
什么是ClickHouse？

ClickHouse是⼀个⽤于联机分析(OLAP)的列式数据库管理系统(DBMS)。

在传统的⾏式数据库系统中，数据按如下顺序存储：

Row WatchID JavaEnable Title GoodEvent EventTime

#0 89354350662 1 Investor	Relations 1 2016-05-18	05:19:20

#1 90329509958 0 Contact	us 1 2016-05-18	08:10:20

#2 89953706054 1 Mission 1 2016-05-18	07:38:00

#N

处于同⼀⾏中的数据总是被物理的存储在⼀起。

常⻅的⾏式数据库系统有：	MySQL、Postgres和MS	SQL	Server。

在列式数据库系统中，数据按如下的顺序存储：

Row: #0 #1 #2 #N

WatchID: 89354350662 90329509958 89953706054 ...

JavaEnable: 1 0 1 ...

Title: Investor	Relations Contact	us Mission ...

GoodEvent: 1 1 1 ...

EventTime: 2016-05-18	05:19:20 2016-05-18	08:10:20 2016-05-18	07:38:00 ...

该示例中只展示了数据在列式数据库中数据的排列顺序。	对于存储⽽⾔，列式数据库总是将同⼀列的数据存储在⼀起，不同

列的数据也总是分开存储。

常⻅的列式数据库有：	Vertica、	Paraccel	(Actian	Matrix，Amazon	Redshift)、	Sybase	IQ、	Exasol、	Infobright、

InfiniDB、	MonetDB	(VectorWise，	Actian	Vector)、	LucidDB、	SAP	HANA、	Google	Dremel、	Google	PowerDrill、

Druid、	kdb+。

不同的存储⽅式适合不同的场景，这⾥的查询场景包括：	进⾏了哪些查询，多久查询⼀次以及各类查询的⽐例；	每种查询读

取多少数据————⾏、列和字节；读取数据和写⼊数据之间的关系；使⽤的数据集⼤⼩以及如何使⽤本地的数据集；是否使

⽤事务,以及它们是如何进⾏隔离的；数据的复制机制与数据的完整性要求；每种类型的查询要求的延迟与吞吐量等等。

系统负载越⾼，根据使⽤场景进⾏定制化就越重要，并且定制将会变的越精细。没有⼀个系统同样适⽤于明显不同的场景。如

果系统适⽤于⼴泛的场景，在负载⾼的情况下，所有的场景可以会被公平但低效处理，或者⾼效处理⼀⼩部分场景。

OLAP场景的关键特征

⼤多数是读请求

数据总是以相当⼤的批(>	1000	rows)进⾏写⼊

不修改已添加的数据

每次查询都从数据库中读取⼤量的⾏，但是同时⼜仅需要少量的列

宽表，即每个表包含着⼤量的列

较少的查询(通常每台服务器每秒数百个查询或更少)

对于简单查询，允许延迟⼤约50毫秒

列中的数据相对较⼩：	数字和短字符串(例如，每个URL	60个字节)

处理单个查询时需要⾼吞吐量（每个服务器每秒⾼达数⼗亿⾏）

事务不是必须的

对数据⼀致性要求低

每⼀个查询除了⼀个⼤表外都很⼩

查询结果明显⼩于源数据，换句话说，数据被过滤或聚合后能够被盛放在单台服务器的内存中

很容易可以看出，OLAP场景与其他流⾏场景(例如,OLTP或K/V)有很⼤的不同，	因此想要使⽤OLTP或Key-Value数据库去⾼效

的处理分析查询是没有意义的，例如，使⽤OLAP数据库去处理分析请求通常要优于使⽤MongoDB或Redis去处理分析请求。

列式数据库更适合OLAP场景的原因

列式数据库更适合于OLAP场景(对于⼤多数查询⽽⾔，处理速度⾄少提⾼了100倍)，下⾯详细解释了原因(通过图⽚更有利于

直观理解)：

⾏式

列式

看到差别了么？下⾯将详细介绍为什么会发⽣这种情况。

Input/output

1.	针对分析类查询，通常只需要读取表的⼀⼩部分列。在列式数据库中你可以只读取你需要的数据。例如，如果只需要读取

100列中的5列，这将帮助你最少减少20倍的I/O消耗。

2.	由于数据总是打包成批量读取的，所以压缩是⾮常容易的。同时数据按列分别存储这也更容易压缩。这进⼀步降低了I/O

的体积。

3.	由于I/O的降低，这将帮助更多的数据被系统缓存。

例如，查询“统计每个⼴告平台的记录数量”需要读取“⼴告平台ID”这⼀列，它在未压缩的情况下需要1个字节进⾏存储。如果

⼤部分流量不是来⾃⼴告平台，那么这⼀列⾄少可以以⼗倍的压缩率被压缩。当采⽤快速压缩算法，它的解压速度最少在⼗亿

字节(未压缩数据)每秒。换句话说，这个查询可以在单个服务器上以每秒⼤约⼏⼗亿⾏的速度进⾏处理。这实际上是当前实现

的速度。

CPU

由于执⾏⼀个查询需要处理⼤量的⾏，因此在整个向量上执⾏所有操作将⽐在每⼀⾏上执⾏所有操作更加⾼效。同时这将有助

于实现⼀个⼏乎没有调⽤成本的查询引擎。如果你不这样做，使⽤任何⼀个机械硬盘，查询引擎都不可避免的停⽌CPU进⾏等

待。所以，在数据按列存储并且按列执⾏是很有意义的。

有两种⽅法可以做到这⼀点：

1.	向量引擎：所有的操作都是为向量⽽不是为单个值编写的。这意味着多个操作之间的不再需要频繁的调⽤，并且调⽤的成

示例

$ clickhouse-client
ClickHouse client version 0.0.52053.
Connecting to localhost:9000.
Connected to ClickHouse server version 0.0.52053.

:) SELECT CounterID, count() FROM hits GROUP BY CounterID ORDER BY count() DESC LIMIT 20

SELECT
 CounterID,
 count()
FROM hits
GROUP BY CounterID
ORDER BY count() DESC
LIMIT 20

┌─CounterID─┬──count()─┐
│ 114208 │ 56057344 │
│ 115080 │ 51619590 │
│ 3228 │ 44658301 │
│ 38230 │ 42045932 │
│ 145263 │ 42042158 │
│ 91244 │ 38297270 │
│ 154139 │ 26647572 │
│ 150748 │ 24112755 │
│ 242232 │ 21302571 │
│ 338158 │ 13507087 │
│ 62180 │ 12229491 │
│ 82264 │ 12187441 │
│ 232261 │ 12148031 │
│ 146272 │ 11438516 │
│ 168777 │ 11403636 │
│ 4120072 │ 11227824 │
│ 10938808 │ 10519739 │
│ 74088 │ 9047015 │
│ 115079 │ 8837972 │
│ 337234 │ 8205961 │
└───────────┴──────────┘

20 rows in set. Elapsed: 0.153 sec. Processed 1.00 billion rows, 4.00 GB (6.53 billion rows/s., 26.10
GB/s.)

:)

本基本可以忽略不计。操作代码包含⼀个优化的内部循环。

2.	代码⽣成：⽣成⼀段代码，包含查询中的所有操作。

这是不应该在⼀个通⽤数据库中实现的，因为这在运⾏简单查询时是没有意义的。但是也有例外，例如，MemSQL使⽤代码

⽣成来减少处理SQL查询的延迟(只是为了⽐较，分析型数据库通常需要优化的是吞吐⽽不是延迟)。

请注意，为了提⾼CPU效率，查询语⾔必须是声明型的(SQL或MDX)，	或者⾄少⼀个向量(J，K)。	查询应该只包含隐式循环，

允许进⾏优化。

Distinctive	Features	of	ClickHouse

True	Column-Oriented	DBMS

In	a	true	column-oriented	DBMS,	no	extra	data	is	stored	with	the	values.	Among	other	things,	this	means	that	constant-

length	values	must	be	supported,	to	avoid	storing	their	length	"number"	next	to	the	values.	As	an	example,	a	billion	UInt8-

type	values	should	actually	consume	around	1	GB	uncompressed,	or	this	will	strongly	affect	the	CPU	use.	It	is	very

important	to	store	data	compactly	(without	any	"garbage")	even	when	uncompressed,	since	the	speed	of	decompression

(CPU	usage)	depends	mainly	on	the	volume	of	uncompressed	data.

This	is	worth	noting	because	there	are	systems	that	can	store	values	of	different	columns	separately,	but	that	can't

effectively	process	analytical	queries	due	to	their	optimization	for	other	scenarios.	Examples	are	HBase,	BigTable,

Cassandra,	and	HyperTable.	In	these	systems,	you	will	get	throughput	around	a	hundred	thousand	rows	per	second,	but

not	hundreds	of	millions	of	rows	per	second.

It's	also	worth	noting	that	ClickHouse	is	a	database	management	system,	not	a	single	database.	ClickHouse	allows

creating	tables	and	databases	in	runtime,	loading	data,	and	running	queries	without	reconfiguring	and	restarting	the

server.

Data	Compression

Some	column-oriented	DBMSs	(InfiniDB	CE	and	MonetDB)	do	not	use	data	compression.	However,	data	compression	does

play	a	key	role	in	achieving	excellent	performance.

Disk	Storage	of	Data

Mving	a	data	physically	sorted	by	primary	key	makes	it	possible	to	extract	data	for	it's	specific	values	or	value	ranges	with

low	latency,	less	than	few	dozen	milliseconds.any	column-oriented	DBMSs	(such	as	SAP	HANA	and	Google	PowerDrill)	can

only	work	in	RAM.	This	approach	encourages	the	allocation	of	a	larger	hardware	budget	than	is	actually	necessary	for	real-

time	analysis.	ClickHouse	is	designed	to	work	on	regular	hard	drives,	which	means	the	cost	per	GB	of	data	storage	is	low,

but	SSD	and	additional	RAM	are	also	fully	used	if	available.

Parallel	Processing	on	Multiple	Cores

Large	queries	are	parallelized	in	a	natural	way,	taking	all	the	necessary	resources	that	available	on	the	current	server.

Distributed	Processing	on	Multiple	Servers

Almost	none	of	the	columnar	DBMSs	mentioned	above	have	support	for	distributed	query	processing.	In	ClickHouse,	data

can	reside	on	different	shards.	Each	shard	can	be	a	group	of	replicas	that	are	used	for	fault	tolerance.	The	query	is

processed	on	all	the	shards	in	parallel.	This	is	transparent	for	the	user.

SQL	Support

ClickHouse	supports	a	declarative	query	language	based	on	SQL	that	is	identical	to	the	SQL	standard	in	many	cases.

Supported	queries	include	GROUP	BY,	ORDER	BY,	subqueries	in	FROM,	IN,	and	JOIN	clauses,	and	scalar	subqueries.

Dependent	subqueries	and	window	functions	are	not	supported.

Vector	Engine

Data	is	not	only	stored	by	columns,	but	is	processed	by	vectors	(parts	of	columns).	This	allows	us	to	achieve	high	CPU

efficiency.

Real-time	Data	Updates

ClickHouse	supports	tables	with	a	primary	key.	In	order	to	quickly	perform	queries	on	the	range	of	the	primary	key,	the

data	is	sorted	incrementally	using	the	merge	tree.	Due	to	this,	data	can	continually	be	added	to	the	table.	No	locks	are

taken	when	new	data	is	ingested.

Index

Having	a	data	physically	sorted	by	primary	key	makes	it	possible	to	extract	data	for	it's	specific	values	or	value	ranges	with

low	latency,	less	than	few	dozen	milliseconds.

Suitable	for	Online	Queries

Low	latency	means	that	queries	can	be	processed	without	delay	and	without	trying	to	prepare	answer	in	advance,	right	at

the	same	moment	while	user	interface	page	is	loading.	In	other	words,	online.

Support	for	Approximated	Calculations

ClickHouse	provides	various	ways	to	trade	accuracy	for	performance:

1.	 Aggregate	functions	for	approximated	calculation	of	the	number	of	distinct	values,	medians,	and	quantiles.

2.	 Running	a	query	based	on	a	part	(sample)	of	data	and	getting	an	approximated	result.	In	this	case,	proportionally	less

data	is	retrieved	from	the	disk.

3.	 Running	an	aggregation	for	a	limited	number	of	random	keys,	instead	of	for	all	keys.	Under	certain	conditions	for	key

distribution	in	the	data,	this	provides	a	reasonably	accurate	result	while	using	fewer	resources.

Data	replication	and	data	integrity	support

Uses	asynchronous	multimaster	replication.	After	being	written	to	any	available	replica,	data	is	distributed	to	all	the

remaining	replicas	in	the	background.	The	system	maintains	identical	data	on	different	replicas.	Recovery	after	most

failures	is	performed	automatically,	and	in	complex	cases	—	semi-automatically.

For	more	information,	see	the	section	Data	replication	[#table_engines-replication].

ClickHouse可以考虑缺点的功能

1.	没有完整的交易。

2.	缺乏以⾼速率和低延迟修改或删除已插⼊数据的能⼒。	有批次删除和更新可⽤于清理或修改数据，例如符合GDPR

[https://gdpr-info.eu]。

3.	稀疏索引使得ClickHouse不适合通过其键检索单⾏的点查询。

https://gdpr-info.eu

Performance

According	to	internal	testing	results	at	Yandex,	ClickHouse	shows	the	best	performance	(both	the	highest	throughput	for

long	queries	and	the	lowest	latency	on	short	queries)	for	comparable	operating	scenarios	among	systems	of	its	class	that

were	available	for	testing.	You	can	view	the	test	results	on	a	separate	page	[https://clickhouse.yandex/benchmark.html].

This	has	also	been	confirmed	by	numerous	independent	benchmarks.	They	are	not	difficult	to	find	using	an	internet

search,	or	you	can	see	our	small	collection	of	related	links	[https://clickhouse.yandex/#independent-bookmarks].

Throughput	for	a	Single	Large	Query

Throughput	can	be	measured	in	rows	per	second	or	in	megabytes	per	second.	If	the	data	is	placed	in	the	page	cache,	a

query	that	is	not	too	complex	is	processed	on	modern	hardware	at	a	speed	of	approximately	2-10	GB/s	of	uncompressed

data	on	a	single	server	(for	the	simplest	cases,	the	speed	may	reach	30	GB/s).	If	data	is	not	placed	in	the	page	cache,	the

speed	depends	on	the	disk	subsystem	and	the	data	compression	rate.	For	example,	if	the	disk	subsystem	allows	reading

data	at	400	MB/s,	and	the	data	compression	rate	is	3,	the	speed	will	be	around	1.2	GB/s.	To	get	the	speed	in	rows	per

second,	divide	the	speed	in	bytes	per	second	by	the	total	size	of	the	columns	used	in	the	query.	For	example,	if	10	bytes	of

columns	are	extracted,	the	speed	will	be	around	100-200	million	rows	per	second.

The	processing	speed	increases	almost	linearly	for	distributed	processing,	but	only	if	the	number	of	rows	resulting	from

aggregation	or	sorting	is	not	too	large.

Latency	When	Processing	Short	Queries

If	a	query	uses	a	primary	key	and	does	not	select	too	many	rows	to	process	(hundreds	of	thousands),	and	does	not	use	too

many	columns,	we	can	expect	less	than	50	milliseconds	of	latency	(single	digits	of	milliseconds	in	the	best	case)	if	data	is

placed	in	the	page	cache.	Otherwise,	latency	is	calculated	from	the	number	of	seeks.	If	you	use	rotating	drives,	for	a

system	that	is	not	overloaded,	the	latency	is	calculated	by	this	formula:	seek	time	(10	ms)	*	number	of	columns	queried	*

number	of	data	parts.

Throughput	When	Processing	a	Large	Quantity	of	Short	Queries

Under	the	same	conditions,	ClickHouse	can	handle	several	hundred	queries	per	second	on	a	single	server	(up	to	several

thousand	in	the	best	case).	Since	this	scenario	is	not	typical	for	analytical	DBMSs,	we	recommend	expecting	a	maximum	of

100	queries	per	second.

Performance	When	Inserting	Data

We	recommend	inserting	data	in	packets	of	at	least	1000	rows,	or	no	more	than	a	single	request	per	second.	When

inserting	to	a	MergeTree	table	from	a	tab-separated	dump,	the	insertion	speed	will	be	from	50	to	200	MB/s.	If	the	inserted

rows	are	around	1	Kb	in	size,	the	speed	will	be	from	50,000	to	200,000	rows	per	second.	If	the	rows	are	small,	the

performance	will	be	higher	in	rows	per	second	(on	Banner	System	data	- > 	500,000	rows	per	second;	on	Graphite	data	->

1,000,000	rows	per	second).	To	improve	performance,	you	can	make	multiple	INSERT	queries	in	parallel,	and	performance

will	increase	linearly.

Yandex.Metrica	Use	Case

ClickHouse	was	originally	developed	to	power	Yandex.Metrica	[https://metrica.yandex.com/],	the	second	largest	web

analytics	platform	in	the	world	[http://w3techs.com/technologies/overview/traffic_analysis/all],	and	continues	to	be	the

core	component	of	this	system.	With	more	than	13	trillion	records	in	the	database	and	more	than	20	billion	events	daily,

ClickHouse	allows	generating	custom	reports	on	the	fly	directly	from	non-aggregated	data.	This	article	briefly	covers	the

goals	of	ClickHouse	in	the	early	stages	of	its	development.

https://clickhouse.yandex/benchmark.html
https://clickhouse.yandex/#independent-bookmarks
https://metrica.yandex.com/
http://w3techs.com/technologies/overview/traffic_analysis/all

Yandex.Metrica	builds	customized	reports	on	the	fly	based	on	hits	and	sessions,	with	arbitrary	segments	defined	by	the

user.	This	often	requires	building	complex	aggregates,	such	as	the	number	of	unique	users.	New	data	for	building	a	report

is	received	in	real	time.

As	of	April	2014,	Yandex.Metrica	was	tracking	about	12	billion	events	(page	views	and	clicks)	daily.	All	these	events	must	be

stored	in	order	to	build	custom	reports.	A	single	query	may	require	scanning	millions	of	rows	within	a	few	hundred

milliseconds,	or	hundreds	of	millions	of	rows	in	just	a	few	seconds.

Usage	in	Yandex.Metrica	and	Other	Yandex	Services

ClickHouse	is	used	for	multiple	purposes	in	Yandex.Metrica.	Its	main	task	is	to	build	reports	in	online	mode	using	non-

aggregated	data.	It	uses	a	cluster	of	374	servers,	which	store	over	20.3	trillion	rows	in	the	database.	The	volume	of

compressed	data,	without	counting	duplication	and	replication,	is	about	2	PB.	The	volume	of	uncompressed	data	(in	TSV

format)	would	be	approximately	17	PB.

ClickHouse	is	also	used	for:

Storing	data	for	Session	Replay	from	Yandex.Metrica.

Processing	intermediate	data.

Building	global	reports	with	Analytics.

Running	queries	for	debugging	the	Yandex.Metrica	engine.

Analyzing	logs	from	the	API	and	the	user	interface.

ClickHouse	has	at	least	a	dozen	installations	in	other	Yandex	services:	in	search	verticals,	Market,	Direct,	business

analytics,	mobile	development,	AdFox,	personal	services,	and	others.

Aggregated	and	Non-aggregated	Data

There	is	a	popular	opinion	that	in	order	to	effectively	calculate	statistics,	you	must	aggregate	data,	since	this	reduces	the

volume	of	data.

But	data	aggregation	is	a	very	limited	solution,	for	the	following	reasons:

You	must	have	a	pre-defined	list	of	reports	the	user	will	need.

The	user	can't	make	custom	reports.

When	aggregating	a	large	quantity	of	keys,	the	volume	of	data	is	not	reduced,	and	aggregation	is	useless.

For	a	large	number	of	reports,	there	are	too	many	aggregation	variations	(combinatorial	explosion).

When	aggregating	keys	with	high	cardinality	(such	as	URLs),	the	volume	of	data	is	not	reduced	by	much	(less	than

twofold).

For	this	reason,	the	volume	of	data	with	aggregation	might	grow	instead	of	shrink.

Users	do	not	view	all	the	reports	we	generate	for	them.	A	large	portion	of	calculations	are	useless.

The	logical	integrity	of	data	may	be	violated	for	various	aggregations.

If	we	do	not	aggregate	anything	and	work	with	non-aggregated	data,	this	might	actually	reduce	the	volume	of	calculations.

However,	with	aggregation,	a	significant	part	of	the	work	is	taken	offline	and	completed	relatively	calmly.	In	contrast,

online	calculations	require	calculating	as	fast	as	possible,	since	the	user	is	waiting	for	the	result.

Yandex.Metrica	has	a	specialized	system	for	aggregating	data	called	Metrage,	which	is	used	for	the	majority	of	reports.

Starting	in	2009,	Yandex.Metrica	also	used	a	specialized	OLAP	database	for	non-aggregated	data	called	OLAPServer,

which	was	previously	used	for	the	report	builder.	OLAPServer	worked	well	for	non-aggregated	data,	but	it	had	many

restrictions	that	did	not	allow	it	to	be	used	for	all	reports	as	desired.	These	included	the	lack	of	support	for	data	types	(only

numbers),	and	the	inability	to	incrementally	update	data	in	real-time	(it	could	only	be	done	by	rewriting	data	daily).

OLAPServer	is	not	a	DBMS,	but	a	specialized	DB.

To	remove	the	limitations	of	OLAPServer	and	solve	the	problem	of	working	with	non-aggregated	data	for	all	reports,	we

developed	the	ClickHouse	DBMS.

⼊⻔指南

系统要求

如果从官⽅仓库安装，需要确保您使⽤的是x86_64处理器构架的Linux并且⽀持SSE	4.2指令集

检查是否⽀持SSE	4.2：

我们推荐使⽤Ubuntu或者Debian。终端必须使⽤UTF-8编码。

基于rpm的系统,你可以使⽤第三⽅的安装包：https://packagecloud.io/altinity/clickhouse	或者直接安装debian安装包。

ClickHouse还可以在FreeBSD与Mac	OS	X上⼯作。同时它可以在不⽀持SSE	4.2的x86_64构架和AArch64	CPUs上编译。

安装

为了测试和开发，系统可以安装在单个服务器或普通PC机上。

为Debian/Ubuntu安装

在 /etc/apt/sources.list 	(或创建 /etc/apt/sources.list.d/clickhouse.list⽂件)中添加仓库：

如果你想使⽤最新的测试版本，请使⽤'testing'替换'stable'。

然后运⾏：

你也可以从这⾥⼿动下载安装包：https://repo.yandex.ru/clickhouse/deb/stable/main/

[https://repo.yandex.ru/clickhouse/deb/stable/main/]。

ClickHouse包含访问控制配置，它们位于 users.xml⽂件中(与'config.xml'同⽬录)。	默认情况下，允许从任何地⽅使⽤默认

的‘default’⽤户⽆密码的访问ClickHouse。参考‘user/default/networks’。	有关更多信息，请参考"Configuration	files"部分。

使⽤源码安装

具体编译⽅式可以参考build.md。

你可以编译并安装它们。	你也可以直接使⽤⽽不进⾏安装。

在服务器中为数据创建如下⽬录：

grep -q sse4_2 /proc/cpuinfo && echo "SSE 4.2 supported" || echo "SSE 4.2 not supported"

deb http://repo.yandex.ru/clickhouse/deb/stable/ main/

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv E0C56BD4 # optional
sudo apt-get update
sudo apt-get install clickhouse-client clickhouse-server

Client: dbms/programs/clickhouse-client
Server: dbms/programs/clickhouse-server

/opt/clickhouse/data/default/
/opt/clickhouse/metadata/default/

https://repo.yandex.ru/clickhouse/deb/stable/main/

(它们可以在server	config中配置。)	为需要的⽤户运⾏‘chown’

⽇志的路径可以在server	config	(src/dbms/programs/server/config.xml)中配置。

其他的安装⽅法

Docker	image：https://hub.docker.com/r/yandex/clickhouse-server/	[https://hub.docker.com/r/yandex/clickhouse-

server/]

CentOS或RHEL安装包：https://github.com/Altinity/clickhouse-rpm-install	[https://github.com/Altinity/clickhouse-rpm-

install]

Gentoo： emerge	clickhouse

启动

可以运⾏如下命令在后台启动服务：

可以在 /var/log/clickhouse-server/⽬录中查看⽇志。

如果服务没有启动，请检查配置⽂件	 /etc/clickhouse-server/config.xml。

你也可以在控制台中直接启动服务：

在这种情况下，⽇志将被打印到控制台中，这在开发过程中很⽅便。	如果配置⽂件在当前⽬录中，你可以不指定‘--config-

file’参数。它默认使⽤‘./config.xml’。

你可以使⽤命令⾏客户端连接到服务：

默认情况下它使⽤‘default’⽤户⽆密码的与localhost:9000服务建⽴连接。	客户端也可以⽤于连接远程服务，例如：

有关更多信息，请参考"Command-line	client"部分。

检查系统是否⼯作：

恭喜，系统已经⼯作了!

sudo service clickhouse-server start

clickhouse-server --config-file=/etc/clickhouse-server/config.xml

clickhouse-client

clickhouse-client --host=example.com

milovidov@hostname:~/work/metrica/src/dbms/src/Client$./clickhouse-client
ClickHouse client version 0.0.18749.
Connecting to localhost:9000.
Connected to ClickHouse server version 0.0.18749.

:) SELECT 1

SELECT 1

┌─1─┐
│ 1 │
└───┘

1 rows in set. Elapsed: 0.003 sec.

:)

https://hub.docker.com/r/yandex/clickhouse-server/
https://github.com/Altinity/clickhouse-rpm-install

为了继续进⾏实验，你可以尝试下载测试数据集。

[]

航班⻜⾏数据

下载数据：

(引⽤	https://github.com/Percona-Lab/ontime-airline-performance/blob/master/download.sh

[https://github.com/Percona-Lab/ontime-airline-performance/blob/master/download.sh])

创建表结构：

for s in `seq 1987 2017`
do
for m in `seq 1 12`
do
wget http://transtats.bts.gov/PREZIP/On_Time_On_Time_Performance_${s}_${m}.zip
done
done

CREATE TABLE `ontime` (
 `Year` UInt16,
 `Quarter` UInt8,
 `Month` UInt8,
 `DayofMonth` UInt8,
 `DayOfWeek` UInt8,
 `FlightDate` Date,
 `UniqueCarrier` FixedString(7),
 `AirlineID` Int32,
 `Carrier` FixedString(2),
 `TailNum` String,
 `FlightNum` String,
 `OriginAirportID` Int32,
 `OriginAirportSeqID` Int32,
 `OriginCityMarketID` Int32,
 `Origin` FixedString(5),
 `OriginCityName` String,
 `OriginState` FixedString(2),
 `OriginStateFips` String,
 `OriginStateName` String,
 `OriginWac` Int32,
 `DestAirportID` Int32,
 `DestAirportSeqID` Int32,
 `DestCityMarketID` Int32,
 `Dest` FixedString(5),
 `DestCityName` String,
 `DestState` FixedString(2),
 `DestStateFips` String,
 `DestStateName` String,
 `DestWac` Int32,
 `CRSDepTime` Int32,
 `DepTime` Int32,
 `DepDelay` Int32,
 `DepDelayMinutes` Int32,
 `DepDel15` Int32,
 `DepartureDelayGroups` String,
 `DepTimeBlk` String,
 `TaxiOut` Int32,
 `WheelsOff` Int32,
 `WheelsOn` Int32,
 `TaxiIn` Int32,
 `CRSArrTime` Int32,
 `ArrTime` Int32,
 `ArrDelay` Int32,
 `ArrDelayMinutes` Int32,
 `ArrDel15` Int32,
 `ArrivalDelayGroups` Int32,
 `ArrTimeBlk` String,

https://github.com/Percona-Lab/ontime-airline-performance/blob/master/download.sh

加载数据：

查询：

 `ArrTimeBlk` String,
 `Cancelled` UInt8,
 `CancellationCode` FixedString(1),
 `Diverted` UInt8,
 `CRSElapsedTime` Int32,
 `ActualElapsedTime` Int32,
 `AirTime` Int32,
 `Flights` Int32,
 `Distance` Int32,
 `DistanceGroup` UInt8,
 `CarrierDelay` Int32,
 `WeatherDelay` Int32,
 `NASDelay` Int32,
 `SecurityDelay` Int32,
 `LateAircraftDelay` Int32,
 `FirstDepTime` String,
 `TotalAddGTime` String,
 `LongestAddGTime` String,
 `DivAirportLandings` String,
 `DivReachedDest` String,
 `DivActualElapsedTime` String,
 `DivArrDelay` String,
 `DivDistance` String,
 `Div1Airport` String,
 `Div1AirportID` Int32,
 `Div1AirportSeqID` Int32,
 `Div1WheelsOn` String,
 `Div1TotalGTime` String,
 `Div1LongestGTime` String,
 `Div1WheelsOff` String,
 `Div1TailNum` String,
 `Div2Airport` String,
 `Div2AirportID` Int32,
 `Div2AirportSeqID` Int32,
 `Div2WheelsOn` String,
 `Div2TotalGTime` String,
 `Div2LongestGTime` String,
 `Div2WheelsOff` String,
 `Div2TailNum` String,
 `Div3Airport` String,
 `Div3AirportID` Int32,
 `Div3AirportSeqID` Int32,
 `Div3WheelsOn` String,
 `Div3TotalGTime` String,
 `Div3LongestGTime` String,
 `Div3WheelsOff` String,
 `Div3TailNum` String,
 `Div4Airport` String,
 `Div4AirportID` Int32,
 `Div4AirportSeqID` Int32,
 `Div4WheelsOn` String,
 `Div4TotalGTime` String,
 `Div4LongestGTime` String,
 `Div4WheelsOff` String,
 `Div4TailNum` String,
 `Div5Airport` String,
 `Div5AirportID` Int32,
 `Div5AirportSeqID` Int32,
 `Div5WheelsOn` String,
 `Div5TotalGTime` String,
 `Div5LongestGTime` String,
 `Div5WheelsOff` String,
 `Div5TailNum` String
) ENGINE = MergeTree(FlightDate, (Year, FlightDate), 8192)

for i in *.zip; do echo $i; unzip -cq $i '*.csv' | sed 's/\.00//g' | clickhouse-client --host=example-
perftest01j --query="INSERT INTO ontime FORMAT CSVWithNames"; done

Q0.

Q1.	查询从2000年到2008年每天的航班数

Q2.	查询从2000年到2008年每周延误超过10分钟的航班数。

Q3.	查询2000年到2008年每个机场延误超过10分钟以上的次数

Q4.	查询2007年各航空公司延误超过10分钟以上的次数

Q5.	查询2007年各航空公司延误超过10分钟以上的百分⽐

更好的查询版本：

Q6.	同上⼀个查询⼀致,只是查询范围扩⼤到2000年到2008年

select avg(c1) from (select Year, Month, count(*) as c1 from ontime group by Year, Month);

SELECT DayOfWeek, count(*) AS c FROM ontime WHERE Year >= 2000 AND Year <= 2008 GROUP BY DayOfWeek ORDER BY c
DESC;

SELECT DayOfWeek, count(*) AS c FROM ontime WHERE DepDelay>10 AND Year >= 2000 AND Year <= 2008 GROUP BY
DayOfWeek ORDER BY c DESC

SELECT Origin, count(*) AS c FROM ontime WHERE DepDelay>10 AND Year >= 2000 AND Year <= 2008 GROUP BY Origin
ORDER BY c DESC LIMIT 10

SELECT Carrier, count(*) FROM ontime WHERE DepDelay>10 AND Year = 2007 GROUP BY Carrier ORDER BY count(*)
DESC

SELECT Carrier, c, c2, c*1000/c2 as c3
FROM
(
 SELECT
 Carrier,
 count(*) AS c
 FROM ontime
 WHERE DepDelay>10
 AND Year=2007
 GROUP BY Carrier
)
ANY INNER JOIN
(
 SELECT
 Carrier,
 count(*) AS c2
 FROM ontime
 WHERE Year=2007
 GROUP BY Carrier
) USING Carrier
ORDER BY c3 DESC;

SELECT Carrier, avg(DepDelay > 10) * 1000 AS c3 FROM ontime WHERE Year = 2007 GROUP BY Carrier ORDER BY
Carrier

更好的查询版本：

Q7.	每年航班延误超过10分钟的百分⽐

更好的查询版本：

Q8.	每年更受⼈们喜爱的⽬的地

Q9.

Q10.

SELECT Carrier, c, c2, c*1000/c2 as c3
FROM
(
 SELECT
 Carrier,
 count(*) AS c
 FROM ontime
 WHERE DepDelay>10
 AND Year >= 2000 AND Year <= 2008
 GROUP BY Carrier
)
ANY INNER JOIN
(
 SELECT
 Carrier,
 count(*) AS c2
 FROM ontime
 WHERE Year >= 2000 AND Year <= 2008
 GROUP BY Carrier
) USING Carrier
ORDER BY c3 DESC;

SELECT Carrier, avg(DepDelay > 10) * 1000 AS c3 FROM ontime WHERE Year >= 2000 AND Year <= 2008 GROUP BY
Carrier ORDER BY Carrier

SELECT Year, c1/c2
FROM
(
 select
 Year,
 count(*)*1000 as c1
 from ontime
 WHERE DepDelay>10
 GROUP BY Year
)
ANY INNER JOIN
(
 select
 Year,
 count(*) as c2
 from ontime
 GROUP BY Year
) USING (Year)
ORDER BY Year

SELECT Year, avg(DepDelay > 10) FROM ontime GROUP BY Year ORDER BY Year

SELECT DestCityName, uniqExact(OriginCityName) AS u FROM ontime WHERE Year >= 2000 and Year <= 2010 GROUP BY
DestCityName ORDER BY u DESC LIMIT 10;

select Year, count(*) as c1 from ontime group by Year;

Bonus:

这个性能测试由Vadim	Tkachenko提供。参考：

https://www.percona.com/blog/2009/10/02/analyzing-air-traffic-performance-with-infobright-and-monetdb/

[https://www.percona.com/blog/2009/10/02/analyzing-air-traffic-performance-with-infobright-and-monetdb/]

https://www.percona.com/blog/2009/10/26/air-traffic-queries-in-luciddb/

[https://www.percona.com/blog/2009/10/26/air-traffic-queries-in-luciddb/]

https://www.percona.com/blog/2009/11/02/air-traffic-queries-in-infinidb-early-alpha/

[https://www.percona.com/blog/2009/11/02/air-traffic-queries-in-infinidb-early-alpha/]

https://www.percona.com/blog/2014/04/21/using-apache-hadoop-and-impala-together-with-mysql-for-data-

analysis/	[https://www.percona.com/blog/2014/04/21/using-apache-hadoop-and-impala-together-with-mysql-for-

data-analysis/]

https://www.percona.com/blog/2016/01/07/apache-spark-with-air-ontime-performance-data/

[https://www.percona.com/blog/2016/01/07/apache-spark-with-air-ontime-performance-data/]

http://nickmakos.blogspot.ru/2012/08/analyzing-air-traffic-performance-with.html

[http://nickmakos.blogspot.ru/2012/08/analyzing-air-traffic-performance-with.html]

纽约市出租⻋数据

怎样导⼊原始数据

可以参考https://github.com/toddwschneider/nyc-taxi-data	[https://github.com/toddwschneider/nyc-taxi-

data]和http://tech.marksblogg.com/billion-nyc-taxi-rides-redshift.html	[http://tech.marksblogg.com/billion-nyc-taxi-

rides-redshift.html]中的关于数据集结构描述与数据下载指令说明。

数据集包含227GB的CSV⽂件。这⼤约需要⼀个⼩时的下载时间(1Gbit带宽下，并⾏下载⼤概是⼀半时间)。	下载时注意损坏

的⽂件。可以检查⽂件⼤⼩并重新下载损坏的⽂件。

有些⽂件中包含⼀些⽆效的⾏，您可以使⽤如下语句修复他们：

select
 min(Year), max(Year), Carrier, count(*) as cnt,
 sum(ArrDelayMinutes>30) as flights_delayed,
 round(sum(ArrDelayMinutes>30)/count(*),2) as rate
FROM ontime
WHERE
 DayOfWeek not in (6,7) and OriginState not in ('AK', 'HI', 'PR', 'VI')
 and DestState not in ('AK', 'HI', 'PR', 'VI')
 and FlightDate < '2010-01-01'
GROUP by Carrier
HAVING cnt > 100000 and max(Year) > 1990
ORDER by rate DESC
LIMIT 1000;

SELECT avg(cnt) FROM (SELECT Year,Month,count(*) AS cnt FROM ontime WHERE DepDel15=1 GROUP BY Year,Month)

select avg(c1) from (select Year,Month,count(*) as c1 from ontime group by Year,Month)

SELECT DestCityName, uniqExact(OriginCityName) AS u FROM ontime GROUP BY DestCityName ORDER BY u DESC LIMIT
10;

SELECT OriginCityName, DestCityName, count() AS c FROM ontime GROUP BY OriginCityName, DestCityName ORDER BY
c DESC LIMIT 10;

SELECT OriginCityName, count() AS c FROM ontime GROUP BY OriginCityName ORDER BY c DESC LIMIT 10;

https://www.percona.com/blog/2009/10/02/analyzing-air-traffic-performance-with-infobright-and-monetdb/
https://www.percona.com/blog/2009/10/26/air-traffic-queries-in-luciddb/
https://www.percona.com/blog/2009/11/02/air-traffic-queries-in-infinidb-early-alpha/
https://www.percona.com/blog/2014/04/21/using-apache-hadoop-and-impala-together-with-mysql-for-data-analysis/
https://www.percona.com/blog/2016/01/07/apache-spark-with-air-ontime-performance-data/
http://nickmakos.blogspot.ru/2012/08/analyzing-air-traffic-performance-with.html
https://github.com/toddwschneider/nyc-taxi-data
http://tech.marksblogg.com/billion-nyc-taxi-rides-redshift.html

然后您必须在PostgreSQL中预处理这些数据。这将创建多边形中的点（以匹配在地图中纽约市中范围），然后通过使⽤JOIN

查询将数据关联组合到⼀个规范的表中。为了完成这部分操作，您需要安装PostgreSQL的同时安装PostGIS插件。

运⾏ initialize_database.sh时要⼩⼼，并⼿动重新检查是否正确创建了所有表。

在PostgreSQL中处理每个⽉的数据⼤约需要20-30分钟，总共⼤约需要48⼩时。

您可以按如下⽅式检查下载的⾏数：

(根据Mark	Litwintschik的系列博客报道数据略多余11亿⾏)

PostgreSQL处理这些数据⼤概需要370GB的磁盘空间。

从PostgreSQL中导出数据：

sed -E '/(.*,){18,}/d' data/yellow_tripdata_2010-02.csv > data/yellow_tripdata_2010-02.csv_
sed -E '/(.*,){18,}/d' data/yellow_tripdata_2010-03.csv > data/yellow_tripdata_2010-03.csv_
mv data/yellow_tripdata_2010-02.csv_ data/yellow_tripdata_2010-02.csv
mv data/yellow_tripdata_2010-03.csv_ data/yellow_tripdata_2010-03.csv

time psql nyc-taxi-data -c "SELECT count(*) FROM trips;"
Count
 1298979494
(1 row)

real 7m9.164s

数据快照的创建速度约为每秒50	MB。	在创建快照时，PostgreSQL以每秒约28	MB的速度从磁盘读取数据。	这⼤约需要5个⼩

时。	最终⽣成的TSV⽂件为590612904969	bytes。

在ClickHouse中创建临时表：

COPY
(
 SELECT trips.id,
 trips.vendor_id,
 trips.pickup_datetime,
 trips.dropoff_datetime,
 trips.store_and_fwd_flag,
 trips.rate_code_id,
 trips.pickup_longitude,
 trips.pickup_latitude,
 trips.dropoff_longitude,
 trips.dropoff_latitude,
 trips.passenger_count,
 trips.trip_distance,
 trips.fare_amount,
 trips.extra,
 trips.mta_tax,
 trips.tip_amount,
 trips.tolls_amount,
 trips.ehail_fee,
 trips.improvement_surcharge,
 trips.total_amount,
 trips.payment_type,
 trips.trip_type,
 trips.pickup,
 trips.dropoff,

 cab_types.type cab_type,

 weather.precipitation_tenths_of_mm rain,
 weather.snow_depth_mm,
 weather.snowfall_mm,
 weather.max_temperature_tenths_degrees_celsius max_temp,
 weather.min_temperature_tenths_degrees_celsius min_temp,
 weather.average_wind_speed_tenths_of_meters_per_second wind,

 pick_up.gid pickup_nyct2010_gid,
 pick_up.ctlabel pickup_ctlabel,
 pick_up.borocode pickup_borocode,
 pick_up.boroname pickup_boroname,
 pick_up.ct2010 pickup_ct2010,
 pick_up.boroct2010 pickup_boroct2010,
 pick_up.cdeligibil pickup_cdeligibil,
 pick_up.ntacode pickup_ntacode,
 pick_up.ntaname pickup_ntaname,
 pick_up.puma pickup_puma,

 drop_off.gid dropoff_nyct2010_gid,
 drop_off.ctlabel dropoff_ctlabel,
 drop_off.borocode dropoff_borocode,
 drop_off.boroname dropoff_boroname,
 drop_off.ct2010 dropoff_ct2010,
 drop_off.boroct2010 dropoff_boroct2010,
 drop_off.cdeligibil dropoff_cdeligibil,
 drop_off.ntacode dropoff_ntacode,
 drop_off.ntaname dropoff_ntaname,
 drop_off.puma dropoff_puma
 FROM trips
 LEFT JOIN cab_types
 ON trips.cab_type_id = cab_types.id
 LEFT JOIN central_park_weather_observations_raw weather
 ON weather.date = trips.pickup_datetime::date
 LEFT JOIN nyct2010 pick_up
 ON pick_up.gid = trips.pickup_nyct2010_gid
 LEFT JOIN nyct2010 drop_off
 ON drop_off.gid = trips.dropoff_nyct2010_gid
) TO '/opt/milovidov/nyc-taxi-data/trips.tsv';

接下来,需要将字段转换为更正确的数据类型，并且在可能的情况下，消除NULL。

数据的读取速度为112-140	Mb/秒。	通过这种⽅式将数据加载到Log表中需要76分钟。	这个表中的数据需要使⽤142	GB的磁

盘空间.

（也可以直接使⽤ COPY	...	TO	PROGRAM从Postgres中导⼊数据）

由于数据中与天⽓相关的所有数据（precipitation......average_wind_speed）都填充了NULL。	所以，我们将从最终数据集中

删除它们

⾸先，我们使⽤单台服务器创建表，后⾯我们将在多台节点上创建这些表。

CREATE TABLE trips
(
trip_id UInt32,
vendor_id String,
pickup_datetime DateTime,
dropoff_datetime Nullable(DateTime),
store_and_fwd_flag Nullable(FixedString(1)),
rate_code_id Nullable(UInt8),
pickup_longitude Nullable(Float64),
pickup_latitude Nullable(Float64),
dropoff_longitude Nullable(Float64),
dropoff_latitude Nullable(Float64),
passenger_count Nullable(UInt8),
trip_distance Nullable(Float64),
fare_amount Nullable(Float32),
extra Nullable(Float32),
mta_tax Nullable(Float32),
tip_amount Nullable(Float32),
tolls_amount Nullable(Float32),
ehail_fee Nullable(Float32),
improvement_surcharge Nullable(Float32),
total_amount Nullable(Float32),
payment_type Nullable(String),
trip_type Nullable(UInt8),
pickup Nullable(String),
dropoff Nullable(String),
cab_type Nullable(String),
precipitation Nullable(UInt8),
snow_depth Nullable(UInt8),
snowfall Nullable(UInt8),
max_temperature Nullable(UInt8),
min_temperature Nullable(UInt8),
average_wind_speed Nullable(UInt8),
pickup_nyct2010_gid Nullable(UInt8),
pickup_ctlabel Nullable(String),
pickup_borocode Nullable(UInt8),
pickup_boroname Nullable(String),
pickup_ct2010 Nullable(String),
pickup_boroct2010 Nullable(String),
pickup_cdeligibil Nullable(FixedString(1)),
pickup_ntacode Nullable(String),
pickup_ntaname Nullable(String),
pickup_puma Nullable(String),
dropoff_nyct2010_gid Nullable(UInt8),
dropoff_ctlabel Nullable(String),
dropoff_borocode Nullable(UInt8),
dropoff_boroname Nullable(String),
dropoff_ct2010 Nullable(String),
dropoff_boroct2010 Nullable(String),
dropoff_cdeligibil Nullable(String),
dropoff_ntacode Nullable(String),
dropoff_ntaname Nullable(String),
dropoff_puma Nullable(String)
) ENGINE = Log;

time clickhouse-client --query="INSERT INTO trips FORMAT TabSeparated" < trips.tsv

real 75m56.214s

创建表结构并写⼊数据：

CREATE TABLE trips_mergetree
ENGINE = MergeTree(pickup_date, pickup_datetime, 8192)
AS SELECT

trip_id,
CAST(vendor_id AS Enum8('1' = 1, '2' = 2, 'CMT' = 3, 'VTS' = 4, 'DDS' = 5, 'B02512' = 10, 'B02598' = 11,
'B02617' = 12, 'B02682' = 13, 'B02764' = 14)) AS vendor_id,
toDate(pickup_datetime) AS pickup_date,
ifNull(pickup_datetime, toDateTime(0)) AS pickup_datetime,
toDate(dropoff_datetime) AS dropoff_date,
ifNull(dropoff_datetime, toDateTime(0)) AS dropoff_datetime,
assumeNotNull(store_and_fwd_flag) IN ('Y', '1', '2') AS store_and_fwd_flag,
assumeNotNull(rate_code_id) AS rate_code_id,
assumeNotNull(pickup_longitude) AS pickup_longitude,
assumeNotNull(pickup_latitude) AS pickup_latitude,
assumeNotNull(dropoff_longitude) AS dropoff_longitude,
assumeNotNull(dropoff_latitude) AS dropoff_latitude,
assumeNotNull(passenger_count) AS passenger_count,
assumeNotNull(trip_distance) AS trip_distance,
assumeNotNull(fare_amount) AS fare_amount,
assumeNotNull(extra) AS extra,
assumeNotNull(mta_tax) AS mta_tax,
assumeNotNull(tip_amount) AS tip_amount,
assumeNotNull(tolls_amount) AS tolls_amount,
assumeNotNull(ehail_fee) AS ehail_fee,
assumeNotNull(improvement_surcharge) AS improvement_surcharge,
assumeNotNull(total_amount) AS total_amount,
CAST((assumeNotNull(payment_type) AS pt) IN ('CSH', 'CASH', 'Cash', 'CAS', 'Cas', '1') ? 'CSH' : (pt IN
('CRD', 'Credit', 'Cre', 'CRE', 'CREDIT', '2') ? 'CRE' : (pt IN ('NOC', 'No Charge', 'No', '3') ? 'NOC' : (pt
IN ('DIS', 'Dispute', 'Dis', '4') ? 'DIS' : 'UNK'))) AS Enum8('CSH' = 1, 'CRE' = 2, 'UNK' = 0, 'NOC' = 3,
'DIS' = 4)) AS payment_type_,
assumeNotNull(trip_type) AS trip_type,
ifNull(toFixedString(unhex(pickup), 25), toFixedString('', 25)) AS pickup,
ifNull(toFixedString(unhex(dropoff), 25), toFixedString('', 25)) AS dropoff,
CAST(assumeNotNull(cab_type) AS Enum8('yellow' = 1, 'green' = 2, 'uber' = 3)) AS cab_type,

assumeNotNull(pickup_nyct2010_gid) AS pickup_nyct2010_gid,
toFloat32(ifNull(pickup_ctlabel, '0')) AS pickup_ctlabel,
assumeNotNull(pickup_borocode) AS pickup_borocode,
CAST(assumeNotNull(pickup_boroname) AS Enum8('Manhattan' = 1, 'Queens' = 4, 'Brooklyn' = 3, '' = 0, 'Bronx' =
2, 'Staten Island' = 5)) AS pickup_boroname,
toFixedString(ifNull(pickup_ct2010, '000000'), 6) AS pickup_ct2010,
toFixedString(ifNull(pickup_boroct2010, '0000000'), 7) AS pickup_boroct2010,
CAST(assumeNotNull(ifNull(pickup_cdeligibil, ' ')) AS Enum8(' ' = 0, 'E' = 1, 'I' = 2)) AS pickup_cdeligibil,
toFixedString(ifNull(pickup_ntacode, '0000'), 4) AS pickup_ntacode,

CAST(assumeNotNull(pickup_ntaname) AS Enum16('' = 0, 'Airport' = 1, 'Allerton-Pelham Gardens' = 2, 'Annadale-
Huguenot-Prince\'s Bay-Eltingville' = 3, 'Arden Heights' = 4, 'Astoria' = 5, 'Auburndale' = 6, 'Baisley Park'
= 7, 'Bath Beach' = 8, 'Battery Park City-Lower Manhattan' = 9, 'Bay Ridge' = 10, 'Bayside-Bayside Hills' =
11, 'Bedford' = 12, 'Bedford Park-Fordham North' = 13, 'Bellerose' = 14, 'Belmont' = 15, 'Bensonhurst East' =
16, 'Bensonhurst West' = 17, 'Borough Park' = 18, 'Breezy Point-Belle Harbor-Rockaway Park-Broad Channel' =
19, 'Briarwood-Jamaica Hills' = 20, 'Brighton Beach' = 21, 'Bronxdale' = 22, 'Brooklyn Heights-Cobble Hill' =
23, 'Brownsville' = 24, 'Bushwick North' = 25, 'Bushwick South' = 26, 'Cambria Heights' = 27, 'Canarsie' =
28, 'Carroll Gardens-Columbia Street-Red Hook' = 29, 'Central Harlem North-Polo Grounds' = 30, 'Central Harlem
South' = 31, 'Charleston-Richmond Valley-Tottenville' = 32, 'Chinatown' = 33, 'Claremont-Bathgate' = 34,
'Clinton' = 35, 'Clinton Hill' = 36, 'Co-op City' = 37, 'College Point' = 38, 'Corona' = 39, 'Crotona Park
East' = 40, 'Crown Heights North' = 41, 'Crown Heights South' = 42, 'Cypress Hills-City Line' = 43, 'DUMBO-
Vinegar Hill-Downtown Brooklyn-Boerum Hill' = 44, 'Douglas Manor-Douglaston-Little Neck' = 45, 'Dyker
Heights' = 46, 'East Concourse-Concourse Village' = 47, 'East Elmhurst' = 48, 'East Flatbush-Farragut' = 49,
'East Flushing' = 50, 'East Harlem North' = 51, 'East Harlem South' = 52, 'East New York' = 53, 'East New
York (Pennsylvania Ave)' = 54, 'East Tremont' = 55, 'East Village' = 56, 'East Williamsburg' = 57,
'Eastchester-Edenwald-Baychester' = 58, 'Elmhurst' = 59, 'Elmhurst-Maspeth' = 60, 'Erasmus' = 61, 'Far
Rockaway-Bayswater' = 62, 'Flatbush' = 63, 'Flatlands' = 64, 'Flushing' = 65, 'Fordham South' = 66, 'Forest
Hills' = 67, 'Fort Greene' = 68, 'Fresh Meadows-Utopia' = 69, 'Ft. Totten-Bay Terrace-Clearview' = 70,
'Georgetown-Marine Park-Bergen Beach-Mill Basin' = 71, 'Glen Oaks-Floral Park-New Hyde Park' = 72, 'Glendale'
= 73, 'Gramercy' = 74, 'Grasmere-Arrochar-Ft. Wadsworth' = 75, 'Gravesend' = 76, 'Great Kills' = 77,
'Greenpoint' = 78, 'Grymes Hill-Clifton-Fox Hills' = 79, 'Hamilton Heights' = 80, 'Hammels-Arverne-Edgemere' =
81, 'Highbridge' = 82, 'Hollis' = 83, 'Homecrest' = 84, 'Hudson Yards-Chelsea-Flatiron-Union Square' = 85,
'Hunters Point-Sunnyside-West Maspeth' = 86, 'Hunts Point' = 87, 'Jackson Heights' = 88, 'Jamaica' = 89,
'Jamaica Estates-Holliswood' = 90, 'Kensington-Ocean Parkway' = 91, 'Kew Gardens' = 92, 'Kew Gardens Hills' =
93, 'Kingsbridge Heights' = 94, 'Laurelton' = 95, 'Lenox Hill-Roosevelt Island' = 96, 'Lincoln Square' = 97,

93, 'Kingsbridge Heights' = 94, 'Laurelton' = 95, 'Lenox Hill-Roosevelt Island' = 96, 'Lincoln Square' = 97,
'Lindenwood-Howard Beach' = 98, 'Longwood' = 99, 'Lower East Side' = 100, 'Madison' = 101, 'Manhattanville' =
102, 'Marble Hill-Inwood' = 103, 'Mariner\'s Harbor-Arlington-Port Ivory-Graniteville' = 104, 'Maspeth' =
105, 'Melrose South-Mott Haven North' = 106, 'Middle Village' = 107, 'Midtown-Midtown South' = 108, 'Midwood'
= 109, 'Morningside Heights' = 110, 'Morrisania-Melrose' = 111, 'Mott Haven-Port Morris' = 112, 'Mount Hope'
= 113, 'Murray Hill' = 114, 'Murray Hill-Kips Bay' = 115, 'New Brighton-Silver Lake' = 116, 'New Dorp-Midland
Beach' = 117, 'New Springville-Bloomfield-Travis' = 118, 'North Corona' = 119, 'North Riverdale-Fieldston-
Riverdale' = 120, 'North Side-South Side' = 121, 'Norwood' = 122, 'Oakland Gardens' = 123, 'Oakwood-Oakwood
Beach' = 124, 'Ocean Hill' = 125, 'Ocean Parkway South' = 126, 'Old Astoria' = 127, 'Old Town-Dongan Hills-
South Beach' = 128, 'Ozone Park' = 129, 'Park Slope-Gowanus' = 130, 'Parkchester' = 131, 'Pelham Bay-Country
Club-City Island' = 132, 'Pelham Parkway' = 133, 'Pomonok-Flushing Heights-Hillcrest' = 134, 'Port Richmond' =
135, 'Prospect Heights' = 136, 'Prospect Lefferts Gardens-Wingate' = 137, 'Queens Village' = 138, 'Queensboro
Hill' = 139, 'Queensbridge-Ravenswood-Long Island City' = 140, 'Rego Park' = 141, 'Richmond Hill' = 142,
'Ridgewood' = 143, 'Rikers Island' = 144, 'Rosedale' = 145, 'Rossville-Woodrow' = 146, 'Rugby-Remsen Village'
= 147, 'Schuylerville-Throgs Neck-Edgewater Park' = 148, 'Seagate-Coney Island' = 149, 'Sheepshead Bay-
Gerritsen Beach-Manhattan Beach' = 150, 'SoHo-TriBeCa-Civic Center-Little Italy' = 151, 'Soundview-Bruckner'
= 152, 'Soundview-Castle Hill-Clason Point-Harding Park' = 153, 'South Jamaica' = 154, 'South Ozone Park' =
155, 'Springfield Gardens North' = 156, 'Springfield Gardens South-Brookville' = 157, 'Spuyten Duyvil-
Kingsbridge' = 158, 'St. Albans' = 159, 'Stapleton-Rosebank' = 160, 'Starrett City' = 161, 'Steinway' = 162,
'Stuyvesant Heights' = 163, 'Stuyvesant Town-Cooper Village' = 164, 'Sunset Park East' = 165, 'Sunset Park
West' = 166, 'Todt Hill-Emerson Hill-Heartland Village-Lighthouse Hill' = 167, 'Turtle Bay-East Midtown' =
168, 'University Heights-Morris Heights' = 169, 'Upper East Side-Carnegie Hill' = 170, 'Upper West Side' =
171, 'Van Cortlandt Village' = 172, 'Van Nest-Morris Park-Westchester Square' = 173, 'Washington Heights
North' = 174, 'Washington Heights South' = 175, 'West Brighton' = 176, 'West Concourse' = 177, 'West Farms-
Bronx River' = 178, 'West New Brighton-New Brighton-St. George' = 179, 'West Village' = 180, 'Westchester-
Unionport' = 181, 'Westerleigh' = 182, 'Whitestone' = 183, 'Williamsbridge-Olinville' = 184, 'Williamsburg' =
185, 'Windsor Terrace' = 186, 'Woodhaven' = 187, 'Woodlawn-Wakefield' = 188, 'Woodside' = 189, 'Yorkville' =
190, 'park-cemetery-etc-Bronx' = 191, 'park-cemetery-etc-Brooklyn' = 192, 'park-cemetery-etc-Manhattan' =
193, 'park-cemetery-etc-Queens' = 194, 'park-cemetery-etc-Staten Island' = 195)) AS pickup_ntaname,

toUInt16(ifNull(pickup_puma, '0')) AS pickup_puma,

assumeNotNull(dropoff_nyct2010_gid) AS dropoff_nyct2010_gid,
toFloat32(ifNull(dropoff_ctlabel, '0')) AS dropoff_ctlabel,
assumeNotNull(dropoff_borocode) AS dropoff_borocode,
CAST(assumeNotNull(dropoff_boroname) AS Enum8('Manhattan' = 1, 'Queens' = 4, 'Brooklyn' = 3, '' = 0, 'Bronx' =
2, 'Staten Island' = 5)) AS dropoff_boroname,
toFixedString(ifNull(dropoff_ct2010, '000000'), 6) AS dropoff_ct2010,
toFixedString(ifNull(dropoff_boroct2010, '0000000'), 7) AS dropoff_boroct2010,
CAST(assumeNotNull(ifNull(dropoff_cdeligibil, ' ')) AS Enum8(' ' = 0, 'E' = 1, 'I' = 2)) AS
dropoff_cdeligibil,
toFixedString(ifNull(dropoff_ntacode, '0000'), 4) AS dropoff_ntacode,

CAST(assumeNotNull(dropoff_ntaname) AS Enum16('' = 0, 'Airport' = 1, 'Allerton-Pelham Gardens' = 2, 'Annadale-
Huguenot-Prince\'s Bay-Eltingville' = 3, 'Arden Heights' = 4, 'Astoria' = 5, 'Auburndale' = 6, 'Baisley Park'
= 7, 'Bath Beach' = 8, 'Battery Park City-Lower Manhattan' = 9, 'Bay Ridge' = 10, 'Bayside-Bayside Hills' =
11, 'Bedford' = 12, 'Bedford Park-Fordham North' = 13, 'Bellerose' = 14, 'Belmont' = 15, 'Bensonhurst East' =
16, 'Bensonhurst West' = 17, 'Borough Park' = 18, 'Breezy Point-Belle Harbor-Rockaway Park-Broad Channel' =
19, 'Briarwood-Jamaica Hills' = 20, 'Brighton Beach' = 21, 'Bronxdale' = 22, 'Brooklyn Heights-Cobble Hill' =
23, 'Brownsville' = 24, 'Bushwick North' = 25, 'Bushwick South' = 26, 'Cambria Heights' = 27, 'Canarsie' =
28, 'Carroll Gardens-Columbia Street-Red Hook' = 29, 'Central Harlem North-Polo Grounds' = 30, 'Central Harlem
South' = 31, 'Charleston-Richmond Valley-Tottenville' = 32, 'Chinatown' = 33, 'Claremont-Bathgate' = 34,
'Clinton' = 35, 'Clinton Hill' = 36, 'Co-op City' = 37, 'College Point' = 38, 'Corona' = 39, 'Crotona Park
East' = 40, 'Crown Heights North' = 41, 'Crown Heights South' = 42, 'Cypress Hills-City Line' = 43, 'DUMBO-
Vinegar Hill-Downtown Brooklyn-Boerum Hill' = 44, 'Douglas Manor-Douglaston-Little Neck' = 45, 'Dyker
Heights' = 46, 'East Concourse-Concourse Village' = 47, 'East Elmhurst' = 48, 'East Flatbush-Farragut' = 49,
'East Flushing' = 50, 'East Harlem North' = 51, 'East Harlem South' = 52, 'East New York' = 53, 'East New
York (Pennsylvania Ave)' = 54, 'East Tremont' = 55, 'East Village' = 56, 'East Williamsburg' = 57,
'Eastchester-Edenwald-Baychester' = 58, 'Elmhurst' = 59, 'Elmhurst-Maspeth' = 60, 'Erasmus' = 61, 'Far
Rockaway-Bayswater' = 62, 'Flatbush' = 63, 'Flatlands' = 64, 'Flushing' = 65, 'Fordham South' = 66, 'Forest
Hills' = 67, 'Fort Greene' = 68, 'Fresh Meadows-Utopia' = 69, 'Ft. Totten-Bay Terrace-Clearview' = 70,
'Georgetown-Marine Park-Bergen Beach-Mill Basin' = 71, 'Glen Oaks-Floral Park-New Hyde Park' = 72, 'Glendale'
= 73, 'Gramercy' = 74, 'Grasmere-Arrochar-Ft. Wadsworth' = 75, 'Gravesend' = 76, 'Great Kills' = 77,
'Greenpoint' = 78, 'Grymes Hill-Clifton-Fox Hills' = 79, 'Hamilton Heights' = 80, 'Hammels-Arverne-Edgemere' =
81, 'Highbridge' = 82, 'Hollis' = 83, 'Homecrest' = 84, 'Hudson Yards-Chelsea-Flatiron-Union Square' = 85,
'Hunters Point-Sunnyside-West Maspeth' = 86, 'Hunts Point' = 87, 'Jackson Heights' = 88, 'Jamaica' = 89,
'Jamaica Estates-Holliswood' = 90, 'Kensington-Ocean Parkway' = 91, 'Kew Gardens' = 92, 'Kew Gardens Hills' =
93, 'Kingsbridge Heights' = 94, 'Laurelton' = 95, 'Lenox Hill-Roosevelt Island' = 96, 'Lincoln Square' = 97,
'Lindenwood-Howard Beach' = 98, 'Longwood' = 99, 'Lower East Side' = 100, 'Madison' = 101, 'Manhattanville' =
102, 'Marble Hill-Inwood' = 103, 'Mariner\'s Harbor-Arlington-Port Ivory-Graniteville' = 104, 'Maspeth' =
105, 'Melrose South-Mott Haven North' = 106, 'Middle Village' = 107, 'Midtown-Midtown South' = 108, 'Midwood'
= 109, 'Morningside Heights' = 110, 'Morrisania-Melrose' = 111, 'Mott Haven-Port Morris' = 112, 'Mount Hope'
= 113, 'Murray Hill' = 114, 'Murray Hill-Kips Bay' = 115, 'New Brighton-Silver Lake' = 116, 'New Dorp-Midland
Beach' = 117, 'New Springville-Bloomfield-Travis' = 118, 'North Corona' = 119, 'North Riverdale-Fieldston-
Riverdale' = 120, 'North Side-South Side' = 121, 'Norwood' = 122, 'Oakland Gardens' = 123, 'Oakwood-Oakwood

这需要3030秒，速度约为每秒428,000⾏。	要加快速度，可以使⽤ Log引擎替换'MergeTree`引擎来创建表。	在这种情况下，

下载速度超过200秒。

这个表需要使⽤126GB的磁盘空间。

除此之外，你还可以在MergeTree上运⾏OPTIMIZE查询来进⾏优化。但这不是必须的，因为即使在没有进⾏优化的情况下它

的表现依然是很好的。

单台服务器运⾏结果

Q1:

0.490	seconds.

Q2:

1.224	seconds.

Q3:

2.104	seconds.

Riverdale' = 120, 'North Side-South Side' = 121, 'Norwood' = 122, 'Oakland Gardens' = 123, 'Oakwood-Oakwood
Beach' = 124, 'Ocean Hill' = 125, 'Ocean Parkway South' = 126, 'Old Astoria' = 127, 'Old Town-Dongan Hills-
South Beach' = 128, 'Ozone Park' = 129, 'Park Slope-Gowanus' = 130, 'Parkchester' = 131, 'Pelham Bay-Country
Club-City Island' = 132, 'Pelham Parkway' = 133, 'Pomonok-Flushing Heights-Hillcrest' = 134, 'Port Richmond' =
135, 'Prospect Heights' = 136, 'Prospect Lefferts Gardens-Wingate' = 137, 'Queens Village' = 138, 'Queensboro
Hill' = 139, 'Queensbridge-Ravenswood-Long Island City' = 140, 'Rego Park' = 141, 'Richmond Hill' = 142,
'Ridgewood' = 143, 'Rikers Island' = 144, 'Rosedale' = 145, 'Rossville-Woodrow' = 146, 'Rugby-Remsen Village'
= 147, 'Schuylerville-Throgs Neck-Edgewater Park' = 148, 'Seagate-Coney Island' = 149, 'Sheepshead Bay-
Gerritsen Beach-Manhattan Beach' = 150, 'SoHo-TriBeCa-Civic Center-Little Italy' = 151, 'Soundview-Bruckner'
= 152, 'Soundview-Castle Hill-Clason Point-Harding Park' = 153, 'South Jamaica' = 154, 'South Ozone Park' =
155, 'Springfield Gardens North' = 156, 'Springfield Gardens South-Brookville' = 157, 'Spuyten Duyvil-
Kingsbridge' = 158, 'St. Albans' = 159, 'Stapleton-Rosebank' = 160, 'Starrett City' = 161, 'Steinway' = 162,
'Stuyvesant Heights' = 163, 'Stuyvesant Town-Cooper Village' = 164, 'Sunset Park East' = 165, 'Sunset Park
West' = 166, 'Todt Hill-Emerson Hill-Heartland Village-Lighthouse Hill' = 167, 'Turtle Bay-East Midtown' =
168, 'University Heights-Morris Heights' = 169, 'Upper East Side-Carnegie Hill' = 170, 'Upper West Side' =
171, 'Van Cortlandt Village' = 172, 'Van Nest-Morris Park-Westchester Square' = 173, 'Washington Heights
North' = 174, 'Washington Heights South' = 175, 'West Brighton' = 176, 'West Concourse' = 177, 'West Farms-
Bronx River' = 178, 'West New Brighton-New Brighton-St. George' = 179, 'West Village' = 180, 'Westchester-
Unionport' = 181, 'Westerleigh' = 182, 'Whitestone' = 183, 'Williamsbridge-Olinville' = 184, 'Williamsburg' =
185, 'Windsor Terrace' = 186, 'Woodhaven' = 187, 'Woodlawn-Wakefield' = 188, 'Woodside' = 189, 'Yorkville' =
190, 'park-cemetery-etc-Bronx' = 191, 'park-cemetery-etc-Brooklyn' = 192, 'park-cemetery-etc-Manhattan' =
193, 'park-cemetery-etc-Queens' = 194, 'park-cemetery-etc-Staten Island' = 195)) AS dropoff_ntaname,

toUInt16(ifNull(dropoff_puma, '0')) AS dropoff_puma

FROM trips

:) SELECT formatReadableSize(sum(bytes)) FROM system.parts WHERE table = 'trips_mergetree' AND active

SELECT formatReadableSize(sum(bytes))
FROM system.parts
WHERE (table = 'trips_mergetree') AND active

┌─formatReadableSize(sum(bytes))─┐
│ 126.18 GiB │
└────────────────────────────────┘

SELECT cab_type, count(*) FROM trips_mergetree GROUP BY cab_type

SELECT passenger_count, avg(total_amount) FROM trips_mergetree GROUP BY passenger_count

SELECT passenger_count, toYear(pickup_date) AS year, count(*) FROM trips_mergetree GROUP BY passenger_count,
year

Q4:

3.593	seconds.

