.tamk.fi/~jaalto/course/coding-style/doc/unmaintainable-code/].

7. Do not write garbage comments (author, creation date ..) at the beginning of each file.

8. Single-line comments begin with three slashes: /// and multi-line comments begin with /+* . These comments are
considered "documentation”.

Note: You can use Doxygen to generate documentation from these comments. But Doxygen is not generally used because
it is more convenient to navigate the code in the IDE.

9. Multi-line comments must not have empty lines at the beginning and end (except the line that closes a multi-line
comment).

http://home.tamk.fi/~jaalto/course/coding-style/doc/unmaintainable-code/

10. For commenting out code, use basic comments, not “documenting” comments.
11. Delete the commented out parts of the code before committing.
12. Do not use profanity in comments or code.

13. Do not use uppercase letters. Do not use excessive punctuation.

/// WHAT THE FAIL???

14. Do not use comments to make delimeters.

[/]/ *kFxxrkhkkkkhkhhkkhkhkkhkhhkhkhkkhkhhkhkkhkhkkkkhkkhkhkkkx

15. Do not start discussions in comments.

/// Why did you do this stuff?

16. There's no need to write a comment at the end of a block describing what it was about.

/// for

Names

1. Use lowercase letters with underscores in the names of variables and class members.

size t max_block_size;

2. For the names of functions (methods), use camelCase beginning with a lowercase letter.

cpp
std::string getName() const override { return "Memory"; }

3. For the names of classes (structs), use CamelCase beginning with an uppercase letter. Prefixes other than | are not used
for interfaces.

cpp
class StorageMemory : public IStorage

4. using are named the same way as classes, or with _t ontheend.
5. Names of template type arguments: in simple cases,use T; T, U; T1, T2.

For more complex cases, either follow the rules for class names, or add the prefix T.

template <typename TKey, typename TValue>
struct AggregatedStatElement

6. Names of template constant arguments: either follow the rules for variable names, or use v in simple cases.

template <bool without www>
struct ExtractDomain

7. For abstract classes (interfaces) you can add the 1 prefix.

class IBlockInputStream

8. If you use a variable locally, you can use the short name.

In all other cases, use a name that describes the meaning.

bool info successfully loaded = false;

9. Names of define sand global constants use ALL_CAPS with underscores.

##define MAX SRC_TABLE_NAMES TO STORE 1000

10. File names should use the same style as their contents.

If a file contains a single class, name the file the same way as the class (CamelCase).

If the file contains a single function, name the file the same way as the function (camelCase).
11. If the name contains an abbreviation, then:

o For variable names, the abbreviation should use lowercase letters mysgl connection (NOt mySQL connection).

¢ For names of classes and functions, keep the uppercase letters in the abbreviationMysoLconnection (not

MySglConnection)

12. Constructor arguments that are used just to initialize the class members should be named the same way as the class
members, but with an underscore at the end.

FileQueueProcessor (
const std::string & path_,
const std::string & prefix ,
std::shared ptr<FileHandler> handler)
: path(path),
prefix(prefix),
handler (handler),
log(&Logger: :get("FileQueueProcessor"))

The underscore suffix can be omitted if the argument is not used in the constructor body.

13. There is no difference in the names of local variables and class members (no prefixes required).

timer (not m timer)

14. For the constantsin an enum , use CamelCase with a capital letter. ALL_CAPS is also acceptable. If the enum is non-
local,usean enum class.

enum class CompressionMethod

{
QuickLz = 0,
174 = i,
}i

15. All names must be in English. Transliteration of Russian words is not allowed.

not Stroka

16. Abbreviations are acceptable if they are well known (when you can easily find the meaning of the abbreviation in
Wikipedia or in a search engine).

SAST>, ~SQL".
Not “NVDH™ (some random letters)
Incomplete words are acceptable if the shortened version is common use.
You can also use an abbreviation if the full name is included next to it in the comments.

17. File names with C++ source code must have the .cpp extension. Header files must have the .n extension.

How to Write Code

1. Memory management.

Manual memory deallocation (delete) can only be used in library code.
Inlibrary code, the delete operator canonly be used in destructors.

In application code, memory must be freed by the object that owns it.
Examples:

o The easiest way is to place an object on the stack, or make it a member of another class.
o Foralarge number of small objects, use containers.

o For automatic deallocation of a small number of objects that reside in the heap, use shared ptr/unique ptr.
2. Resource management.
Use raTII and see above.
3. Error handling.
Use exceptions. In most cases, you only need to throw an exception, and don't need to catch it (because of RATT).
In offline data processing applications, it's often acceptable to not catch exceptions.
In servers that handle user requests, it's usually enough to catch exceptions at the top level of the connection handler.

In thread functions, you should catch and keep all exceptions to rethrow them in the main thread after join .

/// If there weren't any calculations yet, calculate the first block synchronously
if (!started)
{
calculate();
started = true;
}
else /// If calculations are already in progress, wait for the result
pool.wait();

if (exception)
exception->rethrow();

Never hide exceptions without handling. Never just blindly put all exceptions to log.

//Not correct
catch (...) {}

If you need to ignore some exceptions, do so only for specific ones and rethrow the rest.

catch (const DB::Exception & e)

{

if (e.code() == ErrorCodes::UNKNOWN AGGREGATE_FUNCTION)
return nullptr;

else
throw;

When using functions with response codes or errno , always check the result and throw an exception in case of error.

if (0 != close(fd))
throwFromErrno("Cannot close file " + file name, ErrorCodes::CANNOT_CLOSE_FILE);

Do not use assert.
4. Exception types.

There is no need to use complex exception hierarchy in application code. The exception text should be understandable to a
system administrator.

5. Throwing exceptions from destructors.
This is not recommended, but it is allowed.
Use the following options:

o Createafunction (done () or finalize ())that will doall the work in advance that might lead to an exception. If that
function was called, there should be no exceptions in the destructor later.

o Tasks that are too complex (such as sending messages over the network) can be put in separate method that the class
user will have to call before destruction.

« If thereis an exception in the destructor, it’s better to log it than to hide it (if the logger is available).

e Insimple applications, itis acceptable torelyon std::terminate (for cases of noexcept by defaultin C++11)to
handle exceptions.

6. Anonymous code blocks.

You can create a separate code block inside a single function in order to make certain variables local, so that the
destructors are called when exiting the block.

Block block = data.in->read();

std::lock guard<std::mutex> lock(mutex);
data.ready = true;
data.block = block;

}

ready any.set();
7. Multithreading.
In offline data processing programs:

o Tryto get the best possible performance on a single CPU core. You can then parallelize your code if necessary.
In server applications:

o Use the thread pool to process requests. At this point, we haven't had any tasks that required userspace context
switching.

Fork is not used for parallelization.

8. Syncing threads.

Often it is possible to make different threads use different memory cells (even better: different cache lines,) and to not use
any thread synchronization (except joinall).

If synchronization is required, in most cases, it is sufficient to use mutex under lock guard.
In other cases use system synchronization primitives. Do not use busy wait.

Atomic operations should be used only in the simplest cases.

Do not try to implement lock-free data structures unless it is your primary area of expertise.
9. Pointers vs references.

In most cases, prefer references.

10. const.

Use constant references, pointers to constants, const_iterator,and const methods.
Consider const to be default and use non- const only when necessary.

When passing variables by value, using const usually does not make sense.

11. unsigned.

Use unsigned if necessary.

12. Numeric types.

Usethetypes UInt8, UIntl6, UInt32, UInt64, Int8, Intl6, Int32,and Int64,aswellas size t, ssize t,and
ptrdiff t.

Don't use these types for numbers: signed/unsigned long, long long, short, signed/unsigned char, char.

13. Passing arguments.

Pass complex values by reference (including std::string).

If a function captures ownership of an object created in the heap, make the argument type shared ptr Or unique ptr.
14. Return values.

In most cases, just use return.Donotwrite [return std::move (res)]{.strike} .

If the function allocates an object on heap and returns it, use shared ptr Of unique ptr.

In rare cases you might need to return the value via an argument. In this case, the argument should be a reference.

using AggregateFunctionPtr = std::shared ptr<IAggregateFunction>;

/** Allows creating an aggregate function by its name.
*/
class AggregateFunctionFactory

{
public:
AggregateFunctionFactory();
AggregateFunctionPtr get(const String & name, const DataTypes & argument_types) const;

15. namespace.
There is no need to use a separate namespace for application code.

Small libraries don't need this, either.

For medium to large libraries, put everything in a namespace .

Inthelibrary's .h file, you can use namespace detail to hideimplementation details not needed for the application
code.

Ina .cpp file,youcanusea static or anonymous namespace to hide symbols.

Also, a namespace canbeused foran enum to prevent the corresponding names from falling into an external namespace
(butit's better touse an enum class).

16. Deferred initialization.
If arguments are required for initialization, then you normally shouldn't write a default constructor.

If later you’ll need to delay initialization, you can add a default constructor that will create an invalid object. Or, for a small
number of objects, you can use shared ptr/unique ptr.

Loader (DB::Connection * connection_ , const std::string & query, size t max_block size);

/// For deferred initialization
Loader () {}

17. Virtual functions.

If the class is not intended for polymorphic use, you do not need to make functions virtual. This also applies to the
destructor.

18. Encodings.

Use UTF-8 everywhere.Use std::stringand char *.Donotuse std::wstringand wchar t.

19. Logging.

See the examples everywhere in the code.

Before committing, delete all meaningless and debug logging, and any other types of debug output.
Logging in cycles should be avoided, even on the Trace level.

Logs must be readable at any logging level.

Logging should only be used in application code, for the most part.

Log messages must be written in English.

The log should preferably be understandable for the system administrator.

Do not use profanity in the log.

Use UTF-8 encoding in the log. In rare cases you can use non-ASClII characters in the log.

20. Input-output.

Don'tuse iostreams ininternal cycles that are critical for application performance (and never use stringstream).
Usethe pr/10 library instead.

21.Date and time.

Seethe paterut library.

22.include.

Always use #pragma once instead of include guards.
23. using.
using namespace iSnotused.Youcanuse using with something specific. But make it local inside a class or function.

24.Donotuse trailing return type for functions unless necessary.

[auto f£() -> void;]{.strike}

25. Declaration and initialization of variables.

//right way
std::string s = "Hello";
std::string s{"Hello"};

//wrong way
auto s = std::string{"Hello"};

26. For virtual functions, write virtual inthe base class, but write override instead of virtual in descendent classes.

Unused Features of C++
1. Virtual inheritance is not used.

2. Exception specifiers from C++03 are not used.

Platform

1. We write code for a specific platform.

But other things being equal, cross-platform or portable code is preferred.
2. Language: C++17.

3. Compiler: gcc . At this time (December 2017), the code is compiled using version 7.2. (It can also be compiled using

clang 4.)

The standard library is used (1ibstdc++ Of libc++).

4.0S: Linux Ubuntu, not older than Precise.

5.Code is written for x86_64 CPU architecture.

The CPU instruction set is the minimum supported set among our servers. Currently, it is SSE 4.2.
6.Use -wall -Wextra -Werror compilation flags.

7. Use static linking with all libraries except those that are difficult to connect to statically (see the output of the 1dd
command).

8. Code is developed and debugged with release settings.

Tools
1.KDevelop is a good IDE.
2.Fordebuggh1g,use gdb, valgrind (memcheck),strace, -fsanitize=...,0r tcmalloc minimal debug.

3. For profiling, use Linux Perf, valgrind (callgrind),Or strace -cf.

4. Sources are in Git.

5. Assembly uses cumake .

6. Programs are released using deb packages.

7. Commits to master must not break the build.

Though only selected revisions are considered workable.

8. Make commits as often as possible, even if the code is only partially ready.
Use branches for this purpose.

If your codein the master branchis not buildable yet, exclude it from the build before the push . You'll need to finish it or
remove it within a few days.

9. For non-trivial changes, use branches and publish them on the server.

10. Unused code is removed from the repository.

Libraries

1. The C++14 standard library is used (experimental extensions are allowed), as well as boost and poco frameworks.
2. If necessary, you can use any well-known libraries available in the OS package.

If there is a good solution already available, then use it, even if it means you have to install another library.

(But be prepared to remove bad libraries from code.)

3. You caninstall a library that isn't in the packages, if the packages don't have what you need or have an outdated version
or the wrong type of compilation.

4. If the library is small and doesn't have its own complex build system, put the source files in the contrib folder.

5. Preferenceis always given to libraries that are already in use.

General Recommendations

1. Write as little code as possible.

2. Try the simplest solution.

3. Don't write code until you know how it's going to work and how the inner loop will function.
4. In the simplest cases, use using instead of classes or structs.

5. If possible, do not write copy constructors, assignment operators, destructors (other than a virtual one, if the class
contains at least one virtual function), move constructors or move assignment operators. In other words, the compiler-
generated functions must work correctly. You can use default .

6. Code simplification is encouraged. Reduce the size of your code where possible.

Additional Recommendations
1. Explicitly specifying std:: fortypesfrom stddef.h
is not recommended. In other words, we recommend writing size t instead std::size t,becauseit's shorter.

Itis acceptabletoadd std:: .

2. Explicitly specifying std:: for functions from the standard C library
is not recommended. In other words, write memcpy instead of std: :memcpy .

The reason is that there are similar non-standard functions, such as memmem . We do use these functions on occasion. These
functions do not exist in namespace std.

If you write std: :memcpy instead of memcpy everywhere, then memmem without std:: will look strange.
Nevertheless, you can still use std:: if you preferit.

3. Using functions from C when the same ones are available in the standard C++ library.

This is acceptable if it is more efficient.

For example, use memcpy instead of std: :copy for copying large chunks of memory.

4. Multiline function arguments.

Any of the following wrapping styles are allowed:

function(
Tl x1,
T2 x2)

function(
size t left, size t right,
const & RangesInDataParts ranges,
size_t limit)

function(size t left, size_t right,
const & RangesInDataParts ranges,
size t limit)

function(size t left, size t right,
const & RangesInDataParts ranges,
size t limit)

function(
size t left,
size_t right,
const & RangesInDataParts ranges,
size t limit)

ClickHouse Testing

Functional Tests

Functional tests are the most simple and convenient to use. Most of ClickHouse features can be tested with functional
tests and they are mandatory to use for every change in ClickHouse code that can be tested that way.

Each functional test sends one or multiple queries to the running ClickHouse server and compares the result with
reference.

Tests are located in dbms/src/tests/queries directory. There are two subdirectories: stateless and stateful .
Stateless tests run queries without any preloaded test data - they often create small synthetic datasets on the fly, within
the test itself. Stateful tests require preloaded test data from Yandex.Metrica and not available to general public. We tend
touseonly stateless testsandavoid adding new stateful tests.

Each test can be one of two types: .sql and .sh. .sqgl testisthe simple SQL script that is piped to clickhouse-client
--multiquery . .sh testisascriptthatis run by itself.

Torunall tests, use dbms/tests/clickhouse-test tool.Look --help forthe list of possible options. You can simply run
all tests or run subset of tests filtered by substring in test name: ./clickhouse-test substring.

The most simple way to invoke functional tests is to copy clickhouse-client tO /usr/bin/,run clickhouse-server
and thenrun ./clickhouse-test fromitsown directory.

Toadd new test, createa .sql or .sh filein dbms/src/tests/queries/0 stateless directory, check it manually and
then generate .reference fileinthe following way: clickhouse-client -n < 00000 test.sql >

00000 test.reference Ofr ./00000 test.sh > ./00000 test.reference.

Tests should use (create, drop, etc) only tables in test database that is assumed to be created beforehand; also tests can
use temporary tables.

If you want to use distributed queries in functional tests, you can leverage remote table function with 127.0.0.(1..2}
addresses for the server to query itself; or you can use predefined test clusters in server configuration file like

test shard localhost.

Some tests are marked with zookeeper, shard Or long intheirnames. zookeeper isfor tests thatare using ZooKeeper;
shard is for tests that requires server tolisten 127.0.0.* ; long is for tests that run slightly longer that one second.

Integration Tests

Integration tests allow to test ClickHouse in clustered configuration and ClickHouse interaction with other servers like
MySQL, Postgres, MongoDB. They are useful to emulate network splits, packet drops, etc. These tests are run under
Docker and create multiple containers with various software.

See dbms/tests/integration/README.md On how torun these tests.

Note that integration of ClickHouse with third-party drivers is not tested. Also we currently don't have integration tests
with our JDBC and ODBC drivers.

Unit Tests

Unit tests are useful when you want to test not the ClickHouse as a whole, but a single isolated library or class. You can
enable or disable build of tests with EnarTE TESTS CMake option. Unit tests (and other test programs) are located in
tests subdirectories across the code. To run unit tests, type ninja test .Some testsuse gtest , but some are just
programs that return non-zero exit code on test failure.

It's not necessarily to have unit tests if the code is already covered by functional tests (and functional tests are usually
much more simple to use).

Performance Tests

Performance tests allow to measure and compare performance of some isolated part of ClickHouse on synthetic queries.
Tests are located at dbms/tests/performance . Each testis represented by .xm1 file with description of test case. Tests
arerun with clickhouse performance-test tool(thatisembeddedin clickhouse binary).See --help forinvocation.

Each test run one or miltiple queries (possibly with combinations of parameters) in a loop with some conditions for stop
(like "maximum execution speed is not changing in three seconds") and measure some metrics about query performance
(like "maximum execution speed"). Some tests can contain preconditions on preloaded test dataset.

If you want to improve performance of ClickHouse in some scenario, and if improvements can be observed on simple
queries, it is highly recommended to write a performance test. It always makes sense to use perf top orother perf tools
during your tests.

Performance tests are not run on per-commit basis. Results of performance tests are not collected and we compare them
manually.

Test Tools And Scripts

Some programsin tests directory are not prepared tests, but are test tools. For example, for rLexer thereisatool
dbms/src/Parsers/tests/lexer thatjust do tokenization of stdin and writes colorized result to stdout. You can use these
kind of tools as a code examples and for exploration and manual testing.

You can also place pair of files .sh and .reference along with the tool to run it on some predefined input - then script
result can be compared to .reference file. There kind of tests are not automated.

Miscellanous Tests

There are tests for external dictionaries located at doms/tests/external dictionaries and for machine learned models
in doms/tests/external models . These tests are not updated and must be transferred to integration tests.

There is separate test for quorum inserts. This test run ClickHouse cluster on separate servers and emulate various failure
cases: network split, packet drop (between ClickHouse nodes, between ClickHouse and ZooKeeper, between ClickHouse
server and client, etc.), ki1l -9, kill -sTop and kill -conT ,like Jepsen [https://aphyr.com/tags/Jepsen]. Then the
test checks that all acknowledged inserts was written and all rejected inserts was not.

Quorum test was written by separate team before ClickHouse was open-sourced. This team no longer work with
ClickHouse. Test was accidentially written in Java. For these reasons, quorum test must be rewritten and moved to
integration tests.

Manual Testing
When you develop a new feature, it is reasonable to also test it manually. You can do it with the following steps:

Build ClickHouse. Run ClickHouse from the terminal: change directory to doms/src/programs/clickhouse-server and
runitwith ./clickhouse-server. |t willuse configuration(config.xml, users.xml and files within config.d and
users.d directories) from the current directory by default. To connect to ClickHouse server, run

dbms/src/programs/clickhouse-client/clickhouse-client .

Note that all clickhouse tools (server, client, etc) are just symlinks to a single binary named c1ickhouse . You can find this
binary at doms/src/programs/clickhouse . All tools can also beinvoked as clickhouse tool instead of clickhouse-

tool .

Alternatively you can install ClickHouse package: either stable release from Yandex repository or you can build package for
yourself with ./release in ClickHouse sources root. Then start the server with sudo service clickhouse-server start
(or stop to stop the server). Look for logs at /etc/clickhouse-server/clickhouse-server.log .

When ClickHouse is already installed on your system, you can build a new c1ickhouse binary and replace the existing
binary:

sudo service clickhouse-server stop
sudo cp ./clickhouse /usr/bin/
sudo service clickhouse-server start

Also you can stop system clickhouse-server and run your own with the same configuration but with logging to terminal:

sudo service clickhouse-server stop
sudo -u clickhouse /usr/bin/clickhouse server --config-file /etc/clickhouse-server/config.xml

Example with gdb:

https://aphyr.com/tags/Jepsen

sudo -u clickhouse gdb --args /usr/bin/clickhouse server --config-file /etc/clickhouse-server/config.xml

If the system clickhouse-server is already running and you don't want to stop it, you can change port numbers in your
config.xml (oroverridetheminafilein config.d directory), provide appropriate data path, and run it.

clickhouse binary hasalmost no dependencies and works across wide range of Linux distributions. To quick and dirty
test your changes on a server, you can simply scp your fresh built c1ickhouse binary to your server and thenrunitasin
examples above.

Testing Environment

Before publishing release as stable we deploy it on testing environment. Testing environment is a cluster that process 1/39
part of Yandex.Metrica[https://metrica.yandex.com/] data. We share our testing environment with Yandex.Metrica team.
ClickHouse is upgraded without downtime on top of existing data. We look at first that data is processed successfully
without lagging from realtime, the replication continue to work and there is no issues visible to Yandex.Metrica team. First
check can be donein the following way:

SELECT hostName() AS h, any(version()), any(uptime()), max(UTCEventTime), count() FROM remote('example01-01-
{l1..3}t', merge, hits) WHERE EventDate >= today() - 2 GROUP BY h ORDER BY h;

In some cases we also deploy to testing environment of our friend teams in Yandex: Market, Cloud, etc. Also we have some
hardware servers that are used for development purposes.

Load Testing
After deploying to testing environment we run load testing with queries from production cluster. This is done manually.
Make sure you have enabled query 1og onyour production cluster.

Collect query log for a day or more:

clickhouse-client --query="SELECT DISTINCT query FROM system.query_ log WHERE event_date = today() AND query
LIKE '$ym:%' AND query NOT LIKE '%system.query log%' AND type = 2 AND is_initial query" > queries.tsv

This is a way complicated example. type = 2 will filter queries that are executed successfully. query LIKE '$ym:%' isto
select relevant queries from Yandex.Metrica. is_initial query isto select only queries that are initiated by client, not by
ClickHouse itself (as parts of distributed query processing).

scp thislog to your testing cluster and run it as following:

clickhouse benchmark --concurrency 16 < queries.tsv

(probably you also want to specify a —-user)
Then leave it for a night or weekend and go take a rest.

You should check that c1ickhouse-server doesn't crash, memory footprint is bounded and performance not degrading
over time.

Precise query execution timings are not recorded and not compared due to high variability of queries and environment.

Build Tests

Build tests allow to check that build is not broken on various alternative configurations and on some foreign systems.
Tests are located at ci directory. They run build from source inside Docker, Vagrant, and sometimes with gemu-user-
static inside Docker. These tests are under development and test runs are not automated.

https://metrica.yandex.com/

Motivation:

Normally we release and run all tests on a single variant of ClickHouse build. But there are alternative build variants that are
not thoroughly tested. Examples:

 build on FreeBSD;
¢ build on Debian with libraries from system packages;
¢ build with shared linking of libraries;

¢ build on AArché4 platform.

For example, build with system packages is bad practice, because we cannot guarantee what exact version of packages a
system will have. But this is really needed by Debian maintainers. For this reason we at least have to support this variant of
build. Another example: shared linking is a common source of trouble, but it is needed for some enthusiasts.

Though we cannot run all tests on all variant of builds, we want to check at least that various build variants are not broken.
For this purpose we use build tests.

Testing For Protocol Compatibility

When we extend ClickHouse network protocol, we test manually that old clickhouse-client works with new clickhouse-
server and new clickhouse-client works with old clickhouse-server (simply by running binaries from corresponding
packages).

Help From The Compiler

Main ClickHouse code (that is located in doms directory)is built with -wa1l -wextra -Werror and with some additional
enabled warnings. Although these options are not enabled for third-party libraries.

Clang has even more useful warnings - you can look for them with -weverything and pick something to default build.

For production builds, gccis used (it still generates slightly more efficient code than clang). For development, clang is
usually more convenient to use. You can build on your own machine with debug mode (to save battery of your laptop), but
please note that compiler is able to generate more warnings with -03 due to better control flow and inter-procedure
analysis. When building with clang, 1ibc++ isused instead of 1ibstdc++ and when building with debug mode, debug
version of 1ibc++ is used that allows to catch more errors at runtime.

Sanitizers
Address sanitizer. We run functional tests under ASan on per-commit basis.

Valgrind (Memcheck). We run functional tests under Valgrind overnight. It takes multiple hours. Currently there is one
known false positivein re2 library, seethis article [https://research.swtch.com/sparse].

Thread sanitizer. We run functional tests under TSan. ClickHouse must pass all tests. Run under TSan is not automated
and performed only occasionally.

Memory sanitizer. Currently we still don't use MSan.

Undefined behaviour sanitizer. We still don't use UBSan. The only thing to fix is unaligned placement of structs in Arena
during aggregation. This is totally fine, we only have to force alignment under UBSan.

Debug allocator. You can enable debug version of tcmalloc with pEBUG TcMarnoc CMake option. We run tests with
debug allocator on per-commit basis.

You will find some additional detailsin doms/tests/instructions/sanitizers.txt.

https://research.swtch.com/sparse

Fuzzing

As of July 2018 we don't use fuzzing.

Security Audit

People from Yandex Cloud department do some basic overview of ClickHouse capabilities from the security standpoint.

Static Analyzers

We use static analyzers only occasionally. We have evaluated clang-tidy, Coverity, cppcheck, PVS-Studio,
tscancode . You will find instructions for usage in doms/tests/instructions/ directory. Alsoyou canread the articlein
russian [https://habr.com/company/yandex/blog/342018/].

If youuse crLion asanIDE, you canleverage some clang-tidy checks out of the box.

Hardening

FORTIFY SOURCE isused by default. Itis almost useless, but still makes sense in rare cases and we don't disable it.

Code Style
Code style rules are described here [https://clickhouse.yandex/docs/en/development/style/].
To check for some common style violations, you canuse utils/check-style Script.

To force proper style of your code, you can use clang-format . File .clang-format islocated at the sources root. It mostly
corresponding with our actual code style. But it's not recommended to apply clang-format to existing files because it
makes formatting worse. You can use clang-format-diff tool that you can findin clang source repository.

Alternatively you can try uncrustify tool to reformat your code. Configurationisin uncrustify.cfg inthe sources root.
Itisless tested than clang-format .

cLion hasits own code formatter that has to be tuned for our code style.

Metrica B2B Tests

Each ClickHouse release is tested with Yandex Metrica and AppMetrica engines. Testing and stable versions of ClickHouse
are deployed on VMs and run with a small copy of Metrica engine that is processing fixed sample of input data. Then
results of two instances of Metrica engine are compared together.

These tests are automated by separate team. Due to high number of moving parts, tests are fail most of the time by
completely unrelated reasons, that are very difficult to figure out. Most likely these tests have negative value for us.
Nevertheless these tests was proved to be useful in about one or two times out of hundreds.

Test Coverage

As of July 2018 we don't track test coverage.

Test Automation
We run tests with Travis Cl (available for general public) and Jenkins (available inside Yandex).

In Travis Cl due to limit on time and computational power we can afford only subset of functional tests that are run with
limited build of ClickHouse (debug version with cut off most of libraries). In about half of runs it still fails to finish in 50

https://habr.com/company/yandex/blog/342018/
https://clickhouse.yandex/docs/en/development/style/

minutes timeout. The only advantage - test results are visible for all external contributors.

In Jenkins we run functional tests for each commit and for each pull request from trusted users; the same under ASan; we
also run quorum tests, dictionary tests, Metrica B2B tests. We use Jenkins to prepare and publish releases. Worth to note
that we are not happy with Jenkins at all.

One of our goals is to provide reliable testing infrastructure that will be available to community.

Roadmap

Q42018

¢ JOIN syntax compatible with SQL standard:
e Mutliple jo1n sinsingle sELECT

o Protobuf and Parquet input and output formats

Q12019

e Import/export from HDFS and S3
o Lower metadata size in ZooKeeper

o Adaptive index granularity for MergeTree engine family

Q22019

¢ JOIN execution improvements:
¢ Distributed join not limited by memory

¢ Resource pools for more precise distribution of cluster capacity between users

Q32019

¢ Fine-grained authorization

¢ Integration with external authentication services

ClickHouse release 18.14.15, 2018-11-21
Bug fixes:

¢ The size of memory chunk was overestimated while deserializing the column of type Array (string) thatleadsto
"Memory limit exceeded" errors. The issue appeared in version 18.12.13. #3589
[https://github.com/yandex/ClickHouse/issues/3589]

ClickHouse release 18.14.14, 2018-11-20

Bug fixes:

e Fixed on crLusTER queries when cluster configured as secure (flag <secure>). #3599
[https://github.com/yandex/ClickHouse/pull/3599]

Build changes:

e Fixed problems (Ilvm-7 from system, macos) #3582 [https://github.com/yandex/ClickHouse/pull/3582]

https://github.com/yandex/ClickHouse/issues/3589
https://github.com/yandex/ClickHouse/pull/3599
https://github.com/yandex/ClickHouse/pull/3582

ClickHouse release 18.14.11, 2018-10-29

Bug fixes:
o Fixedtheerror Block structure mismatch in UNION stream: different number of columns inLIMIT queries.
#2156 [https://github.com/yandex/ClickHouse/issues/2156]

o Fixed errors when merging data in tables containing arrays inside Nested structures. #3397
[https://github.com/yandex/ClickHouse/pull/3397]

o Fixed incorrect query results if the merge tree uniform read distribution settingis disabled (it is enabled by
default). #3429 [https://github.com/yandex/ClickHouse/pull/3429]

o Fixed anerroroninserts to a Distributed table in Native format. #3411
[https://github.com/yandex/ClickHouse/issues/3411]

ClickHouse release 18.14.10, 2018-10-23
e The compile expressions setting (JIT compilation of expressions) is disabled by default. #3410
[https://github.com/yandex/ClickHouse/pull/3410]

e The enable optimize predicate expression settingis disabled by default.

ClickHouse release 18.14.9, 2018-10-16

New features:
e The wiTH cuBe modifier for GrRour BY (the alternative syntax GrROUP BY CUBE(...) isalsoavailable). #3172
[https://github.com/yandex/ClickHouse/pull/3172]
¢ Addedthe formatbDateTime function. Alexandr Krasheninnikov [https://github.com/yandex/ClickHouse/pull/2770]

o Addedthe JpBc table engineand jdbc table function (requires installing clickhouse-jdbc-bridge). Alexandr
Krasheninnikov [https://github.com/yandex/ClickHouse/pull/3210]

o Added functions for working with the ISO week number: toIsoweek, toISOYear, toStartOfISOYear ,and
toDayOfYear . #3146 [https://github.com/yandex/ClickHouse/pull/3146]

o Now youcanuse Nullable columns for MysoL and opBc tables. #3362
[https://github.com/yandex/ClickHouse/pull/3362]

o Nested data structures can be read as nested objects in JsoNEachRow format. Added the
input_ format import nested json setting.Veloman Yunkan[https://github.com/yandex/ClickHouse/pull/3144]

o Parallel processing is available for many MATERTALIZED VIEW S when inserting data. See the
parallel view processing setting. Marek Vavrusa [https://github.com/yandex/ClickHouse/pull/3208]

o Addedthe svysTeEM FLUSH 1L0Gs query (forced log flushes to system tables such as query log) #3321
[https://github.com/yandex/ClickHouse/pull/3321]

o Now you can use pre-defined database and table macros when declaring Replicated tables. #3251
[https://github.com/yandex/ClickHouse/pull/3251]

o Added the ability toread pecimal type values in engineering notation (indicating powers of ten). #3153
[https://github.com/yandex/ClickHouse/pull/3153]

Experimental features:

o Optimization of the GROUP BY clause for 1LowCardinality data types. #3138
[https://github.com/yandex/ClickHouse/pull/3138]

o Optimized calculation of expressions for LowCardinality data types. #3200
[https://github.com/yandex/ClickHouse/pull/3200]

https://github.com/yandex/ClickHouse/issues/2156
https://github.com/yandex/ClickHouse/pull/3397
https://github.com/yandex/ClickHouse/pull/3429
https://github.com/yandex/ClickHouse/issues/3411
https://github.com/yandex/ClickHouse/pull/3410
https://github.com/yandex/ClickHouse/pull/3172
https://github.com/yandex/ClickHouse/pull/2770
https://github.com/yandex/ClickHouse/pull/3210
https://github.com/yandex/ClickHouse/pull/3146
https://github.com/yandex/ClickHouse/pull/3362
https://github.com/yandex/ClickHouse/pull/3144
https://github.com/yandex/ClickHouse/pull/3208
https://github.com/yandex/ClickHouse/pull/3321
https://github.com/yandex/ClickHouse/pull/3251
https://github.com/yandex/ClickHouse/pull/3153
https://github.com/yandex/ClickHouse/pull/3138
https://github.com/yandex/ClickHouse/pull/3200

Improvements:

o Significantly reduced memory consumption for requests with orpER BY and L1MIT .See the
max_bytes before remerge sort Setting. #3205 [https://github.com/yandex/ClickHouse/pull/3205]

e Intheabsenceof join (LEFT, INNER,..), INNER JOIN isassumed. #3147
[https://github.com/yandex/ClickHouse/pull/3147]

o Qualified asterisks work correctly in queries with Jo1n . Winter Zhang
[https://github.com/yandex/ClickHouse/pull/3202]

e The oprc table engine correctly chooses the method for quoting identifiers in the SQL dialect of a remote database.
Alexandr Krasheninnikov [https://github.com/yandex/ClickHouse/pull/3210]

e The compile expressions setting (JIT compilation of expressions) is enabled by default.

¢ Fixed behavior for simultaneous DROP DATABASE/TABLE IF EXISTS and CREATE DATABASE/TABLE IF NOT EXISTS.
Previously,a CREATE DATABASE ... IF NOT EXISTS query couldreturn the error message "File... already exists", and
the CREATE TABLE ... IF NOT EXISTS and DROP TABLE IF EXISTS queriescouldreturn Table ... is creating
or attaching right now.#3101 [https://github.com/yandex/ClickHouse/pull/3101]

o LIKE and IN expressions with a constant right half are passed to the remote server when querying from MySQL or
ODBC tables. #3182 [https://github.com/yandex/ClickHouse/pull/3182]

o Comparisons with constant expressions in a WHERE clause are passed to the remote server when querying from
MySQL and ODBC tables. Previously, only comparisons with constants were passed. #3182
[https://github.com/yandex/ClickHouse/pull/3182]

o Correct calculation of row width in the terminal for pretty formats, including strings with hieroglyphs. Amos Bird
[https://github.com/yandex/ClickHouse/pull/3257].

e ON CLUSTER can be specified for ALTER UPDATE queries.

¢ Improved performance for reading data in JsoNEachRow format. #3332
[https://github.com/yandex/ClickHouse/pull/3332]

o Added synonyms for the LENGTH and cHARACTER LENGTH functions for compatibility. The concat functionis no
longer case-sensitive. #3306 [https://github.com/yandex/ClickHouse/pull/3306]

o Addedthe TIMESTAMP synonym forthe DateTime type. #3390 [https://github.com/yandex/ClickHouse/pull/3390]

o Thereis always space reserved for query_id in the server logs, even if the log line is not related to a query. This makes it
easier to parse server text logs with third-party tools.

o Memory consumption by a query is logged when it exceeds the next level of an integer number of gigabytes.#3205
[https://github.com/yandex/ClickHouse/pull/3205]

o Added compatibility mode for the case when the client library that uses the Native protocol sends fewer columns by
mistake than the server expects for the INSERT query. This scenario was possible when using the clickhouse-cpp
library. Previously, this scenario caused the server to crash. #3171 [https://github.com/yandex/ClickHouse/pull/3171]

o Inauser-defined WHERE expressionin clickhouse-copier ,youcan now usea partition key alias (for additional
filtering by source table partition). This is useful if the partitioning scheme changes during copying, but only changes
slightly. #3166 [https://github.com/yandex/ClickHouse/pull/3166]

« The workflow of the kafka engine has been moved to a background thread pool in order to automatically reduce the
speed of data reading at high loads. Marek Vavrusa [https://github.com/yandex/ClickHouse/pull/3215].

o Support for reading Tuple and Nested values of structures like struct inthe cap'n'Proto format .Marek Vavrusa
[https://github.com/yandex/ClickHouse/pull/3216]

o Thelist of top-level domains for the firstSignificantSubdomain function now includes the domain biz . decaseal
[https://github.com/yandex/ClickHouse/pull/3219]

o Inthe configuration of external dictionaries, null value isinterpreted as the value of the default data type. #3330
[https://github.com/yandex/ClickHouse/pull/3330]

e Support forthe intbiv and intDivorzero functions for pecimal . b48402e8

https://github.com/yandex/ClickHouse/pull/3205
https://github.com/yandex/ClickHouse/pull/3147
https://github.com/yandex/ClickHouse/pull/3202
https://github.com/yandex/ClickHouse/pull/3210
https://github.com/yandex/ClickHouse/pull/3101
https://github.com/yandex/ClickHouse/pull/3182
https://github.com/yandex/ClickHouse/pull/3182
https://github.com/yandex/ClickHouse/pull/3257
https://github.com/yandex/ClickHouse/pull/3332
https://github.com/yandex/ClickHouse/pull/3306
https://github.com/yandex/ClickHouse/pull/3390
https://github.com/yandex/ClickHouse/pull/3205
https://github.com/yandex/ClickHouse/pull/3171
https://github.com/yandex/ClickHouse/pull/3166
https://github.com/yandex/ClickHouse/pull/3215
https://github.com/yandex/ClickHouse/pull/3216
https://github.com/yandex/ClickHouse/pull/3219
https://github.com/yandex/ClickHouse/pull/3330
https://github.com/yandex/ClickHouse/commit/b48402e8712e2b9b151e0eef8193811d433a1264

[https://github.com/yandex/ClickHouse/commit/b48402e8712e2b9b151e0eef8193811d433a1264]

e Support forthe pate, DateTime, UUID,and Decimal types as akey for the sumMap aggregate function. #3281
[https://github.com/yandex/ClickHouse/pull/3281]

o Support forthe pecimal datatypein external dictionaries. #3324 [https://github.com/yandex/ClickHouse/pull/3324]

e Support forthe pecimal datatypein summingMergeTree tables. #3348
[https://github.com/yandex/ClickHouse/pull/3348]

o Added specializations for vuip in if .#3366 [https://github.com/yandex/ClickHouse/pull/3366]

o Reduced the number of open and close system calls when reading froma MergeTree table.#3283
[https://github.com/yandex/ClickHouse/pull/3283]

e« A TRUNCATE TABLE query can be executed on any replica (the query is passed to the leader replica).Kirill Shvakov
[https://github.com/yandex/ClickHouse/pull/3375]

Bug fixes:

o Fixed anissue with Dictionary tablesfor range hashed dictionaries. This error occurred in version 18.12.17. #1702
[https://github.com/yandex/ClickHouse/pull/1702]

o Fixed an error when loading range hashed dictionaries (the message Unsupported type Nullable (...)). This
error occurred in version 18.12.17. #3362 [https://github.com/yandex/ClickHouse/pull/3362]

o Fixed errorsinthe pointInPolygon function due to the accumulation of inaccurate calculations for polygons with a
large number of vertices located close to each other. #3331 [https://github.com/yandex/ClickHouse/pull/3331]
#3341 [https://github.com/yandex/ClickHouse/pull/3341]

o |f after merging data parts, the checksum for the resulting part differs from the result of the same merge in another
replica, the result of the merge is deleted and the data part is downloaded from the other replica (this is the correct
behavior). But after downloading the data part, it couldn't be added to the working set because of an error that the
part already exists (because the data part was deleted with some delay after the merge). This led to cyclical attempts
to download the same data. #3194 [https://github.com/yandex/ClickHouse/pull/3194]

o Fixedincorrect calculation of total memory consumption by queries (because of incorrect calculation, the
max_memory usage for all queries settingworked incorrectly and the MemoryTracking metric had anincorrect
value). This error occurred in version 18.12.13. Marek Vavrusa [https://github.com/yandex/ClickHouse/pull/3344]

o Fixed the functionality of CREATE TABLE ... ON CLUSTER ... AS SELECT ... Thiserroroccurredinversion18.12.13.
#3247 [https://github.com/yandex/ClickHouse/pull/3247]

o Fixed unnecessary preparation of data structures for JoIn s on the server that initiates the request if the Jo1n is only
performed on remote servers. #3340 [https://github.com/yandex/ClickHouse/pull/3340]

o Fixed bugsinthe kafka engine: deadlocks after exceptions when starting to read data, and locks upon completion
Marek Vavrusa [https://github.com/yandex/ClickHouse/pull/3215].

o For xafka tables, the optional schema parameter was not passed (the schema of the cap'n'proto format). Vojtech
Splichal [https://github.com/yandex/ClickHouse/pull/3150]

o |If the ensemble of ZooKeeper servers has servers that accept the connection but then immediately close it instead of
responding to the handshake, ClickHouse chooses to connect another server. Previously, this produced the error
Cannot read all data. Bytes read: 0. Bytes expected: 4. andthe server couldn't start. 8218cf3a
[https://github.com/yandex/ClickHouse/commit/8218cf3a5f39a43401953769d6d12a0bb8d29da9]

o If the ensemble of ZooKeeper servers contains servers for which the DNS query returns an error, these servers are
ignored. 17b8e209 [https://github.com/yandex/ClickHouse/commit/17b8e209221061325ad7ba0539f03c6e65f87f29]

o Fixed type conversion between pate and pateTime wheninserting datainthe varues format (if
input format values interpret expressions = 1).Previously, the conversion was performed between the
numerical value of the number of days in Unix Epoch time and the Unix timestamp, which led to unexpected results.
#3229 [https://github.com/yandex/ClickHouse/pull/3229]

o Corrected type conversion between pecimal and integer numbers. #3211

https://github.com/yandex/ClickHouse/pull/3281
https://github.com/yandex/ClickHouse/pull/3324
https://github.com/yandex/ClickHouse/pull/3348
https://github.com/yandex/ClickHouse/pull/3366
https://github.com/yandex/ClickHouse/pull/3283
https://github.com/yandex/ClickHouse/pull/3375
https://github.com/yandex/ClickHouse/pull/1702
https://github.com/yandex/ClickHouse/pull/3362
https://github.com/yandex/ClickHouse/pull/3331
https://github.com/yandex/ClickHouse/pull/3341
https://github.com/yandex/ClickHouse/pull/3194
https://github.com/yandex/ClickHouse/pull/3344
https://github.com/yandex/ClickHouse/pull/3247
https://github.com/yandex/ClickHouse/pull/3340
https://github.com/yandex/ClickHouse/pull/3215
https://github.com/yandex/ClickHouse/pull/3150
https://github.com/yandex/ClickHouse/commit/8218cf3a5f39a43401953769d6d12a0bb8d29da9
https://github.com/yandex/ClickHouse/commit/17b8e209221061325ad7ba0539f03c6e65f87f29
https://github.com/yandex/ClickHouse/pull/3229
https://github.com/yandex/ClickHouse/pull/3211

[https://github.com/yandex/ClickHouse/pull/3211]

Fixed errorsinthe enable optimize predicate expression setting. Winter Zhang
[https://github.com/yandex/ClickHouse/pull/3231]

Fixed a parsing error in CSV format with floating-point numbers if a non-default CSV separator is used, such as ;
#3155 [https://github.com/yandex/ClickHouse/pull/3155]

Fixed the arraycumsumNonNegative function (it does not accumulate negative values if the accumulator is less than
zero). Aleksey Studnev [https://github.com/yandex/ClickHouse/pull/3163]

Fixed how Merge tables work ontop of Distributed tables when using PREWHERE . #3165
[https://github.com/yandex/ClickHouse/pull/3165]

Bug fixesinthe ALTER UPDATE query.