我们使⽤的是如下配置的服务器：

Two	Intel(R)	Xeon(R)	CPU	E5-2650	v2	@	2.60GHz,	16	physical	kernels	total,128	GiB	RAM,8x6	TB	HD	on	hardware	RAID-5

执⾏时间是取三次运⾏中最好的值，但是从第⼆次查询开始，查询就讲从⽂件系统的缓存中读取数据。同时在每次读取和处理

后不在进⾏缓存。

在三台服务器中创建表结构：

在每台服务器中运⾏：

SELECT passenger_count, toYear(pickup_date) AS year, round(trip_distance) AS distance, count(*)
FROM trips_mergetree
GROUP BY passenger_count, year, distance
ORDER BY year, count(*) DESC

CREATE TABLE default.trips_mergetree_third (trip_id UInt32, vendor_id Enum8('1' = 1, '2' = 2, 'CMT' = 3,
'VTS' = 4, 'DDS' = 5, 'B02512' = 10, 'B02598' = 11, 'B02617' = 12, 'B02682' = 13, 'B02764' = 14),
pickup_date Date, pickup_datetime DateTime, dropoff_date Date, dropoff_datetime DateTime,
store_and_fwd_flag UInt8, rate_code_id UInt8, pickup_longitude Float64, pickup_latitude Float64,
dropoff_longitude Float64, dropoff_latitude Float64, passenger_count UInt8, trip_distance Float64,
fare_amount Float32, extra Float32, mta_tax Float32, tip_amount Float32, tolls_amount Float32, ehail_fee
Float32, improvement_surcharge Float32, total_amount Float32, payment_type_ Enum8('UNK' = 0, 'CSH' = 1,
'CRE' = 2, 'NOC' = 3, 'DIS' = 4), trip_type UInt8, pickup FixedString(25), dropoff FixedString(25),
cab_type Enum8('yellow' = 1, 'green' = 2, 'uber' = 3), pickup_nyct2010_gid UInt8, pickup_ctlabel Float32,
pickup_borocode UInt8, pickup_boroname Enum8('' = 0, 'Manhattan' = 1, 'Bronx' = 2, 'Brooklyn' = 3, 'Queens'
= 4, 'Staten Island' = 5), pickup_ct2010 FixedString(6), pickup_boroct2010 FixedString(7),
pickup_cdeligibil Enum8(' ' = 0, 'E' = 1, 'I' = 2), pickup_ntacode FixedString(4), pickup_ntaname Enum16(''
= 0, 'Airport' = 1, 'Allerton-Pelham Gardens' = 2, 'Annadale-Huguenot-Prince\'s Bay-Eltingville' = 3, 'Arden
Heights' = 4, 'Astoria' = 5, 'Auburndale' = 6, 'Baisley Park' = 7, 'Bath Beach' = 8, 'Battery Park City-Lower
Manhattan' = 9, 'Bay Ridge' = 10, 'Bayside-Bayside Hills' = 11, 'Bedford' = 12, 'Bedford Park-Fordham North'
= 13, 'Bellerose' = 14, 'Belmont' = 15, 'Bensonhurst East' = 16, 'Bensonhurst West' = 17, 'Borough Park' =
18, 'Breezy Point-Belle Harbor-Rockaway Park-Broad Channel' = 19, 'Briarwood-Jamaica Hills' = 20, 'Brighton
Beach' = 21, 'Bronxdale' = 22, 'Brooklyn Heights-Cobble Hill' = 23, 'Brownsville' = 24, 'Bushwick North' =
25, 'Bushwick South' = 26, 'Cambria Heights' = 27, 'Canarsie' = 28, 'Carroll Gardens-Columbia Street-Red Hook'
= 29, 'Central Harlem North-Polo Grounds' = 30, 'Central Harlem South' = 31, 'Charleston-Richmond Valley-
Tottenville' = 32, 'Chinatown' = 33, 'Claremont-Bathgate' = 34, 'Clinton' = 35, 'Clinton Hill' = 36, 'Co-op
City' = 37, 'College Point' = 38, 'Corona' = 39, 'Crotona Park East' = 40, 'Crown Heights North' = 41, 'Crown
Heights South' = 42, 'Cypress Hills-City Line' = 43, 'DUMBO-Vinegar Hill-Downtown Brooklyn-Boerum Hill' = 44,
'Douglas Manor-Douglaston-Little Neck' = 45, 'Dyker Heights' = 46, 'East Concourse-Concourse Village' = 47,
'East Elmhurst' = 48, 'East Flatbush-Farragut' = 49, 'East Flushing' = 50, 'East Harlem North' = 51, 'East
Harlem South' = 52, 'East New York' = 53, 'East New York (Pennsylvania Ave)' = 54, 'East Tremont' = 55, 'East
Village' = 56, 'East Williamsburg' = 57, 'Eastchester-Edenwald-Baychester' = 58, 'Elmhurst' = 59, 'Elmhurst-
Maspeth' = 60, 'Erasmus' = 61, 'Far Rockaway-Bayswater' = 62, 'Flatbush' = 63, 'Flatlands' = 64, 'Flushing' =
65, 'Fordham South' = 66, 'Forest Hills' = 67, 'Fort Greene' = 68, 'Fresh Meadows-Utopia' = 69, 'Ft. Totten-
Bay Terrace-Clearview' = 70, 'Georgetown-Marine Park-Bergen Beach-Mill Basin' = 71, 'Glen Oaks-Floral Park-
New Hyde Park' = 72, 'Glendale' = 73, 'Gramercy' = 74, 'Grasmere-Arrochar-Ft. Wadsworth' = 75, 'Gravesend' =
76, 'Great Kills' = 77, 'Greenpoint' = 78, 'Grymes Hill-Clifton-Fox Hills' = 79, 'Hamilton Heights' = 80,
'Hammels-Arverne-Edgemere' = 81, 'Highbridge' = 82, 'Hollis' = 83, 'Homecrest' = 84, 'Hudson Yards-Chelsea-
Flatiron-Union Square' = 85, 'Hunters Point-Sunnyside-West Maspeth' = 86, 'Hunts Point' = 87, 'Jackson
Heights' = 88, 'Jamaica' = 89, 'Jamaica Estates-Holliswood' = 90, 'Kensington-Ocean Parkway' = 91, 'Kew
Gardens' = 92, 'Kew Gardens Hills' = 93, 'Kingsbridge Heights' = 94, 'Laurelton' = 95, 'Lenox Hill-Roosevelt
Island' = 96, 'Lincoln Square' = 97, 'Lindenwood-Howard Beach' = 98, 'Longwood' = 99, 'Lower East Side' =
100, 'Madison' = 101, 'Manhattanville' = 102, 'Marble Hill-Inwood' = 103, 'Mariner\'s Harbor-Arlington-Port
Ivory-Graniteville' = 104, 'Maspeth' = 105, 'Melrose South-Mott Haven North' = 106, 'Middle Village' = 107,
'Midtown-Midtown South' = 108, 'Midwood' = 109, 'Morningside Heights' = 110, 'Morrisania-Melrose' = 111,
'Mott Haven-Port Morris' = 112, 'Mount Hope' = 113, 'Murray Hill' = 114, 'Murray Hill-Kips Bay' = 115, 'New
Brighton-Silver Lake' = 116, 'New Dorp-Midland Beach' = 117, 'New Springville-Bloomfield-Travis' = 118,
'North Corona' = 119, 'North Riverdale-Fieldston-Riverdale' = 120, 'North Side-South Side' = 121, 'Norwood' =
122, 'Oakland Gardens' = 123, 'Oakwood-Oakwood Beach' = 124, 'Ocean Hill' = 125, 'Ocean Parkway South' = 126,
'Old Astoria' = 127, 'Old Town-Dongan Hills-South Beach' = 128, 'Ozone Park' = 129, 'Park Slope-Gowanus' =
130, 'Parkchester' = 131, 'Pelham Bay-Country Club-City Island' = 132, 'Pelham Parkway' = 133, 'Pomonok-
Flushing Heights-Hillcrest' = 134, 'Port Richmond' = 135, 'Prospect Heights' = 136, 'Prospect Lefferts
Gardens-Wingate' = 137, 'Queens Village' = 138, 'Queensboro Hill' = 139, 'Queensbridge-Ravenswood-Long Island
City' = 140, 'Rego Park' = 141, 'Richmond Hill' = 142, 'Ridgewood' = 143, 'Rikers Island' = 144, 'Rosedale' =
145, 'Rossville-Woodrow' = 146, 'Rugby-Remsen Village' = 147, 'Schuylerville-Throgs Neck-Edgewater Park' =
148, 'Seagate-Coney Island' = 149, 'Sheepshead Bay-Gerritsen Beach-Manhattan Beach' = 150, 'SoHo-TriBeCa-

148, 'Seagate-Coney Island' = 149, 'Sheepshead Bay-Gerritsen Beach-Manhattan Beach' = 150, 'SoHo-TriBeCa-
Civic Center-Little Italy' = 151, 'Soundview-Bruckner' = 152, 'Soundview-Castle Hill-Clason Point-Harding
Park' = 153, 'South Jamaica' = 154, 'South Ozone Park' = 155, 'Springfield Gardens North' = 156, 'Springfield
Gardens South-Brookville' = 157, 'Spuyten Duyvil-Kingsbridge' = 158, 'St. Albans' = 159, 'Stapleton-Rosebank'
= 160, 'Starrett City' = 161, 'Steinway' = 162, 'Stuyvesant Heights' = 163, 'Stuyvesant Town-Cooper Village'
= 164, 'Sunset Park East' = 165, 'Sunset Park West' = 166, 'Todt Hill-Emerson Hill-Heartland Village-
Lighthouse Hill' = 167, 'Turtle Bay-East Midtown' = 168, 'University Heights-Morris Heights' = 169, 'Upper
East Side-Carnegie Hill' = 170, 'Upper West Side' = 171, 'Van Cortlandt Village' = 172, 'Van Nest-Morris
Park-Westchester Square' = 173, 'Washington Heights North' = 174, 'Washington Heights South' = 175, 'West
Brighton' = 176, 'West Concourse' = 177, 'West Farms-Bronx River' = 178, 'West New Brighton-New Brighton-St.
George' = 179, 'West Village' = 180, 'Westchester-Unionport' = 181, 'Westerleigh' = 182, 'Whitestone' = 183,
'Williamsbridge-Olinville' = 184, 'Williamsburg' = 185, 'Windsor Terrace' = 186, 'Woodhaven' = 187,
'Woodlawn-Wakefield' = 188, 'Woodside' = 189, 'Yorkville' = 190, 'park-cemetery-etc-Bronx' = 191, 'park-
cemetery-etc-Brooklyn' = 192, 'park-cemetery-etc-Manhattan' = 193, 'park-cemetery-etc-Queens' = 194, 'park-
cemetery-etc-Staten Island' = 195), pickup_puma UInt16, dropoff_nyct2010_gid UInt8, dropoff_ctlabel
Float32, dropoff_borocode UInt8, dropoff_boroname Enum8('' = 0, 'Manhattan' = 1, 'Bronx' = 2, 'Brooklyn' =
3, 'Queens' = 4, 'Staten Island' = 5), dropoff_ct2010 FixedString(6), dropoff_boroct2010 FixedString(7),
dropoff_cdeligibil Enum8(' ' = 0, 'E' = 1, 'I' = 2), dropoff_ntacode FixedString(4), dropoff_ntaname
Enum16('' = 0, 'Airport' = 1, 'Allerton-Pelham Gardens' = 2, 'Annadale-Huguenot-Prince\'s Bay-Eltingville' =
3, 'Arden Heights' = 4, 'Astoria' = 5, 'Auburndale' = 6, 'Baisley Park' = 7, 'Bath Beach' = 8, 'Battery Park
City-Lower Manhattan' = 9, 'Bay Ridge' = 10, 'Bayside-Bayside Hills' = 11, 'Bedford' = 12, 'Bedford Park-
Fordham North' = 13, 'Bellerose' = 14, 'Belmont' = 15, 'Bensonhurst East' = 16, 'Bensonhurst West' = 17,
'Borough Park' = 18, 'Breezy Point-Belle Harbor-Rockaway Park-Broad Channel' = 19, 'Briarwood-Jamaica Hills'
= 20, 'Brighton Beach' = 21, 'Bronxdale' = 22, 'Brooklyn Heights-Cobble Hill' = 23, 'Brownsville' = 24,
'Bushwick North' = 25, 'Bushwick South' = 26, 'Cambria Heights' = 27, 'Canarsie' = 28, 'Carroll Gardens-
Columbia Street-Red Hook' = 29, 'Central Harlem North-Polo Grounds' = 30, 'Central Harlem South' = 31,
'Charleston-Richmond Valley-Tottenville' = 32, 'Chinatown' = 33, 'Claremont-Bathgate' = 34, 'Clinton' = 35,
'Clinton Hill' = 36, 'Co-op City' = 37, 'College Point' = 38, 'Corona' = 39, 'Crotona Park East' = 40, 'Crown
Heights North' = 41, 'Crown Heights South' = 42, 'Cypress Hills-City Line' = 43, 'DUMBO-Vinegar Hill-Downtown
Brooklyn-Boerum Hill' = 44, 'Douglas Manor-Douglaston-Little Neck' = 45, 'Dyker Heights' = 46, 'East
Concourse-Concourse Village' = 47, 'East Elmhurst' = 48, 'East Flatbush-Farragut' = 49, 'East Flushing' = 50,
'East Harlem North' = 51, 'East Harlem South' = 52, 'East New York' = 53, 'East New York (Pennsylvania Ave)'
= 54, 'East Tremont' = 55, 'East Village' = 56, 'East Williamsburg' = 57, 'Eastchester-Edenwald-Baychester' =
58, 'Elmhurst' = 59, 'Elmhurst-Maspeth' = 60, 'Erasmus' = 61, 'Far Rockaway-Bayswater' = 62, 'Flatbush' = 63,
'Flatlands' = 64, 'Flushing' = 65, 'Fordham South' = 66, 'Forest Hills' = 67, 'Fort Greene' = 68, 'Fresh
Meadows-Utopia' = 69, 'Ft. Totten-Bay Terrace-Clearview' = 70, 'Georgetown-Marine Park-Bergen Beach-Mill
Basin' = 71, 'Glen Oaks-Floral Park-New Hyde Park' = 72, 'Glendale' = 73, 'Gramercy' = 74, 'Grasmere-
Arrochar-Ft. Wadsworth' = 75, 'Gravesend' = 76, 'Great Kills' = 77, 'Greenpoint' = 78, 'Grymes Hill-Clifton-
Fox Hills' = 79, 'Hamilton Heights' = 80, 'Hammels-Arverne-Edgemere' = 81, 'Highbridge' = 82, 'Hollis' = 83,
'Homecrest' = 84, 'Hudson Yards-Chelsea-Flatiron-Union Square' = 85, 'Hunters Point-Sunnyside-West Maspeth' =
86, 'Hunts Point' = 87, 'Jackson Heights' = 88, 'Jamaica' = 89, 'Jamaica Estates-Holliswood' = 90,
'Kensington-Ocean Parkway' = 91, 'Kew Gardens' = 92, 'Kew Gardens Hills' = 93, 'Kingsbridge Heights' = 94,
'Laurelton' = 95, 'Lenox Hill-Roosevelt Island' = 96, 'Lincoln Square' = 97, 'Lindenwood-Howard Beach' = 98,
'Longwood' = 99, 'Lower East Side' = 100, 'Madison' = 101, 'Manhattanville' = 102, 'Marble Hill-Inwood' =
103, 'Mariner\'s Harbor-Arlington-Port Ivory-Graniteville' = 104, 'Maspeth' = 105, 'Melrose South-Mott Haven
North' = 106, 'Middle Village' = 107, 'Midtown-Midtown South' = 108, 'Midwood' = 109, 'Morningside Heights' =
110, 'Morrisania-Melrose' = 111, 'Mott Haven-Port Morris' = 112, 'Mount Hope' = 113, 'Murray Hill' = 114,
'Murray Hill-Kips Bay' = 115, 'New Brighton-Silver Lake' = 116, 'New Dorp-Midland Beach' = 117, 'New
Springville-Bloomfield-Travis' = 118, 'North Corona' = 119, 'North Riverdale-Fieldston-Riverdale' = 120,
'North Side-South Side' = 121, 'Norwood' = 122, 'Oakland Gardens' = 123, 'Oakwood-Oakwood Beach' = 124,
'Ocean Hill' = 125, 'Ocean Parkway South' = 126, 'Old Astoria' = 127, 'Old Town-Dongan Hills-South Beach' =
128, 'Ozone Park' = 129, 'Park Slope-Gowanus' = 130, 'Parkchester' = 131, 'Pelham Bay-Country Club-City
Island' = 132, 'Pelham Parkway' = 133, 'Pomonok-Flushing Heights-Hillcrest' = 134, 'Port Richmond' = 135,
'Prospect Heights' = 136, 'Prospect Lefferts Gardens-Wingate' = 137, 'Queens Village' = 138, 'Queensboro Hill'
= 139, 'Queensbridge-Ravenswood-Long Island City' = 140, 'Rego Park' = 141, 'Richmond Hill' = 142,
'Ridgewood' = 143, 'Rikers Island' = 144, 'Rosedale' = 145, 'Rossville-Woodrow' = 146, 'Rugby-Remsen Village'
= 147, 'Schuylerville-Throgs Neck-Edgewater Park' = 148, 'Seagate-Coney Island' = 149, 'Sheepshead Bay-
Gerritsen Beach-Manhattan Beach' = 150, 'SoHo-TriBeCa-Civic Center-Little Italy' = 151, 'Soundview-Bruckner'
= 152, 'Soundview-Castle Hill-Clason Point-Harding Park' = 153, 'South Jamaica' = 154, 'South Ozone Park' =
155, 'Springfield Gardens North' = 156, 'Springfield Gardens South-Brookville' = 157, 'Spuyten Duyvil-
Kingsbridge' = 158, 'St. Albans' = 159, 'Stapleton-Rosebank' = 160, 'Starrett City' = 161, 'Steinway' = 162,
'Stuyvesant Heights' = 163, 'Stuyvesant Town-Cooper Village' = 164, 'Sunset Park East' = 165, 'Sunset Park
West' = 166, 'Todt Hill-Emerson Hill-Heartland Village-Lighthouse Hill' = 167, 'Turtle Bay-East Midtown' =
168, 'University Heights-Morris Heights' = 169, 'Upper East Side-Carnegie Hill' = 170, 'Upper West Side' =
171, 'Van Cortlandt Village' = 172, 'Van Nest-Morris Park-Westchester Square' = 173, 'Washington Heights
North' = 174, 'Washington Heights South' = 175, 'West Brighton' = 176, 'West Concourse' = 177, 'West Farms-
Bronx River' = 178, 'West New Brighton-New Brighton-St. George' = 179, 'West Village' = 180, 'Westchester-
Unionport' = 181, 'Westerleigh' = 182, 'Whitestone' = 183, 'Williamsbridge-Olinville' = 184, 'Williamsburg' =
185, 'Windsor Terrace' = 186, 'Woodhaven' = 187, 'Woodlawn-Wakefield' = 188, 'Woodside' = 189, 'Yorkville' =
190, 'park-cemetery-etc-Bronx' = 191, 'park-cemetery-etc-Brooklyn' = 192, 'park-cemetery-etc-Manhattan' =
193, 'park-cemetery-etc-Queens' = 194, 'park-cemetery-etc-Staten Island' = 195), dropoff_puma UInt16) ENGINE
= MergeTree(pickup_date, pickup_datetime, 8192)

在之前的服务器中运⾏：

运⾏如下查询重新分布数据：

这个查询需要运⾏2454秒。

在三台服务器集群中运⾏的结果：

Q1:	0.212	seconds.	Q2:	0.438	seconds.	Q3:	0.733	seconds.	Q4:	1.241	seconds.

不出意料，查询是线性扩展的。

我们同时在140台服务器的集群中运⾏的结果：

Q1:	0.028	sec.	Q2:	0.043	sec.	Q3:	0.051	sec.	Q4:	0.072	sec.

在这种情况下，查询处理时间⾸先由⽹络延迟确定。	我们使⽤位于芬兰的Yandex数据中⼼中的客户端去位于俄罗斯的集群上

运⾏查询，这增加了⼤约20毫秒的延迟。

总结

servers Q1 Q2 Q3 Q4

1 0.490 1.224 2.104 3.593

3 0.212 0.438 0.733 1.241

140 0.028 0.043 0.051 0.072

AMPLab	⼤数据基准测试

参考	https://amplab.cs.berkeley.edu/benchmark/	[https://amplab.cs.berkeley.edu/benchmark/]

需要您在https://aws.amazon.com	[https://aws.amazon.com]注册⼀个免费的账号。注册时需要您提供信⽤卡、邮箱、电话

等信息。之后可以在https://console.aws.amazon.com/iam/home?nc2=h_m_sc#security_credential

[https://console.aws.amazon.com/iam/home?nc2=h_m_sc#security_credential]获取新的访问密钥

在控制台运⾏以下命令：

在ClickHouse运⾏如下查询：

CREATE TABLE trips_mergetree_x3 AS trips_mergetree_third ENGINE = Distributed(perftest, default,
trips_mergetree_third, rand())

INSERT INTO trips_mergetree_x3 SELECT * FROM trips_mergetree

sudo apt-get install s3cmd
mkdir tiny; cd tiny;
s3cmd sync s3://big-data-benchmark/pavlo/text-deflate/tiny/ .
cd ..
mkdir 1node; cd 1node;
s3cmd sync s3://big-data-benchmark/pavlo/text-deflate/1node/ .
cd ..
mkdir 5nodes; cd 5nodes;
s3cmd sync s3://big-data-benchmark/pavlo/text-deflate/5nodes/ .
cd ..

https://amplab.cs.berkeley.edu/benchmark/
https://aws.amazon.com
https://console.aws.amazon.com/iam/home?nc2=h_m_sc#security_credential

回到控制台运⾏如下命令：

CREATE TABLE rankings_tiny
(
 pageURL String,
 pageRank UInt32,
 avgDuration UInt32
) ENGINE = Log;

CREATE TABLE uservisits_tiny
(
 sourceIP String,
 destinationURL String,
 visitDate Date,
 adRevenue Float32,
 UserAgent String,
 cCode FixedString(3),
 lCode FixedString(6),
 searchWord String,
 duration UInt32
) ENGINE = MergeTree(visitDate, visitDate, 8192);

CREATE TABLE rankings_1node
(
 pageURL String,
 pageRank UInt32,
 avgDuration UInt32
) ENGINE = Log;

CREATE TABLE uservisits_1node
(
 sourceIP String,
 destinationURL String,
 visitDate Date,
 adRevenue Float32,
 UserAgent String,
 cCode FixedString(3),
 lCode FixedString(6),
 searchWord String,
 duration UInt32
) ENGINE = MergeTree(visitDate, visitDate, 8192);

CREATE TABLE rankings_5nodes_on_single
(
 pageURL String,
 pageRank UInt32,
 avgDuration UInt32
) ENGINE = Log;

CREATE TABLE uservisits_5nodes_on_single
(
 sourceIP String,
 destinationURL String,
 visitDate Date,
 adRevenue Float32,
 UserAgent String,
 cCode FixedString(3),
 lCode FixedString(6),
 searchWord String,
 duration UInt32
) ENGINE = MergeTree(visitDate, visitDate, 8192);

简单的查询示例：

维基访问数据

参考:	http://dumps.wikimedia.org/other/pagecounts-raw/	[http://dumps.wikimedia.org/other/pagecounts-raw/]

创建表结构：

加载数据：

for i in tiny/rankings/*.deflate; do echo $i; zlib-flate -uncompress < $i | clickhouse-client --host=example-
perftest01j --query="INSERT INTO rankings_tiny FORMAT CSV"; done
for i in tiny/uservisits/*.deflate; do echo $i; zlib-flate -uncompress < $i | clickhouse-client --
host=example-perftest01j --query="INSERT INTO uservisits_tiny FORMAT CSV"; done
for i in 1node/rankings/*.deflate; do echo $i; zlib-flate -uncompress < $i | clickhouse-client --
host=example-perftest01j --query="INSERT INTO rankings_1node FORMAT CSV"; done
for i in 1node/uservisits/*.deflate; do echo $i; zlib-flate -uncompress < $i | clickhouse-client --
host=example-perftest01j --query="INSERT INTO uservisits_1node FORMAT CSV"; done
for i in 5nodes/rankings/*.deflate; do echo $i; zlib-flate -uncompress < $i | clickhouse-client --
host=example-perftest01j --query="INSERT INTO rankings_5nodes_on_single FORMAT CSV"; done
for i in 5nodes/uservisits/*.deflate; do echo $i; zlib-flate -uncompress < $i | clickhouse-client --
host=example-perftest01j --query="INSERT INTO uservisits_5nodes_on_single FORMAT CSV"; done

SELECT pageURL, pageRank FROM rankings_1node WHERE pageRank > 1000

SELECT substring(sourceIP, 1, 8), sum(adRevenue) FROM uservisits_1node GROUP BY substring(sourceIP, 1, 8)

SELECT
 sourceIP,
 sum(adRevenue) AS totalRevenue,
 avg(pageRank) AS pageRank
FROM rankings_1node ALL INNER JOIN
(
 SELECT
 sourceIP,
 destinationURL AS pageURL,
 adRevenue
 FROM uservisits_1node
 WHERE (visitDate > '1980-01-01') AND (visitDate < '1980-04-01')
) USING pageURL
GROUP BY sourceIP
ORDER BY totalRevenue DESC
LIMIT 1

CREATE TABLE wikistat
(
 date Date,
 time DateTime,
 project String,
 subproject String,
 path String,
 hits UInt64,
 size UInt64
) ENGINE = MergeTree(date, (path, time), 8192);

for i in {2007..2016}; do for j in {01..12}; do echo $i-$j >&2; curl -sSL
"http://dumps.wikimedia.org/other/pagecounts-raw/$i/$i-$j/" | grep -oE 'pagecounts-[0-9]+-[0-9]+\.gz'; done;
done | sort | uniq | tee links.txt
cat links.txt | while read link; do wget http://dumps.wikimedia.org/other/pagecounts-raw/$(echo $link | sed -
r 's/pagecounts-([0-9]{4})([0-9]{2})[0-9]{2}-[0-9]+\.gz/\1/')/$(echo $link | sed -r 's/pagecounts-([0-9]{4})
([0-9]{2})[0-9]{2}-[0-9]+\.gz/\1-\2/')/$link; done
ls -1 /opt/wikistat/ | grep gz | while read i; do echo $i; gzip -cd /opt/wikistat/$i | ./wikistat-loader --
time="$(echo -n $i | sed -r 's/pagecounts-([0-9]{4})([0-9]{2})([0-9]{2})-([0-9]{2})([0-9]{2})([0-9]
{2})\.gz/\1-\2-\3 \4-00-00/')" | clickhouse-client --query="INSERT INTO wikistat FORMAT TabSeparated"; done

http://dumps.wikimedia.org/other/pagecounts-raw/

Criteo	TB级别点击⽇志

可以从http://labs.criteo.com/downloads/download-terabyte-click-logs/	[http://labs.criteo.com/downloads/download-

terabyte-click-logs/]上下载数据

创建原始数据对应的表结构：

下载数据：

创建转换后的数据对应的表结构：

将第⼀张表中的原始数据转化写⼊到第⼆张表中去：

CREATE TABLE criteo_log (date Date, clicked UInt8, int1 Int32, int2 Int32, int3 Int32, int4 Int32, int5
Int32, int6 Int32, int7 Int32, int8 Int32, int9 Int32, int10 Int32, int11 Int32, int12 Int32, int13 Int32,
cat1 String, cat2 String, cat3 String, cat4 String, cat5 String, cat6 String, cat7 String, cat8 String, cat9
String, cat10 String, cat11 String, cat12 String, cat13 String, cat14 String, cat15 String, cat16 String,
cat17 String, cat18 String, cat19 String, cat20 String, cat21 String, cat22 String, cat23 String, cat24
String, cat25 String, cat26 String) ENGINE = Log

for i in {00..23}; do echo $i; zcat datasets/criteo/day_${i#0}.gz | sed -r 's/^/2000-01-'${i/00/24}'\t/' |
clickhouse-client --host=example-perftest01j --query="INSERT INTO criteo_log FORMAT TabSeparated"; done

CREATE TABLE criteo
(
 date Date,
 clicked UInt8,
 int1 Int32,
 int2 Int32,
 int3 Int32,
 int4 Int32,
 int5 Int32,
 int6 Int32,
 int7 Int32,
 int8 Int32,
 int9 Int32,
 int10 Int32,
 int11 Int32,
 int12 Int32,
 int13 Int32,
 icat1 UInt32,
 icat2 UInt32,
 icat3 UInt32,
 icat4 UInt32,
 icat5 UInt32,
 icat6 UInt32,
 icat7 UInt32,
 icat8 UInt32,
 icat9 UInt32,
 icat10 UInt32,
 icat11 UInt32,
 icat12 UInt32,
 icat13 UInt32,
 icat14 UInt32,
 icat15 UInt32,
 icat16 UInt32,
 icat17 UInt32,
 icat18 UInt32,
 icat19 UInt32,
 icat20 UInt32,
 icat21 UInt32,
 icat22 UInt32,
 icat23 UInt32,
 icat24 UInt32,
 icat25 UInt32,
 icat26 UInt32
) ENGINE = MergeTree(date, intHash32(icat1), (date, intHash32(icat1)), 8192)

http://labs.criteo.com/downloads/download-terabyte-click-logs/

Star	Schema	基准测试

编译	dbgen:	https://github.com/vadimtk/ssb-dbgen	[https://github.com/vadimtk/ssb-dbgen]

在编译过程中可能会有⼀些警告，这是正常的。

将 dbgen和 dists.dss放在⼀个可⽤容量⼤于800GB的磁盘中。

开始⽣成数据：

在ClickHouse中创建表结构：

INSERT INTO criteo SELECT date, clicked, int1, int2, int3, int4, int5, int6, int7, int8, int9, int10, int11,
int12, int13, reinterpretAsUInt32(unhex(cat1)) AS icat1, reinterpretAsUInt32(unhex(cat2)) AS icat2,
reinterpretAsUInt32(unhex(cat3)) AS icat3, reinterpretAsUInt32(unhex(cat4)) AS icat4,
reinterpretAsUInt32(unhex(cat5)) AS icat5, reinterpretAsUInt32(unhex(cat6)) AS icat6,
reinterpretAsUInt32(unhex(cat7)) AS icat7, reinterpretAsUInt32(unhex(cat8)) AS icat8,
reinterpretAsUInt32(unhex(cat9)) AS icat9, reinterpretAsUInt32(unhex(cat10)) AS icat10,
reinterpretAsUInt32(unhex(cat11)) AS icat11, reinterpretAsUInt32(unhex(cat12)) AS icat12,
reinterpretAsUInt32(unhex(cat13)) AS icat13, reinterpretAsUInt32(unhex(cat14)) AS icat14,
reinterpretAsUInt32(unhex(cat15)) AS icat15, reinterpretAsUInt32(unhex(cat16)) AS icat16,
reinterpretAsUInt32(unhex(cat17)) AS icat17, reinterpretAsUInt32(unhex(cat18)) AS icat18,
reinterpretAsUInt32(unhex(cat19)) AS icat19, reinterpretAsUInt32(unhex(cat20)) AS icat20,
reinterpretAsUInt32(unhex(cat21)) AS icat21, reinterpretAsUInt32(unhex(cat22)) AS icat22,
reinterpretAsUInt32(unhex(cat23)) AS icat23, reinterpretAsUInt32(unhex(cat24)) AS icat24,
reinterpretAsUInt32(unhex(cat25)) AS icat25, reinterpretAsUInt32(unhex(cat26)) AS icat26 FROM criteo_log;

DROP TABLE criteo_log;

git clone git@github.com:vadimtk/ssb-dbgen.git
cd ssb-dbgen
make

./dbgen -s 1000 -T c

./dbgen -s 1000 -T l

https://github.com/vadimtk/ssb-dbgen

如果是在单节点中进⾏的测试，那么只需要创建对应的MergeTree表。	如果是在多节点中进⾏的测试，您需要在配置⽂件中

配置 perftest_3shards_1replicas集群的信息。	然后在每个节点中同时创建MergeTree表和Distributed表。

下载数据（如果您是分布式测试的话将'customer'更改为'customerd'）：

[]

客户端

ClickHouse提供了两个⽹络接⼝（两者都可以选择包装在TLS中以提⾼安全性）：

HTTP	[#http]，记录在案，易于使⽤.

本地⼈TCP	[#tcp]，这有较少的开销.

CREATE TABLE lineorder (
 LO_ORDERKEY UInt32,
 LO_LINENUMBER UInt8,
 LO_CUSTKEY UInt32,
 LO_PARTKEY UInt32,
 LO_SUPPKEY UInt32,
 LO_ORDERDATE Date,
 LO_ORDERPRIORITY String,
 LO_SHIPPRIORITY UInt8,
 LO_QUANTITY UInt8,
 LO_EXTENDEDPRICE UInt32,
 LO_ORDTOTALPRICE UInt32,
 LO_DISCOUNT UInt8,
 LO_REVENUE UInt32,
 LO_SUPPLYCOST UInt32,
 LO_TAX UInt8,
 LO_COMMITDATE Date,
 LO_SHIPMODE String
)Engine=MergeTree(LO_ORDERDATE,(LO_ORDERKEY,LO_LINENUMBER,LO_ORDERDATE),8192);

CREATE TABLE customer (
 C_CUSTKEY UInt32,
 C_NAME String,
 C_ADDRESS String,
 C_CITY String,
 C_NATION String,
 C_REGION String,
 C_PHONE String,
 C_MKTSEGMENT String,
 C_FAKEDATE Date
)Engine=MergeTree(C_FAKEDATE,(C_CUSTKEY,C_FAKEDATE),8192);

CREATE TABLE part (
 P_PARTKEY UInt32,
 P_NAME String,
 P_MFGR String,
 P_CATEGORY String,
 P_BRAND String,
 P_COLOR String,
 P_TYPE String,
 P_SIZE UInt8,
 P_CONTAINER String,
 P_FAKEDATE Date
)Engine=MergeTree(P_FAKEDATE,(P_PARTKEY,P_FAKEDATE),8192);

CREATE TABLE lineorderd AS lineorder ENGINE = Distributed(perftest_3shards_1replicas, default, lineorder,
rand());
CREATE TABLE customerd AS customer ENGINE = Distributed(perftest_3shards_1replicas, default, customer,
rand());
CREATE TABLE partd AS part ENGINE = Distributed(perftest_3shards_1replicas, default, part, rand());

cat customer.tbl | sed 's/$/2000-01-01/' | clickhouse-client --query "INSERT INTO customer FORMAT CSV"
cat lineorder.tbl | clickhouse-client --query "INSERT INTO lineorder FORMAT CSV"

在⼤多数情况下，建议使⽤适当的⼯具或库，⽽不是直接与这些⼯具或库进⾏交互。	Yandex的官⽅⽀持如下：	命令⾏客户端

[#cli]	JDBC驱动程序	[#jdbc]	*	ODBC驱动程序	[#odbc]

还有许多第三⽅库可供使⽤ClickHouse：	客户端库	[#third-party/client_libraries]	集成	[#third-party/integrations]	*	可视界⾯
[#third-party/gui]

命令⾏客户端

通过命令⾏来访问	ClickHouse，您可以使⽤	 clickhouse-client

该客户端⽀持命令⾏参数以及配置⽂件。查看更多，请看	"配置	[#interfaces_cli_configuration]"

使⽤⽅式

这个客户端可以选择使⽤交互式与⾮交互式（批量）两种模式。	使⽤批量模式，要指定	 query 	参数，或者发送数据到	

stdin（它会检查	 stdin 	是否是	Terminal），或者两种同时使⽤。	它与	HTTP	接⼝很相似，当使⽤	 query 	参数发送数据到	

stdin 	时，客户端请求就是⼀⾏⼀⾏的	 stdin 	输⼊作为	 query 	的参数。这种⽅式在⼤规模的插⼊请求中⾮常⽅便。

使⽤这个客户端插⼊数据的示例：

在批量模式中，默认的数据格式是	 TabSeparated 	分隔的。您可以根据查询来灵活设置	FORMAT	格式。

默认情况下，在批量模式中只能执⾏单个查询。为了从⼀个	Script	中执⾏多个查询，可以使⽤	 --multiquery 	参数。除了

INSERT	请求外，这种⽅式在任何地⽅都有⽤。查询的结果会连续且不含分隔符地输出。	同样的，为了执⾏⼤规模的查询，您

可以为每个查询执⾏⼀次	 clickhouse-client。但注意到每次启动	 clickhouse-client 	程序都需要消耗⼏⼗毫秒时间。

在交互模式下，每条查询过后，你可以直接输⼊下⼀条查询命令。

如果	 multiline 	没有指定（默认没指定）：为了执⾏查询，按下	Enter	即可。查询语句不是必须使⽤分号结尾。如果需要写

⼀个多⾏的查询语句，可以在换⾏之前输⼊⼀个反斜杠 \，然后在您按下	Enter	键后，您就可以输⼊当前语句的下⼀⾏查询

了。

如果	 multiline 	指定了：为了执⾏查询，需要以分号结尾并且按下	Enter	键。如果⾏末没有分号，将认为当前语句并没有输

⼊完⽽要求继续输⼊下⼀⾏。

若只运⾏单个查询，分号后⾯的所有内容都会被忽略。

您可以指定	 \G 	来替代分号或者在分号后⾯，这表示	 Vertical 	的格式。在这种格式下，每⼀个值都会打印在不同的⾏中，这

种⽅式对于宽表来说很⽅便。这个不常⻅的特性是为了兼容	MySQL	命令⽽加的。

命令⾏客户端是基于	 readline 	库（ history 	库或者	 libedit 	库,	或不基于其他库,	这取决于客户端是如何编译的）。换句话

说，它可以使⽤我们熟悉的快捷键⽅式来操作以及保留历史命令。	历史命令会写⼊在	 ~/.clickhouse-client-history 	中。

默认情况下，输出的格式是	 PrettyCompact。您可以通过	FORMAT	设置根据不同查询来修改格式，或者通过在查询末尾指定

$ clickhouse-client
ClickHouse client version 0.0.26176.
Connecting to localhost:9000.
Connected to ClickHouse server version 0.0.26176.:)

echo -ne "1, 'some text', '2016-08-14 00:00:00'\n2, 'some more text', '2016-08-14 00:00:01'" | clickhouse-
client --database=test --query="INSERT INTO test FORMAT CSV";

cat <<_EOF | clickhouse-client --database=test --query="INSERT INTO test FORMAT CSV";
3, 'some text', '2016-08-14 00:00:00'
4, 'some more text', '2016-08-14 00:00:01'
_EOF

cat file.csv | clickhouse-client --database=test --query="INSERT INTO test FORMAT CSV";

\G 	字符，或通过在命令⾏中使⽤	 --format 	or	 --vertical 	参数，或使⽤客户端的配置⽂件。

若要退出客户端，使⽤	Ctrl+D	（或	Ctrl+C），或者输⼊以下其中⼀个命令： exit ,	 quit ,	 logout ,	 учше ,	 йгше ,	 дщпщге ,	

exit; ,	 quit; ,	 logout; ,	 учшеж ,	 йгшеж ,	 дщпщгеж ,	 q ,	 й ,	 q ,	 Q ,	 :q ,	 й ,	 Й ,	 Жй

当执⾏⼀个查询的时候，客户端会显示：

1.	进度,	进度会每秒更新⼗次	（默认情况下）。	对于很快的查询，进度可能没有时间显示。

2.	为了调试会显示解析且格式化后的查询语句。

3.	指定格式的输出结果。

4.	输出结果的⾏数的⾏数，经过的时间，以及查询处理的速度。

您可以通过	Ctrl+C	来取消⼀个⻓时间的查询。然⽽，您依然需要等待服务端来中⽌请求。在某个阶段去取消查询是不可能

的。如果您不等待并再次按下	Ctrl	+	C，客户端将会退出。

命令⾏客户端允许通过外部数据	（外部临时表）	来查询。更多相关信息，请参考	"外部数据查询处理	[#external-data]".

[]

配置

您可以通过以下⽅式传⼊参数到	 clickhouse-client 	中	（所有的参数都有默认值）：

通过命令⾏

命令⾏参数会覆盖默认值和配置⽂件的配置。

配置⽂件

配置⽂件的配置会覆盖默认值

命令⾏参数

--host,	-h 	-–	服务端的	host	名称,	默认是	'localhost'。	您可以选择使⽤	host	名称或者	IPv4	或	IPv6	地址。

--port 	–	连接的端⼝，默认值：	9000。注意	HTTP	接⼝以及	TCP	原⽣接⼝是使⽤不同端⼝的。

--user,	-u 	–	⽤户名。	默认值：	default。

--password 	–	密码。	默认值：	空字符串。

--query,	-q 	–	⾮交互模式下的查询语句.

--database,	-d 	–	默认当前操作的数据库.	默认值：	服务端默认的配置	（默认是	 default）。

--multiline,	-m 	–	如果指定，允许多⾏语句查询（Enter	仅代表换⾏，不代表查询语句完结）。

--multiquery,	-n 	–	如果指定,	允许处理⽤逗号分隔的多个查询，只在⾮交互模式下⽣效。

--format,	-f 	–	使⽤指定的默认格式输出结果。

--vertical,	-E 	–	如果指定，默认情况下使⽤垂直格式输出结果。这与	'--format=Vertical'	相同。在这种格式中，每个

值都在单独的⾏上打印，这种⽅式对显示宽表很有帮助。

--time,	-t 	–	如果指定，⾮交互模式下会打印查询执⾏的时间到	'stderr'	中。

--stacktrace 	–	如果指定，如果出现异常，会打印堆栈跟踪信息。

-config-file 	–	配置⽂件的名称。

配置⽂件

clickhouse-client 	使⽤⼀下第⼀个存在的⽂件：

通过	 -config-file 	参数指定的⽂件.

./clickhouse-client.xml

\~/.clickhouse-client/config.xml

/etc/clickhouse-client/config.xml

配置⽂件示例:

原⽣客户端接⼝（TCP）

本机协议⽤于命令⾏客户端	[#cli]，⽤于分布式查询处理期间的服务器间通信，以及其他C	++程序。	不幸的是，本机

ClickHouse协议还没有正式的规范，但它可以从ClickHouse源代码进⾏逆向⼯程从这⾥开始

[https://github.com/yandex/ClickHouse/tree/master/dbms/src/Client]）和/或拦截和分析TCP流量。

HTTP	客户端

HTTP	接⼝可以让你通过任何平台和编程语⾔来使⽤	ClickHouse。我们⽤	Java	和	Perl	以及	shell	脚本来访问它。在其他的部⻔

中，HTTP	接⼝会⽤在	Perl，Python	以及	Go	中。HTTP	接⼝⽐	TCP	原⽣接⼝更为局限，但是却有更好的兼容性。

默认情况下，clickhouse-server	会在端⼝	8123	上监控	HTTP	请求（这可以在配置中修改）。	如果你发送了⼀个不带参数的

GET	请求，它会返回⼀个字符串	"Ok"（结尾有换⾏）。可以将它⽤在健康检查脚本中。

通过	URL	中的	 query 	参数来发送请求，或者发送	POST	请求，或者将查询的开头部分放在	URL	的	 query 	参数中，其他部分

放在	POST	中（我们会在后⾯解释为什么这样做是有必要的）。URL	的⼤⼩会限制在	16	KB，所以发送⼤型查询时要时刻记住

这点。

如果请求成功，将会收到	200	的响应状态码和响应主体中的结果。	如果发⽣了某个异常，将会收到	500	的响应状态码和响应

主体中的异常描述信息。

当使⽤	GET	⽅法请求时， readonly 	会被设置。换句话说，若要作修改数据的查询，只能发送	POST	⽅法的请求。可以将查询

通过	POST	主体发送，也可以通过	URL	参数发送。

Examples:

可以看到，curl	命令由于空格需要	URL	转义，所以不是很⽅便。尽管	wget	命令对url做了	URL	转义，但我们并不推荐使⽤

他，因为在	HTTP	1.1	协议下使⽤	keep-alive	和	Transfer-Encoding:	chunked	头部设置它并不能很好的⼯作。

<config>
 <user>username</user>
 <password>password</password>
</config>

$ curl 'http://localhost:8123/'
Ok.

$ curl 'http://localhost:8123/?query=SELECT%201'
1

$ wget -O- -q 'http://localhost:8123/?query=SELECT 1'
1

$ GET 'http://localhost:8123/?query=SELECT 1'
1

$ echo -ne 'GET /?query=SELECT%201 HTTP/1.0\r\n\r\n' | nc localhost 8123
HTTP/1.0 200 OK
Connection: Close
Date: Fri, 16 Nov 2012 19:21:50 GMT

1

https://github.com/yandex/ClickHouse/tree/master/dbms/src/Client

如果⼀部分请求是通过参数发送的，另外⼀部分通过	POST	主体发送，两部分查询之间会⼀⾏空⾏插⼊。	错误示例：

默认情况下，返回的数据是	TabSeparated	格式的，更多信息，⻅	"[数据格式]"	部分。	可以使⽤	FORMAT	设置查询来请求不

同格式。

INSERT	必须通过	POST	⽅法来插⼊数据。这种情况下，你可以将查询的开头部分放在	URL	参数中，然后⽤	POST	主体传⼊插

⼊的数据。插⼊的数据可以是，举个例⼦，从	MySQL	导出的以	tab	分割的数据。在这种⽅式中，INSERT	查询取代了	LOAD

DATA	LOCAL	INFILE	from	MySQL。

示例:	创建⼀个表:

使⽤类似	INSERT	的查询来插⼊数据：

数据可以从查询中单独发送：

可以指定任何数据格式。值的格式和写⼊表	 t 	的值的格式相同：

若要插⼊	tab	分割的数据，需要指定对应的格式：

从表中读取内容。由于查询处理是并⾏的，数据以随机顺序输出。

$ echo 'SELECT 1' | curl 'http://localhost:8123/' --data-binary @-
1

$ echo 'SELECT 1' | curl 'http://localhost:8123/?query=' --data-binary @-
1

$ echo '1' | curl 'http://localhost:8123/?query=SELECT' --data-binary @-
1

$ echo 'ECT 1' | curl 'http://localhost:8123/?query=SEL' --data-binary @-
Code: 59, e.displayText() = DB::Exception: Syntax error: failed at position 0: SEL
ECT 1
, expected One of: SHOW TABLES, SHOW DATABASES, SELECT, INSERT, CREATE, ATTACH, RENAME, DROP, DETACH, USE,
SET, OPTIMIZE., e.what() = DB::Exception

$ echo 'SELECT 1 FORMAT Pretty' | curl 'http://localhost:8123/?' --data-binary @-
┏━━━┓
┃ 1 ┃
┡━━━┩
│ 1 │
└───┘

echo 'CREATE TABLE t (a UInt8) ENGINE = Memory' | POST 'http://localhost:8123/'

echo 'INSERT INTO t VALUES (1),(2),(3)' | POST 'http://localhost:8123/'

echo '(4),(5),(6)' | POST 'http://localhost:8123/?query=INSERT INTO t VALUES'

echo '(7),(8),(9)' | POST 'http://localhost:8123/?query=INSERT INTO t FORMAT Values'

echo -ne '10\n11\n12\n' | POST 'http://localhost:8123/?query=INSERT INTO t FORMAT TabSeparated'

删除表。

成功请求后并不会返回数据，返回⼀个空的响应体。

可以通过压缩来传输数据。压缩的数据没有⼀个标准的格式，但你需要指定⼀个压缩程序来使⽤它(sudo	apt-get	install

compressor-metrika-yandex）。

如果在	URL	中指定了	 compress=1 	，服务会返回压缩的数据。	如果在	URL	中指定了	 decompress=1 	，服务会解压通过	POST

⽅法发送的数据。

可以通过为每份数据进⾏⽴即压缩来减少⼤规模数据传输中的⽹络压⼒。

可以指定	'database'	参数来指定默认的数据库。

默认情况下，默认数据库会在服务的配置中注册，默认是	 default。或者，也可以在表名之前使⽤⼀个点来指定数据库。

⽤户名密码可以通过以下两种⽅式指定：

1.	通过	HTTP	Basic	Authentication。示例：

1.	通过	URL	参数	中的	'user'	和	'password'。示例：

如果⽤户名没有指定，默认的⽤户是	 default。如果密码没有指定，默认会使⽤空密码。	可以使⽤	URL	参数指定配置或者设

置整个配置⽂件来处理单个查询。示例： http://localhost:8123/?

profile=web&max_rows_to_read=1000000000&query=SELECT+1

更多信息，参⻅	"设置	[#settings]"	部分。

$ GET 'http://localhost:8123/?query=SELECT a FROM t'
7
8
9
10
11
12
1
2
3
4
5
6

POST 'http://localhost:8123/?query=DROP TABLE t'

$ echo 'SELECT number FROM numbers LIMIT 10' | curl 'http://localhost:8123/?database=system' --data-binary @-
0
1
2
3
4
5
6
7
8
9

echo 'SELECT 1' | curl 'http://user:password@localhost:8123/' -d @-

echo 'SELECT 1' | curl 'http://localhost:8123/?user=user&password=password' -d @-

更多关于其他参数的信息，参⻅	"设置	[#settings]"	部分。

相⽐起	TCP	原⽣接⼝，HTTP	接⼝不⽀持会话和会话设置的概念，不允许中⽌查询（准确地说，只在少数情况下允许），不显

示查询处理的进展。执⾏解析和数据格式化都是在服务端处理，⽹络上会⽐	TCP	原⽣接⼝更低效。

可选的	 query_id 	参数可能当做	query	ID	传⼊（或者任何字符串）。更多信息，参⻅	"设置	replace_running_query

[#replace-running-query]"	部分。

可选的	 quota_key 	参数可能当做	quota	key	传⼊（或者任何字符串）。更多信息，参⻅	"配额	[#quotas]"	部分。

HTTP	接⼝允许传⼊额外的数据（外部临时表）来查询。更多信息，参⻅	"外部数据查询处理	[#external-data]"	部分。

响应缓冲

可以在服务器端启⽤响应缓冲。提供了	 buffer_size 	和	 wait_end_of_query 	两个URL	参数来达此⽬的。

buffer_size 	决定了查询结果要在服务内存中缓冲多少个字节数据.	如果响应体⽐这个阈值⼤，缓冲区会写⼊到	HTTP	管道，

剩下的数据也直接发到	HTTP	管道中。

为了确保整个响应体被缓冲，可以设置	 wait_end_of_query=1。这种情况下，存⼊内存的数据会被缓冲到服务端的⼀个临时

⽂件中。

示例:

查询请求响应状态码和	HTTP	头被发送到客户端后，若发⽣查询处理出错，使⽤缓冲区可以避免这种情况的发⽣。在这种情况

下，响应主体的结尾会写⼊⼀条错误消息，⽽在客户端，只能在解析阶段检测到该错误。

[]

输⼊输出格式

ClickHouse	可以接受多种数据格式，可以在	(INSERT)	以及	(SELECT)	请求中使⽤。

下列表格列出了⽀持的数据格式以及在	(INSERT)	以及	(SELECT)	请求中使⽤它们的⽅式。

$ echo 'SELECT number FROM system.numbers LIMIT 10' | curl 'http://localhost:8123/?' --data-binary @-
0
1
2
3
4
5
6
7
8
9

curl -sS 'http://localhost:8123/?max_result_bytes=4000000&buffer_size=3000000&wait_end_of_query=1' -d 'SELECT
toUInt8(number) FROM system.numbers LIMIT 9000000 FORMAT RowBinary'

格式 INSERT SELECT

TabSeparated	[#tabseparated] ✔ ✔

TabSeparatedRaw	[#tabseparatedraw] ✗ ✔

TabSeparatedWithNames	[#tabseparatedwithnames] ✔ ✔

TabSeparatedWithNamesAndTypes	[#tabseparatedwithnamesandtypes] ✔ ✔

CSV	[#csv] ✔ ✔

CSVWithNames	[#csvwithnames] ✔ ✔

Values	[#values] ✔ ✔

Vertical	[#vertical] ✗ ✔

VerticalRaw	[#verticalraw] ✗ ✔

JSON	[#json] ✗ ✔

JSONCompact	[#jsoncompact] ✗ ✔

JSONEachRow	[#jsoneachrow] ✔ ✔

TSKV	[#tskv] ✔ ✔

Pretty	[#pretty] ✗ ✔

PrettyCompact	[#prettycompact] ✗ ✔

PrettyCompactMonoBlock	[#prettycompactmonoblock] ✗ ✔

PrettyNoEscapes	[#prettynoescapes] ✗ ✔

PrettySpace	[#prettyspace] ✗ ✔

RowBinary	[#rowbinary] ✔ ✔

Native	[#native] ✔ ✔

Null	[#null] ✗ ✔

XML	[#xml] ✗ ✔

CapnProto	[#capnproto] ✔ ✔

[]

TabSeparated

在	TabSeparated	格式中，数据按⾏写⼊。每⾏包含由制表符分隔的值。除了⾏中的最后⼀个值（后⾯紧跟换⾏符）之外，每

个值都跟随⼀个制表符。	在任何地⽅都可以使⽤严格的	Unix	命令⾏。最后⼀⾏还必须在最后包含换⾏符。值以⽂本格式编

写，不包含引号，并且要转义特殊字符。

这种格式也可以⽤	 TSV 	来表示。

TabSeparated	格式⾮常⽅便⽤于⾃定义程序或脚本处理数据。HTTP	客户端接⼝默认会⽤这种格式，命令⾏客户端批量模式

下也会⽤这种格式。这种格式允许在不同数据库之间传输数据。例如，从	MYSQL	中导出数据然后导⼊到	ClickHouse	中，反

之亦然。

TabSeparated	格式⽀持输出数据总值（当使⽤	WITH	TOTALS）	以及极值（当	'extremes'	设置是1）。这种情况下，总值和

极值 输出在主数据的后⾯。主要的数据，总值，极值会以⼀个空⾏隔开，例如：

数据解析⽅式

整数以⼗进制形式写⼊。数字在开头可以包含额外的	 + 	字符（解析时忽略，格式化时不记录）。⾮负数不能包含负号。	读取

时，允许将空字符串解析为零，或者（对于带符号的类型）将仅包含负号的字符串解析为零。	不符合相应数据类型的数字可

能会被解析为不同的数字，⽽不会显示错误消息。

浮点数以⼗进制形式写⼊。点号⽤作⼩数点分隔符。⽀持指数等符号，如'inf'，'+	inf'，'-inf'和'nan'。	浮点数的输⼊可以以⼩

数点开始或结束。	格式化的时候，浮点数的精确度可能会丢失。	解析的时候，没有严格需要去读取与机器可以表示的最接近

的数值。

⽇期会以	YYYY-MM-DD	格式写⼊和解析，但会以任何字符作为分隔符。	带时间的⽇期会以	YYYY-MM-DD	hh:mm:ss	格式写

⼊和解析，但会以任何字符作为分隔符。	这⼀切都发⽣在客户端或服务器启动时的系统时区（取决于哪⼀种格式的数据）。

对于具有时间的⽇期，夏时制时间未指定。	因此，如果转储在夏令时中有时间，则转储不会明确地匹配数据，解析将选择两

者之⼀。	在读取操作期间，不正确的⽇期和具有时间的⽇期可以使⽤⾃然溢出或空⽇期和时间进⾏分析，⽽不会出现错误消

息。

有个例外情况，Unix	时间戳格式（10个⼗进制数字）也⽀持使⽤时间解析⽇期。结果不是时区相关的。格式	YYYY-MM-DD

hh:mm:ss和	NNNNNNNNNN	会⾃动区分。

字符串以反斜线转义的特殊字符输出。	以下转义序列⽤于输出： \b， \f， \r， \n， \t， \0， \'， \\。	解析还⽀

持 \a， \v和 \xHH（⼗六进制转义字符）和任何 \c字符，其中 c是任何字符（这些序列被转换为 c）。	因此，读取数据⽀

持可以将换⾏符写为 \n或 \的格式，或者换⾏。例如，字符串	 Hello	world 	在单词之间换⾏⽽不是空格可以解析为以下任

何形式：

第⼆种形式是⽀持的，因为	MySQL	读取	tab-separated	格式数据集的时候也会使⽤它。

在	TabSeparated	格式中传递数据时需要转义的最⼩字符集为：Tab，换⾏符（LF）和反斜杠。

只有⼀⼩组符号会被转义。你可以轻易地找到⼀个字符串值，但这不会正常在你的终端显示。

数组写在⽅括号内的逗号分隔值列表中。	通常情况下，数组中的数字项⽬会被拼凑，但⽇期，带时间的⽇期以及字符串将使

⽤与上⾯相同的转义规则⽤单引号引起来。

SELECT EventDate, count() AS c FROM test.hits GROUP BY EventDate WITH TOTALS ORDER BY EventDate FORMAT
TabSeparated``

2014-03-17 1406958
2014-03-18 1383658
2014-03-19 1405797
2014-03-20 1353623
2014-03-21 1245779
2014-03-22 1031592
2014-03-23 1046491

0000-00-00 8873898

2014-03-17 1031592
2014-03-23 1406958

Hello\nworld

Hello\
world

NULL	[#null-literal]	将输出为	 \N。

[]

TabSeparatedRaw

与	 TabSeparated 	格式不⼀样的是，⾏数据是不会被转义的。	该格式仅适⽤于输出查询结果，但不适⽤于解析输⼊（将数据

插⼊到表中）。

这种格式也可以使⽤名称	 TSVRaw 	来表示。	[]

TabSeparatedWithNames

与	 TabSeparated 	格式不⼀样的是，第⼀⾏会显示列的名称。	在解析过程中，第⼀⾏完全被忽略。您不能使⽤列名来确定其

位置或检查其正确性。	（未来可能会加⼊解析头⾏的功能）

这种格式也可以使⽤名称	 TSVWithNames 	来表示。	[]

TabSeparatedWithNamesAndTypes

与	 TabSeparated 	格式不⼀样的是，第⼀⾏会显示列的名称，第⼆⾏会显示列的类型。	在解析过程中，第⼀⾏和第⼆⾏完全

被忽略。

这种格式也可以使⽤名称	 TSVWithNamesAndTypes 	来表示。	[]

TSKV

与	 TabSeparated 	格式类似，但它输出的是	 name=value 	的格式。名称会和	 TabSeparated 	格式⼀样被转义， = 	字符也会被

转义。

NULL	[#null-literal]	输出为	 \N。

当有⼤量的⼩列时，这种格式是低效的，通常没有理由使⽤它。它被⽤于	Yandex	公司的⼀些部⻔。

数据的输出和解析都⽀持这种格式。对于解析，任何顺序都⽀持不同列的值。可以省略某些值，⽤	 - 	表示，	它们被视为等于

它们的默认值。在这种情况下，零和空⾏被⽤作默认值。作为默认值，不⽀持表中指定的复杂值。

对于不带等号或值，可以⽤附加字段	 tskv 	来表示，这种在解析上是被允许的。这样的话该字段被忽略。	[]

CSV

按逗号分隔的数据格式(RFC	[https://tools.ietf.org/html/rfc4180])。

SearchPhrase= count()=8267016
SearchPhrase=bathroom interior design count()=2166
SearchPhrase=yandex count()=1655
SearchPhrase=2014 spring fashion count()=1549
SearchPhrase=freeform photos count()=1480
SearchPhrase=angelina jolie count()=1245
SearchPhrase=omsk count()=1112
SearchPhrase=photos of dog breeds count()=1091
SearchPhrase=curtain designs count()=1064
SearchPhrase=baku count()=1000

SELECT * FROM t_null FORMAT TSKV

x=1 y=\N

https://tools.ietf.org/html/rfc4180

格式化的时候，⾏是⽤双引号括起来的。字符串中的双引号会以两个双引号输出，除此之外没有其他规则来做字符转义了。⽇

期和时间也会以双引号包括。数字的输出不带引号。值由⼀个单独的字符隔开，这个字符默认是	 ,。⾏使⽤	Unix	换⾏符

（LF）分隔。	数组序列化成	CSV	规则如下：⾸先将数组序列化为	TabSeparated	格式的字符串，然后将结果字符串⽤双引号

包括输出到	CSV。CSV	格式的元组被序列化为单独的列（即它们在元组中的嵌套关系会丢失）。

*默认情况下间隔符是	 , 	，在format_csv_delimiter	[#format_csv_delimiter]中可以了解更多间隔符配置。

解析的时候，可以使⽤或不使⽤引号来解析所有值。⽀持双引号和单引号。⾏也可以不⽤引号排列。	在这种情况下，它们被

解析为逗号或换⾏符（CR	或	LF）。在解析不带引号的⾏时，若违反	RFC	规则，会忽略前导和尾随的空格和制表符。	对于换

⾏，全部⽀持	Unix（LF），Windows（CR	LF）和	Mac	OS	Classic（CR	LF）。

NULL 	将输出为	 \N。

CSV	格式是和	TabSeparated	⼀样的⽅式输出总数和极值。

CSVWithNames

会输出带头部⾏，和	 TabSeparatedWithNames 	⼀样。	[]

JSON

以	JSON	格式输出数据。除了数据表之外，它还输出列名称和类型以及⼀些附加信息：输出⾏的总数以及在没有	LIMIT	时可以

输出的⾏数。	例：

clickhouse-client --format_csv_delimiter="|" --query="INSERT INTO test.csv FORMAT CSV" < data.csv

SELECT SearchPhrase, count() AS c FROM test.hits GROUP BY SearchPhrase WITH TOTALS ORDER BY c DESC LIMIT 5
FORMAT JSON

JSON	与	JavaScript	兼容。为了确保这⼀点，⼀些字符被另外转义：斜线 /被转义为 \/ ;	替代的换⾏符	 U+2028 	和	 U+2029 	会

打断⼀些浏览器解析，它们会被转义为	 \uXXXX。	ASCII	控制字符被转义：退格，换⻚，换⾏，回⻋和⽔平制表符被替换

为 \b， \f， \n， \r， \t 	作为使⽤ \uXXXX序列的00-1F范围内的剩余字节。	⽆效的	UTF-8	序列更改为替换字符	，因此输

出⽂本将包含有效的	UTF-8	序列。	为了与	JavaScript	兼容，默认情况下，Int64	和	UInt64	整数⽤双引号引起来。要除去引

号，可以将配置参数	output_format_json_quote_64bit_integers	设置为0。

rows 	–	结果输出的⾏数。

{
 "meta":
 [
 {
 "name": "SearchPhrase",
 "type": "String"
 },
 {
 "name": "c",
 "type": "UInt64"
 }
],

 "data":
 [
 {
 "SearchPhrase": "",
 "c": "8267016"
 },
 {
 "SearchPhrase": "bathroom interior design",
 "c": "2166"
 },
 {
 "SearchPhrase": "yandex",
 "c": "1655"
 },
 {
 "SearchPhrase": "spring 2014 fashion",
 "c": "1549"
 },
 {
 "SearchPhrase": "freeform photos",
 "c": "1480"
 }
],

 "totals":
 {
 "SearchPhrase": "",
 "c": "8873898"
 },

 "extremes":
 {
 "min":
 {
 "SearchPhrase": "",
 "c": "1480"
 },
 "max":
 {
 "SearchPhrase": "",
 "c": "8267016"
 }
 },

 "rows": 5,

 "rows_before_limit_at_least": 141137
}

rows_before_limit_at_least 	去掉	LIMIT	过滤后的最⼩⾏总数。	只会在查询包含	LIMIT	条件时输出。	若查询包含	GROUP

BY，rows_before_limit_at_least	就是去掉	LIMIT	后过滤后的准确⾏数。

totals 	–	总值	（当使⽤	TOTALS	条件时）。

extremes 	–	极值	（当	extremes	设置为	1时）。

该格式仅适⽤于输出查询结果，但不适⽤于解析输⼊（将数据插⼊到表中）。

ClickHouse	⽀持	NULL	[#null-literal],	在	JSON	格式中以	 null 	输出来表示.

参考	JSONEachRow	格式。

[]

JSONCompact

与	JSON	格式不同的是它以数组的⽅式输出结果，⽽不是以结构体。

示例：

这种格式仅仅适⽤于输出结果集，⽽不适⽤于解析（将数据插⼊到表中）。	参考	 JSONEachRow 	格式。	[]

JSONEachRow

将数据结果每⼀⾏以	JSON	结构体输出（换⾏分割	JSON	结构体）。

{
 "meta":
 [
 {
 "name": "SearchPhrase",
 "type": "String"
 },
 {
 "name": "c",
 "type": "UInt64"
 }
],

 "data":
 [
 ["", "8267016"],
 ["bathroom interior design", "2166"],
 ["yandex", "1655"],
 ["fashion trends spring 2014", "1549"],
 ["freeform photo", "1480"]
],

 "totals": ["","8873898"],

 "extremes":
 {
 "min": ["","1480"],
 "max": ["","8267016"]
 },

 "rows": 5,

 "rows_before_limit_at_least": 141137
}

与	JSON	格式不同的是，没有替换⽆效的UTF-8序列。任何⼀组字节都可以在⾏中输出。这是必要的，因为这样数据可以被格

式化⽽不会丢失任何信息。值的转义⽅式与JSON相同。

对于解析，任何顺序都⽀持不同列的值。可以省略某些值	-	它们被视为等于它们的默认值。在这种情况下，零和空⾏被⽤作默

认值。	作为默认值，不⽀持表中指定的复杂值。元素之间的空⽩字符被忽略。如果在对象之后放置逗号，它将被忽略。对象

不⼀定必须⽤新⾏分隔。	[]

Native

最⾼性能的格式。	据通过⼆进制格式的块进⾏写⼊和读取。对于每个块，该块中的⾏数，列数，列名称和类型以及列的部分

将被相继记录。	换句话说，这种格式是	“列式”的	-	它不会将列转换为⾏。	这是⽤于在服务器之间进⾏交互的本地界⾯中使⽤

的格式，⽤于使⽤命令⾏客户端和	C++	客户端。

您可以使⽤此格式快速⽣成只能由	ClickHouse	DBMS	读取的格式。但⾃⼰处理这种格式是没有意义的。	[]

Null

没有输出。但是，查询已处理完毕，并且在使⽤命令⾏客户端时，数据将传输到客户端。这仅⽤于测试，包括⽣产⼒测试。

显然，这种格式只适⽤于输出，不适⽤于解析。	[]

Pretty

将数据以表格形式输出，也可以使⽤	ANSI	转义字符在终端中设置颜⾊。	它会绘制⼀个完整的表格，每⾏数据在终端中占⽤两

⾏。	每⼀个结果块都会以单独的表格输出。这是很有必要的，以便结果块不⽤缓冲结果输出（缓冲在可以预⻅结果集宽度的

时候是很有必要的）。

NULL	[#null-literal]	输出为	 ᴺᵁᴸᴸ。

为避免将太多数据传输到终端，只打印前10,000⾏。	如果⾏数⼤于或等于10,000，则会显示消息“Showed	first	10	000”。	该

格式仅适⽤于输出查询结果，但不适⽤于解析输⼊（将数据插⼊到表中）。

Pretty格式⽀持输出总值（当使⽤	WITH	TOTALS	时）和极值（当	 extremes 	设置为1时）。	在这些情况下，总数值和极值在

主数据之后以单独的表格形式输出。	示例（以	PrettyCompact	格式显示）：

{"SearchPhrase":"","count()":"8267016"}
{"SearchPhrase": "bathroom interior design","count()": "2166"}
{"SearchPhrase":"yandex","count()":"1655"}
{"SearchPhrase":"2014 spring fashion","count()":"1549"}
{"SearchPhrase":"freeform photo","count()":"1480"}
{"SearchPhrase":"angelina jolie","count()":"1245"}
{"SearchPhrase":"omsk","count()":"1112"}
{"SearchPhrase":"photos of dog breeds","count()":"1091"}
{"SearchPhrase":"curtain designs","count()":"1064"}
{"SearchPhrase":"baku","count()":"1000"}

SELECT * FROM t_null

┌─x─┬────y─┐
│ 1 │ ᴺᵁᴸᴸ │
└───┴──────┘

SELECT EventDate, count() AS c FROM test.hits GROUP BY EventDate WITH TOTALS ORDER BY EventDate FORMAT
PrettyCompact

[]

PrettyCompact

与	 Pretty 	格式不⼀样的是， PrettyCompact 	去掉了⾏之间的表格分割线，这样使得结果更加紧凑。这种格式会在交互命令

⾏客户端下默认使⽤。	[]

PrettyCompactMonoBlock

与	 PrettyCompact 	格式不⼀样的是，它⽀持	10,000	⾏数据缓冲，然后输出在⼀个表格中，不会按照块来区分	[]

PrettyNoEscapes

与	 Pretty 	格式不⼀样的是，它不使⽤	ANSI	字符转义，	这在浏览器显示数据以及在使⽤	 watch 	命令⾏⼯具是有必要的。

示例：

您可以使⽤	HTTP	接⼝来获取数据，显示在浏览器中。

PrettyCompactNoEscapes

⽤法类似上述。

PrettySpaceNoEscapes

⽤法类似上述。	[]

PrettySpace

与	 PrettyCompact (#prettycompact)	格式不⼀样的是，它使⽤空格来代替⽹格来显示数据。	[]

RowBinary

以⼆进制格式逐⾏格式化和解析数据。⾏和值连续列出，没有分隔符。	这种格式⽐	Native	格式效率低，因为它是基于⾏的。

整数使⽤固定⻓度的⼩端表示法。	例如，UInt64	使⽤8个字节。	DateTime	被表示为	UInt32	类型的Unix	时间戳值。	Date	被表

示为	UInt16	对象，它的值为	1970-01-01以来的天数。	字符串表示为	varint	⻓度（⽆符号LEB128

┌──EventDate─┬───────c─┐
│ 2014-03-17 │ 1406958 │
│ 2014-03-18 │ 1383658 │
│ 2014-03-19 │ 1405797 │
│ 2014-03-20 │ 1353623 │
│ 2014-03-21 │ 1245779 │
│ 2014-03-22 │ 1031592 │
│ 2014-03-23 │ 1046491 │
└────────────┴─────────┘

Totals:
┌──EventDate─┬───────c─┐
│ 0000-00-00 │ 8873898 │
└────────────┴─────────┘

Extremes:
┌──EventDate─┬───────c─┐
│ 2014-03-17 │ 1031592 │
│ 2014-03-23 │ 1406958 │
└────────────┴─────────┘

watch -n1 "clickhouse-client --query='SELECT event, value FROM system.events FORMAT PrettyCompactNoEscapes'"

https://en.wikipedia.org/wiki/LEB128

[https://en.wikipedia.org/wiki/LEB128]），后跟字符串的字节数。	FixedString	被简单地表示为⼀个字节序列。

数组表示为	varint	⻓度（⽆符号LEB128	[https://en.wikipedia.org/wiki/LEB128]），后跟有序的数组元素。

对于	NULL	[#null-literal]	的⽀持，	⼀个为	1	或	0	的字节会加在每个	Nullable	[#data_type-nullable]	值前⾯。如果为	1,	那么该

值就是	 NULL。	如果为	0，则不为	 NULL。

Values

在括号中打印每⼀⾏。⾏由逗号分隔。最后⼀⾏之后没有逗号。括号内的值也⽤逗号分隔。数字以⼗进制格式输出，不含引

号。	数组以⽅括号输出。带有时间的字符串，⽇期和时间⽤引号包围输出。转义字符的解析规则与	TabSeparated

[#tabseparated]	格式类似。	在格式化过程中，不插⼊额外的空格，但在解析过程中，空格是被允许并跳过的（除了数组值之

外的空格，这是不允许的）。NULL	[#null-literal]	为	 NULL。

以	Values	格式传递数据时需要转义的最⼩字符集是：单引号和反斜线。

这是	 INSERT	INTO	t	VALUES	... 	中可以使⽤的格式，但您也可以将其⽤于查询结果。

[]

Vertical

使⽤指定的列名在单独的⾏上打印每个值。如果每⾏都包含⼤量列，则此格式便于打印⼀⾏或⼏⾏。

NULL	[#null-literal]	输出为	 ᴺᵁᴸᴸ。

示例:

该格式仅适⽤于输出查询结果，但不适⽤于解析输⼊（将数据插⼊到表中）。

[]

VerticalRaw

和	 Vertical 	格式不同点在于，⾏是不会被转义的。	这种格式仅仅适⽤于输出，但不适⽤于解析输⼊（将数据插⼊到表

中）。

示例:

和	Vertical	格式相⽐：

SELECT * FROM t_null FORMAT Vertical

Row 1:
──────
x: 1
y: ᴺᵁᴸᴸ

:) SHOW CREATE TABLE geonames FORMAT VerticalRaw;
Row 1:
──────
statement: CREATE TABLE default.geonames (geonameid UInt32, date Date DEFAULT CAST('2017-12-08' AS Date))
ENGINE = MergeTree(date, geonameid, 8192)

:) SELECT 'string with \'quotes\' and \t with some special \n characters' AS test FORMAT VerticalRaw;
Row 1:
──────
test: string with 'quotes' and with some special
 characters

https://en.wikipedia.org/wiki/LEB128

[]

XML

该格式仅适⽤于输出查询结果，但不适⽤于解析输⼊，示例：

:) SELECT 'string with \'quotes\' and \t with some special \n characters' AS test FORMAT Vertical;
Row 1:
──────
test: string with \'quotes\' and \t with some special \n characters

<?xml version='1.0' encoding='UTF-8' ?>
<result>
 <meta>
 <columns>
 <column>
 <name>SearchPhrase</name>
 <type>String</type>
 </column>
 <column>
 <name>count()</name>
 <type>UInt64</type>
 </column>
 </columns>
 </meta>
 <data>
 <row>
 <SearchPhrase></SearchPhrase>
 <field>8267016</field>
 </row>
 <row>
 <SearchPhrase>bathroom interior design</SearchPhrase>
 <field>2166</field>
 </row>
 <row>
 <SearchPhrase>yandex</SearchPhrase>
 <field>1655</field>
 </row>
 <row>
 <SearchPhrase>2014 spring fashion</SearchPhrase>
 <field>1549</field>
 </row>
 <row>
 <SearchPhrase>freeform photos</SearchPhrase>
 <field>1480</field>
 </row>
 <row>
 <SearchPhrase>angelina jolie</SearchPhrase>
 <field>1245</field>
 </row>
 <row>
 <SearchPhrase>omsk</SearchPhrase>
 <field>1112</field>
 </row>
 <row>
 <SearchPhrase>photos of dog breeds</SearchPhrase>
 <field>1091</field>
 </row>
 <row>
 <SearchPhrase>curtain designs</SearchPhrase>
 <field>1064</field>
 </row>
 <row>
 <SearchPhrase>baku</SearchPhrase>
 <field>1000</field>
 </row>
 </data>
 <rows>10</rows>
 <rows_before_limit_at_least>141137</rows_before_limit_at_least>
</result>

如果列名称没有可接受的格式，则仅使⽤	 field 	作为元素名称。	通常，XML	结构遵循	JSON	结构。	就像JSON⼀样，将⽆效

的	UTF-8	字符都作替换，以便输出⽂本将包含有效的	UTF-8	字符序列。

在字符串值中，字符	 < 	和	＆ 	被转义为	 < 	和	＆。

数组输出为	 <array>	<elem>	Hello	</	elem>	<elem>	World	</	elem>	...	</	array>，元组输出为	 <tuple>	<elem>	

Hello	</	elem>	<elem>	World	</	ELEM>	...	</tuple> 	。

[]

CapnProto

Cap'n	Proto	是⼀种⼆进制消息格式，类似	Protocol	Buffers	和	Thriftis，但与	JSON	或	MessagePack	格式不⼀样。

Cap'n	Proto	消息格式是严格类型的，⽽不是⾃我描述，这意味着它们不需要外部的描述。这种格式可以实时地应⽤，并针对

每个查询进⾏缓存。

其中	 schema.capnp 	描述如下：

格式⽂件存储的⽬录可以在服务配置中的	format_schema_path	[#server_settings-format_schema_path]	指定。

Cap'n	Proto	反序列化是很⾼效的，通常不会增加系统的负载。

JDBC	驱动

ClickHouse官⽅有	JDBC	的驱动。	⻅这⾥	[https://github.com/yandex/clickhouse-jdbc]。

三⽅提供的	JDBC	驱动	ClickHouse-Native-JDBC	[https://github.com/housepower/ClickHouse-Native-JDBC].

ODBC	驱动

ClickHouse官⽅有	JDBC	的驱动。	⻅这⾥	[https://github.com/yandex/clickhouse-jdbc]。

第三⽅开发的库

Python

infi.clickhouse_orm	[https://github.com/Infinidat/infi.clickhouse_orm]

clickhouse-driver	[https://github.com/mymarilyn/clickhouse-driver]

clickhouse-client	[https://github.com/yurial/clickhouse-client]

PHP

phpClickHouse	[https://github.com/smi2/phpClickHouse]

SELECT SearchPhrase, count() AS c FROM test.hits
 GROUP BY SearchPhrase FORMAT CapnProto SETTINGS schema = 'schema:Message'

struct Message {
 SearchPhrase @0 :Text;
 c @1 :Uint64;
}

放弃

Yandex不维护下⾯列出的库，也没有进⾏任何⼴泛的测试以确保其质量。

https://github.com/yandex/clickhouse-jdbc
https://github.com/housepower/ClickHouse-Native-JDBC
https://github.com/yandex/clickhouse-jdbc
https://github.com/Infinidat/infi.clickhouse_orm
https://github.com/mymarilyn/clickhouse-driver
https://github.com/yurial/clickhouse-client
https://github.com/smi2/phpClickHouse

clickhouse-php-client	[https://github.com/8bitov/clickhouse-php-client]

clickhouse-client	[https://github.com/bozerkins/clickhouse-client]

PhpClickHouseClient	[https://github.com/SevaCode/PhpClickHouseClient]

Go

clickhouse	[https://github.com/kshvakov/clickhouse/]

go-clickhouse	[https://github.com/roistat/go-clickhouse]

mailrugo-clickhouse	[https://github.com/mailru/go-clickhouse]

golang-clickhouse	[https://github.com/leprosus/golang-clickhouse]

NodeJs

clickhouse	(NodeJs)	[https://github.com/TimonKK/clickhouse]

node-clickhouse	[https://github.com/apla/node-clickhouse]

Perl

perl-DBD-ClickHouse	[https://github.com/elcamlost/perl-DBD-ClickHouse]

HTTP-ClickHouse	[https://metacpan.org/release/HTTP-ClickHouse]

AnyEvent-ClickHouse	[https://metacpan.org/release/AnyEvent-ClickHouse]

Ruby

clickhouse	(Ruby)	[https://github.com/archan937/clickhouse]

R

clickhouse-r	[https://github.com/hannesmuehleisen/clickhouse-r]

RClickhouse	[https://github.com/IMSMWU/RClickhouse]

Java

clickhouse-client-java	[https://github.com/VirtusAI/clickhouse-client-java]

Scala

clickhouse-scala-client	[https://github.com/crobox/clickhouse-scala-client]

Kotlin

AORM	[https://github.com/TanVD/AORM]

C#

ClickHouse.Ado	[https://github.com/killwort/ClickHouse-Net]

ClickHouse.Net	[https://github.com/ilyabreev/ClickHouse.Net]

C++

clickhouse-cpp	[https://github.com/artpaul/clickhouse-cpp/]

Elixir

clickhousex	[https://github.com/appodeal/clickhousex/]

Nim

nim-clickhouse	[https://github.com/leonardoce/nim-clickhouse]

第三⽅集成库

放弃

Yandex不维护下⾯列出的库，也没有进⾏任何⼴泛的测试以确保其质量。

https://github.com/8bitov/clickhouse-php-client
https://github.com/bozerkins/clickhouse-client
https://github.com/SevaCode/PhpClickHouseClient
https://github.com/kshvakov/clickhouse/
https://github.com/roistat/go-clickhouse
https://github.com/mailru/go-clickhouse
https://github.com/leprosus/golang-clickhouse
https://github.com/TimonKK/clickhouse
https://github.com/apla/node-clickhouse
https://github.com/elcamlost/perl-DBD-ClickHouse
https://metacpan.org/release/HTTP-ClickHouse
https://metacpan.org/release/AnyEvent-ClickHouse
https://github.com/archan937/clickhouse
https://github.com/hannesmuehleisen/clickhouse-r
https://github.com/IMSMWU/RClickhouse
https://github.com/VirtusAI/clickhouse-client-java
https://github.com/crobox/clickhouse-scala-client
https://github.com/TanVD/AORM
https://github.com/killwort/ClickHouse-Net
https://github.com/ilyabreev/ClickHouse.Net
https://github.com/artpaul/clickhouse-cpp/
https://github.com/appodeal/clickhousex/
https://github.com/leonardoce/nim-clickhouse

Python

SQLAlchemy	[https://www.sqlalchemy.org]

sqlalchemy-clickhouse	[https://github.com/cloudflare/sqlalchemy-clickhouse]	(uses	infi.clickhouse_orm

[https://github.com/Infinidat/infi.clickhouse_orm])

Java

Hadoop	[http://hadoop.apache.org]

clickhouse-hdfs-loader	[https://github.com/jaykelin/clickhouse-hdfs-loader]	(uses	JDBC	[#jdbc])

Scala

Akka	[https://akka.io]

clickhouse-scala-client	[https://github.com/crobox/clickhouse-scala-client]

C#

ADO.NET	[https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ado-net-overview]

ClickHouse.Ado	[https://github.com/killwort/ClickHouse-Net]

ClickHouse.Net	[https://github.com/ilyabreev/ClickHouse.Net]

ClickHouse.Net.Migrations	[https://github.com/ilyabreev/ClickHouse.Net.Migrations]

Elixir

Ecto	[https://github.com/elixir-ecto/ecto]

clickhouse_ecto	[https://github.com/appodeal/clickhouse_ecto]

第三⽅开发的可视化界⾯

Tabix

ClickHouse	Web	界⾯	Tabix	[https://github.com/tabixio/tabix].

主要功能：

浏览器直接连接	ClickHouse，不需要安装其他软件。

⾼亮语法的编辑器。

⾃动命令补全。

查询命令执⾏的图形分析⼯具。

配⾊⽅案选项。

Tabix	⽂档	[https://tabix.io/doc/].