Fixed bugs in the odbc table function that appeared in version 18.12. #3197
[https://github.com/yandex/ClickHouse/pull/3197]

Fixed the operation of aggregate functions with statearray combinators. #3188
[https://github.com/yandex/ClickHouse/pull/3188]

Fixed a crash when dividing a pecimal value by zero.69dd6609
[https://github.com/yandex/ClickHouse/commit/69dd6609193beb4e7acd3e6ad216ecalccfb8179]

Fixed output of types for operations using pecimal and integer arguments. #3224
[https://github.com/yandex/ClickHouse/pull/3224]

Fixed the segfault during Grour BY on Decimall28.3359ba06
[https://github.com/yandex/ClickHouse/commit/3359ba06c39fcd05bfdb87d6c64154819621e13a]

The 1og query threads setting (logging information about each thread of query execution) now takes effect only if
the 1og queries option (logging information about queries) is set to 1. Since the 1og guery threads optionis
enabled by default, information about threads was previously logged even if query logging was disabled. #3241
[https://github.com/yandex/ClickHouse/pull/3241]

Fixed an error in the distributed operation of the quantiles aggregate function (the error message Not found column
quantile...). 292a8855
[https://github.com/yandex/ClickHouse/commit/292a885533b8e3b41ce8993867069d14cbd5a664]

Fixed the compatibility problem when working on a cluster of version 18.12.17 servers and older servers at the same
time. For distributed queries with GROUP BY keys of both fixed and non-fixed length, if there was a large amount of
data to aggregate, the returned data was not always fully aggregated (two different rows contained the same
aggregation keys). #3254 [https://github.com/yandex/ClickHouse/pull/3254]

Fixed handling of substitutions in clickhouse-performance-test , if the query contains only part of the substitutions
declared in the test. #3263 [https://github.com/yandex/ClickHouse/pull/3263]

Fixed an error when using rINAL with prREwHERE . #3298 [https://github.com/yandex/ClickHouse/pull/3298]

Fixed an error when using prRewHERE over columns that were added during ALTER . #3298
[https://github.com/yandex/ClickHouse/pull/3298]

Added a check for the absence of arrayJoin for DEFAULT and MATERIALIZED expressions. Previously, arrayJoin
led to an error when inserting data. #3337 [https://github.com/yandex/ClickHouse/pull/3337]

Added a check for the absence of arrayJoin ina PREWHERE clause. Previously, this led to messages like size ...
doesn't match OF Unknown compression method When executing queries. #3357
[https://github.com/yandex/ClickHouse/pull/3357]

Fixed segfault that could occur in rare cases after optimization that replaced AND chains from equality evaluations
with the corresponding IN expression. liuyimin-bytedance [https://github.com/yandex/ClickHouse/pull/3339]

Minor corrections to clickhouse-benchmark : previously, client information was not sent to the server; now the
number of queries executed is calculated more accurately when shutting down and for limiting the number of
iterations. #3351 [https://github.com/yandex/ClickHouse/pull/3351] #3352
[https://github.com/yandex/ClickHouse/pull/3352]

https://github.com/yandex/ClickHouse/pull/3231
https://github.com/yandex/ClickHouse/pull/3155
https://github.com/yandex/ClickHouse/pull/3163
https://github.com/yandex/ClickHouse/pull/3165
https://github.com/yandex/ClickHouse/pull/3197
https://github.com/yandex/ClickHouse/pull/3188
https://github.com/yandex/ClickHouse/commit/69dd6609193beb4e7acd3e6ad216eca0ccfb8179
https://github.com/yandex/ClickHouse/pull/3224
https://github.com/yandex/ClickHouse/commit/3359ba06c39fcd05bfdb87d6c64154819621e13a
https://github.com/yandex/ClickHouse/pull/3241
https://github.com/yandex/ClickHouse/commit/292a885533b8e3b41ce8993867069d14cbd5a664
https://github.com/yandex/ClickHouse/pull/3254
https://github.com/yandex/ClickHouse/pull/3263
https://github.com/yandex/ClickHouse/pull/3298
https://github.com/yandex/ClickHouse/pull/3298
https://github.com/yandex/ClickHouse/pull/3337
https://github.com/yandex/ClickHouse/pull/3357
https://github.com/yandex/ClickHouse/pull/3339
https://github.com/yandex/ClickHouse/pull/3351
https://github.com/yandex/ClickHouse/pull/3352

Backward incompatible changes:

e Removedthe allow experimental decimal type option.The pecimal datatypeis available for default use. #3329
[https://github.com/yandex/ClickHouse/pull/3329]

ClickHouse release 18.12.17, 2018-09-16

New features:
e invalidate query (the ability to specify a query to check whether an external dictionary needs to be updated) is
implemented for the clickhouse source. #3126 [https://github.com/yandex/ClickHouse/pull/3126]

o Added the ability touse utnt*, Tnt*,and pateTime datatypes (alongwiththe pate type)asa range hashed
external dictionary key that defines the boundaries of ranges. Now NULL can be used to designate an open range.
Vasily Nemkov [https://github.com/yandex/ClickHouse/pull/3123]

e The Decimal type now supports var* and stddev* aggregate functions. #3129
[https://github.com/yandex/ClickHouse/pull/3129]

e The pecimal type now supports mathematical functions(exp, sin andsoon.)#3129
[https://github.com/yandex/ClickHouse/pull/3129]

o The system.part log table now hasthe partition id column. #3089
[https://github.com/yandex/ClickHouse/pull/3089]

Bug fixes:

e Merge NOW works correctlyon pistributed tables. Winter Zhang [https://github.com/yandex/ClickHouse/pull/3159]

¢ Fixed incompatibility (unnecessary dependency onthe glibc version)that made it impossible to run ClickHouse on
Ubuntu Precise and older versions. The incompatibility arose in version 18.12.13. #3130
[https://github.com/yandex/ClickHouse/pull/3130]

o Fixederrorsinthe enable optimize predicate expression setting. Winter Zhang
[https://github.com/yandex/ClickHouse/pull/3107]

o Fixed a minor issue with backwards compatibility that appeared when working with a cluster of replicas on versions
earlier than 18.12.13 and simultaneously creating a new replica of a table on a server with a newer version (shown in
the message can not clone replica, because the ... updated to new ClickHouse version,Whichislogical,
but shouldn't happen). #3122 [https://github.com/yandex/ClickHouse/pull/3122]

Backward incompatible changes:

e The enable optimize predicate expression optionisenabled by default (which is rather optimistic). If query
analysis errors occur that are related to searching for the column names, set
enable optimize predicate expression to0.Winter Zhang [https://github.com/yandex/ClickHouse/pull/3107]

ClickHouse release 18.12.14, 2018-09-13

New features:

o Added support for ALTER UPDATE queries. #3035 [https://github.com/yandex/ClickHouse/pull/3035]

o Addedthe a110w ddl option, which restricts the user's access to DDL queries. #3104
[https://github.com/yandex/ClickHouse/pull/3104]

e Addedthe min merge bytes to use direct io optionfor MergeTree engines, which allows you to set a threshold
for the total size of the merge (when above the threshold, data part files will be handled using O_DIRECT). #3117
[https://github.com/yandex/ClickHouse/pull/3117]

o The system.merges System table now containsthe partition id column. #3099
[https://github.com/yandex/ClickHouse/pull/3099]

https://github.com/yandex/ClickHouse/pull/3329
https://github.com/yandex/ClickHouse/pull/3126
https://github.com/yandex/ClickHouse/pull/3123
https://github.com/yandex/ClickHouse/pull/3129
https://github.com/yandex/ClickHouse/pull/3129
https://github.com/yandex/ClickHouse/pull/3089
https://github.com/yandex/ClickHouse/pull/3159
https://github.com/yandex/ClickHouse/pull/3130
https://github.com/yandex/ClickHouse/pull/3107
https://github.com/yandex/ClickHouse/pull/3122
https://github.com/yandex/ClickHouse/pull/3107
https://github.com/yandex/ClickHouse/pull/3035
https://github.com/yandex/ClickHouse/pull/3104
https://github.com/yandex/ClickHouse/pull/3117
https://github.com/yandex/ClickHouse/pull/3099

Improvements
o |If adata part remains unchanged during mutation, it isn't downloaded by replicas.#3103
[https://github.com/yandex/ClickHouse/pull/3103]
o Autocomplete is available for names of settings when working with clickhouse-client . #3106
[https://github.com/yandex/ClickHouse/pull/3106]
Bug fixes:
o Added a check for the sizes of arrays that are elements of Nested type fields when inserting. #3118
[https://github.com/yandex/ClickHouse/pull/3118]

o Fixed an error updating external dictionaries with the opsc source and hashed storage. This error occurred in version
18.12.13.

o Fixed a crash when creating a temporary table from a query with an 1n condition. Winter Zhang
[https://github.com/yandex/ClickHouse/pull/3098]

o Fixed an errorin aggregate functions for arrays that can have nurL elements. Winter Zhang
[https://github.com/yandex/ClickHouse/pull/3097]

ClickHouse release 18.12.13, 2018-09-10

New features:

o Addedthe DECIMAL (digits, scale) data type(DecimalBZ(scale) , Decimalé64 (scale) , Decimall28 (scale)). To
enableit, use the setting allow experimental decimal type .#2846
[https://github.com/yandex/ClickHouse/pull/2846] #2970 [https://github.com/yandex/ClickHouse/pull/2970] #3008
[https://github.com/yandex/ClickHouse/pull/3008] #3047 [https://github.com/yandex/ClickHouse/pull/3047]

e New wiTH roLLUP modifier for crour By (alternative syntax: GROUP BY ROLLUP (...)). #2948
[https://github.com/yandex/ClickHouse/pull/2948]

o Inrequests with JOIN, the star character expands to a list of columns in all tables, in compliance with the SQL standard.
You can restore the old behavior by setting asterisk left columns only to1on the user configuration level. Winter
Zhang [https://github.com/yandex/ClickHouse/pull/2787]

o Added support for JOIN with table functions. Winter Zhang [https://github.com/yandex/ClickHouse/pull/2907]

o Autocomplete by pressing Tab in clickhouse-client. Sergey Shcherbin
[https://github.com/yandex/ClickHouse/pull/2447]

o Ctrl+Cin clickhouse-client clears a query that was entered. #2877 [https://github.com/yandex/ClickHouse/pull/2877]

e Addedthe join default strictness setting(values: ", 'any', 'a11'). Thisallows you to not specify any or ALL
for goin . #2982 [https://github.com/yandex/ClickHouse/pull/2982]

o Each line of the server log related to query processing shows the query ID.#2482
[https://github.com/yandex/ClickHouse/pull/2482]

o Now you can get query execution logs in clickhouse-client (use the send 1ogs level setting). With distributed query
processing, logs are cascaded from all the servers. #2482 [https://github.com/yandex/ClickHouse/pull/2482]

e The system.query log and system.processes (SHOW PROCESSLIST)tables now have information about all changed
settings when you run a query (the nested structure of the settings data). Added the 10g query settings setting.
#2482 [https://github.com/yandex/ClickHouse/pull/2482]

e The system.query log and system.processes tables now show information about the number of threads that are
participating in query execution (see the thread numbers column). #2482
[https://github.com/yandex/ClickHouse/pull/2482]

o Added profileEvents countersthat measure the time spent onreading and writing over the network and reading
and writing to disk, the number of network errors, and the time spent waiting when network bandwidth is limited.

https://github.com/yandex/ClickHouse/pull/3103
https://github.com/yandex/ClickHouse/pull/3106
https://github.com/yandex/ClickHouse/pull/3118
https://github.com/yandex/ClickHouse/pull/3098
https://github.com/yandex/ClickHouse/pull/3097
https://github.com/yandex/ClickHouse/pull/2846
https://github.com/yandex/ClickHouse/pull/2970
https://github.com/yandex/ClickHouse/pull/3008
https://github.com/yandex/ClickHouse/pull/3047
https://github.com/yandex/ClickHouse/pull/2948
https://github.com/yandex/ClickHouse/pull/2787
https://github.com/yandex/ClickHouse/pull/2907
https://github.com/yandex/ClickHouse/pull/2447
https://github.com/yandex/ClickHouse/pull/2877
https://github.com/yandex/ClickHouse/pull/2982
https://github.com/yandex/ClickHouse/pull/2482
https://github.com/yandex/ClickHouse/pull/2482
https://github.com/yandex/ClickHouse/pull/2482
https://github.com/yandex/ClickHouse/pull/2482

#2482 [https://github.com/yandex/ClickHouse/pull/2482]

o Added profileEvents counters that contain the system metrics from rusage (you can use them to get information
about CPU usage in userspace and the kernel, page faults, and context switches), as well as taskstats metrics (use
these to obtain information about I/0 wait time, CPU wait time, and the amount of data read and recorded, both with
and without page cache). #2482 [https://github.com/yandex/ClickHouse/pull/2482]

e The profileEvents counters are applied globally and for each query, as well as for each query execution thread, which
allows you to profile resource consumption by query in detail. #2482
[https://github.com/yandex/ClickHouse/pull/2482]

o Addedthe system.query thread log table, which contains information about each query execution thread. Added
the log query threads setting. #2482 [https://github.com/yandex/ClickHouse/pull/2482]

e The system.metrics and system.events tables now have built-in documentation. #3016
[https://github.com/yandex/ClickHouse/pull/3016]

o Addedthe arrayEnumerateDense function. Amos Bird [https://github.com/yandex/ClickHouse/pull/2975]

e Addedthe arrayCumSumNonNegative and arrayDifference functions. Aleksey Studnev
[https://github.com/yandex/ClickHouse/pull/2942]

o Addedthe retention aggregate function.Sundy Li[https://github.com/yandex/ClickHouse/pull/2887]

« Now you can add (merge) states of aggregate functions by using the plus operator, and multiply the states of
aggregate functions by a nonnegative constant. #3062 [https://github.com/yandex/ClickHouse/pull/3062] #3034
[https://github.com/yandex/ClickHouse/pull/3034]

o Tablesin the MergeTree family now have the virtual column partition id.#3089
[https://github.com/yandex/ClickHouse/pull/3089]
Experimental features:
e Addedthe rowcardinality(T) datatype. This datatype automatically creates a local dictionary of values and allows
data processing without unpacking the dictionary. #2830 [https://github.com/yandex/ClickHouse/pull/2830]

o Added a cache of JIT-compiled functions and a counter for the number of uses before compiling. To JIT compile
expressions, enable the compile expressions setting. #2990 [https://github.com/yandex/ClickHouse/pull/2990]
#3077 [https://github.com/yandex/ClickHouse/pull/3077]

Improvements:
o Fixed the problem with unlimited accumulation of the replication log when there are abandoned replicas. Added an

effective recovery mode for replicas with a long lag.

o Improved performance of crour By with multiple aggregation fields when one of them is string and the others are
fixed length.

o Improved performance when using prReEwHERE and with implicit transfer of expressions in PREWHERE .

¢ Improved parsing performance for text formats (csv, Tsv). Amos Bird
[https://github.com/yandex/ClickHouse/pull/2977] #2980 [https://github.com/yandex/ClickHouse/pull/2980]

o Improved performance of reading strings and arrays in binary formats. Amos Bird
[https://github.com/yandex/ClickHouse/pull/2955]

¢ Increased performance and reduced memory consumption for queries to system.tables and system.columns when
thereis a very large number of tables on a single server. #2953 [https://github.com/yandex/ClickHouse/pull/2953]

o Fixed a performance problem in the case of a large stream of queries that result in an error (the d1_addr functionis
visiblein perf top,butthe serverisn't using much CPU). #2938 [https://github.com/yandex/ClickHouse/pull/2938]

o Conditions are cast into the View (when enable optimize predicate expression isenabled). Winter Zhang
[https://github.com/yandex/ClickHouse/pull/2907]

¢ Improvements to the functionality for the vu1p datatype. #3074 [https://github.com/yandex/ClickHouse/pull/3074]
#2985 [https://github.com/yandex/ClickHouse/pull/2985]

https://github.com/yandex/ClickHouse/pull/2482
https://github.com/yandex/ClickHouse/pull/2482
https://github.com/yandex/ClickHouse/pull/2482
https://github.com/yandex/ClickHouse/pull/2482
https://github.com/yandex/ClickHouse/pull/3016
https://github.com/yandex/ClickHouse/pull/2975
https://github.com/yandex/ClickHouse/pull/2942
https://github.com/yandex/ClickHouse/pull/2887
https://github.com/yandex/ClickHouse/pull/3062
https://github.com/yandex/ClickHouse/pull/3034
https://github.com/yandex/ClickHouse/pull/3089
https://github.com/yandex/ClickHouse/pull/2830
https://github.com/yandex/ClickHouse/pull/2990
https://github.com/yandex/ClickHouse/pull/3077
https://github.com/yandex/ClickHouse/pull/2977
https://github.com/yandex/ClickHouse/pull/2980
https://github.com/yandex/ClickHouse/pull/2955
https://github.com/yandex/ClickHouse/pull/2953
https://github.com/yandex/ClickHouse/pull/2938
https://github.com/yandex/ClickHouse/pull/2907
https://github.com/yandex/ClickHouse/pull/3074
https://github.com/yandex/ClickHouse/pull/2985

o The vuiDp datatypeis supported in The-Alchemist dictionaries. #2822
[https://github.com/yandex/ClickHouse/pull/2822]

e The visitParamExtractRaw function works correctly with nested structures. Winter Zhang
[https://github.com/yandex/ClickHouse/pull/2974]

e Whenthe input format skip unknown fields settingisenabled, object fieldsin Jsoneachrow format are skipped
correctly. BlahGeek [https://github.com/yandex/ClickHouse/pull/2958]

e Fora case expression with conditions, you can now omit ELSE , which is equivalent to ELsE NULL . #2920
[https://github.com/yandex/ClickHouse/pull/2920]

o The operation timeout can now be configured when working with ZooKeeper.urykhy
[https://github.com/yandex/ClickHouse/pull/2971]

e You can specify an offset for LIMIT n, m @S LIMIT n OFFSET m.#2840
[https://github.com/yandex/ClickHouse/pull/2840]

e Youcanusethe seLECT TOP n syntaxasan alternative for LimIT . #2840
[https://github.com/yandex/ClickHouse/pull/2840]

o Increased the size of the queue to write to system tables, so the systemLog parameter queue is full errordoesn't
happen as often.

o The windowFunnel aggregate function now supports events that meet multiple conditions. Amos Bird
[https://github.com/yandex/ClickHouse/pull/2801]

o Duplicate columns can be usedina usinG clause for Jo1n . #3006 [https://github.com/yandex/ClickHouse/pull/3006]

o pretty formats now have alimit on column alignment by width. Use the
output format pretty max column pad width setting.If avalueis wider, it will still be displayed in its entirety, but
the other cells in the table will not be too wide. #3003 [https://github.com/yandex/ClickHouse/pull/3003]

e The odbc table function now allows you to specify the database/schema name. Amos Bird
[https://github.com/yandex/ClickHouse/pull/2885]

o Added the ability to use a username specified in the c1ickhouse-client config file. Vladimir Kozbin
[https://github.com/yandex/ClickHouse/pull/2909]

o The zooKeeperExceptions counter has been splitinto three counters: zZooKeeperUserExceptions,

zZooKeeperHardwareExceptions ,and ZooKeeperOtherExceptions .
e ALTER DELETE queries work for materialized views.

o Added randomization when running the cleanup thread periodically for ReplicatedMergeTree tablesin order to avoid
periodic load spikes when there are a very large number of rReplicatedMergeTree tables.

e Support for ATTACH TABLE ... ON CLUSTER queries. #3025 [https://github.com/yandex/ClickHouse/pull/3025]
Bug fixes:

o Fixed anissue with pDictionary tables (throwsthe size of offsets doesn't match size of column OF Unknown
compression method exception). This bug appeared in version 18.10.3. #2913
[https://github.com/yandex/ClickHouse/issues/2913]

¢ Fixed a bug when merging collapsingMergeTree tables if one of the data partsis empty (these parts are formed
during mergeor ALTER DELETE if all data was deleted), and the vertical algorithm was used for the merge. #3049
[https://github.com/yandex/ClickHouse/pull/3049]

o Fixed arace condition during prop or TRUNCATE for Memory tables with a simultaneous serecT, which could lead to
server crashes. This bug appeared in version 1.1.54388. #3038 [https://github.com/yandex/ClickHouse/pull/3038]

o Fixed the possibility of data loss when inserting in Replicated tablesif the session is expired errorisreturned
(dataloss can be detected by the ReplicatedbataLoss metric). This error occurred in version 1.1.54378.#2939
[https://github.com/yandex/ClickHouse/pull/2939] #2949 [https://github.com/yandex/ClickHouse/pull/2949] #2964
[https://github.com/yandex/ClickHouse/pull/2964]

https://github.com/yandex/ClickHouse/pull/2822
https://github.com/yandex/ClickHouse/pull/2974
https://github.com/yandex/ClickHouse/pull/2958
https://github.com/yandex/ClickHouse/pull/2920
https://github.com/yandex/ClickHouse/pull/2971
https://github.com/yandex/ClickHouse/pull/2840
https://github.com/yandex/ClickHouse/pull/2840
https://github.com/yandex/ClickHouse/pull/2801
https://github.com/yandex/ClickHouse/pull/3006
https://github.com/yandex/ClickHouse/pull/3003
https://github.com/yandex/ClickHouse/pull/2885
https://github.com/yandex/ClickHouse/pull/2909
https://github.com/yandex/ClickHouse/pull/3025
https://github.com/yandex/ClickHouse/issues/2913
https://github.com/yandex/ClickHouse/pull/3049
https://github.com/yandex/ClickHouse/pull/3038
https://github.com/yandex/ClickHouse/pull/2939
https://github.com/yandex/ClickHouse/pull/2949
https://github.com/yandex/ClickHouse/pull/2964

o Fixed asegfault during Join ... on.#3000 [https://github.com/yandex/ClickHouse/pull/3000]

o Fixed the error searching column names when the wHERE expression consists entirely of a qualified column name,
such as WHERE table.column .#2994 [https://github.com/yandex/ClickHouse/pull/2994]

o Fixed the "Not found column" error that occurred when executing distributed queries if a single column consisting of
an IN expression with a subquery is requested from a remote server. #3087
[https://github.com/yandex/ClickHouse/pull/3087]

o Fixedthe Block structure mismatch in UNION stream: different number of columns errorthatoccurred for
distributed queries if one of the shards is local and the other is not, and optimization of the move to PREWHERE is
triggered. #2226 [https://github.com/yandex/ClickHouse/pull/2226] #3037
[https://github.com/yandex/ClickHouse/pull/3037] #3055 [https://github.com/yandex/ClickHouse/pull/3055] #3065
[https://github.com/yandex/ClickHouse/pull/3065] #3073 [https://github.com/yandex/ClickHouse/pull/3073] #3090
[https://github.com/yandex/ClickHouse/pull/3090] #3093 [https://github.com/yandex/ClickHouse/pull/3093]

o Fixed the pointInPolygon function for certain cases of non-convex polygons. #2910
[https://github.com/yandex/ClickHouse/pull/2910]

o Fixed the incorrect result when comparing nan with integers. #3024
[https://github.com/yandex/ClickHouse/pull/3024]

o Fixedanerrorinthe z1ib-ng library that could lead to segfaultin rare cases. #2854
[https://github.com/yandex/ClickHouse/pull/2854]

o Fixed a memory leak when inserting into a table with AggregateFunction columns, if the state of the aggregate
function is not simple (allocates memory separately), and if a single insertion request results in multiple small blocks.
#3084 [https://github.com/yandex/ClickHouse/pull/3084]

o Fixed arace condition when creating and deleting the same Buffer Or MergeTree table simultaneously.

o Fixed the possibility of a segfault when comparing tuples made up of certain non-trivial types, such as tuples #2989
[https://github.com/yandex/ClickHouse/pull/2989]

o Fixed the possibility of a segfault when running certain on crLusTER queries. Winter Zhang
[https://github.com/yandex/ClickHouse/pull/2960]

o Fixedanerrorinthe arraybistinct functionfor Nullable array elements. #2845
[https://github.com/yandex/ClickHouse/pull/2845] #2937 [https://github.com/yandex/ClickHouse/pull/2937]

e The enable optimize predicate expression option now correctly supports cases with sgrLecT *.Winter Zhang
[https://github.com/yandex/ClickHouse/pull/2929]

o Fixed the segfault when re-initializing the ZooKeeper session.#2917
[https://github.com/yandex/ClickHouse/pull/2917]

o Fixed potential blocking when working with ZooKeeper.
o Fixed incorrect code for adding nested data structures ina summingMergeTree .

 When allocating memory for states of aggregate functions, alignment is correctly taken into account, which makes it
possible to use operations that require alignment when implementing states of aggregate functions. chenxing-xc
[https://github.com/yandex/ClickHouse/pull/2808]

Security fix:

o Safe use of ODBC data sources. Interaction with ODBC drivers uses a separate clickhouse-odbc-bridge Process.
Errorsin third-party ODBC drivers no longer cause problems with server stability or vulnerabilities. #2828
[https://github.com/yandex/ClickHouse/pull/2828] #2879 [https://github.com/yandex/ClickHouse/pull/2879] #2886
[https://github.com/yandex/ClickHouse/pull/2886] #2893 [https://github.com/yandex/ClickHouse/pull/2893] #2921
[https://github.com/yandex/ClickHouse/pull/2921]

o Fixedincorrect validation of the file path in the catBoostPool table function. #2894
[https://github.com/yandex/ClickHouse/pull/2894]

e The contents of system tables(tables, databases, parts, columns, parts columns, merges, mutations,

https://github.com/yandex/ClickHouse/pull/3000
https://github.com/yandex/ClickHouse/pull/2994
https://github.com/yandex/ClickHouse/pull/3087
https://github.com/yandex/ClickHouse/pull/2226
https://github.com/yandex/ClickHouse/pull/3037
https://github.com/yandex/ClickHouse/pull/3055
https://github.com/yandex/ClickHouse/pull/3065
https://github.com/yandex/ClickHouse/pull/3073
https://github.com/yandex/ClickHouse/pull/3090
https://github.com/yandex/ClickHouse/pull/3093
https://github.com/yandex/ClickHouse/pull/2910
https://github.com/yandex/ClickHouse/pull/3024
https://github.com/yandex/ClickHouse/pull/2854
https://github.com/yandex/ClickHouse/pull/3084
https://github.com/yandex/ClickHouse/pull/2989
https://github.com/yandex/ClickHouse/pull/2960
https://github.com/yandex/ClickHouse/pull/2845
https://github.com/yandex/ClickHouse/pull/2937
https://github.com/yandex/ClickHouse/pull/2929
https://github.com/yandex/ClickHouse/pull/2917
https://github.com/yandex/ClickHouse/pull/2808
https://github.com/yandex/ClickHouse/pull/2828
https://github.com/yandex/ClickHouse/pull/2879
https://github.com/yandex/ClickHouse/pull/2886
https://github.com/yandex/ClickHouse/pull/2893
https://github.com/yandex/ClickHouse/pull/2921
https://github.com/yandex/ClickHouse/pull/2894

replicas,and replication gueue) are filtered according to the user's configured access to databases
(allow databases). Winter Zhang [https://github.com/yandex/ClickHouse/pull/2856]

Backward incompatible changes:

o Inrequests with JOIN, the star character expands to a list of columns in all tables, in compliance with the SQL standard.
You can restore the old behavior by setting asterisk left columns only to1onthe user configuration level.

Build changes:

o Most integration tests can now be run by commit.
o Code style checks can also be run by commit.

e The memcpy implementation is chosen correctly when building on CentOS7/Fedora. Etienne Champetier
[https://github.com/yandex/ClickHouse/pull/2912]

o When using clang to build, some warnings from -weverything have been added, in addition to the regular -wa11-
Wextra -Werror .#2957 [https://github.com/yandex/ClickHouse/pull/2957]

o Debugging the build uses the jemal1oc debug option.

o Theinterface of the library for interacting with ZooKeeper is declared abstract. #2950
[https://github.com/yandex/ClickHouse/pull/2950]

ClickHouse release 18.10.3, 2018-08-13
New features:

o HTTPS can be used for replication. #2760 [https://github.com/yandex/ClickHouse/pull/2760]

o Added the functions murmurHash2 64, murmurHash3 32, murmurHash3 64,and murmurHash3 128 inadditionto the
existing murmurHash2 32 .#2791 [https://github.com/yandex/ClickHouse/pull/2791]

o Support for Nullable types in the ClickHouse ODBC driver (opscbriver2 output format). #2834
[https://github.com/yandex/ClickHouse/pull/2834]

e Support for uuIp inthe key columns.
Improvements:
o Clusters can be removed without restarting the server when they are deleted from the config files. #2777

[https://github.com/yandex/ClickHouse/pull/2777]

o External dictionaries can be removed without restarting the server when they are removed from config files. #2779
[https://github.com/yandex/ClickHouse/pull/2779]

o Added seTTINGS supportforthe xafka table engine. Alexander Marshalov
[https://github.com/yandex/ClickHouse/pull/2781]

o Improvements for the vuip datatype (not yet complete). #2618 [https://github.com/yandex/ClickHouse/pull/2618]

o Support for empty parts after merges in the summingMergeTree, CollapsingMergeTree and
VersionedCollapsingMergeTree engines. #2815 [https://github.com/yandex/ClickHouse/pull/2815]

o Old records of completed mutations are deleted (ALTER DELETE). #2784
[https://github.com/yandex/ClickHouse/pull/2784]

e Addedthe system.merge tree settings table.Kirill Shvakov [https://github.com/yandex/ClickHouse/pull/2841]

o The system.tables table now has dependency columns: dependencies database and dependencies table.\Winter
Zhang [https://github.com/yandex/ClickHouse/pull/2851]

o Addedthe max partition size to drop configoption. #2782 [https://github.com/yandex/ClickHouse/pull/2782]

e Addedthe output format json escape forward slashes option. Alexander Bocharov
[https://github.com/yandex/ClickHouse/pull/2812]

https://github.com/yandex/ClickHouse/pull/2856
https://github.com/yandex/ClickHouse/pull/2912
https://github.com/yandex/ClickHouse/pull/2957
https://github.com/yandex/ClickHouse/pull/2950
https://github.com/yandex/ClickHouse/pull/2760
https://github.com/yandex/ClickHouse/pull/2791
https://github.com/yandex/ClickHouse/pull/2834
https://github.com/yandex/ClickHouse/pull/2777
https://github.com/yandex/ClickHouse/pull/2779
https://github.com/yandex/ClickHouse/pull/2781
https://github.com/yandex/ClickHouse/pull/2618
https://github.com/yandex/ClickHouse/pull/2815
https://github.com/yandex/ClickHouse/pull/2784
https://github.com/yandex/ClickHouse/pull/2841
https://github.com/yandex/ClickHouse/pull/2851
https://github.com/yandex/ClickHouse/pull/2782
https://github.com/yandex/ClickHouse/pull/2812

e Addedthe max fetch partition retries count setting. #2831 [https://github.com/yandex/ClickHouse/pull/2831]

o Addedthe prefer localhost replica setting for disabling the preference for alocal replica and going to a local
replica without inter-process interaction. #2832 [https://github.com/yandex/ClickHouse/pull/2832]

e The quantileExact aggregate functionreturns nan inthe case of aggregation onanempty Float32 Or Float64 set.
Sundy Li[https://github.com/yandex/ClickHouse/pull/2855]
Bug fixes:
¢ Removed unnecessary escaping of the connection string parameters for ODBC, which made it impossible to establish
a connection. This error occurred in version 18.6.0.

o Fixed the logic for processing REPLACE PARTITION commands inthe replication queue. If there are two REPLACE
commands for the same partition, the incorrect logic could cause one of them to remain in the replication queue and
not be executed. #2814 [https://github.com/yandex/ClickHouse/pull/2814]

o Fixed a merge bug when all data parts were empty (parts that were formed from a merge or from ALTER DELETE if all
data was deleted). This bug appeared in version 18.1.0. #2930 [https://github.com/yandex/ClickHouse/pull/2930]

o Fixed an error for concurrent set or Join .Amos Bird [https://github.com/yandex/ClickHouse/pull/2823]

e Fixedthe Block structure mismatch in UNION stream: different number of columns errorthatoccurred for
UNION ALL queriesinside asub-query if one of the seLECT queries contains duplicate column names. Winter Zhang
[https://github.com/yandex/ClickHouse/pull/2094]

o Fixed a memory leak if an exception occurred when connecting to a MySQL server.
o Fixedincorrect clickhouse-client response code in case of a request error.
o Fixedincorrect behavior of materialized views containing DISTINCT. #2795
[https://github.com/yandex/ClickHouse/issues/2795]
Backward incompatible changes
» Removed support for CHECK TABLE queries for Distributed tables.

Build changes:

o Theallocator has beenreplaced: jemalloc is now usedinstead of tcmalloc .ln some scenarios, thisincreases speed
up to 20%. However, there are queries that have slowed by up to 20%. Memory consumption has been reduced by
approximately 10% in some scenarios, with improved stability. With highly competitive loads, CPU usage in userspace
and in system shows just a slight increase. #2773 [https://github.com/yandex/ClickHouse/pull/2773]

o Use of libressl from a submodule. #1983 [https://github.com/yandex/ClickHouse/pull/1983] #2807
[https://github.com/yandex/ClickHouse/pull/2807]

o Use of unixodbc from a submodule. #2789 [https://github.com/yandex/ClickHouse/pull/2789]
o Use of mariadb-connector-c from a submodule. #2785 [https://github.com/yandex/ClickHouse/pull/2785]

« Added functional test files to the repository that depend on the availability of test data (for the time being, without the
test data itself).

ClickHouse release 18.6.0, 2018-08-02

New features:
o Added support for ON expressions for the JOIN ON syntax: JOIN ON Expr ([table.]column ...) =
Expr ([table.]column, ...) [AND Expr([table.]column, ...) = Expr([table.]column, ...) ...] The

expression must be a chain of equalities joined by the AND operator. Each side of the equality can be an arbitrary
expression over the columns of one of the tables. The use of fully qualified column names is supported (table.name,
database.table.name, table alias.name, subquery alias.name)for theright table. #2742
[https://github.com/yandex/ClickHouse/pull/2742]

https://github.com/yandex/ClickHouse/pull/2831
https://github.com/yandex/ClickHouse/pull/2832
https://github.com/yandex/ClickHouse/pull/2855
https://github.com/yandex/ClickHouse/pull/2814
https://github.com/yandex/ClickHouse/pull/2930
https://github.com/yandex/ClickHouse/pull/2823
https://github.com/yandex/ClickHouse/pull/2094
https://github.com/yandex/ClickHouse/issues/2795
https://github.com/yandex/ClickHouse/pull/2773
https://github.com/yandex/ClickHouse/pull/1983
https://github.com/yandex/ClickHouse/pull/2807
https://github.com/yandex/ClickHouse/pull/2789
https://github.com/yandex/ClickHouse/pull/2785
https://github.com/yandex/ClickHouse/pull/2742

e« HTTPS can be enabled for replication. #2760 [https://github.com/yandex/ClickHouse/pull/2760]
Improvements:

o The server passes the patch component of its version to the client. Data about the patch version componentisin
system.processes and gquery log .#2646 [https://github.com/yandex/ClickHouse/pull/2646]

ClickHouse release 18.5.1, 2018-07-31
New features:

o Added the hash function murmurHash2 32 #2756 [https://github.com/yandex/ClickHouse/pull/2756].
Improvements:

o Now youcanusethe from env #2741 [https://github.com/yandex/ClickHouse/pull/2741] attribute to set values in
config files from environment variables.

o Added case-insensitive versions of the coalesce, ifNull,and nullIf functions #2752
[https://github.com/yandex/ClickHouse/pull/2752].

Bug fixes:

o Fixed a possible bug when starting a replica#2759 [https://github.com/yandex/ClickHouse/pull/2759].

ClickHouse release 18.4.0, 2018-07-28

New features:

Added system tables: formats, data type families, aggregate function combinators, table functions,
table engines, collations #2721 [https://github.com/yandex/ClickHouse/pull/2721].

o Added the ability to use a table function instead of a table as an argument of a remote Of cluster table function
#2708 [https://github.com/yandex/ClickHouse/pull/2708].

e Support for HTTP Basic authenticationinthereplication protocol#2727
[https://github.com/yandex/ClickHouse/pull/2727].

e The nhas function now allows searching for a numeric value in an array of Enum values Maxim Khrisanfov
[https://github.com/yandex/ClickHouse/pull/2699].

e Support for adding arbitrary message separators when reading from kafka Amos Bird
[https://github.com/yandex/ClickHouse/pull/2701].
Improvements:
e The ALTER TABLE t DELETE WHERE query does notrewrite data parts that were not affected by the WHERE condition
#2694 [https://github.com/yandex/ClickHouse/pull/2694].

e The use minimalistic checksums in zookeeper optionfor ReplicatedMergeTree tablesis enabled by default. This
setting was added in version 1.1.54378, 2018-04-16. Versions that are older than 1.1.54378 can no longer be installed.

e Support forrunning k111, and opTIMIZE queries that specify on crusTeErR Winter Zhang
[https://github.com/yandex/ClickHouse/pull/2689].

Bug fixes:

o Fixedtheerror column ... is not under an aggregate function and not in GROUP BY for aggregation with an
IN expression. This bug appeared in version 18.1.0. (bbdd780b
[https://github.com/yandex/ClickHouse/commit/blbdd780be0be06a0f336775941cdd536878dd2c2])

e Fixedabuginthe windowFunnel aggregate function Winter Zhang
[https://github.com/yandex/ClickHouse/pull/2735].

https://github.com/yandex/ClickHouse/pull/2760
https://github.com/yandex/ClickHouse/pull/2646
https://github.com/yandex/ClickHouse/pull/2756
https://github.com/yandex/ClickHouse/pull/2741
https://github.com/yandex/ClickHouse/pull/2752
https://github.com/yandex/ClickHouse/pull/2759
https://github.com/yandex/ClickHouse/pull/2721
https://github.com/yandex/ClickHouse/pull/2708
https://github.com/yandex/ClickHouse/pull/2727
https://github.com/yandex/ClickHouse/pull/2699
https://github.com/yandex/ClickHouse/pull/2701
https://github.com/yandex/ClickHouse/pull/2694
https://github.com/yandex/ClickHouse/pull/2689
https://github.com/yandex/ClickHouse/commit/bbdd780be0be06a0f336775941cdd536878dd2c2
https://github.com/yandex/ClickHouse/pull/2735

o Fixedabuginthe anyHeavy aggregate function (a2101df2
[https://github.com/yandex/ClickHouse/commit/a2101df25a6a0fba99aa71f8793d762af2b801ee])

o Fixed server crash when using the countarray () aggregate function.
Backward incompatible changes:

o Parameters for kafka engine was changed from Kafka (kafka broker list, kafka topic list,
kafka group name, kafka format[, kafka schema, kafka num consumers]) to Kafka (kafka broker list,
kafka topic list, kafka group name, kafka format[, kafka row delimiter, kafka schema,
kafka num consumers]) .lf your tablesuse kafka schema Ofr kafka num consumers parameters,you have to
manually edit the metadata files path/metadata/database/table.sqgl andadd kafka row delimiter parameter
with ' value.

ClickHouse release 18.1.0, 2018-07-23

New features:
e Support forthe ALTER TABLE t DELETE WHERE query for non-replicated MergeTree tables (#2634
[https://github.com/yandex/ClickHouse/pull/2634]).

o Support for arbitrary types for the unig* family of aggregate functions (#2010
[https://github.com/yandex/ClickHouse/issues/2010]).

e Support for arbitrary types in comparison operators (#2026 [https://github.com/yandex/ClickHouse/issues/2026]).

e The users.xml file allows setting a subnet maskinthe format 10.0.0.1/255.255.255.0 . Thisis necessary for using
masks for IPv6 networks with zeros in the middle (#2637 [https://github.com/yandex/ClickHouse/pull/2637]).

e Addedthe arraybistinct function (#2670 [https://github.com/yandex/ClickHouse/pull/2670]).
¢ The SummingMergeTree engine can now work with AggregateFunction type columns (Constantin S. Pan
[https://github.com/yandex/ClickHouse/pull/2566]).

Improvements:

« Changed the numbering scheme for release versions. Now the first part contains the year of release (A.D., Moscow
timezone, minus 2000), the second part contains the number for major changes (increases for most releases), and the
third part is the patch version. Releases are still backwards compatible, unless otherwise stated in the changelog.

o Faster conversions of floating-point numbers to a string (Amos Bird
[https://github.com/yandex/ClickHouse/pull/2664]).

o If some rows were skipped during an insert due to parsing errors (this is possible with the input allow errors num
and input allow errors ratio settingsenabled), the number of skipped rows is now written to the server log
(Leonardo Cecchi[https://github.com/yandex/ClickHouse/pull/2669]).

Bug fixes:

o Fixed the TRUNCATE command for temporary tables (Amos Bird [https://github.com/yandex/ClickHouse/pull/2624]).

o Fixed arare deadlock in the ZooKeeper client library that occurred when there was a network error while reading the
response (315200
[https://github.com/yandex/ClickHouse/commit/c315200e64b87e44bdf740707fc857d1fdf7e947]).

o Fixed an error during a CAST to Nullable types (#1322 [https://github.com/yandex/ClickHouse/issues/1322]).

o Fixed theincorrect result of the maxIntersection () function when the boundaries of intervals coincided (Michael
Furmur [https://github.com/yandex/ClickHouse/pull/2657]).

o Fixedincorrect transformation of the OR expression chain in a function argument (chenxing-xc
[https://github.com/yandex/ClickHouse/pull/2663]).

o Fixed performance degradation for queries containing 1N (subquery) expressions inside another subquery (#2571

https://github.com/yandex/ClickHouse/commit/a2101df25a6a0fba99aa71f8793d762af2b801ee
https://github.com/yandex/ClickHouse/pull/2634
https://github.com/yandex/ClickHouse/issues/2010
https://github.com/yandex/ClickHouse/issues/2026
https://github.com/yandex/ClickHouse/pull/2637
https://github.com/yandex/ClickHouse/pull/2670
https://github.com/yandex/ClickHouse/pull/2566
https://github.com/yandex/ClickHouse/pull/2664
https://github.com/yandex/ClickHouse/pull/2669
https://github.com/yandex/ClickHouse/pull/2624
https://github.com/yandex/ClickHouse/commit/c315200e64b87e44bdf740707fc857d1fdf7e947
https://github.com/yandex/ClickHouse/issues/1322
https://github.com/yandex/ClickHouse/pull/2657
https://github.com/yandex/ClickHouse/pull/2663
https://github.com/yandex/ClickHouse/issues/2571

[https://github.com/yandex/ClickHouse/issues/2571]).