HouseOps

HouseOps	[https://github.com/HouseOps/HouseOps]	是⼀个交互式	UI/IDE	⼯具，可以运⾏在	OSX,	Linux	and	Windows	平

台中。

主要功能：

查询⾼亮语法提示，可以以表格或	JSON	格式查看数据。

⽀持导出	CSV	或	JSON	格式数据。

⽀持查看查询执⾏的详情，⽀持	KILL	查询。

图形化显示，⽀持显示数据库中所有的表和列的详细信息。

快速查看列占⽤的空间。

https://www.sqlalchemy.org
https://github.com/cloudflare/sqlalchemy-clickhouse
https://github.com/Infinidat/infi.clickhouse_orm
http://hadoop.apache.org
https://github.com/jaykelin/clickhouse-hdfs-loader
https://akka.io
https://github.com/crobox/clickhouse-scala-client
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ado-net-overview
https://github.com/killwort/ClickHouse-Net
https://github.com/ilyabreev/ClickHouse.Net
https://github.com/ilyabreev/ClickHouse.Net.Migrations
https://github.com/elixir-ecto/ecto
https://github.com/appodeal/clickhouse_ecto
https://github.com/tabixio/tabix
https://tabix.io/doc/
https://github.com/HouseOps/HouseOps

服务配置。

以下功能正在计划开发：	-	数据库管理	-	⽤户管理	-	实时数据分析	-	集群监控	-	集群管理	-	监控副本情况以及	Kafka	引擎表

[]

数据类型

ClickHouse	可以在数据表中存储多种数据类型。

本节描述	ClickHouse	⽀持的数据类型，以及使⽤或者实现它们时（如果有的话）的注意事项。

[]

UInt8,	UInt16,	UInt32,	UInt64,	Int8,	Int16,	Int32,	Int64

固定⻓度的整型，包括有符号整型或⽆符号整型。

整型范围

Int8	-	[-128	:	127]

Int16	-	[-32768	:	32767]

Int32	-	[-2147483648	:	2147483647]

Int64	-	[-9223372036854775808	:	9223372036854775807]

⽆符号整型范围

UInt8	-	[0	:	255]

UInt16	-	[0	:	65535]

UInt32	-	[0	:	4294967295]

UInt64	-	[0	:	18446744073709551615]

Float32,	Float64

浮点数	[https://en.wikipedia.org/wiki/IEEE_754]。

类型与以下	C	语⾔中类型是相同的：

Float32 	-	 float

Float64 	-	 double

我们建议您尽可能以整数形式存储数据。例如，将固定精度的数字转换为整数值，例如货币数量或⻚⾯加载时间⽤毫秒为单位

表示

使⽤浮点数

对浮点数进⾏计算可能引起四舍五⼊的误差。

SELECT 1 - 0.9

https://en.wikipedia.org/wiki/IEEE_754

计算的结果取决于计算⽅法（计算机系统的处理器类型和体系结构）

浮点计算结果可能是诸如⽆穷⼤（ INF）和"⾮数字"（ NaN）。对浮点数计算的时候应该考虑到这点。

当⼀⾏⾏阅读浮点数的时候，浮点数的结果可能不是机器最近显示的数值。

NaN	and	Inf

与标准SQL相⽐，ClickHouse	⽀持以下类别的浮点数：

Inf 	–	正⽆穷

-Inf 	–	负⽆穷

NaN 	–	⾮数字

可以在ORDER	BY	⼦句	[#query_language-queries-order_by]	查看更多关于	 NaN 	排序的规则。

[]

Decimal(P,	S),	Decimal32(S),	Decimal64(S),	Decimal128(S)

有符号的定点数，可在加、减和乘法运算过程中保持精度。对于除法，最低有效数字会被丢弃（不舍⼊）。

参数

P	-	精度。有效范围：[1:38]，决定可以有多少个⼗进制数字（包括分数）。

S	-	规模。有效范围：[0：P]，决定数字的⼩数部分中包含的⼩数位数。

对于不同的	P	参数值	Decimal	表示，以下例⼦都是同义的：	-	P	from	[1	:	9]	-	for	Decimal32(S)	-	P	from	[10	:	18]	-	for

Decimal64(S)	-	P	from	[19	:	38]	-	for	Decimal128(S)

⼗进制值范围

┌───────minus(1, 0.9)─┐
│ 0.09999999999999998 │
└─────────────────────┘

SELECT 0.5 / 0

┌─divide(0.5, 0)─┐
│ inf │
└────────────────┘

SELECT -0.5 / 0

┌─divide(-0.5, 0)─┐
│ -inf │
└─────────────────┘

SELECT 0 / 0

┌─divide(0, 0)─┐
│ nan │
└──────────────┘

Decimal32(S)	-	(-1	*	10^(9	-	S),	1	*	10^(9	-	S))

Decimal64(S)	-	(-1	*	10^(18	-	S),	1	*	10^(18	-	S))

Decimal128(S)	-	(-1	*	10^(38	-	S),	1	*	10^(38	-	S))

例如，Decimal32(4)	可以表示	-99999.9999	⾄	99999.9999	的数值，步⻓为0.0001。

内部表示⽅式

数据采⽤与⾃身位宽相同的有符号整数存储。这个数在内存中实际范围会⾼于上述范围，从	String	转换到⼗进制数的时候会

做对应的检查。

由于现代CPU不⽀持128位数字，因此	Decimal128	上的操作由软件模拟。所以	Decimal128	的运算速度明显慢于

Decimal32/Decimal64。

运算和结果类型

对Decimal的⼆进制运算导致更宽的结果类型（⽆论参数的顺序如何）。

Decimal64(S1)	Decimal32(S2)	->	Decimal64(S)

Decimal128(S1)	Decimal32(S2)	->	Decimal128(S)

Decimal128(S1)	Decimal64(S2)	->	Decimal128(S)

精度变化的规则：

加法，减法：S	=	max(S1,	S2)。

乘法：S	=	S1	+	S2。

除法：S	=	S1。

对于	Decimal	和整数之间的类似操作，结果是与参数⼤⼩相同的⼗进制。

未定义Decimal和Float32/Float64之间的函数。要执⾏此类操作，您可以使⽤：toDecimal32、toDecimal64、toDecimal128

或	toFloat32，toFloat64，需要显式地转换其中⼀个参数。注意，结果将失去精度，类型转换是昂贵的操作。

Decimal上的⼀些函数返回结果为Float64（例如，var或stddev）。对于其中⼀些，中间计算发⽣在Decimal中。对于此类函

数，尽管结果类型相同，但Float64和Decimal中相同数据的结果可能不同。

溢出检查

在对	Decimal	类型执⾏操作时，数值可能会发⽣溢出。分数中的过多数字被丢弃（不是舍⼊的）。整数中的过多数字将导致异

常。

SELECT toDecimal32(2, 4) AS x, x / 3

┌──────x─┬─divide(toDecimal32(2, 4), 3)─┐
│ 2.0000 │ 0.6666 │
└────────┴──────────────────────────────┘

SELECT toDecimal32(4.2, 8) AS x, x * x

DB::Exception: Scale is out of bounds.

SELECT toDecimal32(4.2, 8) AS x, 6 * x

检查溢出会导致计算变慢。如果已知溢出不可能，则可以通过设置 decimal_check_overflow来禁⽤溢出检查，在这种情况

下，溢出将导致结果不正确：

溢出检查不仅发⽣在算术运算上，还发⽣在⽐较运算上：

Boolean	Values

没有单独的类型来存储布尔值。可以使⽤	UInt8	类型，取值限制为	0	或	1。

[]

String

字符串可以任意⻓度的。它可以包含任意的字节集，包含空字节。因此，字符串类型可以代替其他	DBMSs	中的	VARCHAR、

BLOB、CLOB	等类型。

编码

ClickHouse	没有编码的概念。字符串可以是任意的字节集，按它们原本的⽅式进⾏存储和输出。	若需存储⽂本，我们建议使

⽤	UTF-8	编码。⾄少，如果你的终端使⽤UTF-8（推荐），这样读写就不需要进⾏任何的转换了。	同样，对不同的编码⽂本

ClickHouse	会有不同处理字符串的函数。	⽐如， length 	函数可以计算字符串包含的字节数组的⻓度，然⽽	 lengthUTF8 	函

数是假设字符串以	UTF-8	编码，计算的是字符串包含的	Unicode	字符的⻓度。

FixedString(N)

固定⻓度	N	的字符串。N	必须是严格的正⾃然数。	当服务端读取⻓度⼩于	N	的字符串时候（例如解析	INSERT	数据时），通

过在字符串末尾添加空字节来达到	N	字节⻓度。	当服务端读取⻓度⼤于	N	的字符串时候，将返回错误消息。	当服务器写⼊⼀

个字符串（例如，当输出	SELECT	查询的结果）时，NULL字节不会从字符串的末尾被移除，⽽是被输出。	注意这种⽅式与

MYSQL	的	CHAR	类型是不⼀样的（MYSQL	的字符串会以空格填充，然后输出的时候空格会被修剪）。

与	 String 	类型相⽐，极少的函数会使⽤	 FixedString(N)，因此使⽤起来不太⽅便。

Date

⽇期类型，⽤两个字节存储，表示从	1970-01-01	(⽆符号)	到当前的⽇期值。允许存储从	Unix	纪元开始到编译阶段定义的上限

阈值常量（⽬前上限是2106年，但最终完全⽀持的年份为2105）。最⼩值输出为0000-00-00。

⽇期中没有存储时区信息。

DB::Exception: Decimal math overflow.

SET decimal_check_overflow = 0;
SELECT toDecimal32(4.2, 8) AS x, 6 * x

┌──────────x─┬─multiply(6, toDecimal32(4.2, 8))─┐
│ 4.20000000 │ -17.74967296 │
└────────────┴──────────────────────────────────┘

SELECT toDecimal32(1, 8) < 100

DB::Exception: Can't compare.

[]

DateTime

时间戳类型。⽤四个字节（⽆符号的）存储	Unix	时间戳）。允许存储与⽇期类型相同的范围内的值。最⼩值为	0000-00-00

00:00:00。时间戳类型值精确到秒（没有闰秒）。

时区

使⽤启动客户端或服务器时的系统时区，时间戳是从⽂本（分解为组件）转换为⼆进制并返回。在⽂本格式中，有关夏令时的

信息会丢失。

默认情况下，客户端连接到服务的时候会使⽤服务端时区。您可以通过启⽤客户端命令⾏选项	 --use_client_time_zone 	来

设置使⽤客户端时间。

因此，在处理⽂本⽇期时（例如，在保存⽂本转储时），请记住在夏令时更改期间可能存在歧义，如果时区发⽣更改，则可能

存在匹配数据的问题。

[]

Enum8,	Enum16

包括	 Enum8 	和	 Enum16 	类型。 Enum 	保存	 'string'=	integer 	的对应关系。在	ClickHouse	中，尽管⽤户使⽤的是字符串常

量，但所有含有	 Enum 	数据类型的操作都是按照包含整数的值来执⾏。这在性能⽅⾯⽐使⽤	 String 	数据类型更有效。

Enum8 	⽤	 'String'=	Int8 	对描述。

Enum16 	⽤	 'String'=	Int16 	对描述。

⽤法示例

创建⼀个带有⼀个枚举	 Enum8('hello'	=	1,	'world'	=	2) 	类型的列：

这个	 x 	列只能存储类型定义中列出的值： 'hello'或 'world'。如果您尝试保存任何其他值，ClickHouse	抛出异常。

当您从表中查询数据时，ClickHouse	从	 Enum 	中输出字符串值。

CREATE TABLE t_enum
(
 x Enum8('hello' = 1, 'world' = 2)
)
ENGINE = TinyLog

:) INSERT INTO t_enum VALUES ('hello'), ('world'), ('hello')

INSERT INTO t_enum VALUES

Ok.

3 rows in set. Elapsed: 0.002 sec.

:) insert into t_enum values('a')

INSERT INTO t_enum VALUES

Exception on client:
Code: 49. DB::Exception: Unknown element 'a' for type Enum8('hello' = 1, 'world' = 2)

如果需要看到对应⾏的数值，则必须将	 Enum 	值转换为整数类型。

在查询中创建枚举值，您还需要使⽤	 CAST。

规则及⽤法

Enum8 	类型的每个值范围是	 -128	...	127， Enum16 	类型的每个值范围是	 -32768	...	32767。所有的字符串或者数字都

必须是不⼀样的。允许存在空字符串。如果某个	Enum	类型被指定了（在表定义的时候），数字可以是任意顺序。然⽽，顺序

并不重要。

Enum 	中的字符串和数值都不能是	NULL	[#null-literal]。

Enum 	包含在	Nullable	[#data_type-nullable]	类型中。因此，如果您使⽤此查询创建⼀个表

不仅可以存储	 'hello' 	和	 'world' 	，还可以存储	 NULL。

在内存中， Enum 	列的存储⽅式与相应数值的	 Int8 	或	 Int16 	相同。

当以⽂本⽅式读取的时候，ClickHouse	将值解析成字符串然后去枚举值的集合中搜索对应字符串。如果没有找到，会抛出异

常。当读取⽂本格式的时候，会根据读取到的字符串去找对应的数值。如果没有找到，会抛出异常。

当以⽂本形式写⼊时，ClickHouse	将值解析成字符串写⼊。如果列数据包含垃圾数据（不是来⾃有效集合的数字），则抛出

异常。Enum	类型以⼆进制读取和写⼊的⽅式与	 Int8 	和	 Int16 	类型⼀样的。

隐式默认值是数值最⼩的值。

在	 ORDER	BY， GROUP	BY， IN， DISTINCT 	等等中，Enum	的⾏为与相应的数字相同。例如，按数字排序。对于等式运算符

和⽐较运算符，Enum	的⼯作机制与它们在底层数值上的⼯作机制相同。

枚举值不能与数字进⾏⽐较。枚举可以与常量字符串进⾏⽐较。如果与之⽐较的字符串不是有效Enum值，则将引发异常。可

以使⽤	IN	运算符来判断⼀个	Enum	是否存在于某个	Enum	集合中，其中集合中的	Enum	需要⽤字符串表示。

SELECT * FROM t_enum

┌─x─────┐
│ hello │
│ world │
│ hello │
└───────┘

SELECT CAST(x, 'Int8') FROM t_enum

┌─CAST(x, 'Int8')─┐
│ 1 │
│ 2 │
│ 1 │
└─────────────────┘

SELECT toTypeName(CAST('a', 'Enum8(\'a\' = 1, \'b\' = 2)'))

┌─toTypeName(CAST('a', 'Enum8(\'a\' = 1, \'b\' = 2)'))─┐
│ Enum8('a' = 1, 'b' = 2) │
└──┘

CREATE TABLE t_enum_nullable
(
 x Nullable(Enum8('hello' = 1, 'world' = 2))
)
ENGINE = TinyLog

INSERT INTO t_enum_null Values('hello'),('world'),(NULL)

⼤多数具有数字和字符串的运算并不适⽤于Enums；例如，Enum	类型不能和⼀个数值相加。但是，Enum有⼀个原⽣的	

toString 	函数，它返回它的字符串值。

Enum	值使⽤	 toT 	函数可以转换成数值类型，其中	T	是⼀个数值类型。若	 T 	恰好对应	Enum	的底层数值类型，这个转换是零

消耗的。

Enum	类型可以被	 ALTER 	⽆成本地修改对应集合的值。可以通过	 ALTER 	操作来增加或删除	Enum	的成员（只要表没有⽤到该

值，删除都是安全的）。作为安全保障，改变之前使⽤过的	Enum	成员将抛出异常。

通过	 ALTER 	操作，可以将	 Enum8 	转成	 Enum16，反之亦然，就像	 Int8 	转	 Int16⼀样。

[]

Array(T)

由	 T 	类型元素组成的数组。

T 	可以是任意类型，包含数组类型。	但不推荐使⽤多维数组，ClickHouse	对多维数组的⽀持有限。例如，不能存储在	

MergeTree 	表中存储多维数组。

创建数组

您可以使⽤array函数来创建数组：

您也可以使⽤⽅括号：

创建数组示例：

使⽤数据类型

ClickHouse会⾃动检测数组元素,并根据元素计算出存储这些元素最⼩的数据类型。如果在元素中存在NULL	[#null-literal]或存

在Nullable	[#data_type-nullable]类型元素，那么数组的元素类型将会变成Nullable	[#data_type-nullable]。

array(T)

[]

:) SELECT array(1, 2) AS x, toTypeName(x)

SELECT
 [1, 2] AS x,
 toTypeName(x)

┌─x─────┬─toTypeName(array(1, 2))─┐
│ [1,2] │ Array(UInt8) │
└───────┴─────────────────────────┘

1 rows in set. Elapsed: 0.002 sec.

:) SELECT [1, 2] AS x, toTypeName(x)

SELECT
 [1, 2] AS x,
 toTypeName(x)

┌─x─────┬─toTypeName([1, 2])─┐
│ [1,2] │ Array(UInt8) │
└───────┴────────────────────┘

1 rows in set. Elapsed: 0.002 sec.

如果	ClickHouse	⽆法确定数据类型，它将产⽣异常。当尝试同时创建⼀个包含字符串和数字的数组时会发⽣这种情况

(SELECT	array(1,	'a'))。

⾃动数据类型检测示例：

如果您尝试创建不兼容的数据类型数组，ClickHouse	将引发异常：

AggregateFunction(name,	types_of_arguments...)

表示聚合函数中的中间状态。可以在聚合函数中通过	'-State'	后缀来访问它。更多信息，参考	"AggregatingMergeTree"。

[]

Tuple(T1,	T2,	...)

元组，其中每个元素都有单独的	类型	[#data_types]。

不能在表中存储元组（除了内存表）。它们可以⽤于临时列分组。在查询中，IN	表达式和带特定参数的	lambda	函数可以来对

临时列进⾏分组。更多信息，请参阅	IN	操作符	[#in_operators]	and	Higher	order	functions	[#higher_order_functions]。

元组可以是查询的结果。在这种情况下，对于JSON以外的⽂本格式，括号中的值是逗号分隔的。在JSON格式中，元组作为数

组输出（在⽅括号中）。

创建元组

可以使⽤函数来创建元组：

创建元组的示例：

:) SELECT array(1, 2, NULL) AS x, toTypeName(x)

SELECT
 [1, 2, NULL] AS x,
 toTypeName(x)

┌─x──────────┬─toTypeName(array(1, 2, NULL))─┐
│ [1,2,NULL] │ Array(Nullable(UInt8)) │
└────────────┴───────────────────────────────┘

1 rows in set. Elapsed: 0.002 sec.

:) SELECT array(1, 'a')

SELECT [1, 'a']

Received exception from server (version 1.1.54388):
Code: 386. DB::Exception: Received from localhost:9000, 127.0.0.1. DB::Exception: There is no supertype for
types UInt8, String because some of them are String/FixedString and some of them are not.

0 rows in set. Elapsed: 0.246 sec.

tuple(T1, T2, ...)

元组中的数据类型

在动态创建元组时，ClickHouse	会⾃动为元组的每⼀个参数赋予最⼩可表达的类型。如果参数为	NULL	[#null-literal]，那这个

元组对应元素是	Nullable	[#data_type-nullable]。

⾃动数据类型检测示例：

[]

Nullable(TypeName)

允许⽤特殊标记	(NULL	[#null-literal])	表示"缺失值"，可以与	 TypeName 	的正常值存放⼀起。例如， Nullable(Int8) 	类型的

列可以存储	 Int8 	类型值，⽽没有值的⾏将存储	 NULL。

对于	 TypeName，不能使⽤复合数据类型	Array	[#data_type	is	array]	和	Tuple	[#data_type-tuple]。复合数据类型可以包含	

Nullable 	类型值，例如 Array(Nullable(Int8))。

Nullable 	类型字段不能包含在表索引中。

除⾮在	ClickHouse	服务器配置中另有说明，否则	 NULL 	是任何	 Nullable 	类型的默认值。

存储特性

要在表的列中存储	 Nullable 	类型值，ClickHouse	除了使⽤带有值的普通⽂件外，还使⽤带有	 NULL 	掩码的单独⽂件。	掩码

⽂件中的条⽬允许	ClickHouse	区分每个表⾏的	 NULL 	和相应数据类型的默认值。	由于附加了新⽂件， Nullable 	列与类似的

普通⽂件相⽐消耗额外的存储空间。

!!!	注意点	使⽤	 Nullable 	⼏乎总是对性能产⽣负⾯影响，在设计数据库时请记住这⼀点

掩码⽂件中的条⽬允许ClickHouse区分每个表⾏的对应数据类型的"NULL"和默认值由于有额外的⽂件，"Nullable"列⽐普通列

消耗更多的存储空间

⽤法示例

:) SELECT tuple(1,'a') AS x, toTypeName(x)

SELECT
 (1, 'a') AS x,
 toTypeName(x)

┌─x───────┬─toTypeName(tuple(1, 'a'))─┐
│ (1,'a') │ Tuple(UInt8, String) │
└─────────┴───────────────────────────┘

1 rows in set. Elapsed: 0.021 sec.

SELECT tuple(1, NULL) AS x, toTypeName(x)

SELECT
 (1, NULL) AS x,
 toTypeName(x)

┌─x────────┬─toTypeName(tuple(1, NULL))──────┐
│ (1,NULL) │ Tuple(UInt8, Nullable(Nothing)) │
└──────────┴─────────────────────────────────┘

1 rows in set. Elapsed: 0.002 sec.

嵌套数据结构

Nested(Name1	Type1,	Name2	Type2,	...)

嵌套数据结构类似于嵌套表。嵌套数据结构的参数（列名和类型）与	CREATE	查询类似。每个表可以包含任意多⾏嵌套数据结

构。

示例:

上述示例声明了	 Goals 	这种嵌套数据结构，它包含访客转化相关的数据（访客达到的⽬标）。在	'visits'	表中每⼀⾏都可以对

应零个或者任意个转化数据。

:) CREATE TABLE t_null(x Int8, y Nullable(Int8)) ENGINE TinyLog

CREATE TABLE t_null
(
 x Int8,
 y Nullable(Int8)
)
ENGINE = TinyLog

Ok.

0 rows in set. Elapsed: 0.012 sec.

:) INSERT INTO t_null VALUES (1, NULL)

INSERT INTO t_null VALUES

Ok.

1 rows in set. Elapsed: 0.007 sec.

:) SELECT x + y FROM t_null

SELECT x + y
FROM t_null

┌─plus(x, y)─┐
│ ᴺᵁᴸᴸ │
│ 5 │
└────────────┘

2 rows in set. Elapsed: 0.144 sec.

CREATE TABLE test.visits
(
 CounterID UInt32,
 StartDate Date,
 Sign Int8,
 IsNew UInt8,
 VisitID UInt64,
 UserID UInt64,
 ...
 Goals Nested
 (
 ID UInt32,
 Serial UInt32,
 EventTime DateTime,
 Price Int64,
 OrderID String,
 CurrencyID UInt32
),
 ...
) ENGINE = CollapsingMergeTree(StartDate, intHash32(UserID), (CounterID, StartDate, intHash32(UserID),
VisitID), 8192, Sign)

只⽀持⼀级嵌套。嵌套结构的列中，若列的类型是数组类型，那么该列其实和多维数组是相同的，所以⽬前嵌套层级的⽀持很

局限（MergeTree	引擎中不⽀持存储这样的列）

⼤多数情况下，处理嵌套数据结构时，会指定⼀个单独的列。为了这样实现，列的名称会与点号连接起来。这些列构成了⼀组

匹配类型。在同⼀条嵌套数据中，所有的列都具有相同的⻓度。

示例:

所以可以简单地把嵌套数据结构当做是所有列都是相同⻓度的多列数组。

SELECT	查询只有在使⽤	ARRAY	JOIN	的时候才可以指定整个嵌套数据结构的名称。更多信息，参考	"ARRAY	JOIN	⼦句"。示

例：

不能对整个嵌套数据结构执⾏	SELECT。只能明确列出属于它⼀部分列。

SELECT
 Goals.ID,
 Goals.EventTime
FROM test.visits
WHERE CounterID = 101500 AND length(Goals.ID) < 5
LIMIT 10

┌─Goals.ID───────────────────────┬─Goals.EventTime───┐

│ [1073752,591325,591325] │ ['2014-03-17 16:38:10','2014-03-17 16:38:48','2014-03-17 16:42:27']
│
│ [1073752] │ ['2014-03-17 00:28:25']
│
│ [1073752] │ ['2014-03-17 10:46:20']
│
│ [1073752,591325,591325,591325] │ ['2014-03-17 13:59:20','2014-03-17 22:17:55','2014-03-17 22:18:07','2014-
03-17 22:18:51'] │
│ [] │ []
│
│ [1073752,591325,591325] │ ['2014-03-17 11:37:06','2014-03-17 14:07:47','2014-03-17 14:36:21']
│
│ [] │ []
│
│ [] │ []
│
│ [591325,1073752] │ ['2014-03-17 00:46:05','2014-03-17 00:46:05']
│
│ [1073752,591325,591325,591325] │ ['2014-03-17 13:28:33','2014-03-17 13:30:26','2014-03-17 18:51:21','2014-
03-17 18:51:45'] │
└────────────────────────────────┴───┘

SELECT
 Goal.ID,
 Goal.EventTime
FROM test.visits
ARRAY JOIN Goals AS Goal
WHERE CounterID = 101500 AND length(Goals.ID) < 5
LIMIT 10

┌─Goal.ID─┬──────Goal.EventTime─┐
│ 1073752 │ 2014-03-17 16:38:10 │
│ 591325 │ 2014-03-17 16:38:48 │
│ 591325 │ 2014-03-17 16:42:27 │
│ 1073752 │ 2014-03-17 00:28:25 │
│ 1073752 │ 2014-03-17 10:46:20 │
│ 1073752 │ 2014-03-17 13:59:20 │
│ 591325 │ 2014-03-17 22:17:55 │
│ 591325 │ 2014-03-17 22:18:07 │
│ 591325 │ 2014-03-17 22:18:51 │
│ 1073752 │ 2014-03-17 11:37:06 │
└─────────┴─────────────────────┘

对于	INSERT	查询，可以单独地传⼊所有嵌套数据结构中的列数组（假如它们是单独的列数组）。在插⼊过程中，系统会检查

它们是否有相同的⻓度。

对于	DESCRIBE	查询，嵌套数据结构中的列会以相同的⽅式分别列出来。

ALTER	查询对嵌套数据结构的操作⾮常有限。

Special	Data	Types

特殊数据类型的值既不能存在表中也不能在结果中输出，但可⽤于查询的中间结果。

Expression

⽤于表示⾼阶函数中的Lambd表达式。

Set

可以⽤在	IN	表达式的右半部分。

[]

Nothing

此数据类型的唯⼀⽬的是表示不是期望值的情况。	所以不能创建⼀个	 Nothing 	类型的值。

例如，⽂本	NULL	[#null-literal]	的类型为	 Nullable(Nothing)。详情请⻅	Nullable	[#data_type-nullable]。

Nothing 	类型也可以⽤来表示空数组：

SQL	Reference

SELECT	[#select]

INSERT	INTO	[#queries-insert]

CREATE	[#create-database]

ALTER	[#query_language_queries_alter]

Other	types	of	queries	[#miscellanous-queries]

SELECT	Queries	Syntax

SELECT 	performs	data	retrieval.

:) SELECT toTypeName(array())

SELECT toTypeName([])

┌─toTypeName(array())─┐
│ Array(Nothing) │
└─────────────────────┘

1 rows in set. Elapsed: 0.062 sec.

All	the	clauses	are	optional,	except	for	the	required	list	of	expressions	immediately	after	SELECT.	The	clauses	below	are

described	in	almost	the	same	order	as	in	the	query	execution	conveyor.

If	the	query	omits	the	DISTINCT ,	 GROUP	BY 	and	 ORDER	BY 	clauses	and	the	 IN 	and	 JOIN 	subqueries,	the	query	will	be

completely	stream	processed,	using	O(1)	amount	of	RAM.	Otherwise,	the	query	might	consume	a	lot	of	RAM	if	the

appropriate	restrictions	are	not	specified:	 max_memory_usage ,	 max_rows_to_group_by ,	 max_rows_to_sort ,	

max_rows_in_distinct ,	 max_bytes_in_distinct ,	 max_rows_in_set ,	 max_bytes_in_set ,	 max_rows_in_join ,	

max_bytes_in_join ,	 max_bytes_before_external_sort ,	 max_bytes_before_external_group_by .	For	more

information,	see	the	section	"Settings".	It	is	possible	to	use	external	sorting	(saving	temporary	tables	to	a	disk)	and

external	aggregation.	 The	system	does	not	have	"merge	join" .

FROM	Clause

If	the	FROM	clause	is	omitted,	data	will	be	read	from	the	 system.one 	table.	The	'system.one'	table	contains	exactly	one

row	(this	table	fulfills	the	same	purpose	as	the	DUAL	table	found	in	other	DBMSs).

The	FROM	clause	specifies	the	table	to	read	data	from,	or	a	subquery,	or	a	table	function;	ARRAY	JOIN	and	the	regular	JOIN

may	also	be	included	(see	below).

Instead	of	a	table,	the	SELECT	subquery	may	be	specified	in	brackets.	In	this	case,	the	subquery	processing	pipeline	will	be

built	into	the	processing	pipeline	of	an	external	query.	In	contrast	to	standard	SQL,	a	synonym	does	not	need	to	be

specified	after	a	subquery.	For	compatibility,	it	is	possible	to	write	'AS	name'	after	a	subquery,	but	the	specified	name	isn't

used	anywhere.

A	table	function	may	be	specified	instead	of	a	table.	For	more	information,	see	the	section	"Table	functions".

To	execute	a	query,	all	the	columns	listed	in	the	query	are	extracted	from	the	appropriate	table.	Any	columns	not	needed

for	the	external	query	are	thrown	out	of	the	subqueries.	If	a	query	does	not	list	any	columns	(for	example,	SELECT	count()

FROM	t),	some	column	is	extracted	from	the	table	anyway	(the	smallest	one	is	preferred),	in	order	to	calculate	the	number

of	rows.

The	FINAL	modifier	can	be	used	only	for	a	SELECT	from	a	CollapsingMergeTree	table.	When	you	specify	FINAL,	data	is

selected	fully	"collapsed".	Keep	in	mind	that	using	FINAL	leads	to	a	selection	that	includes	columns	related	to	the	primary

key,	in	addition	to	the	columns	specified	in	the	SELECT.	Additionally,	the	query	will	be	executed	in	a	single	stream,	and	data

will	be	merged	during	query	execution.	This	means	that	when	using	FINAL,	the	query	is	processed	more	slowly.	In	most

cases,	you	should	avoid	using	FINAL.	For	more	information,	see	the	section	"CollapsingMergeTree	engine".

SAMPLE	Clause

The	SAMPLE	clause	allows	for	approximated	query	processing.	Approximated	query	processing	is	only	supported	by

MergeTree*	type	tables,	and	only	if	the	sampling	expression	was	specified	during	table	creation	(see	the	section

"MergeTree	engine").

SAMPLE 	has	the	 format	SAMPLE	k ,	where	 k 	is	a	decimal	number	from	0	to	1,	or	 SAMPLE	n ,	where	'n'	is	a	sufficiently	large

integer.

SELECT [DISTINCT] expr_list
 [FROM [db.]table | (subquery) | table_function] [FINAL]
 [SAMPLE sample_coeff]
 [ARRAY JOIN ...]
 [GLOBAL] ANY|ALL INNER|LEFT JOIN (subquery)|table USING columns_list
 [PREWHERE expr]
 [WHERE expr]
 [GROUP BY expr_list] [WITH TOTALS]
 [HAVING expr]
 [ORDER BY expr_list]
 [LIMIT [n,]m]
 [UNION ALL ...]
 [INTO OUTFILE filename]
 [FORMAT format]
 [LIMIT n BY columns]

In	the	first	case,	the	query	will	be	executed	on	'k'	percent	of	data.	For	example,	SAMPLE	0.1 	runs	the	query	on	10%	of	data.

In	the	second	case,	the	query	will	be	executed	on	a	sample	of	no	more	than	'n'	rows.	For	example,	 SAMPLE	10000000 	runs

the	query	on	a	maximum	of	10,000,000	rows.

Example:

In	this	example,	the	query	is	executed	on	a	sample	from	0.1	(10%)	of	data.	Values	of	aggregate	functions	are	not	corrected

automatically,	so	to	get	an	approximate	result,	the	value	'count()'	is	manually	multiplied	by	10.

When	using	something	like	 SAMPLE	10000000 ,	there	isn't	any	information	about	which	relative	percent	of	data	was

processed	or	what	the	aggregate	functions	should	be	multiplied	by,	so	this	method	of	writing	is	not	always	appropriate	to

the	situation.

A	sample	with	a	relative	coefficient	is	"consistent":	if	we	look	at	all	possible	data	that	could	be	in	the	table,	a	sample	(when

using	a	single	sampling	expression	specified	during	table	creation)	with	the	same	coefficient	always	selects	the	same

subset	of	possible	data.	In	other	words,	a	sample	from	different	tables	on	different	servers	at	different	times	is	made	the

same	way.

For	example,	a	sample	of	user	IDs	takes	rows	with	the	same	subset	of	all	the	possible	user	IDs	from	different	tables.	This

allows	using	the	sample	in	subqueries	in	the	IN	clause,	as	well	as	for	manually	correlating	results	of	different	queries	with

samples.

ARRAY	JOIN	Clause

Allows	executing	JOIN	with	an	array	or	nested	data	structure.	The	intent	is	similar	to	the	'arrayJoin'	function,	but	its

functionality	is	broader.

ARRAY	JOIN 	is	essentially	 INNER	JOIN 	with	an	array.	Example:

SELECT
 Title,
 count() * 10 AS PageViews
FROM hits_distributed
SAMPLE 0.1
WHERE
 CounterID = 34
 AND toDate(EventDate) >= toDate('2013-01-29')
 AND toDate(EventDate) <= toDate('2013-02-04')
 AND NOT DontCountHits
 AND NOT Refresh
 AND Title != ''
GROUP BY Title
ORDER BY PageViews DESC LIMIT 1000

An	alias	can	be	specified	for	an	array	in	the	ARRAY	JOIN	clause.	In	this	case,	an	array	item	can	be	accessed	by	this	alias,	but

the	array	itself	by	the	original	name.	Example:

Multiple	arrays	of	the	same	size	can	be	comma-separated	in	the	ARRAY	JOIN	clause.	In	this	case,	JOIN	is	performed	with

them	simultaneously	(the	direct	sum,	not	the	direct	product).	Example:

:) CREATE TABLE arrays_test (s String, arr Array(UInt8)) ENGINE = Memory

CREATE TABLE arrays_test
(
 s String,
 arr Array(UInt8)
) ENGINE = Memory

Ok.

0 rows in set. Elapsed: 0.001 sec.

:) INSERT INTO arrays_test VALUES ('Hello', [1,2]), ('World', [3,4,5]), ('Goodbye', [])

INSERT INTO arrays_test VALUES

Ok.

3 rows in set. Elapsed: 0.001 sec.

:) SELECT * FROM arrays_test

SELECT *
FROM arrays_test

┌─s───────┬─arr─────┐
│ Hello │ [1,2] │
│ World │ [3,4,5] │
│ Goodbye │ [] │
└─────────┴─────────┘

3 rows in set. Elapsed: 0.001 sec.

:) SELECT s, arr FROM arrays_test ARRAY JOIN arr

SELECT s, arr
FROM arrays_test
ARRAY JOIN arr

┌─s─────┬─arr─┐
│ Hello │ 1 │
│ Hello │ 2 │
│ World │ 3 │
│ World │ 4 │
│ World │ 5 │
└───────┴─────┘

5 rows in set. Elapsed: 0.001 sec.

:) SELECT s, arr, a FROM arrays_test ARRAY JOIN arr AS a

SELECT s, arr, a
FROM arrays_test
ARRAY JOIN arr AS a

┌─s─────┬─arr─────┬─a─┐
│ Hello │ [1,2] │ 1 │
│ Hello │ [1,2] │ 2 │
│ World │ [3,4,5] │ 3 │
│ World │ [3,4,5] │ 4 │
│ World │ [3,4,5] │ 5 │
└───────┴─────────┴───┘

5 rows in set. Elapsed: 0.001 sec.

ARRAY	JOIN	also	works	with	nested	data	structures.	Example:

:) SELECT s, arr, a, num, mapped FROM arrays_test ARRAY JOIN arr AS a, arrayEnumerate(arr) AS num, arrayMap(x
-> x + 1, arr) AS mapped

SELECT s, arr, a, num, mapped
FROM arrays_test
ARRAY JOIN arr AS a, arrayEnumerate(arr) AS num, arrayMap(lambda(tuple(x), plus(x, 1)), arr) AS mapped

┌─s─────┬─arr─────┬─a─┬─num─┬─mapped─┐
│ Hello │ [1,2] │ 1 │ 1 │ 2 │
│ Hello │ [1,2] │ 2 │ 2 │ 3 │
│ World │ [3,4,5] │ 3 │ 1 │ 4 │
│ World │ [3,4,5] │ 4 │ 2 │ 5 │
│ World │ [3,4,5] │ 5 │ 3 │ 6 │
└───────┴─────────┴───┴─────┴────────┘

5 rows in set. Elapsed: 0.002 sec.

:) SELECT s, arr, a, num, arrayEnumerate(arr) FROM arrays_test ARRAY JOIN arr AS a, arrayEnumerate(arr) AS num

SELECT s, arr, a, num, arrayEnumerate(arr)
FROM arrays_test
ARRAY JOIN arr AS a, arrayEnumerate(arr) AS num

┌─s─────┬─arr─────┬─a─┬─num─┬─arrayEnumerate(arr)─┐
│ Hello │ [1,2] │ 1 │ 1 │ [1,2] │
│ Hello │ [1,2] │ 2 │ 2 │ [1,2] │
│ World │ [3,4,5] │ 3 │ 1 │ [1,2,3] │
│ World │ [3,4,5] │ 4 │ 2 │ [1,2,3] │
│ World │ [3,4,5] │ 5 │ 3 │ [1,2,3] │
└───────┴─────────┴───┴─────┴─────────────────────┘

5 rows in set. Elapsed: 0.002 sec.

When	specifying	names	of	nested	data	structures	in	ARRAY	JOIN,	the	meaning	is	the	same	as	ARRAY	JOIN	with	all	the	array

elements	that	it	consists	of.	Example:

:) CREATE TABLE nested_test (s String, nest Nested(x UInt8, y UInt32)) ENGINE = Memory

CREATE TABLE nested_test
(
 s String,
 nest Nested(
 x UInt8,
 y UInt32)
) ENGINE = Memory

Ok.

0 rows in set. Elapsed: 0.006 sec.

:) INSERT INTO nested_test VALUES ('Hello', [1,2], [10,20]), ('World', [3,4,5], [30,40,50]), ('Goodbye', [],
[])

INSERT INTO nested_test VALUES

Ok.

3 rows in set. Elapsed: 0.001 sec.

:) SELECT * FROM nested_test

SELECT *
FROM nested_test

┌─s───────┬─nest.x──┬─nest.y─────┐
│ Hello │ [1,2] │ [10,20] │
│ World │ [3,4,5] │ [30,40,50] │
│ Goodbye │ [] │ [] │
└─────────┴─────────┴────────────┘

3 rows in set. Elapsed: 0.001 sec.

:) SELECT s, nest.x, nest.y FROM nested_test ARRAY JOIN nest

SELECT s, `nest.x`, `nest.y`
FROM nested_test
ARRAY JOIN nest

┌─s─────┬─nest.x─┬─nest.y─┐
│ Hello │ 1 │ 10 │
│ Hello │ 2 │ 20 │
│ World │ 3 │ 30 │
│ World │ 4 │ 40 │
│ World │ 5 │ 50 │
└───────┴────────┴────────┘

5 rows in set. Elapsed: 0.001 sec.

:) SELECT s, nest.x, nest.y FROM nested_test ARRAY JOIN nest.x, nest.y

SELECT s, `nest.x`, `nest.y`
FROM nested_test
ARRAY JOIN `nest.x`, `nest.y`

┌─s─────┬─nest.x─┬─nest.y─┐
│ Hello │ 1 │ 10 │
│ Hello │ 2 │ 20 │
│ World │ 3 │ 30 │
│ World │ 4 │ 40 │
│ World │ 5 │ 50 │
└───────┴────────┴────────┘

5 rows in set. Elapsed: 0.001 sec.

This	variation	also	makes	sense:

An	alias	may	be	used	for	a	nested	data	structure,	in	order	to	select	either	the	JOIN	result	or	the	source	array.	Example:

Example	of	using	the	arrayEnumerate	function:

The	query	can	only	specify	a	single	ARRAY	JOIN	clause.

The	corresponding	conversion	can	be	performed	before	the	WHERE/PREWHERE	clause	(if	its	result	is	needed	in	this

clause),	or	after	completing	WHERE/PREWHERE	(to	reduce	the	volume	of	calculations).

JOIN	Clause

The	normal	JOIN,	which	is	not	related	to	ARRAY	JOIN	described	above.

Performs	joins	with	data	from	the	subquery.	At	the	beginning	of	query	processing,	the	subquery	specified	after	JOIN	is

:) SELECT s, nest.x, nest.y FROM nested_test ARRAY JOIN nest.x

SELECT s, `nest.x`, `nest.y`
FROM nested_test
ARRAY JOIN `nest.x`

┌─s─────┬─nest.x─┬─nest.y─────┐
│ Hello │ 1 │ [10,20] │
│ Hello │ 2 │ [10,20] │
│ World │ 3 │ [30,40,50] │
│ World │ 4 │ [30,40,50] │
│ World │ 5 │ [30,40,50] │
└───────┴────────┴────────────┘

5 rows in set. Elapsed: 0.001 sec.

:) SELECT s, n.x, n.y, nest.x, nest.y FROM nested_test ARRAY JOIN nest AS n

SELECT s, `n.x`, `n.y`, `nest.x`, `nest.y`
FROM nested_test
ARRAY JOIN nest AS n

┌─s─────┬─n.x─┬─n.y─┬─nest.x──┬─nest.y─────┐
│ Hello │ 1 │ 10 │ [1,2] │ [10,20] │
│ Hello │ 2 │ 20 │ [1,2] │ [10,20] │
│ World │ 3 │ 30 │ [3,4,5] │ [30,40,50] │
│ World │ 4 │ 40 │ [3,4,5] │ [30,40,50] │
│ World │ 5 │ 50 │ [3,4,5] │ [30,40,50] │
└───────┴─────┴─────┴─────────┴────────────┘

5 rows in set. Elapsed: 0.001 sec.

:) SELECT s, n.x, n.y, nest.x, nest.y, num FROM nested_test ARRAY JOIN nest AS n, arrayEnumerate(nest.x) AS
num

SELECT s, `n.x`, `n.y`, `nest.x`, `nest.y`, num
FROM nested_test
ARRAY JOIN nest AS n, arrayEnumerate(`nest.x`) AS num

┌─s─────┬─n.x─┬─n.y─┬─nest.x──┬─nest.y─────┬─num─┐
│ Hello │ 1 │ 10 │ [1,2] │ [10,20] │ 1 │
│ Hello │ 2 │ 20 │ [1,2] │ [10,20] │ 2 │
│ World │ 3 │ 30 │ [3,4,5] │ [30,40,50] │ 1 │
│ World │ 4 │ 40 │ [3,4,5] │ [30,40,50] │ 2 │
│ World │ 5 │ 50 │ [3,4,5] │ [30,40,50] │ 3 │
└───────┴─────┴─────┴─────────┴────────────┴─────┘

5 rows in set. Elapsed: 0.002 sec.

[GLOBAL] ANY|ALL INNER|LEFT [OUTER] JOIN (subquery)|table USING columns_list

run,	and	its	result	is	saved	in	memory.	Then	it	is	read	from	the	"left"	table	specified	in	the	FROM	clause,	and	while	it	is	being

read,	for	each	of	the	read	rows	from	the	"left"	table,	rows	are	selected	from	the	subquery	results	table	(the	"right"	table)

that	meet	the	condition	for	matching	the	values	of	the	columns	specified	in	USING.

The	table	name	can	be	specified	instead	of	a	subquery.	This	is	equivalent	to	the	SELECT	*	FROM	table 	subquery,	except

in	a	special	case	when	the	table	has	the	Join	engine	–	an	array	prepared	for	joining.

All	columns	that	are	not	needed	for	the	JOIN	are	deleted	from	the	subquery.

There	are	several	types	of	JOINs:

INNER 	or	 LEFT 	type:If	INNER	is	specified,	the	result	will	contain	only	those	rows	that	have	a	matching	row	in	the	right

table.	If	LEFT	is	specified,	any	rows	in	the	left	table	that	don't	have	matching	rows	in	the	right	table	will	be	assigned	the

default	value	-	zeros	or	empty	rows.	LEFT	OUTER	may	be	written	instead	of	LEFT;	the	word	OUTER	does	not	affect

anything.

ANY 	or	 ALL 	stringency:If	 ANY 	is	specified	and	the	right	table	has	several	matching	rows,	only	the	first	one	found	is	joined.

If	 ALL 	is	specified	and	the	right	table	has	several	matching	rows,	the	data	will	be	multiplied	by	the	number	of	these	rows.

Using	ALL	corresponds	to	the	normal	JOIN	semantic	from	standard	SQL.	Using	ANY	is	optimal.	If	the	right	table	has	only

one	matching	row,	the	results	of	ANY	and	ALL	are	the	same.	You	must	specify	either	ANY	or	ALL	(neither	of	them	is

selected	by	default).

GLOBAL 	distribution:

When	using	a	normal	JOIN,	the	query	is	sent	to	remote	servers.	Subqueries	are	run	on	each	of	them	in	order	to	make	the

right	table,	and	the	join	is	performed	with	this	table.	In	other	words,	the	right	table	is	formed	on	each	server	separately.

When	using	 GLOBAL	...	JOIN ,	first	the	requestor	server	runs	a	subquery	to	calculate	the	right	table.	This	temporary	table

is	passed	to	each	remote	server,	and	queries	are	run	on	them	using	the	temporary	data	that	was	transmitted.

Be	careful	when	using	GLOBAL	JOINs.	For	more	information,	see	the	section	"Distributed	subqueries".

Any	combination	of	JOINs	is	possible.	For	example,	 GLOBAL	ANY	LEFT	OUTER	JOIN .

When	running	a	JOIN,	there	is	no	optimization	of	the	order	of	execution	in	relation	to	other	stages	of	the	query.	The	join	(a

search	in	the	right	table)	is	run	before	filtering	in	WHERE	and	before	aggregation.	In	order	to	explicitly	set	the	processing

order,	we	recommend	running	a	JOIN	subquery	with	a	subquery.

Example:

SELECT
 CounterID,
 hits,
 visits
FROM
(
 SELECT
 CounterID,
 count() AS hits
 FROM test.hits
 GROUP BY CounterID
) ANY LEFT JOIN
(
 SELECT
 CounterID,
 sum(Sign) AS visits
 FROM test.visits
 GROUP BY CounterID
) USING CounterID
ORDER BY hits DESC
LIMIT 10

Subqueries	don't	allow	you	to	set	names	or	use	them	for	referencing	a	column	from	a	specific	subquery.	The	columns

specified	in	USING	must	have	the	same	names	in	both	subqueries,	and	the	other	columns	must	be	named	differently.	You

can	use	aliases	to	change	the	names	of	columns	in	subqueries	(the	example	uses	the	aliases	'hits'	and	'visits').

The	USING	clause	specifies	one	or	more	columns	to	join,	which	establishes	the	equality	of	these	columns.	The	list	of

columns	is	set	without	brackets.	More	complex	join	conditions	are	not	supported.

The	right	table	(the	subquery	result)	resides	in	RAM.	If	there	isn't	enough	memory,	you	can't	run	a	JOIN.

Only	one	JOIN	can	be	specified	in	a	query	(on	a	single	level).	To	run	multiple	JOINs,	you	can	put	them	in	subqueries.

Each	time	a	query	is	run	with	the	same	JOIN,	the	subquery	is	run	again	–	the	result	is	not	cached.	To	avoid	this,	use	the

special	'Join'	table	engine,	which	is	a	prepared	array	for	joining	that	is	always	in	RAM.	For	more	information,	see	the	section

"Table	engines,	Join".

In	some	cases,	it	is	more	efficient	to	use	IN	instead	of	JOIN.	Among	the	various	types	of	JOINs,	the	most	efficient	is	ANY

LEFT	JOIN,	then	ANY	INNER	JOIN.	The	least	efficient	are	ALL	LEFT	JOIN	and	ALL	INNER	JOIN.

If	you	need	a	JOIN	for	joining	with	dimension	tables	(these	are	relatively	small	tables	that	contain	dimension	properties,

such	as	names	for	advertising	campaigns),	a	JOIN	might	not	be	very	convenient	due	to	the	bulky	syntax	and	the	fact	that

the	right	table	is	re-accessed	for	every	query.	For	such	cases,	there	is	an	"external	dictionaries"	feature	that	you	should	use

instead	of	JOIN.	For	more	information,	see	the	section	"External	dictionaries".

[]

WHERE	Clause

The	JOIN	behavior	is	affected	by	the	join_use_nulls	[#settings-join_use_nulls]	setting.	With	 join_use_nulls=1, 	 JOIN

works	like	in	standard	SQL.

If	the	JOIN	keys	are	Nullable	[#data_types-nullable]	fields,	the	rows	where	at	least	one	of	the	keys	has	the	value	NULL

[#null-literal]	are	not	joined.

If	there	is	a	WHERE	clause,	it	must	contain	an	expression	with	the	UInt8	type.	This	is	usually	an	expression	with	comparison

and	logical	operators.	This	expression	will	be	used	for	filtering	data	before	all	other	transformations.

If	indexes	are	supported	by	the	database	table	engine,	the	expression	is	evaluated	on	the	ability	to	use	indexes.

[]

PREWHERE	Clause

This	clause	has	the	same	meaning	as	the	WHERE	clause.	The	difference	is	in	which	data	is	read	from	the	table.	When	using

PREWHERE,	first	only	the	columns	necessary	for	executing	PREWHERE	are	read.	Then	the	other	columns	are	read	that	are

needed	for	running	the	query,	but	only	those	blocks	where	the	PREWHERE	expression	is	true.

It	makes	sense	to	use	PREWHERE	if	there	are	filtration	conditions	that	are	not	suitable	for	indexes	that	are	used	by	a

minority	of	the	columns	in	the	query,	but	that	provide	strong	data	filtration.	This	reduces	the	volume	of	data	to	read.

┌─CounterID─┬───hits─┬─visits─┐
│ 1143050 │ 523264 │ 13665 │
│ 731962 │ 475698 │ 102716 │
│ 722545 │ 337212 │ 108187 │
│ 722889 │ 252197 │ 10547 │
│ 2237260 │ 196036 │ 9522 │
│ 23057320 │ 147211 │ 7689 │
│ 722818 │ 90109 │ 17847 │
│ 48221 │ 85379 │ 4652 │
│ 19762435 │ 77807 │ 7026 │
│ 722884 │ 77492 │ 11056 │
└───────────┴────────┴────────┘

For	example,	it	is	useful	to	write	PREWHERE	for	queries	that	extract	a	large	number	of	columns,	but	that	only	have

filtration	for	a	few	columns.

PREWHERE	is	only	supported	by	tables	from	the	 *MergeTree 	family.

A	query	may	simultaneously	specify	PREWHERE	and	WHERE.	In	this	case,	PREWHERE	precedes	WHERE.

Keep	in	mind	that	it	does	not	make	much	sense	for	PREWHERE	to	only	specify	those	columns	that	have	an	index,	because

when	using	an	index,	only	the	data	blocks	that	match	the	index	are	read.

If	the	'optimize_move_to_prewhere'	setting	is	set	to	1	and	PREWHERE	is	omitted,	the	system	uses	heuristics	to

automatically	move	parts	of	expressions	from	WHERE	to	PREWHERE.

GROUP	BY	Clause

This	is	one	of	the	most	important	parts	of	a	column-oriented	DBMS.

If	there	is	a	GROUP	BY	clause,	it	must	contain	a	list	of	expressions.	Each	expression	will	be	referred	to	here	as	a	"key".	All

the	expressions	in	the	SELECT,	HAVING,	and	ORDER	BY	clauses	must	be	calculated	from	keys	or	from	aggregate

functions.	In	other	words,	each	column	selected	from	the	table	must	be	used	either	in	keys	or	inside	aggregate	functions.

If	a	query	contains	only	table	columns	inside	aggregate	functions,	the	GROUP	BY	clause	can	be	omitted,	and	aggregation

by	an	empty	set	of	keys	is	assumed.

Example:

However,	in	contrast	to	standard	SQL,	if	the	table	doesn't	have	any	rows	(either	there	aren't	any	at	all,	or	there	aren't	any

after	using	WHERE	to	filter),	an	empty	result	is	returned,	and	not	the	result	from	one	of	the	rows	containing	the	initial

values	of	aggregate	functions.

As	opposed	to	MySQL	(and	conforming	to	standard	SQL),	you	can't	get	some	value	of	some	column	that	is	not	in	a	key	or

aggregate	function	(except	constant	expressions).	To	work	around	this,	you	can	use	the	'any'	aggregate	function	(get	the

first	encountered	value)	or	'min/max'.

Example:

For	every	different	key	value	encountered,	GROUP	BY	calculates	a	set	of	aggregate	function	values.

GROUP	BY	is	not	supported	for	array	columns.

A	constant	can't	be	specified	as	arguments	for	aggregate	functions.	Example:	sum(1).	Instead	of	this,	you	can	get	rid	of

the	constant.	Example:	 count() .

NULL	PROCESSING

For	grouping,	ClickHouse	interprets	NULL	[#null-literal]	as	a	value,	and	 NULL=NULL .

Here's	an	example	to	show	what	this	means.

SELECT
 count(),
 median(FetchTiming > 60 ? 60 : FetchTiming),
 count() - sum(Refresh)
FROM hits

SELECT
 domainWithoutWWW(URL) AS domain,
 count(),
 any(Title) AS title -- getting the first occurred page header for each domain.
FROM hits
GROUP BY domain

Assume	you	have	this	table:

┌─x─┬────y─┐

	│	1	│				2	│

	│	2	│	ᴺᵁᴸᴸ	│

	│	3	│				2	│

	│	3	│				3	│

	│	3	│	ᴺᵁᴸᴸ	│

	└───┴──────┘

The	query	 SELECT	sum(x),	y	FROM	t_null_big	GROUP	BY	y 	results	in:

┌─sum(x)─┬────y─┐

	│						4	│				2	│

	│						3	│				3	│

	│						5	│	ᴺᵁᴸᴸ	│

	└────────┴──────┘

You	can	see	that	 GROUP	BY 	for	 У	=	NULL 	summed	up	 x ,	as	if	 NULL 	is	this	value.

If	you	pass	several	keys	to	 GROUP	BY ,	the	result	will	give	you	all	the	combinations	of	the	selection,	as	if	NULL 	were	a

specific	value.

WITH	TOTALS	MODIFIER

If	the	WITH	TOTALS	modifier	is	specified,	another	row	will	be	calculated.	This	row	will	have	key	columns	containing	default

values	(zeros	or	empty	lines),	and	columns	of	aggregate	functions	with	the	values	calculated	across	all	the	rows	(the	"total"

values).

This	extra	row	is	output	in	JSON*,	TabSeparated*,	and	Pretty*	formats,	separately	from	the	other	rows.	In	the	other

formats,	this	row	is	not	output.

In	JSON*	formats,	this	row	is	output	as	a	separate	'totals'	field.	In	TabSeparated*	formats,	the	row	comes	after	the	main

result,	preceded	by	an	empty	row	(after	the	other	data).	In	Pretty*	formats,	the	row	is	output	as	a	separate	table	after	the

main	result.

WITH	TOTALS 	can	be	run	in	different	ways	when	HAVING	is	present.	The	behavior	depends	on	the	'totals_mode'	setting.

By	default,	 totals_mode	=	'before_having' .	In	this	case,	'totals'	is	calculated	across	all	rows,	including	the	ones	that

don't	pass	through	HAVING	and	'max_rows_to_group_by'.

The	other	alternatives	include	only	the	rows	that	pass	through	HAVING	in	'totals',	and	behave	differently	with	the	setting	

max_rows_to_group_by 	and	 group_by_overflow_mode	=	'any' .

after_having_exclusive 	–	Don't	include	rows	that	didn't	pass	through	max_rows_to_group_by .	In	other	words,	'totals'

will	have	less	than	or	the	same	number	of	rows	as	it	would	if	 max_rows_to_group_by 	were	omitted.

after_having_inclusive 	–	Include	all	the	rows	that	didn't	pass	through	'max_rows_to_group_by'	in	'totals'.	In	other

words,	'totals'	will	have	more	than	or	the	same	number	of	rows	as	it	would	if	 max_rows_to_group_by 	were	omitted.

after_having_auto 	–	Count	the	number	of	rows	that	passed	through	HAVING.	If	it	is	more	than	a	certain	amount	(by

default,	50%),	include	all	the	rows	that	didn't	pass	through	'max_rows_to_group_by'	in	'totals'.	Otherwise,	do	not	include

them.

totals_auto_threshold 	–	By	default,	0.5.	The	coefficient	for	after_having_auto .

If	 max_rows_to_group_by 	and	 group_by_overflow_mode	=	'any' 	are	not	used,	all	variations	of	 after_having 	are	the

same,	and	you	can	use	any	of	them	(for	example,	 after_having_auto).

You	can	use	WITH	TOTALS	in	subqueries,	including	subqueries	in	the	JOIN	clause	(in	this	case,	the	respective	total	values

are	combined).

GROUP	BY	IN	EXTERNAL	MEMORY

You	can	enable	dumping	temporary	data	to	the	disk	to	restrict	memory	usage	during	GROUP	BY.	The	

max_bytes_before_external_group_by 	setting	determines	the	threshold	RAM	consumption	for	dumping	GROUP	BY

temporary	data	to	the	file	system.	If	set	to	0	(the	default),	it	is	disabled.

When	using	 max_bytes_before_external_group_by ,	we	recommend	that	you	set	max_memory_usage	about	twice	as

high.	This	is	necessary	because	there	are	two	stages	to	aggregation:	reading	the	date	and	forming	intermediate	data	(1)

and	merging	the	intermediate	data	(2).	Dumping	data	to	the	file	system	can	only	occur	during	stage	1.	If	the	temporary

data	wasn't	dumped,	then	stage	2	might	require	up	to	the	same	amount	of	memory	as	in	stage	1.

For	example,	if	 max_memory_usage 	was	set	to	10000000000	and	you	want	to	use	external	aggregation,	it	makes	sense	to

set	 max_bytes_before_external_group_by 	to	10000000000,	and	max_memory_usage	to	20000000000.	When	external

aggregation	is	triggered	(if	there	was	at	least	one	dump	of	temporary	data),	maximum	consumption	of	RAM	is	only	slightly

more	than	 max_bytes_before_external_group_by .

With	distributed	query	processing,	external	aggregation	is	performed	on	remote	servers.	In	order	for	the	requestor	server

to	use	only	a	small	amount	of	RAM,	set	 distributed_aggregation_memory_efficient 	to	1.

When	merging	data	flushed	to	the	disk,	as	well	as	when	merging	results	from	remote	servers	when	the	

distributed_aggregation_memory_efficient 	setting	is	enabled,	consumes	up	to	1/256	*	the	number	of	threads	from

the	total	amount	of	RAM.

When	external	aggregation	is	enabled,	if	there	was	less	than	 max_bytes_before_external_group_by 	of	data	(i.e.	data	was

not	flushed),	the	query	runs	just	as	fast	as	without	external	aggregation.	If	any	temporary	data	was	flushed,	the	run	time

will	be	several	times	longer	(approximately	three	times).

If	you	have	an	ORDER	BY	with	a	small	LIMIT	after	GROUP	BY,	then	the	ORDER	BY	CLAUSE	will	not	use	significant	amounts

of	RAM.	But	if	the	ORDER	BY	doesn't	have	LIMIT,	don't	forget	to	enable	external	sorting

(max_bytes_before_external_sort).

LIMIT	N	BY	Clause

LIMIT	N	BY	COLUMNS	selects	the	top	N	rows	for	each	group	of	COLUMNS.	LIMIT	N	BY	is	not	related	to	LIMIT;	they	can

both	be	used	in	the	same	query.	The	key	for	LIMIT	N	BY	can	contain	any	number	of	columns	or	expressions.

Example:

The	query	will	select	the	top	5	referrers	for	each	domain,	device_type 	pair,	but	not	more	than	100	rows	(LIMIT	n	BY	+	

LIMIT).

HAVING	Clause

Allows	filtering	the	result	received	after	GROUP	BY,	similar	to	the	WHERE	clause.	WHERE	and	HAVING	differ	in	that

WHERE	is	performed	before	aggregation	(GROUP	BY),	while	HAVING	is	performed	after	it.	If	aggregation	is	not

performed,	HAVING	can't	be	used.

[]

SELECT
 domainWithoutWWW(URL) AS domain,
 domainWithoutWWW(REFERRER_URL) AS referrer,
 device_type,
 count() cnt
FROM hits
GROUP BY domain, referrer, device_type
ORDER BY cnt DESC
LIMIT 5 BY domain, device_type
LIMIT 100

ORDER	BY	Clause

The	ORDER	BY	clause	contains	a	list	of	expressions,	which	can	each	be	assigned	DESC	or	ASC	(the	sorting	direction).	If	the

direction	is	not	specified,	ASC	is	assumed.	ASC	is	sorted	in	ascending	order,	and	DESC	in	descending	order.	The	sorting

direction	applies	to	a	single	expression,	not	to	the	entire	list.	Example:	 ORDER	BY	Visits	DESC,	SearchPhrase

For	sorting	by	String	values,	you	can	specify	collation	(comparison).	Example:	ORDER	BY	SearchPhrase	COLLATE	'tr' 	-	for

sorting	by	keyword	in	ascending	order,	using	the	Turkish	alphabet,	case	insensitive,	assuming	that	strings	are	UTF-8

encoded.	COLLATE	can	be	specified	or	not	for	each	expression	in	ORDER	BY	independently.	If	ASC	or	DESC	is	specified,

COLLATE	is	specified	after	it.	When	using	COLLATE,	sorting	is	always	case-insensitive.

We	only	recommend	using	COLLATE	for	final	sorting	of	a	small	number	of	rows,	since	sorting	with	COLLATE	is	less

efficient	than	normal	sorting	by	bytes.

Rows	that	have	identical	values	for	the	list	of	sorting	expressions	are	output	in	an	arbitrary	order,	which	can	also	be

nondeterministic	(different	each	time).	If	the	ORDER	BY	clause	is	omitted,	the	order	of	the	rows	is	also	undefined,	and	may

be	nondeterministic	as	well.

NaN 	and	 NULL 	sorting	order:

With	the	modifier	 NULLS	FIRST 	—	First	 NULL ,	then	 NaN ,	then	other	values.

With	the	modifier	 NULLS	LAST 	—	First	the	values,	then	 NaN ,	then	 NULL .

Default	—	The	same	as	with	the	 NULLS	LAST 	modifier.

Example:

For	the	table

┌─x─┬────y─┐

	│	1	│	ᴺᵁᴸᴸ	│

	│	2	│				2	│

	│	1	│		nan	│

	│	2	│				2	│

	│	3	│				4	│

	│	5	│				6	│

	│	6	│		nan	│

	│	7	│	ᴺᵁᴸᴸ	│

	│	6	│				7	│

	│	8	│				9	│

	└───┴──────┘

Run	the	query	 SELECT	*	FROM	t_null_nan	ORDER	BY	y	NULLS	FIRST 	to	get:

┌─x─┬────y─┐

	│	1	│	ᴺᵁᴸᴸ	│

	│	7	│	ᴺᵁᴸᴸ	│

	│	1	│		nan	│

	│	6	│		nan	│

	│	2	│				2	│

	│	2	│				2	│

	│	3	│				4	│

	│	5	│				6	│

	│	6	│				7	│

	│	8	│				9	│

	└───┴──────┘

When	floating	point	numbers	are	sorted,	NaNs	are	separate	from	the	other	values.	Regardless	of	the	sorting	order,	NaNs

come	at	the	end.	In	other	words,	for	ascending	sorting	they	are	placed	as	if	they	are	larger	than	all	the	other	numbers,	while

for	descending	sorting	they	are	placed	as	if	they	are	smaller	than	the	rest.

Less	RAM	is	used	if	a	small	enough	LIMIT	is	specified	in	addition	to	ORDER	BY.	Otherwise,	the	amount	of	memory	spent	is

proportional	to	the	volume	of	data	for	sorting.	For	distributed	query	processing,	if	GROUP	BY	is	omitted,	sorting	is	partially

done	on	remote	servers,	and	the	results	are	merged	on	the	requestor	server.	This	means	that	for	distributed	sorting,	the

volume	of	data	to	sort	can	be	greater	than	the	amount	of	memory	on	a	single	server.

If	there	is	not	enough	RAM,	it	is	possible	to	perform	sorting	in	external	memory	(creating	temporary	files	on	a	disk).	Use	the

setting	 max_bytes_before_external_sort 	for	this	purpose.	If	it	is	set	to	0	(the	default),	external	sorting	is	disabled.	If	it	is

enabled,	when	the	volume	of	data	to	sort	reaches	the	specified	number	of	bytes,	the	collected	data	is	sorted	and	dumped

into	a	temporary	file.	After	all	data	is	read,	all	the	sorted	files	are	merged	and	the	results	are	output.	Files	are	written	to	the

/var/lib/clickhouse/tmp/	directory	in	the	config	(by	default,	but	you	can	use	the	'tmp_path'	parameter	to	change	this

setting).

Running	a	query	may	use	more	memory	than	'max_bytes_before_external_sort'.	For	this	reason,	this	setting	must	have	a

value	significantly	smaller	than	'max_memory_usage'.	As	an	example,	if	your	server	has	128	GB	of	RAM	and	you	need	to

run	a	single	query,	set	'max_memory_usage'	to	100	GB,	and	'max_bytes_before_external_sort'	to	80	GB.

External	sorting	works	much	less	effectively	than	sorting	in	RAM.

SELECT	Clause

The	expressions	specified	in	the	SELECT	clause	are	analyzed	after	the	calculations	for	all	the	clauses	listed	above	are

completed.	More	specifically,	expressions	are	analyzed	that	are	above	the	aggregate	functions,	if	there	are	any	aggregate

functions.	The	aggregate	functions	and	everything	below	them	are	calculated	during	aggregation	(GROUP	BY).	These

expressions	work	as	if	they	are	applied	to	separate	rows	in	the	result.

DISTINCT	Clause

If	DISTINCT	is	specified,	only	a	single	row	will	remain	out	of	all	the	sets	of	fully	matching	rows	in	the	result.	The	result	will

be	the	same	as	if	GROUP	BY	were	specified	across	all	the	fields	specified	in	SELECT	without	aggregate	functions.	But	there

are	several	differences	from	GROUP	BY:

DISTINCT	can	be	applied	together	with	GROUP	BY.

When	ORDER	BY	is	omitted	and	LIMIT	is	defined,	the	query	stops	running	immediately	after	the	required	number	of

different	rows	has	been	read.

Data	blocks	are	output	as	they	are	processed,	without	waiting	for	the	entire	query	to	finish	running.

DISTINCT	is	not	supported	if	SELECT	has	at	least	one	array	column.

LIMIT	Clause

LIMIT	m	allows	you	to	select	the	first	'm'	rows	from	the	result.	LIMIT	n,	m	allows	you	to	select	the	first	'm'	rows	from	the

result	after	skipping	the	first	'n'	rows.

'n'	and	'm'	must	be	non-negative	integers.

If	there	isn't	an	ORDER	BY	clause	that	explicitly	sorts	results,	the	result	may	be	arbitrary	and	nondeterministic.

DISTINCT 	works	with	NULL	[#null-literal]	as	if	 NULL 	were	a	specific	value,	and	 NULL=NULL .	In	other	words,	in	the

DISTINCT 	results,	different	combinations	with	 NULL 	only	occur	once.

UNION	ALL	Clause

You	can	use	UNION	ALL	to	combine	any	number	of	queries.	Example:

Only	UNION	ALL	is	supported.	The	regular	UNION	(UNION	DISTINCT)	is	not	supported.	If	you	need	UNION	DISTINCT,	you

can	write	SELECT	DISTINCT	from	a	subquery	containing	UNION	ALL.

Queries	that	are	parts	of	UNION	ALL	can	be	run	simultaneously,	and	their	results	can	be	mixed	together.

The	structure	of	results	(the	number	and	type	of	columns)	must	match	for	the	queries.	But	the	column	names	can	differ.	In

this	case,	the	column	names	for	the	final	result	will	be	taken	from	the	first	query.	Type	casting	is	performed	for	unions.	For

example,	if	two	queries	being	combined	have	the	same	field	with	non- Nullable 	and	 Nullable 	types	from	a	compatible

type,	the	resulting	 UNION	ALL 	has	a	 Nullable 	type	field.

Queries	that	are	parts	of	UNION	ALL	can't	be	enclosed	in	brackets.	ORDER	BY	and	LIMIT	are	applied	to	separate	queries,

not	to	the	final	result.	If	you	need	to	apply	a	conversion	to	the	final	result,	you	can	put	all	the	queries	with	UNION	ALL	in	a

subquery	in	the	FROM	clause.

INTO	OUTFILE	Clause

Add	the	 INTO	OUTFILE	filename 	clause	(where	filename	is	a	string	literal)	to	redirect	query	output	to	the	specified	file.	In

contrast	to	MySQL,	the	file	is	created	on	the	client	side.	The	query	will	fail	if	a	file	with	the	same	filename	already	exists.

This	functionality	is	available	in	the	command-line	client	and	clickhouse-local	(a	query	sent	via	HTTP	interface	will	fail).

The	default	output	format	is	TabSeparated	(the	same	as	in	the	command-line	client	batch	mode).

FORMAT	Clause

Specify	'FORMAT	format'	to	get	data	in	any	specified	format.	You	can	use	this	for	convenience,	or	for	creating	dumps.	For

more	information,	see	the	section	"Formats".	If	the	FORMAT	clause	is	omitted,	the	default	format	is	used,	which	depends

on	both	the	settings	and	the	interface	used	for	accessing	the	DB.	For	the	HTTP	interface	and	the	command-line	client	in

batch	mode,	the	default	format	is	TabSeparated.	For	the	command-line	client	in	interactive	mode,	the	default	format	is

PrettyCompact	(it	has	attractive	and	compact	tables).

When	using	the	command-line	client,	data	is	passed	to	the	client	in	an	internal	efficient	format.	The	client	independently

interprets	the	FORMAT	clause	of	the	query	and	formats	the	data	itself	(thus	relieving	the	network	and	the	server	from	the

load).

[]

IN	Operators

The	 IN ,	 NOT	IN ,	 GLOBAL	IN ,	and	 GLOBAL	NOT	IN 	operators	are	covered	separately,	since	their	functionality	is	quite	rich.

The	left	side	of	the	operator	is	either	a	single	column	or	a	tuple.

Examples:

If	the	left	side	is	a	single	column	that	is	in	the	index,	and	the	right	side	is	a	set	of	constants,	the	system	uses	the	index	for

processing	the	query.

SELECT CounterID, 1 AS table, toInt64(count()) AS c
 FROM test.hits
 GROUP BY CounterID

UNION ALL

SELECT CounterID, 2 AS table, sum(Sign) AS c
 FROM test.visits
 GROUP BY CounterID
 HAVING c > 0

SELECT UserID IN (123, 456) FROM ...
SELECT (CounterID, UserID) IN ((34, 123), (101500, 456)) FROM ...

Don't	list	too	many	values	explicitly	(i.e.	millions).	If	a	data	set	is	large,	put	it	in	a	temporary	table	(for	example,	see	the

section	"External	data	for	query	processing"),	then	use	a	subquery.

The	right	side	of	the	operator	can	be	a	set	of	constant	expressions,	a	set	of	tuples	with	constant	expressions	(shown	in	the

examples	above),	or	the	name	of	a	database	table	or	SELECT	subquery	in	brackets.

If	the	right	side	of	the	operator	is	the	name	of	a	table	(for	example,	UserID	IN	users),	this	is	equivalent	to	the	subquery	

UserID	IN	(SELECT	*	FROM	users) .	Use	this	when	working	with	external	data	that	is	sent	along	with	the	query.	For

example,	the	query	can	be	sent	together	with	a	set	of	user	IDs	loaded	to	the	'users'	temporary	table,	which	should	be

filtered.

If	the	right	side	of	the	operator	is	a	table	name	that	has	the	Set	engine	(a	prepared	data	set	that	is	always	in	RAM),	the	data

set	will	not	be	created	over	again	for	each	query.

The	subquery	may	specify	more	than	one	column	for	filtering	tuples.	Example:

The	columns	to	the	left	and	right	of	the	IN	operator	should	have	the	same	type.

The	IN	operator	and	subquery	may	occur	in	any	part	of	the	query,	including	in	aggregate	functions	and	lambda	functions.

Example:

For	each	day	after	March	17th,	count	the	percentage	of	pageviews	made	by	users	who	visited	the	site	on	March	17th.	A

subquery	in	the	IN	clause	is	always	run	just	one	time	on	a	single	server.	There	are	no	dependent	subqueries.

NULL	PROCESSING

During	request	processing,	the	IN	operator	assumes	that	the	result	of	an	operation	with	NULL	[#null-literal]	is	always	equal

to	 0 ,	regardless	of	whether	 NULL 	is	on	the	right	or	left	side	of	the	operator.	 NULL 	values	are	not	included	in	any	dataset,

do	not	correspond	to	each	other	and	cannot	be	compared.

Here	is	an	example	with	the	 t_null 	table:

┌─x─┬────y─┐

	│	1	│	ᴺᵁᴸᴸ	│

	│	2	│				3	│

	└───┴──────┘

Running	the	query	 SELECT	x	FROM	t_null	WHERE	y	IN	(NULL,3) 	gives	you	the	following	result:

SELECT (CounterID, UserID) IN (SELECT CounterID, UserID FROM ...) FROM ...