« Fixed incompatibility between servers with different versions in distributed queries that usea cast function thatisn't
in uppercase letters (fe8c4d6
[https://github.com/yandex/ClickHouse/commit/fe8c4d64e434cacd4ceef34faa9005129f2190a5]).

o Added missing quoting of identifiers for queries to an external DBMS (#2635
[https://github.com/yandex/ClickHouse/issues/2635]).

Backward incompatible changes:

o Converting a string containing the number zero to DateTime does not work. Example: sELECT toDateTime ('0") . This
isalsothereasonthat pateTime DEFAULT '0' doesnotworkintables,aswellas <null value>0</null value> in
dictionaries. Solution: replace 0 with 0000-00-00 00:00:00.

ClickHouse release 1.1.54394, 2018-07-12

New features:

o Addedthe histogram aggregate function (Mikhail Surin [https://github.com/yandex/ClickHouse/pull/2521]).
¢ Now OPTIMIZE TABLE ... FINAL can be used without specifying partitions for replicatedMergeTree (Amos Bird
[https://github.com/yandex/ClickHouse/pull/2600]).

Bug fixes:

o Fixed a problem with a very small timeout for sockets (one second) for reading and writing when sending and
downloading replicated data, which made it impossible to download larger parts if there is a load on the network or
disk (it resulted in cyclical attempts to download parts). This error occurred in version 1.1.54388.

o Fixed issues when using chroot in ZooKeeper if you inserted duplicate data blocks in the table.

e The nas function now works correctly for an array with Nullable elements (#2115
[https://github.com/yandex/ClickHouse/issues/2115]).

e The system.tables table now works correctly when used in distributed queries. The metadata modification time
and engine full columns are now non-virtual. Fixed an error that occurred if only these columns were requested
from the table.

o Fixed how anempty TinyLog table works after inserting an empty data block (#2563
[https://github.com/yandex/ClickHouse/issues/2563]).

e The system.zookeeper table works if the value of the node in ZooKeeper is NULL.

ClickHouse release 1.1.54390, 2018-07-06

New features:
e Queries canbesentin multipart/form-data format(inthe query field), whichis useful if external data is also sent
for query processing (Olga Hvostikova [https://github.com/yandex/ClickHouse/pull/2490]).

o Added the ability to enable or disable processing single or double quotes when reading data in CSV format. You can
configure thisinthe format csv _allow single quotes and format csv_allow double quotes settings (Amos Bird
[https://github.com/yandex/ClickHouse/pull/2574]).

o Now OPTIMIZE TABLE ... FINAL can be used without specifying the partition for non-replicated variants of
MergeTree (Amos Bird [https://github.com/yandex/ClickHouse/pull/2599]).

Improvements:

o Improved performance, reduced memory consumption, and correct memory consumption tracking with use of the IN
operator when a table index could be used (#2584 [https://github.com/yandex/ClickHouse/pull/2584]).

https://github.com/yandex/ClickHouse/commit/fe8c4d64e434cacd4ceef34faa9005129f2190a5
https://github.com/yandex/ClickHouse/issues/2635
https://github.com/yandex/ClickHouse/pull/2521
https://github.com/yandex/ClickHouse/pull/2600
https://github.com/yandex/ClickHouse/issues/2115
https://github.com/yandex/ClickHouse/issues/2563
https://github.com/yandex/ClickHouse/pull/2490
https://github.com/yandex/ClickHouse/pull/2574
https://github.com/yandex/ClickHouse/pull/2599
https://github.com/yandex/ClickHouse/pull/2584

« Removed redundant checking of checksums when adding a data part. This is important when there are a large number
of replicas, because in these cases the total number of checks was equal to N"2.

o Added support for array (Tuple(...)) arguments forthe arrayEnumerateUniqg function (#2573
[https://github.com/yandex/ClickHouse/pull/2573]).

o Added Nullable supportforthe runningDifference function (#2594
[https://github.com/yandex/ClickHouse/pull/2594]).

o Improved query analysis performance when there is a very large number of expressions (#2572
[https://github.com/yandex/ClickHouse/pull/2572]).

o Faster selection of data parts for merging in ReplicatedMergeTree tables. Faster recovery of the ZooKeeper session
(#2597 [https://github.com/yandex/ClickHouse/pull/2597]).

o The format version.txt filefor MergeTree tablesisre-created if itis missing, which makes sense if ClickHouse is
launched after copying the directory structure without files (Ciprian Hacman
[https://github.com/yandex/ClickHouse/pull/2593]).

Bug fixes:
o Fixed a bug when working with ZooKeeper that could make it impossible to recover the session and readonly states of
tables before restarting the server.
o Fixed a bug when working with ZooKeeper that could result in old nodes not being deleted if the session is interrupted.

o Fixedanerrorinthe quantileTDigest function for Float arguments (this bug was introduced in version 1.1.54388)
(Mikhail Surin [https://github.com/yandex/ClickHouse/pull/2553]).

o Fixed abugintheindex for MergeTree tables if the primary key column is located inside the function for converting
types between signed and unsigned integers of the same size (#2603
[https://github.com/yandex/ClickHouse/pull/2603]).

¢ Fixed segfault if macros are used but they aren't in the config file (#2570
[https://github.com/yandex/ClickHouse/pull/2570]).

« Fixed switching to the default database when reconnecting the client (#2583
[https://github.com/yandex/ClickHouse/pull/2583]).

o Fixed abugthat occurred whenthe use index for in with subqueries setting was disabled.
Security fix:

o Sending files is no longer possible when connected to MySQL (1.0AD DATA LOCAL INFILE).

ClickHouse release 1.1.54388, 2018-06-28
New features:
e Support forthe ALTER TABLE t DELETE WHERE query for replicated tables. Added the system.mutations tableto
track progress of this type of queries.
e Support forthe ALTER TABLE t [REPLACE|ATTACH] PARTITION query for *MergeTree tables.
« Support forthe TrRuNCATE TABLE query (Winter Zhang [https://github.com/yandex/ClickHouse/pull/2260])

o Severalnew sysTeEM queries for replicated tables (RESTART REPLICAS, SYNC REPLICA, [STOP|START]
[MERGES | FETCHES | SENDS REPLICATED|REPLICATION QUEUES]).

« Added the ability to write to a table with the MySQL engine and the corresponding table function (sundy-li
[https://github.com/yandex/ClickHouse/pull/2294]).

e Addedthe uri() table function andthe uUrL table engine (Alexander Sapin
[https://github.com/yandex/ClickHouse/pull/2501]).

¢ Addedthe windowFunnel aggregate function (sundy-li[https://github.com/yandex/ClickHouse/pull/2352]).

https://github.com/yandex/ClickHouse/pull/2573
https://github.com/yandex/ClickHouse/pull/2594
https://github.com/yandex/ClickHouse/pull/2572
https://github.com/yandex/ClickHouse/pull/2597
https://github.com/yandex/ClickHouse/pull/2593
https://github.com/yandex/ClickHouse/pull/2553
https://github.com/yandex/ClickHouse/pull/2603
https://github.com/yandex/ClickHouse/pull/2570
https://github.com/yandex/ClickHouse/pull/2583
https://github.com/yandex/ClickHouse/pull/2260
https://github.com/yandex/ClickHouse/pull/2294
https://github.com/yandex/ClickHouse/pull/2501
https://github.com/yandex/ClickHouse/pull/2352

e New startswith and endswith functions for strings (Vadim Plakhtinsky
[https://github.com/yandex/ClickHouse/pull/2429]).

e The numbers () table function now allows you to specify the offset (Winter Zhang
[https://github.com/yandex/ClickHouse/pull/2535]).

o The password to clickhouse-client can be entered interactively.
o Server logs can now be sent to syslog (Alexander Krasheninnikov [https://github.com/yandex/ClickHouse/pull/2459]).

e Support for logging in dictionaries with a shared library source (Alexander Sapin
[https://github.com/yandex/ClickHouse/pull/2472]).

o Support for custom CSV delimiters (lvan Zhukov [https://github.com/yandex/ClickHouse/pull/2263])

e Addedthe date time input format setting.|f you switch thissettingto 'best effort', DateTime values will be
read in a wide range of formats.

o Addedthe clickhouse-obfuscator utility for data obfuscation. Usage example: publishing data used in performance
tests.
Experimental features:
o Added the ability to calculate and arguments only where they are needed (Anastasia Tsarkova
[https://github.com/yandex/ClickHouse/pull/2272])
¢ JIT compilation to native code is now available for some expressions (pyos
[https://github.com/yandex/ClickHouse/pull/2277]).

Bug fixes:

o Duplicates no longer appear for a query with DISTINCT and ORDER BY .
o Queries with ARRAY JOIN and arrayFilter nolongerreturnanincorrect result.

« Fixed an error when reading an array column from a Nested structure (#2066
[https://github.com/yandex/ClickHouse/issues/2066]).

o Fixed an error when analyzing queries with a HAVING clause like HAVING tuple IN (...) .
o Fixed an error when analyzing queries with recursive aliases.

o Fixed an error when reading from ReplacingMergeTree with a condition in PREWHERE that filters all rows (#2525
[https://github.com/yandex/ClickHouse/issues/2525]).

o User profile settings were not applied when using sessions in the HTTP interface.

o Fixed how settings are applied from the command line parameters in clickhouse-local.

o The ZooKeeper client library now uses the session timeout received from the server.

o Fixed abuginthe ZooKeeper client library when the client waited for the server response longer than the timeout.

o Fixed pruning of parts for queries with conditions on partition key columns (#2342
[https://github.com/yandex/ClickHouse/issues/2342]).

¢ Merges are now possible after CLEAR COLUMN IN PARTITION (#2315
[https://github.com/yandex/ClickHouse/issues/2315]).

« Type mapping in the ODBC table function has been fixed (sundy-li
[https://github.com/yandex/ClickHouse/pull/2268]).

o Type comparisons have been fixed for pateTime with and without the time zone (Alexander Bocharov
[https://github.com/yandex/ClickHouse/pull/2400]).

o Fixed syntactic parsing and formatting of the casT operator.

« Fixed insertion into a materialized view for the Distributed table engine (Babacar Diassé
[https://github.com/yandex/ClickHouse/pull/2411]).

o Fixed arace condition when writing data from the kafka engine to materialized views (Yangkuan Liu

https://github.com/yandex/ClickHouse/pull/2429
https://github.com/yandex/ClickHouse/pull/2535
https://github.com/yandex/ClickHouse/pull/2459
https://github.com/yandex/ClickHouse/pull/2472
https://github.com/yandex/ClickHouse/pull/2263
https://github.com/yandex/ClickHouse/pull/2272
https://github.com/yandex/ClickHouse/pull/2277
https://github.com/yandex/ClickHouse/issues/2066
https://github.com/yandex/ClickHouse/issues/2525
https://github.com/yandex/ClickHouse/issues/2342
https://github.com/yandex/ClickHouse/issues/2315
https://github.com/yandex/ClickHouse/pull/2268
https://github.com/yandex/ClickHouse/pull/2400
https://github.com/yandex/ClickHouse/pull/2411
https://github.com/yandex/ClickHouse/pull/2448

[https://github.com/yandex/ClickHouse/pull/2448]).

o Fixed SSRF in the remote() table function.

o Fixed exit behavior of clickhouse-client in multiline mode (#2510
[https://github.com/yandex/ClickHouse/issues/2510]).

Improvements:

o Background tasks in replicated tables are now performed in a thread pool instead of in separate threads Gilviu
Caragea [https://github.com/yandex/ClickHouse/pull/1722]).

¢ Improved LZ4 compression performance.

o Faster analysis for queries with a large number of JOINs and sub-queries.

o The DNS cache is now updated automatically when there are too many network errors.

o Tableinserts nolonger occur if the insert into one of the materialized views is not possible because it has too many
parts.

o Corrected the discrepancy in the event counters Query, SelectQuery,and InsertQuery.
o Expressionslike tuple IN (SELECT tuple) are allowed if the tuple types match.
o Aserver with replicated tables can start even if you haven't configured ZooKeeper.

o When calculating the number of available CPU cores, limits on cgroups are now taken into account (Atri Sharma
[https://github.com/yandex/ClickHouse/pull/2325]).

o Added chown for config directories in the systemd config file (Mikhail Shiryaev
[https://github.com/yandex/ClickHouse/pull/2421]).

Build changes:

o The gcc8 compiler can be used for builds.

o Added the ability to build llvm from submodule.

o The version of the librdkafka library has been updated to v0.11.4.

o Added the ability to use the system libcpuid library. The library version has been updated to 0.4.0.

o Fixed the build using the vectorclass library (Babacar Diassé [https://github.com/yandex/ClickHouse/pull/2274]).
o« Cmake now generates files for ninja by default (like when using -G Ninja).

o Added the ability to use the libtinfo library instead of libtermcap (Georgy Kondratiev
[https://github.com/yandex/ClickHouse/pull/2519]).

o Fixed a header file conflict in Fedora Rawhide (#2520 [https://github.com/yandex/ClickHouse/issues/2520]).
Backward incompatible changes:

¢ Removed escapingin vertical and pretty* formatsand deleted the verticalraw format.

o If servers with version 1.1.54388 (or newer) and servers with an older version are used simultaneously in a distributed
query and the query has the cast (x, 'Type') expression withoutthe as keyword and doesn't have the word cast
in uppercase, an exception will be thrown with a message like Not found column cast (0, 'UInt8') in block.
Solution: Update the server on the entire cluster.

ClickHouse release 1.1.54385, 2018-06-01
Bug fixes:

o Fixed an error that in some cases caused ZooKeeper operations to block.

ClickHouse release 1.1.54383, 2018-05-22

https://github.com/yandex/ClickHouse/issues/2510
https://github.com/yandex/ClickHouse/pull/1722
https://github.com/yandex/ClickHouse/pull/2325
https://github.com/yandex/ClickHouse/pull/2421
https://github.com/yandex/ClickHouse/pull/2274
https://github.com/yandex/ClickHouse/pull/2519
https://github.com/yandex/ClickHouse/issues/2520

Bug fixes:

o Fixed a slowdown of replication queue if a table has many replicas.

ClickHouse release 1.1.54381, 2018-05-14

Bug fixes:

¢ Fixed a nodes leak in ZooKeeper when ClickHouse loses connection to ZooKeeper server.

ClickHouse release 1.1.54380, 2018-04-21

New features:

¢ Added the table function file (path, format, structure).Anexamplereadingbytesfrom /dev/urandom: 1n -s
/dev/urandom /var/lib/clickhouse/user files/random' clickhouse-client -q "SELECT * FROM

file('random', 'RowBinary', 'd UInt8') LIMIT 10".
Improvements:
o Subqueries can be wrappedin () brackets to enhance query readability. For example: (SELECT 1) UNION ALL

(SELECT 1) .

e Simple seLECT queries fromthe system.processes tableare notincludedinthe max concurrent queries limit.
Bug fixes:

o Fixed incorrect behavior of the 1n operator when select from MATERIALIZED VIEW .

o Fixedincorrect filtering by partition index in expressions like partition key column IN (...) .

o Fixed inability to execute opTIMIZE query on non-leader replicaif rREANAME was performed on the table.

o Fixed the authorization error when executing oPTIMIZE Or ALTER queriesonanon-leader replica.

o Fixed freezing of K111, QUERY .

o Fixed an error in ZooKeeper client library which led to loss of watches, freezing of distributed DDL queue, and
slowdowns in the replication queue if a non-empty chroot prefixis used in the ZooKeeper configuration.

Backward incompatible changes:

e Removed support for expressions like (a, b) IN (SELECT (a, b)) (youcanusetheequivalentexpression (a, b)
IN (SELECT a, b)).Inpreviousreleases, these expressions led to undetermined wieRE filtering or caused errors.

ClickHouse release 1.1.54378, 2018-04-16

New features:

e Logging level can be changed without restarting the server.

e Addedthe sHOW CREATE DATABASE query.

e The query id canbe passedto clickhouse-client (elBroom).

o New setting: max network bandwidth for all users.

e Added support for ALTER TABLE ... PARTITION ... for MATERIALIZED VIEW.

o Added information about the size of data parts in uncompressed form in the system table.

o Server-to-server encryption support for distributed tables (<secure>1</secure> inthe replica configin

<remote_ servers>)

o Configuration of the table level for the rReplicatedMergeTree family in order to minimize the amount of data stored in

Zookeeper: : use minimalistic_checksums in zookeeper = 1

o Configuration of the clickhouse-client prompt. By default, server names are now output to the prompt. The
server's display name can be changed. It's also sent in the x-clickHouse-Display-Name HTTP header (Kirill Shvakov).

e Multiple comma-separated topics can be specified for the kafka engine (Tobias Adamson)

o When aquery isstopped by KILL QUERY Of replace running query,theclientreceivesthe Query was cancelled
exception instead of an incomplete result.

Improvements:
e ALTER TABLE ... DROP/DETACH PARTITION queries are run at the front of the replication queue.
e SELECT ... FINAL and OPTIMIZE ... FINAL canbe used even when the table has asingle data part.

e A query log tableis recreated on the fly if it was deleted manually (Kirill Shvakov).
e The lengthuTrs function runs faster (zhang2014).

o Improved performance of synchronous insertsin Distributed tables(insert distributed sync = 1)whenthereis
avery large number of shards.

o Theserver accepts the send timeout and receive timeout settingsfrom the client and applies them when
connecting to the client (they are applied in reverse order: the server socket's send timeout issettothe
receive timeout valuereceived from the client, and vice versa).

e More robust crash recovery for asynchronous insertion into nistributed tables.

e Thereturntype of the countkEqual function changed from uInt32 to UInte4 ().
Bug fixes:

o Fixed an error with 1n when the left side of the expression is Nullable .

o Correct results are now returned when using tuples with 1n when some of the tuple components are in the table
index.

e The max execution time limit now works correctly with distributed queries.

o Fixed errors when calculating the size of composite columns inthe system.columns table.
o Fixed an error when creating a temporary table CREATE TEMPORARY TABLE IF NOT EXISTS.
o Fixederrorsin storageKafka (##2075)

o Fixed server crashes from invalid arguments of certain aggregate functions.

o Fixed the error that prevented the pETACH DATARASE query from stopping background tasks for
ReplicatedMergeTree tables.

e Too many parts stateisless likely to happen when inserting into aggregated materialized views (##2084).

o Corrected recursive handling of substitutions in the config if a substitution must be followed by another substitution
on the same level.

o Corrected the syntax in the metadata file when creating a view that uses a query with unToN ALL .
e sSummingMergeTree NOW works correctly for summation of nested data structures with a composite key.

o Fixed the possibility of a race condition when choosing the leader for rReplicatedMergeTree tables.
Build changes:

e Thebuild supports ninja instead of make and uses ninja by default for building releases.

¢ Renamed packages: clickhouse-server-base iN clickhouse-common-static; clickhouse-server-common in
clickhouse-server ; clickhouse-common-dbg in clickhouse-common-static-dbg .Toinstall, use clickhouse-

server clickhouse-client .Packages with the old names will still load in the repositories for backward compatibility.

Backward incompatible changes:

¢ Removed the special interpretation of an IN expression if an array is specified on the left side. Previously, the
expression arr IN (set) wasinterpreted as "atleastone arr element belongs tothe set ". To get the same
behavior in the new version, write arrayExists (x -> x IN (set), arr) .

o Disabled theincorrect use of the socket option so rReUsePORT , which was incorrectly enabled by default in the Poco
library. Note that on Linux there is no longer any reason to simultaneously specify the addresses :: and 0.0.0.0 for
listen — usejust :: , which allows listening to the connection both over IPv4 and IPv6 (with the default kernel config
settings). You can also revert to the behavior from previous versions by specifying

<listen reuse port>1</listen reuse port> inthe config.

ClickHouse release 1.1.54370, 2018-03-16

New features:

e Addedthe system.macros table and auto updating of macros when the config file is changed.
o Addedthe sySTEM RELOAD CONFIG query.

o Addedthe maxIntersections(left col, right col) aggregate function, which returns the maximum number of
simultaneously intersecting intervals [left; right].The maxIntersectionsPosition(left, right) function
returns the beginning of the "maximum" interval. (Michael Furmur
[https://github.com/yandex/ClickHouse/pull/2012]).

Improvements:
o Wheninserting dataina replicated table, fewer requests are madeto zookeeper (and most of the user-level errors
have disappeared from the zookeeper log).
o Added the ability to create aliases for data sets. Example: wiTs (1, 2, 3) AS set SELECT number IN set FROM
system.numbers LIMIT 10.

Bug fixes:

o Fixedthe 111egal PREWHERE error when reading from Merge tables for pistributed tables.
o Added fixes that allow you to start clickhouse-server in IPv4-only Docker containers.
o Fixed arace condition when reading from system system.parts columns tables.

o Removed double buffering during a synchronous inserttoa pistributed table, which could have caused the
connection to timeout.

o Fixed a bug that caused excessively long waits for an unavailable replica before beginning a seLECT query.
o Fixedincorrectdatesinthe system.parts table.

o Fixed a bug that madeitimpossible toinsert dataina rReplicated tableif chroot was non-empty in the configuration
of the zooKeeper cluster.

o Fixed the vertical merging algorithm for an empty orpER BY table.

o Restored the ability to use dictionaries in queries to remote tables, even if these dictionaries are not present on the
requestor server. This functionality was lost in release 1.1.54362.

o Restored the behavior for queries like SELECT * FROM remote ('server2', default.table) WHERE col IN (SELECT
col2 FROM default.table) when theright side of the 1n should use aremote default.table instead of alocal one.
This behavior was broken in version 1.1.54358.

¢ Removed extraneous error-level logging of Not found column ... in block.

Clickhouse Release 1.1.54362, 2018-03-11

New features:

https://github.com/yandex/ClickHouse/pull/2012

Aggregation without Group By for an empty set (such as SELECT count (*) FROM table WHERE 0)NOW returnsa
result with one row with null values for aggregate functions, in compliance with the SQL standard. To restore the old
behavior (return an empty result), set empty result for aggregation by empty set to1.

Added type conversion for unton ALL . Different alias names are allowed in sELECT positionsin UNION ALL ,in
compliance with the SQL standard.

Arbitrary expressions are supported in L.TMIT BY clauses. Previously, it was only possible to use columns resulting
from sELECT.

Anindex of MergeTree tablesisused when 1n is applied to a tuple of expressions from the columns of the primary
key. Example: WHERE (UserID, EventDate) IN ((123, '2000-01-01'), ...) (Anastasiya Tsarkova).

Added the clickhouse-copier tool for copying between clusters and resharding data (beta).

Added consistent hashing functions: yandexConsistentHash, jumpConsistentHash, sumburConsistentHash . They
can be used as a sharding key in order to reduce the amount of network traffic during subsequent reshardings.

Added functions: arrayany, arrayAll, hasAny, hasAll, arrayIntersect, arrayResize.
Added the arraycumsum function (Javi Santana).

Added the parseDateTimeBestEffort, parseDateTimeBestEffortOrZero, and parseDateTimeBestEffortOrNull
functions to read the DateTime from a string containing text in a wide variety of possible formats.

Data can be partially reloaded from external dictionaries during updating (load just the records in which the value of
the specified field greater than in the previous download) (Arsen Hakobyan).

Added the cluster table function. Example: cluster (cluster name, db, table) .The remote table functioncan
accept the cluster name as the first argument, if it is specified as an identifier.

The remote and cluster table functions canbeusedin INSERT requests.

Added the create table query and engine full virtual columnstothe system.tables table.The
metadata modification time columnis virtual.

Added the data path and metadata path €OlUMNStO system.tables and system.databases tables, and added the
path columntothe system.parts and system.parts columns tables.

Added additional information about mergesinthe system.part log table.
An arbitrary partitioning key can be used for the system.query 1log table (Kirill Shvakov).

The suow TABLES query now also shows temporary tables. Added temporary tables and the is temporary columnto
system.tables (zhang2014).

Added prOP TEMPORARY TABLE and EXISTS TEMPORARY TABLE queries(zhang2014).

Support for sHow CREATE TABLE for temporary tables (zhang2014).

Added the system profile configuration parameter for the settings used by internal processes.
Support for loading object id asan attributein MongoDB dictionaries (Pavel Litvinenko).

Reading null asthe default value when loading data for an external dictionary with the MongobB source (Pavel
Litvinenko).

Reading pateTime valuesinthe values format from a Unix timestamp without single quotes.
Failover is supportedin remote table functions for cases when some of the replicas are missing the requested table.

Configuration settings can be overridden in the command line when you run c1ickhouse-server . Example:

clickhouse-server -- --logger.level=information.

Implemented the empty function froma rFixedstring argument: the function returns 1 if the string consists entirely
of null bytes (zhang2014).

Added the 1isten try configuration parameter for listening to at least one of the listen addresses without quitting, if
some of the addresses can't be listened to (useful for systems with disabled support for IPv4 or IPv6).

Added the versionedCollapsingMergeTree tableengine.

¢ Support for rows and arbitrary numeric types for the 1ibrary dictionary source.

e MergeTree tablescan be used without a primary key (you need to specify oRDER BY tuple()).
e A Nullable typecanbe casT toanon-Nullable typeif theargumentisnot NULL .

e RENAME TABLE canbe performed for viEw.

o Addedthe throwif function.

o Addedthe odbc default field size option, which allows you to extend the maximum size of the value loaded from
an ODBC source (by default, it is 1024).

e The system.processes tableand snow PrROCESSLIST now have the is_cancelled and peak memory usage

columns.
Improvements:

o Limits and quotas on the result are no longer applied to intermediate data for INSERT SELECT queries or for SELECT
subqueries.

o Fewer false triggers of force restore data when checking the status of replicated tables when the server starts.

o Addedthe allow distributed ddl option.

¢ Nondeterministic functions are not allowed in expressions for MergeTree table keys.

o Files with substitutions from config.d directories are loaded in alphabetical order.

o Improved performance of the arraytElement function in the case of a constant multidimensional array with an empty
array as one of the elements. Example: [[1], []][x] .

e The server starts faster now when using configuration files with very large substitutions (for instance, very large lists
of IP networks).

¢ When running a query, table valued functions run once. Previously, remote and mysql table valued functions
performed the same query twice to retrieve the table structure from a remote server.

e The MkDocs documentation generator is used.

o When you try to delete a table column that pEFAULT / MATERIALIZED expressions of other columns depend on, an
exception is thrown (zhang2014).

o Added the ability to parse an empty line in text formats as the number O for F1oat data types. This feature was
previously available but was lost in release 1.1.54342.

e Enum Values canbeusedin min, max, sum and some other functions. In these cases, it uses the corresponding
numeric values. This feature was previously available but was lost in the release 1.1.54337.

o Added max_expanded ast elements torestrict the size of the AST after recursively expanding aliases.
Bug fixes:

o Fixed cases when unnecessary columns were removed from subqueries in error, or not removed from subqueries

containing UNION ALL.

¢ Fixed abugin merges for ReplacingMergeTree tables.

 Fixed synchronousinsertionsin pistributed tables(insert distributed sync = 1).

o Fixed segfault for certain uses of rurLL and rRIGHT JOIN with duplicate columnsin subqueries.

o Fixed segfault for certain uses of replace running query and KILL QUERY .

o Fixed the order of the source and last exception columnsinthe system.dictionaries table.

o Fixed abug when the prorp paTarase query did not delete the file with metadata.

o Fixed the pror DATABASE query for Dictionary databases.

o Fixed the low precision of uniqHLL12 and unigCombined functions for cardinalities greater than 100 million items
(Alex Bocharov).

o Fixed the calculation of implicit default values when necessary to simultaneously calculate default explicit expressions
in INSERT queries (zhang2014).

o Fixed arare case when a query toa MergeTree table couldn't finish (chenxing-xc).

o Fixed acrash that occurred when running a caeck query for pistributed tables if all shards are local (chenxing.xc).
o Fixed a slight performance regression with functions that use regular expressions.

o Fixed a performance regression when creating multidimensional arrays from complex expressions.

o Fixed a bug that could cause an extra FORMAT section to appearinan .sql file with metadata.

o Fixed abugthat caused the max table size to drop limittoapply when trying to delete a MATERIALIZED VIEW
looking at an explicitly specified table.

o Fixed incompatibility with old clients (old clients were sometimes sent data with the DateTime ('timezone') type,
which they do not understand).

o Fixed a bug when reading Nested column elements of structures that were added using ALTER but that are empty for
the old partitions, when the conditions for these columns moved to PREWHERE .

o Fixed abug when filtering tables by virtual table columnsin queriesto Merge tables.
o Fixed abugwhenusing ALTAs columnsin pistributed tables.

o Fixed a bug that made dynamic compilation impossible for queries with aggregate functions from the quantile
family.

o Fixed a race condition in the query execution pipeline that occurred in very rare cases when using verge tables with a
large number of tables, and when using GLoBaL subqueries.

o Fixed a crash when passing arrays of different sizes to an arrayReduce function when using aggregate functions
from multiple arguments.

¢ Prohibited the use of queries with UNION ALL ina MATERIALIZED VIEW.
 Fixed an error during initialization of the part 1og system table when the server starts (by default, part 1og is
disabled).

Backward incompatible changes:

e Removedthe distributed ddl allow replicated alter option. This behavioris enabled by default.

e Removedthe strict insert defaults setting.If you were using this functionality, writeto clickhouse-

feedback@yandex-team.com.

e Removed the UnsortedMergeTree engine.

Clickhouse Release 1.1.54343, 2018-02-05

o Added macros support for defining cluster names in distributed DDL queries and constructors of Distributed tables:

CREATE TABLE distr ON CLUSTER '{cluster}' (...) ENGINE = Distributed('{cluster}', 'db', 'table') .
o Now querieslike sELECT ... FROM table WHERE expr IN (subquery) are processed usingthe table index.

o Improved processing of duplicates when inserting to Replicated tables, so they no longer slow down execution of the
replication queue.

Clickhouse Release 1.1.54342, 2018-01-22

This release contains bug fixes for the previous release 1.1.54337:

o Fixed aregressionin 1.1.54337: if the default user has readonly access, then the server refuses to start up with the

message Cannot create database in readonly mode.

¢ Fixed aregressionin 1.1.54337: on systems with systemd, logs are always written to syslog regardless of the
configuration; the watchdog script still uses init.d.

o Fixed aregressionin 1.1.54337: wrong default configuration in the Docker image.

e Fixed nondeterministic behavior of GraphiteMergeTree (you can seeit in log messages bata after merge is not

byte-identical to the data on another replicas).

o Fixed a bug that may lead to inconsistent merges after OPTIMIZE query to Replicated tables (you may seeit in log

messages pPart ... intersects the previous part).
o Buffer tables now work correctly when MATERIALIZED columns are present in the destination table (by zhang2014).

o Fixed abuginimplementation of NULL.

Clickhouse Release 1.1.54337, 2018-01-18

New features:

o Added support for storage of multi-dimensional arrays and tuples (Tuple datatype)in tables.

e Support for table functions for pEscriBe and INSERT queries. Added support for subqueriesin peEscrIBE . Examples:
DESC TABLE remote('host', default.hits) ; DESC TABLE (SELECT 1) ; INSERT INTO TABLE FUNCTION

remote ('host', default.hits) .Supportfor INSERT INTO TABLE inadditionto INSERT INTO.

o Improved support for time zones. The pateTime datatype can be annotated with the timezone that is used for
parsing and formatting in text formats. Example: pateTime ('Europe/Moscow') . When timezones are specified in
functions for pateTime arguments, the return type will track the timezone, and the value will be displayed as
expected.

o Added the functions toTimeZone, timeDiff, toQuarter , toRelativeQuarterNum. The
toRelativeHour / Minute / Second functions can take a value of type pate asanargument. The now function name
is case-sensitive.

e Addedthe tostartofFifteenMinutes function (Kirill Shvakov).
e Addedthe clickhouse format toolfor formatting queries.

e Addedthe format schema path configuration parameter (Marek Vavrusa). It is used for specifying a schemain cap'n
proto format. Schema files can be located only in the specified directory.

o Added support for config substitutions (inc1l and conf.d)for configuration of external dictionaries and models
(Pavel Yakunin).

¢ Added a column with documentation for the system.settings table (Kirill Shvakov).
o Addedthe system.parts columns table with information about column sizes in each data part of MergeTree tables.
e Addedthe system.models table with information aboutloaded catBoost machine learning models.

e Added the mysgl and odbc table function and corresponding Mysor, and opec table engines for accessing remote
databases. This functionality is in the beta stage.

o Added the possibility to pass an argument of type AggregateFunction forthe groupArray aggregate function (so
you can create an array of states of some aggregate function).

¢ Removed restrictions on various combinations of aggregate function combinators. For example, you can use
avgForEachIf aswellas avgIfForEach aggregate functions, which have different behaviors.

e The -rForkEach aggregate function combinator is extended for the case of aggregate functions of multiple arguments.

¢ Added support for aggregate functions of nullable arguments even for cases when the function returns a
non- Nullable result (added with the contribution of Silviu Caragea). Example: groupArray, groupUnigArray, topK .

e Addedthe max client network bandwidth for clickhouse-client (Kirill Shvakov).

e Userswiththe readonly = 2 setting are allowed to work with TEMPORARY tables (CREATE, DROP, INSERT...) (Kirill
Shvakov).

o Added support for using multiple consumers with the xafka engine. Extended configuration options for Kafka
(Marek Vavrusa).

Added the intExp3 and intExp4 functions.

Added the sumkxahan aggregate function.

Added the to * Number OrNull functions, where * Numberis a numeric type.

Added support for wiTa clauses foran INSERT SELECT query (author:zhang2014).

Added settings: http connection timeout, http send timeout, http receive timeout .In particular, these
settings are used for downloading data parts for replication. Changing these settings allows for faster failover if the
network is overloaded.

Added support for ALTER for tables of type null (Anastasiya Tsarkova).
The reinterpretAsString functionis extended for all data types that are stored contiguously in memory.
Added the --silent optionforthe clickhouse-local tool. It suppresses printing query execution info in stderr.

Added support for reading values of type pate from textinaformat where the month and/or day of the month is
specified using a single digit instead of two digits (Amos Bird).

Performance optimizations:

Improved performance of aggregate functions min, max, any, anyLast , anyHeavy, argMin, argMax from string
arguments.

Improved performance of the functions isInfinite, isFinite, isNaN, roundToExp2 .
Improved performance of parsing and formatting pate and pateTime type valuesin text format.
Improved performance and precision of parsing floating point numbers.

Lowered memory usage for JoIn inthe case when the left and right parts have columns with identical names that are
not contained in USING .

Improved performance of aggregate functions varsamp, varPop, stddevSamp, stddevPop, covarSamp , covarPop,
corr by reducing computational stability. The old functions are available under the names varsampstable,

varPopStable, stddevSampStable, stddevPopStable, covarSampStable, covarPopStable, corrStable.

Bug fixes:

Fixed data deduplication after running a prRoP or DETACH PARTITION query.Inthe previous version, droppinga
partition and inserting the same data again was not working because inserted blocks were considered duplicates.

Fixed a bug that could lead to incorrect interpretation of the wHERE clause for CREATE MATERIALIZED VIEW queries

with POPULATE .
Fixed a buginusing the root path parameterinthe zookeeper servers configuration.
Fixed unexpected results of passing the pate argumentto tostartofDay .

Fixed the addMonths and subtractMonths functions and the arithmetic for INTERVAL n MONTH in cases when the
result has the previous year.

Added missing support for the vuip datatype for prstincT , Join ,and unig aggregate functions and external
dictionaries (Evgeniy lvanov). Support for tuip is stillincomplete.

Fixed summingMergeTree behaviorin cases when the rows summed to zero.
Various fixes for the kafka engine (Marek Vavrusa).

Fixed incorrect behavior of the Join table engine (Amos Bird).

Fixed incorrect allocator behavior under FreeBSD and OS X.

The extractall function now supports empty matches.

Fixed an error that blocked usage of 1ibressl instead of openssl .

Fixed the crREATE TABLE AS SELECT query from temporary tables.

Fixed non-atomicity of updating the replication queue. This could lead to replicas being out of sync until the server

restarts.
o Fixed possible overflowin gcd , 1cm and modulo (% operator) (Maks Skorokhod).
e -preprocessed files are now created after changing umask (umask canbe changed in the config).
o Fixed abuginthe background check of parts (MergeTreePartChecker)when using a custom partition key.
o Fixed parsing of tuples (values of the Tuple datatype)in text formats.
o Improved error messages about incompatible types passed to multi1f , array and some other functions.

¢ Redesigned support for nullable types. Fixed bugs that may lead to a server crash. Fixed almost all other bugs
related to NULL support: incorrect type conversions in INSERT SELECT, insufficient support for Nullable in HAVING
and PREWHERE, join use nulls mode, Nullable types as arguments of or operator, etc.

o Fixed various bugs related to internal semantics of data types. Examples: unnecessary summing of Enum type fields in
SummingMergeTree ;alignment of Enum typesin pretty formats, etc.

o Stricter checks for allowed combinations of composite columns.
o Fixed the overflow when specifying a very large parameter for the rixedstring data type.
o Fixedabuginthe topk aggregate functionina generic case.

o Added the missing check for equality of array sizes in arguments of n-ary variants of aggregate functions with an -
Array combinator.

e Fixedabugin --pager for clickhouse-client (author:ks1322).

o Fixed the precision of the exp10 function.

¢ Fixed the behavior of the visitParamExtract function for better compliance with documentation.
o Fixed the crash when incorrect data types are specified.

o Fixed the behavior of prsTINCT inthe case when all columns are constants.

o Fixed query formatting in the case of using the tupleklement function with a complex constant expression as the
tuple element index.

o Fixedabugin pictionary tablesfor range hashed dictionaries.

o Fixed a bug that leads to excessive rows in the result of FurLL. and ricHT JoIN (Amos Bird).

o Fixed a server crash when creating and removing temporary files in config.d directories during config reload.

e Fixedthe sysTEM DROP DNS CACHE query:the cache was flushed but addresses of cluster nodes were not updated.

o Fixed the behavior of MATERIALIZED VIEW after executing peTacH TABRLE for the table under the view (Marek
Vavrusa).

Build improvements:

e The pbuilder toolis used for builds. The build process is almost completely independent of the build host

environment.

¢ Asingle build is used for different OS versions. Packages and binaries have been made compatible with a wide range
of Linux systems.

e Addedthe clickhouse-test package. |t can be used to run functional tests.
o The source tarball can now be published to the repository. It can be used to reproduce the build without using GitHub.

o Added limited integration with Travis Cl. Due to limits on build time in Travis, only the debug build is tested and a
limited subset of tests are run.

e Added support for cap'n'Proto inthe default build.
¢ Changed the format of documentation sources from Restricted Text tO Markdown .

o Added support for systemd (Vladimir Smirnov). It is disabled by default due to incompatibility with some OS images
and can be enabled manually.

e For dynamic code generation, clang and 11d are embedded into the clickhouse binary. They can also beinvoked
as clickhouse clang and clickhouse 11d .

e Removed usage of GNU extensions from the code. Enabled the -wextra option. When building with c1ang the
defaultis 1ibc++ instead of 1ibstdc++ .

o Extracted clickhouse parsers and clickhouse common io libraries to speed up builds of various tools.
Backward incompatible changes:

o Theformat for marksin Log type tables that contain nullable columns was changed inabackward incompatible
way. If you have these tables, you should convert them to the TinyLog type before starting up the new server version.
Todo this, replace ENGINE = Log With ENGINE = TinyLog inthe corresponding .sql fileinthe metadata directory.
If your table doesn't have Nullable columns or if the type of your table is not rog, then you don't need to do
anything.

o Removedthe experimental allow extended storage definition syntax setting. Now this featureis enabled by
default.

e The runningIncome function wasrenamedto runningDifferenceStartingWithFirstvalue to avoid confusion.

e Removedthe rroM ARRAY JOIN arr syntax when ARRAY JOIN is specified directly after FROM with no table (Amos
Bird).

¢ Removed the BlockTabseparated format that was used solely for demonstration purposes.

o Changed the state format for aggregate functions varsamp, varPop, stddevSamp, stddevPop, covarSamp ,
covarPop, corr . |f you have stored states of these aggregate functions in tables (using the AggregateFunction data
type or materialized views with corresponding states), please write to clickhouse-feedback@yandex-team.com.

¢ In previous server versions there was an undocumented feature: if an aggregate function depends on parameters, you
can still specify it without parameters in the AggregateFunction data type. Example: AggregateFunction (quantiles,
UInt64) instead of AggregateFunction (quantiles (0.5, 0.9), UInté64) .This feature was lost. Although it was
undocumented, we plan to support it again in future releases.

o Enum data types cannot be used in min/max aggregate functions. This ability will be returned in the next release.
Please note when upgrading:

o When doing arolling update on a cluster, at the point when some of the replicas are running the old version of
ClickHouse and some are running the new version, replication is temporarily stopped and the message unknown
parameter 'shard' appearsinthelog. Replication will continue after all replicas of the cluster are updated.

o |f different versions of ClickHouse are running on the cluster servers, it is possible that distributed queries using the
following functions will have incorrect results: varsamp, varPop, stddevSamp, stddevPop, covarSamp, covarPop,
corr . You should update all cluster nodes.

ClickHouse release 1.1.54327, 2017-12-21
This release contains bug fixes for the previous release 1.1.54318:

o Fixed bug with possible race condition in replication that could lead to data loss. This issue affects versions 1.1.54310
and 1.1.54318. If you use one of these versions with Replicated tables, the update is strongly recommended. This issue
shows in logs in Warning messages like part ... from own log doesn't exist. Theissueisrelevant even if you
don't see these messages in logs.

ClickHouse release 1.1.54318, 2017-11-30
This release contains bug fixes for the previous release 1.1.54310:

o Fixed incorrect row deletions during merges in the SummingMergeTree engine

o Fixed a memory leak in unreplicated MergeTree engines
o Fixed performance degradation with frequent inserts in MergeTree engines
o Fixed anissue that was causing the replication queue to stop running

o Fixed rotation and archiving of server logs

ClickHouse release 1.1.54310, 2017-11-01
New features:

o Custom partitioning key for the MergeTree family of table engines.
o Kafka [https://clickhouse.yandex/docs/en/single/index.html#document-table_engines/kafka] table engine.

o Added support for loading CatBoost [https://catboost.yandex/] models and applying them to data stored in
ClickHouse.

o Added support for time zones with non-integer offsets from UTC.
o Added support for arithmetic operations with time intervals.
o Therange of values for the Date and DateTime types is extended to the year 2105.

o Addedthe CREATE MATERIALIZED VIEW x TO y query (specifies an existing table for storing the data of a materialized
view).

o Addedthe aTTACH TABLE query without arguments.

o The processing logic for Nested columns with names ending in -Map in a SummingMergeTree table was extracted to
the sumMap aggregate function. You can now specify such columns explicitly.

o Max size of the IP trie dictionary is increased to 128M entries.
o Added the getSizeOfEnumType function.

o Added the sumWithOverflow aggregate function.

o Added support for the Cap'n Proto input format.

e You can now customize compression level when using the zstd algorithm.
Backward incompatible changes:

o Creation of temporary tables with an engine other than Memory is not allowed.
o Explicit creation of tables with the View or MaterializedView engine is not allowed.