SELECT
 EventDate,
 avg(UserID IN
 (
 SELECT UserID
 FROM test.hits
 WHERE EventDate = toDate('2014-03-17')
)) AS ratio
FROM test.hits
GROUP BY EventDate
ORDER BY EventDate ASC

┌──EventDate─┬────ratio─┐
│ 2014-03-17 │ 1 │
│ 2014-03-18 │ 0.807696 │
│ 2014-03-19 │ 0.755406 │
│ 2014-03-20 │ 0.723218 │
│ 2014-03-21 │ 0.697021 │
│ 2014-03-22 │ 0.647851 │
│ 2014-03-23 │ 0.648416 │
└────────────┴──────────┘

┌─x─┐

	│	2	│

	└───┘

You	can	see	that	the	row	in	which	 y	=	NULL 	is	thrown	out	of	the	query	results.	This	is	because	ClickHouse	can't	decide

whether	 NULL 	is	included	in	the	 (NULL,3) 	set,	returns	 0 	as	the	result	of	the	operation,	and	 SELECT 	excludes	this	row

from	the	final	output.

```	SELECT	y	IN	(NULL,	3)	FROM	t_null

┌─in(y,	tuple(NULL,	3))─┐	│	0	│	│	1	│	└───────────────────────┘	```

[]

DISTRIBUTED	SUBQUERIES

There	are	two	options	for	IN-s	with	subqueries	(similar	to	JOINs):	normal	 IN 	/	 OIN 	and	 IN	GLOBAL 	/	 GLOBAL	JOIN .	They

differ	in	how	they	are	run	for	distributed	query	processing.

When	using	the	regular	IN,	the	query	is	sent	to	remote	servers,	and	each	of	them	runs	the	subqueries	in	the	IN 	or	 JOIN

clause.

When	using	 GLOBAL	IN 	/	 GLOBAL	JOINs ,	first	all	the	subqueries	are	run	for	GLOBAL	IN 	/	 GLOBAL	JOINs ,	and	the	results

are	collected	in	temporary	tables.	Then	the	temporary	tables	are	sent	to	each	remote	server,	where	the	queries	are	run

using	this	temporary	data.

For	a	non-distributed	query,	use	the	regular	 IN 	/	 JOIN .

Be	careful	when	using	subqueries	in	the	 IN 	/	 JOIN 	clauses	for	distributed	query	processing.

Let's	look	at	some	examples.	Assume	that	each	server	in	the	cluster	has	a	normal	local_table.	Each	server	also	has	a
distributed_table	table	with	the	Distributed	type,	which	looks	at	all	the	servers	in	the	cluster.

For	a	query	to	the	distributed_table,	the	query	will	be	sent	to	all	the	remote	servers	and	run	on	them	using	the	local_table.

For	example,	the	query

will	be	sent	to	all	remote	servers	as

and	run	on	each	of	them	in	parallel,	until	it	reaches	the	stage	where	intermediate	results	can	be	combined.	Then	the

intermediate	results	will	be	returned	to	the	requestor	server	and	merged	on	it,	and	the	final	result	will	be	sent	to	the	client.

Now	let's	examine	a	query	with	IN:

Calculation	of	the	intersection	of	audiences	of	two	sites.

This	query	will	be	sent	to	all	remote	servers	as

Attention

Remember	that	the	algorithms	described	below	may	work	differently	depending	on	the	 settings	[#settings-distributed_product_mode]	

distributed_product_mode 	setting.



SELECT uniq(UserID) FROM distributed_table

SELECT uniq(UserID) FROM local_table

SELECT uniq(UserID) FROM distributed_table WHERE CounterID = 101500 AND UserID IN (SELECT UserID FROM 
local_table WHERE CounterID = 34)



In	other	words,	the	data	set	in	the	IN	clause	will	be	collected	on	each	server	independently,	only	across	the	data	that	is

stored	locally	on	each	of	the	servers.

This	will	work	correctly	and	optimally	if	you	are	prepared	for	this	case	and	have	spread	data	across	the	cluster	servers	such

that	the	data	for	a	single	UserID	resides	entirely	on	a	single	server.	In	this	case,	all	the	necessary	data	will	be	available

locally	on	each	server.	Otherwise,	the	result	will	be	inaccurate.	We	refer	to	this	variation	of	the	query	as	"local	IN".

To	correct	how	the	query	works	when	data	is	spread	randomly	across	the	cluster	servers,	you	could	specify

distributed_table	inside	a	subquery.	The	query	would	look	like	this:

This	query	will	be	sent	to	all	remote	servers	as

The	subquery	will	begin	running	on	each	remote	server.	Since	the	subquery	uses	a	distributed	table,	the	subquery	that	is

on	each	remote	server	will	be	resent	to	every	remote	server	as

For	example,	if	you	have	a	cluster	of	100	servers,	executing	the	entire	query	will	require	10,000	elementary	requests,	which

is	generally	considered	unacceptable.

In	such	cases,	you	should	always	use	GLOBAL	IN	instead	of	IN.	Let's	look	at	how	it	works	for	the	query

The	requestor	server	will	run	the	subquery

and	the	result	will	be	put	in	a	temporary	table	in	RAM.	Then	the	request	will	be	sent	to	each	remote	server	as

and	the	temporary	table	 _data1 	will	be	sent	to	every	remote	server	with	the	query	(the	name	of	the	temporary	table	is

implementation-defined).

This	is	more	optimal	than	using	the	normal	IN.	However,	keep	the	following	points	in	mind:

1.	 When	creating	a	temporary	table,	data	is	not	made	unique.	To	reduce	the	volume	of	data	transmitted	over	the

network,	specify	DISTINCT	in	the	subquery.	(You	don't	need	to	do	this	for	a	normal	IN.)

2.	 The	temporary	table	will	be	sent	to	all	the	remote	servers.	Transmission	does	not	account	for	network	topology.	For

example,	if	10	remote	servers	reside	in	a	datacenter	that	is	very	remote	in	relation	to	the	requestor	server,	the	data	will

be	sent	10	times	over	the	channel	to	the	remote	datacenter.	Try	to	avoid	large	data	sets	when	using	GLOBAL	IN.

3.	 When	transmitting	data	to	remote	servers,	restrictions	on	network	bandwidth	are	not	configurable.	You	might

overload	the	network.

4.	 Try	to	distribute	data	across	servers	so	that	you	don't	need	to	use	GLOBAL	IN	on	a	regular	basis.

5.	 If	you	need	to	use	GLOBAL	IN	often,	plan	the	location	of	the	ClickHouse	cluster	so	that	a	single	group	of	replicas

SELECT uniq(UserID) FROM local_table WHERE CounterID = 101500 AND UserID IN (SELECT UserID FROM local_table 
WHERE CounterID = 34)

SELECT uniq(UserID) FROM distributed_table WHERE CounterID = 101500 AND UserID IN (SELECT UserID FROM 
distributed_table WHERE CounterID = 34)

SELECT uniq(UserID) FROM local_table WHERE CounterID = 101500 AND UserID IN (SELECT UserID FROM 
distributed_table WHERE CounterID = 34)

SELECT UserID FROM local_table WHERE CounterID = 34

SELECT uniq(UserID) FROM distributed_table WHERE CounterID = 101500 AND UserID GLOBAL IN (SELECT UserID FROM 
distributed_table WHERE CounterID = 34)

SELECT UserID FROM distributed_table WHERE CounterID = 34

SELECT uniq(UserID) FROM local_table WHERE CounterID = 101500 AND UserID GLOBAL IN _data1



resides	in	no	more	than	one	data	center	with	a	fast	network	between	them,	so	that	a	query	can	be	processed	entirely

within	a	single	data	center.

It	also	makes	sense	to	specify	a	local	table	in	the	GLOBAL	IN 	clause,	in	case	this	local	table	is	only	available	on	the

requestor	server	and	you	want	to	use	data	from	it	on	remote	servers.

Extreme	Values

In	addition	to	results,	you	can	also	get	minimum	and	maximum	values	for	the	results	columns.	To	do	this,	set	the	extremes
setting	to	1.	Minimums	and	maximums	are	calculated	for	numeric	types,	dates,	and	dates	with	times.	For	other	columns,

the	default	values	are	output.

An	extra	two	rows	are	calculated	–	the	minimums	and	maximums,	respectively.	These	extra	two	rows	are	output	in	JSON*,

TabSeparated*,	and	Pretty*	formats,	separate	from	the	other	rows.	They	are	not	output	for	other	formats.

In	JSON*	formats,	the	extreme	values	are	output	in	a	separate	'extremes'	field.	In	TabSeparated*	formats,	the	row	comes

after	the	main	result,	and	after	'totals'	if	present.	It	is	preceded	by	an	empty	row	(after	the	other	data).	In	Pretty*	formats,

the	row	is	output	as	a	separate	table	after	the	main	result,	and	after	'totals'	if	present.

Extreme	values	are	calculated	for	rows	that	have	passed	through	LIMIT.	However,	when	using	'LIMIT	offset,	size',	the	rows

before	'offset'	are	included	in	'extremes'.	In	stream	requests,	the	result	may	also	include	a	small	number	of	rows	that

passed	through	LIMIT.

Notes

The	 GROUP	BY 	and	 ORDER	BY 	clauses	do	not	support	positional	arguments.	This	contradicts	MySQL,	but	conforms	to

standard	SQL.	For	example,	 GROUP	BY	1,	2 	will	be	interpreted	as	grouping	by	constants	(i.e.	aggregation	of	all	rows	into

one).

You	can	use	synonyms	( AS 	aliases)	in	any	part	of	a	query.

You	can	put	an	asterisk	in	any	part	of	a	query	instead	of	an	expression.	When	the	query	is	analyzed,	the	asterisk	is

expanded	to	a	list	of	all	table	columns	(excluding	the	 MATERIALIZED 	and	 ALIAS 	columns).	There	are	only	a	few	cases	when

using	an	asterisk	is	justified:

When	creating	a	table	dump.

For	tables	containing	just	a	few	columns,	such	as	system	tables.

For	getting	information	about	what	columns	are	in	a	table.	In	this	case,	set	LIMIT	1 .	But	it	is	better	to	use	the	DESC	

TABLE 	query.

When	there	is	strong	filtration	on	a	small	number	of	columns	using	PREWHERE .

In	subqueries	(since	columns	that	aren't	needed	for	the	external	query	are	excluded	from	subqueries).

In	all	other	cases,	we	don't	recommend	using	the	asterisk,	since	it	only	gives	you	the	drawbacks	of	a	columnar	DBMS

instead	of	the	advantages.	In	other	words	using	the	asterisk	is	not	recommended.

[]

INSERT

正在添加数据。

基本查询格式:

此查询能够指定字段的列表来插⼊	 [(c1,	c2,	c3)]。	在这种情况下,	剩下的字段⽤如下来填充:

INSERT INTO [db.]table [(c1, c2, c3)] VALUES (v11, v12, v13), (v21, v22, v23), ...



从表定义中指定的	 DEFAULT 	表达式中计算出值。

空字符串，	如果	 DEFAULT 	表达式没有定义。

如果	strict_insert_defaults=1	[#settings-strict_insert_defaults]，	没有	 DEFAULT 	定义的字段必须在查询中列出.

在任何ClickHouse所⽀持的格式上	format	[#formats]	数据被传⼊到	INSERT中.	此格式必须被显式地指定在查询中:

例如，	如下的查询格式与基本的	 INSERT	...	VALUES 	版本相同:

ClickHouse	在数据之前，	删除所有空格和换⾏(如果有)。	当形成⼀个查询时，	我们推荐在查询操作符之后将数据放⼊新⾏(如

果数据以空格开始，	这是重要的)。

示例:

你能够单独从查询中插⼊数据，通过命令⾏或	HTTP	接⼝.	进⼀步信息，	参⻅	"Interfaces	[#interfaces]".

Inserting	The	Results	of	SELECT

在	SELECT语句中，	根据字段的位置来映射。	然⽽，	在SELECT表达式中的名称和表名可能不同。	如果必要，	可以进⾏类型

转换。

除了值以外没有其他数据类型允许设置值到表达式中，	例如	 now()，	 1	+	2，	等。	值格式允许使⽤有限制的表达式，	但是

它并不推荐，	因为在这种情况下，	执⾏了低效的代码。

不⽀持修改数据分区的查询如下:	 UPDATE，	 DELETE，	 REPLACE，	 MERGE，	 UPSERT，	 INSERT	UPDATE。	然⽽，	你能够使

⽤	 ALTER	TABLE	...	DROP	PARTITION来删除旧数据。

Performance	Considerations

INSERT 	通过主键来排序数据，	并通过⽉份来拆分数据到每个分区中。	如果插⼊的数据有混合的⽉份，	会显著降低 INSERT

插⼊的性能。	应该避免此类操作:

⼤批量地添加数据，	如每次	100，000	⾏。

在上传数据之前，	通过⽉份分组数据。

下⾯操作性能不会下降:

数据实时插⼊。

上传的数据通过时间来排序。

创建数据库

创建	 db_name 	数据库。

数据库是⼀个包含多个表的⽬录，如果在CREATE	DATABASE语句中包含 IF	NOT	EXISTS，则在数据库已经存在的情况下查

询也不会返回错误。

INSERT INTO [db.]table [(c1， c2， c3)] FORMAT format_name data_set

INSERT INTO [db.]table [(c1, c2, c3)] FORMAT Values (v11, v12, v13), (v21, v22, v23), ...

INSERT INTO t FORMAT TabSeparated
11  Hello, world!
22  Qwerty

INSERT INTO [db.]table [(c1, c2, c3)] SELECT ...

CREATE DATABASE [IF NOT EXISTS] db_name



[]

创建表

CREATE	TABLE 	语句有⼏种形式.

如果 db没有设置，	在数据库 db中或者当前数据库中，	创建⼀个表名为 name的表，	在括号和 engine 	引擎中指定结构。	表

的结构是⼀个列描述的列表。	如果引擎⽀持索引，	则他们将是表引擎的参数。

表结构是⼀个列描述的列表。	如果引擎⽀持索引，	他们以表引擎的参数表示。

在最简单的情况，	⼀个列描述是'命名类型'。	例如:	RegionID	UInt32。	对于默认值，	表达式也能够被定义。

创建⼀个表，	其结构与另⼀个表相同。	你能够为此表指定⼀个不同的引擎。	如果引擎没有被指定，	相同的引擎将被⽤

于 db2。name2表上。

创建⼀个表，其结构类似于	SELECT	查询后的结果，	带有 engine 	引擎，	从	SELECT查询数据填充它。

在所有情况下，如果 IF	NOT	EXISTS被指定，	如果表已经存在，	查询并不返回⼀个错误。	在这种情况下，	查询并不做任何事

情。

默认值

列描述能够为默认值指定⼀个表达式，	其中⼀个⽅法是:DEFAULT	expr，	MATERIALIZED	expr，	ALIAS	expr。	例如:

URLDomain	String	DEFAULT	domain(URL)。

如果默认值的⼀个表达式没有定义，	如果字段是数字类型，	默认值是将设置为0，	如果是字符类型，	则设置为空字符串，	⽇

期类型则设置为	0000-00-00	或者	0000-00-00	00:00:00(时间戳)。	NULLs	则不⽀持。

如果默认表达式被定义，	字段类型是可选的。	如果没有明确的定义类型，	则将使⽤默认表达式。	例如:	EventDate	DEFAULT

toDate(EventTime)	–	 Date 	类型将⽤于	 EventDate 	字段。

如果数据类型和默认表达式被明确定义，	此表达式将使⽤函数被转换为特定的类型。	例如:	Hits	UInt32	DEFAULT	0	与	Hits

UInt32	DEFAULT	toUInt32(0)是等价的。

默认表达是可能被定义为⼀个任意的表达式，如表的常量和字段。	当创建和更改表结构时，	它将检查表达式是否包含循环。

对于	INSERT操作来说，	它将检查表达式是否可解析	–	所有的字段通过传参后进⾏计算。

DEFAULT	expr

正常的默认值。	如果	INSERT	查询并没有指定对应的字段，	它将通过计算对应的表达式来填充。

物化表达式

物化表达式。	此类型字段并没有指定插⼊操作，	因为它经常执⾏计算任务。	对⼀个插⼊操作，	⽆字段列表，	那么这些字段将

不考虑。	另外，	当在⼀个SELECT查询语句中使⽤星号时，	此字段并不被替换。	这将保证INSERT	INTO	SELECT	*	FROM	的不

可变性。

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] [db.]name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1]，
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2]，
    ...
) ENGINE = engine

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] [db.]name AS [db2.]name2 [ENGINE = engine]

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] [db.]name ENGINE = engine AS SELECT ...



别名表达式

别名。	此字段不存储在表中。	此列的值不插⼊到表中，	当在⼀个SELECT查询语句中使⽤星号时，此字段并不被替换。	它能

够⽤在	SELECTs中，如果别名在查询解析时被扩展。

当使⽤更新查询添加⼀个新的字段，	这些列的旧值不被写⼊。	相反，	新字段没有值，当读取旧值时，	表达式将被计算。	然

⽽，如果运⾏表达式需要不同的字段，	这些字段将被读取	，	但是仅读取相关的数据块。

如果你添加⼀个新的字段到表中，	然后改变它的默认表达式，	对于使⽤的旧值将更改(对于此数据，	值不保存在磁盘上)。	当

运⾏背景线程时，	缺少合并数据块的字段数据写⼊到合并数据块中。

在嵌套数据结构中设置默认值是不允许的。

临时表

在任何情况下，	如果临时表被指定，	⼀个临时表将被创建。	临时表有如下的特性:

当会话结束后，	临时表将删除，或者连接丢失。

⼀个临时表使⽤内存表引擎创建。	其他的表引擎不⽀持临时表。

数据库不能为⼀个临时表指定。	它将创建在数据库之外。

如果⼀个临时表与另外的表有相同的名称	，⼀个查询指定了表名并没有指定数据库，	将使⽤临时表。

对于分布式查询处理，	查询中的临时表将被传递给远程服务器。

在⼤多数情况下，	临时表并不能⼿⼯创建，	但当查询外部数据或使⽤分布式全局(GLOBAL)IN时，可以创建临时表。

分布式	DDL	查询	(ON	CLUSTER	clause)

CREATE，	 DROP，	 ALTER，	和	 RENAME 	查询⽀持在集群上分布式执⾏。	例如，	如下的查询在集群中的每个机器节点上创建

了	all_hits	Distributed	表:

为了正确执⾏这些语句，每个节点必须有相同的集群设置(为了简化同步配置，可以使⽤	zookeeper	来替换)。	这些节点也可以

连接到ZooKeeper	服务器。	查询语句会在每个节点上执⾏，	⽽ ALTER查询⽬前暂不⽀持在同步表(replicated	table)上执⾏。

CREATE	VIEW

创建⼀个视图。	有两种类型的视图:	正常视图和物化(MATERIALIZED)视图。

当创建⼀个物化视图时，	你必须指定表引擎	–	此表引擎⽤于存储数据

⼀个物化视图⼯作流程如下所示:	当插⼊数据到SELECT	查询指定的表中时，	插⼊数据部分通过SELECT查询部分来转换，	结

果插⼊到视图中。

正常视图不保存任何数据，	但是可以从任意表中读取数据。	换句话说，正常视图可以看作是查询结果的⼀个结果缓存。	当从

⼀个视图中读取数据时，	此查询可以看做是	FROM语句的⼦查询。

例如，	假设你已经创建了⼀个视图:

写了⼀个查询语句:

CREATE TABLE IF NOT EXISTS all_hits ON CLUSTER cluster (p Date， i Int32) ENGINE = Distributed(cluster， 
default， hits)

CREATE [MATERIALIZED] VIEW [IF NOT EXISTS] [db.]name [TO[db.]name] [ENGINE = engine] [POPULATE] AS SELECT ...

CREATE VIEW view AS SELECT ...



此查询完全等价于⼦查询:

物化视图保存由SELECT语句查询转换的数据。

当创建⼀个物化视图时，你必须指定⼀个引擎	–	存储数据的⽬标引擎。

⼀个物化视图使⽤流程如下:	当插⼊数据到	SELECT	指定的表时，	插⼊数据部分通过SELECT	来转换，	同时结果被插⼊到视图

中。

如果你指定了	POPULATE，	当创建时，	现有的表数据被插⼊到了视图中，	类似于	 CREATE	TABLE	...	AS	SELECT	... 	.	否

则，	在创建视图之后，查询仅包含表中插⼊的数据.	我们不建议使⽤	POPULATE，	在视图创建过程中，插⼊到表中的数据不插

⼊到其中.

⼀个 SELECT查询可以包含	 DISTINCT，	 GROUP	BY，	 ORDER	BY，	 LIMIT。。。	对应的转换在每个数据块上独⽴执⾏。	例

如，	如果	GROUP	BY	被设置，	数据将在插⼊过程中进⾏聚合，	但仅是在⼀个插⼊数据包中。数据不再进⼀步聚合。	当使⽤⼀

个引擎时，	如SummingMergeTree，它将独⽴执⾏数据聚合。

视图看起来和正常表相同。	例如，	你可以使⽤	SHOW	TABLES来列出视图表的相关信息。

物化视图的 ALTER查询执⾏还没有完全开发出来，	因此使⽤上可能不⽅便。	如果物化视图使⽤	 TO	[db。]name，	你能够	

DETACH 	视图，	在⽬标表运⾏	 ALTER，	然后	 ATTACH 	之前的	 DETACH视图。

视图看起来和正常表相同。	例如，	你可以使⽤	 SHOW	TABLES 	来列出视图表的相关信息。

因此并没有⼀个单独的SQL语句来删除视图。	为了删除⼀个视图，	可以使⽤	 DROP	TABLE。

[]

ALTER

The	 ALTER 	query	is	only	supported	for	 *MergeTree 	tables,	as	well	as	 Merge and Distributed .	The	query	has	several

variations.

Column	Manipulations

Changing	the	table	structure.

In	the	query,	specify	a	list	of	one	or	more	comma-separated	actions.	Each	action	is	an	operation	on	a	column.

The	following	actions	are	supported:

Adds	a	new	column	to	the	table	with	the	specified	name,	type,	and	default_expr 	(see	the	section	"Default	expressions").

If	you	specify	 AFTER	name_after 	(the	name	of	another	column),	the	column	is	added	after	the	specified	one	in	the	list	of

table	columns.	Otherwise,	the	column	is	added	to	the	end	of	the	table.	Note	that	there	is	no	way	to	add	a	column	to	the

beginning	of	a	table.	For	a	chain	of	actions,	'name_after'	can	be	the	name	of	a	column	that	is	added	in	one	of	the	previous

actions.

Adding	a	column	just	changes	the	table	structure,	without	performing	any	actions	with	data.	The	data	doesn't	appear	on

the	disk	after	ALTER.	If	the	data	is	missing	for	a	column	when	reading	from	the	table,	it	is	filled	in	with	default	values	(by

performing	the	default	expression	if	there	is	one,	or	using	zeros	or	empty	strings).	If	the	data	is	missing	for	a	column	when

SELECT a, b, c FROM view

SELECT a, b, c FROM (SELECT ...)

ALTER TABLE [db].name [ON CLUSTER cluster] ADD|DROP|MODIFY COLUMN ...

ADD COLUMN name [type] [default_expr] [AFTER name_after]



reading	from	the	table,	it	is	filled	in	with	default	values	(by	performing	the	default	expression	if	there	is	one,	or	using	zeros

or	empty	strings).	The	column	appears	on	the	disk	after	merging	data	parts	(see	MergeTree).

This	approach	allows	us	to	complete	the	ALTER	query	instantly,	without	increasing	the	volume	of	old	data.

Deletes	the	column	with	the	name	'name'.	Deletes	data	from	the	file	system.	Since	this	deletes	entire	files,	the	query	is

completed	almost	instantly.

Changes	the	'name'	column's	type	to	'type'	and/or	the	default	expression	to	'default_expr'.	When	changing	the	type,

values	are	converted	as	if	the	'toType'	function	were	applied	to	them.

If	only	the	default	expression	is	changed,	the	query	doesn't	do	anything	complex,	and	is	completed	almost	instantly.

Changing	the	column	type	is	the	only	complex	action	–	it	changes	the	contents	of	files	with	data.	For	large	tables,	this	may

take	a	long	time.

There	are	several	processing	stages:

Preparing	temporary	(new)	files	with	modified	data.

Renaming	old	files.

Renaming	the	temporary	(new)	files	to	the	old	names.

Deleting	the	old	files.

Only	the	first	stage	takes	time.	If	there	is	a	failure	at	this	stage,	the	data	is	not	changed.	If	there	is	a	failure	during	one	of

the	successive	stages,	data	can	be	restored	manually.	The	exception	is	if	the	old	files	were	deleted	from	the	file	system	but

the	data	for	the	new	files	did	not	get	written	to	the	disk	and	was	lost.

There	is	no	support	for	changing	the	column	type	in	arrays	and	nested	data	structures.

The	 ALTER 	query	lets	you	create	and	delete	separate	elements	(columns)	in	nested	data	structures,	but	not	whole	nested

data	structures.	To	add	a	nested	data	structure,	you	can	add	columns	with	a	name	like	 name.nested_name 	and	the	type	

Array(T) .	A	nested	data	structure	is	equivalent	to	multiple	array	columns	with	a	name	that	has	the	same	prefix	before	the

dot.

There	is	no	support	for	deleting	columns	in	the	primary	key	or	the	sampling	key	(columns	that	are	in	the	ENGINE

expression).	Changing	the	type	for	columns	that	are	included	in	the	primary	key	is	only	possible	if	this	change	does	not

cause	the	data	to	be	modified	(for	example,	it	is	allowed	to	add	values	to	an	Enum	or	change	a	type	with	 DateTime 	to	

UInt32 ).

If	the	 ALTER 	query	is	not	sufficient	for	making	the	table	changes	you	need,	you	can	create	a	new	table,	copy	the	data	to	it

using	the	 INSERT	SELECT 	query,	then	switch	the	tables	using	the	 RENAME 	query	and	delete	the	old	table.

The	 ALTER 	query	blocks	all	reads	and	writes	for	the	table.	In	other	words,	if	a	long	SELECT 	is	running	at	the	time	of	the	

ALTER 	query,	the	 ALTER 	query	will	wait	for	it	to	complete.	At	the	same	time,	all	new	queries	to	the	same	table	will	wait

while	this	 ALTER 	is	running.

For	tables	that	don't	store	data	themselves	(such	as	 Merge 	and	 Distributed ),	 ALTER 	just	changes	the	table	structure,

and	does	not	change	the	structure	of	subordinate	tables.	For	example,	when	running	ALTER	for	a	 Distributed 	table,	you

will	also	need	to	run	 ALTER 	for	the	tables	on	all	remote	servers.

The	 ALTER 	query	for	changing	columns	is	replicated.	The	instructions	are	saved	in	ZooKeeper,	then	each	replica	applies

them.	All	 ALTER 	queries	are	run	in	the	same	order.	The	query	waits	for	the	appropriate	actions	to	be	completed	on	the

other	replicas.	However,	a	query	to	change	columns	in	a	replicated	table	can	be	interrupted,	and	all	actions	will	be

DROP COLUMN name

MODIFY COLUMN name [type] [default_expr]



performed	asynchronously.

Manipulations	With	Partitions	and	Parts

It	only	works	for	tables	in	the	 MergeTree 	family.	The	following	operations	are	available:

DETACH	PARTITION 	–	Move	a	partition	to	the	'detached'	directory	and	forget	it.

DROP	PARTITION 	–	Delete	a	partition.

ATTACH	PART|PARTITION 	–	Add	a	new	part	or	partition	from	the	detached 	directory	to	the	table.

FREEZE	PARTITION 	–	Create	a	backup	of	a	partition.

FETCH	PARTITION 	–	Download	a	partition	from	another	server.

Each	type	of	query	is	covered	separately	below.

A	partition	in	a	table	is	data	for	a	single	calendar	month.	This	is	determined	by	the	values	of	the	date	key	specified	in	the

table	engine	parameters.	Each	month's	data	is	stored	separately	in	order	to	simplify	manipulations	with	this	data.

A	"part"	in	the	table	is	part	of	the	data	from	a	single	partition,	sorted	by	the	primary	key.

You	can	use	the	 system.parts 	table	to	view	the	set	of	table	parts	and	partitions:

active 	–	Only	count	active	parts.	Inactive	parts	are,	for	example,	source	parts	remaining	after	merging	to	a	larger	part	–

these	parts	are	deleted	approximately	10	minutes	after	merging.

Another	way	to	view	a	set	of	parts	and	partitions	is	to	go	into	the	directory	with	table	data.	Data	directory:	

/var/lib/clickhouse/data/database/table/ ,where	 /var/lib/clickhouse/ 	is	the	path	to	the	ClickHouse	data,

'database'	is	the	database	name,	and	'table'	is	the	table	name.	Example:

Here,	 20140317_20140323_2_2_0 	and	 20140317_20140323_4_4_0 	are	the	directories	of	data	parts.

Let's	break	down	the	name	of	the	first	part:	 20140317_20140323_2_2_0 .

20140317 	is	the	minimum	date	of	the	data	in	the	chunk.

20140323 	is	the	maximum	date	of	the	data	in	the	chunk.

2 	is	the	minimum	number	of	the	data	block.

2 	is	the	maximum	number	of	the	data	block.

0 	is	the	chunk	level	(the	depth	of	the	merge	tree	it	is	formed	from).

Each	piece	relates	to	a	single	partition	and	contains	data	for	just	one	month.	201403 	is	the	name	of	the	partition.	A

partition	is	a	set	of	parts	for	a	single	month.

On	an	operating	server,	you	can't	manually	change	the	set	of	parts	or	their	data	on	the	file	system,	since	the	server	won't

know	about	it.	For	non-replicated	tables,	you	can	do	this	when	the	server	is	stopped,	but	we	don't	recommended	it.	For

replicated	tables,	the	set	of	parts	can't	be	changed	in	any	case.

The	 detached 	directory	contains	parts	that	are	not	used	by	the	server	-	detached	from	the	table	using	the	 ALTER	...	

DETACH 	query.	Parts	that	are	damaged	are	also	moved	to	this	directory,	instead	of	deleting	them.	You	can	add,	delete,	or

modify	the	data	in	the	'detached'	directory	at	any	time	–	the	server	won't	know	about	this	until	you	make	the	 ALTER	TABLE	

SELECT * FROM system.parts WHERE active

$ ls -l /var/lib/clickhouse/data/test/visits/
total 48
drwxrwxrwx 2 clickhouse clickhouse 20480 May  5 02:58 20140317_20140323_2_2_0
drwxrwxrwx 2 clickhouse clickhouse 20480 May  5 02:58 20140317_20140323_4_4_0
drwxrwxrwx 2 clickhouse clickhouse  4096 May  5 02:55 detached
-rw-rw-rw- 1 clickhouse clickhouse     2 May  5 02:58 increment.txt



...	ATTACH 	query.

Move	all	data	for	partitions	named	'name'	to	the	'detached'	directory	and	forget	about	them.	The	partition	name	is

specified	in	YYYYMM	format.	It	can	be	indicated	in	single	quotes	or	without	them.

After	the	query	is	executed,	you	can	do	whatever	you	want	with	the	data	in	the	'detached'	directory	—	delete	it	from	the	file

system,	or	just	leave	it.

The	query	is	replicated	–	data	will	be	moved	to	the	'detached'	directory	and	forgotten	on	all	replicas.	The	query	can	only	be

sent	to	a	leader	replica.	To	find	out	if	a	replica	is	a	leader,	perform	SELECT	to	the	'system.replicas'	system	table.

Alternatively,	it	is	easier	to	make	a	query	on	all	replicas,	and	all	except	one	will	throw	an	exception.

The	same	as	the	DETACH 	operation.	Deletes	data	from	the	table.	Data	parts	will	be	tagged	as	inactive	and	will	be

completely	deleted	in	approximately	10	minutes.	The	query	is	replicated	–	data	will	be	deleted	on	all	replicas.

Adds	data	to	the	table	from	the	'detached'	directory.

It	is	possible	to	add	data	for	an	entire	partition	or	a	separate	part.	For	a	part,	specify	the	full	name	of	the	part	in	single

quotes.

The	query	is	replicated.	Each	replica	checks	whether	there	is	data	in	the	'detached'	directory.	If	there	is	data,	it	checks	the

integrity,	verifies	that	it	matches	the	data	on	the	server	that	initiated	the	query,	and	then	adds	it	if	everything	is	correct.	If

not,	it	downloads	data	from	the	query	requestor	replica,	or	from	another	replica	where	the	data	has	already	been	added.

So	you	can	put	data	in	the	'detached'	directory	on	one	replica,	and	use	the	ALTER	...	ATTACH	query	to	add	it	to	the	table	on

all	replicas.

Creates	a	local	backup	of	one	or	multiple	partitions.	The	name	can	be	the	full	name	of	the	partition	(for	example,	201403),

or	its	prefix	(for	example,	2014):	then	the	backup	will	be	created	for	all	the	corresponding	partitions.

The	query	does	the	following:	for	a	data	snapshot	at	the	time	of	execution,	it	creates	hardlinks	to	table	data	in	the	directory

/var/lib/clickhouse/shadow/N/...

/var/lib/clickhouse/ 	is	the	working	ClickHouse	directory	from	the	config.	 N 	is	the	incremental	number	of	the	backup.

The	same	structure	of	directories	is	created	inside	the	backup	as	inside	/var/lib/clickhouse/ .	It	also	performs	'chmod'

for	all	files,	forbidding	writes	to	them.

The	backup	is	created	almost	instantly	(but	first	it	waits	for	current	queries	to	the	corresponding	table	to	finish	running).

At	first,	the	backup	doesn't	take	any	space	on	the	disk.	As	the	system	works,	the	backup	can	take	disk	space,	as	data	is

modified.	If	the	backup	is	made	for	old	enough	data,	it	won't	take	space	on	the	disk.

After	creating	the	backup,	data	from	 /var/lib/clickhouse/shadow/ 	can	be	copied	to	the	remote	server	and	then	deleted

on	the	local	server.	The	entire	backup	process	is	performed	without	stopping	the	server.

The	 ALTER	...	FREEZE	PARTITION 	query	is	not	replicated.	A	local	backup	is	only	created	on	the	local	server.

As	an	alternative,	you	can	manually	copy	data	from	the	 /var/lib/clickhouse/data/database/table 	directory.	But	if	you

do	this	while	the	server	is	running,	race	conditions	are	possible	when	copying	directories	with	files	being	added	or

changed,	and	the	backup	may	be	inconsistent.	You	can	do	this	if	the	server	isn't	running	–	then	the	resulting	data	will	be

ALTER TABLE [db.]table DETACH PARTITION 'name'

ALTER TABLE [db.]table DROP PARTITION 'name'

ALTER TABLE [db.]table ATTACH PARTITION|PART 'name'

ALTER TABLE [db.]table FREEZE PARTITION 'name'



the	same	as	after	the	 ALTER	TABLE	t	FREEZE	PARTITION 	query.

ALTER	TABLE	...	FREEZE	PARTITION 	only	copies	data,	not	table	metadata.	To	make	a	backup	of	table	metadata,	copy

the	file	 /var/lib/clickhouse/metadata/database/table.sql

To	restore	from	a	backup:

Use	the	CREATE	query	to	create	the	table	if	it	doesn't	exist.	The	query	can	be	taken	from	an	.sql	file	(replace	ATTACH

in	it	with	 CREATE ).

Copy	the	data	from	the	data/database/table/	directory	inside	the	backup	to	the	

/var/lib/clickhouse/data/database/table/detached/	directory.

Run	 ALTER	TABLE	...	ATTACH	PARTITION	YYYYMM 	queries,	where	 YYYYMM 	is	the	month,	for	every	month.

In	this	way,	data	from	the	backup	will	be	added	to	the	table.	Restoring	from	a	backup	doesn't	require	stopping	the	server.

Backups	and	Replication

Replication	provides	protection	from	device	failures.	If	all	data	disappeared	on	one	of	your	replicas,	follow	the	instructions

in	the	"Restoration	after	failure"	section	to	restore	it.

For	protection	from	device	failures,	you	must	use	replication.	For	more	information	about	replication,	see	the	section	"Data

replication".

Backups	protect	against	human	error	(accidentally	deleting	data,	deleting	the	wrong	data	or	in	the	wrong	cluster,	or

corrupting	data).	For	high-volume	databases,	it	can	be	difficult	to	copy	backups	to	remote	servers.	In	such	cases,	to

protect	from	human	error,	you	can	keep	a	backup	on	the	same	server	(it	will	reside	in	 /var/lib/clickhouse/shadow/ ).

This	query	only	works	for	replicatable	tables.

It	downloads	the	specified	partition	from	the	shard	that	has	its	ZooKeeper	path 	specified	in	the	 FROM 	clause,	then	puts	it

in	the	 detached 	directory	for	the	specified	table.

Although	the	query	is	called	 ALTER	TABLE ,	it	does	not	change	the	table	structure,	and	does	not	immediately	change	the

data	available	in	the	table.

Data	is	placed	in	the	 detached 	directory.	You	can	use	the	 ALTER	TABLE	...	ATTACH 	query	to	attach	the	data.

The	 FROM 	clause	specifies	the	path	in	 ZooKeeper .	For	example,	 /clickhouse/tables/01-01/visits .	Before

downloading,	the	system	checks	that	the	partition	exists	and	the	table	structure	matches.	The	most	appropriate	replica	is

selected	automatically	from	the	healthy	replicas.

The	 ALTER	...	FETCH	PARTITION 	query	is	not	replicated.	The	partition	will	be	downloaded	to	the	'detached'	directory

only	on	the	local	server.	Note	that	if	after	this	you	use	the	 ALTER	TABLE	...	ATTACH 	query	to	add	data	to	the	table,	the

data	will	be	added	on	all	replicas	(on	one	of	the	replicas	it	will	be	added	from	the	'detached'	directory,	and	on	the	rest	it	will

be	loaded	from	neighboring	replicas).

Synchronicity	of	ALTER	Queries

For	non-replicatable	tables,	all	 ALTER 	queries	are	performed	synchronously.	For	replicatable	tables,	the	query	just	adds

instructions	for	the	appropriate	actions	to	 ZooKeeper ,	and	the	actions	themselves	are	performed	as	soon	as	possible.

However,	the	query	can	wait	for	these	actions	to	be	completed	on	all	the	replicas.

For	 ALTER	...	ATTACH|DETACH|DROP 	queries,	you	can	use	the	 replication_alter_partitions_sync 	setting	to	set	up

waiting.	Possible	values:	 0 	–	do	not	wait;	 1 	–	only	wait	for	own	execution	(default);	 2 	–	wait	for	all.

[]

ALTER TABLE [db.]table FETCH PARTITION 'name' FROM 'path-in-zookeeper'



Mutations

Mutations	are	an	ALTER	query	variant	that	allows	changing	or	deleting	rows	in	a	table.	In	contrast	to	standard	UPDATE 	and	

DELETE 	queries	that	are	intended	for	point	data	changes,	mutations	are	intended	for	heavy	operations	that	change	a	lot	of

rows	in	a	table.

The	functionality	is	in	beta	stage	and	is	available	starting	with	the	1.1.54388	version.	Currently	*MergeTree	table	engines

are	supported	(both	replicated	and	unreplicated).

Existing	tables	are	ready	for	mutations	as-is	(no	conversion	necessary),	but	after	the	first	mutation	is	applied	to	a	table,	its

metadata	format	becomes	incompatible	with	previous	server	versions	and	falling	back	to	a	previous	version	becomes

impossible.

Currently	available	commands:

The	 filter_expr 	must	be	of	type	UInt8.	The	query	deletes	rows	in	the	table	for	which	this	expression	takes	a	non-zero

value.

The	command	is	available	starting	with	the	18.12.14	version.	The	filter_expr 	must	be	of	type	UInt8.	This	query	updates

values	of	specified	columns	to	the	values	of	corresponding	expressions	in	rows	for	which	the	 filter_expr 	takes	a	non-

zero	value.	Values	are	casted	to	the	column	type	using	the	 CAST 	operator.	Updating	columns	that	are	used	in	the

calculation	of	the	primary	or	the	partition	key	is	not	supported.

One	query	can	contain	several	commands	separated	by	commas.

For	*MergeTree	tables	mutations	execute	by	rewriting	whole	data	parts.	There	is	no	atomicity	-	parts	are	substituted	for

mutated	parts	as	soon	as	they	are	ready	and	a	 SELECT 	query	that	started	executing	during	a	mutation	will	see	data	from

parts	that	have	already	been	mutated	along	with	data	from	parts	that	have	not	been	mutated	yet.

Mutations	are	totally	ordered	by	their	creation	order	and	are	applied	to	each	part	in	that	order.	Mutations	are	also	partially

ordered	with	INSERTs	-	data	that	was	inserted	into	the	table	before	the	mutation	was	submitted	will	be	mutated	and	data

that	was	inserted	after	that	will	not	be	mutated.	Note	that	mutations	do	not	block	INSERTs	in	any	way.

A	mutation	query	returns	immediately	after	the	mutation	entry	is	added	(in	case	of	replicated	tables	to	ZooKeeper,	for

nonreplicated	tables	-	to	the	filesystem).	The	mutation	itself	executes	asynchronously	using	the	system	profile	settings.

To	track	the	progress	of	mutations	you	can	use	the	 system.mutations 	table.	A	mutation	that	was	successfully	submitted

will	continue	to	execute	even	if	ClickHouse	servers	are	restarted.	There	is	no	way	to	roll	back	the	mutation	once	it	is

submitted.

Entries	for	finished	mutations	are	not	deleted	right	away	(the	number	of	preserved	entries	is	determined	by	the	

finished_mutations_to_keep 	storage	engine	parameter).	Older	mutation	entries	are	deleted.

SYSTEM.MUTATIONS	TABLE

The	table	contains	information	about	mutations	of	MergeTree	tables	and	their	progress.	Each	mutation	command	is

represented	by	a	single	row.	The	table	has	the	following	columns:

database,	table	-	The	name	of	the	database	and	table	to	which	the	mutation	was	applied.

mutation_id	-	The	ID	of	the	mutation.	For	replicated	tables	these	IDs	correspond	to	znode	names	in	the	
<table_path_in_zookeeper>/mutations/ 	directory	in	ZooKeeper.	For	unreplicated	tables	the	IDs	correspond	to	file

names	in	the	data	directory	of	the	table.

command	-	The	mutation	command	string	(the	part	of	the	query	after	ALTER	TABLE	[db.]table ).

ALTER TABLE [db.]table DELETE WHERE filter_expr

ALTER TABLE [db.]table UPDATE column1 = expr1 [, ...] WHERE filter_expr



create_time	-	When	this	mutation	command	was	submitted	for	execution.

block_numbers.partition_id,	block_numbers.number	-	A	Nested	column.	For	mutations	of	replicated	tables	contains	one
record	for	each	partition:	the	partition	ID	and	the	block	number	that	was	acquired	by	the	mutation	(in	each	partition	only

parts	that	contain	blocks	with	numbers	less	than	the	block	number	acquired	by	the	mutation	in	that	partition	will	be

mutated).	Because	in	non-replicated	tables	blocks	numbers	in	all	partitions	form	a	single	sequence,	for	mutatations	of	non-

replicated	tables	the	column	will	contain	one	record	with	a	single	block	number	acquired	by	the	mutation.

parts_to_do	-	The	number	of	data	parts	that	need	to	be	mutated	for	the	mutation	to	finish.

is_done	-	Is	the	mutation	done?	Note	that	even	if	 parts_to_do	=	0 	it	is	possible	that	a	mutation	of	a	replicated	table	is
not	done	yet	because	of	a	long-running	INSERT	that	will	create	a	new	data	part	that	will	need	to	be	mutated.

Miscellaneous	Queries

ATTACH

This	query	is	exactly	the	same	as	CREATE ,	but

instead	of	the	word	 CREATE 	it	uses	the	word	 ATTACH .

The	query	doesn't	create	data	on	the	disk,	but	assumes	that	data	is	already	in	the	appropriate	places,	and	just	adds

information	about	the	table	to	the	server.	After	executing	an	ATTACH	query,	the	server	will	know	about	the	existence

of	the	table.

If	the	table	was	previously	detached	( DETACH ),	meaning	that	its	structure	is	known,	you	can	use	shorthand	without

defining	the	structure.

This	query	is	used	when	starting	the	server.	The	server	stores	table	metadata	as	files	with	ATTACH 	queries,	which	it	simply

runs	at	launch	(with	the	exception	of	system	tables,	which	are	explicitly	created	on	the	server).

DROP

This	query	has	two	types:	 DROP	DATABASE 	and	 DROP	TABLE .

Deletes	all	tables	inside	the	'db'	database,	then	deletes	the	'db'	database	itself.	If	 IF	EXISTS 	is	specified,	it	doesn't	return

an	error	if	the	database	doesn't	exist.

Deletes	the	table.	If	 IF	EXISTS 	is	specified,	it	doesn't	return	an	error	if	the	table	doesn't	exist	or	the	database	doesn't

exist.

DETACH

Deletes	information	about	the	'name'	table	from	the	server.	The	server	stops	knowing	about	the	table's	existence.

This	does	not	delete	the	table's	data	or	metadata.	On	the	next	server	launch,	the	server	will	read	the	metadata	and	find	out

about	the	table	again.	Similarly,	a	"detached"	table	can	be	re-attached	using	the	 ATTACH 	query	(with	the	exception	of

system	tables,	which	do	not	have	metadata	stored	for	them).

ATTACH TABLE [IF NOT EXISTS] [db.]name [ON CLUSTER cluster]

DROP DATABASE [IF EXISTS] db [ON CLUSTER cluster]

DROP [TEMPORARY] TABLE [IF EXISTS] [db.]name [ON CLUSTER cluster]

DETACH TABLE [IF EXISTS] [db.]name [ON CLUSTER cluster]



There	is	no	 DETACH	DATABASE 	query.

RENAME

Renames	one	or	more	tables.

All	tables	are	renamed	under	global	locking.	Renaming	tables	is	a	light	operation.	If	you	indicated	another	database	after

TO,	the	table	will	be	moved	to	this	database.	However,	the	directories	with	databases	must	reside	in	the	same	file	system

(otherwise,	an	error	is	returned).

SHOW	DATABASES

Prints	a	list	of	all	databases.	This	query	is	identical	to	 SELECT	name	FROM	system.databases	[INTO	OUTFILE	filename]	

[FORMAT	format] .

See	also	the	section	"Formats".

SHOW	TABLES

Displays	a	list	of	tables

tables	from	the	current	database,	or	from	the	'db'	database	if	"FROM	db"	is	specified.

all	tables,	or	tables	whose	name	matches	the	pattern,	if	"LIKE	'pattern'"	is	specified.

This	query	is	identical	to:	 SELECT	name	FROM	system.tables	WHERE	database	=	'db'	[AND	name	LIKE	'pattern']	

[INTO	OUTFILE	filename]	[FORMAT	format] .

See	also	the	section	"LIKE	operator".

SHOW	PROCESSLIST

Outputs	a	list	of	queries	currently	being	processed,	other	than	SHOW	PROCESSLIST 	queries.

Prints	a	table	containing	the	columns:

user	–	The	user	who	made	the	query.	Keep	in	mind	that	for	distributed	processing,	queries	are	sent	to	remote	servers
under	the	'default'	user.	SHOW	PROCESSLIST	shows	the	username	for	a	specific	query,	not	for	a	query	that	this	query

initiated.

address	–	The	name	of	the	host	that	the	query	was	sent	from.	For	distributed	processing,	on	remote	servers,	this	is	the
name	of	the	query	requestor	host.	To	track	where	a	distributed	query	was	originally	made	from,	look	at	SHOW

PROCESSLIST	on	the	query	requestor	server.

elapsed	–	The	execution	time,	in	seconds.	Queries	are	output	in	order	of	decreasing	execution	time.

rows_read,	bytes_read	–	How	many	rows	and	bytes	of	uncompressed	data	were	read	when	processing	the	query.	For
distributed	processing,	data	is	totaled	from	all	the	remote	servers.	This	is	the	data	used	for	restrictions	and	quotas.

RENAME TABLE [db11.]name11 TO [db12.]name12, [db21.]name21 TO [db22.]name22, ... [ON CLUSTER cluster]

SHOW DATABASES [INTO OUTFILE filename] [FORMAT format]

SHOW [TEMPORARY] TABLES [FROM db] [LIKE 'pattern'] [INTO OUTFILE filename] [FORMAT format]

SHOW PROCESSLIST [INTO OUTFILE filename] [FORMAT format]



memory_usage	–	Current	RAM	usage	in	bytes.	See	the	setting	'max_memory_usage'.

query	–	The	query	itself.	In	INSERT	queries,	the	data	for	insertion	is	not	output.

query_id	–	The	query	identifier.	Non-empty	only	if	it	was	explicitly	defined	by	the	user.	For	distributed	processing,	the
query	ID	is	not	passed	to	remote	servers.

This	query	is	identical	to:	 SELECT	*	FROM	system.processes	[INTO	OUTFILE	filename]	[FORMAT	format] .

Tip	(execute	in	the	console):

SHOW	CREATE	TABLE

Returns	a	single	 String -type	'statement'	column,	which	contains	a	single	value	–	the	CREATE 	query	used	for	creating	the

specified	table.

DESCRIBE	TABLE

Returns	two	 String -type	columns:	 name 	and	 type ,	which	indicate	the	names	and	types	of	columns	in	the	specified

table.

Nested	data	structures	are	output	in	"expanded"	format.	Each	column	is	shown	separately,	with	the	name	after	a	dot.

EXISTS

Returns	a	single	 UInt8 -type	column,	which	contains	the	single	value	 0 	if	the	table	or	database	doesn't	exist,	or	 1 	if	the

table	exists	in	the	specified	database.

USE

Lets	you	set	the	current	database	for	the	session.	The	current	database	is	used	for	searching	for	tables	if	the	database	is

not	explicitly	defined	in	the	query	with	a	dot	before	the	table	name.	This	query	can't	be	made	when	using	the	HTTP

protocol,	since	there	is	no	concept	of	a	session.

SET

Allows	you	to	set	 param 	to	 value .	You	can	also	make	all	the	settings	from	the	specified	settings	profile	in	a	single	query.

To	do	this,	specify	'profile'	as	the	setting	name.	For	more	information,	see	the	section	"Settings".	The	setting	is	made	for

the	session,	or	for	the	server	(globally)	if	 GLOBAL 	is	specified.	When	making	a	global	setting,	the	setting	is	not	applied	to

sessions	already	running,	including	the	current	session.	It	will	only	be	used	for	new	sessions.

watch -n1 "clickhouse-client --query='SHOW PROCESSLIST'"

SHOW CREATE [TEMPORARY] TABLE [db.]table [INTO OUTFILE filename] [FORMAT format]

DESC|DESCRIBE TABLE [db.]table [INTO OUTFILE filename] [FORMAT format]

EXISTS [TEMPORARY] TABLE [db.]name [INTO OUTFILE filename] [FORMAT format]

USE db

SET param = value



When	the	server	is	restarted,	global	settings	made	using	SET 	are	lost.	To	make	settings	that	persist	after	a	server	restart,

you	can	only	use	the	server's	config	file.

OPTIMIZE

Asks	the	table	engine	to	do	something	for	optimization.	Supported	only	by	*MergeTree 	engines,	in	which	this	query

initializes	a	non-scheduled	merge	of	data	parts.	If	you	specify	a	 PARTITION ,	only	the	specified	partition	will	be	optimized.

If	you	specify	 FINAL ,	optimization	will	be	performed	even	when	all	the	data	is	already	in	one	part.

KILL	QUERY

Attempts	to	forcibly	terminate	the	currently	running	queries.	The	queries	to	terminate	are	selected	from	the

system.processes	table	using	the	criteria	defined	in	the	 WHERE 	clause	of	the	 KILL 	query.

Examples:

Read-only	users	can	only	stop	their	own	queries.

By	default,	the	asynchronous	version	of	queries	is	used	( ASYNC ),	which	doesn't	wait	for	confirmation	that	queries	have

stopped.

The	synchronous	version	( SYNC )	waits	for	all	queries	to	stop	and	displays	information	about	each	process	as	it	stops.	The

response	contains	the	 kill_status 	column,	which	can	take	the	following	values:

1.	 'finished'	–	The	query	was	terminated	successfully.

2.	 'waiting'	–	Waiting	for	the	query	to	end	after	sending	it	a	signal	to	terminate.

3.	 The	other	values	explain	why	the	query	can't	be	stopped.

A	test	query	( TEST )	only	checks	the	user's	rights	and	displays	a	list	of	queries	to	stop.

Functions

There	are	at	least*	two	types	of	functions	-	regular	functions	(they	are	just	called	"functions")	and	aggregate	functions.

These	are	completely	different	concepts.	Regular	functions	work	as	if	they	are	applied	to	each	row	separately	(for	each

row,	the	result	of	the	function	doesn't	depend	on	the	other	rows).	Aggregate	functions	accumulate	a	set	of	values	from

various	rows	(i.e.	they	depend	on	the	entire	set	of	rows).

In	this	section	we	discuss	regular	functions.	For	aggregate	functions,	see	the	section	"Aggregate	functions".

OPTIMIZE TABLE [db.]name [ON CLUSTER cluster] [PARTITION partition] [FINAL]

Warning

OPTIMIZE	can't	fix	the	"Too	many	parts"	error.



KILL QUERY [ON CLUSTER cluster]
  WHERE <where expression to SELECT FROM system.processes query>
  [SYNC|ASYNC|TEST]
  [FORMAT format]

-- Forcibly terminates all queries with the specified query_id:
KILL QUERY WHERE query_id='2-857d-4a57-9ee0-327da5d60a90'

-- Synchronously terminates all queries run by 'username':
KILL QUERY WHERE user='username' SYNC



*	-	There	is	a	third	type	of	function	that	the	'arrayJoin'	function	belongs	to;	table	functions	can	also	be	mentioned

separately.*

Strong	typing

In	contrast	to	standard	SQL,	ClickHouse	has	strong	typing.	In	other	words,	it	doesn't	make	implicit	conversions	between

types.	Each	function	works	for	a	specific	set	of	types.	This	means	that	sometimes	you	need	to	use	type	conversion

functions.

Common	subexpression	elimination

All	expressions	in	a	query	that	have	the	same	AST	(the	same	record	or	same	result	of	syntactic	parsing)	are	considered	to

have	identical	values.	Such	expressions	are	concatenated	and	executed	once.	Identical	subqueries	are	also	eliminated	this

way.

Types	of	results

All	functions	return	a	single	return	as	the	result	(not	several	values,	and	not	zero	values).	The	type	of	result	is	usually

defined	only	by	the	types	of	arguments,	not	by	the	values.	Exceptions	are	the	tupleElement	function	(the	a.N	operator),

and	the	toFixedString	function.

Constants

For	simplicity,	certain	functions	can	only	work	with	constants	for	some	arguments.	For	example,	the	right	argument	of	the

LIKE	operator	must	be	a	constant.	Almost	all	functions	return	a	constant	for	constant	arguments.	The	exception	is

functions	that	generate	random	numbers.	The	'now'	function	returns	different	values	for	queries	that	were	run	at	different

times,	but	the	result	is	considered	a	constant,	since	constancy	is	only	important	within	a	single	query.	A	constant

expression	is	also	considered	a	constant	(for	example,	the	right	half	of	the	LIKE	operator	can	be	constructed	from	multiple

constants).

Functions	can	be	implemented	in	different	ways	for	constant	and	non-constant	arguments	(different	code	is	executed).

But	the	results	for	a	constant	and	for	a	true	column	containing	only	the	same	value	should	match	each	other.

NULL	processing

Functions	have	the	following	behaviors:

If	at	least	one	of	the	arguments	of	the	function	is	NULL ,	the	function	result	is	also	 NULL .

Special	behavior	that	is	specified	individually	in	the	description	of	each	function.	In	the	ClickHouse	source	code,	these

functions	have	 UseDefaultImplementationForNulls=false .

Constancy

Functions	can't	change	the	values	of	their	arguments	–	any	changes	are	returned	as	the	result.	Thus,	the	result	of

calculating	separate	functions	does	not	depend	on	the	order	in	which	the	functions	are	written	in	the	query.

Error	handling

Some	functions	might	throw	an	exception	if	the	data	is	invalid.	In	this	case,	the	query	is	canceled	and	an	error	text	is

returned	to	the	client.	For	distributed	processing,	when	an	exception	occurs	on	one	of	the	servers,	the	other	servers	also

attempt	to	abort	the	query.



Evaluation	of	argument	expressions

In	almost	all	programming	languages,	one	of	the	arguments	might	not	be	evaluated	for	certain	operators.	This	is	usually

the	operators	 && ,	 || ,	and	 ?: .	But	in	ClickHouse,	arguments	of	functions	(operators)	are	always	evaluated.	This	is

because	entire	parts	of	columns	are	evaluated	at	once,	instead	of	calculating	each	row	separately.

Performing	functions	for	distributed	query	processing

For	distributed	query	processing,	as	many	stages	of	query	processing	as	possible	are	performed	on	remote	servers,	and

the	rest	of	the	stages	(merging	intermediate	results	and	everything	after	that)	are	performed	on	the	requestor	server.

This	means	that	functions	can	be	performed	on	different	servers.	For	example,	in	the	query	SELECT	f(sum(g(x)))	FROM	

distributed_table	GROUP	BY	h(y),

if	a	 distributed_table 	has	at	least	two	shards,	the	functions	'g'	and	'h'	are	performed	on	remote	servers,	and	the

function	'f'	is	performed	on	the	requestor	server.

if	a	 distributed_table 	has	only	one	shard,	all	the	'f',	'g',	and	'h'	functions	are	performed	on	this	shard's	server.

The	result	of	a	function	usually	doesn't	depend	on	which	server	it	is	performed	on.	However,	sometimes	this	is	important.

For	example,	functions	that	work	with	dictionaries	use	the	dictionary	that	exists	on	the	server	they	are	running	on.	Another

example	is	the	 hostName 	function,	which	returns	the	name	of	the	server	it	is	running	on	in	order	to	make	GROUP	BY 	by

servers	in	a	 SELECT 	query.

If	a	function	in	a	query	is	performed	on	the	requestor	server,	but	you	need	to	perform	it	on	remote	servers,	you	can	wrap	it

in	an	'any'	aggregate	function	or	add	it	to	a	key	in	 GROUP	BY .

Arithmetic	functions

For	all	arithmetic	functions,	the	result	type	is	calculated	as	the	smallest	number	type	that	the	result	fits	in,	if	there	is	such	a

type.	The	minimum	is	taken	simultaneously	based	on	the	number	of	bits,	whether	it	is	signed,	and	whether	it	floats.	If

there	are	not	enough	bits,	the	highest	bit	type	is	taken.

Example:

Arithmetic	functions	work	for	any	pair	of	types	from	UInt8,	UInt16,	UInt32,	UInt64,	Int8,	Int16,	Int32,	Int64,	Float32,	or

Float64.

Overflow	is	produced	the	same	way	as	in	C++.

plus(a,	b),	a	+	b	operator

Calculates	the	sum	of	the	numbers.	You	can	also	add	integer	numbers	with	a	date	or	date	and	time.	In	the	case	of	a	date,

adding	an	integer	means	adding	the	corresponding	number	of	days.	For	a	date	with	time,	it	means	adding	the

corresponding	number	of	seconds.

minus(a,	b),	a	-	b	operator

SELECT toTypeName(0), toTypeName(0 + 0), toTypeName(0 + 0 + 0), toTypeName(0 + 0 + 0 + 0)

┌─toTypeName(0)─┬─toTypeName(plus(0, 0))─┬─toTypeName(plus(plus(0, 0), 0))─┬─toTypeName(plus(plus(plus(0, 0), 
0), 0))─┐
│ UInt8         │ UInt16                 │ UInt32                          │ UInt64                                   
│
└───────────────┴────────────────────────┴─────────────────────────────────┴──────────────────────────────────────────┘



Calculates	the	difference.	The	result	is	always	signed.

You	can	also	calculate	integer	numbers	from	a	date	or	date	with	time.	The	idea	is	the	same	–	see	above	for	'plus'.

multiply(a,	b),	a	*	b	operator

Calculates	the	product	of	the	numbers.

divide(a,	b),	a	/	b	operator

Calculates	the	quotient	of	the	numbers.	The	result	type	is	always	a	floating-point	type.	It	is	not	integer	division.	For	integer

division,	use	the	'intDiv'	function.	When	dividing	by	zero	you	get	'inf',	'-inf',	or	'nan'.

intDiv(a,	b)

Calculates	the	quotient	of	the	numbers.	Divides	into	integers,	rounding	down	(by	the	absolute	value).	An	exception	is

thrown	when	dividing	by	zero	or	when	dividing	a	minimal	negative	number	by	minus	one.

intDivOrZero(a,	b)

Differs	from	'intDiv'	in	that	it	returns	zero	when	dividing	by	zero	or	when	dividing	a	minimal	negative	number	by	minus	one.

modulo(a,	b),	a	%	b	operator

Calculates	the	remainder	after	division.	If	arguments	are	floating-point	numbers,	they	are	pre-converted	to	integers	by

dropping	the	decimal	portion.	The	remainder	is	taken	in	the	same	sense	as	in	C++.	Truncated	division	is	used	for	negative

numbers.	An	exception	is	thrown	when	dividing	by	zero	or	when	dividing	a	minimal	negative	number	by	minus	one.

negate(a),	-a	operator

Calculates	a	number	with	the	reverse	sign.	The	result	is	always	signed.

abs(a)

Calculates	the	absolute	value	of	the	number	(a).	That	is,	if	a	<	0,	it	returns	-a.	For	unsigned	types	it	doesn't	do	anything.	For

signed	integer	types,	it	returns	an	unsigned	number.

gcd(a,	b)

Returns	the	greatest	common	divisor	of	the	numbers.	An	exception	is	thrown	when	dividing	by	zero	or	when	dividing	a

minimal	negative	number	by	minus	one.

lcm(a,	b)

Returns	the	least	common	multiple	of	the	numbers.	An	exception	is	thrown	when	dividing	by	zero	or	when	dividing	a

minimal	negative	number	by	minus	one.

Comparison	functions

Comparison	functions	always	return	0	or	1	(Uint8).

The	following	types	can	be	compared:



numbers

strings	and	fixed	strings

dates

dates	with	times

within	each	group,	but	not	between	different	groups.

For	example,	you	can't	compare	a	date	with	a	string.	You	have	to	use	a	function	to	convert	the	string	to	a	date,	or	vice

versa.

Strings	are	compared	by	bytes.	A	shorter	string	is	smaller	than	all	strings	that	start	with	it	and	that	contain	at	least	one

more	character.

Note.	Up	until	version	1.1.54134,	signed	and	unsigned	numbers	were	compared	the	same	way	as	in	C++.	In	other	words,

you	could	get	an	incorrect	result	in	cases	like	SELECT	9223372036854775807	>	-1.	This	behavior	changed	in	version

1.1.54134	and	is	now	mathematically	correct.

equals,	a	=	b	and	a	==	b	operator

notEquals,	a	!	operator=	b	and	a	<>	b

less,	<	operator

greater,	>	operator

lessOrEquals,	<=	operator

greaterOrEquals,	>=	operator

Logical	functions

Logical	functions	accept	any	numeric	types,	but	return	a	UInt8	number	equal	to	0	or	1.

Zero	as	an	argument	is	considered	"false,"	while	any	non-zero	value	is	considered	"true".

and,	AND	operator

or,	OR	operator

not,	NOT	operator

xor

[]

Type	conversion	functions

toUInt8,	toUInt16,	toUInt32,	toUInt64



toInt8,	toInt16,	toInt32,	toInt64

toFloat32,	toFloat64

toUInt8OrZero,	toUInt16OrZero,	toUInt32OrZero,	toUInt64OrZero,	toInt8OrZero,	toInt16OrZero,

toInt32OrZero,	toInt64OrZero,	toFloat32OrZero,	toFloat64OrZero

toDate,	toDateTime

toDecimal32(value,	S),	toDecimal64(value,	S),	toDecimal128(value,	S)

Converts	 value 	to	Decimal	[#data_type-decimal]	of	precision	 S .	The	 value 	can	be	a	number	or	a	string.	The	S 	(scale)

parameter	specifies	the	number	of	decimal	places.

toString

Functions	for	converting	between	numbers,	strings	(but	not	fixed	strings),	dates,	and	dates	with	times.	All	these	functions

accept	one	argument.

When	converting	to	or	from	a	string,	the	value	is	formatted	or	parsed	using	the	same	rules	as	for	the	TabSeparated	format

(and	almost	all	other	text	formats).	If	the	string	can't	be	parsed,	an	exception	is	thrown	and	the	request	is	canceled.

When	converting	dates	to	numbers	or	vice	versa,	the	date	corresponds	to	the	number	of	days	since	the	beginning	of	the

Unix	epoch.	When	converting	dates	with	times	to	numbers	or	vice	versa,	the	date	with	time	corresponds	to	the	number	of

seconds	since	the	beginning	of	the	Unix	epoch.

The	date	and	date-with-time	formats	for	the	toDate/toDateTime	functions	are	defined	as	follows:

As	an	exception,	if	converting	from	UInt32,	Int32,	UInt64,	or	Int64	numeric	types	to	Date,	and	if	the	number	is	greater	than

or	equal	to	65536,	the	number	is	interpreted	as	a	Unix	timestamp	(and	not	as	the	number	of	days)	and	is	rounded	to	the

date.	This	allows	support	for	the	common	occurrence	of	writing	'toDate(unix_timestamp)',	which	otherwise	would	be	an

error	and	would	require	writing	the	more	cumbersome	'toDate(toDateTime(unix_timestamp))'.

Conversion	between	a	date	and	date	with	time	is	performed	the	natural	way:	by	adding	a	null	time	or	dropping	the	time.

Conversion	between	numeric	types	uses	the	same	rules	as	assignments	between	different	numeric	types	in	C++.

Additionally,	the	toString	function	of	the	DateTime	argument	can	take	a	second	String	argument	containing	the	name	of

the	time	zone.	Example:	 Asia/Yekaterinburg 	In	this	case,	the	time	is	formatted	according	to	the	specified	time	zone.

Also	see	the	 toUnixTimestamp 	function.

toFixedString(s,	N)

YYYY-MM-DD
YYYY-MM-DD hh:mm:ss

SELECT
    now() AS now_local,
    toString(now(), 'Asia/Yekaterinburg') AS now_yekat

┌───────────now_local─┬─now_yekat───────────┐
│ 2016-06-15 00:11:21 │ 2016-06-15 02:11:21 │
└─────────────────────┴─────────────────────┘



Converts	a	String	type	argument	to	a	FixedString(N)	type	(a	string	with	fixed	length	N).	N	must	be	a	constant.	If	the	string

has	fewer	bytes	than	N,	it	is	passed	with	null	bytes	to	the	right.	If	the	string	has	more	bytes	than	N,	an	exception	is	thrown.

toStringCutToZero(s)

Accepts	a	String	or	FixedString	argument.	Returns	the	String	with	the	content	truncated	at	the	first	zero	byte	found.

Example:

reinterpretAsUInt8,	reinterpretAsUInt16,	reinterpretAsUInt32,	reinterpretAsUInt64

reinterpretAsInt8,	reinterpretAsInt16,	reinterpretAsInt32,	reinterpretAsInt64

reinterpretAsFloat32,	reinterpretAsFloat64

reinterpretAsDate,	reinterpretAsDateTime

These	functions	accept	a	string	and	interpret	the	bytes	placed	at	the	beginning	of	the	string	as	a	number	in	host	order

(little	endian).	If	the	string	isn't	long	enough,	the	functions	work	as	if	the	string	is	padded	with	the	necessary	number	of	null

bytes.	If	the	string	is	longer	than	needed,	the	extra	bytes	are	ignored.	A	date	is	interpreted	as	the	number	of	days	since	the

beginning	of	the	Unix	Epoch,	and	a	date	with	time	is	interpreted	as	the	number	of	seconds	since	the	beginning	of	the	Unix

Epoch.

reinterpretAsString

This	function	accepts	a	number	or	date	or	date	with	time,	and	returns	a	string	containing	bytes	representing	the

corresponding	value	in	host	order	(little	endian).	Null	bytes	are	dropped	from	the	end.	For	example,	a	UInt32	type	value	of

255	is	a	string	that	is	one	byte	long.

CAST(x,	t)

Converts	'x'	to	the	't'	data	type.	The	syntax	CAST(x	AS	t)	is	also	supported.

Example:

SELECT toFixedString('foo', 8) AS s, toStringCutToZero(s) AS s_cut

┌─s─────────────┬─s_cut─┐
│ foo\0\0\0\0\0 │ foo   │
└───────────────┴───────┘

SELECT toFixedString('foo\0bar', 8) AS s, toStringCutToZero(s) AS s_cut

┌─s──────────┬─s_cut─┐
│ foo\0bar\0 │ foo   │
└────────────┴───────┘

SELECT
    '2016-06-15 23:00:00' AS timestamp,
    CAST(timestamp AS DateTime) AS datetime,
    CAST(timestamp AS Date) AS date,
    CAST(timestamp, 'String') AS string,
    CAST(timestamp, 'FixedString(22)') AS fixed_string



Conversion	to	FixedString(N)	only	works	for	arguments	of	type	String	or	FixedString(N).

Type	conversion	to	Nullable	[#data_type-nullable]	and	back	is	supported.	Example:

Functions	for	working	with	dates	and	times

Support	for	time	zones

All	functions	for	working	with	the	date	and	time	that	have	a	logical	use	for	the	time	zone	can	accept	a	second	optional	time

zone	argument.	Example:	Asia/Yekaterinburg.	In	this	case,	they	use	the	specified	time	zone	instead	of	the	local	(default)

one.

Only	time	zones	that	differ	from	UTC	by	a	whole	number	of	hours	are	supported.

toYear

Converts	a	date	or	date	with	time	to	a	UInt16	number	containing	the	year	number	(AD).

toMonth

Converts	a	date	or	date	with	time	to	a	UInt8	number	containing	the	month	number	(1-12).

toDayOfMonth

-Converts	a	date	or	date	with	time	to	a	UInt8	number	containing	the	number	of	the	day	of	the	month	(1-31).

toDayOfWeek

Converts	a	date	or	date	with	time	to	a	UInt8	number	containing	the	number	of	the	day	of	the	week	(Monday	is	1,	and

Sunday	is	7).

┌─timestamp───────────┬────────────datetime─┬───────date─┬─string──────────────┬─fixed_string──────────────┐
│ 2016-06-15 23:00:00 │ 2016-06-15 23:00:00 │ 2016-06-15 │ 2016-06-15 23:00:00 │ 2016-06-15 23:00:00\0\0\0 │
└─────────────────────┴─────────────────────┴────────────┴─────────────────────┴───────────────────────────┘

SELECT toTypeName(x) FROM t_null

┌─toTypeName(x)─┐
│ Int8          │
│ Int8          │
└───────────────┘

SELECT toTypeName(CAST(x, 'Nullable(UInt16)')) FROM t_null

┌─toTypeName(CAST(x, 'Nullable(UInt16)'))─┐
│ Nullable(UInt16)                        │
│ Nullable(UInt16)                        │
└─────────────────────────────────────────┘

SELECT
    toDateTime('2016-06-15 23:00:00') AS time,
    toDate(time) AS date_local,
    toDate(time, 'Asia/Yekaterinburg') AS date_yekat,
    toString(time, 'US/Samoa') AS time_samoa

┌────────────────time─┬─date_local─┬─date_yekat─┬─time_samoa──────────┐
│ 2016-06-15 23:00:00 │ 2016-06-15 │ 2016-06-16 │ 2016-06-15 09:00:00 │
└─────────────────────┴────────────┴────────────┴─────────────────────┘



toHour

Converts	a	date	with	time	to	a	UInt8	number	containing	the	number	of	the	hour	in	24-hour	time	(0-23).	This	function

assumes	that	if	clocks	are	moved	ahead,	it	is	by	one	hour	and	occurs	at	2	a.m.,	and	if	clocks	are	moved	back,	it	is	by	one

hour	and	occurs	at	3	a.m.	(which	is	not	always	true	–	even	in	Moscow	the	clocks	were	twice	changed	at	a	different	time).

toMinute

Converts	a	date	with	time	to	a	UInt8	number	containing	the	number	of	the	minute	of	the	hour	(0-59).

toSecond

Converts	a	date	with	time	to	a	UInt8	number	containing	the	number	of	the	second	in	the	minute	(0-59).	Leap	seconds	are

not	accounted	for.

toMonday

Rounds	down	a	date	or	date	with	time	to	the	nearest	Monday.	Returns	the	date.

toStartOfMonth

Rounds	down	a	date	or	date	with	time	to	the	first	day	of	the	month.	Returns	the	date.

toStartOfQuarter

Rounds	down	a	date	or	date	with	time	to	the	first	day	of	the	quarter.	The	first	day	of	the	quarter	is	either	1	January,	1	April,

1	July,	or	1	October.	Returns	the	date.

toStartOfYear

Rounds	down	a	date	or	date	with	time	to	the	first	day	of	the	year.	Returns	the	date.

toStartOfMinute

Rounds	down	a	date	with	time	to	the	start	of	the	minute.

toStartOfFiveMinute

Rounds	down	a	date	with	time	to	the	start	of	the	hour.

toStartOfFifteenMinutes

Rounds	down	the	date	with	time	to	the	start	of	the	fifteen-minute	interval.

Note:	If	you	need	to	round	a	date	with	time	to	any	other	number	of	seconds,	minutes,	or	hours,	you	can	convert	it	into	a

number	by	using	the	toUInt32	function,	then	round	the	number	using	intDiv	and	multiplication,	and	convert	it	back	using

the	toDateTime	function.

Attention

The	behavior	of	parsing	incorrect	dates	is	implementation	specific.	ClickHouse	may	return	zero	date,	throw	an	exception	or	do	"natural"	overflow.





toStartOfHour

Rounds	down	a	date	with	time	to	the	start	of	the	hour.

toStartOfDay

Rounds	down	a	date	with	time	to	the	start	of	the	day.

toTime

Converts	a	date	with	time	to	a	certain	fixed	date,	while	preserving	the	time.

toRelativeYearNum

Converts	a	date	with	time	or	date	to	the	number	of	the	year,	starting	from	a	certain	fixed	point	in	the	past.

toRelativeMonthNum

Converts	a	date	with	time	or	date	to	the	number	of	the	month,	starting	from	a	certain	fixed	point	in	the	past.

toRelativeWeekNum

Converts	a	date	with	time	or	date	to	the	number	of	the	week,	starting	from	a	certain	fixed	point	in	the	past.

toRelativeDayNum

Converts	a	date	with	time	or	date	to	the	number	of	the	day,	starting	from	a	certain	fixed	point	in	the	past.

toRelativeHourNum

Converts	a	date	with	time	or	date	to	the	number	of	the	hour,	starting	from	a	certain	fixed	point	in	the	past.

toRelativeMinuteNum

Converts	a	date	with	time	or	date	to	the	number	of	the	minute,	starting	from	a	certain	fixed	point	in	the	past.

toRelativeSecondNum

Converts	a	date	with	time	or	date	to	the	number	of	the	second,	starting	from	a	certain	fixed	point	in	the	past.

now

Accepts	zero	arguments	and	returns	the	current	time	at	one	of	the	moments	of	request	execution.	This	function	returns	a

constant,	even	if	the	request	took	a	long	time	to	complete.

today

Accepts	zero	arguments	and	returns	the	current	date	at	one	of	the	moments	of	request	execution.	The	same	as

'toDate(now())'.

yesterday



Accepts	zero	arguments	and	returns	yesterday's	date	at	one	of	the	moments	of	request	execution.	The	same	as	'today()	-

1'.

timeSlot

Rounds	the	time	to	the	half	hour.	This	function	is	specific	to	Yandex.Metrica,	since	half	an	hour	is	the	minimum	amount	of

time	for	breaking	a	session	into	two	sessions	if	a	tracking	tag	shows	a	single	user's	consecutive	pageviews	that	differ	in

time	by	strictly	more	than	this	amount.	This	means	that	tuples	(the	tag	ID,	user	ID,	and	time	slot)	can	be	used	to	search	for

pageviews	that	are	included	in	the	corresponding	session.

timeSlots(StartTime,	Duration)

For	a	time	interval	starting	at	'StartTime'	and	continuing	for	'Duration'	seconds,	it	returns	an	array	of	moments	in	time,

consisting	of	points	from	this	interval	rounded	down	to	the	half	hour.	For	example,	 timeSlots(toDateTime('2012-01-01	

12:20:00'),	600)	=	[toDateTime('2012-01-01	12:00:00'),	toDateTime('2012-01-01	12:30:00')] .	This	is	necessary

for	searching	for	pageviews	in	the	corresponding	session.

formatDateTime(Time,	Format[,	Timezone])

Function	formats	a	Time	according	given	Format	string.	N.B.:	Format	is	a	constant	expression,	e.g.	you	can	not	have

multiple	formats	for	single	result	column.

Supported	modifiers	for	Format:	("Example"	column	shows	formatting	result	for	time	 2018-01-02	22:33:44 )



Modifier Description Example

%C year	divided	by	100	and	truncated	to	integer	(00-99) 20

%d day	of	the	month,	zero-padded	(01-31) 02

%D Short	MM/DD/YY	date,	equivalent	to	%m/%d/%y 01/02/2018

%e day	of	the	month,	space-padded	(	1-31) 2

%F short	YYYY-MM-DD	date,	equivalent	to	%Y-%m-%d 2018-01-02

%H hour	in	24h	format	(00-23) 22

%I hour	in	12h	format	(01-12) 10

%j day	of	the	year	(001-366) 002

%m month	as	a	decimal	number	(01-12) 01

%M minute	(00-59) 33

%n new-line	character	('\n')

%p AM	or	PM	designation PM

%R 24-hour	HH:MM	time,	equivalent	to	%H:%M 22:33

%S second	(00-59) 44

%t horizontal-tab	character	('\t')

%T ISO	8601	time	format	(HH:MM:SS),	equivalent	to	%H:%M:%S 22:33:44

%u ISO	8601	weekday	as	number	with	Monday	as	1	(1-7) 2

%V ISO	8601	week	number	(01-53) 01

%w weekday	as	a	decimal	number	with	Sunday	as	0	(0-6) 2

%y Year,	last	two	digits	(00-99) 18

%Y Year 2018

%% a	%	sign %

Functions	for	working	with	strings

empty

Returns	1	for	an	empty	string	or	0	for	a	non-empty	string.	The	result	type	is	UInt8.	A	string	is	considered	non-empty	if	it

contains	at	least	one	byte,	even	if	this	is	a	space	or	a	null	byte.	The	function	also	works	for	arrays.

notEmpty

Returns	0	for	an	empty	string	or	1	for	a	non-empty	string.	The	result	type	is	UInt8.	The	function	also	works	for	arrays.



length

Returns	the	length	of	a	string	in	bytes	(not	in	characters,	and	not	in	code	points).	The	result	type	is	UInt64.	The	function

also	works	for	arrays.

lengthUTF8

Returns	the	length	of	a	string	in	Unicode	code	points	(not	in	characters),	assuming	that	the	string	contains	a	set	of	bytes

that	make	up	UTF-8	encoded	text.	If	this	assumption	is	not	met,	it	returns	some	result	(it	doesn't	throw	an	exception).	The

result	type	is	UInt64.

lower

Converts	ASCII	Latin	symbols	in	a	string	to	lowercase.

upper

Converts	ASCII	Latin	symbols	in	a	string	to	uppercase.

lowerUTF8

Converts	a	string	to	lowercase,	assuming	the	string	contains	a	set	of	bytes	that	make	up	a	UTF-8	encoded	text.	It	doesn't

detect	the	language.	So	for	Turkish	the	result	might	not	be	exactly	correct.	If	the	length	of	the	UTF-8	byte	sequence	is

different	for	upper	and	lower	case	of	a	code	point,	the	result	may	be	incorrect	for	this	code	point.	If	the	string	contains	a

set	of	bytes	that	is	not	UTF-8,	then	the	behavior	is	undefined.

upperUTF8

Converts	a	string	to	uppercase,	assuming	the	string	contains	a	set	of	bytes	that	make	up	a	UTF-8	encoded	text.	It	doesn't

detect	the	language.	So	for	Turkish	the	result	might	not	be	exactly	correct.	If	the	length	of	the	UTF-8	byte	sequence	is

different	for	upper	and	lower	case	of	a	code	point,	the	result	may	be	incorrect	for	this	code	point.	If	the	string	contains	a

set	of	bytes	that	is	not	UTF-8,	then	the	behavior	is	undefined.

reverse

Reverses	the	string	(as	a	sequence	of	bytes).

reverseUTF8

Reverses	a	sequence	of	Unicode	code	points,	assuming	that	the	string	contains	a	set	of	bytes	representing	a	UTF-8	text.

Otherwise,	it	does	something	else	(it	doesn't	throw	an	exception).

concat(s1,	s2,	...)

Concatenates	the	strings	listed	in	the	arguments,	without	a	separator.

substring(s,	offset,	length)

Returns	a	substring	starting	with	the	byte	from	the	'offset'	index	that	is	'length'	bytes	long.	Character	indexing	starts	from

one	(as	in	standard	SQL).	The	'offset'	and	'length'	arguments	must	be	constants.



substringUTF8(s,	offset,	length)

The	same	as	'substring',	but	for	Unicode	code	points.	Works	under	the	assumption	that	the	string	contains	a	set	of	bytes

representing	a	UTF-8	encoded	text.	If	this	assumption	is	not	met,	it	returns	some	result	(it	doesn't	throw	an	exception).

appendTrailingCharIfAbsent(s,	c)

If	the	's'	string	is	non-empty	and	does	not	contain	the	'c'	character	at	the	end,	it	appends	the	'c'	character	to	the	end.

convertCharset(s,	from,	to)

Returns	the	string	's'	that	was	converted	from	the	encoding	in	'from'	to	the	encoding	in	'to'.

base64Encode(s)

Encodes	's'	string	into	base64

base64Decode(s)

Decode	base64-encoded	string	's'	into	original	string.	In	case	of	failure	raises	an	exception.

tryBase64Decode(s)

Similar	to	base64Decode,	but	in	case	of	error	an	empty	string	would	be	returned.