¢ During table creation, a new check verifies that the sampling key expression is included in the primary key.
Bug fixes:

o Fixed hangups when synchronously inserting into a Distributed table.
¢ Fixed nonatomic adding and removing of parts in Replicated tables.
o Datainserted into a materialized view is not subjected to unnecessary deduplication.

o Executing a query to a Distributed table for which the local replica is lagging and remote replicas are unavailable does
not result in an error anymore.

o Usersdon't need access permissions tothe default database to create temporary tables anymore.
o Fixed crashing when specifying the Array type without arguments.
o Fixed hangups when the disk volume containing server logs is full.

o Fixed an overflow in the toRelativeWeekNum function for the first week of the Unix epoch.

Build improvements:

https://clickhouse.yandex/docs/en/single/index.html#document-table_engines/kafka
https://catboost.yandex/

Several third-party libraries (notably Poco) were updated and converted to git submodules.

ClickHouse release 1.1.54304, 2017-10-19

New features:

TLS support in the native protocol (to enable, set tcp ss1 port in config.xml).

Bug fixes:

ALTER for replicated tables now tries to start running as soon as possible.

Fixed crashing when reading data with the setting preferred block size bytes=0.
Fixed crashes of clickhouse-client when pressing page Down

Correct interpretation of certain complex queries with GLOBAL IN and UNION ALL

FREEZE PARTITION always works atomically now.

Empty POST requests now return a response with code 411.

Fixed interpretation errors for expressions like cAST (1 AS Nullable (UInt8)).

Fixed an error whenreading Array (Nullable (String)) columnsfrom MergeTree tables.
Fixed crashing when parsing queries like sSELECT dummy AS dummy, dummy AS b

Users are updated correctly with invalid users.xml

Correct handling when an executable dictionary returns a non-zero response code.

ClickHouse release 1.1.54292, 2017-09-20

New features:

Added the pointinPolygon function for working with coordinates on a coordinate plane.
Added the sumMap aggregate function for calculating the sum of arrays, similar to summingMergeTree .

Added the trunc function. Improved performance of the rounding functions (round, floor, ceil , roundToExp2)
and corrected the logic of how they work. Changed the logic of the roundToexp2 function for fractions and negative
numbers.

The ClickHouse executable file is now less dependent on the libc version. The same ClickHouse executable file can run
on a wide variety of Linux systems. There is still a dependency when using compiled queries (with the setting compile
= 1 ,whichis not used by default).

Reduced the time needed for dynamic compilation of queries.

Bug fixes:

Fixed an error that sometimes produced part ... intersects previous part messagesand weakened replica
consistency.

Fixed an error that caused the server to lock up if ZooKeeper was unavailable during shutdown.
Removed excessive logging when restoring replicas.

Fixed an error in the UNION ALL implementation.

Fixed an error in the concat function that occurred if the first column in a block has the Array type.

Progress is now displayed correctly in the system.merges table.

ClickHouse release 1.1.54289, 2017-09-13

New features:

e SYSTEM queﬂesforserveradnﬁhﬂsnaﬁon:SYSTEM RELOAD DICTIONARY, SYSTEM RELOAD DICTIONARIES, SYSTEM DROP

DNS CACHE , SYSTEM SHUTDOWN, SYSTEM KILL.

o Added functions for working with arrays: concat, arraySlice, arrayPushBack, arrayPushFront, arrayPopBack,

arrayPopFront .

o Added root and identity parameters for the ZooKeeper configuration. This allows you to isolate individual users on
the same ZooKeeper cluster.

o Added aggregate functions groupBitAnd, groupBitor,and groupBitxor (for compatibility, they are also available
under the names BIT AND, BIT OR,and BIT XOR).

o External dictionaries can be loaded from MySQL by specifying a socket in the filesystem.
o External dictionaries can be loaded from MySQL over SSL (ss1_cert, ssl_key, ssl_ca parameters).
e Addedthe max network bandwidth for user setting to restrict the overall bandwidth use for queries per user.
e Support for prop TABLE for temporary tables.
o Support for reading pateTime valuesin Unix timestamp format from the csv and JsoNEachRow formats.
o Lagging replicas in distributed queries are now excluded by default (the default threshold is 5 minutes).
e FIFOlockingis used during ALTER: an ALTER query isn't blocked indefinitely for continuously running queries.
e Optiontoset umask inthe config file.
¢ Improved performance for queries with pIsTINCT .
Bug fixes:
¢ Improved the process for deleting old nodes in ZooKeeper. Previously, old nodes sometimes didn't get deleted if there
were very frequent inserts, which caused the server to be slow to shut down, among other things.
¢ Fixed randomization when choosing hosts for the connection to ZooKeeper.
o Fixed the exclusion of lagging replicas in distributed queries if the replica is localhost.

o Fixed an error where adata partina rReplicatedMergeTree table could be broken after running ALTER MODIFY Onan
elementina Nested structure.

¢ Fixed an error that could cause SELECT queries to "hang".

e Improvements to distributed DDL queries.

e Fixedthe query CREATE TABLE ... AS <materialized view>.

¢ Resolved the deadlockinthe ALTER ... CLEAR COLUMN IN PARTITION queryfor Buffer tables.

o Fixed the invalid default value for Enum s (0 instead of the minimum) when using the JsoNEachrow and Tskv formats.
¢ Resolved the appearance of zombie processes when using a dictionary with an executable source.

o Fixed segfault for the HEAD query.
Improved workflow for developing and assembling ClickHouse:

e Youcanuse pbuilder to build ClickHouse.
e Youcanuse libc++ instead of 1ibstdc++ for builds on Linux.

o Added instructions for using static code analysis tools: coverage, clang-tidy, cppcheck.
Please note when upgrading:

o Thereis now a higher default value for the MergeTree setting max bytes to merge at max space in pool (the
maximum total size of data parts to merge, in bytes): it has increased from 100 GiB to 150 GiB. This might result in
large merges running after the server upgrade, which could cause an increased load on the disk subsystem. If the free
space available on the server is less than twice the total amount of the merges that are running, this will cause all other
merges to stop running, including merges of small data parts. As a result, INSERT requests will fail with the message

"Merges are processing significantly slower than inserts." Use the SELECT * FROM system.merges requestto monitor
the situation. You can also check the DiskSpaceReservedForMerge metricinthe system.metrics table, orin Graphite.
You don't need to do anything to fix this, since the issue will resolve itself once the large merges finish. If you find this
unacceptable, you can restore the previous value for the max bytes to merge at max space in pool setting.Todo
this, go to the section in config.xml, set

<merge tree>’ '<max bytes to merge at max space in pool>107374182400</max bytes to merge at max space in

ool> and restart the server.

ClickHouse release 1.1.54284, 2017-08-29

¢ Thisis a budfix release for the previous 1.1.54282 release. It fixes leaks in the parts directory in ZooKeeper.

ClickHouse release 1.1.54282, 2017-08-23

This release contains bug fixes for the previous release 1.1.54276:

o Fixed DB::Exception: Assertion violation: ! path.empty() when insertinginto a Distributed table.
o Fixed parsing when inserting in RowBinary format if input data starts with';".

e Errors during runtime compilation of certain aggregate functions (e.g. groupArray ()).

Clickhouse Release 1.1.54276, 2017-08-16

New features:

o Added an optional WITH section for a SELECT query. Example query: wITH 1+1 AS a SELECT a, a*a

o INSERT can be performed synchronously in a Distributed table: OK is returned only after all the data is saved on all the
shards. This is activated by the setting insert_distributed_sync=1.

¢ Added the UUID data type for working with 16-byte identifiers.

o Added aliases of CHAR, FLOAT and other types for compatibility with the Tableau.

¢ Added the functions toYYYYMM, toYYYYMMDD, and toYYYYMMDDhhmmss for converting time into numbers.

e You can use IP addresses (together with the hostname) to identify servers for clustered DDL queries.

o Added support for non-constant arguments and negative offsets in the function substring (str, pos, len).

o Added the max_size parameter for the grouparray (max size) (column) aggregate function, and optimized its
performance.

Main changes:

o Security improvements: all server files are created with 0640 permissions (can be changed viaconfig parameter).
o Improved error messages for queries with invalid syntax.

o Significantly reduced memory consumption and improved performance when merging large sections of MergeTree
data.

o Significantly increased the performance of data merges for the ReplacingMergeTree engine.

Improved performance for asynchronous inserts from a Distributed table by combining multiple source inserts. To

enable this functionality, use the setting distributed_directory_monitor_batch_inserts=1.
Backward incompatible changes:
o Changed the binary format of aggregate states of groupaArray (array column) functions forarrays.
Complete list of changes:

o Addedthe output format json quote denormals setting, which enables outputting nan and inf valuesin JSON

format.
¢ Optimized stream allocation when reading from a Distributed table.
¢ Settings can be configured in readonly mode if the value doesn't change.

o Added the ability to retrieve non-integer granules of the MergeTree engine in order to meet restrictions on the block
size specified in the preferred_block_size_bytes setting. The purpose is to reduce the consumption of RAM and
increase cache locality when processing queries from tables with large columns.

o Efficient use of indexes that contain expressions like tostartoftour (x) for conditionslike tostartofHour (x) op

constexpr.
o Added new settings for MergeTree engines (the merge_tree section in config.xml):

o replicated_deduplication_window_seconds sets the number of seconds allowed for deduplicating inserts in Replicated
tables.

o cleanup_delay_period sets how often to start cleanup to remove outdated data.
« replicated_can_become_leader can prevent a replica from becoming the leader (and assigning merges).
o Accelerated cleanup to remove outdated data from ZooKeeper.

¢ Multiple improvements and fixes for clustered DDL queries. Of particular interest is the new setting
distributed_ddI_task_timeout, which limits the time to wait for a response from the servers in the cluster.

o Improved display of stack traces in the server logs.

¢ Added the "none" value for the compression method.

¢ You can use multiple dictionaries_config sections in config.xml.

¢ Itis possible to connect to MySQL through a socket in the file system.

¢ The system.parts table has a new column with information about the size of marks, in bytes.
Bug fixes:

 Distributed tables using a Merge table now work correctly for a SELECT query with a conditiononthe tabple field.
o Fixed a rare race condition in ReplicatedMergeTree when checking data parts.
o Fixed possible freezing on "leader election" when starting a server.

o The max_replica_delay_for_distributed_queries setting was ignored when using a local replica of the data source. This
has been fixed.

o Fixed incorrect behavior of ALTER TABLE CLEAR COLUMN IN PARTITION when attempting to clean a non-existing
column.

o Fixed an exception in the multilf function when using empty arrays or strings.

o Fixed excessive memory allocations when deserializing Native format.

o Fixed incorrect auto-update of Trie dictionaries.

o Fixed an exception when running queries with a GROUP BY clause from a Merge table when using SAMPLE.
o Fixed a crash of GROUP BY when using distributed_aggregation_memory_efficient=1.

o Now you can specify the database.table in the right side of IN and JOIN.

o Too many threads were used for parallel aggregation. This has been fixed.

o Fixed how the "if" function works with FixedString arguments.

o SELECT worked incorrectly from a Distributed table for shards with a weight of 0. This has been fixed.

e RuUnning CREATE VIEW IF EXISTS no longer causes crashes.

o Fixed incorrect behavior when input_format_skip_unknown_fields=1 is set and there are negative numbers.

e Fixed aninfinite loopinthe dictGetHierarchy () function if thereis someinvalid datain the dictionary.

e Fixed syntax error: unexpected (...) errorswhen running distributed queries with subqueriesinanIN or JOIN
clause and Merge tables.

o Fixed anincorrect interpretation of a SELECT query from Dictionary tables.
¢ Fixed the "Cannot mremap" error when using arrays in IN and JOIN clauses with more than 2 billion elements.

o Fixed the failover for dictionaries with MySQL as the source.
Improved workflow for developing and assembling ClickHouse:

e Builds can be assembled in Arcadia.
¢ You can use gcc 7 to compile ClickHouse.

o Parallel builds using ccache+distcc are faster now.

ClickHouse release 1.1.54245, 2017-07-04

New features:

o Distributed DDL (for example, CREATE TABLE ON CLUSTER)
e Thereplicated request ALTER TABLE CLEAR COLUMN IN PARTITION.
e The engine for Dictionary tables (access to dictionary data in the form of a table).

o Dictionary database engine (this type of database automatically has Dictionary tables available for all the connected
external dictionaries).

¢ You can check for updates to the dictionary by sending a request to the source.
¢ Qualified column names

¢ Quoting identifiers using double quotation marks.

e Sessionsinthe HTTP interface.

o The OPTIMIZE query for a Replicated table can can run not only on the leader.
Backward incompatible changes:

e Removed SET GLOBAL.
Minor changes:

o Now after analertis triggered, the log prints the full stack trace.

o Relaxed the verification of the number of damaged/extra data parts at startup (there were too many false positives).
Bug fixes:

o Fixed a bad connection "sticking" when inserting into a Distributed table.

o GLOBAL IN now works for a query from a Merge table that looks at a Distributed table.

¢ Theincorrect number of cores was detected on a Google Compute Engine virtual machine. This has been fixed.
¢ Changes in how an executable source of cached external dictionaries works.

o Fixed the comparison of strings containing null characters.

o Fixed the comparison of Float32 primary key fields with constants.

o Previously, anincorrect estimate of the size of a field could lead to overly large allocations.

o Fixed a crash when querying a Nullable column added to a table using ALTER.

o Fixed a crash when sorting by a Nullable column, if the number of rows is less than LIMIT.

o Fixed an ORDER BY subquery consisting of only constant values.

o Previously, a Replicated table could remain in the invalid state after a failed DROP TABLE.

o Aliases for scalar subqueries with empty results are no longer lost.

o Now a query that used compilation does not fail with an error if the .so file gets damaged.

Fixed in ClickHouse Release 1.1.54388, 2018-06-28
CVE-2018-14668

"remote" table function allowed arbitrary symbols in "user", "password" and "default_database" fields which led to Cross
Protocol Request Forgery Attacks.

Credits: Andrey Krasichkov of Yandex Information Security Team

Fixed in ClickHouse Release 1.1.54390, 2018-07-06

CVE-2018-14669

ClickHouse MySQL client had "LOAD DATA LOCAL INFILE" functionality enabled that allowed a malicious MySQL
database read arbitrary files from the connected ClickHouse server.

Credits: Andrey Krasichkov and Evgeny Sidorov of Yandex Information Security Team

Fixed in ClickHouse Release 1.1.54131, 2017-01-10
CVE-2018-14670
Incorrect configuration in deb package could lead to unauthorized use of the database.

Credits: the UK's National Cyber Security Centre (NCSC)

©2016-2018 Yandex LLC

	什么是ClickHouse？
	OLAP场景的关键特征
	列式数据库更适合OLAP场景的原因
	Input/output
	CPU

	Distinctive Features of ClickHouse
	True Column-Oriented DBMS
	Data Compression
	Disk Storage of Data
	Parallel Processing on Multiple Cores
	Distributed Processing on Multiple Servers
	SQL Support
	Vector Engine
	Real-time Data Updates
	Index
	Suitable for Online Queries
	Support for Approximated Calculations
	Data replication and data integrity support

	ClickHouse可以考虑缺点的功能
	Performance
	Throughput for a Single Large Query
	Latency When Processing Short Queries
	Throughput When Processing a Large Quantity of Short Queries
	Performance When Inserting Data

	Yandex.Metrica Use Case
	Usage in Yandex.Metrica and Other Yandex Services
	Aggregated and Non-aggregated Data

	入门指南
	系统要求
	安装
	为Debian/Ubuntu安装
	使用源码安装
	其他的安装方法

	启动

	航班飞行数据
	纽约市出租车数据
	怎样导入原始数据
	单台服务器运行结果
	总结

	AMPLab 大数据基准测试
	维基访问数据
	Criteo TB级别点击日志
	Star Schema 基准测试
	客户端
	命令行客户端
	使用方式
	配置
	命令行参数
	配置文件

	原生客户端接口（TCP）
	HTTP 客户端
	响应缓冲

	输入输出格式
	TabSeparated
	数据解析方式

	TabSeparatedRaw
	TabSeparatedWithNames
	TabSeparatedWithNamesAndTypes
	TSKV
	CSV
	CSVWithNames
	JSON
	JSONCompact
	JSONEachRow
	Native
	Null
	Pretty
	PrettyCompact
	PrettyCompactMonoBlock
	PrettyNoEscapes
	PrettyCompactNoEscapes
	PrettySpaceNoEscapes

	PrettySpace
	RowBinary
	Values
	Vertical
	VerticalRaw
	XML
	CapnProto

	JDBC 驱动
	ODBC 驱动
	第三方开发的库
	第三方集成库
	第三方开发的可视化界面
	Tabix
	HouseOps

	数据类型
	UInt8, UInt16, UInt32, UInt64, Int8, Int16, Int32, Int64
	整型范围
	无符号整型范围

	Float32, Float64
	使用浮点数
	NaN and Inf

	Decimal(P, S), Decimal32(S), Decimal64(S), Decimal128(S)
	参数
	十进制值范围
	内部表示方式
	运算和结果类型
	溢出检查

	Boolean Values
	String
	编码

	FixedString(N)
	Date
	DateTime
	时区

	Enum8, Enum16
	用法示例
	规则及用法

	Array(T)
	创建数组
	使用数据类型

	AggregateFunction(name, types_of_arguments...)
	Tuple(T1, T2, ...)
	创建元组
	元组中的数据类型

	Nullable(TypeName)
	存储特性
	用法示例

	嵌套数据结构
	Nested(Name1 Type1, Name2 Type2, ...)
	Special Data Types
	Expression
	Set
	Nothing
	SQL Reference
	SELECT Queries Syntax
	FROM Clause
	SAMPLE Clause
	ARRAY JOIN Clause
	JOIN Clause
	WHERE Clause
	PREWHERE Clause
	GROUP BY Clause
	NULL PROCESSING
	WITH TOTALS MODIFIER
	GROUP BY IN EXTERNAL MEMORY

	LIMIT N BY Clause
	HAVING Clause
	ORDER BY Clause
	SELECT Clause
	DISTINCT Clause
	LIMIT Clause
	UNION ALL Clause
	INTO OUTFILE Clause
	FORMAT Clause
	IN Operators
	NULL PROCESSING
	DISTRIBUTED SUBQUERIES

	Extreme Values
	Notes
	INSERT
	Inserting The Results of SELECT
	Performance Considerations

	创建数据库
	创建表
	默认值
	临时表

	分布式 DDL 查询 (ON CLUSTER clause)
	CREATE VIEW
	ALTER
	Column Manipulations
	Manipulations With Partitions and Parts
	Backups and Replication
	Synchronicity of ALTER Queries
	Mutations

	Miscellaneous Queries
	ATTACH
	DROP
	DETACH
	RENAME
	SHOW DATABASES
	SHOW TABLES
	SHOW PROCESSLIST
	SHOW CREATE TABLE
	DESCRIBE TABLE
	EXISTS
	USE
	SET
	OPTIMIZE
	KILL QUERY

	Functions
	Strong typing
	Common subexpression elimination
	Types of results
	Constants
	NULL processing
	Constancy
	Error handling
	Evaluation of argument expressions
	Performing functions for distributed query processing

	Arithmetic functions
	plus(a, b), a + b operator
	minus(a, b), a - b operator
	multiply(a, b), a * b operator
	divide(a, b), a / b operator
	intDiv(a, b)
	intDivOrZero(a, b)
	modulo(a, b), a % b operator
	negate(a), -a operator
	abs(a)
	gcd(a, b)
	lcm(a, b)

	Comparison functions
	equals, a = b and a == b operator
	notEquals, a ! operator= b and a <> b
	less, < operator
	greater, > operator
	lessOrEquals, <= operator
	greaterOrEquals, >= operator

	Logical functions
	and, AND operator
	or, OR operator
	not, NOT operator
	xor

	Type conversion functions
	toUInt8, toUInt16, toUInt32, toUInt64
	toInt8, toInt16, toInt32, toInt64
	toFloat32, toFloat64
	toUInt8OrZero, toUInt16OrZero, toUInt32OrZero, toUInt64OrZero, toInt8OrZero, toInt16OrZero, toInt32OrZero, toInt64OrZero, toFloat32OrZero, toFloat64OrZero
	toDate, toDateTime
	toDecimal32(value, S), toDecimal64(value, S), toDecimal128(value, S)
	toString
	toFixedString(s, N)
	toStringCutToZero(s)
	reinterpretAsUInt8, reinterpretAsUInt16, reinterpretAsUInt32, reinterpretAsUInt64
	reinterpretAsInt8, reinterpretAsInt16, reinterpretAsInt32, reinterpretAsInt64
	reinterpretAsFloat32, reinterpretAsFloat64
	reinterpretAsDate, reinterpretAsDateTime
	reinterpretAsString
	CAST(x, t)

	Functions for working with dates and times
	toYear
	toMonth
	toDayOfMonth
	toDayOfWeek
	toHour
	toMinute
	toSecond
	toMonday
	toStartOfMonth
	toStartOfQuarter
	toStartOfYear
	toStartOfMinute
	toStartOfFiveMinute
	toStartOfFifteenMinutes
	toStartOfHour
	toStartOfDay
	toTime
	toRelativeYearNum
	toRelativeMonthNum
	toRelativeWeekNum
	toRelativeDayNum
	toRelativeHourNum
	toRelativeMinuteNum
	toRelativeSecondNum
	now
	today
	yesterday
	timeSlot
	timeSlots(StartTime, Duration)
	formatDateTime(Time, Format[, Timezone])

	Functions for working with strings
	empty
	notEmpty
	length
	lengthUTF8
	lower
	upper
	lowerUTF8
	upperUTF8
	reverse
	reverseUTF8
	concat(s1, s2, ...)
	substring(s, offset, length)
	substringUTF8(s, offset, length)
	appendTrailingCharIfAbsent(s, c)
	convertCharset(s, from, to)
	base64Encode(s)
	base64Decode(s)
	tryBase64Decode(s)

	Functions for searching strings
	position(haystack, needle)
	positionUTF8(haystack, needle)
	match(haystack, pattern)
	extract(haystack, pattern)
	extractAll(haystack, pattern)
	like(haystack, pattern), haystack LIKE pattern operator
	notLike(haystack, pattern), haystack NOT LIKE pattern operator

	Functions for searching and replacing in strings
	replaceOne(haystack, pattern, replacement)
	replaceAll(haystack, pattern, replacement)
	replaceRegexpOne(haystack, pattern, replacement)
	replaceRegexpAll(haystack, pattern, replacement)

	Conditional functions
	if(cond, then, else), cond ? operator then : else
	multiIf

	Mathematical functions
	e()
	pi()
	exp(x)
	log(x)
	exp2(x)
	log2(x)
	exp10(x)
	log10(x)
	sqrt(x)
	cbrt(x)
	erf(x)
	erfc(x)
	lgamma(x)
	tgamma(x)
	sin(x)
	cos(x)
	tan(x)
	asin(x)
	acos(x)
	atan(x)
	pow(x, y)

	Rounding functions
	floor(x[, N])
	ceil(x[, N])
	round(x[, N])
	roundToExp2(num)
	roundDuration(num)
	roundAge(num)

	Functions for working with arrays
	empty
	notEmpty
	length
	emptyArrayUInt8, emptyArrayUInt16, emptyArrayUInt32, emptyArrayUInt64
	emptyArrayInt8, emptyArrayInt16, emptyArrayInt32, emptyArrayInt64
	emptyArrayFloat32, emptyArrayFloat64
	emptyArrayDate, emptyArrayDateTime
	emptyArrayString
	emptyArrayToSingle
	range(N)
	array(x1, ...), operator [x1, ...]
	arrayConcat
	arrayElement(arr, n), operator arr[n]
	has(arr, elem)
	hasAll
	hasAny
	indexOf(arr, x)
	countEqual(arr, x)
	arrayEnumerate(arr)
	arrayEnumerateUniq(arr, ...)
	arrayPopBack
	arrayPopFront
	arrayPushBack
	arrayPushFront
	arrayResize
	arraySlice
	arrayUniq(arr, ...)
	arrayJoin(arr)

	Functions for splitting and merging strings and arrays
	splitByChar(separator, s)
	splitByString(separator, s)
	arrayStringConcat(arr[, separator])
	alphaTokens(s)

	Bit functions
	bitAnd(a, b)
	bitOr(a, b)
	bitXor(a, b)
	bitNot(a)
	bitShiftLeft(a, b)
	bitShiftRight(a, b)

	Hash functions
	halfMD5
	MD5
	sipHash64
	sipHash128
	cityHash64
	intHash32
	intHash64
	SHA1
	SHA224
	SHA256
	URLHash(url[, N])

	Functions for generating pseudo-random numbers
	rand
	rand64

	Encoding functions
	hex
	unhex(str)
	UUIDStringToNum(str)
	UUIDNumToString(str)
	bitmaskToList(num)
	bitmaskToArray(num)

	Functions for working with URLs
	Functions that extract part of a URL
	protocol
	domain
	domainWithoutWWW
	topLevelDomain
	firstSignificantSubdomain
	cutToFirstSignificantSubdomain
	path
	pathFull
	queryString
	fragment
	queryStringAndFragment
	extractURLParameter(URL, name)
	extractURLParameters(URL)
	extractURLParameterNames(URL)
	URLHierarchy(URL)
	URLPathHierarchy(URL)
	decodeURLComponent(URL)

	Functions that remove part of a URL.
	cutWWW
	cutQueryString
	cutFragment
	cutQueryStringAndFragment
	cutURLParameter(URL, name)

	Functions for working with IP addresses
	IPv4NumToString(num)
	IPv4StringToNum(s)
	IPv4NumToStringClassC(num)
	IPv6NumToString(x)

	IPv6StringToNum(s)

	Functions for working with JSON
	visitParamHas(params, name)
	visitParamExtractUInt(params, name)
	visitParamExtractInt(params, name)
	visitParamExtractFloat(params, name)
	visitParamExtractBool(params, name)
	visitParamExtractRaw(params, name)
	visitParamExtractString(params, name)

	Higher-order functions
	-> operator, lambda(params, expr) function
	arrayMap(func, arr1, ...)
	arrayFilter(func, arr1, ...)
	arrayCount([func,] arr1, ...)
	arrayExists([func,] arr1, ...)
	arrayAll([func,] arr1, ...)
	arraySum([func,] arr1, ...)
	arrayFirst(func, arr1, ...)
	arrayFirstIndex(func, arr1, ...)
	arrayCumSum([func,] arr1, ...)
	arraySort([func,] arr1, ...)
	arrayReverseSort([func,] arr1, ...)

	Functions for working with external dictionaries
	dictGetUInt8, dictGetUInt16, dictGetUInt32, dictGetUInt64
	dictGetInt8, dictGetInt16, dictGetInt32, dictGetInt64
	dictGetFloat32, dictGetFloat64
	dictGetDate, dictGetDateTime
	dictGetUUID
	dictGetString
	dictGetTOrDefault
	dictIsIn
	dictGetHierarchy
	dictHas

	Functions for working with Yandex.Metrica dictionaries
	Multiple geobases
	regionToCity(id[, geobase])
	regionToArea(id[, geobase])
	regionToDistrict(id[, geobase])
	regionToCountry(id[, geobase])
	regionToContinent(id[, geobase])
	regionToPopulation(id[, geobase])
	regionIn(lhs, rhs[, geobase])
	regionHierarchy(id[, geobase])
	regionToName(id[, lang])

	Functions for implementing the IN operator
	in, notIn, globalIn, globalNotIn
	tuple(x, y, ...), operator (x, y, ...)
	tupleElement(tuple, n), operator x.N

	arrayJoin function
	Functions for working with geographical coordinates
	greatCircleDistance
	pointInEllipses
	pointInPolygon

	Functions for working with Nullable aggregates
	isNull
	isNotNull
	coalesce
	ifNull
	nullIf
	assumeNotNull
	toNullable

	Other functions
	hostName()
	visibleWidth(x)
	toTypeName(x)
	blockSize()
	materialize(x)
	ignore(...)
	sleep(seconds)
	currentDatabase()
	isFinite(x)
	isInfinite(x)
	isNaN(x)
	hasColumnInTable(['hostname'[, 'username'[, 'password']],] 'database', 'table', 'column')
	bar
	transform
	formatReadableSize(x)
	least(a, b)
	greatest(a, b)
	uptime()
	version()
	rowNumberInAllBlocks()
	runningDifference(x)
	MACNumToString(num)
	MACStringToNum(s)
	MACStringToOUI(s)
	getSizeOfEnumType
	toColumnTypeName
	dumpColumnStructure
	defaultValueOfArgumentType
	indexHint
	replicate

	Aggregate functions
	NULL processing

	Function reference
	count()
	any(x)
	anyHeavy(x)
	anyLast(x)
	groupBitAnd
	groupBitOr
	groupBitXor
	min(x)
	max(x)
	argMin(arg, val)
	argMax(arg, val)
	sum(x)
	sumWithOverflow(x)
	sumMap(key, value)
	avg(x)
	uniq(x)
	uniqCombined(HLL_precision)(x)
	uniqHLL12(x)
	uniqExact(x)
	groupArray(x), groupArray(max_size)(x)
	groupArrayInsertAt(x)
	groupUniqArray(x)
	quantile(level)(x)
	quantileDeterministic(level)(x, determinator)
	quantileTiming(level)(x)
	quantileTimingWeighted(level)(x, weight)
	quantileExact(level)(x)
	quantileExactWeighted(level)(x, weight)
	quantileTDigest(level)(x)
	median(x)
	quantiles(level1, level2, ...)(x)
	varSamp(x)
	varPop(x)
	stddevSamp(x)
	stddevPop(x)
	topK(N)(column)
	covarSamp(x, y)
	covarPop(x, y)
	corr(x, y)

	Aggregate function combinators
	-If
	-Array
	-State
	-Merge
	-MergeState.
	-ForEach

	Parametric aggregate functions
	sequenceMatch(pattern)(time, cond1, cond2, ...)
	sequenceCount(pattern)(time, cond1, cond2, ...)
	windowFunnel(window)(timestamp, cond1, cond2, cond3, ...)
	retention(cond1, cond2, ...)
	uniqUpTo(N)(x)

	Table functions
	file
	merge
	numbers
	remote
	url
	jdbc
	Dictionaries
	External Dictionaries
	Configuring an External Dictionary
	Storing Dictionaries in Memory
	Ways to Store Dictionaries in Memory
	flat
	hashed
	complex_key_hashed
	range_hashed
	cache
	complex_key_cache
	ip_trie

	Dictionary Updates
	Sources of External Dictionaries
	Local File
	Executable File
	HTTP(s)
	ODBC
	Known vulnerability of the ODBC dictionary functionality
	Example of Connecting PostgreSQL
	Example of Connecting MS SQL Server

	DBMS
	MySQL
	ClickHouse
	MongoDB

	Dictionary Key and Fields
	Key
	Numeric Key
	Composite Key

	Attributes

	Internal dictionaries
	Operators
	Access Operators
	Numeric Negation Operator
	Multiplication and Division Operators
	Addition and Subtraction Operators
	Comparison Operators
	Operators for Working With Data Sets
	Logical Negation Operator
	Logical AND Operator
	Logical OR Operator
	Conditional Operator
	Conditional Expression
	Concatenation Operator
	Lambda Creation Operator
	Array Creation Operator
	Tuple Creation Operator
	Associativity
	Checking for NULL
	IS NULL
	IS NOT NULL

	Syntax
	Spaces
	Comments
	Keywords
	Identifiers
	Literals
	Numeric Literals
	String Literals
	Compound Literals
	NULL Literal

	Functions
	Operators
	Data Types and Database Table Engines
	Synonyms
	Asterisk
	Expressions

	Operations
	表引擎
	MergeTree
	Creating a Table
	Data Storage
	Primary Keys and Indexes in Queries
	Selecting the Primary Key
	Use of Indexes and Partitions in Queries

	Concurrent Data Access

	Data Replication
	Creating Replicated Tables
	Recovery After Failures
	Recovery After Complete Data Loss
	Converting from MergeTree to ReplicatedMergeTree
	Converting from ReplicatedMergeTree to MergeTree
	Recovery When Metadata in The ZooKeeper Cluster is Lost or Damaged

	Custom Partitioning Key
	ReplacingMergeTree
	Creating a Table

	SummingMergeTree
	Creating a Table
	Usage Example
	Data Processing
	Common rules for summation
	The Summation in the AggregateFunction Columns
	Nested Structures

	AggregatingMergeTree
	Creating a Table
	SELECT and INSERT
	Example of an Aggregated Materialized View

	CollapsingMergeTree
	Creating a Table
	Collapsing
	Data
	Algorithm

	Example of use

	GraphiteMergeTree
	Creating a Table
	Rollup configuration

	TinyLog
	Log
	Memory
	Buffer
	External Data for Query Processing
	Distributed
	Dictionary
	Merge
	Virtual Columns

	File(InputFormat)
	Usage in ClickHouse Server
	Usage in Clickhouse-local
	Details of Implementation

	Null
	Set
	Join
	URL(URL, Format)
	Using the engine in the ClickHouse server
	Details of Implementation

	View
	MaterializedView
	Kafka
	Configuration

	MySQL
	Access Rights
	Configuration Files
	Quotas
	System tables
	system.asynchronous_metrics
	system.clusters
	system.columns
	system.databases
	system.dictionaries
	system.events
	system.functions
	system.merges
	system.metrics
	system.numbers
	system.numbers_mt
	system.one
	system.parts
	system.processes
	system.replicas
	system.settings
	system.tables
	system.zookeeper

	Usage Recommendations
	CPU
	Hyper-threading
	Turbo Boost
	CPU Scaling Governor
	CPU Limitations
	RAM
	Swap File
	Huge Pages
	Storage Subsystem
	RAID
	File System
	Linux Kernel
	Network
	ZooKeeper

	Server configuration parameters
	Server settings
	builtin_dictionaries_reload_interval
	compression
	default_database
	default_profile
	dictionaries_config
	dictionaries_lazy_load
	format_schema_path
	graphite
	graphite_rollup
	http_port/https_port
	http_server_default_response
	include_from
	interserver_http_port
	interserver_http_host
	keep_alive_timeout
	listen_host
	logger
	macros
	mark_cache_size
	max_concurrent_queries
	max_connections
	max_open_files
	max_table_size_to_drop
	merge_tree
	openSSL
	part_log
	path
	query_log
	remote_servers
	timezone
	tcp_port
	tmp_path
	uncompressed_cache_size
	user_files_path
	users_config
	zookeeper

	Settings
	Permissions for queries
	readonly
	allow_ddl

	Restrictions on query complexity
	max_memory_usage
	max_memory_usage_for_user
	max_memory_usage_for_all_queries
	max_rows_to_read
	max_bytes_to_read
	read_overflow_mode
	max_rows_to_group_by
	group_by_overflow_mode
	max_rows_to_sort
	max_bytes_to_sort
	sort_overflow_mode
	max_result_rows
	max_result_bytes
	result_overflow_mode
	max_execution_time
	timeout_overflow_mode
	min_execution_speed
	timeout_before_checking_execution_speed
	max_columns_to_read
	max_temporary_columns
	max_temporary_non_const_columns
	max_subquery_depth
	max_pipeline_depth
	max_ast_depth
	max_ast_elements
	max_rows_in_set
	max_bytes_in_set
	set_overflow_mode
	max_rows_in_distinct
	max_bytes_in_distinct
	distinct_overflow_mode
	max_rows_to_transfer
	max_bytes_to_transfer
	transfer_overflow_mode

	Settings
	distributed_product_mode
	fallback_to_stale_replicas_for_distributed_queries
	force_index_by_date
	force_primary_key
	fsync_metadata
	input_format_allow_errors_num
	input_format_allow_errors_ratio
	max_block_size
	preferred_block_size_bytes
	log_queries
	max_insert_block_size
	max_replica_delay_for_distributed_queries
	max_threads
	max_compress_block_size
	min_compress_block_size
	max_query_size
	interactive_delay
	connect_timeout
	receive_timeout
	send_timeout
	poll_interval
	max_distributed_connections
	distributed_connections_pool_size
	connect_timeout_with_failover_ms
	connections_with_failover_max_tries
	extremes
	use_uncompressed_cache
	replace_running_query
	schema
	stream_flush_interval_ms
	load_balancing
	random (default)
	nearest_hostname
	in_order

	totals_mode
	totals_auto_threshold
	default_sample
	max_parallel_replicas
	compile
	min_count_to_compile
	input_format_skip_unknown_fields
	output_format_json_quote_64bit_integers
	format_csv_delimiter
	join_use_nulls
	insert_quorum
	insert_quorum_timeout
	select_sequential_consistency

	Settings profiles
	ClickHouse Utility
	clickhouse-copier
	Running clickhouse-copier
	Format of zookeeper.xml
	Configuration of copying tasks

	clickhouse-local
	Usage
	Examples

	常见问题
	为什么不使用MapReduce之类的产品呢?

	ClickHouse Development
	Overview of ClickHouse Architecture
	Columns
	Field
	Leaky Abstractions
	Data Types
	Block
	Block Streams
	Formats
	I/O
	Tables
	Parsers
	Interpreters
	Functions
	Aggregate Functions
	Server
	Distributed Query Execution
	Merge Tree
	Replication

	How to Build ClickHouse Release Package
	Install Git and Pbuilder
	Checkout ClickHouse Sources
	Run Release Script

	How to Build ClickHouse for Development
	Install Git and CMake
	Install GCC 7
	Install from a PPA Package
	Install from Sources

	Use GCC 7 for Builds
	Install Required Libraries from Packages
	Checkout ClickHouse Sources
	Build ClickHouse

	How to Build ClickHouse on Mac OS X
	Install Homebrew
	Install Required Compilers, Tools, and Libraries
	Checkout ClickHouse Sources
	Build ClickHouse
	Caveats

	How to Write C++ Code
	General Recommendations
	Formatting
	Comments
	Names
	How to Write Code
	Unused Features of C++
	Platform
	Tools
	Libraries
	General Recommendations
	Additional Recommendations

	ClickHouse Testing
	Functional Tests
	Integration Tests
	Unit Tests
	Performance Tests
	Test Tools And Scripts
	Miscellanous Tests
	Manual Testing
	Testing Environment
	Load Testing
	Build Tests
	Testing For Protocol Compatibility
	Help From The Compiler
	Sanitizers
	Fuzzing
	Security Audit
	Static Analyzers
	Hardening
	Code Style
	Metrica B2B Tests
	Test Coverage
	Test Automation

	Roadmap
	Q4 2018
	Q1 2019
	Q2 2019
	Q3 2019
	ClickHouse release 18.14.15, 2018-11-21
	Bug fixes:

	ClickHouse release 18.14.14, 2018-11-20
	Bug fixes:
	Build changes:

	ClickHouse release 18.14.11, 2018-10-29
	Bug fixes:

	ClickHouse release 18.14.10, 2018-10-23
	ClickHouse release 18.14.9, 2018-10-16
	New features:
	Experimental features:
	Improvements:
	Bug fixes:
	Backward incompatible changes:

	ClickHouse release 18.12.17, 2018-09-16
	New features:
	Bug fixes:
	Backward incompatible changes:

	ClickHouse release 18.12.14, 2018-09-13
	New features:
	Improvements
	Bug fixes:

	ClickHouse release 18.12.13, 2018-09-10
	New features:
	Experimental features:
	Improvements:
	Bug fixes:
	Security fix:
	Backward incompatible changes:
	Build changes:

	ClickHouse release 18.10.3, 2018-08-13
	New features:
	Improvements:
	Bug fixes:
	Backward incompatible changes
	Build changes:

	ClickHouse release 18.6.0, 2018-08-02
	New features:
	Improvements:

	ClickHouse release 18.5.1, 2018-07-31
	New features:
	Improvements:
	Bug fixes:

	ClickHouse release 18.4.0, 2018-07-28
	New features:
	Improvements:
	Bug fixes:
	Backward incompatible changes:

	ClickHouse release 18.1.0, 2018-07-23
	New features:
	Improvements:
	Bug fixes:
	Backward incompatible changes:

	ClickHouse release 1.1.54394, 2018-07-12
	New features:
	Bug fixes:

	ClickHouse release 1.1.54390, 2018-07-06
	New features:
	Improvements:
	Bug fixes:
	Security fix:

	ClickHouse release 1.1.54388, 2018-06-28
	New features:
	Experimental features:
	Bug fixes:
	Improvements:
	Build changes:
	Backward incompatible changes:

	ClickHouse release 1.1.54385, 2018-06-01
	Bug fixes:

	ClickHouse release 1.1.54383, 2018-05-22
	Bug fixes:

	ClickHouse release 1.1.54381, 2018-05-14
	Bug fixes:

	ClickHouse release 1.1.54380, 2018-04-21
	New features:
	Improvements:
	Bug fixes:
	Backward incompatible changes:

	ClickHouse release 1.1.54378, 2018-04-16
	New features:
	Improvements:
	Bug fixes:
	Build changes:
	Backward incompatible changes:

	ClickHouse release 1.1.54370, 2018-03-16
	New features:
	Improvements:
	Bug fixes:

	Clickhouse Release 1.1.54362, 2018-03-11
	New features:
	Improvements:
	Bug fixes:
	Backward incompatible changes:

	Clickhouse Release 1.1.54343, 2018-02-05
	Clickhouse Release 1.1.54342, 2018-01-22
	Clickhouse Release 1.1.54337, 2018-01-18
	New features:
	Performance optimizations:
	Bug fixes:
	Build improvements:
	Backward incompatible changes:
	Please note when upgrading:

	ClickHouse release 1.1.54327, 2017-12-21
	ClickHouse release 1.1.54318, 2017-11-30
	ClickHouse release 1.1.54310, 2017-11-01
	New features:
	Backward incompatible changes:
	Bug fixes:
	Build improvements:

	ClickHouse release 1.1.54304, 2017-10-19
	New features:
	Bug fixes:

	ClickHouse release 1.1.54292, 2017-09-20
	New features:
	Bug fixes:

	ClickHouse release 1.1.54289, 2017-09-13
	New features:
	Bug fixes:
	Improved workflow for developing and assembling ClickHouse:
	Please note when upgrading:

	ClickHouse release 1.1.54284, 2017-08-29
	ClickHouse release 1.1.54282, 2017-08-23
	Clickhouse Release 1.1.54276, 2017-08-16
	New features:
	Main changes:
	Backward incompatible changes:
	Complete list of changes:
	Bug fixes:
	Improved workflow for developing and assembling ClickHouse:

	ClickHouse release 1.1.54245, 2017-07-04
	New features:
	Backward incompatible changes:
	Minor changes:
	Bug fixes:

	Fixed in ClickHouse Release 1.1.54388, 2018-06-28
	CVE-2018-14668

	Fixed in ClickHouse Release 1.1.54390, 2018-07-06
	CVE-2018-14669

	Fixed in ClickHouse Release 1.1.54131, 2017-01-10
	CVE-2018-14670