Functions	for	searching	strings

The	search	is	case-sensitive	in	all	these	functions.	The	search	substring	or	regular	expression	must	be	a	constant	in	all

these	functions.

position(haystack,	needle)

Search	for	the	substring	 needle 	in	the	string	 haystack .	Returns	the	position	(in	bytes)	of	the	found	substring,	starting

from	1,	or	returns	0	if	the	substring	was	not	found.

For	a	case-insensitive	search,	use	the	function	 positionCaseInsensitive .

positionUTF8(haystack,	needle)

The	same	as	 position ,	but	the	position	is	returned	in	Unicode	code	points.	Works	under	the	assumption	that	the	string

contains	a	set	of	bytes	representing	a	UTF-8	encoded	text.	If	this	assumption	is	not	met,	it	returns	some	result	(it	doesn't

throw	an	exception).

For	a	case-insensitive	search,	use	the	function	 positionCaseInsensitiveUTF8 .

match(haystack,	pattern)

Checks	whether	the	string	matches	the	 pattern 	regular	expression.	A	 re2 	regular	expression.	The	syntax

[https://github.com/google/re2/wiki/Syntax]	of	the	 re2 	regular	expressions	is	more	limited	than	the	syntax	of	the	Perl

regular	expressions.

Returns	0	if	it	doesn't	match,	or	1	if	it	matches.

https://github.com/google/re2/wiki/Syntax


Note	that	the	backslash	symbol	( \ )	is	used	for	escaping	in	the	regular	expression.	The	same	symbol	is	used	for	escaping	in

string	literals.	So	in	order	to	escape	the	symbol	in	a	regular	expression,	you	must	write	two	backslashes	(\)	in	a	string	literal.

The	regular	expression	works	with	the	string	as	if	it	is	a	set	of	bytes.	The	regular	expression	can't	contain	null	bytes.	For

patterns	to	search	for	substrings	in	a	string,	it	is	better	to	use	LIKE	or	'position',	since	they	work	much	faster.

extract(haystack,	pattern)

Extracts	a	fragment	of	a	string	using	a	regular	expression.	If	'haystack'	doesn't	match	the	'pattern'	regex,	an	empty	string

is	returned.	If	the	regex	doesn't	contain	subpatterns,	it	takes	the	fragment	that	matches	the	entire	regex.	Otherwise,	it

takes	the	fragment	that	matches	the	first	subpattern.

extractAll(haystack,	pattern)

Extracts	all	the	fragments	of	a	string	using	a	regular	expression.	If	'haystack'	doesn't	match	the	'pattern'	regex,	an	empty

string	is	returned.	Returns	an	array	of	strings	consisting	of	all	matches	to	the	regex.	In	general,	the	behavior	is	the	same	as

the	'extract'	function	(it	takes	the	first	subpattern,	or	the	entire	expression	if	there	isn't	a	subpattern).

like(haystack,	pattern),	haystack	LIKE	pattern	operator

Checks	whether	a	string	matches	a	simple	regular	expression.	The	regular	expression	can	contain	the	metasymbols	% 	and

_ .

``%	indicates	any	quantity	of	any	bytes	(including	zero	characters).

_ 	indicates	any	one	byte.

Use	the	backslash	( \ )	for	escaping	metasymbols.	See	the	note	on	escaping	in	the	description	of	the	'match'	function.

For	regular	expressions	like	 %needle% ,	the	code	is	more	optimal	and	works	as	fast	as	the	 position 	function.	For	other

regular	expressions,	the	code	is	the	same	as	for	the	'match'	function.

notLike(haystack,	pattern),	haystack	NOT	LIKE	pattern	operator

The	same	thing	as	'like',	but	negative.

Functions	for	searching	and	replacing	in	strings

replaceOne(haystack,	pattern,	replacement)

Replaces	the	first	occurrence,	if	it	exists,	of	the	'pattern'	substring	in	'haystack'	with	the	'replacement'	substring.

Hereafter,	'pattern'	and	'replacement'	must	be	constants.

replaceAll(haystack,	pattern,	replacement)

Replaces	all	occurrences	of	the	'pattern'	substring	in	'haystack'	with	the	'replacement'	substring.

replaceRegexpOne(haystack,	pattern,	replacement)

Replacement	using	the	'pattern'	regular	expression.	A	re2	regular	expression.	Replaces	only	the	first	occurrence,	if	it

exists.	A	pattern	can	be	specified	as	'replacement'.	This	pattern	can	include	substitutions	 \0-\9 .	The	substitution	 \0

includes	the	entire	regular	expression.	Substitutions	 \1-\9 	correspond	to	the	subpattern	numbers.To	use	the	 \

character	in	a	template,	escape	it	using	 \ .	Also	keep	in	mind	that	a	string	literal	requires	an	extra	escape.



Example	1.	Converting	the	date	to	American	format:

Example	2.	Copying	a	string	ten	times:

replaceRegexpAll(haystack,	pattern,	replacement)

This	does	the	same	thing,	but	replaces	all	the	occurrences.	Example:

As	an	exception,	if	a	regular	expression	worked	on	an	empty	substring,	the	replacement	is	not	made	more	than	once.

Example:

Conditional	functions

if(cond,	then,	else),	cond	?	operator	then	:	else

Returns	 then 	if	 cond	!=	0 ,	or	 else 	if	 cond	=	0 .	 cond 	must	be	of	type	UInt8 ,	and	 then 	and	 else 	must	have	the

lowest	common	type.

then 	and	 else 	can	be	 NULL

multiIf

SELECT DISTINCT
    EventDate,
    replaceRegexpOne(toString(EventDate), '(\\d{4})-(\\d{2})-(\\d{2})', '\\2/\\3/\\1') AS res
FROM test.hits
LIMIT 7
FORMAT TabSeparated

2014-03-17      03/17/2014
2014-03-18      03/18/2014
2014-03-19      03/19/2014
2014-03-20      03/20/2014
2014-03-21      03/21/2014
2014-03-22      03/22/2014
2014-03-23      03/23/2014

SELECT replaceRegexpOne('Hello, World!', '.*', '\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0') AS res

┌─res────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐

│ Hello, World!Hello, World!Hello, World!Hello, World!Hello, World!Hello, World!Hello, World!Hello, 
World!Hello, World!Hello, World! │
└────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘

SELECT replaceRegexpAll('Hello, World!', '.', '\\0\\0') AS res

┌─res────────────────────────┐
│ HHeelllloo,,  WWoorrlldd!! │
└────────────────────────────┘

SELECT replaceRegexpAll('Hello, World!', '^', 'here: ') AS res

┌─res─────────────────┐
│ here: Hello, World! │
└─────────────────────┘



Allows	you	to	write	the	CASE	[#operator_case]	operator	more	compactly	in	the	query.

Parameters:

cond_N 	—	The	condition	for	the	function	to	return	then_N .

then_N 	—	The	result	of	the	function	when	executed.

else 	—	The	result	of	the	function	if	none	of	the	conditions	is	met.

The	function	accepts	 2N+1 	parameters.

Returned	values

The	function	returns	one	of	the	values	then_N 	or	 else ,	depending	on	the	conditions	 cond_N .

Example

Take	the	table

Run	the	query	 SELECT	multiIf(isNull(y)	x,	y	<	3,	y,	NULL)	FROM	t_null .	Result:

Mathematical	functions

All	the	functions	return	a	Float64	number.	The	accuracy	of	the	result	is	close	to	the	maximum	precision	possible,	but	the

result	might	not	coincide	with	the	machine	representable	number	nearest	to	the	corresponding	real	number.

e()

Returns	a	Float64	number	that	is	close	to	the	number	e.

pi()

Returns	a	Float64	number	that	is	close	to	the	number	π.

exp(x)

Accepts	a	numeric	argument	and	returns	a	Float64	number	close	to	the	exponent	of	the	argument.

log(x)

Accepts	a	numeric	argument	and	returns	a	Float64	number	close	to	the	natural	logarithm	of	the	argument.

exp2(x)

multiIf(cond_1, then_1, cond_2, then_2...else)

┌─x─┬────y─┐
│ 1 │ ᴺᵁᴸᴸ │
│ 2 │    3 │
└───┴──────┘

┌─multiIf(isNull(y), x, less(y, 3), y, NULL)─┐
│                                          1 │
│                                       ᴺᵁᴸᴸ │
└────────────────────────────────────────────┘



Accepts	a	numeric	argument	and	returns	a	Float64	number	close	to	2	to	the	power	of	x.

log2(x)

Accepts	a	numeric	argument	and	returns	a	Float64	number	close	to	the	binary	logarithm	of	the	argument.

exp10(x)

Accepts	a	numeric	argument	and	returns	a	Float64	number	close	to	10	to	the	power	of	x.

log10(x)

Accepts	a	numeric	argument	and	returns	a	Float64	number	close	to	the	decimal	logarithm	of	the	argument.

sqrt(x)

Accepts	a	numeric	argument	and	returns	a	Float64	number	close	to	the	square	root	of	the	argument.

cbrt(x)

Accepts	a	numeric	argument	and	returns	a	Float64	number	close	to	the	cubic	root	of	the	argument.

erf(x)

If	'x'	is	non-negative,	then	erf(x	/	σ√2)	is	the	probability	that	a	random	variable	having	a	normal	distribution	with	standard
deviation	'σ'	takes	the	value	that	is	separated	from	the	expected	value	by	more	than	'x'.

Example	(three	sigma	rule):

erfc(x)

Accepts	a	numeric	argument	and	returns	a	Float64	number	close	to	1	-	erf(x),	but	without	loss	of	precision	for	large	'x'

values.

lgamma(x)

The	logarithm	of	the	gamma	function.

tgamma(x)

Gamma	function.

sin(x)

The	sine.

SELECT erf(3 / sqrt(2))

┌─erf(divide(3, sqrt(2)))─┐
│      0.9973002039367398 │
└─────────────────────────┘



cos(x)

The	cosine.

tan(x)

The	tangent.

asin(x)

The	arc	sine.

acos(x)

The	arc	cosine.

atan(x)

The	arc	tangent.

pow(x,	y)

Takes	two	numeric	arguments	x	and	y.	Returns	a	Float64	number	close	to	x	to	the	power	of	y.

Rounding	functions

floor(x[,	N])

Returns	the	largest	round	number	that	is	less	than	or	equal	to	x.	A	round	number	is	a	multiple	of	1/10N,	or	the	nearest

number	of	the	appropriate	data	type	if	1	/	10N	isn't	exact.	'N'	is	an	integer	constant,	optional	parameter.	By	default	it	is

zero,	which	means	to	round	to	an	integer.	'N'	may	be	negative.

Examples:	 floor(123.45,	1)	=	123.4,	floor(123.45,	-1)	=	120.

x 	is	any	numeric	type.	The	result	is	a	number	of	the	same	type.	For	integer	arguments,	it	makes	sense	to	round	with	a

negative	'N'	value	(for	non-negative	'N',	the	function	doesn't	do	anything).	If	rounding	causes	overflow	(for	example,	floor(-

128,	-1)),	an	implementation-specific	result	is	returned.

ceil(x[,	N])

Returns	the	smallest	round	number	that	is	greater	than	or	equal	to	'x'.	In	every	other	way,	it	is	the	same	as	the	'floor'

function	(see	above).

round(x[,	N])

Implements	banker's	rounding	[https://en.wikipedia.org/wiki/Rounding#Round_half_to_even],	i.e.,	rounding	to	the

nearest	even	integer.

Function	arguments:

x 	—	the	number	to	be	rounded.	Type	[#data_types]	—	any	number.

N—	the	position	of	the	number	after	the	decimal	point	to	round	the	number	to.

https://en.wikipedia.org/wiki/Rounding#Round_half_to_even


Returned	value:

The	rounded	number	of	the	same	type	as	the	input	number	x

Example:

roundToExp2(num)

Accepts	a	number.	If	the	number	is	less	than	one,	it	returns	0.	Otherwise,	it	rounds	the	number	down	to	the	nearest	(whole

non-negative)	degree	of	two.

roundDuration(num)

Accepts	a	number.	If	the	number	is	less	than	one,	it	returns	0.	Otherwise,	it	rounds	the	number	down	to	numbers	from	the

set:	1,	10,	30,	60,	120,	180,	240,	300,	600,	1200,	1800,	3600,	7200,	18000,	36000.	This	function	is	specific	to	Yandex.Metrica

and	used	for	implementing	the	report	on	session	length

roundAge(num)

Accepts	a	number.	If	the	number	is	less	than	18,	it	returns	0.	Otherwise,	it	rounds	the	number	down	to	a	number	from	the

set:	18,	25,	35,	45,	55.	This	function	is	specific	to	Yandex.Metrica	and	used	for	implementing	the	report	on	user	age.

Functions	for	working	with	arrays

empty

Returns	1	for	an	empty	array,	or	0	for	a	non-empty	array.	The	result	type	is	UInt8.	The	function	also	works	for	strings.

notEmpty

Returns	0	for	an	empty	array,	or	1	for	a	non-empty	array.	The	result	type	is	UInt8.	The	function	also	works	for	strings.

length

Returns	the	number	of	items	in	the	array.	The	result	type	is	UInt64.	The	function	also	works	for	strings.

emptyArrayUInt8,	emptyArrayUInt16,	emptyArrayUInt32,	emptyArrayUInt64

SELECT
    number / 2 AS x,
    round(x)
FROM system.numbers
LIMIT 10

┌───x─┬─round(divide(number, 2))─┐
│   0 │                        0 │
│ 0.5 │                        0 │
│   1 │                        1 │
│ 1.5 │                        2 │
│   2 │                        2 │
│ 2.5 │                        2 │
│   3 │                        3 │
│ 3.5 │                        4 │
│   4 │                        4 │
│ 4.5 │                        4 │
└─────┴──────────────────────────┘



emptyArrayInt8,	emptyArrayInt16,	emptyArrayInt32,	emptyArrayInt64

emptyArrayFloat32,	emptyArrayFloat64

emptyArrayDate,	emptyArrayDateTime

emptyArrayString

Accepts	zero	arguments	and	returns	an	empty	array	of	the	appropriate	type.

emptyArrayToSingle

Accepts	an	empty	array	and	returns	a	one-element	array	that	is	equal	to	the	default	value.

range(N)

Returns	an	array	of	numbers	from	0	to	N-1.	Just	in	case,	an	exception	is	thrown	if	arrays	with	a	total	length	of	more	than

100,000,000	elements	are	created	in	a	data	block.

array(x1,	...),	operator	[x1,	...]

Creates	an	array	from	the	function	arguments.	The	arguments	must	be	constants	and	have	types	that	have	the	smallest

common	type.	At	least	one	argument	must	be	passed,	because	otherwise	it	isn't	clear	which	type	of	array	to	create.	That	is,

you	can't	use	this	function	to	create	an	empty	array	(to	do	that,	use	the	'emptyArray*'	function	described	above).	Returns

an	'Array(T)'	type	result,	where	'T'	is	the	smallest	common	type	out	of	the	passed	arguments.

arrayConcat

Combines	arrays	passed	as	arguments.

Parameters

arrays 	–	Arbitrary	number	of	arguments	of	[Array][../../data_types/array.md#data_type-array]	type.

Example

arrayElement(arr,	n),	operator	arr[n]

Get	the	element	with	the	index	 n 	from	the	array	 arr .	 n 	must	be	any	integer	type.	Indexes	in	an	array	begin	from	one.

Negative	indexes	are	supported.	In	this	case,	it	selects	the	corresponding	element	numbered	from	the	end.	For	example,	

arr[-1] 	is	the	last	item	in	the	array.

If	the	index	falls	outside	of	the	bounds	of	an	array,	it	returns	some	default	value	(0	for	numbers,	an	empty	string	for	strings,

etc.).

arrayConcat(arrays)

SELECT arrayConcat([1, 2], [3, 4], [5, 6]) AS res

┌─res───────────┐
│ [1,2,3,4,5,6] │
└───────────────┘



has(arr,	elem)

Checks	whether	the	'arr'	array	has	the	'elem'	element.	Returns	0	if	the	the	element	is	not	in	the	array,	or	1	if	it	is.

NULL 	is	processed	as	a	value.

hasAll

Checks	whether	one	array	is	a	subset	of	another.

Parameters

set 	–	Array	of	any	type	with	a	set	of	elements.

subset 	–	Array	of	any	type	with	elements	that	should	be	tested	to	be	a	subset	of	set .

Return	values

1 ,	if	 set 	contains	all	of	the	elements	from	 subset .

0 ,	otherwise.

Peculiar	properties

An	empty	array	is	a	subset	of	any	array.

Null 	processed	as	a	value.

Order	of	values	in	both	of	arrays	doesn't	matter.

Examples

SELECT	hasAll([],	[]) 	returns	1.

SELECT	hasAll([1,	Null],	[Null]) 	returns	1.

SELECT	hasAll([1.0,	2,	3,	4],	[1,	3]) 	returns	1.

SELECT	hasAll(['a',	'b'],	['a']) 	returns	1.

SELECT	hasAll([1],	['a']) 	returns	0.

SELECT	hasAll([[1,	2],	[3,	4]],	[[1,	2],	[3,	5]]) 	returns	0.

hasAny

Checks	whether	two	arrays	have	intersection	by	some	elements.

Parameters

array1 	–	Array	of	any	type	with	a	set	of	elements.

SELECT has([1, 2, NULL], NULL)

┌─has([1, 2, NULL], NULL)─┐
│                       1 │
└─────────────────────────┘

hasAll(set, subset)

hasAny(array1, array2)



array2 	–	Array	of	any	type	with	a	set	of	elements.

Return	values

1 ,	if	 array1 	and	 array2 	have	one	similar	element	at	least.

0 ,	otherwise.

Peculiar	properties

Null 	processed	as	a	value.

Order	of	values	in	both	of	arrays	doesn't	matter.

Examples

SELECT	hasAny([1],	[]) 	returns	 0 .

SELECT	hasAny([Null],	[Null,	1]) 	returns	 1 .

SELECT	hasAny([-128,	1.,	512],	[1]) 	returns	 1 .

SELECT	hasAny([[1,	2],	[3,	4]],	['a',	'c']) 	returns	 0 .

SELECT	hasAll([[1,	2],	[3,	4]],	[[1,	2],	[1,	2]]) 	returns	 1 .

indexOf(arr,	x)

Returns	the	index	of	the	first	'x'	element	(starting	from	1)	if	it	is	in	the	array,	or	0	if	it	is	not.

Example:

Elements	set	to	 NULL 	are	handled	as	normal	values.

countEqual(arr,	x)

Returns	the	number	of	elements	in	the	array	equal	to	x.	Equivalent	to	arrayCount	(elem	->	elem	=	x,	arr).

NULL 	elements	are	handled	as	separate	values.

Example:

arrayEnumerate(arr)

Returns	the	array	[1,	2,	3,	...,	length	(arr)	]

This	function	is	normally	used	with	ARRAY	JOIN.	It	allows	counting	something	just	once	for	each	array	after	applying

ARRAY	JOIN.	Example:

:) SELECT indexOf([1,3,NULL,NULL],NULL)

SELECT indexOf([1, 3, NULL, NULL], NULL)

┌─indexOf([1, 3, NULL, NULL], NULL)─┐
│                                 3 │
└───────────────────────────────────┘

SELECT countEqual([1, 2, NULL, NULL], NULL)

┌─countEqual([1, 2, NULL, NULL], NULL)─┐
│                                    2 │
└──────────────────────────────────────┘



In	this	example,	Reaches	is	the	number	of	conversions	(the	strings	received	after	applying	ARRAY	JOIN),	and	Hits	is	the

number	of	pageviews	(strings	before	ARRAY	JOIN).	In	this	particular	case,	you	can	get	the	same	result	in	an	easier	way:

This	function	can	also	be	used	in	higher-order	functions.	For	example,	you	can	use	it	to	get	array	indexes	for	elements	that

match	a	condition.

arrayEnumerateUniq(arr,	...)

Returns	an	array	the	same	size	as	the	source	array,	indicating	for	each	element	what	its	position	is	among	elements	with

the	same	value.	For	example:	arrayEnumerateUniq([10,	20,	10,	30])	=	[1,	1,	2,	1].

This	function	is	useful	when	using	ARRAY	JOIN	and	aggregation	of	array	elements.	Example:

In	this	example,	each	goal	ID	has	a	calculation	of	the	number	of	conversions	(each	element	in	the	Goals	nested	data

SELECT
    count() AS Reaches,
    countIf(num = 1) AS Hits
FROM test.hits
ARRAY JOIN
    GoalsReached,
    arrayEnumerate(GoalsReached) AS num
WHERE CounterID = 160656
LIMIT 10

┌─Reaches─┬──Hits─┐
│   95606 │ 31406 │
└─────────┴───────┘

SELECT
    sum(length(GoalsReached)) AS Reaches,
    count() AS Hits
FROM test.hits
WHERE (CounterID = 160656) AND notEmpty(GoalsReached)

┌─Reaches─┬──Hits─┐
│   95606 │ 31406 │
└─────────┴───────┘

SELECT
    Goals.ID AS GoalID,
    sum(Sign) AS Reaches,
    sumIf(Sign, num = 1) AS Visits
FROM test.visits
ARRAY JOIN
    Goals,
    arrayEnumerateUniq(Goals.ID) AS num
WHERE CounterID = 160656
GROUP BY GoalID
ORDER BY Reaches DESC
LIMIT 10

┌──GoalID─┬─Reaches─┬─Visits─┐
│   53225 │    3214 │   1097 │
│ 2825062 │    3188 │   1097 │
│   56600 │    2803 │    488 │
│ 1989037 │    2401 │    365 │
│ 2830064 │    2396 │    910 │
│ 1113562 │    2372 │    373 │
│ 3270895 │    2262 │    812 │
│ 1084657 │    2262 │    345 │
│   56599 │    2260 │    799 │
│ 3271094 │    2256 │    812 │
└─────────┴─────────┴────────┘



structure	is	a	goal	that	was	reached,	which	we	refer	to	as	a	conversion)	and	the	number	of	sessions.	Without	ARRAY	JOIN,

we	would	have	counted	the	number	of	sessions	as	sum(Sign).	But	in	this	particular	case,	the	rows	were	multiplied	by	the

nested	Goals	structure,	so	in	order	to	count	each	session	one	time	after	this,	we	apply	a	condition	to	the	value	of	the

arrayEnumerateUniq(Goals.ID)	function.

The	arrayEnumerateUniq	function	can	take	multiple	arrays	of	the	same	size	as	arguments.	In	this	case,	uniqueness	is

considered	for	tuples	of	elements	in	the	same	positions	in	all	the	arrays.

This	is	necessary	when	using	ARRAY	JOIN	with	a	nested	data	structure	and	further	aggregation	across	multiple	elements

in	this	structure.

arrayPopBack

Removes	the	last	item	from	the	array.

Parameters

array 	–	Array.

Example

arrayPopFront

Removes	the	first	item	from	the	array.

Parameters

array 	–	Array.

Example

arrayPushBack

Adds	one	item	to	the	end	of	the	array.

SELECT arrayEnumerateUniq([1, 1, 1, 2, 2, 2], [1, 1, 2, 1, 1, 2]) AS res

┌─res───────────┐
│ [1,2,1,1,2,1] │
└───────────────┘

arrayPopBack(array)

SELECT arrayPopBack([1, 2, 3]) AS res

┌─res───┐
│ [1,2] │
└───────┘

arrayPopFront(array)

SELECT arrayPopFront([1, 2, 3]) AS res

┌─res───┐
│ [2,3] │
└───────┘



Parameters

array 	–	Array.

single_value 	–	A	single	value.	Only	numbers	can	be	added	to	an	array	with	numbers,	and	only	strings	can	be	added

to	an	array	of	strings.	When	adding	numbers,	ClickHouse	automatically	sets	the	 single_value 	type	for	the	data	type

of	the	array.	For	more	information	about	the	types	of	data	in	ClickHouse,	see	"Data	types	[#data_types]".	Can	be	 NULL .

The	function	adds	a	 NULL 	element	to	an	array,	and	the	type	of	array	elements	converts	to	Nullable .

Example

arrayPushFront

Adds	one	element	to	the	beginning	of	the	array.

Parameters

array 	–	Array.

single_value 	–	A	single	value.	Only	numbers	can	be	added	to	an	array	with	numbers,	and	only	strings	can	be	added

to	an	array	of	strings.	When	adding	numbers,	ClickHouse	automatically	sets	the	 single_value 	type	for	the	data	type

of	the	array.	For	more	information	about	the	types	of	data	in	ClickHouse,	see	"Data	types	[#data_types]".	Can	be	 NULL .

The	function	adds	a	 NULL 	element	to	an	array,	and	the	type	of	array	elements	converts	to	Nullable .

Example

arrayResize

Changes	the	length	of	the	array.

Parameters:

array 	—	Array.

size 	—	Required	length	of	the	array.

If	 size 	is	less	than	the	original	size	of	the	array,	the	array	is	truncated	from	the	right.

If	 size 	is	larger	than	the	initial	size	of	the	array,	the	array	is	extended	to	the	right	with	extender 	values	or	default

values	for	the	data	type	of	the	array	items.

arrayPushBack(array, single_value)

SELECT arrayPushBack(['a'], 'b') AS res

┌─res───────┐
│ ['a','b'] │
└───────────┘

arrayPushFront(array, single_value)

SELECT arrayPushBack(['b'], 'a') AS res

┌─res───────┐
│ ['a','b'] │
└───────────┘

arrayResize(array, size[, extender])



extender 	—	Value	for	extending	an	array.	Can	be	NULL .

Returned	value:

An	array	of	length	 size .

Examples	of	calls

arraySlice

Returns	a	slice	of	the	array.

Parameters

array 	–	Array	of	data.

offset 	–	Indent	from	the	edge	of	the	array.	A	positive	value	indicates	an	offset	on	the	left,	and	a	negative	value	is	an

indent	on	the	right.	Numbering	of	the	array	items	begins	with	1.

length 	-	The	length	of	the	required	slice.	If	you	specify	a	negative	value,	the	function	returns	an	open	slice	[offset,	

array_length	-	length) .	If	you	omit	the	value,	the	function	returns	the	slice	[offset,	the_end_of_array] .

Example

Array	elements	set	to	 NULL 	are	handled	as	normal	values.

arrayUniq(arr,	...)

If	one	argument	is	passed,	it	counts	the	number	of	different	elements	in	the	array.	If	multiple	arguments	are	passed,	it

counts	the	number	of	different	tuples	of	elements	at	corresponding	positions	in	multiple	arrays.

If	you	want	to	get	a	list	of	unique	items	in	an	array,	you	can	use	arrayReduce('groupUniqArray',	arr).

arrayJoin(arr)

A	special	function.	See	the	section	"ArrayJoin	function"	[#functions_arrayjoin].

Functions	for	splitting	and	merging	strings	and	arrays

SELECT arrayResize([1], 3)

┌─arrayResize([1], 3)─┐
│ [1,0,0]             │
└─────────────────────┘

SELECT arrayResize([1], 3, NULL)

┌─arrayResize([1], 3, NULL)─┐
│ [1,NULL,NULL]             │
└───────────────────────────┘

arraySlice(array, offset[, length])

SELECT arraySlice([1, 2, NULL, 4, 5], 2, 3) AS res

┌─res────────┐
│ [2,NULL,4] │
└────────────┘



splitByChar(separator,	s)

Splits	a	string	into	substrings	separated	by	'separator'.'separator'	must	be	a	string	constant	consisting	of	exactly	one

character.	Returns	an	array	of	selected	substrings.	Empty	substrings	may	be	selected	if	the	separator	occurs	at	the

beginning	or	end	of	the	string,	or	if	there	are	multiple	consecutive	separators.

splitByString(separator,	s)

The	same	as	above,	but	it	uses	a	string	of	multiple	characters	as	the	separator.	The	string	must	be	non-empty.

arrayStringConcat(arr[,	separator])

Concatenates	the	strings	listed	in	the	array	with	the	separator.'separator'	is	an	optional	parameter:	a	constant	string,	set

to	an	empty	string	by	default.	Returns	the	string.

alphaTokens(s)

Selects	substrings	of	consecutive	bytes	from	the	ranges	a-z	and	A-Z.Returns	an	array	of	substrings.

Example:

Bit	functions

Bit	functions	work	for	any	pair	of	types	from	UInt8,	UInt16,	UInt32,	UInt64,	Int8,	Int16,	Int32,	Int64,	Float32,	or	Float64.

The	result	type	is	an	integer	with	bits	equal	to	the	maximum	bits	of	its	arguments.	If	at	least	one	of	the	arguments	is

signed,	the	result	is	a	signed	number.	If	an	argument	is	a	floating-point	number,	it	is	cast	to	Int64.

bitAnd(a,	b)

bitOr(a,	b)

bitXor(a,	b)

bitNot(a)

bitShiftLeft(a,	b)

bitShiftRight(a,	b)

Hash	functions

Hash	functions	can	be	used	for	deterministic	pseudo-random	shuffling	of	elements.

SELECT alphaTokens('abca1abc')

┌─alphaTokens('abca1abc')─┐
│ ['abca','abc']          │
└─────────────────────────┘



halfMD5

Calculates	the	MD5	from	a	string.	Then	it	takes	the	first	8	bytes	of	the	hash	and	interprets	them	as	UInt64	in	big	endian.

Accepts	a	String-type	argument.	Returns	UInt64.	This	function	works	fairly	slowly	(5	million	short	strings	per	second	per

processor	core).	If	you	don't	need	MD5	in	particular,	use	the	'sipHash64'	function	instead.

MD5

Calculates	the	MD5	from	a	string	and	returns	the	resulting	set	of	bytes	as	FixedString(16).	If	you	don't	need	MD5	in

particular,	but	you	need	a	decent	cryptographic	128-bit	hash,	use	the	'sipHash128'	function	instead.	If	you	want	to	get	the

same	result	as	output	by	the	md5sum	utility,	use	lower(hex(MD5(s))).

sipHash64

Calculates	SipHash	from	a	string.	Accepts	a	String-type	argument.	Returns	UInt64.	SipHash	is	a	cryptographic	hash

function.	It	works	at	least	three	times	faster	than	MD5.	For	more	information,	see	the	link:	https://131002.net/siphash/

[https://131002.net/siphash/]

sipHash128

Calculates	SipHash	from	a	string.	Accepts	a	String-type	argument.	Returns	FixedString(16).	Differs	from	sipHash64	in	that

the	final	xor-folding	state	is	only	done	up	to	128	bytes.

cityHash64

Calculates	CityHash64	from	a	string	or	a	similar	hash	function	for	any	number	of	any	type	of	arguments.	For	String-type

arguments,	CityHash	is	used.	This	is	a	fast	non-cryptographic	hash	function	for	strings	with	decent	quality.	For	other	types

of	arguments,	a	decent	implementation-specific	fast	non-cryptographic	hash	function	is	used.	If	multiple	arguments	are

passed,	the	function	is	calculated	using	the	same	rules	and	chain	combinations	using	the	CityHash	combinator.	For

example,	you	can	compute	the	checksum	of	an	entire	table	with	accuracy	up	to	the	row	order:	 SELECT	

sum(cityHash64(*))	FROM	table .

intHash32

Calculates	a	32-bit	hash	code	from	any	type	of	integer.	This	is	a	relatively	fast	non-cryptographic	hash	function	of	average

quality	for	numbers.

intHash64

Calculates	a	64-bit	hash	code	from	any	type	of	integer.	It	works	faster	than	intHash32.	Average	quality.

SHA1

SHA224

SHA256

Calculates	SHA-1,	SHA-224,	or	SHA-256	from	a	string	and	returns	the	resulting	set	of	bytes	as	FixedString(20),

FixedString(28),	or	FixedString(32).	The	function	works	fairly	slowly	(SHA-1	processes	about	5	million	short	strings	per

second	per	processor	core,	while	SHA-224	and	SHA-256	process	about	2.2	million).	We	recommend	using	this	function

only	in	cases	when	you	need	a	specific	hash	function	and	you	can't	select	it.	Even	in	these	cases,	we	recommend	applying

https://131002.net/siphash/


the	function	offline	and	pre-calculating	values	when	inserting	them	into	the	table,	instead	of	applying	it	in	SELECTS.

URLHash(url[,	N])

A	fast,	decent-quality	non-cryptographic	hash	function	for	a	string	obtained	from	a	URL	using	some	type	of	normalization.

URLHash(s) 	–	Calculates	a	hash	from	a	string	without	one	of	the	trailing	symbols	/ , ? 	or	 # 	at	the	end,	if	present.	

URLHash(s,	N) 	–	Calculates	a	hash	from	a	string	up	to	the	N	level	in	the	URL	hierarchy,	without	one	of	the	trailing	symbols	

/ , ? 	or	 # 	at	the	end,	if	present.	Levels	are	the	same	as	in	URLHierarchy.	This	function	is	specific	to	Yandex.Metrica.

Functions	for	generating	pseudo-random	numbers

Non-cryptographic	generators	of	pseudo-random	numbers	are	used.

All	the	functions	accept	zero	arguments	or	one	argument.	If	an	argument	is	passed,	it	can	be	any	type,	and	its	value	is	not

used	for	anything.	The	only	purpose	of	this	argument	is	to	prevent	common	subexpression	elimination,	so	that	two

different	instances	of	the	same	function	return	different	columns	with	different	random	numbers.

rand

Returns	a	pseudo-random	UInt32	number,	evenly	distributed	among	all	UInt32-type	numbers.	Uses	a	linear	congruential

generator.

rand64

Returns	a	pseudo-random	UInt64	number,	evenly	distributed	among	all	UInt64-type	numbers.	Uses	a	linear	congruential

generator.

Encoding	functions

hex

Accepts	arguments	of	types:	 String ,	 unsigned	integer ,	 Date ,	or	 DateTime .	Returns	a	string	containing	the

argument's	hexadecimal	representation.	Uses	uppercase	letters	 A-F .	Does	not	use	 0x 	prefixes	or	 h 	suffixes.	For	strings,

all	bytes	are	simply	encoded	as	two	hexadecimal	numbers.	Numbers	are	converted	to	big	endian	("human	readable")

format.	For	numbers,	older	zeros	are	trimmed,	but	only	by	entire	bytes.	For	example,	 hex	(1)	=	'01' .	 Date 	is	encoded

as	the	number	of	days	since	the	beginning	of	the	Unix	epoch.	 DateTime 	is	encoded	as	the	number	of	seconds	since	the

beginning	of	the	Unix	epoch.

unhex(str)

Accepts	a	string	containing	any	number	of	hexadecimal	digits,	and	returns	a	string	containing	the	corresponding	bytes.

Supports	both	uppercase	and	lowercase	letters	A-F.	The	number	of	hexadecimal	digits	does	not	have	to	be	even.	If	it	is

odd,	the	last	digit	is	interpreted	as	the	younger	half	of	the	00-0F	byte.	If	the	argument	string	contains	anything	other	than

hexadecimal	digits,	some	implementation-defined	result	is	returned	(an	exception	isn't	thrown).	If	you	want	to	convert	the

result	to	a	number,	you	can	use	the	'reverse'	and	'reinterpretAsType'	functions.

UUIDStringToNum(str)

Accepts	a	string	containing	36	characters	in	the	format	123e4567-e89b-12d3-a456-426655440000 ,	and	returns	it	as	a	set

of	bytes	in	a	FixedString(16).



UUIDNumToString(str)

Accepts	a	FixedString(16)	value.	Returns	a	string	containing	36	characters	in	text	format.

bitmaskToList(num)

Accepts	an	integer.	Returns	a	string	containing	the	list	of	powers	of	two	that	total	the	source	number	when	summed.	They

are	comma-separated	without	spaces	in	text	format,	in	ascending	order.

bitmaskToArray(num)

Accepts	an	integer.	Returns	an	array	of	UInt64	numbers	containing	the	list	of	powers	of	two	that	total	the	source	number

when	summed.	Numbers	in	the	array	are	in	ascending	order.

Functions	for	working	with	URLs

All	these	functions	don't	follow	the	RFC.	They	are	maximally	simplified	for	improved	performance.

Functions	that	extract	part	of	a	URL

If	there	isn't	anything	similar	in	a	URL,	an	empty	string	is	returned.

protocol

Returns	the	protocol.	Examples:	http,	ftp,	mailto,	magnet...

domain

Gets	the	domain.

domainWithoutWWW

Returns	the	domain	and	removes	no	more	than	one	'www.'	from	the	beginning	of	it,	if	present.

topLevelDomain

Returns	the	top-level	domain.	Example:	.ru.

firstSignificantSubdomain

Returns	the	"first	significant	subdomain".	This	is	a	non-standard	concept	specific	to	Yandex.Metrica.	The	first	significant

subdomain	is	a	second-level	domain	if	it	is	'com',	'net',	'org',	or	'co'.	Otherwise,	it	is	a	third-level	domain.	For	example,

firstSignificantSubdomain	('https://news.yandex.ru/	[https://news.yandex.ru/]')	=	'yandex	',	firstSignificantSubdomain

('https://news.yandex.com.tr/	[https://news.yandex.com.tr/]')	=	'yandex	'.	The	list	of	"insignificant"	second-level	domains

and	other	implementation	details	may	change	in	the	future.

cutToFirstSignificantSubdomain

Returns	the	part	of	the	domain	that	includes	top-level	subdomains	up	to	the	"first	significant	subdomain"	(see	the

explanation	above).

For	example,	 cutToFirstSignificantSubdomain('https://news.yandex.com.tr/')	=	'yandex.com.tr' .

path

Returns	the	path.	Example:	 /top/news.html 	The	path	does	not	include	the	query	string.

pathFull

https://news.yandex.ru/
https://news.yandex.com.tr/


The	same	as	above,	but	including	query	string	and	fragment.	Example:	/top/news.html?page=2#comments

queryString

Returns	the	query	string.	Example:	page=1&lr=213.	query-string	does	not	include	the	initial	question	mark,	as	well	as	#	and

everything	after	#.

fragment

Returns	the	fragment	identifier.	fragment	does	not	include	the	initial	hash	symbol.

queryStringAndFragment

Returns	the	query	string	and	fragment	identifier.	Example:	page=1#29390.

extractURLParameter(URL,	name)

Returns	the	value	of	the	'name'	parameter	in	the	URL,	if	present.	Otherwise,	an	empty	string.	If	there	are	many	parameters

with	this	name,	it	returns	the	first	occurrence.	This	function	works	under	the	assumption	that	the	parameter	name	is

encoded	in	the	URL	exactly	the	same	way	as	in	the	passed	argument.

extractURLParameters(URL)

Returns	an	array	of	name=value	strings	corresponding	to	the	URL	parameters.	The	values	are	not	decoded	in	any	way.

extractURLParameterNames(URL)

Returns	an	array	of	name	strings	corresponding	to	the	names	of	URL	parameters.	The	values	are	not	decoded	in	any	way.

URLHierarchy(URL)

Returns	an	array	containing	the	URL,	truncated	at	the	end	by	the	symbols	/,?	in	the	path	and	query-string.	Consecutive

separator	characters	are	counted	as	one.	The	cut	is	made	in	the	position	after	all	the	consecutive	separator	characters.

Example:

URLPathHierarchy(URL)

The	same	as	above,	but	without	the	protocol	and	host	in	the	result.	The	/	element	(root)	is	not	included.	Example:	the

function	is	used	to	implement	tree	reports	the	URL	in	Yandex.	Metric.

decodeURLComponent(URL)

Returns	the	decoded	URL.	Example:

Functions	that	remove	part	of	a	URL.

If	the	URL	doesn't	have	anything	similar,	the	URL	remains	unchanged.

cutWWW

URLPathHierarchy('https://example.com/browse/CONV-6788') =
[
    '/browse/',
    '/browse/CONV-6788'
]

SELECT decodeURLComponent('http://127.0.0.1:8123/?query=SELECT%201%3B') AS DecodedURL;

┌─DecodedURL─────────────────────────────┐
│ http://127.0.0.1:8123/?query=SELECT 1; │
└────────────────────────────────────────┘



Removes	no	more	than	one	'www.'	from	the	beginning	of	the	URL's	domain,	if	present.

cutQueryString

Removes	query	string.	The	question	mark	is	also	removed.

cutFragment

Removes	the	fragment	identifier.	The	number	sign	is	also	removed.

cutQueryStringAndFragment

Removes	the	query	string	and	fragment	identifier.	The	question	mark	and	number	sign	are	also	removed.

cutURLParameter(URL,	name)

Removes	the	'name'	URL	parameter,	if	present.	This	function	works	under	the	assumption	that	the	parameter	name	is

encoded	in	the	URL	exactly	the	same	way	as	in	the	passed	argument.

Functions	for	working	with	IP	addresses

IPv4NumToString(num)

Takes	a	UInt32	number.	Interprets	it	as	an	IPv4	address	in	big	endian.	Returns	a	string	containing	the	corresponding	IPv4

address	in	the	format	A.B.C.d	(dot-separated	numbers	in	decimal	form).

IPv4StringToNum(s)

The	reverse	function	of	IPv4NumToString.	If	the	IPv4	address	has	an	invalid	format,	it	returns	0.

IPv4NumToStringClassC(num)

Similar	to	IPv4NumToString,	but	using	xxx	instead	of	the	last	octet.

Example:

Since	using	'xxx'	is	highly	unusual,	this	may	be	changed	in	the	future.	We	recommend	that	you	don't	rely	on	the	exact

format	of	this	fragment.

IPv6NumToString(x)

SELECT
    IPv4NumToStringClassC(ClientIP) AS k,
    count() AS c
FROM test.hits
GROUP BY k
ORDER BY c DESC
LIMIT 10

┌─k──────────────┬─────c─┐
│ 83.149.9.xxx   │ 26238 │
│ 217.118.81.xxx │ 26074 │
│ 213.87.129.xxx │ 25481 │
│ 83.149.8.xxx   │ 24984 │
│ 217.118.83.xxx │ 22797 │
│ 78.25.120.xxx  │ 22354 │
│ 213.87.131.xxx │ 21285 │
│ 78.25.121.xxx  │ 20887 │
│ 188.162.65.xxx │ 19694 │
│ 83.149.48.xxx  │ 17406 │
└────────────────┴───────┘



Accepts	a	FixedString(16)	value	containing	the	IPv6	address	in	binary	format.	Returns	a	string	containing	this	address	in

text	format.	IPv6-mapped	IPv4	addresses	are	output	in	the	format	::ffff:111.222.33.44.	Examples:

IPv6StringToNum(s)

The	reverse	function	of	IPv6NumToString.	If	the	IPv6	address	has	an	invalid	format,	it	returns	a	string	of	null	bytes.	HEX

can	be	uppercase	or	lowercase.

Functions	for	working	with	JSON

In	Yandex.Metrica,	JSON	is	transmitted	by	users	as	session	parameters.	There	are	some	special	functions	for	working	with

this	JSON.	(Although	in	most	of	the	cases,	the	JSONs	are	additionally	pre-processed,	and	the	resulting	values	are	put	in

SELECT IPv6NumToString(toFixedString(unhex('2A0206B8000000000000000000000011'), 16)) AS addr

┌─addr─────────┐
│ 2a02:6b8::11 │
└──────────────┘

SELECT
    IPv6NumToString(ClientIP6 AS k),
    count() AS c
FROM hits_all
WHERE EventDate = today() AND substring(ClientIP6, 1, 12) != unhex('00000000000000000000FFFF')
GROUP BY k
ORDER BY c DESC
LIMIT 10

┌─IPv6NumToString(ClientIP6)──────────────┬─────c─┐
│ 2a02:2168:aaa:bbbb::2                   │ 24695 │
│ 2a02:2698:abcd:abcd:abcd:abcd:8888:5555 │ 22408 │
│ 2a02:6b8:0:fff::ff                      │ 16389 │
│ 2a01:4f8:111:6666::2                    │ 16016 │
│ 2a02:2168:888:222::1                    │ 15896 │
│ 2a01:7e00::ffff:ffff:ffff:222           │ 14774 │
│ 2a02:8109:eee:ee:eeee:eeee:eeee:eeee    │ 14443 │
│ 2a02:810b:8888:888:8888:8888:8888:8888  │ 14345 │
│ 2a02:6b8:0:444:4444:4444:4444:4444      │ 14279 │
│ 2a01:7e00::ffff:ffff:ffff:ffff          │ 13880 │
└─────────────────────────────────────────┴───────┘

SELECT
    IPv6NumToString(ClientIP6 AS k),
    count() AS c
FROM hits_all
WHERE EventDate = today()
GROUP BY k
ORDER BY c DESC
LIMIT 10

┌─IPv6NumToString(ClientIP6)─┬──────c─┐
│ ::ffff:94.26.111.111       │ 747440 │
│ ::ffff:37.143.222.4        │ 529483 │
│ ::ffff:5.166.111.99        │ 317707 │
│ ::ffff:46.38.11.77         │ 263086 │
│ ::ffff:79.105.111.111      │ 186611 │
│ ::ffff:93.92.111.88        │ 176773 │
│ ::ffff:84.53.111.33        │ 158709 │
│ ::ffff:217.118.11.22       │ 154004 │
│ ::ffff:217.118.11.33       │ 148449 │
│ ::ffff:217.118.11.44       │ 148243 │
└────────────────────────────┴────────┘



separate	columns	in	their	processed	format.)	All	these	functions	are	based	on	strong	assumptions	about	what	the	JSON

can	be,	but	they	try	to	do	as	little	as	possible	to	get	the	job	done.

The	following	assumptions	are	made:

1.	 The	field	name	(function	argument)	must	be	a	constant.

2.	 The	field	name	is	somehow	canonically	encoded	in	JSON.	For	example:	visitParamHas('{"abc":"def"}',	'abc')	=	

1 ,	but	 visitParamHas('{"\\u0061\\u0062\\u0063":"def"}',	'abc')	=	0

3.	 Fields	are	searched	for	on	any	nesting	level,	indiscriminately.	If	there	are	multiple	matching	fields,	the	first	occurrence

is	used.

4.	 The	JSON	doesn't	have	space	characters	outside	of	string	literals.

visitParamHas(params,	name)

Checks	whether	there	is	a	field	with	the	'name'	name.

visitParamExtractUInt(params,	name)

Parses	UInt64	from	the	value	of	the	field	named	'name'.	If	this	is	a	string	field,	it	tries	to	parse	a	number	from	the	beginning

of	the	string.	If	the	field	doesn't	exist,	or	it	exists	but	doesn't	contain	a	number,	it	returns	0.

visitParamExtractInt(params,	name)

The	same	as	for	Int64.

visitParamExtractFloat(params,	name)

The	same	as	for	Float64.

visitParamExtractBool(params,	name)

Parses	a	true/false	value.	The	result	is	UInt8.

visitParamExtractRaw(params,	name)

Returns	the	value	of	a	field,	including	separators.

Examples:

visitParamExtractString(params,	name)

Parses	the	string	in	double	quotes.	The	value	is	unescaped.	If	unescaping	failed,	it	returns	an	empty	string.

Examples:

There	is	currently	no	support	for	code	points	in	the	format	\uXXXX\uYYYY 	that	are	not	from	the	basic	multilingual	plane

visitParamExtractRaw('{"abc":"\\n\\u0000"}', 'abc') = '"\\n\\u0000"'
visitParamExtractRaw('{"abc":{"def":[1,2,3]}}', 'abc') = '{"def":[1,2,3]}'

visitParamExtractString('{"abc":"\\n\\u0000"}', 'abc') = '\n\0'
visitParamExtractString('{"abc":"\\u263a"}', 'abc') = '☺'
visitParamExtractString('{"abc":"\\u263"}', 'abc') = ''
visitParamExtractString('{"abc":"hello}', 'abc') = ''



(they	are	converted	to	CESU-8	instead	of	UTF-8).

Higher-order	functions

->	operator,	lambda(params,	expr)	function

Allows	describing	a	lambda	function	for	passing	to	a	higher-order	function.	The	left	side	of	the	arrow	has	a	formal

parameter,	which	is	any	ID,	or	multiple	formal	parameters	–	any	IDs	in	a	tuple.	The	right	side	of	the	arrow	has	an	expression

that	can	use	these	formal	parameters,	as	well	as	any	table	columns.

Examples:	 x	->	2	*	x,	str	->	str	!=	Referer.

Higher-order	functions	can	only	accept	lambda	functions	as	their	functional	argument.

A	lambda	function	that	accepts	multiple	arguments	can	be	passed	to	a	higher-order	function.	In	this	case,	the	higher-

order	function	is	passed	several	arrays	of	identical	length	that	these	arguments	will	correspond	to.

For	all	functions	other	than	'arrayMap'	and	'arrayFilter',	the	first	argument	(the	lambda	function)	can	be	omitted.	In	this

case,	identical	mapping	is	assumed.

arrayMap(func,	arr1,	...)

Returns	an	array	obtained	from	the	original	application	of	the	'func'	function	to	each	element	in	the	'arr'	array.

arrayFilter(func,	arr1,	...)

Returns	an	array	containing	only	the	elements	in	'arr1'	for	which	'func'	returns	something	other	than	0.

Examples:

arrayCount([func,]	arr1,	...)

Returns	the	number	of	elements	in	the	arr	array	for	which	func	returns	something	other	than	0.	If	'func'	is	not	specified,	it

returns	the	number	of	non-zero	elements	in	the	array.

arrayExists([func,]	arr1,	...)

Returns	1	if	there	is	at	least	one	element	in	'arr'	for	which	'func'	returns	something	other	than	0.	Otherwise,	it	returns	0.

arrayAll([func,]	arr1,	...)

Returns	1	if	'func'	returns	something	other	than	0	for	all	the	elements	in	'arr'.	Otherwise,	it	returns	0.

SELECT arrayFilter(x -> x LIKE '%World%', ['Hello', 'abc World']) AS res

┌─res───────────┐
│ ['abc World'] │
└───────────────┘

SELECT
    arrayFilter(
        (i, x) -> x LIKE '%World%',
        arrayEnumerate(arr),
        ['Hello', 'abc World'] AS arr)
    AS res

┌─res─┐
│ [2] │
└─────┘



arraySum([func,]	arr1,	...)

Returns	the	sum	of	the	'func'	values.	If	the	function	is	omitted,	it	just	returns	the	sum	of	the	array	elements.

arrayFirst(func,	arr1,	...)

Returns	the	first	element	in	the	'arr1'	array	for	which	'func'	returns	something	other	than	0.

arrayFirstIndex(func,	arr1,	...)

Returns	the	index	of	the	first	element	in	the	'arr1'	array	for	which	'func'	returns	something	other	than	0.

arrayCumSum([func,]	arr1,	...)

Returns	an	array	of	partial	sums	of	elements	in	the	source	array	(a	running	sum).	If	the	func 	function	is	specified,	then	the

values	of	the	array	elements	are	converted	by	this	function	before	summing.

Example:

arraySort([func,]	arr1,	...)

Returns	an	array	as	result	of	sorting	the	elements	of	arr1 	in	ascending	order.	If	the	 func 	function	is	specified,	sorting

order	is	determined	by	the	result	of	the	function	 func 	applied	to	the	elements	of	array	(arrays)

The	Schwartzian	transform	[https://en.wikipedia.org/wiki/Schwartzian_transform]	is	used	to	impove	sorting	efficiency.

Example:

arrayReverseSort([func,]	arr1,	...)

Returns	an	array	as	result	of	sorting	the	elements	of	arr1 	in	descending	order.	If	the	 func 	function	is	specified,	sorting

order	is	determined	by	the	result	of	the	function	 func 	applied	to	the	elements	of	array	(arrays)

[]

Functions	for	working	with	external	dictionaries

For	information	on	connecting	and	configuring	external	dictionaries,	see	"External	dictionaries	[#dicts-external_dicts]".

dictGetUInt8,	dictGetUInt16,	dictGetUInt32,	dictGetUInt64

dictGetInt8,	dictGetInt16,	dictGetInt32,	dictGetInt64

dictGetFloat32,	dictGetFloat64

SELECT arrayCumSum([1, 1, 1, 1]) AS res

┌─res──────────┐
│ [1, 2, 3, 4] │
└──────────────┘

SELECT arraySort((x, y) -> y, ['hello', 'world'], [2, 1]);

┌─res────────────────┐
│ ['world', 'hello'] │
└────────────────────┘

https://en.wikipedia.org/wiki/Schwartzian_transform


dictGetDate,	dictGetDateTime

dictGetUUID

dictGetString

dictGetT('dict_name',	'attr_name',	id)

Get	the	value	of	the	attr_name	attribute	from	the	dict_name	dictionary	using	the	'id'	key. dict_name 	and	 attr_name

are	constant	strings. id must	be	UInt64.	If	there	is	no	 id 	key	in	the	dictionary,	it	returns	the	default	value	specified	in

the	dictionary	description.

dictGetTOrDefault

dictGetT('dict_name',	'attr_name',	id,	default)

The	same	as	the	dictGetT 	functions,	but	the	default	value	is	taken	from	the	function's	last	argument.

dictIsIn

dictIsIn	('dict_name',	child_id,	ancestor_id)

For	the	'dict_name'	hierarchical	dictionary,	finds	out	whether	the	'child_id'	key	is	located	inside	'ancestor_id'	(or

matches	'ancestor_id').	Returns	UInt8.

dictGetHierarchy

dictGetHierarchy('dict_name',	id)

For	the	'dict_name'	hierarchical	dictionary,	returns	an	array	of	dictionary	keys	starting	from	'id'	and	continuing	along

the	chain	of	parent	elements.	Returns	Array(UInt64).

dictHas

dictHas('dict_name',	id)

Check	whether	the	dictionary	has	the	key.	Returns	a	UInt8	value	equal	to	0	if	there	is	no	key	and	1	if	there	is	a	key.

Functions	for	working	with	Yandex.Metrica	dictionaries

In	order	for	the	functions	below	to	work,	the	server	config	must	specify	the	paths	and	addresses	for	getting	all	the

Yandex.Metrica	dictionaries.	The	dictionaries	are	loaded	at	the	first	call	of	any	of	these	functions.	If	the	reference	lists	can't

be	loaded,	an	exception	is	thrown.

For	information	about	creating	reference	lists,	see	the	section	"Dictionaries".

Multiple	geobases

ClickHouse	supports	working	with	multiple	alternative	geobases	(regional	hierarchies)	simultaneously,	in	order	to	support

various	perspectives	on	which	countries	certain	regions	belong	to.

The	'clickhouse-server'	config	specifies	the	file	with	the	regional

hierarchy:: <path_to_regions_hierarchy_file>/opt/geo/regions_hierarchy.txt</path_to_regions_hierarchy_file>



Besides	this	file,	it	also	searches	for	files	nearby	that	have	the	_	symbol	and	any	suffix	appended	to	the	name	(before	the

file	extension).	For	example,	it	will	also	find	the	file	 /opt/geo/regions_hierarchy_ua.txt ,	if	present.

ua 	is	called	the	dictionary	key.	For	a	dictionary	without	a	suffix,	the	key	is	an	empty	string.

All	the	dictionaries	are	re-loaded	in	runtime	(once	every	certain	number	of	seconds,	as	defined	in	the

builtin_dictionaries_reload_interval	config	parameter,	or	once	an	hour	by	default).	However,	the	list	of	available	dictionaries

is	defined	one	time,	when	the	server	starts.

All	functions	for	working	with	regions	have	an	optional	argument	at	the	end	–	the	dictionary	key.	It	is	referred	to	as	the

geobase.	Example:

regionToCity(id[,	geobase])

Accepts	a	UInt32	number	–	the	region	ID	from	the	Yandex	geobase.	If	this	region	is	a	city	or	part	of	a	city,	it	returns	the

region	ID	for	the	appropriate	city.	Otherwise,	returns	0.

regionToArea(id[,	geobase])

Converts	a	region	to	an	area	(type	5	in	the	geobase).	In	every	other	way,	this	function	is	the	same	as	'regionToCity'.

regionToDistrict(id[,	geobase])

Converts	a	region	to	a	federal	district	(type	4	in	the	geobase).	In	every	other	way,	this	function	is	the	same	as

'regionToCity'.

regionToCountry(RegionID) – Uses the default dictionary: /opt/geo/regions_hierarchy.txt
regionToCountry(RegionID, '') – Uses the default dictionary: /opt/geo/regions_hierarchy.txt
regionToCountry(RegionID, 'ua') – Uses the dictionary for the 'ua' key: /opt/geo/regions_hierarchy_ua.txt

SELECT DISTINCT regionToName(regionToArea(toUInt32(number), 'ua'))
FROM system.numbers
LIMIT 15

┌─regionToName(regionToArea(toUInt32(number), \'ua\'))─┐
│                                                      │
│ Moscow and Moscow region                             │
│ St. Petersburg and Leningrad region                  │
│ Belgorod region                                      │
│ Ivanovsk region                                      │
│ Kaluga region                                        │
│ Kostroma region                                      │
│ Kursk region                                         │
│ Lipetsk region                                       │
│ Orlov region                                         │
│ Ryazan region                                        │
│ Smolensk region                                      │
│ Tambov region                                        │
│ Tver region                                          │
│ Tula region                                          │
└──────────────────────────────────────────────────────┘

SELECT DISTINCT regionToName(regionToDistrict(toUInt32(number), 'ua'))
FROM system.numbers
LIMIT 15



regionToCountry(id[,	geobase])

Converts	a	region	to	a	country.	In	every	other	way,	this	function	is	the	same	as	'regionToCity'.	Example:	

regionToCountry(toUInt32(213))	=	225 	converts	Moscow	(213)	to	Russia	(225).

regionToContinent(id[,	geobase])

Converts	a	region	to	a	continent.	In	every	other	way,	this	function	is	the	same	as	'regionToCity'.	Example:	

regionToContinent(toUInt32(213))	=	10001 	converts	Moscow	(213)	to	Eurasia	(10001).

regionToPopulation(id[,	geobase])

Gets	the	population	for	a	region.	The	population	can	be	recorded	in	files	with	the	geobase.	See	the	section	"External

dictionaries".	If	the	population	is	not	recorded	for	the	region,	it	returns	0.	In	the	Yandex	geobase,	the	population	might	be

recorded	for	child	regions,	but	not	for	parent	regions.

regionIn(lhs,	rhs[,	geobase])

Checks	whether	a	'lhs'	region	belongs	to	a	'rhs'	region.	Returns	a	UInt8	number	equal	to	1	if	it	belongs,	or	0	if	it	doesn't

belong.	The	relationship	is	reflexive	–	any	region	also	belongs	to	itself.

regionHierarchy(id[,	geobase])

Accepts	a	UInt32	number	–	the	region	ID	from	the	Yandex	geobase.	Returns	an	array	of	region	IDs	consisting	of	the	passed

region	and	all	parents	along	the	chain.	Example:	 regionHierarchy(toUInt32(213))	=	[213,1,3,225,10001,10000] .

regionToName(id[,	lang])

Accepts	a	UInt32	number	–	the	region	ID	from	the	Yandex	geobase.	A	string	with	the	name	of	the	language	can	be	passed

as	a	second	argument.	Supported	languages	are:	ru,	en,	ua,	uk,	by,	kz,	tr.	If	the	second	argument	is	omitted,	the	language

'ru'	is	used.	If	the	language	is	not	supported,	an	exception	is	thrown.	Returns	a	string	–	the	name	of	the	region	in	the

corresponding	language.	If	the	region	with	the	specified	ID	doesn't	exist,	an	empty	string	is	returned.

ua 	and	 uk 	both	mean	Ukrainian.

Functions	for	implementing	the	IN	operator

in,	notIn,	globalIn,	globalNotIn

See	the	section	"IN	operators".

tuple(x,	y,	...),	operator	(x,	y,	...)

┌─regionToName(regionToDistrict(toUInt32(number), \'ua\'))─┐
│                                                          │
│ Central federal district                                 │
│ Northwest federal district                               │
│ South federal district                                   │
│ North Caucases federal district                          │
│ Privolga federal district                                │
│ Ural federal district                                    │
│ Siberian federal district                                │
│ Far East federal district                                │
│ Scotland                                                 │
│ Faroe Islands                                            │
│ Flemish region                                           │
│ Brussels capital region                                  │
│ Wallonia                                                 │
│ Federation of Bosnia and Herzegovina                     │
└──────────────────────────────────────────────────────────┘



A	function	that	allows	grouping	multiple	columns.	For	columns	with	the	types	T1,	T2,	...,	it	returns	a	Tuple(T1,	T2,	...)	type

tuple	containing	these	columns.	There	is	no	cost	to	execute	the	function.	Tuples	are	normally	used	as	intermediate	values

for	an	argument	of	IN	operators,	or	for	creating	a	list	of	formal	parameters	of	lambda	functions.	Tuples	can't	be	written	to

a	table.

tupleElement(tuple,	n),	operator	x.N

A	function	that	allows	getting	a	column	from	a	tuple.	'N'	is	the	column	index,	starting	from	1.	N	must	be	a	constant.	'N'

must	be	a	constant.	'N'	must	be	a	strict	postive	integer	no	greater	than	the	size	of	the	tuple.	There	is	no	cost	to	execute	the

function.

[]

arrayJoin	function

This	is	a	very	unusual	function.

Normal	functions	don't	change	a	set	of	rows,	but	just	change	the	values	in	each	row	(map).	Aggregate	functions	compress

a	set	of	rows	(fold	or	reduce).	The	'arrayJoin'	function	takes	each	row	and	generates	a	set	of	rows	(unfold).

This	function	takes	an	array	as	an	argument,	and	propagates	the	source	row	to	multiple	rows	for	the	number	of	elements

in	the	array.	All	the	values	in	columns	are	simply	copied,	except	the	values	in	the	column	where	this	function	is	applied;	it	is

replaced	with	the	corresponding	array	value.

A	query	can	use	multiple	 arrayJoin 	functions.	In	this	case,	the	transformation	is	performed	multiple	times.

Note	the	ARRAY	JOIN	syntax	in	the	SELECT	query,	which	provides	broader	possibilities.

Example:

Functions	for	working	with	geographical	coordinates

greatCircleDistance

Calculate	the	distance	between	two	points	on	the	Earth's	surface	using	the	great-circle	formula

[https://en.wikipedia.org/wiki/Great-circle_distance].

Input	parameters

lon1Deg 	—	Longitude	of	the	first	point	in	degrees.	Range:	[-180°,	180°] .

lat1Deg 	—	Latitude	of	the	first	point	in	degrees.	Range:	[-90°,	90°] .

lon2Deg 	—	Longitude	of	the	second	point	in	degrees.	Range:	[-180°,	180°] .

lat2Deg 	—	Latitude	of	the	second	point	in	degrees.	Range:	[-90°,	90°] .

Positive	values	correspond	to	North	latitude	and	East	longitude,	and	negative	values	correspond	to	South	latitude	and

SELECT arrayJoin([1, 2, 3] AS src) AS dst, 'Hello', src

┌─dst─┬─\'Hello\'─┬─src─────┐
│   1 │ Hello     │ [1,2,3] │
│   2 │ Hello     │ [1,2,3] │
│   3 │ Hello     │ [1,2,3] │
└─────┴───────────┴─────────┘

greatCircleDistance(lon1Deg, lat1Deg, lon2Deg, lat2Deg)

https://en.wikipedia.org/wiki/Great-circle_distance


West	longitude.

Returned	value

The	distance	between	two	points	on	the	Earth's	surface,	in	meters.

Generates	an	exception	when	the	input	parameter	values	fall	outside	of	the	range.

Example

pointInEllipses

Checks	whether	the	point	belongs	to	at	least	one	of	the	ellipses.

Input	parameters

x,	y 	—	Coordinates	of	a	point	on	the	plane.

xᵢ,	yᵢ 	—	Coordinates	of	the	center	of	the	 i -th	ellipsis.

aᵢ,	bᵢ 	—	Axes	of	the	 i -th	ellipsis	in	meters.

The	input	parameters	must	be	2+4⋅n ,	where	 n 	is	the	number	of	ellipses.

Returned	values

1 	if	the	point	is	inside	at	least	one	of	the	ellipses;	0 if	it	is	not.

Example

pointInPolygon

Checks	whether	the	point	belongs	to	the	polygon	on	the	plane.

Input	values

(x,	y) 	—	Coordinates	of	a	point	on	the	plane.	Data	type	—	Tuple	[#data_type-tuple]	—	A	tuple	of	two	numbers.

[(a,	b),	(c,	d)	...] 	—	Polygon	vertices.	Data	type	—	Array	[#data_type-array].	Each	vertex	is	represented	by	a

pair	of	coordinates	 (a,	b) .	Vertices	should	be	specified	in	a	clockwise	or	counterclockwise	order.	The	minimum

number	of	vertices	is	3.	The	polygon	must	be	constant.

The	function	also	supports	polygons	with	holes	(cut	out	sections).	In	this	case,	add	polygons	that	define	the	cut	out

sections	using	additional	arguments	of	the	function.	The	function	does	not	support	non-simply-connected	polygons.

SELECT greatCircleDistance(55.755831, 37.617673, -55.755831, -37.617673)

┌─greatCircleDistance(55.755831, 37.617673, -55.755831, -37.617673)─┐
│                                                14132374.194975413 │
└───────────────────────────────────────────────────────────────────┘

pointInEllipses(x, y, x₀, y₀, a₀, b₀,...,x�, y�, a�, b�)

SELECT pointInEllipses(55.755831, 37.617673, 55.755831, 37.617673, 1.0, 2.0)

┌─pointInEllipses(55.755831, 37.617673, 55.755831, 37.617673, 1., 2.)─┐
│                                                                   1 │
└─────────────────────────────────────────────────────────────────────┘

pointInPolygon((x, y), [(a, b), (c, d) ...], ...)



Returned	values

1 	if	the	point	is	inside	the	polygon,	 0 	if	it	is	not.	If	the	point	is	on	the	polygon	boundary,	the	function	may	return	either	0	or

1.

Example

Functions	for	working	with	Nullable	aggregates

isNull

Checks	whether	the	argument	is	NULL	[#null-literal].

Parameters

x 	—	A	value	with	a	non-compound	data	type.

Returned	value

1 	if	 x 	is	 NULL .

0 	if	 x 	is	not	 NULL .

Example

Input	table

Query

isNotNull

Checks	whether	the	argument	is	NULL	[#null-literal].

SELECT pointInPolygon((3., 3.), [(6, 0), (8, 4), (5, 8), (0, 2)]) AS res

┌─res─┐
│   1 │
└─────┘

isNull(x)

┌─x─┬────y─┐
│ 1 │ ᴺᵁᴸᴸ │
│ 2 │    3 │
└───┴──────┘

:) SELECT x FROM t_null WHERE isNull(y)

SELECT x
FROM t_null
WHERE isNull(y)

┌─x─┐
│ 1 │
└───┘

1 rows in set. Elapsed: 0.010 sec.

isNotNull(x)



Parameters:

x 	—	A	value	with	a	non-compound	data	type.

Returned	value

0 	if	 x 	is	 NULL .

1 	if	 x 	is	not	 NULL .

Example

Input	table

Query

coalesce

Checks	from	left	to	right	whether	 NULL 	arguments	were	passed	and	returns	the	first	non- NULL 	argument.

Parameters:

Any	number	of	parameters	of	a	non-compound	type.	All	parameters	must	be	compatible	by	data	type.

Returned	values

The	first	non- NULL 	argument.

NULL ,	if	all	arguments	are	 NULL .

Example

Consider	a	list	of	contacts	that	may	specify	multiple	ways	to	contact	a	customer.

The	 mail 	and	 phone 	fields	are	of	type	String,	but	the	icq 	field	is	 UInt32 ,	so	it	needs	to	be	converted	to	String .

Get	the	first	available	contact	method	for	the	customer	from	the	contact	list:

┌─x─┬────y─┐
│ 1 │ ᴺᵁᴸᴸ │
│ 2 │    3 │
└───┴──────┘

:) SELECT x FROM t_null WHERE isNotNull(y)

SELECT x
FROM t_null
WHERE isNotNull(y)

┌─x─┐
│ 2 │
└───┘

1 rows in set. Elapsed: 0.010 sec.

coalesce(x,...)

┌─name─────┬─mail─┬─phone─────┬──icq─┐
│ client 1 │ ᴺᵁᴸᴸ │ 123-45-67 │  123 │
│ client 2 │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ      │ ᴺᵁᴸᴸ │
└──────────┴──────┴───────────┴──────┘



ifNull

Returns	an	alternative	value	if	the	main	argument	is	 NULL .

Parameters:

x 	—	The	value	to	check	for	NULL .

alt 	—	The	value	that	the	function	returns	if	x 	is	 NULL .

Returned	values

The	value	 x ,	if	 x 	is	not	 NULL .

The	value	 alt ,	if	 x 	is	 NULL .

Example

nullIf

Returns	 NULL 	if	the	arguments	are	equal.

Parameters:

x ,	 y 	—	Values	for	comparison.	They	must	be	compatible	types,	or	ClickHouse	will	generate	an	exception.

Returned	values

NULL ,	if	the	arguments	are	equal.

The	 x 	value,	if	the	arguments	are	not	equal.

Example

:) SELECT coalesce(mail, phone, CAST(icq,'Nullable(String)')) FROM aBook

SELECT coalesce(mail, phone, CAST(icq, 'Nullable(String)'))
FROM aBook

┌─name─────┬─coalesce(mail, phone, CAST(icq, 'Nullable(String)'))─┐
│ client 1 │ 123-45-67                                            │
│ client 2 │ ᴺᵁᴸᴸ                                                 │
└──────────┴──────────────────────────────────────────────────────┘

2 rows in set. Elapsed: 0.006 sec.

ifNull(x,alt)

SELECT ifNull('a', 'b')

┌─ifNull('a', 'b')─┐
│ a                │
└──────────────────┘

SELECT ifNull(NULL, 'b')

┌─ifNull(NULL, 'b')─┐
│ b                 │
└───────────────────┘

nullIf(x, y)



assumeNotNull

Results	in	a	value	of	type	Nullable	[#data_type-nullable]	for	a	non-	 Nullable ,	if	the	value	is	not	 NULL .

Parameters:

x 	—	The	original	value.

Returned	values

The	original	value	from	the	non- Nullable 	type,	if	it	is	not	 NULL .

The	default	value	for	the	non-Nullable 	type	if	the	original	value	was	 NULL .

Example

Consider	the	 t_null 	table.

Apply	the	 resumenotnull 	function	to	the	 y 	column.

toNullable

SELECT nullIf(1, 1)

┌─nullIf(1, 1)─┐
│         ᴺᵁᴸᴸ │
└──────────────┘

SELECT nullIf(1, 2)

┌─nullIf(1, 2)─┐
│            1 │
└──────────────┘

assumeNotNull(x)

SHOW CREATE TABLE t_null

┌─statement─────────────────────────────────────────────────────────────────┐
│ CREATE TABLE default.t_null ( x Int8,  y Nullable(Int8)) ENGINE = TinyLog │
└───────────────────────────────────────────────────────────────────────────┘

┌─x─┬────y─┐
│ 1 │ ᴺᵁᴸᴸ │
│ 2 │    3 │
└───┴──────┘

SELECT assumeNotNull(y) FROM t_null

┌─assumeNotNull(y)─┐
│                0 │
│                3 │
└──────────────────┘

SELECT toTypeName(assumeNotNull(y)) FROM t_null

┌─toTypeName(assumeNotNull(y))─┐
│ Int8                         │
│ Int8                         │
└──────────────────────────────┘



Converts	the	argument	type	to	 Nullable .

Parameters:

x 	—	The	value	of	any	non-compound	type.

Returned	value

The	input	value	with	a	non-Nullable 	type.

Example

Other	functions

hostName()

Returns	a	string	with	the	name	of	the	host	that	this	function	was	performed	on.	For	distributed	processing,	this	is	the

name	of	the	remote	server	host,	if	the	function	is	performed	on	a	remote	server.

visibleWidth(x)

Calculates	the	approximate	width	when	outputting	values	to	the	console	in	text	format	(tab-separated).	This	function	is

used	by	the	system	for	implementing	Pretty	formats.

NULL 	is	represented	as	a	string	corresponding	to	NULL 	in	 Pretty 	formats.

toTypeName(x)

Returns	a	string	containing	the	type	name	of	the	passed	argument.

If	 NULL 	is	passed	to	the	function	as	input,	then	it	returns	the	Nullable(Nothing) 	type,	which	corresponds	to	an	internal	

NULL 	representation	in	ClickHouse.

blockSize()

Gets	the	size	of	the	block.	In	ClickHouse,	queries	are	always	run	on	blocks	(sets	of	column	parts).	This	function	allows

getting	the	size	of	the	block	that	you	called	it	for.

toNullable(x)

SELECT toTypeName(10)

┌─toTypeName(10)─┐
│ UInt8          │
└────────────────┘

SELECT toTypeName(toNullable(10))

┌─toTypeName(toNullable(10))─┐
│ Nullable(UInt8)            │
└────────────────────────────┘

SELECT visibleWidth(NULL)

┌─visibleWidth(NULL)─┐
│                  4 │
└────────────────────┘



materialize(x)

Turns	a	constant	into	a	full	column	containing	just	one	value.	In	ClickHouse,	full	columns	and	constants	are	represented

differently	in	memory.	Functions	work	differently	for	constant	arguments	and	normal	arguments	(different	code	is

executed),	although	the	result	is	almost	always	the	same.	This	function	is	for	debugging	this	behavior.

ignore(...)

Accepts	any	arguments,	including	 NULL .	Always	returns	0.	However,	the	argument	is	still	evaluated.	This	can	be	used	for

benchmarks.

sleep(seconds)

Sleeps	'seconds'	seconds	on	each	data	block.	You	can	specify	an	integer	or	a	floating-point	number.

currentDatabase()

Returns	the	name	of	the	current	database.	You	can	use	this	function	in	table	engine	parameters	in	a	CREATE	TABLE	query

where	you	need	to	specify	the	database.

isFinite(x)

Accepts	Float32	and	Float64	and	returns	UInt8	equal	to	1	if	the	argument	is	not	infinite	and	not	a	NaN,	otherwise	0.

isInfinite(x)

Accepts	Float32	and	Float64	and	returns	UInt8	equal	to	1	if	the	argument	is	infinite,	otherwise	0.	Note	that	0	is	returned	for

a	NaN.

isNaN(x)

Accepts	Float32	and	Float64	and	returns	UInt8	equal	to	1	if	the	argument	is	a	NaN,	otherwise	0.

hasColumnInTable(['hostname'[,	'username'[,	'password']],]	'database',	'table',	'column')

Accepts	constant	strings:	database	name,	table	name,	and	column	name.	Returns	a	UInt8	constant	expression	equal	to	1	if

there	is	a	column,	otherwise	0.	If	the	hostname	parameter	is	set,	the	test	will	run	on	a	remote	server.	The	function	throws

an	exception	if	the	table	does	not	exist.	For	elements	in	a	nested	data	structure,	the	function	checks	for	the	existence	of	a

column.	For	the	nested	data	structure	itself,	the	function	returns	0.

bar

Allows	building	a	unicode-art	diagram.

bar(x,	min,	max,	width) 	draws	a	band	with	a	width	proportional	to	(x	-	min) 	and	equal	to	 width 	characters	when	 x	

=	max .

Parameters:

x 	—	Size	to	display.

min,	max 	—	Integer	constants.	The	value	must	fit	in	Int64 .

width 	—	Constant,	positive	integer,	can	be	fractional.



The	band	is	drawn	with	accuracy	to	one	eighth	of	a	symbol.

Example:

[]

transform

Transforms	a	value	according	to	the	explicitly	defined	mapping	of	some	elements	to	other	ones.	There	are	two	variations

of	this	function:

1.	 transform(x,	array_from,	array_to,	default)

x 	–	What	to	transform.

array_from 	–	Constant	array	of	values	for	converting.

array_to 	–	Constant	array	of	values	to	convert	the	values	in	'from'	to.

default 	–	Which	value	to	use	if	'x'	is	not	equal	to	any	of	the	values	in	'from'.

array_from 	and	 array_to 	–	Arrays	of	the	same	size.

Types:

transform(T,	Array(T),	Array(U),	U)	->	U

T 	and	 U 	can	be	numeric,	string,	or	Date	or	DateTime	types.	Where	the	same	letter	is	indicated	(T	or	U),	for	numeric	types

these	might	not	be	matching	types,	but	types	that	have	a	common	type.	For	example,	the	first	argument	can	have	the

Int64	type,	while	the	second	has	the	Array(Uint16)	type.

SELECT
    toHour(EventTime) AS h,
    count() AS c,
    bar(c, 0, 600000, 20) AS bar
FROM test.hits
GROUP BY h
ORDER BY h ASC

┌──h─┬──────c─┬─bar────────────────┐
│  0 │ 292907 │ █████████▋         │
│  1 │ 180563 │ ██████             │
│  2 │ 114861 │ ███▋               │
│  3 │  85069 │ ██▋                │
│  4 │  68543 │ ██▎                │
│  5 │  78116 │ ██▌                │
│  6 │ 113474 │ ███▋               │
│  7 │ 170678 │ █████▋             │
│  8 │ 278380 │ █████████▎         │
│  9 │ 391053 │ █████████████      │
│ 10 │ 457681 │ ███████████████▎   │
│ 11 │ 493667 │ ████████████████▍  │
│ 12 │ 509641 │ ████████████████▊  │
│ 13 │ 522947 │ █████████████████▍ │
│ 14 │ 539954 │ █████████████████▊ │
│ 15 │ 528460 │ █████████████████▌ │
│ 16 │ 539201 │ █████████████████▊ │
│ 17 │ 523539 │ █████████████████▍ │
│ 18 │ 506467 │ ████████████████▊  │
│ 19 │ 520915 │ █████████████████▎ │
│ 20 │ 521665 │ █████████████████▍ │
│ 21 │ 542078 │ ██████████████████ │
│ 22 │ 493642 │ ████████████████▍  │
│ 23 │ 400397 │ █████████████▎     │
└────┴────────┴────────────────────┘



If	the	'x'	value	is	equal	to	one	of	the	elements	in	the	'array_from'	array,	it	returns	the	existing	element	(that	is	numbered	the

same)	from	the	'array_to'	array.	Otherwise,	it	returns	'default'.	If	there	are	multiple	matching	elements	in	'array_from',	it

returns	one	of	the	matches.

Example:

1.	 transform(x,	array_from,	array_to)

Differs	from	the	first	variation	in	that	the	'default'	argument	is	omitted.	If	the	'x'	value	is	equal	to	one	of	the	elements	in	the

'array_from'	array,	it	returns	the	matching	element	(that	is	numbered	the	same)	from	the	'array_to'	array.	Otherwise,	it

returns	'x'.

Types:

transform(T,	Array(T),	Array(T))	->	T

Example:

formatReadableSize(x)

Accepts	the	size	(number	of	bytes).	Returns	a	rounded	size	with	a	suffix	(KiB,	MiB,	etc.)	as	a	string.

Example:

SELECT
    transform(SearchEngineID, [2, 3], ['Yandex', 'Google'], 'Other') AS title,
    count() AS c
FROM test.hits
WHERE SearchEngineID != 0
GROUP BY title
ORDER BY c DESC

┌─title─────┬──────c─┐
│ Yandex    │ 498635 │
│ Google    │ 229872 │
│ Other     │ 104472 │
└───────────┴────────┘

SELECT
    transform(domain(Referer), ['yandex.ru', 'google.ru', 'vk.com'], ['www.yandex', 'example.com']) AS s,
    count() AS c
FROM test.hits
GROUP BY domain(Referer)
ORDER BY count() DESC
LIMIT 10

┌─s──────────────┬───────c─┐
│                │ 2906259 │
│ www.yandex     │  867767 │
│ ███████.ru     │  313599 │
│ mail.yandex.ru │  107147 │
│ ██████.ru      │  100355 │
│ █████████.ru   │   65040 │
│ news.yandex.ru │   64515 │
│ ██████.net     │   59141 │
│ example.com    │   57316 │
└────────────────┴─────────┘

SELECT
    arrayJoin([1, 1024, 1024*1024, 192851925]) AS filesize_bytes,
    formatReadableSize(filesize_bytes) AS filesize



least(a,	b)

Returns	the	smallest	value	from	a	and	b.

greatest(a,	b)

Returns	the	largest	value	of	a	and	b.

uptime()

Returns	the	server's	uptime	in	seconds.

version()

Returns	the	version	of	the	server	as	a	string.

rowNumberInAllBlocks()

Returns	the	ordinal	number	of	the	row	in	the	data	block.	This	function	only	considers	the	affected	data	blocks.

runningDifference(x)

Calculates	the	difference	between	successive	row	values	in	the	data	block.	Returns	0	for	the	first	row	and	the	difference

from	the	previous	row	for	each	subsequent	row.

The	result	of	the	function	depends	on	the	affected	data	blocks	and	the	order	of	data	in	the	block.	If	you	make	a	subquery

with	ORDER	BY	and	call	the	function	from	outside	the	subquery,	you	can	get	the	expected	result.

Example:

┌─filesize_bytes─┬─filesize───┐
│              1 │ 1.00 B     │
│           1024 │ 1.00 KiB   │
│        1048576 │ 1.00 MiB   │
│      192851925 │ 183.92 MiB │
└────────────────┴────────────┘

SELECT
    EventID,
    EventTime,
    runningDifference(EventTime) AS delta
FROM
(
    SELECT
        EventID,
        EventTime
    FROM events
    WHERE EventDate = '2016-11-24'
    ORDER BY EventTime ASC
    LIMIT 5
)

┌─EventID─┬───────────EventTime─┬─delta─┐
│    1106 │ 2016-11-24 00:00:04 │     0 │
│    1107 │ 2016-11-24 00:00:05 │     1 │
│    1108 │ 2016-11-24 00:00:05 │     0 │
│    1109 │ 2016-11-24 00:00:09 │     4 │
│    1110 │ 2016-11-24 00:00:10 │     1 │
└─────────┴─────────────────────┴───────┘



MACNumToString(num)

Accepts	a	UInt64	number.	Interprets	it	as	a	MAC	address	in	big	endian.	Returns	a	string	containing	the	corresponding	MAC

address	in	the	format	AA:BB:CC:DD:EE:FF	(colon-separated	numbers	in	hexadecimal	form).

MACStringToNum(s)

The	inverse	function	of	MACNumToString.	If	the	MAC	address	has	an	invalid	format,	it	returns	0.

MACStringToOUI(s)

Accepts	a	MAC	address	in	the	format	AA:BB:CC:DD:EE:FF	(colon-separated	numbers	in	hexadecimal	form).	Returns	the

first	three	octets	as	a	UInt64	number.	If	the	MAC	address	has	an	invalid	format,	it	returns	0.

getSizeOfEnumType

Returns	the	number	of	fields	in	Enum	[#data_type-enum].

Parameters:

value 	—	Value	of	type	 Enum .

Returned	values

The	number	of	fields	with	 Enum 	input	values.

An	exception	is	thrown	if	the	type	is	not	 Enum .

Example

toColumnTypeName

Returns	the	name	of	the	class	that	represents	the	data	type	of	the	column	in	RAM.

Parameters:

value 	—	Any	type	of	value.

Returned	values

A	string	with	the	name	of	the	class	that	is	used	for	representing	the	 value 	data	type	in	RAM.

Example	of	the	difference	between toTypeName	'	and	'	toColumnTypeName

getSizeOfEnumType(value)

SELECT getSizeOfEnumType( CAST('a' AS Enum8('a' = 1, 'b' = 2) ) ) AS x

┌─x─┐
│ 2 │
└───┘

toColumnTypeName(value)



The	example	shows	that	the	 DateTime 	data	type	is	stored	in	memory	as	 Const(UInt32) .

dumpColumnStructure

Outputs	a	detailed	description	of	data	structures	in	RAM

Parameters:

value 	—	Any	type	of	value.

Returned	values

A	string	describing	the	structure	that	is	used	for	representing	the	 value 	data	type	in	RAM.

Example

defaultValueOfArgumentType

Outputs	the	default	value	for	the	data	type.

Does	not	include	default	values	for	custom	columns	set	by	the	user.

Parameters:

expression 	—	Arbitrary	type	of	value	or	an	expression	that	results	in	a	value	of	an	arbitrary	type.

Returned	values

0 	for	numbers.

Empty	string	for	strings.

ᴺᵁᴸᴸ 	for	Nullable	[#data_type-nullable].

Example

:) select toTypeName(cast('2018-01-01 01:02:03' AS DateTime))

SELECT toTypeName(CAST('2018-01-01 01:02:03', 'DateTime'))

┌─toTypeName(CAST('2018-01-01 01:02:03', 'DateTime'))─┐
│ DateTime                                            │
└─────────────────────────────────────────────────────┘

1 rows in set. Elapsed: 0.008 sec.

:) select toColumnTypeName(cast('2018-01-01 01:02:03' AS DateTime))

SELECT toColumnTypeName(CAST('2018-01-01 01:02:03', 'DateTime'))

┌─toColumnTypeName(CAST('2018-01-01 01:02:03', 'DateTime'))─┐
│ Const(UInt32)                                             │
└───────────────────────────────────────────────────────────┘

dumpColumnStructure(value)

SELECT dumpColumnStructure(CAST('2018-01-01 01:02:03', 'DateTime'))

┌─dumpColumnStructure(CAST('2018-01-01 01:02:03', 'DateTime'))─┐
│ DateTime, Const(size = 1, UInt32(size = 1))                  │
└──────────────────────────────────────────────────────────────┘

defaultValueOfArgumentType(expression)



indexHint

Outputs	data	in	the	range	selected	by	the	index	without	filtering	by	the	expression	specified	as	an	argument.

The	expression	passed	to	the	function	is	not	calculated,	but	ClickHouse	applies	the	index	to	this	expression	in	the	same

way	as	if	the	expression	was	in	the	query	without	 indexHint .

Returned	value

a.	

Example

Here	is	a	table	with	the	test	data	for	ontime	[#example_datasets-ontime].

The	table	has	indexes	for	the	fields	(FlightDate,	(Year,	FlightDate)) .

Create	a	selection	by	date	like	this:

:) SELECT defaultValueOfArgumentType( CAST(1 AS Int8) )

SELECT defaultValueOfArgumentType(CAST(1, 'Int8'))

┌─defaultValueOfArgumentType(CAST(1, 'Int8'))─┐
│                                           0 │
└─────────────────────────────────────────────┘

1 rows in set. Elapsed: 0.002 sec.

:) SELECT defaultValueOfArgumentType( CAST(1 AS Nullable(Int8) ) )

SELECT defaultValueOfArgumentType(CAST(1, 'Nullable(Int8)'))

┌─defaultValueOfArgumentType(CAST(1, 'Nullable(Int8)'))─┐
│                                                  ᴺᵁᴸᴸ │
└───────────────────────────────────────────────────────┘

1 rows in set. Elapsed: 0.002 sec.

SELECT count() FROM ontime

┌─count()─┐
│ 4276457 │
└─────────┘

:) SELECT FlightDate AS k, count() FROM ontime GROUP BY k ORDER BY k

SELECT
    FlightDate AS k,
    count()
FROM ontime
GROUP BY k
ORDER BY k ASC

┌──────────k─┬─count()─┐
│ 2017-01-01 │   13970 │
│ 2017-01-02 │   15882 │
........................
│ 2017-09-28 │   16411 │
│ 2017-09-29 │   16384 │
│ 2017-09-30 │   12520 │
└────────────┴─────────┘

273 rows in set. Elapsed: 0.072 sec. Processed 4.28 million rows, 8.55 MB (59.00 million rows/s., 118.01 
MB/s.)



In	this	selection,	the	index	is	not	used	and	ClickHouse	processed	the	entire	table	( Processed	4.28	million	rows ).	To

apply	the	index,	select	a	specific	date	and	run	the	following	query:

The	last	line	of	output	shows	that	by	using	the	index,	ClickHouse	processed	a	significantly	smaller	number	of	rows

( Processed	32.74	thousand	rows ).

Now	pass	the	expression	 k	=	'2017-09-15' 	to	the	 indexHint 	function:

The	response	to	the	request	shows	that	ClickHouse	applied	the	index	in	the	same	way	as	the	previous	time	(Processed	

32.74	thousand	rows ).	However,	the	resulting	set	of	rows	shows	that	the	expression	k	=	'2017-09-15' 	was	not	used

when	generating	the	result.

Because	the	index	is	sparse	in	ClickHouse,	"extra"	data	ends	up	in	the	response	when	reading	a	range	(in	this	case,	the

adjacent	dates).	Use	the	 indexHint 	function	to	see	it.

replicate

Creates	an	array	with	a	single	value.

Used	for	internal	implementation	of	arrayJoin	[#functions_arrayjoin].

Parameters:

arr 	—	Original	array.	ClickHouse	creates	a	new	array	of	the	same	length	as	the	original	and	fills	it	with	the	value	x .

x 	—	The	value	that	the	resulting	array	will	be	filled	with.

Output	value

:) SELECT FlightDate AS k, count() FROM ontime WHERE k = '2017-09-15' GROUP BY k ORDER BY k

SELECT
    FlightDate AS k,
    count()
FROM ontime
WHERE k = '2017-09-15'
GROUP BY k
ORDER BY k ASC

┌──────────k─┬─count()─┐
│ 2017-09-15 │   16428 │
└────────────┴─────────┘

1 rows in set. Elapsed: 0.014 sec. Processed 32.74 thousand rows, 65.49 KB (2.31 million rows/s., 4.63 MB/s.)

:) SELECT FlightDate AS k, count() FROM ontime WHERE indexHint(k = '2017-09-15') GROUP BY k ORDER BY k

SELECT
    FlightDate AS k,
    count()
FROM ontime
WHERE indexHint(k = '2017-09-15')
GROUP BY k
ORDER BY k ASC

┌──────────k─┬─count()─┐
│ 2017-09-14 │    7071 │
│ 2017-09-15 │   16428 │
│ 2017-09-16 │    1077 │
│ 2017-09-30 │    8167 │
└────────────┴─────────┘

4 rows in set. Elapsed: 0.004 sec. Processed 32.74 thousand rows, 65.49 KB (8.97 million rows/s., 17.94 MB/s.)

replicate(x, arr)



An	array	filled	with	the	value	 x .

Example

[]

Aggregate	functions

Aggregate	functions	work	in	the	normal	[http://www.sql-tutorial.com/sql-aggregate-functions-sql-tutorial]	way	as

expected	by	database	experts.

ClickHouse	also	supports:

Parametric	aggregate	functions	[#aggregate_functions_parametric],	which	accept	other	parameters	in	addition	to

columns.

Combinators	[#aggregate_functions_combinators],	which	change	the	behavior	of	aggregate	functions.

NULL	processing

During	aggregation,	all	 NULL s	are	skipped.

Examples:

Consider	this	table:

Let's	say	you	need	to	total	the	values	in	the	 y 	column:

The	 sum 	function	interprets	 NULL 	as	 0 .	In	particular,	this	means	that	if	the	function	receives	input	of	a	selection	where	all

the	values	are	 NULL ,	then	the	result	will	be	 0 ,	not	 NULL .

Now	you	can	use	the	 groupArray 	function	to	create	an	array	from	the	 y 	column:

SELECT replicate(1, ['a', 'b', 'c'])

┌─replicate(1, ['a', 'b', 'c'])─┐
│ [1,1,1]                       │
└───────────────────────────────┘

┌─x─┬────y─┐
│ 1 │    2 │
│ 2 │ ᴺᵁᴸᴸ │
│ 3 │    2 │
│ 3 │    3 │
│ 3 │ ᴺᵁᴸᴸ │
└───┴──────┘

:) SELECT sum(y) FROM t_null_big

SELECT sum(y)
FROM t_null_big

┌─sum(y)─┐
│      7 │
└────────┘

1 rows in set. Elapsed: 0.002 sec.

http://www.sql-tutorial.com/sql-aggregate-functions-sql-tutorial


groupArray 	does	not	include	 NULL 	in	the	resulting	array.

[]

Function	reference

count()

Counts	the	number	of	rows.	Accepts	zero	arguments	and	returns	UInt64.	The	syntax	COUNT(DISTINCT	x) 	is	not

supported.	The	separate	 uniq 	aggregate	function	exists	for	this	purpose.

A	 SELECT	count()	FROM	table 	query	is	not	optimized,	because	the	number	of	entries	in	the	table	is	not	stored

separately.	It	will	select	some	small	column	from	the	table	and	count	the	number	of	values	in	it.

[]

any(x)

Selects	the	first	encountered	value.	The	query	can	be	executed	in	any	order	and	even	in	a	different	order	each	time,	so	the

result	of	this	function	is	indeterminate.	To	get	a	determinate	result,	you	can	use	the	'min'	or	'max'	function	instead	of	'any'.

In	some	cases,	you	can	rely	on	the	order	of	execution.	This	applies	to	cases	when	SELECT	comes	from	a	subquery	that	uses

ORDER	BY.

When	a	 SELECT 	query	has	the	 GROUP	BY 	clause	or	at	least	one	aggregate	function,	ClickHouse	(in	contrast	to	MySQL)

requires	that	all	expressions	in	the	 SELECT ,	 HAVING ,	and	 ORDER	BY 	clauses	be	calculated	from	keys	or	from	aggregate

functions.	In	other	words,	each	column	selected	from	the	table	must	be	used	either	in	keys	or	inside	aggregate	functions.

To	get	behavior	like	in	MySQL,	you	can	put	the	other	columns	in	the	 any 	aggregate	function.

anyHeavy(x)

Selects	a	frequently	occurring	value	using	the	heavy	hitters	[http://www.cs.umd.edu/~samir/498/karp.pdf]	algorithm.	If

there	is	a	value	that	occurs	more	than	in	half	the	cases	in	each	of	the	query's	execution	threads,	this	value	is	returned.

Normally,	the	result	is	nondeterministic.

Arguments

column 	–	The	column	name.

Example

Take	the	OnTime	[#example_datasets-ontime]	data	set	and	select	any	frequently	occurring	value	in	the	 AirlineID

column.

:) SELECT groupArray(y) FROM t_null_big

SELECT groupArray(y)
FROM t_null_big

┌─groupArray(y)─┐
│ [2,2,3]       │
└───────────────┘

1 rows in set. Elapsed: 0.002 sec.

anyHeavy(column)

http://www.cs.umd.edu/~samir/498/karp.pdf


anyLast(x)

Selects	the	last	value	encountered.	The	result	is	just	as	indeterminate	as	for	the	any 	function.

groupBitAnd

Applies	bitwise	 AND 	for	series	of	numbers.

Parameters

expr 	–	An	expression	that	results	in	UInt* 	type.

Return	value

Value	of	the	 UInt* 	type.

Example

Test	data:

Query:

Where	 num 	is	the	column	with	the	test	data.

Result:

groupBitOr

Applies	bitwise	 OR 	for	series	of	numbers.

Parameters

expr 	–	An	expression	that	results	in	UInt* 	type.

Return	value

SELECT anyHeavy(AirlineID) AS res
FROM ontime

┌───res─┐
│ 19690 │
└───────┘

groupBitAnd(expr)

binary     decimal
00101100 = 44
00011100 = 28
00001101 = 13
01010101 = 85

SELECT groupBitAnd(num) FROM t

binary     decimal
00000100 = 4

groupBitOr(expr)



Value	of	the	 UInt* 	type.

Example

Test	data:

Query:

Where	 num 	is	the	column	with	the	test	data.

Result:

groupBitXor

Applies	bitwise	 XOR 	for	series	of	numbers.

Parameters

expr 	–	An	expression	that	results	in	UInt* 	type.

Return	value

Value	of	the	 UInt* 	type.

Example

Test	data:

Query:

Where	 num 	is	the	column	with	the	test	data.

Result:

min(x)

binary     decimal
00101100 = 44
00011100 = 28
00001101 = 13
01010101 = 85

SELECT groupBitOr(num) FROM t

binary     decimal
01111101 = 125

groupBitXor(expr)

binary     decimal
00101100 = 44
00011100 = 28
00001101 = 13
01010101 = 85

SELECT groupBitXor(num) FROM t

binary     decimal
01101000 = 104



Calculates	the	minimum.

max(x)

Calculates	the	maximum.

argMin(arg,	val)

Calculates	the	'arg'	value	for	a	minimal	'val'	value.	If	there	are	several	different	values	of	'arg'	for	minimal	values	of	'val',	the

first	of	these	values	encountered	is	output.

Example:

argMax(arg,	val)

Calculates	the	'arg'	value	for	a	maximum	'val'	value.	If	there	are	several	different	values	of	'arg'	for	maximum	values	of	'val',

the	first	of	these	values	encountered	is	output.

[]

sum(x)

Calculates	the	sum.	Only	works	for	numbers.

sumWithOverflow(x)

Computes	the	sum	of	the	numbers,	using	the	same	data	type	for	the	result	as	for	the	input	parameters.	If	the	sum	exceeds

the	maximum	value	for	this	data	type,	the	function	returns	an	error.

Only	works	for	numbers.

[]

sumMap(key,	value)

Totals	the	'value'	array	according	to	the	keys	specified	in	the	'key'	array.	The	number	of	elements	in	'key'	and	'value'	must

be	the	same	for	each	row	that	is	totaled.	Returns	a	tuple	of	two	arrays:	keys	in	sorted	order,	and	values	summed	for	the

corresponding	keys.

Example:

┌─user─────┬─salary─┐
│ director │   5000 │
│ manager  │   3000 │
│ worker   │   1000 │
└──────────┴────────┘

SELECT argMin(user, salary) FROM salary

┌─argMin(user, salary)─┐
│ worker               │
└──────────────────────┘



avg(x)

Calculates	the	average.	Only	works	for	numbers.	The	result	is	always	Float64.

[]

uniq(x)

Calculates	the	approximate	number	of	different	values	of	the	argument.	Works	for	numbers,	strings,	dates,	date-with-

time,	and	for	multiple	arguments	and	tuple	arguments.

Uses	an	adaptive	sampling	algorithm:	for	the	calculation	state,	it	uses	a	sample	of	element	hash	values	with	a	size	up	to

65536.	This	algorithm	is	also	very	accurate	for	data	sets	with	low	cardinality	(up	to	65536)	and	very	efficient	on	CPU	(when

computing	not	too	many	of	these	functions,	using	 uniq 	is	almost	as	fast	as	using	other	aggregate	functions).

The	result	is	determinate	(it	doesn't	depend	on	the	order	of	query	processing).

This	function	provides	excellent	accuracy	even	for	data	sets	with	extremely	high	cardinality	(over	10	billion	elements).	It	is

recommended	for	default	use.

uniqCombined(HLL_precision)(x)

Calculates	the	approximate	number	of	different	values	of	the	argument.	Works	for	numbers,	strings,	dates,	date-with-

time,	and	for	multiple	arguments	and	tuple	arguments.

A	combination	of	three	algorithms	is	used:	array,	hash	table	and	HyperLogLog

[https://en.wikipedia.org/wiki/HyperLogLog]	with	an	error	correction	table.	For	small	number	of	distinct	elements,	the

array	is	used.	When	the	set	size	becomes	larger	the	hash	table	is	used,	while	it	is	smaller	than	HyperLogLog	data	structure.

For	larger	number	of	elements,	the	HyperLogLog	is	used,	and	it	will	occupy	fixed	amount	of	memory.

The	parameter	"HLL_precision"	is	the	base-2	logarithm	of	the	number	of	cells	in	HyperLogLog.	You	can	omit	the	parameter

(omit	first	parens).	The	default	value	is	17,	that	is	effectively	96	KiB	of	space	(2^17	cells	of	6	bits	each).	The	memory

consumption	is	several	times	smaller	than	for	the	 uniq 	function,	and	the	accuracy	is	several	times	higher.	Performance	is

slightly	lower	than	for	the	 uniq 	function,	but	sometimes	it	can	be	even	higher	than	it,	such	as	with	distributed	queries	that

transmit	a	large	number	of	aggregation	states	over	the	network.

CREATE TABLE sum_map(
    date Date,
    timeslot DateTime,
    statusMap Nested(
        status UInt16,
        requests UInt64
    )
) ENGINE = Log;
INSERT INTO sum_map VALUES
    ('2000-01-01', '2000-01-01 00:00:00', [1, 2, 3], [10, 10, 10]),
    ('2000-01-01', '2000-01-01 00:00:00', [3, 4, 5], [10, 10, 10]),
    ('2000-01-01', '2000-01-01 00:01:00', [4, 5, 6], [10, 10, 10]),
    ('2000-01-01', '2000-01-01 00:01:00', [6, 7, 8], [10, 10, 10]);
SELECT
    timeslot,
    sumMap(statusMap.status, statusMap.requests)
FROM sum_map
GROUP BY timeslot

┌────────────timeslot─┬─sumMap(statusMap.status, statusMap.requests)─┐
│ 2000-01-01 00:00:00 │ ([1,2,3,4,5],[10,10,20,10,10])               │
│ 2000-01-01 00:01:00 │ ([4,5,6,7,8],[10,10,20,10,10])               │
└─────────────────────┴──────────────────────────────────────────────┘

https://en.wikipedia.org/wiki/HyperLogLog


The	result	is	deterministic	(it	doesn't	depend	on	the	order	of	query	processing).

The	 uniqCombined 	function	is	a	good	default	choice	for	calculating	the	number	of	different	values,	but	keep	in	mind	that

the	estimation	error	for	large	sets	(200	million	elements	and	more)	will	become	larger	than	theoretical	value	due	to	poor

choice	of	hash	function.

uniqHLL12(x)

Uses	the	HyperLogLog	[https://en.wikipedia.org/wiki/HyperLogLog]	algorithm	to	approximate	the	number	of	different

values	of	the	argument.	212	5-bit	cells	are	used.	The	size	of	the	state	is	slightly	more	than	2.5	KB.	The	result	is	not	very

accurate	(up	to	~10%	error)	for	small	data	sets	(<10K	elements).	However,	the	result	is	fairly	accurate	for	high-cardinality

data	sets	(10K-100M),	with	a	maximum	error	of	~1.6%.	Starting	from	100M,	the	estimation	error	increases,	and	the

function	will	return	very	inaccurate	results	for	data	sets	with	extremely	high	cardinality	(1B+	elements).

The	result	is	determinate	(it	doesn't	depend	on	the	order	of	query	processing).

We	don't	recommend	using	this	function.	In	most	cases,	use	the	 uniq 	or	 uniqCombined 	function.

uniqExact(x)

Calculates	the	number	of	different	values	of	the	argument,	exactly.	There	is	no	reason	to	fear	approximations.	It's	better

to	use	the	 uniq 	function.	Use	the	 uniqExact 	function	if	you	definitely	need	an	exact	result.

The	 uniqExact 	function	uses	more	memory	than	the	 uniq 	function,	because	the	size	of	the	state	has	unbounded	growth

as	the	number	of	different	values	increases.

groupArray(x),	groupArray(max_size)(x)

Creates	an	array	of	argument	values.	Values	can	be	added	to	the	array	in	any	(indeterminate)	order.

The	second	version	(with	the	 max_size 	parameter)	limits	the	size	of	the	resulting	array	to	max_size 	elements.	For

example,	 groupArray	(1)	(x) 	is	equivalent	to	 [any	(x)] .

In	some	cases,	you	can	still	rely	on	the	order	of	execution.	This	applies	to	cases	when	SELECT 	comes	from	a	subquery	that

uses	 ORDER	BY .

[]

groupArrayInsertAt(x)

Inserts	a	value	into	the	array	in	the	specified	position.

Accepts	the	value	and	position	as	input.	If	several	values	are	inserted	into	the	same	position,	any	of	them	might	end	up	in

the	resulting	array	(the	first	one	will	be	used	in	the	case	of	single-threaded	execution).	If	no	value	is	inserted	into	a	position,

the	position	is	assigned	the	default	value.

Optional	parameters:

The	default	value	for	substituting	in	empty	positions.

The	length	of	the	resulting	array.	This	allows	you	to	receive	arrays	of	the	same	size	for	all	the	aggregate	keys.	When

using	this	parameter,	the	default	value	must	be	specified.

groupUniqArray(x)

Creates	an	array	from	different	argument	values.	Memory	consumption	is	the	same	as	for	the	uniqExact 	function.

https://en.wikipedia.org/wiki/HyperLogLog


quantile(level)(x)

Approximates	the	 level 	quantile.	 level 	is	a	constant,	a	floating-point	number	from	0	to	1.	We	recommend	using	a	

level 	value	in	the	range	of	[0.01,	0.99] 	Don't	use	a	 level 	value	equal	to	0	or	1	–	use	the	min 	and	 max 	functions	for

these	cases.

In	this	function,	as	well	as	in	all	functions	for	calculating	quantiles,	the	level 	parameter	can	be	omitted.	In	this	case,	it	is

assumed	to	be	equal	to	0.5	(in	other	words,	the	function	will	calculate	the	median).

Works	for	numbers,	dates,	and	dates	with	times.	Returns:	for	numbers	–	Float64 ;	for	dates	–	a	date;	for	dates	with	times

–	a	date	with	time.

Uses	reservoir	sampling	[https://en.wikipedia.org/wiki/Reservoir_sampling]	with	a	reservoir	size	up	to	8192.	If	necessary,

the	result	is	output	with	linear	approximation	from	the	two	neighboring	values.	This	algorithm	provides	very	low	accuracy.

See	also:	 quantileTiming ,	 quantileTDigest ,	 quantileExact .

The	result	depends	on	the	order	of	running	the	query,	and	is	nondeterministic.

When	using	multiple	 quantile 	(and	similar)	functions	with	different	levels	in	a	query,	the	internal	states	are	not	combined

(that	is,	the	query	works	less	efficiently	than	it	could).	In	this	case,	use	the	 quantiles 	(and	similar)	functions.

quantileDeterministic(level)(x,	determinator)

Works	the	same	way	as	the	quantile 	function,	but	the	result	is	deterministic	and	does	not	depend	on	the	order	of	query

execution.

To	achieve	this,	the	function	takes	a	second	argument	–	the	"determinator".	This	is	a	number	whose	hash	is	used	instead

of	a	random	number	generator	in	the	reservoir	sampling	algorithm.	For	the	function	to	work	correctly,	the	same

determinator	value	should	not	occur	too	often.	For	the	determinator,	you	can	use	an	event	ID,	user	ID,	and	so	on.

Don't	use	this	function	for	calculating	timings.	There	is	a	more	suitable	function	for	this	purpose:	quantileTiming .

quantileTiming(level)(x)

Computes	the	quantile	of	'level'	with	a	fixed	precision.	Works	for	numbers.	Intended	for	calculating	quantiles	of	page

loading	time	in	milliseconds.

If	the	value	is	greater	than	30,000	(a	page	loading	time	of	more	than	30	seconds),	the	result	is	equated	to	30,000.

If	the	total	value	is	not	more	than	about	5670,	then	the	calculation	is	accurate.

Otherwise:

if	the	time	is	less	than	1024	ms,	then	the	calculation	is	accurate.

otherwise	the	calculation	is	rounded	to	a	multiple	of	16	ms.

When	passing	negative	values	to	the	function,	the	behavior	is	undefined.

The	returned	value	has	the	Float32	type.	If	no	values	were	passed	to	the	function	(when	using	quantileTimingIf ),	'nan'	is

returned.	The	purpose	of	this	is	to	differentiate	these	instances	from	zeros.	See	the	note	on	sorting	NaNs	in	"ORDER	BY

clause".

The	result	is	determinate	(it	doesn't	depend	on	the	order	of	query	processing).

For	its	purpose	(calculating	quantiles	of	page	loading	times),	using	this	function	is	more	effective	and	the	result	is	more

accurate	than	for	the	 quantile 	function.

https://en.wikipedia.org/wiki/Reservoir_sampling


quantileTimingWeighted(level)(x,	weight)

Differs	from	the	 quantileTiming 	function	in	that	it	has	a	second	argument,	"weights".	Weight	is	a	non-negative	integer.

The	result	is	calculated	as	if	the	 x 	value	were	passed	 weight 	number	of	times	to	the	quantileTiming 	function.

quantileExact(level)(x)

Computes	the	quantile	of	'level'	exactly.	To	do	this,	all	the	passed	values	are	combined	into	an	array,	which	is	then	partially

sorted.	Therefore,	the	function	consumes	O(n)	memory,	where	'n'	is	the	number	of	values	that	were	passed.	However,	for	a

small	number	of	values,	the	function	is	very	effective.

quantileExactWeighted(level)(x,	weight)

Computes	the	quantile	of	'level'	exactly.	In	addition,	each	value	is	counted	with	its	weight,	as	if	it	is	present	'weight'	times.

The	arguments	of	the	function	can	be	considered	as	histograms,	where	the	value	'x'	corresponds	to	a	histogram	"column"

of	the	height	'weight',	and	the	function	itself	can	be	considered	as	a	summation	of	histograms.

A	hash	table	is	used	as	the	algorithm.	Because	of	this,	if	the	passed	values	are	frequently	repeated,	the	function	consumes

less	RAM	than	 quantileExact .	You	can	use	this	function	instead	of	quantileExact 	and	specify	the	weight	as	1.

quantileTDigest(level)(x)

Approximates	the	quantile	level	using	the	t-digest	[https://github.com/tdunning/t-digest/blob/master/docs/t-digest-

paper/histo.pdf]	algorithm.	The	maximum	error	is	1%.	Memory	consumption	by	State	is	proportional	to	the	logarithm	of

the	number	of	passed	values.

The	performance	of	the	function	is	lower	than	for	quantile 	or	 quantileTiming .	In	terms	of	the	ratio	of	State	size	to

precision,	this	function	is	much	better	than	 quantile .

The	result	depends	on	the	order	of	running	the	query,	and	is	nondeterministic.

median(x)

All	the	quantile	functions	have	corresponding	median	functions:	 median ,	 medianDeterministic ,	 medianTiming ,	

medianTimingWeighted ,	 medianExact ,	 medianExactWeighted ,	 medianTDigest .	They	are	synonyms	and	their	behavior	is

identical.

quantiles(level1,	level2,	...)(x)

All	the	quantile	functions	also	have	corresponding	quantiles	functions:	 quantiles ,	 quantilesDeterministic ,	

quantilesTiming ,	 quantilesTimingWeighted ,	 quantilesExact ,	 quantilesExactWeighted ,	 quantilesTDigest .	These

functions	calculate	all	the	quantiles	of	the	listed	levels	in	one	pass,	and	return	an	array	of	the	resulting	values.

varSamp(x)

Calculates	the	amount	 Σ((x	-	x̅)^2)	/	(n	-	1) ,	where	 n 	is	the	sample	size	and	 x̅ is	the	average	value	of	 x .

It	represents	an	unbiased	estimate	of	the	variance	of	a	random	variable,	if	the	values	passed	to	the	function	are	a	sample

of	this	random	amount.

Returns	 Float64 .	When	 n	<=	1 ,	returns	 +∞ .

varPop(x)

https://github.com/tdunning/t-digest/blob/master/docs/t-digest-paper/histo.pdf


Calculates	the	amount	 Σ((x	-	x̅)^2)	/	(n	-	1) ,	where	 n 	is	the	sample	size	and	 x̅ is	the	average	value	of	 x .

In	other	words,	dispersion	for	a	set	of	values.	Returns	Float64 .

stddevSamp(x)

The	result	is	equal	to	the	square	root	of	 varSamp(x) .

stddevPop(x)

The	result	is	equal	to	the	square	root	of	 varPop(x) .

topK(N)(column)

Returns	an	array	of	the	most	frequent	values	in	the	specified	column.	The	resulting	array	is	sorted	in	descending	order	of

frequency	of	values	(not	by	the	values	themselves).

Implements	the	Filtered	Space-Saving	[http://www.l2f.inesc-id.pt/~fmmb/wiki/uploads/Work/misnis.ref0a.pdf]	algorithm

for	analyzing	TopK,	based	on	the	reduce-and-combine	algorithm	from	Parallel	Space	Saving

[https://arxiv.org/pdf/1401.0702.pdf].

This	function	doesn't	provide	a	guaranteed	result.	In	certain	situations,	errors	might	occur	and	it	might	return	frequent

values	that	aren't	the	most	frequent	values.

We	recommend	using	the	 N	<	10 	value;	performance	is	reduced	with	large	 N 	values.	Maximum	value	of	N	=	65536 .

Arguments

'N'	is	the	number	of	values.

'	x	'	–	The	column.

Example

Take	the	OnTime	[#example_datasets-ontime]	data	set	and	select	the	three	most	frequently	occurring	values	in	the	

AirlineID 	column.

covarSamp(x,	y)

Calculates	the	value	of	 Σ((x	-	x̅)(y	-	y̅))	/	(n	-	1) .

Returns	Float64.	When	 n	<=	1 ,	returns	+∞.

covarPop(x,	y)

Calculates	the	value	of	 Σ((x	-	x̅)(y	-	y̅))	/	n .

topK(N)(column)

SELECT topK(3)(AirlineID) AS res
FROM ontime

┌─res─────────────────┐
│ [19393,19790,19805] │
└─────────────────────┘

http://www.l2f.inesc-id.pt/~fmmb/wiki/uploads/Work/misnis.ref0a.pdf
https://arxiv.org/pdf/1401.0702.pdf


corr(x,	y)

Calculates	the	Pearson	correlation	coefficient:	 Σ((x	-	x̅)(y	-	y̅))	/	sqrt(Σ((x	-	x̅)^2)	*	Σ((y	-	y̅)^2)) .

[]

Aggregate	function	combinators

The	name	of	an	aggregate	function	can	have	a	suffix	appended	to	it.	This	changes	the	way	the	aggregate	function	works.

[]

-If

The	suffix	-If	can	be	appended	to	the	name	of	any	aggregate	function.	In	this	case,	the	aggregate	function	accepts	an	extra

argument	–	a	condition	(Uint8	type).	The	aggregate	function	processes	only	the	rows	that	trigger	the	condition.	If	the

condition	was	not	triggered	even	once,	it	returns	a	default	value	(usually	zeros	or	empty	strings).

Examples:	 sumIf(column,	cond) ,	 countIf(cond) ,	 avgIf(x,	cond) ,	 quantilesTimingIf(level1,	level2)(x,	cond) ,	

argMinIf(arg,	val,	cond) 	and	so	on.

With	conditional	aggregate	functions,	you	can	calculate	aggregates	for	several	conditions	at	once,	without	using

subqueries	and	 JOIN s.	For	example,	in	Yandex.Metrica,	conditional	aggregate	functions	are	used	to	implement	the

segment	comparison	functionality.

-Array

The	-Array	suffix	can	be	appended	to	any	aggregate	function.	In	this	case,	the	aggregate	function	takes	arguments	of	the

'Array(T)'	type	(arrays)	instead	of	'T'	type	arguments.	If	the	aggregate	function	accepts	multiple	arguments,	this	must	be

arrays	of	equal	lengths.	When	processing	arrays,	the	aggregate	function	works	like	the	original	aggregate	function	across

all	array	elements.

Example	1:	 sumArray(arr) 	-	Totals	all	the	elements	of	all	'arr'	arrays.	In	this	example,	it	could	have	been	written	more

simply:	 sum(arraySum(arr)) .

Example	2:	 uniqArray(arr) 	–	Count	the	number	of	unique	elements	in	all	'arr'	arrays.	This	could	be	done	an	easier	way:	

uniq(arrayJoin(arr)) ,	but	it's	not	always	possible	to	add	'arrayJoin'	to	a	query.

-If	and	-Array	can	be	combined.	However,	'Array'	must	come	first,	then	'If'.	Examples:	uniqArrayIf(arr,	cond) ,	

quantilesTimingArrayIf(level1,	level2)(arr,	cond) .	Due	to	this	order,	the	'cond'	argument	can't	be	an	array.

-State

If	you	apply	this	combinator,	the	aggregate	function	doesn't	return	the	resulting	value	(such	as	the	number	of	unique

values	for	the	 uniq 	function),	but	an	intermediate	state	of	the	aggregation	(for	 uniq ,	this	is	the	hash	table	for	calculating

the	number	of	unique	values).	This	is	an	AggregateFunction(...)	that	can	be	used	for	further	processing	or	stored	in	a	table

to	finish	aggregating	later.	See	the	sections	"AggregatingMergeTree"	and	"Functions	for	working	with	intermediate

aggregation	states".

-Merge

If	you	apply	this	combinator,	the	aggregate	function	takes	the	intermediate	aggregation	state	as	an	argument,	combines

the	states	to	finish	aggregation,	and	returns	the	resulting	value.



-MergeState.

Merges	the	intermediate	aggregation	states	in	the	same	way	as	the	-Merge	combinator.	However,	it	doesn't	return	the

resulting	value,	but	an	intermediate	aggregation	state,	similar	to	the	-State	combinator.

-ForEach

Converts	an	aggregate	function	for	tables	into	an	aggregate	function	for	arrays	that	aggregates	the	corresponding	array

items	and	returns	an	array	of	results.	For	example,	 sumForEach 	for	the	arrays	 [1,	2] ,	 [3,	4,	5] and [6,	7] returns	the

result	 [10,	13,	5] 	after	adding	together	the	corresponding	array	items.

[]

Parametric	aggregate	functions

Some	aggregate	functions	can	accept	not	only	argument	columns	(used	for	compression),	but	a	set	of	parameters	–

constants	for	initialization.	The	syntax	is	two	pairs	of	brackets	instead	of	one.	The	first	is	for	parameters,	and	the	second	is

for	arguments.

sequenceMatch(pattern)(time,	cond1,	cond2,	...)

Pattern	matching	for	event	chains.

pattern 	is	a	string	containing	a	pattern	to	match.	The	pattern	is	similar	to	a	regular	expression.

time 	is	the	time	of	the	event	with	the	DateTime	type.

cond1 ,	 cond2 	...	is	from	one	to	32	arguments	of	type	UInt8	that	indicate	whether	a	certain	condition	was	met	for	the

event.

The	function	collects	a	sequence	of	events	in	RAM.	Then	it	checks	whether	this	sequence	matches	the	pattern.	It	returns

UInt8:	0	if	the	pattern	isn't	matched,	or	1	if	it	matches.

Example:	 sequenceMatch	('(?1).*(?2)')(EventTime,	URL	LIKE	'%company%',	URL	LIKE	'%cart%')

whether	there	was	a	chain	of	events	in	which	a	pageview	with	'company'	in	the	address	occurred	earlier	than	a

pageview	with	'cart'	in	the	address.

This	is	a	singular	example.	You	could	write	it	using	other	aggregate	functions:

However,	there	is	no	such	solution	for	more	complex	situations.

Pattern	syntax:

(?1) 	refers	to	the	condition	(any	number	can	be	used	in	place	of	1).

.* 	is	any	number	of	any	events.

(?t>=1800) 	is	a	time	condition.

Any	quantity	of	any	type	of	events	is	allowed	over	the	specified	time.

Instead	of	 >= ,	the	following	operators	can	be	used: < ,	 > ,	 <= .

Any	number	may	be	specified	in	place	of	1800.

minIf(EventTime, URL LIKE '%company%') < maxIf(EventTime, URL LIKE '%cart%').



Events	that	occur	during	the	same	second	can	be	put	in	the	chain	in	any	order.	This	may	affect	the	result	of	the	function.

sequenceCount(pattern)(time,	cond1,	cond2,	...)

Works	the	same	way	as	the	sequenceMatch	function,	but	instead	of	returning	whether	there	is	an	event	chain,	it	returns

UInt64	with	the	number	of	event	chains	found.	Chains	are	searched	for	without	overlapping.	In	other	words,	the	next	chain

can	start	only	after	the	end	of	the	previous	one.

windowFunnel(window)(timestamp,	cond1,	cond2,	cond3,	...)

Searches	for	event	chains	in	a	sliding	time	window	and	calculates	the	maximum	number	of	events	that	occurred	from	the

chain.

Parameters:

window 	—	Length	of	the	sliding	window	in	seconds.

timestamp 	—	Name	of	the	column	containing	the	timestamp.	Data	type:	DateTime	[#data_type-datetime]	or	UInt32

[#data_type-int].

cond1 ,	 cond2 ...	—	Conditions	or	data	describing	the	chain	of	events.	Data	type:	UInt8 .	Values	can	be	0	or	1.

Algorithm

The	function	searches	for	data	that	triggers	the	first	condition	in	the	chain	and	sets	the	event	counter	to	1.	This	is	the

moment	when	the	sliding	window	starts.

If	events	from	the	chain	occur	sequentially	within	the	window,	the	counter	is	incremented.	If	the	sequence	of	events	is

disrupted,	the	counter	isn't	incremented.

If	the	data	has	multiple	event	chains	at	varying	points	of	completion,	the	function	will	only	output	the	size	of	the

longest	chain.

Returned	value

Integer.	The	maximum	number	of	consecutive	triggered	conditions	from	the	chain	within	the	sliding	time	window.	All

the	chains	in	the	selection	are	analyzed.

Example

Determine	if	one	hour	is	enough	for	the	user	to	select	a	phone	and	purchase	it	in	the	online	store.

Set	the	following	chain	of	events:

1.	 The	user	logged	in	to	their	account	on	the	store	( eventID=1001 ).

2.	 The	user	searches	for	a	phone	( eventID	=	1003,	product	=	'phone' ).

3.	 The	user	placed	an	order	( eventID	=	1009 ).

To	find	out	how	far	the	user	 user_id 	could	get	through	the	chain	in	an	hour	in	January	of	2017,	make	the	query:

windowFunnel(window)(timestamp, cond1, cond2, cond3, ...)



Simply,	the	level	value	could	only	be	0,	1,	2,	3,	it	means	the	maxium	event	action	stage	that	one	user	could	reach.

retention(cond1,	cond2,	...)

Retention	refers	to	the	ability	of	a	company	or	product	to	retain	its	customers	over	some	specified	periods.

cond1 ,	 cond2 	...	is	from	one	to	32	arguments	of	type	UInt8	that	indicate	whether	a	certain	condition	was	met	for	the	event

Example:

Consider	you	are	doing	a	website	analytics,	intend	to	calculate	the	retention	of	customers

This	could	be	easily	calculate	by	retention

Simply,	 r1 	means	the	number	of	unique	visitors	who	met	the	cond1 	condition,	 r2 	means	the	number	of	unique	visitors

who	met	 cond1 	and	 cond2 	conditions,	 r3 	means	the	number	of	unique	visitors	who	met	 cond1 	and	 cond3 	conditions.

uniqUpTo(N)(x)

Calculates	the	number	of	different	argument	values	if	it	is	less	than	or	equal	to	N.	If	the	number	of	different	argument

values	is	greater	than	N,	it	returns	N	+	1.

Recommended	for	use	with	small	Ns,	up	to	10.	The	maximum	value	of	N	is	100.

For	the	state	of	an	aggregate	function,	it	uses	the	amount	of	memory	equal	to	1	+	N	*	the	size	of	one	value	of	bytes.	For

strings,	it	stores	a	non-cryptographic	hash	of	8	bytes.	That	is,	the	calculation	is	approximated	for	strings.

The	function	also	works	for	several	arguments.

It	works	as	fast	as	possible,	except	for	cases	when	a	large	N	value	is	used	and	the	number	of	unique	values	is	slightly	less

than	N.

Usage	example:

SELECT
    level,
    count() AS c
FROM
(
    SELECT
        user_id,
        windowFunnel(3600)(timestamp, eventID = 1001, eventID = 1003 AND product = 'phone', eventID = 1009) 
AS level
    FROM trend_event
    WHERE (event_date >= '2017-01-01') AND (event_date <= '2017-01-31')
    GROUP BY user_id
)
GROUP BY level
ORDER BY level

SELECT
    sum(r[1]) AS r1,
    sum(r[2]) AS r2,
    sum(r[3]) AS r3
FROM
(
    SELECT
        uid, 
        retention(date = '2018-08-10', date = '2018-08-11', date = '2018-08-12') AS r
    FROM events
    WHERE date IN ('2018-08-10', '2018-08-11', '2018-08-12')
    GROUP BY uid
)



Table	functions

Table	functions	can	be	specified	in	the	FROM	clause	instead	of	the	database	and	table	names.	Table	functions	can	only	be

used	if	'readonly'	is	not	set.	Table	functions	aren't	related	to	other	functions.

[]

file

Creates	a	table	from	a	file.

Input	parameters

path 	—	The	relative	path	to	the	file	from	user_files_path	[#user_files_path].

format 	—	The	format	[#formats]	of	the	file.

structure 	—	Structure	of	the	table.	Format	 'colunmn1_name	column1_ype,	column2_name	column2_type,	...' .

Returned	value

A	table	with	the	specified	structure	for	reading	or	writing	data	in	the	specified	file.

Example

Setting	 user_files_path 	and	the	contents	of	the	file	 test.csv :

Table	from test.csv 	and	selection	of	the	first	two	rows	from	it:

merge

merge(db_name,	'tables_regexp') 	–	Creates	a	temporary	Merge	table.	For	more	information,	see	the	section	"Table

engines,	Merge".

Problem: Generate a report that shows only keywords that produced at least 5 unique users.
Solution: Write in the GROUP BY query SearchPhrase HAVING uniqUpTo(4)(UserID) >= 5

file(path, format, structure)

$ grep user_files_path /etc/clickhouse-server/config.xml
    <user_files_path>/var/lib/clickhouse/user_files/</user_files_path>

$ cat /var/lib/clickhouse/user_files/test.csv
    1,2,3
    3,2,1
    78,43,45

SELECT *
FROM file('test.csv', 'CSV', 'column1 UInt32, column2 UInt32, column3 UInt32')
LIMIT 2

┌─column1─┬─column2─┬─column3─┐
│       1 │       2 │       3 │
│       3 │       2 │       1 │
└─────────┴─────────┴─────────┘

-- getting the first 10 lines of a table that contains 3 columns of UInt32 type from a CSV file
SELECT * FROM file('test.csv', 'CSV', 'column1 UInt32, column2 UInt32, column3 UInt32') LIMIT 10



The	table	structure	is	taken	from	the	first	table	encountered	that	matches	the	regular	expression.

numbers

numbers(N) 	–	Returns	a	table	with	the	single	'number'	column	(UInt64)	that	contains	integers	from	0	to	N-1.	numbers(N,	

M) 	-	Returns	a	table	with	the	single	'number'	column	(UInt64)	that	contains	integers	from	N	to	(N	+	M	-	1).

Similar	to	the	 system.numbers 	table,	it	can	be	used	for	testing	and	generating	successive	values,	 numbers(N,	M) 	more

efficient	than	 system.numbers .

The	following	queries	are	equivalent:

Examples:

[]

remote

Allows	you	to	access	remote	servers	without	creating	a	 Distributed 	table.

Signatures:

addresses_expr 	–	An	expression	that	generates	addresses	of	remote	servers.	This	may	be	just	one	server	address.	The

server	address	is	 host:port ,	or	just	 host .	The	host	can	be	specified	as	the	server	name,	or	as	the	IPv4	or	IPv6	address.	An

IPv6	address	is	specified	in	square	brackets.	The	port	is	the	TCP	port	on	the	remote	server.	If	the	port	is	omitted,	it	uses	

tcp_port 	from	the	server's	config	file	(by	default,	9000).

Examples:

Multiple	addresses	can	be	comma-separated.	In	this	case,	ClickHouse	will	use	distributed	processing,	so	it	will	send	the

query	to	all	specified	addresses	(like	to	shards	with	different	data).

Example:

SELECT * FROM numbers(10);
SELECT * FROM numbers(0, 10);
SELECT * FROM system.numbers LIMIT 10;

-- Generate a sequence of dates from 2010-01-01 to 2010-12-31
select toDate('2010-01-01') + number as d FROM numbers(365);

remote('addresses_expr', db, table[, 'user'[, 'password']])
remote('addresses_expr', db.table[, 'user'[, 'password']])

Important

The	port	is	required	for	an	IPv6	address.



example01-01-1
example01-01-1:9000
localhost
127.0.0.1
[::]:9000
[2a02:6b8:0:1111::11]:9000

example01-01-1,example01-02-1



Part	of	the	expression	can	be	specified	in	curly	brackets.	The	previous	example	can	be	written	as	follows:

Curly	brackets	can	contain	a	range	of	numbers	separated	by	two	dots	(non-negative	integers).	In	this	case,	the	range	is

expanded	to	a	set	of	values	that	generate	shard	addresses.	If	the	first	number	starts	with	zero,	the	values	are	formed	with

the	same	zero	alignment.	The	previous	example	can	be	written	as	follows:

If	you	have	multiple	pairs	of	curly	brackets,	it	generates	the	direct	product	of	the	corresponding	sets.

Addresses	and	parts	of	addresses	in	curly	brackets	can	be	separated	by	the	pipe	symbol	(|).	In	this	case,	the	corresponding

sets	of	addresses	are	interpreted	as	replicas,	and	the	query	will	be	sent	to	the	first	healthy	replica.	However,	the	replicas

are	iterated	in	the	order	currently	set	in	the	load_balancing	[#settings-load_balancing]	setting.

Example:

This	example	specifies	two	shards	that	each	have	two	replicas.

The	number	of	addresses	generated	is	limited	by	a	constant.	Right	now	this	is	1000	addresses.

Using	the	 remote 	table	function	is	less	optimal	than	creating	a	 Distributed 	table,	because	in	this	case,	the	server

connection	is	re-established	for	every	request.	In	addition,	if	host	names	are	set,	the	names	are	resolved,	and	errors	are	not

counted	when	working	with	various	replicas.	When	processing	a	large	number	of	queries,	always	create	the	 Distributed

table	ahead	of	time,	and	don't	use	the	 remote 	table	function.

The	 remote 	table	function	can	be	useful	in	the	following	cases:

Accessing	a	specific	server	for	data	comparison,	debugging,	and	testing.

Queries	between	various	ClickHouse	clusters	for	research	purposes.

Infrequent	distributed	requests	that	are	made	manually.

Distributed	requests	where	the	set	of	servers	is	re-defined	each	time.

If	the	user	is	not	specified,	 default 	is	used.	If	the	password	is	not	specified,	an	empty	password	is	used.

[]

url

url(URL,	format,	structure) 	-	returns	a	table	created	from	the	 URL 	with	given	 format 	and	 structure .

URL	-	HTTP	or	HTTPS	server	address,	which	can	accept	 GET 	and/or	 POST 	requests.

format	-	format	[#formats]	of	the	data.

structure	-	table	structure	in	 'UserID	UInt64,	Name	String' 	format.	Determines	column	names	and	types.

Example

[]

example01-0{1,2}-1

example01-{01..02}-1

example01-{01..02}-{1|2}

-- getting the first 3 lines of a table that contains columns of String and UInt32 type from HTTP-server 
which answers in CSV format.
SELECT * FROM url('http://127.0.0.1:12345/', CSV, 'column1 String, column2 UInt32') LIMIT 3



jdbc

jdbc(jdbc_connection_uri,	schema,	table) 	-	returns	table	that	is	connected	via	JDBC	driver.

This	table	function	requires	separate	 clickhouse-jdbc-bridge 	program	to	be	running.	It	supports	Nullable	types	(based

on	DDL	of	remote	table	that	is	queried).

Examples

Dictionaries

A	dictionary	is	a	mapping	( key	->	attributes )	that	is	convenient	for	various	types	of	reference	lists.

ClickHouse	supports	special	functions	for	working	with	dictionaries	that	can	be	used	in	queries.	It	is	easier	and	more

efficient	to	use	dictionaries	with	functions	than	a	 JOIN 	with	reference	tables.

NULL	[#null-literal]	values	can't	be	stored	in	a	dictionary.

ClickHouse	supports:

Built-in	dictionaries	[#internal_dicts]	with	a	specific	set	of	functions	[#ym_dict_functions].

Plug-in	(external)	dictionaries	[#dicts-external_dicts]	with	a	set	of	functions	[#ext_dict_functions].

[]

External	Dictionaries

You	can	add	your	own	dictionaries	from	various	data	sources.	The	data	source	for	a	dictionary	can	be	a	local	text	or

executable	file,	an	HTTP(s)	resource,	or	another	DBMS.	For	more	information,	see	"Sources	for	external	dictionaries

[#dicts-external_dicts_dict_sources]".

ClickHouse:

Fully	or	partially	stores	dictionaries	in	RAM.

Periodically	updates	dictionaries	and	dynamically	loads	missing	values.	In	other	words,	dictionaries	can	be	loaded

dynamically.

The	configuration	of	external	dictionaries	is	located	in	one	or	more	files.	The	path	to	the	configuration	is	specified	in	the

dictionaries_config	[#server_settings-dictionaries_config]	parameter.

Dictionaries	can	be	loaded	at	server	startup	or	at	first	use,	depending	on	the	dictionaries_lazy_load	[#server_settings-

dictionaries_lazy_load]	setting.

The	dictionary	config	file	has	the	following	format:

SELECT * FROM jdbc('jdbc:mysql://localhost:3306/?user=root&password=root', 'schema', 'table')

SELECT * FROM jdbc('mysql://localhost:3306/?user=root&password=root', 'schema', 'table')

SELECT * FROM jdbc('datasource://mysql-local', 'schema', 'table')



You	can	configure	[#dicts-external_dicts_dict]	any	number	of	dictionaries	in	the	same	file.	The	file	format	is	preserved	even

if	there	is	only	one	dictionary	(i.e.	 <yandex><dictionary>	<!--configuration	->	</dictionary></yandex> 	).

See	also	"Functions	for	working	with	external	dictionaries	[#ext_dict_functions]".

[]

Configuring	an	External	Dictionary

The	dictionary	configuration	has	the	following	structure:

name	–	The	identifier	that	can	be	used	to	access	the	dictionary.	Use	the	characters	[a-zA-Z0-9_\-] .

source	[#dicts-external_dicts_dict_sources]	—	Source	of	the	dictionary.

layout	[#dicts-external_dicts_dict_layout]	—	Dictionary	layout	in	memory.

structure	[#dicts-external_dicts_dict_structure]	—	Structure	of	the	dictionary	.	A	key	and	attributes	that	can	be

retrieved	by	this	key.

lifetime	[#dicts-external_dicts_dict_lifetime]	—	Frequency	of	dictionary	updates.

[]

<yandex>
    <comment>An optional element with any content. Ignored by the ClickHouse server.</comment>

    <!--Optional element. File name with substitutions-->
    <include_from>/etc/metrika.xml</include_from>

    <dictionary>
        <!-- Dictionary configuration -->
    </dictionary>

    ...

    <dictionary>
        <!-- Dictionary configuration -->
    </dictionary>
</yandex>

Attention

You	can	convert	values	for	a	small	dictionary	by	describing	it	in	a	 SELECT 	query	(see	the	 transform	[#other_functions-transform]	function).	This

functionality	is	not	related	to	external	dictionaries.



<dictionary>
    <name>dict_name</name>

    <source>
      <!-- Source configuration -->
    </source>

    <layout>
      <!-- Memory layout configuration -->
    </layout>

    <structure>
      <!-- Complex key configuration -->
    </structure>

    <lifetime>
      <!-- Lifetime of dictionary in memory -->
    </lifetime>
</dictionary>



Storing	Dictionaries	in	Memory

There	are	a	variety	of	ways	[#dicts-external_dicts_dict_layout-manner]	to	store	dictionaries	in	memory.

We	recommend	flat	[#dicts-external_dicts_dict_layout-flat],	hashed	[#dicts-external_dicts_dict_layout-

hashed]andcomplex_key_hashed	[#dicts-external_dicts_dict_layout-complex_key_hashed].	which	provide	optimal

processing	speed.

Caching	is	not	recommended	because	of	potentially	poor	performance	and	difficulties	in	selecting	optimal	parameters.

Read	more	in	the	section	"cache	[#dicts-external_dicts_dict_layout-cache]".

There	are	several	ways	to	improve	dictionary	performance:

Call	the	function	for	working	with	the	dictionary	after	 GROUP	BY .

Mark	attributes	to	extract	as	injective.	An	attribute	is	called	injective	if	different	attribute	values	correspond	to

different	keys.	So	when	 GROUP	BY 	uses	a	function	that	fetches	an	attribute	value	by	the	key,	this	function	is

automatically	taken	out	of	 GROUP	BY .

ClickHouse	generates	an	exception	for	errors	with	dictionaries.	Examples	of	errors:

The	dictionary	being	accessed	could	not	be	loaded.

Error	querying	a	 cached 	dictionary.

You	can	view	the	list	of	external	dictionaries	and	their	statuses	in	the	system.dictionaries 	table.

The	configuration	looks	like	this:

[]

Ways	to	Store	Dictionaries	in	Memory

flat	[#dicts-external_dicts_dict_layout-flat]

hashed	[#dicts-external_dicts_dict_layout-hashed]

cache	[#dicts-external_dicts_dict_layout-cache]

range_hashed	[#dicts-external_dicts_dict_layout-range_hashed]

complex_key_hashed	[#dicts-external_dicts_dict_layout-complex_key_hashed]

complex_key_cache	[#dicts-external_dicts_dict_layout-complex_key_cache]

ip_trie	[#dicts-external_dicts_dict_layout-ip_trie]

[]

flat

The	dictionary	is	completely	stored	in	memory	in	the	form	of	flat	arrays.	How	much	memory	does	the	dictionary	use?	The

amount	is	proportional	to	the	size	of	the	largest	key	(in	space	used).

<yandex>
    <dictionary>
        ...
        <layout>
            <layout_type>
                <!-- layout settings -->
            </layout_type>
        </layout>
        ...
    </dictionary>
</yandex>



The	dictionary	key	has	the	 UInt64 	type	and	the	value	is	limited	to	500,000.	If	a	larger	key	is	discovered	when	creating	the

dictionary,	ClickHouse	throws	an	exception	and	does	not	create	the	dictionary.

All	types	of	sources	are	supported.	When	updating,	data	(from	a	file	or	from	a	table)	is	read	in	its	entirety.

This	method	provides	the	best	performance	among	all	available	methods	of	storing	the	dictionary.

Configuration	example:

[]

hashed

The	dictionary	is	completely	stored	in	memory	in	the	form	of	a	hash	table.	The	dictionary	can	contain	any	number	of

elements	with	any	identifiers	In	practice,	the	number	of	keys	can	reach	tens	of	millions	of	items.

All	types	of	sources	are	supported.	When	updating,	data	(from	a	file	or	from	a	table)	is	read	in	its	entirety.

Configuration	example:

[]

complex_key_hashed

This	type	of	storage	is	for	use	with	composite	keys	[#dicts-external_dicts_dict_structure].	Similar	to	 hashed .

Configuration	example:

[]

range_hashed

The	dictionary	is	stored	in	memory	in	the	form	of	a	hash	table	with	an	ordered	array	of	ranges	and	their	corresponding

values.

This	storage	method	works	the	same	way	as	hashed	and	allows	using	date/time	ranges	in	addition	to	the	key,	if	they

appear	in	the	dictionary.

Example:	The	table	contains	discounts	for	each	advertiser	in	the	format:

To	use	a	sample	for	date	ranges,	define	the	range_min 	and	 range_max 	elements	in	the	structure	[#dicts-

<layout>
  <flat />
</layout>

<layout>
  <hashed />
</layout>

<layout>
  <complex_key_hashed />
</layout>

+---------------+---------------------+-------------------+--------+
| advertiser id | discount start date | discount end date | amount |
+===============+=====================+===================+========+
| 123           | 2015-01-01          | 2015-01-15        | 0.15   |
+---------------+---------------------+-------------------+--------+
| 123           | 2015-01-16          | 2015-01-31        | 0.25   |
+---------------+---------------------+-------------------+--------+
| 456           | 2015-01-01          | 2015-01-15        | 0.05   |
+---------------+---------------------+-------------------+--------+



external_dicts_dict_structure].

Example:

To	work	with	these	dictionaries,	you	need	to	pass	an	additional	date	argument	to	the	 dictGetT 	function:

This	function	returns	the	value	for	the	specified	id s	and	the	date	range	that	includes	the	passed	date.

Details	of	the	algorithm:

If	the	 id 	is	not	found	or	a	range	is	not	found	for	the	 id ,	it	returns	the	default	value	for	the	dictionary.

If	there	are	overlapping	ranges,	you	can	use	any.

If	the	range	delimiter	is	 NULL 	or	an	invalid	date	(such	as	1900-01-01	or	2039-01-01),	the	range	is	left	open.	The	range

can	be	open	on	both	sides.

Configuration	example:

[]

cache

The	dictionary	is	stored	in	a	cache	that	has	a	fixed	number	of	cells.	These	cells	contain	frequently	used	elements.

<structure>
    <id>
        <name>Id</name>
    </id>
    <range_min>
        <name>first</name>
    </range_min>
    <range_max>
        <name>last</name>
    </range_max>
    ...

dictGetT('dict_name', 'attr_name', id, date)

<yandex>
        <dictionary>

                ...

                <layout>
                        <range_hashed />
                </layout>

                <structure>
                        <id>
                                <name>Abcdef</name>
                        </id>
                        <range_min>
                                <name>StartDate</name>
                        </range_min>
                        <range_max>
                                <name>EndDate</name>
                        </range_max>
                        <attribute>
                                <name>XXXType</name>
                                <type>String</type>
                                <null_value />
                        </attribute>
                </structure>

        </dictionary>
</yandex>



When	searching	for	a	dictionary,	the	cache	is	searched	first.	For	each	block	of	data,	all	keys	that	are	not	found	in	the	cache

or	are	outdated	are	requested	from	the	source	using	 SELECT	attrs...	FROM	db.table	WHERE	id	IN	(k1,	k2,	...) .

The	received	data	is	then	written	to	the	cache.

For	cache	dictionaries,	the	expiration	lifetime	[#dicts-external_dicts_dict_lifetime]	of	data	in	the	cache	can	be	set.	If	more

time	than	 lifetime 	has	passed	since	loading	the	data	in	a	cell,	the	cell's	value	is	not	used,	and	it	is	re-requested	the	next

time	it	needs	to	be	used.

This	is	the	least	effective	of	all	the	ways	to	store	dictionaries.	The	speed	of	the	cache	depends	strongly	on	correct	settings

and	the	usage	scenario.	A	cache	type	dictionary	performs	well	only	when	the	hit	rates	are	high	enough	(recommended	99%

and	higher).	You	can	view	the	average	hit	rate	in	the	 system.dictionaries 	table.

To	improve	cache	performance,	use	a	subquery	with	 LIMIT ,	and	call	the	function	with	the	dictionary	externally.

Supported	sources	[#dicts-external_dicts_dict_sources]:	MySQL,	ClickHouse,	executable,	HTTP.

Example	of	settings:

Set	a	large	enough	cache	size.	You	need	to	experiment	to	select	the	number	of	cells:

1.	 Set	some	value.

2.	 Run	queries	until	the	cache	is	completely	full.

3.	 Assess	memory	consumption	using	the	 system.dictionaries 	table.

4.	 Increase	or	decrease	the	number	of	cells	until	the	required	memory	consumption	is	reached.

[]

complex_key_cache

This	type	of	storage	is	for	use	with	composite	keys	[#dicts-external_dicts_dict_structure].	Similar	to	 cache .

[]

ip_trie

This	type	of	storage	is	for	mapping	network	prefixes	(IP	addresses)	to	metadata	such	as	ASN.

Example:	The	table	contains	network	prefixes	and	their	corresponding	AS	number	and	country	code:

<layout>
    <cache>
        <!-- The size of the cache, in number of cells. Rounded up to a power of two. -->
        <size_in_cells>1000000000</size_in_cells>
    </cache>
</layout>

Warning

Do	not	use	ClickHouse	as	a	source,	because	it	is	slow	to	process	queries	with	random	reads.



  +-----------------+-------+--------+
  | prefix          | asn   | cca2   |
  +=================+=======+========+
  | 202.79.32.0/20  | 17501 | NP     |
  +-----------------+-------+--------+
  | 2620:0:870::/48 | 3856  | US     |
  +-----------------+-------+--------+
  | 2a02:6b8:1::/48 | 13238 | RU     |
  +-----------------+-------+--------+
  | 2001:db8::/32   | 65536 | ZZ     |
  +-----------------+-------+--------+



When	using	this	type	of	layout,	the	structure	must	have	a	composite	key.

Example:

The	key	must	have	only	one	String	type	attribute	that	contains	an	allowed	IP	prefix.	Other	types	are	not	supported	yet.

For	queries,	you	must	use	the	same	functions	( dictGetT 	with	a	tuple)	as	for	dictionaries	with	composite	keys:

The	function	takes	either	 UInt32 	for	IPv4,	or	 FixedString(16) 	for	IPv6:

Other	types	are	not	supported	yet.	The	function	returns	the	attribute	for	the	prefix	that	corresponds	to	this	IP	address.	If

there	are	overlapping	prefixes,	the	most	specific	one	is	returned.

Data	is	stored	in	a	 trie .	It	must	completely	fit	into	RAM.

[]

Dictionary	Updates

ClickHouse	periodically	updates	the	dictionaries.	The	update	interval	for	fully	downloaded	dictionaries	and	the	invalidation

interval	for	cached	dictionaries	are	defined	in	the	 <lifetime> 	tag	in	seconds.

Dictionary	updates	(other	than	loading	for	first	use)	do	not	block	queries.	During	updates,	the	old	version	of	a	dictionary	is

used.	If	an	error	occurs	during	an	update,	the	error	is	written	to	the	server	log,	and	queries	continue	using	the	old	version	of

dictionaries.

Example	of	settings:

Setting	 <lifetime>	0</lifetime> 	prevents	updating	dictionaries.

You	can	set	a	time	interval	for	upgrades,	and	ClickHouse	will	choose	a	uniformly	random	time	within	this	range.	This	is

necessary	in	order	to	distribute	the	load	on	the	dictionary	source	when	upgrading	on	a	large	number	of	servers.

<structure>
    <key>
        <attribute>
            <name>prefix</name>
            <type>String</type>
        </attribute>
    </key>
    <attribute>
            <name>asn</name>
            <type>UInt32</type>
            <null_value />
    </attribute>
    <attribute>
            <name>cca2</name>
            <type>String</type>
            <null_value>??</null_value>
    </attribute>
    ...

dictGetT('dict_name', 'attr_name', tuple(ip))

dictGetString('prefix', 'asn', tuple(IPv6StringToNum('2001:db8::1')))

<dictionary>
    ...
    <lifetime>300</lifetime>
    ...
</dictionary>



Example	of	settings:

When	upgrading	the	dictionaries,	the	ClickHouse	server	applies	different	logic	depending	on	the	type	of	source	[#dicts-

external_dicts_dict_sources]:

For	a	text	file,	it	checks	the	time	of	modification.	If	the	time	differs	from	the	previously	recorded	time,	the	dictionary	is

updated.

For	MyISAM	tables,	the	time	of	modification	is	checked	using	a	 SHOW	TABLE	STATUS 	query.

Dictionaries	from	other	sources	are	updated	every	time	by	default.

For	MySQL	(InnoDB),	ODBC	and	ClickHouse	sources,	you	can	set	up	a	query	that	will	update	the	dictionaries	only	if	they

really	changed,	rather	than	each	time.	To	do	this,	follow	these	steps:

The	dictionary	table	must	have	a	field	that	always	changes	when	the	source	data	is	updated.

The	settings	of	the	source	must	specify	a	query	that	retrieves	the	changing	field.	The	ClickHouse	server	interprets	the

query	result	as	a	row,	and	if	this	row	has	changed	relative	to	its	previous	state,	the	dictionary	is	updated.	Specify	the

query	in	the	 <invalidate_query> 	field	in	the	settings	for	the	source	[#dicts-external_dicts_dict_sources].

Example	of	settings:

[]

Sources	of	External	Dictionaries

An	external	dictionary	can	be	connected	from	many	different	sources.

The	configuration	looks	like	this:

The	source	is	configured	in	the	 source 	section.

<dictionary>
    ...
    <lifetime>
        <min>300</min>
        <max>360</max>
    </lifetime>
    ...
</dictionary>

<dictionary>
    ...
    <odbc>
      ...
      <invalidate_query>SELECT update_time FROM dictionary_source where id = 1</invalidate_query>
    </odbc>
    ...
</dictionary>

<yandex>
  <dictionary>
    ...
    <source>
      <source_type>
        <!-- Source configuration -->
      </source_type>
    </source>
    ...
  </dictionary>
  ...
</yandex>



Types	of	sources	( source_type ):

Local	file	[#dicts-external_dicts_dict_sources-local_file]

Executable	file	[#dicts-external_dicts_dict_sources-executable]

HTTP(s)	[#dicts-external_dicts_dict_sources-http]

DBMS

MySQL	[#dicts-external_dicts_dict_sources-mysql]

ClickHouse	[#dicts-external_dicts_dict_sources-clickhouse]

MongoDB	[#dicts-external_dicts_dict_sources-mongodb]

ODBC	[#dicts-external_dicts_dict_sources-odbc]

[]

Local	File

Example	of	settings:

Setting	fields:

path 	–	The	absolute	path	to	the	file.

format 	–	The	file	format.	All	the	formats	described	in	"Formats	[#formats]"	are	supported.

[]

Executable	File

Working	with	executable	files	depends	on	how	the	dictionary	is	stored	in	memory	[#dicts-external_dicts_dict_layout].	If	the

dictionary	is	stored	using	 cache 	and	 complex_key_cache ,	ClickHouse	requests	the	necessary	keys	by	sending	a	request

to	the	executable	file's	 STDIN .

Example	of	settings:

Setting	fields:

command 	–	The	absolute	path	to	the	executable	file,	or	the	file	name	(if	the	program	directory	is	written	to	PATH ).

format 	–	The	file	format.	All	the	formats	described	in	"Formats	[#formats]"	are	supported.

[]

HTTP(s)

Working	with	an	HTTP(s)	server	depends	on	how	the	dictionary	is	stored	in	memory	[#dicts-external_dicts_dict_layout].	If

<source>
  <file>
    <path>/opt/dictionaries/os.tsv</path>
    <format>TabSeparated</format>
  </file>
</source>

<source>
    <executable>
        <command>cat /opt/dictionaries/os.tsv</command>
        <format>TabSeparated</format>
    </executable>
</source>



the	dictionary	is	stored	using	 cache 	and	 complex_key_cache ,	ClickHouse	requests	the	necessary	keys	by	sending	a

request	via	the	 POST 	method.

Example	of	settings:

In	order	for	ClickHouse	to	access	an	HTTPS	resource,	you	must	configure	openSSL	[#server_settings-openSSL]	in	the

server	configuration.

Setting	fields:

url 	–	The	source	URL.

format 	–	The	file	format.	All	the	formats	described	in	"Formats	[#formats]"	are	supported.

[]

ODBC

You	can	use	this	method	to	connect	any	database	that	has	an	ODBC	driver.

Example	of	settings:

Setting	fields:

db 	–	Name	of	the	database.	Omit	it	if	the	database	name	is	set	in	the	 <connection_string> 	parameters.

table 	–	Name	of	the	table	and	schema	if	exists.

connection_string 	–	Connection	string.

invalidate_query 	–	Query	for	checking	the	dictionary	status.	Optional	parameter.	Read	more	in	the	section	Updating

dictionaries	[#dicts-external_dicts_dict_lifetime].

ClickHouse	receives	quoting	symbols	from	ODBC-driver	and	quote	all	settings	in	queries	to	driver,	so	it's	necessary	to	set

table	name	accordingly	to	table	name	case	in	database.

Known	vulnerability	of	the	ODBC	dictionary	functionality

Example	of	insecure	use

Let's	configure	unixODBC	for	PostgreSQL.	Content	of	/etc/odbc.ini :

<source>
    <http>
        <url>http://[::1]/os.tsv</url>
        <format>TabSeparated</format>
    </http>
</source>

<odbc>
    <db>DatabaseName</db>
    <table>ShemaName.TableName</table>
    <connection_string>DSN=some_parameters</connection_string>
    <invalidate_query>SQL_QUERY</invalidate_query>
</odbc>

Attention

When	connecting	to	the	database	through	the	ODBC	driver	connection	parameter	 Servername 	can	be	substituted.	In	this	case	values	of	 USERNAME

and	 PASSWORD 	from	 odbc.ini 	are	sent	to	the	remote	server	and	can	be	compromised.





If	you	then	make	a	query	such	as

ODBC	driver	will	send	values	of	USERNAME 	and	 PASSWORD 	from	 odbc.ini 	to	 some-server.com .

Example	of	Connecting	PostgreSQL

Ubuntu	OS.

Installing	unixODBC	and	the	ODBC	driver	for	PostgreSQL:

Configuring	 /etc/odbc.ini 	(or	 ~/.odbc.ini ):

The	dictionary	configuration	in	ClickHouse:

[gregtest]
Driver = /usr/lib/psqlodbca.so
Servername = localhost
PORT = 5432
DATABASE = test_db
##OPTION = 3
USERNAME = test
PASSWORD = test

SELECT * FROM odbc('DSN=gregtest;Servername=some-server.com', 'test_db');    

sudo apt-get install -y unixodbc odbcinst odbc-postgresql

    [DEFAULT]
    Driver = myconnection

    [myconnection]
    Description         = PostgreSQL connection to my_db
    Driver              = PostgreSQL Unicode
    Database            = my_db
    Servername          = 127.0.0.1
    UserName            = username
    Password            = password
    Port                = 5432
    Protocol            = 9.3
    ReadOnly            = No
    RowVersioning       = No
    ShowSystemTables    = No
    ConnSettings        =



You	may	need	to	edit	 odbc.ini 	to	specify	the	full	path	to	the	library	with	the	driver	

DRIVER=/usr/local/lib/psqlodbcw.so .

Example	of	Connecting	MS	SQL	Server

Ubuntu	OS.

Installing	the	driver:	:

Configuring	the	driver:	:

<yandex>
    <dictionary>
        <name>table_name</name>
        <source>
            <odbc>
                <!-- You can specify the following parameters in connection_string: -->
                <!-- DSN=myconnection;UID=username;PWD=password;HOST=127.0.0.1;PORT=5432;DATABASE=my_db -->
                <connection_string>DSN=myconnection</connection_string>
                <table>postgresql_table</table>
            </odbc>
        </source>
        <lifetime>
            <min>300</min>
            <max>360</max>
        </lifetime>
        <layout>
            <hashed/>
        </layout>
        <structure>
            <id>
                <name>id</name>
            </id>
            <attribute>
                <name>some_column</name>
                <type>UInt64</type>
                <null_value>0</null_value>
            </attribute>
        </structure>
    </dictionary>
</yandex>

    sudo apt-get install tdsodbc freetds-bin sqsh



Configuring	the	dictionary	in	ClickHouse:

DBMS

[]

MySQL

    $ cat /etc/freetds/freetds.conf
    ...

    [MSSQL]
    host = 192.168.56.101
    port = 1433
    tds version = 7.0
    client charset = UTF-8

    $ cat /etc/odbcinst.ini
    ...

    [FreeTDS]
    Description     = FreeTDS
    Driver          = /usr/lib/x86_64-linux-gnu/odbc/libtdsodbc.so
    Setup           = /usr/lib/x86_64-linux-gnu/odbc/libtdsS.so
    FileUsage       = 1
    UsageCount      = 5

    $ cat ~/.odbc.ini
    ...

    [MSSQL]
    Description     = FreeTDS
    Driver          = FreeTDS
    Servername      = MSSQL
    Database        = test
    UID             = test
    PWD             = test
    Port            = 1433

<yandex>
    <dictionary>
        <name>test</name>
        <source>
            <odbc>
                <table>dict</table>
                <connection_string>DSN=MSSQL;UID=test;PWD=test</connection_string>
            </odbc>
        </source>

        <lifetime>
            <min>300</min>
            <max>360</max>
        </lifetime>

        <layout>
            <flat />
        </layout>

        <structure>
            <id>
                <name>k</name>
            </id>
            <attribute>
                <name>s</name>
                <type>String</type>
                <null_value></null_value>
            </attribute>
        </structure>
    </dictionary>
</yandex>



Example	of	settings:

Setting	fields:

port 	–	The	port	on	the	MySQL	server.	You	can	specify	it	for	all	replicas,	or	for	each	one	individually	(inside	

<replica> ).

user 	–	Name	of	the	MySQL	user.	You	can	specify	it	for	all	replicas,	or	for	each	one	individually	(inside	<replica> ).

password 	–	Password	of	the	MySQL	user.	You	can	specify	it	for	all	replicas,	or	for	each	one	individually	(inside	

<replica> ).

replica 	–	Section	of	replica	configurations.	There	can	be	multiple	sections.

replica/host 	–	The	MySQL	host.

*	 replica/priority 	–	The	replica	priority.	When	attempting	to	connect,	ClickHouse	traverses	the	replicas	in	order	of

priority.	The	lower	the	number,	the	higher	the	priority.

db 	–	Name	of	the	database.

table 	–	Name	of	the	table.

where 	–	The	selection	criteria.	Optional	parameter.

invalidate_query 	–	Query	for	checking	the	dictionary	status.	Optional	parameter.	Read	more	in	the	section	Updating

dictionaries	[#dicts-external_dicts_dict_lifetime].

MySQL	can	be	connected	on	a	local	host	via	sockets.	To	do	this,	set	host 	and	 socket .

Example	of	settings:

[]

ClickHouse

<source>
  <mysql>
      <port>3306</port>
      <user>clickhouse</user>
      <password>qwerty</password>
      <replica>
          <host>example01-1</host>
          <priority>1</priority>
      </replica>
      <replica>
          <host>example01-2</host>
          <priority>1</priority>
      </replica>
      <db>db_name</db>
      <table>table_name</table>
      <where>id=10</where>
      <invalidate_query>SQL_QUERY</invalidate_query>
  </mysql>
</source>

<source>
  <mysql>
      <host>localhost</host>
      <socket>/path/to/socket/file.sock</socket>
      <user>clickhouse</user>
      <password>qwerty</password>
      <db>db_name</db>
      <table>table_name</table>
      <where>id=10</where>
      <invalidate_query>SQL_QUERY</invalidate_query>
  </mysql>
</source>



Example	of	settings:

Setting	fields:

host 	–	The	ClickHouse	host.	If	it	is	a	local	host,	the	query	is	processed	without	any	network	activity.	To	improve	fault

tolerance,	you	can	create	a	Distributed	[#table_engines-distributed]	table	and	enter	it	in	subsequent	configurations.

port 	–	The	port	on	the	ClickHouse	server.

user 	–	Name	of	the	ClickHouse	user.

password 	–	Password	of	the	ClickHouse	user.

db 	–	Name	of	the	database.

table 	–	Name	of	the	table.

where 	–	The	selection	criteria.	May	be	omitted.

invalidate_query 	–	Query	for	checking	the	dictionary	status.	Optional	parameter.	Read	more	in	the	section	Updating

dictionaries	[#dicts-external_dicts_dict_lifetime].

[]

MongoDB

Example	of	settings:

Setting	fields:

host 	–	The	MongoDB	host.

port 	–	The	port	on	the	MongoDB	server.

user 	–	Name	of	the	MongoDB	user.

password 	–	Password	of	the	MongoDB	user.

db 	–	Name	of	the	database.

collection 	–	Name	of	the	collection.

[]

Dictionary	Key	and	Fields

<source>
    <clickhouse>
        <host>example01-01-1</host>
        <port>9000</port>
        <user>default</user>
        <password></password>
        <db>default</db>
        <table>ids</table>
        <where>id=10</where>
    </clickhouse>
</source>

<source>
    <mongodb>
        <host>localhost</host>
        <port>27017</port>
        <user></user>
        <password></password>
        <db>test</db>
        <collection>dictionary_source</collection>
    </mongodb>
</source>



The	 <structure> 	clause	describes	the	dictionary	key	and	fields	available	for	queries.

Overall	structure:

Columns	are	described	in	the	structure:

<id> 	-	key	column	[#dicts-external_dicts_dict_structure-key].

<attribute> 	-	data	column	[#dicts-external_dicts_dict_structure-attributes].	There	can	be	a	large	number	of

columns.

[]

Key

ClickHouse	supports	the	following	types	of	keys:

Numeric	key.	UInt64.	Defined	in	the	tag	<id> 	.

Composite	key.	Set	of	values	of	different	types.	Defined	in	the	tag	<key> 	.

A	structure	can	contain	either	 <id> 	or	 <key> 	.

Numeric	Key

Format:	 UInt64 .

Configuration	example:

Configuration	fields:

name	–	The	name	of	the	column	with	keys.

Composite	Key

The	key	can	be	a	tuple 	from	any	types	of	fields.	The	layout	[#dicts-external_dicts_dict_layout]	in	this	case	must	be	

complex_key_hashed 	or	 complex_key_cache .

<dictionary>
    <structure>
        <id>
            <name>Id</name>
        </id>

        <attribute>
            <!-- Attribute parameters -->
        </attribute>

        ...

    </structure>
</dictionary>

Warning

The	key	doesn't	need	to	be	defined	separately	in	attributes.



<id>
    <name>Id</name>
</id>



The	key	structure	is	set	in	the	element	 <key> .	Key	fields	are	specified	in	the	same	format	as	the	dictionary	attributes

[#dicts-external_dicts_dict_structure-attributes].	Example:

For	a	query	to	the	 dictGet* 	function,	a	tuple	is	passed	as	the	key.	Example:	dictGetString('dict_name',	'attr_name',	

tuple('string	for	field1',	num_for_field2)) .

[]

Attributes

Configuration	example:

Configuration	fields:

name 	–	The	column	name.

type 	–	The	column	type.	Sets	the	method	for	interpreting	data	in	the	source.	For	example,	for	MySQL,	the	field	might

be	 TEXT ,	 VARCHAR ,	or	 BLOB 	in	the	source	table,	but	it	can	be	uploaded	as	String .

null_value 	–	The	default	value	for	a	non-existing	element.	In	the	example,	it	is	an	empty	string.

expression 	–	The	attribute	can	be	an	expression.	The	tag	is	not	required.

hierarchical 	–	Hierarchical	support.	Mirrored	to	the	parent	identifier.	By	default,	false .

injective 	–	Whether	the	 id	->	attribute 	image	is	injective.	If	 true ,	then	you	can	optimize	the	 GROUP	BY 	clause.

By	default,	 false .

is_object_id 	–	Whether	the	query	is	executed	for	a	MongoDB	document	by	ObjectID .

[]

Internal	dictionaries

Tip

A	composite	key	can	consist	of	a	single	element.	This	makes	it	possible	to	use	a	string	as	the	key,	for	instance.



<structure>
    <key>
        <attribute>
            <name>field1</name>
            <type>String</type>
        </attribute>
        <attribute>
            <name>field2</name>
            <type>UInt32</type>
        </attribute>
        ...
    </key>
...

<structure>
    ...
    <attribute>
        <name>Name</name>
        <type>Type</type>
        <null_value></null_value>
        <expression>rand64()</expression>
        <hierarchical>true</hierarchical>
        <injective>true</injective>
        <is_object_id>true</is_object_id>
    </attribute>
</structure>



ClickHouse	contains	a	built-in	feature	for	working	with	a	geobase.

This	allows	you	to:

Use	a	region's	ID	to	get	its	name	in	the	desired	language.

Use	a	region's	ID	to	get	the	ID	of	a	city,	area,	federal	district,	country,	or	continent.

Check	whether	a	region	is	part	of	another	region.

Get	a	chain	of	parent	regions.

All	the	functions	support	"translocality,"	the	ability	to	simultaneously	use	different	perspectives	on	region	ownership.	For

more	information,	see	the	section	"Functions	for	working	with	Yandex.Metrica	dictionaries".

The	internal	dictionaries	are	disabled	in	the	default	package.	To	enable	them,	uncomment	the	parameters	

path_to_regions_hierarchy_file 	and	 path_to_regions_names_files 	in	the	server	configuration	file.

The	geobase	is	loaded	from	text	files.

Place	the	 regions_hierarchy*.txt 	files	into	the	 path_to_regions_hierarchy_file 	directory.	This	configuration

parameter	must	contain	the	path	to	the	 regions_hierarchy.txt 	file	(the	default	regional	hierarchy),	and	the	other	files

( regions_hierarchy_ua.txt )	must	be	located	in	the	same	directory.

Put	the	 regions_names_*.txt 	files	in	the	 path_to_regions_names_files 	directory.

You	can	also	create	these	files	yourself.	The	file	format	is	as	follows:

regions_hierarchy*.txt :	TabSeparated	(no	header),	columns:

region	ID	( UInt32 )

parent	region	ID	( UInt32 )

region	type	( UInt8 ):	1	-	continent,	3	-	country,	4	-	federal	district,	5	-	region,	6	-	city;	other	types	don't	have	values

population	( UInt32 )	—	optional	column

regions_names_*.txt :	TabSeparated	(no	header),	columns:

region	ID	( UInt32 )

region	name	( String )	—	Can't	contain	tabs	or	line	feeds,	even	escaped	ones.

A	flat	array	is	used	for	storing	in	RAM.	For	this	reason,	IDs	shouldn't	be	more	than	a	million.

Dictionaries	can	be	updated	without	restarting	the	server.	However,	the	set	of	available	dictionaries	is	not	updated.	For

updates,	the	file	modification	times	are	checked.	If	a	file	has	changed,	the	dictionary	is	updated.	The	interval	to	check	for

changes	is	configured	in	the	 builtin_dictionaries_reload_interval 	parameter.	Dictionary	updates	(other	than	loading

at	first	use)	do	not	block	queries.	During	updates,	queries	use	the	old	versions	of	dictionaries.	If	an	error	occurs	during	an

update,	the	error	is	written	to	the	server	log,	and	queries	continue	using	the	old	version	of	dictionaries.

We	recommend	periodically	updating	the	dictionaries	with	the	geobase.	During	an	update,	generate	new	files	and	write

them	to	a	separate	location.	When	everything	is	ready,	rename	them	to	the	files	used	by	the	server.

There	are	also	functions	for	working	with	OS	identifiers	and	Yandex.Metrica	search	engines,	but	they	shouldn't	be	used.

Operators

All	operators	are	transformed	to	the	corresponding	functions	at	the	query	parsing	stage,	in	accordance	with	their

precedence	and	associativity.	Groups	of	operators	are	listed	in	order	of	priority	(the	higher	it	is	in	the	list,	the	earlier	the

operator	is	connected	to	its	arguments).



Access	Operators

a[N] 	Access	to	an	element	of	an	array;	 arrayElement(a,	N)	function .

a.N 	–	Access	to	a	tuble	element;	tupleElement(a,	N) 	function.

Numeric	Negation	Operator

-a 	–	The	 negate	(a) 	function.

Multiplication	and	Division	Operators

a	*	b 	–	The	 multiply	(a,	b)	function.

a	/	b 	–	The	 divide(a,	b)	function.

a	%	b 	–	The	 modulo(a,	b)	function.

Addition	and	Subtraction	Operators

a	+	b 	–	The	 plus(a,	b)	function.

a	-	b 	–	The	 minus(a,	b)	function.

Comparison	Operators

a	=	b 	–	The	 equals(a,	b)	function.

a	==	b 	–	The	 equals(a,	b)	function.

a	!=	b 	–	The	 notEquals(a,	b)	function.

a	<>	b 	–	The	 notEquals(a,	b)	function.

a	<=	b 	–	The	 lessOrEquals(a,	b)	function.

a	>=	b 	–	The	 greaterOrEquals(a,	b)	function.

a	<	b 	–	The	 less(a,	b)	function.

a	>	b 	–	The	 greater(a,	b)	function.

a	LIKE	s 	–	The	 like(a,	b)	function.

a	NOT	LIKE	s 	–	The	 notLike(a,	b)	function.

a	BETWEEN	b	AND	c 	–	The	same	as	a	>=	b	AND	a	<=	c.

Operators	for	Working	With	Data	Sets

See	the	section	"IN	operators".

a	IN	... 	–	The	 in(a,	b)	function

a	NOT	IN	... 	–	The	 notIn(a,	b)	function.

a	GLOBAL	IN	... 	–	The	 globalIn(a,	b)	function.

a	GLOBAL	NOT	IN	... 	–	The	 globalNotIn(a,	b)	function.



Logical	Negation	Operator

NOT	a 	The	 not(a)	function.

Logical	AND	Operator

a	AND	b 	–	The and(a,	b)	function.

Logical	OR	Operator

a	OR	b 	–	The	 or(a,	b)	function.

Conditional	Operator

a	?	b	:	c 	–	The	 if(a,	b,	c)	function.

Note:

The	conditional	operator	calculates	the	values	of	b	and	c,	then	checks	whether	condition	a	is	met,	and	then	returns	the

corresponding	value.	If	 b 	or	 C 	is	an	arrayJoin()	[#functions_arrayjoin]	function,	each	row	will	be	replicated	regardless	of

the	"a"	condition.

[]	[]

Conditional	Expression

If	 x 	is	specified,	then	 transform(x,	[a,	...],	[b,	...],	c) 	function	is	used.	Otherwise	–	 multiIf(a,	b,	...,	c) .

If	there	is	no	 ELSE	c 	clause	in	the	expression,	the	default	value	is	 NULL .

The	 transform 	function	does	not	work	with	 NULL .

Concatenation	Operator

s1	||	s2 	–	The	 concat(s1,	s2)	function.

Lambda	Creation	Operator

x	->	expr 	–	The	 lambda(x,	expr)	function.

The	following	operators	do	not	have	a	priority,	since	they	are	brackets:

Array	Creation	Operator

[x1,	...] 	–	The	 array(x1,	...)	function.

Tuple	Creation	Operator

(x1,	x2,	...) 	–	The	 tuple(x2,	x2,	...)	function.

CASE [x]
    WHEN a THEN b
    [WHEN ... THEN ...]
    [ELSE c]
END



Associativity

All	binary	operators	have	left	associativity.	For	example,	 1	+	2	+	3 	is	transformed	to	 plus(plus(1,	2),	3) .	Sometimes

this	doesn't	work	the	way	you	expect.	For	example,	 SELECT	4	>	2	>	3 	will	result	in	0.

For	efficiency,	the	 and 	and	 or 	functions	accept	any	number	of	arguments.	The	corresponding	chains	of	AND 	and	 OR

operators	are	transformed	to	a	single	call	of	these	functions.

Checking	for	NULL

ClickHouse	supports	the	 IS	NULL 	and	 IS	NOT	NULL 	operators.

[]

[]	[]

IS	NULL

For	Nullable	[#data_type-nullable]	type	values,	the	 IS	NULL 	operator	returns:

1 ,	if	the	value	is	 NULL .

0 	otherwise.

For	other	values,	the	 IS	NULL 	operator	always	returns	 0 .

[]

IS	NOT	NULL

For	Nullable	[#data_type-nullable]	type	values,	the	 IS	NOT	NULL 	operator	returns:

0 ,	if	the	value	is	 NULL .

1 	otherwise.

For	other	values,	the	 IS	NOT	NULL 	operator	always	returns	 1 .

Syntax

:) SELECT x+100 FROM t_null WHERE y IS NULL

SELECT x + 100
FROM t_null
WHERE isNull(y)

┌─plus(x, 100)─┐
│          101 │
└──────────────┘

1 rows in set. Elapsed: 0.002 sec.

:) SELECT * FROM t_null WHERE y IS NOT NULL

SELECT *
FROM t_null
WHERE isNotNull(y)

┌─x─┬─y─┐
│ 2 │ 3 │
└───┴───┘

1 rows in set. Elapsed: 0.002 sec.



There	are	two	types	of	parsers	in	the	system:	the	full	SQL	parser	(a	recursive	descent	parser),	and	the	data	format	parser	(a

fast	stream	parser).	In	all	cases	except	the	INSERT	query,	only	the	full	SQL	parser	is	used.	The	INSERT	query	uses	both

parsers:

The	 INSERT	INTO	t	VALUES 	fragment	is	parsed	by	the	full	parser,	and	the	data	 (1,	'Hello,	world'),	(2,	'abc'),	(3,	

'def') 	is	parsed	by	the	fast	stream	parser.	Data	can	have	any	format.	When	a	query	is	received,	the	server	calculates	no

more	than	 max_query_size 	bytes	of	the	request	in	RAM	(by	default,	1	MB),	and	the	rest	is	stream	parsed.	This	means	the

system	doesn't	have	problems	with	large	INSERT	queries,	like	MySQL	does.

When	using	the	Values	format	in	an	INSERT	query,	it	may	seem	that	data	is	parsed	the	same	as	expressions	in	a	SELECT

query,	but	this	is	not	true.	The	Values	format	is	much	more	limited.

Next	we	will	cover	the	full	parser.	For	more	information	about	format	parsers,	see	the	section	"Formats".

Spaces

There	may	be	any	number	of	space	symbols	between	syntactical	constructions	(including	the	beginning	and	end	of	a

query).	Space	symbols	include	the	space,	tab,	line	feed,	CR,	and	form	feed.

Comments

SQL-style	and	C-style	comments	are	supported.	SQL-style	comments:	from	 -- 	to	the	end	of	the	line.	The	space	after	--

can	be	omitted.	Comments	in	C-style:	from	 /* 	to	 */ .	These	comments	can	be	multiline.	Spaces	are	not	required	here,

either.

Keywords

Keywords	(such	as	 SELECT )	are	not	case-sensitive.	Everything	else	(column	names,	functions,	and	so	on),	in	contrast	to

standard	SQL,	is	case-sensitive.	Keywords	are	not	reserved	(they	are	just	parsed	as	keywords	in	the	corresponding

context).

Identifiers

Identifiers	(column	names,	functions,	and	data	types)	can	be	quoted	or	non-quoted.	Non-quoted	identifiers	start	with	a

Latin	letter	or	underscore,	and	continue	with	a	Latin	letter,	underscore,	or	number.	In	other	words,	they	must	match	the

regex	 ^[a-zA-Z_][0-9a-zA-Z_]*$ .	Examples:	 x,	_1,	X_y__Z123_.

Quoted	identifiers	are	placed	in	reversed	quotation	marks	 `id` 	(the	same	as	in	MySQL),	and	can	indicate	any	set	of	bytes

(non-empty).	In	addition,	symbols	(for	example,	the	reverse	quotation	mark)	inside	this	type	of	identifier	can	be	backslash-

escaped.	Escaping	rules	are	the	same	as	for	string	literals	(see	below).	We	recommend	using	identifiers	that	do	not	need	to

be	quoted.

Literals

There	are	numeric	literals,	string	literals,	and	compound	literals.

Numeric	Literals

A	numeric	literal	tries	to	be	parsed:

First	as	a	64-bit	signed	number,	using	the	'strtoull'	function.

If	unsuccessful,	as	a	64-bit	unsigned	number,	using	the	'strtoll'	function.

INSERT INTO t VALUES (1, 'Hello, world'), (2, 'abc'), (3, 'def')



If	unsuccessful,	as	a	floating-point	number	using	the	'strtod'	function.

Otherwise,	an	error	is	returned.

The	corresponding	value	will	have	the	smallest	type	that	the	value	fits	in.	For	example,	1	is	parsed	as	UInt8,	but	256	is

parsed	as	UInt16.	For	more	information,	see	"Data	types".

Examples:	 1 ,	 18446744073709551615 ,	 0xDEADBEEF ,	 01 ,	 0.1 ,	 1e100 ,	 -1e-100 ,	 inf ,	 nan .

String	Literals

Only	string	literals	in	single	quotes	are	supported.	The	enclosed	characters	can	be	backslash-escaped.	The	following

escape	sequences	have	a	corresponding	special	value:	 \b ,	 \f ,	 \r ,	 \n ,	 \t ,	 \0 ,	 \a ,	 \v ,	 \xHH .	In	all	other	cases,	escape

sequences	in	the	format	 \c ,	where	"c"	is	any	character,	are	converted	to	"c".	This	means	that	you	can	use	the	sequences	

\' and \\ .	The	value	will	have	the	String	type.

The	minimum	set	of	characters	that	you	need	to	escape	in	string	literals:	' 	and	 \ .

Compound	Literals

Constructions	are	supported	for	arrays:	 [1,	2,	3] 	and	tuples:	 (1,	'Hello,	world!',	2) ..	Actually,	these	are	not

literals,	but	expressions	with	the	array	creation	operator	and	the	tuple	creation	operator,	respectively.	For	more

information,	see	the	section	"Operators2".	An	array	must	consist	of	at	least	one	item,	and	a	tuple	must	have	at	least	two

items.	Tuples	have	a	special	purpose	for	use	in	the	IN	clause	of	a	SELECT	query.	Tuples	can	be	obtained	as	the	result	of	a

query,	but	they	can't	be	saved	to	a	database	(with	the	exception	of	Memory-type	tables).

[]

NULL	Literal

Indicates	that	the	value	is	missing.

In	order	to	store	 NULL 	in	a	table	field,	it	must	be	of	the	Nullable	[#data_type-nullable]	type.

Depending	on	the	data	format	(input	or	output),	 NULL 	may	have	a	different	representation.	For	more	information,	see	the

documentation	for	data	formats	[#formats].

There	are	many	nuances	to	processing	NULL .	For	example,	if	at	least	one	of	the	arguments	of	a	comparison	operation	is	

NULL ,	the	result	of	this	operation	will	also	be	NULL .	The	same	is	true	for	multiplication,	addition,	and	other	operations.	For

more	information,	read	the	documentation	for	each	operation.

In	queries,	you	can	check	 NULL 	using	the	IS	NULL	[#operator-is-null]	and	IS	NOT	NULL	[#operator-is-not-null]	operators

and	the	related	functions	 isNull 	and	 isNotNull .

Functions

Functions	are	written	like	an	identifier	with	a	list	of	arguments	(possibly	empty)	in	brackets.	In	contrast	to	standard	SQL,

the	brackets	are	required,	even	for	an	empty	arguments	list.	Example:	 now() .	There	are	regular	and	aggregate	functions

(see	the	section	"Aggregate	functions").	Some	aggregate	functions	can	contain	two	lists	of	arguments	in	brackets.

Example:	 quantile	(0.9)	(x) .	These	aggregate	functions	are	called	"parametric"	functions,	and	the	arguments	in	the

first	list	are	called	"parameters".	The	syntax	of	aggregate	functions	without	parameters	is	the	same	as	for	regular

functions.

Operators

Operators	are	converted	to	their	corresponding	functions	during	query	parsing,	taking	their	priority	and	associativity	into

account.	For	example,	the	expression	 1	+	2	*	3	+	4 	is	transformed	to	 plus(plus(1,	multiply(2,	3)),	4) .	For	more

information,	see	the	section	"Operators"	below.



Data	Types	and	Database	Table	Engines

Data	types	and	table	engines	in	the	 CREATE 	query	are	written	the	same	way	as	identifiers	or	functions.	In	other	words,	they

may	or	may	not	contain	an	arguments	list	in	brackets.	For	more	information,	see	the	sections	"Data	types,"	"Table	engines,"

and	"CREATE".

Synonyms

In	the	SELECT	query,	expressions	can	specify	synonyms	using	the	AS	keyword.	Any	expression	is	placed	to	the	left	of	AS.

The	identifier	name	for	the	synonym	is	placed	to	the	right	of	AS.	As	opposed	to	standard	SQL,	synonyms	are	not	only

declared	on	the	top	level	of	expressions:

In	contrast	to	standard	SQL,	synonyms	can	be	used	in	all	parts	of	a	query,	not	just	SELECT .

Asterisk

In	a	 SELECT 	query,	an	asterisk	can	replace	the	expression.	For	more	information,	see	the	section	"SELECT".

Expressions

An	expression	is	a	function,	identifier,	literal,	application	of	an	operator,	expression	in	brackets,	subquery,	or	asterisk.	It

can	also	contain	a	synonym.	A	list	of	expressions	is	one	or	more	expressions	separated	by	commas.	Functions	and

operators,	in	turn,	can	have	expressions	as	arguments.

Operations

表引擎

表引擎（即表的类型）决定了：

数据的存储⽅式和位置，写到哪⾥以及从哪⾥读取数据

⽀持哪些查询以及如何⽀持。

并发数据访问。

索引的使⽤（如果存在）。

是否可以执⾏多线程请求。

数据复制参数。

在读取时，引擎只需要输出所请求的列，但在某些情况下，引擎可以在响应请求时部分处理数据。

对于⼤多数正式的任务，应该使⽤MergeTree族中的引擎。

[]

MergeTree

The	 MergeTree 	engine	and	other	engines	of	this	family	( *MergeTree )	are	the	most	robust	ClickHousе	table	engines.

The	basic	idea	for	 MergeTree 	engines	family	is	the	following.	When	you	have	tremendous	amount	of	a	data	that	should	be

inserted	into	the	table,	you	should	write	them	quickly	part	by	part	and	then	merge	parts	by	some	rules	in	background.	This

SELECT (1 AS n) + 2, n



method	is	much	more	efficient	than	constantly	rewriting	data	in	the	storage	at	the	insert.

Main	features:

Stores	data	sorted	by	primary	key.

This	allows	you	to	create	a	small	sparse	index	that	helps	find	data	faster.

This	allows	you	to	use	partitions	if	the	partitioning	key	[#table_engines-custom_partitioning_key]	is	specified.

ClickHouse	supports	certain	operations	with	partitions	that	are	more	effective	than	general	operations	on	the	same

data	with	the	same	result.	ClickHouse	also	automatically	cuts	off	the	partition	data	where	the	partitioning	key	is

specified	in	the	query.	This	also	increases	the	query	performance.

Data	replication	support.

The	family	of	 ReplicatedMergeTree 	tables	is	used	for	this.	For	more	information,	see	the	Data	replication

[#table_engines-replication]	section.

Data	sampling	support.

If	necessary,	you	can	set	the	data	sampling	method	in	the	table.

[]

Creating	a	Table

For	a	description	of	request	parameters,	see	request	description	[#query_language-queries-create_table].

Query	clauses

ENGINE 	-	Name	and	parameters	of	the	engine.	 ENGINE	=	MergeTree() .	 MergeTree 	engine	does	not	have

parameters.

ORDER	BY 	—	Primary	key.

A	tuple	of	columns	or	arbitrary	expressions.	Example:	 ORDER	BY	(CounterID,	EventDate) .	If	a	sampling	expression

is	used,	the	primary	key	must	contain	it.	Example:	 ORDER	BY	(CounterID,	EventDate,	intHash32(UserID)) .

PARTITION	BY 	—	The	partitioning	key	[#table_engines-custom_partitioning_key].

For	partitioning	by	month,	use	the	 toYYYYMM(date_column) 	expression,	where	 date_column 	is	a	column	with	a	date

of	the	type	Date	[#data_type-date].	The	partition	names	here	have	the	 "YYYYMM" 	format.

SAMPLE	BY 	—	An	expression	for	sampling.	Example:	 intHash32(UserID)) .

SETTINGS 	—	Additional	parameters	that	control	the	behavior	of	the	MergeTree :

index_granularity 	—	The	granularity	of	an	index.	The	number	of	data	rows	between	the	"marks"	of	an	index.	By

default,	8192.

Example	of	sections	setting

Info

The	Merge	[#table_engine-merge]	engine	does	not	belong	to	the	 *MergeTree 	family.



CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
    ...
) ENGINE = MergeTree()
[PARTITION BY expr]
[ORDER BY expr]
[SAMPLE BY expr]
[SETTINGS name=value, ...]



In	the	example,	we	set	partitioning	by	month.

We	also	set	an	expression	for	sampling	as	a	hash	by	the	user	ID.	This	allows	you	to	pseudorandomize	the	data	in	the	table

for	each	 CounterID 	and	 EventDate .	If,	when	selecting	the	data,	you	define	a	SAMPLE	[#select-section-sample]	clause,

ClickHouse	will	return	an	evenly	pseudorandom	data	sample	for	a	subset	of	users.

index_granularity 	could	be	omitted	because	8192	is	the	default	value.

Data	Storage

A	table	consists	of	data	parts	sorted	by	primary	key.

When	data	is	inserted	in	a	table,	separate	data	parts	are	created	and	each	of	them	is	lexicographically	sorted	by	primary

key.	For	example,	if	the	primary	key	is	 (CounterID,	Date) ,	the	data	in	the	part	is	sorted	by	 CounterID ,	and	within	each	

CounterID ,	it	is	ordered	by	 Date .

Data	belonging	to	different	partitions	are	separated	into	different	parts.	In	the	background,	ClickHouse	merges	data	parts

for	more	efficient	storage.	Parts	belonging	to	different	partitions	are	not	merged.	The	merge	mechanism	does	not

guarantee	that	all	rows	with	the	same	primary	key	will	be	in	the	same	data	part.

For	each	data	part,	ClickHouse	creates	an	index	file	that	contains	the	primary	key	value	for	each	index	row	("mark").	Index

row	numbers	are	defined	as	 n	*	index_granularity .	The	maximum	value	 n 	is	equal	to	the	integer	part	of	dividing	the

total	number	of	rows	by	the	 index_granularity .	For	each	column,	the	"marks"	are	also	written	for	the	same	index	rows	as

the	primary	key.	These	"marks"	allow	you	to	find	the	data	directly	in	the	columns.

You	can	use	a	single	large	table	and	continually	add	data	to	it	in	small	chunks	–	this	is	what	the	MergeTree 	engine	is

intended	for.

ENGINE MergeTree() PARTITION BY toYYYYMM(EventDate) ORDER BY (CounterID, EventDate, intHash32(UserID)) SAMPLE 
BY intHash32(UserID) SETTINGS index_granularity=8192

Deprecated	Method	for	Creating	a	Table

MergeTree()	parameters

date-column 	—	The	name	of	a	column	of	the	type	 Date	[#data_type-date].	ClickHouse	automatically	creates	partitions	by	month	on	the	basis

of	this	column.	The	partition	names	are	in	the	 "YYYYMM" 	format.

sampling_expression 	—	an	expression	for	sampling.

(primary,	key) 	—	primary	key.	Type	—	 Tuple()	[#data_type-tuple].	It	may	consist	of	arbitrary	expressions,	but	it	typically	is	a	tuple	of

columns.	It	must	include	an	expression	for	sampling	if	it	is	set.	It	must	not	include	a	column	with	a	 date-column 	date.

index_granularity 	—	The	granularity	of	an	index.	The	number	of	data	rows	between	the	"marks"	of	an	index.	The	value	8192	is	appropriate

for	most	tasks.

Example

The	 MergeTree 	engine	is	configured	in	the	same	way	as	in	the	example	above	for	the	main	engine	configuration	method.





Attention

Do	not	use	this	method	in	new	projects	and,	if	possible,	switch	the	old	projects	to	the	method	described	above.



CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
    ...
) ENGINE [=] MergeTree(date-column [, sampling_expression], (primary, key), index_granularity)

MergeTree(EventDate, intHash32(UserID), (CounterID, EventDate, intHash32(UserID)), 8192)



Primary	Keys	and	Indexes	in	Queries

Let's	take	the	 (CounterID,	Date) 	primary	key.	In	this	case,	the	sorting	and	index	can	be	illustrated	as	follows:

If	the	data	query	specifies:

CounterID	in	('a',	'h') ,	the	server	reads	the	data	in	the	ranges	of	marks	[0,	3) 	and	 [6,	8) .

CounterID	IN	('a',	'h')	AND	Date	=	3 ,	the	server	reads	the	data	in	the	ranges	of	marks	[1,	3) 	and	 [7,	8) .

Date	=	3 ,	the	server	reads	the	data	in	the	range	of	marks	[1,	10] .

The	examples	above	show	that	it	is	always	more	effective	to	use	an	index	than	a	full	scan.

A	sparse	index	allows	extra	strings	to	be	read.	When	reading	a	single	range	of	the	primary	key,	up	to	index_granularity	

*	2 	extra	rows	in	each	data	block	can	be	read.	In	most	cases,	ClickHouse	performance	does	not	degrade	when	

index_granularity	=	8192 .

Sparse	indexes	allow	you	to	work	with	a	very	large	number	of	table	rows,	because	such	indexes	are	always	stored	in	the

computer's	RAM.

ClickHouse	does	not	require	a	unique	primary	key.	You	can	insert	multiple	rows	with	the	same	primary	key.

Selecting	the	Primary	Key

The	number	of	columns	in	the	primary	key	is	not	explicitly	limited.	Depending	on	the	data	structure,	you	can	include	more

or	fewer	columns	in	the	primary	key.	This	may:

Improve	the	performance	of	an	index.

If	the	primary	key	is	(a,	b) ,	then	adding	another	column	 c 	will	improve	the	performance	if	the	following	conditions

are	met:	-	There	are	queries	with	a	condition	on	column	 c .	-	Long	data	ranges	(several	times	longer	than	the	

index_granularity )	with	identical	values	for	 (a,	b) 	are	common.	In	other	words,	when	adding	another	column

allows	you	to	skip	quite	long	data	ranges.

Improve	data	compression.

ClickHouse	sorts	data	by	primary	key,	so	the	higher	the	consistency,	the	better	the	compression.

Provide	additional	logic	when	data	parts	merging	in	the	CollapsingMergeTree	[#table_engine-collapsingmergetree]

and	SummingMergeTree	[#table_engine-summingmergetree]	engines.

You	may	need	many	fields	in	the	primary	key	even	if	they	are	not	necessary	for	the	previous	steps.

A	long	primary	key	will	negatively	affect	the	insert	performance	and	memory	consumption,	but	extra	columns	in	the

primary	key	do	not	affect	ClickHouse	performance	during	 SELECT 	queries.

Use	of	Indexes	and	Partitions	in	Queries

For SELECT 	queries,	ClickHouse	analyzes	whether	an	index	can	be	used.	An	index	can	be	used	if	the	WHERE/PREWHERE

clause	has	an	expression	(as	one	of	the	conjunction	elements,	or	entirely)	that	represents	an	equality	or	inequality

comparison	operation,	or	if	it	has	 IN 	or	 LIKE 	with	a	fixed	prefix	on	columns	or	expressions	that	are	in	the	primary	key	or

partitioning	key,	or	on	certain	partially	repetitive	functions	of	these	columns,	or	logical	relationships	of	these	expressions.

Thus,	it	is	possible	to	quickly	run	queries	on	one	or	many	ranges	of	the	primary	key.	In	this	example,	queries	will	be	fast

when	run	for	a	specific	tracking	tag;	for	a	specific	tag	and	date	range;	for	a	specific	tag	and	date;	for	multiple	tags	with	a

date	range,	and	so	on.

Whole data:     [-------------------------------------------------------------------------]
CounterID:      [aaaaaaaaaaaaaaaaaabbbbcdeeeeeeeeeeeeefgggggggghhhhhhhhhiiiiiiiiikllllllll]
Date:           [1111111222222233331233211111222222333211111112122222223111112223311122333]
Marks:           |      |      |      |      |      |      |      |      |      |      |
                a,1    a,2    a,3    b,3    e,2    e,3    g,1    h,2    i,1    i,3    l,3
Marks numbers:   0      1      2      3      4      5      6      7      8      9      10



Let's	look	at	the	engine	configured	as	follows:

In	this	case,	in	queries:

ClickHouse	will	use	the	primary	key	index	to	trim	improper	data	and	the	monthly	partitioning	key	to	trim	partitions	that	are

in	improper	date	ranges.

The	queries	above	show	that	the	index	is	used	even	for	complex	expressions.	Reading	from	the	table	is	organized	so	that

using	the	index	can't	be	slower	than	a	full	scan.

In	the	example	below,	the	index	can't	be	used.

To	check	whether	ClickHouse	can	use	the	index	when	running	a	query,	use	the	settings	force_index_by_date	[#settings-

settings-force_index_by_date]	and	force_primary_key	[#settings-settings-force_primary_key].

The	key	for	partitioning	by	month	allows	reading	only	those	data	blocks	which	contain	dates	from	the	proper	range.	In	this

case,	the	data	block	may	contain	data	for	many	dates	(up	to	an	entire	month).	Within	a	block,	data	is	sorted	by	primary	key,

which	might	not	contain	the	date	as	the	first	column.	Because	of	this,	using	a	query	with	only	a	date	condition	that	does

not	specify	the	primary	key	prefix	will	cause	more	data	to	be	read	than	for	a	single	date.

Concurrent	Data	Access

For	concurrent	table	access,	we	use	multi-versioning.	In	other	words,	when	a	table	is	simultaneously	read	and	updated,

data	is	read	from	a	set	of	parts	that	is	current	at	the	time	of	the	query.	There	are	no	lengthy	locks.	Inserts	do	not	get	in	the

way	of	read	operations.

Reading	from	a	table	is	automatically	parallelized.

[]

Data	Replication

Replication	is	only	supported	for	tables	in	the	MergeTree	family:

ReplicatedMergeTree

ReplicatedSummingMergeTree

ReplicatedReplacingMergeTree

ReplicatedAggregatingMergeTree

ReplicatedCollapsingMergeTree

ReplicatedGraphiteMergeTree

Replication	works	at	the	level	of	an	individual	table,	not	the	entire	server.	A	server	can	store	both	replicated	and	non-

replicated	tables	at	the	same	time.

ENGINE MergeTree() PARTITION BY toYYYYMM(EventDate) ORDER BY (CounterID, EventDate) SETTINGS 
index_granularity=8192

SELECT count() FROM table WHERE EventDate = toDate(now()) AND CounterID = 34
SELECT count() FROM table WHERE EventDate = toDate(now()) AND (CounterID = 34 OR CounterID = 42)
SELECT count() FROM table WHERE ((EventDate >= toDate('2014-01-01') AND EventDate <= toDate('2014-01-31')) OR 
EventDate = toDate('2014-05-01')) AND CounterID IN (101500, 731962, 160656) AND (CounterID = 101500 OR 
EventDate != toDate('2014-05-01'))

SELECT count() FROM table WHERE CounterID = 34 OR URL LIKE '%upyachka%'



Replication	does	not	depend	on	sharding.	Each	shard	has	its	own	independent	replication.

Compressed	data	for	 INSERT 	and	 ALTER 	queries	is	replicated	(for	more	information,	see	the	documentation	for	ALTER

[#query_language_queries_alter]).

CREATE ,	 DROP ,	 ATTACH ,	 DETACH 	and	 RENAME 	queries	are	executed	on	a	single	server	and	are	not	replicated:

The	CREATE	TABLE 	query	creates	a	new	replicatable	table	on	the	server	where	the	query	is	run.	If	this	table	already

exists	on	other	servers,	it	adds	a	new	replica.

The	DROP	TABLE 	query	deletes	the	replica	located	on	the	server	where	the	query	is	run.

The	RENAME 	query	renames	the	table	on	one	of	the	replicas.	In	other	words,	replicated	tables	can	have	different

names	on	different	replicas.

To	use	replication,	set	the	addresses	of	the	ZooKeeper	cluster	in	the	config	file.	Example:

Use	ZooKeeper	version	3.4.5	or	later.

You	can	specify	any	existing	ZooKeeper	cluster	and	the	system	will	use	a	directory	on	it	for	its	own	data	(the	directory	is

specified	when	creating	a	replicatable	table).

If	ZooKeeper	isn't	set	in	the	config	file,	you	can't	create	replicated	tables,	and	any	existing	replicated	tables	will	be	read-

only.

ZooKeeper	is	not	used	in	 SELECT 	queries	because	replication	does	not	affect	the	performance	of	 SELECT 	and	queries	run

just	as	fast	as	they	do	for	non-replicated	tables.	When	querying	distributed	replicated	tables,	ClickHouse	behavior	is

controlled	by	the	settings	max_replica_delay_for_distributed_queries

[#settings_settings_max_replica_delay_for_distributed_queries]	and	fallback_to_stale_replicas_for_distributed_queries

[#settings-settings-fallback_to_stale_replicas_for_distributed_queries].

For	each	 INSERT 	query,	approximately	ten	entries	are	added	to	ZooKeeper	through	several	transactions.	(To	be	more

precise,	this	is	for	each	inserted	block	of	data;	an	INSERT	query	contains	one	block	or	one	block	per	

max_insert_block_size	=	1048576 	rows.)	This	leads	to	slightly	longer	latencies	for	 INSERT 	compared	to	non-replicated

tables.	But	if	you	follow	the	recommendations	to	insert	data	in	batches	of	no	more	than	one	 INSERT 	per	second,	it	doesn't

create	any	problems.	The	entire	ClickHouse	cluster	used	for	coordinating	one	ZooKeeper	cluster	has	a	total	of	several

hundred	 INSERTs 	per	second.	The	throughput	on	data	inserts	(the	number	of	rows	per	second)	is	just	as	high	as	for	non-

replicated	data.

For	very	large	clusters,	you	can	use	different	ZooKeeper	clusters	for	different	shards.	However,	this	hasn't	proven

necessary	on	the	Yandex.Metrica	cluster	(approximately	300	servers).

Replication	is	asynchronous	and	multi-master.	 INSERT 	queries	(as	well	as	 ALTER )	can	be	sent	to	any	available	server.	Data

is	inserted	on	the	server	where	the	query	is	run,	and	then	it	is	copied	to	the	other	servers.	Because	it	is	asynchronous,

recently	inserted	data	appears	on	the	other	replicas	with	some	latency.	If	part	of	the	replicas	are	not	available,	the	data	is

written	when	they	become	available.	If	a	replica	is	available,	the	latency	is	the	amount	of	time	it	takes	to	transfer	the	block

of	compressed	data	over	the	network.

<zookeeper>
    <node index="1">
        <host>example1</host>
        <port>2181</port>
    </node>
    <node index="2">
        <host>example2</host>
        <port>2181</port>
    </node>
    <node index="3">
        <host>example3</host>
        <port>2181</port>
    </node>
</zookeeper>



By	default,	an	INSERT	query	waits	for	confirmation	of	writing	the	data	from	only	one	replica.	If	the	data	was	successfully

written	to	only	one	replica	and	the	server	with	this	replica	ceases	to	exist,	the	stored	data	will	be	lost.	Tp	enable	getting

confirmation	of	data	writes	from	multiple	replicas,	use	the	 insert_quorum 	option.

Each	block	of	data	is	written	atomically.	The	INSERT	query	is	divided	into	blocks	up	to	max_insert_block_size	=	

1048576 	rows.	In	other	words,	if	the	 INSERT 	query	has	less	than	1048576	rows,	it	is	made	atomically.

Data	blocks	are	deduplicated.	For	multiple	writes	of	the	same	data	block	(data	blocks	of	the	same	size	containing	the	same

rows	in	the	same	order),	the	block	is	only	written	once.	The	reason	for	this	is	in	case	of	network	failures	when	the	client

application	doesn't	know	if	the	data	was	written	to	the	DB,	so	the	 INSERT 	query	can	simply	be	repeated.	It	doesn't	matter

which	replica	INSERTs	were	sent	to	with	identical	data.	 INSERTs 	are	idempotent.	Deduplication	parameters	are	controlled

by	merge_tree	[#server_settings-merge_tree]	server	settings.

During	replication,	only	the	source	data	to	insert	is	transferred	over	the	network.	Further	data	transformation	(merging)	is

coordinated	and	performed	on	all	the	replicas	in	the	same	way.	This	minimizes	network	usage,	which	means	that

replication	works	well	when	replicas	reside	in	different	datacenters.	(Note	that	duplicating	data	in	different	datacenters	is

the	main	goal	of	replication.)

You	can	have	any	number	of	replicas	of	the	same	data.	Yandex.Metrica	uses	double	replication	in	production.	Each	server

uses	RAID-5	or	RAID-6,	and	RAID-10	in	some	cases.	This	is	a	relatively	reliable	and	convenient	solution.

The	system	monitors	data	synchronicity	on	replicas	and	is	able	to	recover	after	a	failure.	Failover	is	automatic	(for	small

differences	in	data)	or	semi-automatic	(when	data	differs	too	much,	which	may	indicate	a	configuration	error).

[]

Creating	Replicated	Tables

The	 Replicated 	prefix	is	added	to	the	table	engine	name.	For	example: ReplicatedMergeTree .

Replicated*MergeTree	parameters

zoo_path 	—	The	path	to	the	table	in	ZooKeeper.

replica_name 	—	The	replica	name	in	ZooKeeper.

Example:

Example	in	deprecated	syntax:

As	the	example	shows,	these	parameters	can	contain	substitutions	in	curly	brackets.	The	substituted	values	are	taken	from

the	'macros'	section	of	the	configuration	file.	Example:

CREATE TABLE table_name
(
    EventDate DateTime,
    CounterID UInt32,
    UserID UInt32
) ENGINE = ReplicatedMergeTree('/clickhouse/tables/{layer}-{shard}/hits', '{replica}')
PARTITION BY toYYYYMM(EventDate)
ORDER BY (CounterID, EventDate, intHash32(UserID))
SAMPLE BY intHash32(UserID)

CREATE TABLE table_name
(
    EventDate DateTime,
    CounterID UInt32,
    UserID UInt32
) ENGINE = ReplicatedMergeTree('/clickhouse/tables/{layer}-{shard}/hits', '{replica}', EventDate, 
intHash32(UserID), (CounterID, EventDate, intHash32(UserID), EventTime), 8192)



The	path	to	the	table	in	ZooKeeper	should	be	unique	for	each	replicated	table.	Tables	on	different	shards	should	have

different	paths.	In	this	case,	the	path	consists	of	the	following	parts:

/clickhouse/tables/ 	is	the	common	prefix.	We	recommend	using	exactly	this	one.

{layer}-{shard} 	is	the	shard	identifier.	In	this	example	it	consists	of	two	parts,	since	the	Yandex.Metrica	cluster	uses	bi-

level	sharding.	For	most	tasks,	you	can	leave	just	the	{shard}	substitution,	which	will	be	expanded	to	the	shard	identifier.

hits 	is	the	name	of	the	node	for	the	table	in	ZooKeeper.	It	is	a	good	idea	to	make	it	the	same	as	the	table	name.	It	is

defined	explicitly,	because	in	contrast	to	the	table	name,	it	doesn't	change	after	a	RENAME	query.

The	replica	name	identifies	different	replicas	of	the	same	table.	You	can	use	the	server	name	for	this,	as	in	the	example.	The

name	only	needs	to	be	unique	within	each	shard.

You	can	define	the	parameters	explicitly	instead	of	using	substitutions.	This	might	be	convenient	for	testing	and	for

configuring	small	clusters.	However,	you	can't	use	distributed	DDL	queries	( ON	CLUSTER )	in	this	case.

When	working	with	large	clusters,	we	recommend	using	substitutions	because	they	reduce	the	probability	of	error.

Run	the	 CREATE	TABLE 	query	on	each	replica.	This	query	creates	a	new	replicated	table,	or	adds	a	new	replica	to	an

existing	one.

If	you	add	a	new	replica	after	the	table	already	contains	some	data	on	other	replicas,	the	data	will	be	copied	from	the	other

replicas	to	the	new	one	after	running	the	query.	In	other	words,	the	new	replica	syncs	itself	with	the	others.

To	delete	a	replica,	run	 DROP	TABLE .	However,	only	one	replica	is	deleted	–	the	one	that	resides	on	the	server	where	you

run	the	query.

Recovery	After	Failures

If	ZooKeeper	is	unavailable	when	a	server	starts,	replicated	tables	switch	to	read-only	mode.	The	system	periodically

attempts	to	connect	to	ZooKeeper.

If	ZooKeeper	is	unavailable	during	an	 INSERT ,	or	an	error	occurs	when	interacting	with	ZooKeeper,	an	exception	is	thrown.

After	connecting	to	ZooKeeper,	the	system	checks	whether	the	set	of	data	in	the	local	file	system	matches	the	expected

set	of	data	(ZooKeeper	stores	this	information).	If	there	are	minor	inconsistencies,	the	system	resolves	them	by	syncing

data	with	the	replicas.

If	the	system	detects	broken	data	parts	(with	the	wrong	size	of	files)	or	unrecognized	parts	(parts	written	to	the	file	system

but	not	recorded	in	ZooKeeper),	it	moves	them	to	the	'detached'	subdirectory	(they	are	not	deleted).	Any	missing	parts	are

copied	from	the	replicas.

Note	that	ClickHouse	does	not	perform	any	destructive	actions	such	as	automatically	deleting	a	large	amount	of	data.

When	the	server	starts	(or	establishes	a	new	session	with	ZooKeeper),	it	only	checks	the	quantity	and	sizes	of	all	files.	If	the

file	sizes	match	but	bytes	have	been	changed	somewhere	in	the	middle,	this	is	not	detected	immediately,	but	only	when

attempting	to	read	the	data	for	a	 SELECT 	query.	The	query	throws	an	exception	about	a	non-matching	checksum	or	size	of

a	compressed	block.	In	this	case,	data	parts	are	added	to	the	verification	queue	and	copied	from	the	replicas	if	necessary.

If	the	local	set	of	data	differs	too	much	from	the	expected	one,	a	safety	mechanism	is	triggered.	The	server	enters	this	in

the	log	and	refuses	to	launch.	The	reason	for	this	is	that	this	case	may	indicate	a	configuration	error,	such	as	if	a	replica	on	a

shard	was	accidentally	configured	like	a	replica	on	a	different	shard.	However,	the	thresholds	for	this	mechanism	are	set

<macros>
    <layer>05</layer>
    <shard>02</shard>
    <replica>example05-02-1.yandex.ru</replica>
</macros>



fairly	low,	and	this	situation	might	occur	during	normal	failure	recovery.	In	this	case,	data	is	restored	semi-automatically	-

by	"pushing	a	button".

To	start	recovery,	create	the	node	 /path_to_table/replica_name/flags/force_restore_data 	in	ZooKeeper	with	any

content,	or	run	the	command	to	restore	all	replicated	tables:

Then	restart	the	server.	On	start,	the	server	deletes	these	flags	and	starts	recovery.

Recovery	After	Complete	Data	Loss

If	all	data	and	metadata	disappeared	from	one	of	the	servers,	follow	these	steps	for	recovery:

1.	 Install	ClickHouse	on	the	server.	Define	substitutions	correctly	in	the	config	file	that	contains	the	shard	identifier	and

replicas,	if	you	use	them.

2.	 If	you	had	unreplicated	tables	that	must	be	manually	duplicated	on	the	servers,	copy	their	data	from	a	replica	(in	the

directory	 /var/lib/clickhouse/data/db_name/table_name/ ).

3.	 Copy	table	definitions	located	in	 /var/lib/clickhouse/metadata/ 	from	a	replica.	If	a	shard	or	replica	identifier	is

defined	explicitly	in	the	table	definitions,	correct	it	so	that	it	corresponds	to	this	replica.	(Alternatively,	start	the	server

and	make	all	the	 ATTACH	TABLE 	queries	that	should	have	been	in	the	.sql	files	in	 /var/lib/clickhouse/metadata/ .)

4.	 To	start	recovery,	create	the	ZooKeeper	node	 /path_to_table/replica_name/flags/force_restore_data 	with	any

content,	or	run	the	command	to	restore	all	replicated	tables:	 sudo	-u	clickhouse	touch	

/var/lib/clickhouse/flags/force_restore_data

Then	start	the	server	(restart,	if	it	is	already	running).	Data	will	be	downloaded	from	replicas.

An	alternative	recovery	option	is	to	delete	information	about	the	lost	replica	from	ZooKeeper

( /path_to_table/replica_name ),	then	create	the	replica	again	as	described	in	"Creating	replicatable	tables

[#table_engines-replication-creation_of_rep_tables]".

There	is	no	restriction	on	network	bandwidth	during	recovery.	Keep	this	in	mind	if	you	are	restoring	many	replicas	at	once.

[]

Converting	from	MergeTree	to	ReplicatedMergeTree

We	use	the	term	 MergeTree 	to	refer	to	all	table	engines	in	the	MergeTree	family ,	the	same	as	for	ReplicatedMergeTree .

If	you	had	a	 MergeTree 	table	that	was	manually	replicated,	you	can	convert	it	to	a	replicatable	table.	You	might	need	to	do

this	if	you	have	already	collected	a	large	amount	of	data	in	a	 MergeTree 	table	and	now	you	want	to	enable	replication.

If	the	data	differs	on	various	replicas,	first	sync	it,	or	delete	this	data	on	all	the	replicas	except	one.

Rename	the	existing	MergeTree	table,	then	create	a	 ReplicatedMergeTree 	table	with	the	old	name.	Move	the	data	from

the	old	table	to	the	'detached'	subdirectory	inside	the	directory	with	the	new	table	data

( /var/lib/clickhouse/data/db_name/table_name/ ).	Then	run	 ALTER	TABLE	ATTACH	PARTITION 	on	one	of	the	replicas	to

add	these	data	parts	to	the	working	set.

Converting	from	ReplicatedMergeTree	to	MergeTree

Create	a	MergeTree	table	with	a	different	name.	Move	all	the	data	from	the	directory	with	the	ReplicatedMergeTree 	table

data	to	the	new	table's	data	directory.	Then	delete	the	 ReplicatedMergeTree 	table	and	restart	the	server.

If	you	want	to	get	rid	of	a	ReplicatedMergeTree 	table	without	launching	the	server:

sudo -u clickhouse touch /var/lib/clickhouse/flags/force_restore_data



Delete	the	corresponding	 .sql 	file	in	the	metadata	directory	( /var/lib/clickhouse/metadata/ ).

Delete	the	corresponding	path	in	ZooKeeper	( /path_to_table/replica_name ).

After	this,	you	can	launch	the	server,	create	a	MergeTree 	table,	move	the	data	to	its	directory,	and	then	restart	the	server.

Recovery	When	Metadata	in	The	ZooKeeper	Cluster	is	Lost	or	Damaged

If	the	data	in	ZooKeeper	was	lost	or	damaged,	you	can	save	data	by	moving	it	to	an	unreplicated	table	as	described	above.

[]

Custom	Partitioning	Key

The	partition	key	can	be	an	expression	from	the	table	columns,	or	a	tuple	of	such	expressions	(similar	to	the	primary	key).

The	partition	key	can	be	omitted.	When	creating	a	table,	specify	the	partition	key	in	the	ENGINE	description	with	the	new

syntax:

For	MergeTree	tables,	the	partition	expression	is	specified	after	 PARTITION	BY ,	the	primary	key	after	ORDER	BY ,	the

sampling	key	after	 SAMPLE	BY ,	and	 SETTINGS 	can	specify	 index_granularity 	(optional;	the	default	value	is	8192),	as	well

as	other	settings	from	MergeTreeSettings.h

[https://github.com/yandex/ClickHouse/blob/master/dbms/src/Storages/MergeTree/MergeTreeSettings.h].	The	other

engine	parameters	are	specified	in	parentheses	after	the	engine	name,	as	previously.	Example:

The	traditional	partitioning	by	month	is	expressed	as	toYYYYMM(date_column) .

You	can't	convert	an	old-style	table	to	a	table	with	custom	partitions	(only	via	INSERT	SELECT).

After	this	table	is	created,	merge	will	only	work	for	data	parts	that	have	the	same	value	for	the	partitioning	expression.

Note:	This	means	that	you	shouldn't	make	overly	granular	partitions	(more	than	about	a	thousand	partitions),	or	SELECT

will	perform	poorly.

To	specify	a	partition	in	ALTER	PARTITION	commands,	specify	the	value	of	the	partition	expression	(or	a	tuple).	Constants

and	constant	expressions	are	supported.	Example:

Deletes	the	partition	for	the	current	week	with	event	type	1.	The	same	is	true	for	the	OPTIMIZE	query.	To	specify	the	only

partition	in	a	non-partitioned	table,	specify	 PARTITION	tuple() .

Note:	For	old-style	tables,	the	partition	can	be	specified	either	as	a	number	201710 	or	a	string	 '201710' .	The	syntax	for

the	new	style	of	tables	is	stricter	with	types	(similar	to	the	parser	for	the	VALUES	input	format).	In	addition,	ALTER	TABLE

FREEZE	PARTITION	uses	exact	match	for	new-style	tables	(not	prefix	match).

In	the	 system.parts 	table,	the	 partition 	column	specifies	the	value	of	the	partition	expression	to	use	in	ALTER	queries

(if	quotas	are	removed).	The	 name 	column	should	specify	the	name	of	the	data	part	that	has	a	new	format.

Old:	 20140317_20140323_2_2_0 	(minimum	date	-	maximum	date	-	minimum	block	number	-	maximum	block	number	-

level).

Now:	 201403_2_2_0 	(partition	ID	-	minimum	block	number	-	maximum	block	number	-	level).

ENGINE [=] Name(...) [PARTITION BY expr] [ORDER BY expr] [SAMPLE BY expr] [SETTINGS name=value, ...]

ENGINE = ReplicatedCollapsingMergeTree('/clickhouse/tables/name', 'replica1', Sign)
    PARTITION BY (toMonday(StartDate), EventType)
    ORDER BY (CounterID, StartDate, intHash32(UserID))
    SAMPLE BY intHash32(UserID)

ALTER TABLE table DROP PARTITION (toMonday(today()), 1)

https://github.com/yandex/ClickHouse/blob/master/dbms/src/Storages/MergeTree/MergeTreeSettings.h


The	partition	ID	is	its	string	identifier	(human-readable,	if	possible)	that	is	used	for	the	names	of	data	parts	in	the	file

system	and	in	ZooKeeper.	You	can	specify	it	in	ALTER	queries	in	place	of	the	partition	key.	Example:	Partition	key	

toYYYYMM(EventDate) ;	ALTER	can	specify	either	 PARTITION	201710 	or	 PARTITION	ID	'201710' .

For	more	examples,	see	the	tests	00502_custom_partitioning_local

[https://github.com/yandex/ClickHouse/blob/master/dbms/tests/queries/0_stateless/00502_custom_partitioning_local.

sql]	and	00502_custom_partitioning_replicated_zookeeper

[https://github.com/yandex/ClickHouse/blob/master/dbms/tests/queries/0_stateless/00502_custom_partitioning_replic

ated_zookeeper.sql].

ReplacingMergeTree

The	engine	differs	from	MergeTree	[#table_engines-mergetree]	in	that	it	removes	duplicate	entries	with	the	same	primary

key	value.

Data	deduplication	occurs	only	during	a	merge.	Merging	occurs	in	the	background	at	an	unknown	time,	so	you	can't	plan

for	it.	Some	of	the	data	may	remain	unprocessed.	Although	you	can	run	an	unscheduled	merge	using	the	 OPTIMIZE 	query,

don't	count	on	using	it,	because	the	 OPTIMIZE 	query	will	read	and	write	a	large	amount	of	data.

Thus,	 ReplacingMergeTree 	is	suitable	for	clearing	out	duplicate	data	in	the	background	in	order	to	save	space,	but	it

doesn't	guarantee	the	absence	of	duplicates.

Creating	a	Table

For	a	description	of	request	parameters,	see	request	description	[#query_language-queries-create_table].

ReplacingMergeTree	Parameters

ver 	—	column	with	version.	Type	 UInt* ,	 Date 	or	 DateTime .	Optional	parameter.

When	merging,	 ReplacingMergeTree 	from	all	the	rows	with	the	same	primary	key	leaves	only	one:	-	Last	in	the

selection,	if	 ver 	not	set.	-	With	the	maximum	version,	if	 ver 	specified.

Query	clauses

When	creating	a	 ReplacingMergeTree 	table	the	same	clauses	[#table_engines-mergetree-configuring]	are	required,	as

when	creating	a	 MergeTree 	table.

CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
    ...
) ENGINE = ReplacingMergeTree([ver])
[PARTITION BY expr]
[ORDER BY expr]
[SAMPLE BY expr]
[SETTINGS name=value, ...]

https://github.com/yandex/ClickHouse/blob/master/dbms/tests/queries/0_stateless/00502_custom_partitioning_local.sql
https://github.com/yandex/ClickHouse/blob/master/dbms/tests/queries/0_stateless/00502_custom_partitioning_replicated_zookeeper.sql


[]

SummingMergeTree

The	engine	inherits	from	MergeTree	[#table_engines-mergetree].	The	difference	is	that	when	merging	data	parts	for

SummingMergeTree 	tables	ClickHouse	replaces	all	the	rows	with	the	same	primary	key	with	one	row	which	contains

summarized	values	for	the	columns	with	the	numeric	data	type.	If	the	primary	key	is	composed	in	a	way	that	a	single	key

value	corresponds	to	large	number	of	rows,	this	significantly	reduces	storage	volume	and	speeds	up	data	selection.

We	recommend	to	use	the	engine	together	with	 MergeTree .	Store	complete	data	in	 MergeTree 	table,	and	use	

SummingMergeTree 	for	aggregated	data	storing,	for	example,	when	preparing	reports.	Such	an	approach	will	prevent	you

from	losing	valuable	data	due	to	an	incorrectly	composed	primary	key.

Creating	a	Table

For	a	description	of	request	parameters,	see	request	description	[#query_language-queries-create_table].

Parameters	of	SummingMergeTree

columns 	-	a	tuple	with	the	names	of	columns	where	values	will	be	summarized.	Optional	parameter.	The	columns

must	be	of	a	numeric	type	and	must	not	be	in	the	primary	key.

If	 columns 	not	specified,	ClickHouse	summarizes	the	values	in	all	columns	with	a	numeric	data	type	that	are	not	in	the

primary	key.

Query	clauses

When	creating	a	 SummingMergeTree 	table	the	same	clauses	[#table_engines-mergetree-configuring]	are	required,	as	when

creating	a	 MergeTree 	table.

Deprecated	Method	for	Creating	a	Table

All	of	the	parameters	excepting	 ver 	have	the	same	meaning	as	in	 MergeTree .

ver 	-	column	with	the	version.	Optional	parameter.	For	a	description,	see	the	text	above.





Attention

Do	not	use	this	method	in	new	projects	and,	if	possible,	switch	the	old	projects	to	the	method	described	above.



CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
    ...
) ENGINE [=] ReplacingMergeTree(date-column [, sampling_expression], (primary, key), index_granularity, 
[ver])

CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
    ...
) ENGINE = MergeTree()
[PARTITION BY expr]
[ORDER BY expr]
[SAMPLE BY expr]
[SETTINGS name=value, ...]



Usage	Example

Consider	the	following	table:

Insert	data	to	it:

ClickHouse	may	sum	all	the	rows	not	completely	(see	below	[#summary-data-processing]),	so	we	use	an	aggregate

function	 sum 	and	 GROUP	BY 	clause	in	the	query.

[]

Data	Processing

When	data	are	inserted	into	a	table,	they	are	saved	as-is.	Clickhouse	merges	the	inserted	parts	of	data	periodically	and	this

is	when	rows	with	the	same	primary	key	are	summed	and	replaced	with	one	for	each	resulting	part	of	data.

ClickHouse	can	merge	the	data	parts	so	that	different	resulting	parts	of	data	cat	consist	rows	with	the	same	primary	key,

i.e.	the	summation	will	be	incomplete.	Therefore	( SELECT )	an	aggregate	function	sum()	[#agg_function-sum]	and	 GROUP	

BY 	clause	should	be	used	in	a	query	as	described	in	the	example	above.

Common	rules	for	summation

The	values	in	the	columns	with	the	numeric	data	type	are	summarized.	The	set	of	columns	is	defined	by	the	parameter	

columns .

Deprecated	Method	for	Creating	a	Table

All	of	the	parameters	excepting	 columns 	have	the	same	meaning	as	in	 MergeTree .

columns 	—	tuple	with	names	of	columns	values	of	which	will	be	summarized.	Optional	parameter.	For	a	description,	see	the	text	above.





Attention

Do	not	use	this	method	in	new	projects	and,	if	possible,	switch	the	old	projects	to	the	method	described	above.



CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
    ...
) ENGINE [=] SummingMergeTree(date-column [, sampling_expression], (primary, key), index_granularity, 
[columns])

CREATE TABLE summtt
(
    key UInt32,
    value UInt32
)
ENGINE = SummingMergeTree()
ORDER BY key

:) INSERT INTO summtt Values(1,1),(1,2),(2,1)

SELECT key, sum(value) FROM summtt GROUP BY key

┌─key─┬─sum(value)─┐
│   2 │          1 │
│   1 │          3 │
└─────┴────────────┘



If	the	values	were	0	in	all	of	the	columns	for	summation,	the	row	is	deleted.

If	column	is	not	in	the	primary	key	and	is	not	summarized,	an	arbitrary	value	is	selected	from	the	existing	ones.

The	values	are	not	summarized	for	columns	in	the	primary	key.

The	Summation	in	the	AggregateFunction	Columns

For	columns	of	AggregateFunction	type	[#data_type-aggregatefunction]	ClickHouse	behaves	as	AggregatingMergeTree

[#table_engine-aggregatingmergetree]	engine	aggregating	according	to	the	function.

Nested	Structures

Table	can	have	nested	data	structures	that	are	processed	in	a	special	way.

If	the	name	of	a	nested	table	ends	with	Map 	and	it	contains	at	least	two	columns	that	meet	the	following	criteria:

the	first	column	is	numeric	 (*Int*,	Date,	DateTime) ,	let's	call	it	 key ,

the	other	columns	are	arithmetic	 (*Int*,	Float32/64) ,	let's	call	it	 (values...) ,

then	this	nested	table	is	interpreted	as	a	mapping	of	key	=>	(values...) ,	and	when	merging	its	rows,	the	elements	of

two	data	sets	are	merged	by	 key 	with	a	summation	of	the	corresponding	 (values...) .

Examples:

When	requesting	data,	use	the	sumMap(key,	value)	[#agg_function-summary]	function	for	aggregation	of	Map .

For	nested	data	structure,	you	do	not	need	to	specify	its	columns	in	the	tuple	of	columns	for	summation.

[]

AggregatingMergeTree

The	engine	inherits	from	MergeTree	[#table_engines-mergetree],	altering	the	logic	for	data	parts	merging.	ClickHouse

replaces	all	rows	with	the	same	primary	key	with	a	single	row	(within	a	one	data	part)	that	stores	a	combination	of	states	of

aggregate	functions.

You	can	use	 AggregatingMergeTree 	tables	for	incremental	data	aggregation,	including	for	aggregated	materialized	views.

The	engine	processes	all	columns	with	AggregateFunction	[#data_type-aggregatefunction]	type.

It	is	appropriate	to	use	 AggregatingMergeTree 	if	it	reduces	the	number	of	rows	by	orders.

Creating	a	Table

[(1, 100)] + [(2, 150)] -> [(1, 100), (2, 150)]
[(1, 100)] + [(1, 150)] -> [(1, 250)]
[(1, 100)] + [(1, 150), (2, 150)] -> [(1, 250), (2, 150)]
[(1, 100), (2, 150)] + [(1, -100)] -> [(2, 150)]

CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
    ...
) ENGINE = AggregatingMergeTree()
[PARTITION BY expr]
[ORDER BY expr]
[SAMPLE BY expr]
[SETTINGS name=value, ...]



For	a	description	of	request	parameters,	see	request	description	[#query_language-queries-create_table].

Query	clauses

When	creating	a	 ReplacingMergeTree 	table	the	same	clauses	[#table_engines-mergetree-configuring]	are	required,	as

when	creating	a	 MergeTree 	table.

SELECT	and	INSERT

To	insert	data,	use	INSERT	SELECT	[#queries-insert-select]	query	with	aggregate	 -State -	functions.

When	selecting	data	from	 AggregatingMergeTree 	table,	use	 GROUP	BY 	clause	and	the	same	aggregate	functions	as	when

inserting	data,	but	using	 -Merge 	suffix.

In	the	results	of	 SELECT 	query	the	values	of	 AggregateFunction 	type	have	implementation-specific	binary

representation	for	all	of	the	ClickHouse	output	formats.	If	dump	data	into,	for	example,	 TabSeparated 	format	with	

SELECT 	query	then	this	dump	can	be	loaded	back	using	 INSERT 	query.

Example	of	an	Aggregated	Materialized	View

AggregatingMergeTree 	materialized	view	that	watches	the	 test.visits 	table:

Inserting	of	data	into	the	 test.visits 	table.

The	data	are	inserted	in	both	the	table	and	view	 test.basic 	that	will	perform	the	aggregation.

To	get	the	aggregated	data,	we	need	to	execute	a	query	such	as	SELECT	...	GROUP	BY	... 	from	the	view	 test.basic :

Deprecated	Method	for	Creating	a	Table

All	of	the	parameters	have	the	same	meaning	as	in	 MergeTree .





Attention

Do	not	use	this	method	in	new	projects	and,	if	possible,	switch	the	old	projects	to	the	method	described	above.



CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
    ...
) ENGINE [=] AggregatingMergeTree(date-column [, sampling_expression], (primary, key), index_granularity)

CREATE MATERIALIZED VIEW test.basic
ENGINE = AggregatingMergeTree() PARTITION BY toYYYYMM(StartDate) ORDER BY (CounterID, StartDate)
AS SELECT
    CounterID,
    StartDate,
    sumState(Sign)    AS Visits,
    uniqState(UserID) AS Users
FROM test.visits
GROUP BY CounterID, StartDate;

INSERT INTO test.visits ...



[]

CollapsingMergeTree

The	engine	inherits	from	MergeTree	[#table_engines-mergetree]	and	adds	the	logic	of	rows	collapsing	to	data	parts	merge

algorithm.

CollapsingMergeTree 	asynchronously	deletes	(collapses)	pairs	of	rows	if	all	of	the	fields	in	a	row	are	equivalent	excepting

the	particular	field	 Sign 	which	can	have	 1 	and	 -1 	values.	Rows	without	a	pair	are	kept.	For	more	details	see	the

Collapsing	[#collapsingmergetree-collapsing]	section	of	the	document.

The	engine	may	significantly	reduce	the	volume	of	storage	and	increase	efficiency	of	SELECT 	query	as	a	consequence.

Creating	a	Table

For	a	description	of	request	parameters,	see	request	description	[#query_language-queries-create_table].

CollapsingMergeTree	Parameters

sign 	—	Name	of	the	column	with	the	type	of	row:	 1 	is	a	"state"	row,	 -1 	is	a	"cancel"	row.

Column	data	type	—	 Int8 .

Query	clauses

When	creating	a	 CollapsingMergeTree 	table,	the	same	clauses	[#table_engines-mergetree-configuring]	are	required,	as

when	creating	a	 MergeTree 	table.

SELECT
    StartDate,
    sumMerge(Visits) AS Visits,
    uniqMerge(Users) AS Users
FROM test.basic
GROUP BY StartDate
ORDER BY StartDate;

CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
    ...
) ENGINE = CollapsingMergeTree(sign)
[PARTITION BY expr]
[ORDER BY expr]
[SAMPLE BY expr]
[SETTINGS name=value, ...]



[]

Collapsing

Data

Consider	the	situation	where	you	need	to	save	continually	changing	data	for	some	object.	It	sounds	logical	to	have	one	row

for	an	object	and	update	it	at	any	change,	but	update	operation	is	expensive	and	slow	for	DBMS	because	it	requires

rewriting	of	the	data	in	the	storage.	If	you	need	to	write	data	quickly,	update	not	acceptable,	but	you	can	write	the	changes

of	an	object	sequentially	as	follows.

Use	the	particular	column	 Sign 	when	writing	row.	If	 Sign	=	1 	it	means	that	the	row	is	a	state	of	an	object,	let's	call	it

"state"	row.	If	 Sign	=	-1 	it	means	the	cancellation	of	the	state	of	an	object	with	the	same	attributes,	let's	call	it	"cancel"

row.

For	example,	we	want	to	calculate	how	much	pages	users	checked	at	some	site	and	how	long	they	were	there.	At	some

moment	of	time	we	write	the	following	row	with	the	state	of	user	activity:

At	some	moment	later	we	register	the	change	of	user	activity	and	write	it	with	the	following	two	rows.

The	first	row	cancels	the	previous	state	of	the	object	(user).	It	should	copy	all	of	the	fields	of	the	canceled	state	excepting	

Sign .

The	second	row	contains	the	current	state.

As	we	need	only	the	last	state	of	user	activity,	the	rows

Deprecated	Method	for	Creating	a	Table

All	of	the	parameters	excepting	 sign 	have	the	same	meaning	as	in	 MergeTree .

sign 	—	Name	of	the	column	with	the	type	of	row:	 1 	—	"state"	row,	 -1 	—	"cancel"	row.

Column	Data	Type	—	 Int8 .





Attention

Do	not	use	this	method	in	new	projects	and,	if	possible,	switch	the	old	projects	to	the	method	described	above.



CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
    ...
) ENGINE [=] CollapsingMergeTree(date-column [, sampling_expression], (primary, key), index_granularity, 
sign)

┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │         5 │      146 │    1 │
└─────────────────────┴───────────┴──────────┴──────┘

┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │         5 │      146 │   -1 │
│ 4324182021466249494 │         6 │      185 │    1 │
└─────────────────────┴───────────┴──────────┴──────┘

┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │         5 │      146 │    1 │
│ 4324182021466249494 │         5 │      146 │   -1 │
└─────────────────────┴───────────┴──────────┴──────┘



can	be	deleted	collapsing	the	invalid	(old)	state	of	an	object.	CollapsingMergeTree 	does	this	while	merging	of	the	data

parts.

Why	we	need	2	rows	for	each	change	read	in	the	"Algorithm"	paragraph.

Peculiar	properties	of	such	approach

1.	 The	program	that	writes	the	data	should	remember	the	state	of	an	object	to	be	able	to	cancel	it.	"Cancel"	string	should

be	the	copy	of	"state"	string	with	the	opposite	 Sign .	It	increases	the	initial	size	of	storage	but	allows	to	write	the	data

quickly.

2.	 Long	growing	arrays	in	columns	reduce	the	efficiency	of	the	engine	due	to	load	for	writing.	The	more	straightforward

data,	the	higher	efficiency.

3.	 SELECT 	results	depend	strongly	on	the	consistency	of	object	changes	history.	Be	accurate	when	preparing	data	for

inserting.	You	can	get	unpredictable	results	in	inconsistent	data,	for	example,	negative	values	for	non-negative

metrics	such	as	session	depth.

Algorithm

When	ClickHouse	merges	data	parts,	each	group	of	consecutive	rows	with	the	same	primary	key	is	reduced	to	not	more

than	two	rows,	one	with	 Sign	=	1 	("state"	row)	and	another	with	 Sign	=	-1 	("cancel"	row).	In	other	words,	entries

collapse.

For	each	resulting	data	part	ClickHouse	saves:

1.	 The	first	"cancel"	and	the	last	"state"	rows,	if	the	number	of	"state"	and	"cancel"	rows	matches.

2.	 The	last	"state"	row,	if	there	is	one	more	"state"	row	than	"cancel"	rows.

3.	 The	first	"cancel"	row,	if	there	is	one	more	"cancel"	row	than	"state"	rows.

4.	 None	of	the	rows,	in	all	other	cases.

The	merge	continues,	but	ClickHouse	treats	this	situation	as	a	logical	error	and	records	it	in	the	server	log.	This	error

can	occur	if	the	same	data	were	inserted	more	than	once.

Thus,	collapsing	should	not	change	the	results	of	calculating	statistics.	Changes	gradually	collapsed	so	that	in	the	end	only

the	last	state	of	almost	every	object	left.

The	 Sign 	is	required	because	the	merging	algorithm	doesn't	guarantee	that	all	of	the	rows	with	the	same	primary	key	will

be	in	the	same	resulting	data	part	and	even	on	the	same	physical	server.	ClickHouse	process	 SELECT 	queries	with	multiple

threads,	and	it	can	not	predict	the	order	of	rows	in	the	result.	The	aggregation	is	required	if	there	is	a	need	to	get

completely	"collapsed"	data	from	 CollapsingMergeTree 	table.

To	finalize	collapsing	write	a	query	with	 GROUP	BY 	clause	and	aggregate	functions	that	account	for	the	sign.	For	example,

to	calculate	quantity,	use	 sum(Sign) 	instead	of	 count() .	To	calculate	the	sum	of	something,	use	 sum(Sign	*	x) 	instead

of	 sum(x) ,	and	so	on,	and	also	add	 HAVING	sum(Sign)	>	0 .

The	aggregates	 count ,	 sum 	and	 avg 	could	be	calculated	this	way.	The	aggregate	uniq 	could	be	calculated	if	an	object

has	at	list	one	state	not	collapsed.	The	aggregates	 min 	and	 max 	could	not	be	calculated	because	 CollapsingMergeTree

does	not	save	values	history	of	the	collapsed	states.

If	you	need	to	extract	data	without	aggregation	(for	example,	to	check	whether	rows	are	present	whose	newest	values

match	certain	conditions),	you	can	use	the	 FINAL 	modifier	for	the	 FROM 	clause.	This	approach	is	significantly	less	efficient.

Example	of	use

Example	data:



Creation	of	the	table:

Insertion	of	the	data:

We	use	two	 INSERT 	queries	to	create	two	different	data	parts.	If	we	insert	the	data	with	one	query	ClickHouse	creates	one

data	part	and	will	not	perform	any	merge	ever.

Getting	the	data:

What	do	we	see	and	where	is	collapsing?	With	two	 INSERT 	queries,	we	created	2	data	parts.	The	SELECT 	query	was

performed	in	2	threads,	and	we	got	a	random	order	of	rows.	Collapsing	not	occurred	because	there	was	no	merge	of	the

data	parts	yet.	ClickHouse	merges	data	part	in	an	unknown	moment	of	time	which	we	can	not	predict.

Thus	we	need	aggregation:

If	we	do	not	need	aggregation	and	want	to	force	collapsing,	we	can	use	 FINAL 	modifier	for	 FROM 	clause.

┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │         5 │      146 │    1 │
│ 4324182021466249494 │         5 │      146 │   -1 │
│ 4324182021466249494 │         6 │      185 │    1 │
└─────────────────────┴───────────┴──────────┴──────┘

CREATE TABLE UAct
(
    UserID UInt64,
    PageViews UInt8,
    Duration UInt8,
    Sign Int8
)
ENGINE = CollapsingMergeTree(Sign)
ORDER BY UserID

INSERT INTO UAct VALUES (4324182021466249494, 5, 146, 1)

INSERT INTO UAct VALUES (4324182021466249494, 5, 146, -1),(4324182021466249494, 6, 185, 1)

SELECT * FROM UAct

┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │         5 │      146 │   -1 │
│ 4324182021466249494 │         6 │      185 │    1 │
└─────────────────────┴───────────┴──────────┴──────┘
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │         5 │      146 │    1 │
└─────────────────────┴───────────┴──────────┴──────┘

SELECT
    UserID,
    sum(PageViews * Sign) AS PageViews,
    sum(Duration * Sign) AS Duration
FROM UAct
GROUP BY UserID
HAVING sum(Sign) > 0

┌──────────────UserID─┬─PageViews─┬─Duration─┐
│ 4324182021466249494 │         6 │      185 │
└─────────────────────┴───────────┴──────────┘

SELECT * FROM UAct FINAL



This	way	of	selecting	the	data	is	very	inefficient.	Don't	use	it	for	big	tables.

[]

GraphiteMergeTree

This	engine	is	designed	for	rollup	(thinning	and	aggregating/averaging)	Graphite

[http://graphite.readthedocs.io/en/latest/index.html]	data.	It	may	be	helpful	to	developers	who	want	to	use	ClickHouse	as

a	data	store	for	Graphite.

You	can	use	any	ClickHouse	table	engine	to	store	the	Graphite	data	if	you	don't	need	rollup,	but	if	you	need	a	rollup	use	

GraphiteMergeTree .	The	engine	reduces	the	volume	of	storage	and	increases	the	efficiency	of	queries	from	Graphite.

The	engine	inherits	properties	from	MergeTree	[#table_engines-mergetree].

Creating	a	Table

For	a	description	of	request	parameters,	see	request	description	[#query_language-queries-create_table].

A	table	for	the	Graphite	date	should	have	the	following	columns:

Column	with	the	metric	name	(Graphite	sensor).	Data	type:	 String .

Column	with	the	time	for	measuring	the	metric.	Data	type:	DateTime .

Column	with	the	value	of	the	metric.	Data	type:	any	numeric.

Column	with	the	version	of	the	metric	with	the	same	name	and	time	of	measurement.	Data	type:	any	numeric.

ClickHouse	saves	the	rows	with	the	highest	version	or	the	last	written	if	versions	are	the	same.	Other	rows	are	deleted

during	the	merge	of	data	parts.

The	names	of	these	columns	should	be	set	in	the	rollup	configuration.

GraphiteMergeTree	parameters

config_section 	—	Name	of	the	section	in	the	configuration	file,	where	are	the	rules	of	rollup	set.

Query	clauses

When	creating	a	 GraphiteMergeTree 	table,	the	same	clauses	[#table_engines-mergetree-configuring]	are	required,	as

when	creating	a	 MergeTree 	table.

┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │         6 │      185 │    1 │
└─────────────────────┴───────────┴──────────┴──────┘

CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    Path String,
    Time DateTime,
    Value <Numeric_type>,
    Version <Numeric_type>
    ...
) ENGINE = GraphiteMergeTree(config_section)
[PARTITION BY expr]
[ORDER BY expr]
[SAMPLE BY expr]
[SETTINGS name=value, ...]

http://graphite.readthedocs.io/en/latest/index.html


Rollup	configuration

The	settings	for	rollup	are	defined	by	the	graphite_rollup	[#server_settings-graphite_rollup]	parameter	in	the	server

configuration.	The	name	of	the	parameter	could	be	any.	You	can	create	several	configurations	and	use	them	for	different

tables.

Rollup	configuration	structure:

When	processing	a	row,	ClickHouse	checks	the	rules	in	the	pattern 	section.	If	the	metric	name	matches	the	 regexp ,	the

rules	from	the	 pattern section	are	applied;	otherwise,	the	rules	from	the	 default 	section	are	used.

The	rules	are	defined	with	fields	function 	and	 age	+	precision .

Fields	for	 pattern 	and	 default 	sections:

regexp –	A	pattern	for	the	metric	name.

age 	–	The	minimum	age	of	the	data	in	seconds.

precision –	How	precisely	to	define	the	age	of	the	data	in	seconds.

function 	–	The	name	of	the	aggregating	function	to	apply	to	data	whose	age	falls	within	the	range	[age,	age	+	

precision] .

The	 required-columns :

path_column_name 	—	Column	with	the	metric	name	(Graphite	sensor).

time_column_name 	—	Column	with	the	time	for	measuring	the	metric.

value_column_name 	—	Column	with	the	value	of	the	metric	at	the	time	set	in	time_column_name .

Deprecated	Method	for	Creating	a	Table

All	of	the	parameters	excepting	 config_section 	have	the	same	meaning	as	in	 MergeTree .

config_section 	—	Name	of	the	section	in	the	configuration	file,	where	are	the	rules	of	rollup	set.





Attention

Do	not	use	this	method	in	new	projects	and,	if	possible,	switch	the	old	projects	to	the	method	described	above.



CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    EventDate Date,
    Path String,
    Time DateTime,
    Value <Numeric_type>,
    Version <Numeric_type>
    ...
) ENGINE [=] GraphiteMergeTree(date-column [, sampling_expression], (primary, key), index_granularity, 
config_section)

required-columns
pattern
    regexp
    function
    age + precision
    ...
pattern
    ...
default
    function
    age + precision
    ...



version_column_name 	—	Column	with	the	version	timestamp	of	the	metric	with	the	same	name	and	time	remains	in

the	database.

Example	of	settings:

TinyLog

The	simplest	table	engine,	which	stores	data	on	a	disk.	Each	column	is	stored	in	a	separate	compressed	file.	When	writing,

data	is	appended	to	the	end	of	files.

Concurrent	data	access	is	not	restricted	in	any	way:

If	you	are	simultaneously	reading	from	a	table	and	writing	to	it	in	a	different	query,	the	read	operation	will	complete

with	an	error.

If	you	are	writing	to	a	table	in	multiple	queries	simultaneously,	the	data	will	be	broken.

The	typical	way	to	use	this	table	is	write-once:	first	just	write	the	data	one	time,	then	read	it	as	many	times	as	needed.

Queries	are	executed	in	a	single	stream.	In	other	words,	this	engine	is	intended	for	relatively	small	tables	(recommended	up

to	1,000,000	rows).	It	makes	sense	to	use	this	table	engine	if	you	have	many	small	tables,	since	it	is	simpler	than	the	Log

engine	(fewer	files	need	to	be	opened).	The	situation	when	you	have	a	large	number	of	small	tables	guarantees	poor

productivity,	but	may	already	be	used	when	working	with	another	DBMS,	and	you	may	find	it	easier	to	switch	to	using

TinyLog	types	of	tables.	Indexes	are	not	supported.

In	Yandex.Metrica,	TinyLog	tables	are	used	for	intermediary	data	that	is	processed	in	small	batches.

Log

Log	differs	from	TinyLog	in	that	a	small	file	of	"marks"	resides	with	the	column	files.	These	marks	are	written	on	every	data

<graphite_rollup>
    <path_column_name>Path</path_column_name>
    <time_column_name>Time</time_column_name>
    <value_column_name>Value</value_column_name>
    <version_column_name>Version</version_column_name>
    <pattern>
        <regexp>click_cost</regexp>
        <function>any</function>
        <retention>
            <age>0</age>
            <precision>5</precision>
        </retention>
        <retention>
            <age>86400</age>
            <precision>60</precision>
        </retention>
    </pattern>
    <default>
        <function>max</function>
        <retention>
            <age>0</age>
            <precision>60</precision>
        </retention>
        <retention>
            <age>3600</age>
            <precision>300</precision>
        </retention>
        <retention>
            <age>86400</age>
            <precision>3600</precision>
        </retention>
    </default>
</graphite_rollup>



block	and	contain	offsets	that	indicate	where	to	start	reading	the	file	in	order	to	skip	the	specified	number	of	rows.	This

makes	it	possible	to	read	table	data	in	multiple	threads.	For	concurrent	data	access,	the	read	operations	can	be	performed

simultaneously,	while	write	operations	block	reads	and	each	other.	The	Log	engine	does	not	support	indexes.	Similarly,	if

writing	to	a	table	failed,	the	table	is	broken,	and	reading	from	it	returns	an	error.	The	Log	engine	is	appropriate	for

temporary	data,	write-once	tables,	and	for	testing	or	demonstration	purposes.

Memory

The	Memory	engine	stores	data	in	RAM,	in	uncompressed	form.	Data	is	stored	in	exactly	the	same	form	as	it	is	received

when	read.	In	other	words,	reading	from	this	table	is	completely	free.	Concurrent	data	access	is	synchronized.	Locks	are

short:	read	and	write	operations	don't	block	each	other.	Indexes	are	not	supported.	Reading	is	parallelized.	Maximal

productivity	(over	10	GB/sec)	is	reached	on	simple	queries,	because	there	is	no	reading	from	the	disk,	decompressing,	or

deserializing	data.	(We	should	note	that	in	many	cases,	the	productivity	of	the	MergeTree	engine	is	almost	as	high.)	When

restarting	a	server,	data	disappears	from	the	table	and	the	table	becomes	empty.	Normally,	using	this	table	engine	is	not

justified.	However,	it	can	be	used	for	tests,	and	for	tasks	where	maximum	speed	is	required	on	a	relatively	small	number	of

rows	(up	to	approximately	100,000,000).

The	Memory	engine	is	used	by	the	system	for	temporary	tables	with	external	query	data	(see	the	section	"External	data	for

processing	a	query"),	and	for	implementing	GLOBAL	IN	(see	the	section	"IN	operators").

Buffer

Buffers	the	data	to	write	in	RAM,	periodically	flushing	it	to	another	table.	During	the	read	operation,	data	is	read	from	the

buffer	and	the	other	table	simultaneously.

Engine	parameters:database,	table	–	The	table	to	flush	data	to.	Instead	of	the	database	name,	you	can	use	a	constant

expression	that	returns	a	string.num_layers	–	Parallelism	layer.	Physically,	the	table	will	be	represented	as	'num_layers'	of

independent	buffers.	Recommended	value:	16.min_time,	max_time,	min_rows,	max_rows,	min_bytes,	and	max_bytes	are

conditions	for	flushing	data	from	the	buffer.

Data	is	flushed	from	the	buffer	and	written	to	the	destination	table	if	all	the	'min'	conditions	or	at	least	one	'max'	condition

are	met.min_time,	max_time	–	Condition	for	the	time	in	seconds	from	the	moment	of	the	first	write	to	the	buffer.min_rows,

max_rows	–	Condition	for	the	number	of	rows	in	the	buffer.min_bytes,	max_bytes	–	Condition	for	the	number	of	bytes	in

the	buffer.

During	the	write	operation,	data	is	inserted	to	a	'num_layers'	number	of	random	buffers.	Or,	if	the	data	part	to	insert	is

large	enough	(greater	than	'max_rows'	or	'max_bytes'),	it	is	written	directly	to	the	destination	table,	omitting	the	buffer.

The	conditions	for	flushing	the	data	are	calculated	separately	for	each	of	the	'num_layers'	buffers.	For	example,	if

num_layers	=	16	and	max_bytes	=	100000000,	the	maximum	RAM	consumption	is	1.6	GB.

Example:

Creating	a	'merge.hits_buffer'	table	with	the	same	structure	as	'merge.hits'	and	using	the	Buffer	engine.	When	writing	to

this	table,	data	is	buffered	in	RAM	and	later	written	to	the	'merge.hits'	table.	16	buffers	are	created.	The	data	in	each	of

them	is	flushed	if	either	100	seconds	have	passed,	or	one	million	rows	have	been	written,	or	100	MB	of	data	have	been

written;	or	if	simultaneously	10	seconds	have	passed	and	10,000	rows	and	10	MB	of	data	have	been	written.	For	example,

if	just	one	row	has	been	written,	after	100	seconds	it	will	be	flushed,	no	matter	what.	But	if	many	rows	have	been	written,

the	data	will	be	flushed	sooner.

Buffer(database, table, num_layers, min_time, max_time, min_rows, max_rows, min_bytes, max_bytes)

CREATE TABLE merge.hits_buffer AS merge.hits ENGINE = Buffer(merge, hits, 16, 10, 100, 10000, 1000000, 
10000000, 100000000)



When	the	server	is	stopped,	with	DROP	TABLE	or	DETACH	TABLE,	buffer	data	is	also	flushed	to	the	destination	table.

You	can	set	empty	strings	in	single	quotation	marks	for	the	database	and	table	name.	This	indicates	the	absence	of	a

destination	table.	In	this	case,	when	the	data	flush	conditions	are	reached,	the	buffer	is	simply	cleared.	This	may	be	useful

for	keeping	a	window	of	data	in	memory.

When	reading	from	a	Buffer	table,	data	is	processed	both	from	the	buffer	and	from	the	destination	table	(if	there	is	one).

Note	that	the	Buffer	tables	does	not	support	an	index.	In	other	words,	data	in	the	buffer	is	fully	scanned,	which	might	be

slow	for	large	buffers.	(For	data	in	a	subordinate	table,	the	index	that	it	supports	will	be	used.)

If	the	set	of	columns	in	the	Buffer	table	doesn't	match	the	set	of	columns	in	a	subordinate	table,	a	subset	of	columns	that

exist	in	both	tables	is	inserted.

If	the	types	don't	match	for	one	of	the	columns	in	the	Buffer	table	and	a	subordinate	table,	an	error	message	is	entered	in

the	server	log	and	the	buffer	is	cleared.	The	same	thing	happens	if	the	subordinate	table	doesn't	exist	when	the	buffer	is

flushed.

If	you	need	to	run	ALTER	for	a	subordinate	table	and	the	Buffer	table,	we	recommend	first	deleting	the	Buffer	table,

running	ALTER	for	the	subordinate	table,	then	creating	the	Buffer	table	again.

If	the	server	is	restarted	abnormally,	the	data	in	the	buffer	is	lost.

PREWHERE,	FINAL	and	SAMPLE	do	not	work	correctly	for	Buffer	tables.	These	conditions	are	passed	to	the	destination

table,	but	are	not	used	for	processing	data	in	the	buffer.	Because	of	this,	we	recommend	only	using	the	Buffer	table	for

writing,	while	reading	from	the	destination	table.

When	adding	data	to	a	Buffer,	one	of	the	buffers	is	locked.	This	causes	delays	if	a	read	operation	is	simultaneously	being

performed	from	the	table.

Data	that	is	inserted	to	a	Buffer	table	may	end	up	in	the	subordinate	table	in	a	different	order	and	in	different	blocks.

Because	of	this,	a	Buffer	table	is	difficult	to	use	for	writing	to	a	CollapsingMergeTree	correctly.	To	avoid	problems,	you	can

set	'num_layers'	to	1.

If	the	destination	table	is	replicated,	some	expected	characteristics	of	replicated	tables	are	lost	when	writing	to	a	Buffer

table.	The	random	changes	to	the	order	of	rows	and	sizes	of	data	parts	cause	data	deduplication	to	quit	working,	which

means	it	is	not	possible	to	have	a	reliable	'exactly	once'	write	to	replicated	tables.

Due	to	these	disadvantages,	we	can	only	recommend	using	a	Buffer	table	in	rare	cases.

A	Buffer	table	is	used	when	too	many	INSERTs	are	received	from	a	large	number	of	servers	over	a	unit	of	time	and	data

can't	be	buffered	before	insertion,	which	means	the	INSERTs	can't	run	fast	enough.

Note	that	it	doesn't	make	sense	to	insert	data	one	row	at	a	time,	even	for	Buffer	tables.	This	will	only	produce	a	speed	of	a

few	thousand	rows	per	second,	while	inserting	larger	blocks	of	data	can	produce	over	a	million	rows	per	second	(see	the

section	"Performance").

[]

External	Data	for	Query	Processing

ClickHouse	allows	sending	a	server	the	data	that	is	needed	for	processing	a	query,	together	with	a	SELECT	query.	This	data

is	put	in	a	temporary	table	(see	the	section	"Temporary	tables")	and	can	be	used	in	the	query	(for	example,	in	IN	operators).

For	example,	if	you	have	a	text	file	with	important	user	identifiers,	you	can	upload	it	to	the	server	along	with	a	query	that

uses	filtration	by	this	list.

If	you	need	to	run	more	than	one	query	with	a	large	volume	of	external	data,	don't	use	this	feature.	It	is	better	to	upload	the

data	to	the	DB	ahead	of	time.



External	data	can	be	uploaded	using	the	command-line	client	(in	non-interactive	mode),	or	using	the	HTTP	interface.

In	the	command-line	client,	you	can	specify	a	parameters	section	in	the	format

You	may	have	multiple	sections	like	this,	for	the	number	of	tables	being	transmitted.

--external	–	Marks	the	beginning	of	a	clause.	--file 	–	Path	to	the	file	with	the	table	dump,	or	-,	which	refers	to	stdin.	Only	a
single	table	can	be	retrieved	from	stdin.

The	following	parameters	are	optional:	--name–	Name	of	the	table.	If	omitted,	_data	is	used.	--format	–	Data	format	in	the
file.	If	omitted,	TabSeparated	is	used.

One	of	the	following	parameters	is	required:--types	–	A	list	of	comma-separated	column	types.	For	example:	
UInt64,String .	The	columns	will	be	named	_1,	_2,	...	--structure–	The	table	structure	in	the	formatUserID	UInt64 ,	 URL	
String .	Defines	the	column	names	and	types.

The	files	specified	in	'file'	will	be	parsed	by	the	format	specified	in	'format',	using	the	data	types	specified	in	'types'	or

'structure'.	The	table	will	be	uploaded	to	the	server	and	accessible	there	as	a	temporary	table	with	the	name	in	'name'.

Examples:

When	using	the	HTTP	interface,	external	data	is	passed	in	the	multipart/form-data	format.	Each	table	is	transmitted	as	a

separate	file.	The	table	name	is	taken	from	the	file	name.	The	'query_string'	is	passed	the	parameters	'name_format',

'name_types',	and	'name_structure',	where	'name'	is	the	name	of	the	table	that	these	parameters	correspond	to.	The

meaning	of	the	parameters	is	the	same	as	when	using	the	command-line	client.

Example:

For	distributed	query	processing,	the	temporary	tables	are	sent	to	all	the	remote	servers.

[]

Distributed

The	Distributed	engine	does	not	store	data	itself,	but	allows	distributed	query	processing	on	multiple	servers.	Reading	is
automatically	parallelized.	During	a	read,	the	table	indexes	on	remote	servers	are	used,	if	there	are	any.	The	Distributed

--external --file=... [--name=...] [--format=...] [--types=...|--structure=...]

echo -ne "1\n2\n3\n" | clickhouse-client --query="SELECT count() FROM test.visits WHERE TraficSourceID IN 
_data" --external --file=- --types=Int8
849897
cat /etc/passwd | sed 's/:/\t/g' | clickhouse-client --query="SELECT shell, count() AS c FROM passwd GROUP BY 
shell ORDER BY c DESC" --external --file=- --name=passwd --structure='login String, unused String, uid 
UInt16, gid UInt16, comment String, home String, shell String'
/bin/sh 20
/bin/false      5
/bin/bash       4
/usr/sbin/nologin       1
/bin/sync       1

cat /etc/passwd | sed 's/:/\t/g' > passwd.tsv

curl -F 'passwd=@passwd.tsv;' 'http://localhost:8123/?
query=SELECT+shell,+count()+AS+c+FROM+passwd+GROUP+BY+shell+ORDER+BY+c+DESC&passwd_structure=login+String,+unused+String,+uid+UInt16,+gid+UInt16,+comment+String,+home+String,+shell+String'

/bin/sh 20
/bin/false      5
/bin/bash       4
/usr/sbin/nologin       1
/bin/sync       1



engine	accepts	parameters:	the	cluster	name	in	the	server's	config	file,	the	name	of	a	remote	database,	the	name	of	a

remote	table,	and	(optionally)	a	sharding	key.	Example:

Data	will	be	read	from	all	servers	in	the	'logs'	cluster,	from	the	default.hits	table	located	on	every	server	in	the	cluster.	Data

is	not	only	read,	but	is	partially	processed	on	the	remote	servers	(to	the	extent	that	this	is	possible).	For	example,	for	a

query	with	GROUP	BY,	data	will	be	aggregated	on	remote	servers,	and	the	intermediate	states	of	aggregate	functions	will

be	sent	to	the	requestor	server.	Then	data	will	be	further	aggregated.

Instead	of	the	database	name,	you	can	use	a	constant	expression	that	returns	a	string.	For	example:	currentDatabase().

logs	–	The	cluster	name	in	the	server's	config	file.

Clusters	are	set	like	this:

Here	a	cluster	is	defined	with	the	name	'logs'	that	consists	of	two	shards,	each	of	which	contains	two	replicas.	Shards	refer

to	the	servers	that	contain	different	parts	of	the	data	(in	order	to	read	all	the	data,	you	must	access	all	the	shards).	Replicas

are	duplicating	servers	(in	order	to	read	all	the	data,	you	can	access	the	data	on	any	one	of	the	replicas).

Cluster	names	must	not	contain	dots.

The	parameters	 host ,	 port ,	and	optionally	 user ,	 password ,	 secure ,	 compression 	are	specified	for	each	server:

host 	–	The	address	of	the	remote	server.	You	can	use	either	the	domain	or	the	IPv4	or	IPv6	address.	If	you	specify

the	domain,	the	server	makes	a	DNS	request	when	it	starts,	and	the	result	is	stored	as	long	as	the	server	is	running.

If	the	DNS	request	fails,	the	server	doesn't	start.	If	you	change	the	DNS	record,	restart	the	server.

port –	The	TCP	port	for	messenger	activity	('tcp_port'	in	the	config,	usually	set	to	9000).	Do	not	confuse	it	with

http_port.

user –	Name	of	the	user	for	connecting	to	a	remote	server.	Default	value:	default.	This	user	must	have	access	to

connect	to	the	specified	server.	Access	is	configured	in	the	users.xml	file.	For	more	information,	see	the	section

Distributed(logs, default, hits[, sharding_key])

<remote_servers>
    <logs>
        <shard>
            <!-- Optional. Shard weight when writing data. Default: 1. -->
            <weight>1</weight>
            <!-- Optional. Whether to write data to just one of the replicas. Default: false (write data to 
all replicas). -->
            <internal_replication>false</internal_replication>
            <replica>
                <host>example01-01-1</host>
                <port>9000</port>
            </replica>
            <replica>
                <host>example01-01-2</host>
                <port>9000</port>
            </replica>
        </shard>
        <shard>
            <weight>2</weight>
            <internal_replication>false</internal_replication>
            <replica>
                <host>example01-02-1</host>
                <port>9000</port>
            </replica>
            <replica>
                <host>example01-02-2</host>
                <secure>1</secure>
                <port>9440</port>
            </replica>
        </shard>
    </logs>
</remote_servers>



"Access	rights".

password 	–	The	password	for	connecting	to	a	remote	server	(not	masked).	Default	value:	empty	string.

secure 	-	Use	ssl	for	connection,	usually	you	also	should	define	port 	=	9440.	Server	should	listen	on	9440	and

have	correct	certificates.

compression 	-	Use	data	compression.	Default	value:	true.

When	specifying	replicas,	one	of	the	available	replicas	will	be	selected	for	each	of	the	shards	when	reading.	You	can

configure	the	algorithm	for	load	balancing	(the	preference	for	which	replica	to	access)	–	see	the	'load_balancing'	setting.	If

the	connection	with	the	server	is	not	established,	there	will	be	an	attempt	to	connect	with	a	short	timeout.	If	the

connection	failed,	the	next	replica	will	be	selected,	and	so	on	for	all	the	replicas.	If	the	connection	attempt	failed	for	all	the

replicas,	the	attempt	will	be	repeated	the	same	way,	several	times.	This	works	in	favor	of	resiliency,	but	does	not	provide

complete	fault	tolerance:	a	remote	server	might	accept	the	connection,	but	might	not	work,	or	work	poorly.

You	can	specify	just	one	of	the	shards	(in	this	case,	query	processing	should	be	called	remote,	rather	than	distributed)	or

up	to	any	number	of	shards.	In	each	shard,	you	can	specify	from	one	to	any	number	of	replicas.	You	can	specify	a	different

number	of	replicas	for	each	shard.

You	can	specify	as	many	clusters	as	you	wish	in	the	configuration.

To	view	your	clusters,	use	the	'system.clusters'	table.

The	Distributed	engine	allows	working	with	a	cluster	like	a	local	server.	However,	the	cluster	is	inextensible:	you	must	write

its	configuration	in	the	server	config	file	(even	better,	for	all	the	cluster's	servers).

There	is	no	support	for	Distributed	tables	that	look	at	other	Distributed	tables	(except	in	cases	when	a	Distributed	table

only	has	one	shard).	As	an	alternative,	make	the	Distributed	table	look	at	the	"final"	tables.

The	Distributed	engine	requires	writing	clusters	to	the	config	file.	Clusters	from	the	config	file	are	updated	on	the	fly,

without	restarting	the	server.	If	you	need	to	send	a	query	to	an	unknown	set	of	shards	and	replicas	each	time,	you	don't

need	to	create	a	Distributed	table	–	use	the	'remote'	table	function	instead.	See	the	section	"Table	functions".

There	are	two	methods	for	writing	data	to	a	cluster:

First,	you	can	define	which	servers	to	write	which	data	to,	and	perform	the	write	directly	on	each	shard.	In	other	words,

perform	INSERT	in	the	tables	that	the	distributed	table	"looks	at".	This	is	the	most	flexible	solution	–	you	can	use	any

sharding	scheme,	which	could	be	non-trivial	due	to	the	requirements	of	the	subject	area.	This	is	also	the	most	optimal

solution,	since	data	can	be	written	to	different	shards	completely	independently.

Second,	you	can	perform	INSERT	in	a	Distributed	table.	In	this	case,	the	table	will	distribute	the	inserted	data	across

servers	itself.	In	order	to	write	to	a	Distributed	table,	it	must	have	a	sharding	key	set	(the	last	parameter).	In	addition,	if

there	is	only	one	shard,	the	write	operation	works	without	specifying	the	sharding	key,	since	it	doesn't	have	any	meaning	in

this	case.

Each	shard	can	have	a	weight	defined	in	the	config	file.	By	default,	the	weight	is	equal	to	one.	Data	is	distributed	across

shards	in	the	amount	proportional	to	the	shard	weight.	For	example,	if	there	are	two	shards	and	the	first	has	a	weight	of	9

while	the	second	has	a	weight	of	10,	the	first	will	be	sent	9	/	19	parts	of	the	rows,	and	the	second	will	be	sent	10	/	19.

Each	shard	can	have	the	'internal_replication'	parameter	defined	in	the	config	file.

If	this	parameter	is	set	to	'true',	the	write	operation	selects	the	first	healthy	replica	and	writes	data	to	it.	Use	this	alternative

if	the	Distributed	table	"looks	at"	replicated	tables.	In	other	words,	if	the	table	where	data	will	be	written	is	going	to

replicate	them	itself.

If	it	is	set	to	'false'	(the	default),	data	is	written	to	all	replicas.	In	essence,	this	means	that	the	Distributed	table	replicates

data	itself.	This	is	worse	than	using	replicated	tables,	because	the	consistency	of	replicas	is	not	checked,	and	over	time

they	will	contain	slightly	different	data.

To	select	the	shard	that	a	row	of	data	is	sent	to,	the	sharding	expression	is	analyzed,	and	its	remainder	is	taken	from



dividing	it	by	the	total	weight	of	the	shards.	The	row	is	sent	to	the	shard	that	corresponds	to	the	half-interval	of	the

remainders	from	'prev_weight'	to	'prev_weights	+	weight',	where	'prev_weights'	is	the	total	weight	of	the	shards	with	the

smallest	number,	and	'weight'	is	the	weight	of	this	shard.	For	example,	if	there	are	two	shards,	and	the	first	has	a	weight	of

9	while	the	second	has	a	weight	of	10,	the	row	will	be	sent	to	the	first	shard	for	the	remainders	from	the	range	[0,	9),	and	to

the	second	for	the	remainders	from	the	range	[9,	19).

The	sharding	expression	can	be	any	expression	from	constants	and	table	columns	that	returns	an	integer.	For	example,

you	can	use	the	expression	'rand()'	for	random	distribution	of	data,	or	'UserID'	for	distribution	by	the	remainder	from

dividing	the	user's	ID	(then	the	data	of	a	single	user	will	reside	on	a	single	shard,	which	simplifies	running	IN	and	JOIN	by

users).	If	one	of	the	columns	is	not	distributed	evenly	enough,	you	can	wrap	it	in	a	hash	function:	intHash64(UserID).

A	simple	remainder	from	division	is	a	limited	solution	for	sharding	and	isn't	always	appropriate.	It	works	for	medium	and

large	volumes	of	data	(dozens	of	servers),	but	not	for	very	large	volumes	of	data	(hundreds	of	servers	or	more).	In	the	latter

case,	use	the	sharding	scheme	required	by	the	subject	area,	rather	than	using	entries	in	Distributed	tables.

SELECT	queries	are	sent	to	all	the	shards,	and	work	regardless	of	how	data	is	distributed	across	the	shards	(they	can	be

distributed	completely	randomly).	When	you	add	a	new	shard,	you	don't	have	to	transfer	the	old	data	to	it.	You	can	write

new	data	with	a	heavier	weight	–	the	data	will	be	distributed	slightly	unevenly,	but	queries	will	work	correctly	and

efficiently.

You	should	be	concerned	about	the	sharding	scheme	in	the	following	cases:

Queries	are	used	that	require	joining	data	(IN	or	JOIN)	by	a	specific	key.	If	data	is	sharded	by	this	key,	you	can	use	local

IN	or	JOIN	instead	of	GLOBAL	IN	or	GLOBAL	JOIN,	which	is	much	more	efficient.

A	large	number	of	servers	is	used	(hundreds	or	more)	with	a	large	number	of	small	queries	(queries	of	individual	clients

-	websites,	advertisers,	or	partners).	In	order	for	the	small	queries	to	not	affect	the	entire	cluster,	it	makes	sense	to

locate	data	for	a	single	client	on	a	single	shard.	Alternatively,	as	we've	done	in	Yandex.Metrica,	you	can	set	up	bi-level

sharding:	divide	the	entire	cluster	into	"layers",	where	a	layer	may	consist	of	multiple	shards.	Data	for	a	single	client	is

located	on	a	single	layer,	but	shards	can	be	added	to	a	layer	as	necessary,	and	data	is	randomly	distributed	within

them.	Distributed	tables	are	created	for	each	layer,	and	a	single	shared	distributed	table	is	created	for	global	queries.

Data	is	written	asynchronously.	For	an	INSERT	to	a	Distributed	table,	the	data	block	is	just	written	to	the	local	file	system.

The	data	is	sent	to	the	remote	servers	in	the	background	as	soon	as	possible.	You	should	check	whether	data	is	sent

successfully	by	checking	the	list	of	files	(data	waiting	to	be	sent)	in	the	table	directory:

/var/lib/clickhouse/data/database/table/.

If	the	server	ceased	to	exist	or	had	a	rough	restart	(for	example,	after	a	device	failure)	after	an	INSERT	to	a	Distributed

table,	the	inserted	data	might	be	lost.	If	a	damaged	data	part	is	detected	in	the	table	directory,	it	is	transferred	to	the

'broken'	subdirectory	and	no	longer	used.

When	the	max_parallel_replicas	option	is	enabled,	query	processing	is	parallelized	across	all	replicas	within	a	single	shard.

For	more	information,	see	the	section	"Settings,	max_parallel_replicas".

[]

Dictionary

The	 Dictionary 	engine	displays	the	dictionary	[#dicts-external_dicts]	data	as	a	ClickHouse	table.

As	an	example,	consider	a	dictionary	of	 products 	with	the	following	configuration:



Query	the	dictionary	data:

You	can	use	the	dictGet*	[#ext_dict_functions]	function	to	get	the	dictionary	data	in	this	format.

This	view	isn't	helpful	when	you	need	to	get	raw	data,	or	when	performing	a	JOIN 	operation.	For	these	cases,	you	can	use

the	 Dictionary 	engine,	which	displays	the	dictionary	data	in	a	table.

Syntax:

Usage	example:

<dictionaries>
<dictionary>
        <name>products</name>
        <source>
            <odbc>
                <table>products</table>
                <connection_string>DSN=some-db-server</connection_string>
            </odbc>
        </source>
        <lifetime>
            <min>300</min>
            <max>360</max>
        </lifetime>
        <layout>
            <flat/>
        </layout>
        <structure>
            <id>
                <name>product_id</name>
            </id>
            <attribute>
                <name>title</name>
                <type>String</type>
                <null_value></null_value>
            </attribute>
        </structure>
</dictionary>
</dictionaries>

select name, type, key, attribute.names, attribute.types, bytes_allocated, element_count,source from 
system.dictionaries where name = 'products';                     

SELECT
    name,
    type,
    key,
    attribute.names,
    attribute.types,
    bytes_allocated,
    element_count,
    source
FROM system.dictionaries
WHERE name = 'products'

┌─name─────┬─type─┬─key────┬─attribute.names─┬─attribute.types─┬─bytes_allocated─┬─element_count─┬─source──────────┐

│ products │ Flat │ UInt64 │ ['title']       │ ['String']      │        23065376 │        175032 │ ODBC: 
.products │
└──────────┴──────┴────────┴─────────────────┴─────────────────┴─────────────────┴───────────────┴─────────────────┘

CREATE TABLE %table_name% (%fields%) engine = Dictionary(%dictionary_name%)`



Take	a	look	at	what's	in	the	table.

Merge

The	 Merge 	engine	(not	to	be	confused	with	 MergeTree )	does	not	store	data	itself,	but	allows	reading	from	any	number	of

other	tables	simultaneously.	Reading	is	automatically	parallelized.	Writing	to	a	table	is	not	supported.	When	reading,	the

indexes	of	tables	that	are	actually	being	read	are	used,	if	they	exist.	The	 Merge 	engine	accepts	parameters:	the	database

name	and	a	regular	expression	for	tables.

Example:

Data	will	be	read	from	the	tables	in	the	 hits 	database	that	have	names	that	match	the	regular	expression	' ^WatchLog '.

Instead	of	the	database	name,	you	can	use	a	constant	expression	that	returns	a	string.	For	example,	currentDatabase() .

Regular	expressions	—	re2	[https://github.com/google/re2]	(supports	a	subset	of	PCRE),	case-sensitive.	See	the	notes

about	escaping	symbols	in	regular	expressions	in	the	"match"	section.

When	selecting	tables	to	read,	the	 Merge 	table	itself	will	not	be	selected,	even	if	it	matches	the	regex.	This	is	to	avoid

loops.	It	is	possible	to	create	two	 Merge 	tables	that	will	endlessly	try	to	read	each	others'	data,	but	this	is	not	a	good	idea.

The	typical	way	to	use	the	Merge 	engine	is	for	working	with	a	large	number	of	 TinyLog 	tables	as	if	with	a	single	table.

Example	2:

Let's	say	you	have	a	old	table	(WatchLog_old)	and	decided	to	change	partitioning	without	moving	data	to	a	new	table

(WatchLog_new)	and	you	need	to	see	data	from	both	tables.

create table products (product_id UInt64, title String) Engine = Dictionary(products);

CREATE TABLE products
(
    product_id UInt64,
    title String,
)
ENGINE = Dictionary(products)

Ok.

0 rows in set. Elapsed: 0.004 sec.

select * from products limit 1;

SELECT *
FROM products
LIMIT 1

┌────product_id─┬─title───────────┐
│        152689 │ Some item       │
└───────────────┴─────────────────┘

1 rows in set. Elapsed: 0.006 sec.

Merge(hits, '^WatchLog')

https://github.com/google/re2


Virtual	Columns

Virtual	columns	are	columns	that	are	provided	by	the	table	engine,	regardless	of	the	table	definition.	In	other	words,	these

columns	are	not	specified	in	 CREATE	TABLE ,	but	they	are	accessible	for	 SELECT .

Virtual	columns	differ	from	normal	columns	in	the	following	ways:

They	are	not	specified	in	table	definitions.

Data	can't	be	added	to	them	with	INSERT .

When	using	 INSERT 	without	specifying	the	list	of	columns,	virtual	columns	are	ignored.

They	are	not	selected	when	using	the	asterisk	( SELECT	* ).

Virtual	columns	are	not	shown	in	 SHOW	CREATE	TABLE 	and	 DESC	TABLE 	queries.

The	 Merge 	type	table	contains	a	virtual	_table 	column	of	the	 String 	type.	(If	the	table	already	has	a	_table 	column,	the

virtual	column	is	called	 _table1 ;	if	you	already	have	 _table1 ,	it's	called	 _table2 ,	and	so	on.)	It	contains	the	name	of	the

table	that	data	was	read	from.

If	the	 WHERE/PREWHERE 	clause	contains	conditions	for	the	 _table 	column	that	do	not	depend	on	other	table	columns	(as

one	of	the	conjunction	elements,	or	as	an	entire	expression),	these	conditions	are	used	as	an	index.	The	conditions	are

performed	on	a	data	set	of	table	names	to	read	data	from,	and	the	read	operation	will	be	performed	from	only	those

tables	that	the	condition	was	triggered	on.

[]

File(InputFormat)

The	data	source	is	a	file	that	stores	data	in	one	of	the	supported	input	formats	(TabSeparated,	Native,	etc.).

Usage	examples:

Data	export	from	ClickHouse	to	file.

Convert	data	from	one	format	to	another.

Updating	data	in	ClickHouse	via	editing	a	file	on	a	disk.

Usage	in	ClickHouse	Server

CREATE TABLE WatchLog_old(date Date, UserId Int64, EventType String, Cnt UInt64) 
ENGINE=MergeTree(date, (UserId, EventType), 8192);
INSERT INTO WatchLog_old VALUES ('2018-01-01', 1, 'hit', 3);

CREATE TABLE WatchLog_new(date Date, UserId Int64, EventType String, Cnt UInt64) 
ENGINE=MergeTree PARTITION BY date ORDER BY (UserId, EventType) SETTINGS index_granularity=8192;
INSERT INTO WatchLog_new VALUES ('2018-01-02', 2, 'hit', 3);

CREATE TABLE WatchLog as WatchLog_old ENGINE=Merge(currentDatabase(), '^WatchLog');

SELECT *
FROM WatchLog

┌───────date─┬─UserId─┬─EventType─┬─Cnt─┐
│ 2018-01-01 │      1 │ hit       │   3 │
└────────────┴────────┴───────────┴─────┘
┌───────date─┬─UserId─┬─EventType─┬─Cnt─┐
│ 2018-01-02 │      2 │ hit       │   3 │
└────────────┴────────┴───────────┴─────┘

File(Format)



Format 	should	be	supported	for	either	INSERT 	and	 SELECT .	For	the	full	list	of	supported	formats	see	Formats	[#formats].

ClickHouse	does	not	allow	to	specify	filesystem	path	for File .	It	will	use	folder	defined	by	path	[#server_settings-path]

setting	in	server	configuration.

When	creating	table	using	 File(Format) 	it	creates	empty	subdirectory	in	that	folder.	When	data	is	written	to	that	table,

it's	put	into	 data.Format 	file	in	that	subdirectory.

You	may	manually	create	this	subfolder	and	file	in	server	filesystem	and	then	ATTACH	[#queries-attach]	it	to	table

information	with	matching	name,	so	you	can	query	data	from	that	file.

Example:

1.	Set	up	the	 file_engine_table 	table:

By	default	ClickHouse	will	create	folder	 /var/lib/clickhouse/data/default/file_engine_table .

2.	Manually	create	 /var/lib/clickhouse/data/default/file_engine_table/data.TabSeparated 	containing:

3.	Query	the	data:

Usage	in	Clickhouse-local

In	clickhouse-local	[#utils-clickhouse-local]	File	engine	accepts	file	path	in	addition	to	Format .	Default	input/output

streams	can	be	specified	using	numeric	or	human-readable	names	like	 0 	or	 stdin ,	 1 	or	 stdout .

Example:

Details	of	Implementation

Reads	can	be	parallel,	but	not	writes

Not	supported:

ALTER

SELECT	...	SAMPLE

Indices

Warning

Be	careful	with	this	funcionality,	because	ClickHouse	does	not	keep	track	of	external	changes	to	such	files.	The	result	of	simultaneous	writes	via

ClickHouse	and	outside	of	ClickHouse	is	undefined.



CREATE TABLE file_engine_table (name String, value UInt32) ENGINE=File(TabSeparated)

$ cat data.TabSeparated
one 1
two 2

SELECT * FROM file_engine_table

┌─name─┬─value─┐
│ one  │     1 │
│ two  │     2 │
└──────┴───────┘

$ echo -e "1,2\n3,4" | clickhouse-local -q "CREATE TABLE table (a Int64, b Int64) ENGINE = File(CSV, stdin); 
SELECT a, b FROM table; DROP TABLE table"



Replication

Null

When	writing	to	a	Null	table,	data	is	ignored.	When	reading	from	a	Null	table,	the	response	is	empty.

However,	you	can	create	a	materialized	view	on	a	Null	table.	So	the	data	written	to	the	table	will	end	up	in	the	view.

Set

A	data	set	that	is	always	in	RAM.	It	is	intended	for	use	on	the	right	side	of	the	IN	operator	(see	the	section	"IN	operators").

You	can	use	INSERT	to	insert	data	in	the	table.	New	elements	will	be	added	to	the	data	set,	while	duplicates	will	be	ignored.

But	you	can't	perform	SELECT	from	the	table.	The	only	way	to	retrieve	data	is	by	using	it	in	the	right	half	of	the	IN	operator.

Data	is	always	located	in	RAM.	For	INSERT,	the	blocks	of	inserted	data	are	also	written	to	the	directory	of	tables	on	the

disk.	When	starting	the	server,	this	data	is	loaded	to	RAM.	In	other	words,	after	restarting,	the	data	remains	in	place.

For	a	rough	server	restart,	the	block	of	data	on	the	disk	might	be	lost	or	damaged.	In	the	latter	case,	you	may	need	to

manually	delete	the	file	with	damaged	data.

Join

A	prepared	data	structure	for	JOIN	that	is	always	located	in	RAM.

Engine	parameters:	 ANY|ALL 	–	strictness;	 LEFT|INNER 	–	type.	These	parameters	are	set	without	quotes	and	must	match

the	JOIN	that	the	table	will	be	used	for.	k1,	k2,	...	are	the	key	columns	from	the	USING	clause	that	the	join	will	be	made	on.

The	table	can't	be	used	for	GLOBAL	JOINs.

You	can	use	INSERT	to	add	data	to	the	table,	similar	to	the	Set	engine.	For	ANY,	data	for	duplicated	keys	will	be	ignored.

For	ALL,	it	will	be	counted.	You	can't	perform	SELECT	directly	from	the	table.	The	only	way	to	retrieve	data	is	to	use	it	as

the	"right-hand"	table	for	JOIN.

Storing	data	on	the	disk	is	the	same	as	for	the	Set	engine.

[]

URL(URL,	Format)

Manages	data	on	a	remote	HTTP/HTTPS	server.	This	engine	is	similar	to	the	File	[#]	engine.

Using	the	engine	in	the	ClickHouse	server

The	format 	must	be	one	that	ClickHouse	can	use	in	SELECT 	queries	and,	if	necessary,	in	 INSERTs .	For	the	full	list	of

supported	formats,	see	Formats	[#formats].

The	URL 	must	conform	to	the	structure	of	a	Uniform	Resource	Locator.	The	specified	URL	must	point	to	a	server	that

uses	HTTP	or	HTTPS.	This	does	not	require	any	additional	headers	for	getting	a	response	from	the	server.

INSERT 	and	 SELECT 	queries	are	transformed	to	 POST 	and	 GET 	requests,	respectively.	For	processing	 POST 	requests,	the

remote	server	must	support	Chunked	transfer	encoding	[https://en.wikipedia.org/wiki/Chunked_transfer_encoding].

Join(ANY|ALL, LEFT|INNER, k1[, k2, ...])

https://en.wikipedia.org/wiki/Chunked_transfer_encoding


Example:

1.	Create	a	 url_engine_table 	table	on	the	server	:

2.	Create	a	basic	HTTP	server	using	the	standard	Python	3	tools	and	start	it:

3.	Request	data:

Details	of	Implementation

Reads	and	writes	can	be	parallel

Not	supported:

ALTER 	and	 SELECT...SAMPLE 	operations.

Indexes.

Replication.

View

Used	for	implementing	views	(for	more	information,	see	the	 CREATE	VIEW	query ).	It	does	not	store	data,	but	only	stores

the	specified	 SELECT 	query.	When	reading	from	a	table,	it	runs	this	query	(and	deletes	all	unnecessary	columns	from	the

query).

MaterializedView

Used	for	implementing	materialized	views	(for	more	information,	see	CREATE	TABLE	[#query_language-queries-

create_table]).	For	storing	data,	it	uses	a	different	engine	that	was	specified	when	creating	the	view.	When	reading	from	a

table,	it	just	uses	this	engine.

CREATE TABLE url_engine_table (word String, value UInt64)
ENGINE=URL('http://127.0.0.1:12345/', CSV)

from http.server import BaseHTTPRequestHandler, HTTPServer

class CSVHTTPServer(BaseHTTPRequestHandler):
    def do_GET(self):
        self.send_response(200)
        self.send_header('Content-type', 'text/csv')
        self.end_headers()

        self.wfile.write(bytes('Hello,1\nWorld,2\n', "utf-8"))

if __name__ == "__main__":
    server_address = ('127.0.0.1', 12345)
    HTTPServer(server_address, CSVHTTPServer).serve_forever()

python3 server.py

SELECT * FROM url_engine_table

┌─word──┬─value─┐
│ Hello │     1 │
│ World │     2 │
└───────┴───────┘



Kafka

This	engine	works	with	Apache	Kafka	[http://kafka.apache.org/].

Kafka	lets	you:

Publish	or	subscribe	to	data	flows.

Organize	fault-tolerant	storage.

Process	streams	as	they	become	available.

Old	format:

New	format:

Required	parameters:

kafka_broker_list 	–	A	comma-separated	list	of	brokers	( localhost:9092 ).

kafka_topic_list 	–	A	list	of	Kafka	topics	( my_topic ).

kafka_group_name 	–	A	group	of	Kafka	consumers	( group1 ).	Reading	margins	are	tracked	for	each	group	separately.	If

you	don't	want	messages	to	be	duplicated	in	the	cluster,	use	the	same	group	name	everywhere.

kafka_format 	–	Message	format.	Uses	the	same	notation	as	the	SQL	FORMAT 	function,	such	as	 JSONEachRow .	For

more	information,	see	the	"Formats"	section.

Optional	parameters:

kafka_row_delimiter 	-	Character-delimiter	of	records	(rows),	which	ends	the	message.

kafka_schema 	–	An	optional	parameter	that	must	be	used	if	the	format	requires	a	schema	definition.	For	example,

Cap'n	Proto	[https://capnproto.org/]	requires	the	path	to	the	schema	file	and	the	name	of	the	root	

schema.capnp:Message 	object.

kafka_num_consumers 	–	The	number	of	consumers	per	table.	Default:	1 .	Specify	more	consumers	if	the	throughput

of	one	consumer	is	insufficient.	The	total	number	of	consumers	should	not	exceed	the	number	of	partitions	in	the

topic,	since	only	one	consumer	can	be	assigned	per	partition.

Examples:

Kafka(kafka_broker_list, kafka_topic_list, kafka_group_name, kafka_format
      [, kafka_row_delimiter, kafka_schema, kafka_num_consumers])

Kafka SETTINGS
  kafka_broker_list = 'localhost:9092',
  kafka_topic_list = 'topic1,topic2',
  kafka_group_name = 'group1',
  kafka_format = 'JSONEachRow',
  kafka_row_delimiter = '\n'
  kafka_schema = '',
  kafka_num_consumers = 2

http://kafka.apache.org/
https://capnproto.org/


The	delivered	messages	are	tracked	automatically,	so	each	message	in	a	group	is	only	counted	once.	If	you	want	to	get	the

data	twice,	then	create	a	copy	of	the	table	with	another	group	name.

Groups	are	flexible	and	synced	on	the	cluster.	For	instance,	if	you	have	10	topics	and	5	copies	of	a	table	in	a	cluster,	then

each	copy	gets	2	topics.	If	the	number	of	copies	changes,	the	topics	are	redistributed	across	the	copies	automatically.	Read

more	about	this	at	http://kafka.apache.org/intro	[http://kafka.apache.org/intro].

SELECT 	is	not	particularly	useful	for	reading	messages	(except	for	debugging),	because	each	message	can	be	read	only

once.	It	is	more	practical	to	create	real-time	threads	using	materialized	views.	To	do	this:

1.	 Use	the	engine	to	create	a	Kafka	consumer	and	consider	it	a	data	stream.

2.	 Create	a	table	with	the	desired	structure.

3.	 Create	a	materialized	view	that	converts	data	from	the	engine	and	puts	it	into	a	previously	created	table.

When	the	 MATERIALIZED	VIEW 	joins	the	engine,	it	starts	collecting	data	in	the	background.	This	allows	you	to	continually

receive	messages	from	Kafka	and	convert	them	to	the	required	format	using	 SELECT

Example:

To	improve	performance,	received	messages	are	grouped	into	blocks	the	size	of	max_insert_block_size	[#settings-

settings-max_insert_block_size].	If	the	block	wasn't	formed	within	stream_flush_interval_ms	[#settings-

  CREATE TABLE queue (
    timestamp UInt64,
    level String,
    message String
  ) ENGINE = Kafka('localhost:9092', 'topic', 'group1', 'JSONEachRow');

  SELECT * FROM queue LIMIT 5;

  CREATE TABLE queue2 (
    timestamp UInt64,
    level String,
    message String
  ) ENGINE = Kafka SETTINGS kafka_broker_list = 'localhost:9092',
                            kafka_topic_list = 'topic',
                            kafka_group_name = 'group1',
                            kafka_format = 'JSONEachRow',
                            kafka_num_consumers = 4;

  CREATE TABLE queue2 (
    timestamp UInt64,
    level String,
    message String
  ) ENGINE = Kafka('localhost:9092', 'topic', 'group1')
              SETTINGS kafka_format = 'JSONEachRow',
                       kafka_num_consumers = 4;

  CREATE TABLE queue (
    timestamp UInt64,
    level String,
    message String
  ) ENGINE = Kafka('localhost:9092', 'topic', 'group1', 'JSONEachRow');

  CREATE TABLE daily (
    day Date,
    level String,
    total UInt64
  ) ENGINE = SummingMergeTree(day, (day, level), 8192);

  CREATE MATERIALIZED VIEW consumer TO daily
    AS SELECT toDate(toDateTime(timestamp)) AS day, level, count() as total
    FROM queue GROUP BY day, level;

  SELECT level, sum(total) FROM daily GROUP BY level;

http://kafka.apache.org/intro


settings_stream_flush_interval_ms]	milliseconds,	the	data	will	be	flushed	to	the	table	regardless	of	the	completeness	of

the	block.

To	stop	receiving	topic	data	or	to	change	the	conversion	logic,	detach	the	materialized	view:

If	you	want	to	change	the	target	table	by	using	ALTER ,	we	recommend	disabling	the	material	view	to	avoid	discrepancies

between	the	target	table	and	the	data	from	the	view.

Configuration

Similar	to	GraphiteMergeTree,	the	Kafka	engine	supports	extended	configuration	using	the	ClickHouse	config	file.	There

are	two	configuration	keys	that	you	can	use:	global	( kafka )	and	topic-level	( kafka_* ).	The	global	configuration	is	applied

first,	and	then	the	topic-level	configuration	is	applied	(if	it	exists).

For	a	list	of	possible	configuration	options,	see	the	librdkafka	configuration	reference

[https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md].	Use	the	underscore	( _ )	instead	of	a	dot	in

the	ClickHouse	configuration.	For	example,	 check.crcs=true 	will	be	 <check_crcs>true</check_crcs> .

[]

MySQL

The	MySQL	engine	allows	you	to	perform	 SELECT 	queries	on	data	that	is	stored	on	a	remote	MySQL	server.

Call	format:

Call	parameters

host:port 	—	Address	of	the	MySQL	server.

database 	—	Database	name	on	the	MySQL	server.

table 	—	Name	of	the	table.

user 	—	The	MySQL	User.

password 	—	User	password.

replace_query 	—	Flag	that	sets	query	substitution	 INSERT	INTO 	to	 REPLACE	INTO .	If	 replace_query=1 ,	the	query

is	replaced.

on_duplicate_clause 	—	Adds	the	 ON	DUPLICATE	KEY	on_duplicate_clause 	expression	to	the	INSERT 	query.

Example:	 INSERT	INTO	t	(c1,c2)	VALUES	('a',	2)	ON	DUPLICATE	KEY	UPDATE	c2	=	c2	+	1 ,	where	

on_duplicate_clause 	is	 UPDATE	c2	=	c2	+	1 .	See	MySQL	documentation	to	find	which	 on_duplicate_clause 	you

  DETACH TABLE consumer;
  ATTACH MATERIALIZED VIEW consumer;

  <!--  Global configuration options for all tables of Kafka engine type -->
  <kafka>
    <debug>cgrp</debug>
    <auto_offset_reset>smallest</auto_offset_reset>
  </kafka>

  <!-- Configuration specific for topic "logs" -->
  <kafka_logs>
    <retry_backoff_ms>250</retry_backoff_ms>
    <fetch_min_bytes>100000</fetch_min_bytes>
  </kafka_logs>

MySQL('host:port', 'database', 'table', 'user', 'password'[, replace_query, 'on_duplicate_clause']);

https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md


can	use	with	 ON	DUPLICATE	KEY 	clause.

To	specify	 on_duplicate_clause 	you	need	to	pass	 0 	to	the	 replace_query 	parameter.	If	you	simultaneously	pass	

replace_query	=	1 	and	 on_duplicate_clause ,	ClickHouse	generates	an	exception.

At	this	time,	simple	 WHERE 	clauses	such	as	 =,	!=,	>,	>=,	<,	<= 	are	executed	on	the	MySQL	server.

The	rest	of	the	conditions	and	the	 LIMIT 	sampling	constraint	are	executed	in	ClickHouse	only	after	the	query	to	MySQL

finishes.

The	 MySQL 	engine	does	not	support	the	Nullable	[#data_type-nullable]	data	type,	so	when	reading	data	from	MySQL

tables,	 NULL 	is	converted	to	default	values	for	the	specified	column	type	(usually	0	or	an	empty	string).

Access	Rights

Users	and	access	rights	are	set	up	in	the	user	config.	This	is	usually	 users.xml .

Users	are	recorded	in	the	 users 	section.	Here	is	a	fragment	of	the	 users.xml 	file:



You	can	see	a	declaration	from	two	users:	 default and web .	We	added	the	 web 	user	separately.

The	 default 	user	is	chosen	in	cases	when	the	username	is	not	passed.	The	 default 	user	is	also	used	for	distributed

query	processing,	if	the	configuration	of	the	server	or	cluster	doesn't	specify	the	 user 	and	 password 	(see	the	section	on

the	Distributed	[#table_engines-distributed]	engine).

The	user	that	is	used	for	exchanging	information	between	servers	combined	in	a	cluster	must	not	have	substantial

restrictions	or	quotas	–	otherwise,	distributed	queries	will	fail.

The	password	is	specified	in	clear	text	(not	recommended)	or	in	SHA-256.	The	hash	isn't	salted.	In	this	regard,	you	should

not	consider	these	passwords	as	providing	security	against	potential	malicious	attacks.	Rather,	they	are	necessary	for

protection	from	employees.

<!-- Users and ACL. -->
<users>
    <!-- If the user name is not specified, the 'default' user is used. -->
    <default>
        <!-- Password could be specified in plaintext or in SHA256 (in hex format).

             If you want to specify password in plaintext (not recommended), place it in 'password' element.
             Example: <password>qwerty</password>.
             Password could be empty.

             If you want to specify SHA256, place it in 'password_sha256_hex' element.
             Example: 
<password_sha256_hex>65e84be33532fb784c48129675f9eff3a682b27168c0ea744b2cf58ee02337c5</password_sha256_hex>

             How to generate decent password:
             Execute: PASSWORD=$(base64 < /dev/urandom | head -c8); echo "$PASSWORD"; echo -n "$PASSWORD" | 
sha256sum | tr -d '-'
             In first line will be password and in second - corresponding SHA256.
        -->
        <password></password>

        <!-- A list of networks that access is allowed from.
            Each list item has one of the following forms:
            <ip> The IP address or subnet mask. For example: 198.51.100.0/24 or 2001:DB8::/32.
            <host> Host name. For example: example01. A DNS query is made for verification, and all addresses 
obtained are compared with the address of the customer.
            <host_regexp> Regular expression for host names. For example, ^example\d\d-\d\d-\d\.yandex\.ru$
                To check it, a DNS PTR request is made for the client's address and a regular expression is 
applied to the result.
                Then another DNS query is made for the result of the PTR query, and all received address are 
compared to the client address.
                We strongly recommend that the regex ends with \.yandex\.ru$.

            If you are installing ClickHouse yourself, specify here:
                <networks>
                        <ip>::/0</ip>
                </networks>
        -->
        <networks incl="networks" />

        <!-- Settings profile for the user. -->
        <profile>default</profile>

        <!-- Quota for the user. -->
        <quota>default</quota>
    </default>

    <!-- For requests from the Yandex.Metrica user interface via the API for data on specific counters. -->
    <web>
        <password></password>
        <networks incl="networks" />
        <profile>web</profile>
        <quota>default</quota>
        <allow_databases>
           <database>test</database>
        </allow_databases>
    </web>



A	list	of	networks	is	specified	that	access	is	allowed	from.	In	this	example,	the	list	of	networks	for	both	users	is	loaded

from	a	separate	file	( /etc/metrika.xml )	containing	the	 networks 	substitution.	Here	is	a	fragment	of	it:

You	could	define	this	list	of	networks	directly	in	users.xml ,	or	in	a	file	in	the	users.d 	directory	(for	more	information,	see

the	section	"Configuration	files	[#configuration_files]").

The	config	includes	comments	explaining	how	to	open	access	from	everywhere.

For	use	in	production,	only	specify	 ip 	elements	(IP	addresses	and	their	masks),	since	using	 host 	and	 hoost_regexp

might	cause	extra	latency.

Next	the	user	settings	profile	is	specified	(see	the	section	"Settings	profiles	[#settings_profiles]").	You	can	specify	the

default	profile,	 default' .	The	profile	can	have	any	name.	You	can	specify	the	same	profile	for	different	users.	The	most

important	thing	you	can	write	in	the	settings	profile	is	 readonly=1 ,	which	ensures	read-only	access.

Then	specify	the	quota	to	be	used	(see	the	section	"Quotas	[#quotas]").	You	can	specify	the	default	quota:	default .	It	is

set	in	the	config	by	default	to	only	count	resource	usage,	without	restricting	it.	The	quota	can	have	any	name.	You	can

specify	the	same	quota	for	different	users	–	in	this	case,	resource	usage	is	calculated	for	each	user	individually.

In	the	optional	 <allow_databases> 	section,	you	can	also	specify	a	list	of	databases	that	the	user	can	access.	By	default,	all

databases	are	available	to	the	user.	You	can	specify	the	 default 	database.	In	this	case,	the	user	will	receive	access	to	the

database	by	default.

Access	to	the	 system 	database	is	always	allowed	(since	this	database	is	used	for	processing	queries).

The	user	can	get	a	list	of	all	databases	and	tables	in	them	by	using	SHOW 	queries	or	system	tables,	even	if	access	to

individual	databases	isn't	allowed.

Database	access	is	not	related	to	the	readonly	[#query_complexity_readonly]	setting.	You	can't	grant	full	access	to	one

database	and	 readonly 	access	to	another	one.

[]

Configuration	Files

The	main	server	config	file	is	config.xml .	It	resides	in	the	 /etc/clickhouse-server/ 	directory.

Individual	settings	can	be	overridden	in	the	*.xml 	and	 *.conf 	files	in	the	 conf.d 	and	 config.d 	directories	next	to	the

config	file.

The	 replace 	or	 remove 	attributes	can	be	specified	for	the	elements	of	these	config	files.

If	neither	is	specified,	it	combines	the	contents	of	elements	recursively,	replacing	values	of	duplicate	children.

If	 replace 	is	specified,	it	replaces	the	entire	element	with	the	specified	one.

If	 remove 	is	specified,	it	deletes	the	element.

The	config	can	also	define	"substitutions".	If	an	element	has	the	incl 	attribute,	the	corresponding	substitution	from	the

<yandex>
    ...
    <networks>
        <ip>::/64</ip>
        <ip>203.0.113.0/24</ip>
        <ip>2001:DB8::/32</ip>
        ...
    </networks>
</yandex>



file	will	be	used	as	the	value.	By	default,	the	path	to	the	file	with	substitutions	is	 /etc/metrika.xml .	This	can	be	changed

in	the	include_from	[#server_settings-include_from]	element	in	the	server	config.	The	substitution	values	are	specified	in	

/yandex/substitution_name 	elements	in	this	file.	If	a	substitution	specified	in	incl 	does	not	exist,	it	is	recorded	in	the

log.	To	prevent	ClickHouse	from	logging	missing	substitutions,	specify	the	 optional="true" 	attribute	(for	example,

settings	for	macros	[#server_settings-macros]).

Substitutions	can	also	be	performed	from	ZooKeeper.	To	do	this,	specify	the	attribute	from_zk	=	"/path/to/node" .	The

element	value	is	replaced	with	the	contents	of	the	node	at	 /path/to/node 	in	ZooKeeper.	You	can	also	put	an	entire	XML

subtree	on	the	ZooKeeper	node	and	it	will	be	fully	inserted	into	the	source	element.

The	 config.xml 	file	can	specify	a	separate	config	with	user	settings,	profiles,	and	quotas.	The	relative	path	to	this	config

is	set	in	the	'users_config'	element.	By	default,	it	is	 users.xml .	If	 users_config 	is	omitted,	the	user	settings,	profiles,	and

quotas	are	specified	directly	in	 config.xml .

In	addition,	 users_config 	may	have	overrides	in	files	from	the	 users_config.d 	directory	(for	example,	 users.d )	and

substitutions.	For	example,	you	can	have	separate	config	file	for	each	user	like	this:

For	each	config	file,	the	server	also	generates	file-preprocessed.xml 	files	when	starting.	These	files	contain	all	the

completed	substitutions	and	overrides,	and	they	are	intended	for	informational	use.	If	ZooKeeper	substitutions	were	used

in	the	config	files	but	ZooKeeper	is	not	available	on	the	server	start,	the	server	loads	the	configuration	from	the

preprocessed	file.

The	server	tracks	changes	in	config	files,	as	well	as	files	and	ZooKeeper	nodes	that	were	used	when	performing

substitutions	and	overrides,	and	reloads	the	settings	for	users	and	clusters	on	the	fly.	This	means	that	you	can	modify	the

cluster,	users,	and	their	settings	without	restarting	the	server.

[]

Quotas

Quotas	allow	you	to	limit	resource	usage	over	a	period	of	time,	or	simply	track	the	use	of	resources.	Quotas	are	set	up	in

the	user	config.	This	is	usually	'users.xml'.

The	system	also	has	a	feature	for	limiting	the	complexity	of	a	single	query.	See	the	section	"Restrictions	on	query

complexity").

In	contrast	to	query	complexity	restrictions,	quotas:

Place	restrictions	on	a	set	of	queries	that	can	be	run	over	a	period	of	time,	instead	of	limiting	a	single	query.

Account	for	resources	spent	on	all	remote	servers	for	distributed	query	processing.

Let's	look	at	the	section	of	the	'users.xml'	file	that	defines	quotas.

$ cat /etc/clickhouse-server/users.d/alice.xml
<yandex>
    <users>
      <alice>
          <profile>analytics</profile>
            <networks>
                  <ip>::/0</ip>
            </networks>
          <password_sha256_hex>...</password_sha256_hex>
          <quota>analytics</quota>
      </alice>
    </users>
</yandex>



By	default,	the	quota	just	tracks	resource	consumption	for	each	hour,	without	limiting	usage.	The	resource	consumption

calculated	for	each	interval	is	output	to	the	server	log	after	each	request.

For	the	'statbox'	quota,	restrictions	are	set	for	every	hour	and	for	every	24	hours	(86,400	seconds).	The	time	interval	is

counted	starting	from	an	implementation-defined	fixed	moment	in	time.	In	other	words,	the	24-hour	interval	doesn't

necessarily	begin	at	midnight.

When	the	interval	ends,	all	collected	values	are	cleared.	For	the	next	hour,	the	quota	calculation	starts	over.

Here	are	the	amounts	that	can	be	restricted:

queries 	–	The	total	number	of	requests.

errors 	–	The	number	of	queries	that	threw	an	exception.

result_rows 	–	The	total	number	of	rows	given	as	the	result.

read_rows 	–	The	total	number	of	source	rows	read	from	tables	for	running	the	query,	on	all	remote	servers.

execution_time 	–	The	total	query	execution	time,	in	seconds	(wall	time).

If	the	limit	is	exceeded	for	at	least	one	time	interval,	an	exception	is	thrown	with	a	text	about	which	restriction	was

exceeded,	for	which	interval,	and	when	the	new	interval	begins	(when	queries	can	be	sent	again).

Quotas	can	use	the	"quota	key"	feature	in	order	to	report	on	resources	for	multiple	keys	independently.	Here	is	an	example

<!-- Quotas -->
<quotas>
    <!-- Quota name. -->
    <default>
        <!-- Restrictions for a time period. You can set many intervals with different restrictions. -->
        <interval>
            <!-- Length of the interval. -->
            <duration>3600</duration>

            <!-- Unlimited. Just collect data for the specified time interval. -->
            <queries>0</queries>
            <errors>0</errors>
            <result_rows>0</result_rows>
            <read_rows>0</read_rows>
            <execution_time>0</execution_time>
        </interval>
    </default>

<statbox>
    <!-- Restrictions for a time period. You can set many intervals with different restrictions. -->
    <interval>
        <!-- Length of the interval. -->
        <duration>3600</duration>

        <queries>1000</queries>
        <errors>100</errors>
        <result_rows>1000000000</result_rows>
        <read_rows>100000000000</read_rows>
        <execution_time>900</execution_time>
    </interval>

    <interval>
        <duration>86400</duration>

        <queries>10000</queries>
        <errors>1000</errors>
        <result_rows>5000000000</result_rows>
        <read_rows>500000000000</read_rows>
        <execution_time>7200</execution_time>
    </interval>
</statbox>



of	this:

The	quota	is	assigned	to	users	in	the	'users'	section	of	the	config.	See	the	section	"Access	rights".

For	distributed	query	processing,	the	accumulated	amounts	are	stored	on	the	requestor	server.	So	if	the	user	goes	to

another	server,	the	quota	there	will	"start	over".

When	the	server	is	restarted,	quotas	are	reset.

System	tables

System	tables	are	used	for	implementing	part	of	the	system's	functionality,	and	for	providing	access	to	information	about

how	the	system	is	working.	You	can't	delete	a	system	table	(but	you	can	perform	DETACH).	System	tables	don't	have	files

with	data	on	the	disk	or	files	with	metadata.	The	server	creates	all	the	system	tables	when	it	starts.	System	tables	are	read-

only.	They	are	located	in	the	'system'	database.	[]

system.asynchronous_metrics

Contain	metrics	used	for	profiling	and	monitoring.	They	usually	reflect	the	number	of	events	currently	in	the	system,	or	the

total	resources	consumed	by	the	system.	Example:	The	number	of	SELECT	queries	currently	running;	the	amount	of

memory	in	use. system.asynchronous_metrics and system.metrics 	differ	in	their	sets	of	metrics	and	how	they	are

calculated.

system.clusters

Contains	information	about	clusters	available	in	the	config	file	and	the	servers	in	them.	Columns:

system.columns

Contains	information	about	the	columns	in	all	tables.	You	can	use	this	table	to	get	information	similar	to	DESCRIBE	TABLE ,

but	for	multiple	tables	at	once.

<!-- For the global reports designer. -->
<web_global>
    <!-- keyed – The quota_key "key" is passed in the query parameter,
            and the quota is tracked separately for each key value.
        For example, you can pass a Yandex.Metrica username as the key,
            so the quota will be counted separately for each username.
        Using keys makes sense only if quota_key is transmitted by the program, not by a user.

        You can also write <keyed_by_ip /> so the IP address is used as the quota key.
        (But keep in mind that users can change the IPv6 address fairly easily.)
    -->
    <keyed />

cluster String      — The cluster name.
shard_num UInt32 — The shard number in the cluster, starting from 1.
shard_weight UInt32 — The relative weight of the shard when writing data.
replica_num UInt32 — The replica number in the shard, starting from 1.
host_name String — The host name, as specified in the config.
String host_address — The host IP address obtained from DNS.
port UInt16 — The port to use for connecting to the server.
user String — The name of the user for connecting to the server.



system.databases

This	table	contains	a	single	String	column	called	'name'	–	the	name	of	a	database.	Each	database	that	the	server	knows

about	has	a	corresponding	entry	in	the	table.	This	system	table	is	used	for	implementing	the	 SHOW	DATABASES 	query.

system.dictionaries

Contains	information	about	external	dictionaries.

Columns:

name	String 	—	Dictionary	name.

type	String 	—	Dictionary	type:	Flat,	Hashed,	Cache.

origin	String 	—	Path	to	the	configuration	file	that	describes	the	dictionary.

attribute.names	Array(String) 	—	Array	of	attribute	names	provided	by	the	dictionary.

attribute.types	Array(String) 	—	Corresponding	array	of	attribute	types	that	are	provided	by	the	dictionary.

has_hierarchy	UInt8 	—	Whether	the	dictionary	is	hierarchical.

bytes_allocated	UInt64 	—	The	amount	of	RAM	the	dictionary	uses.

hit_rate	Float64 	—	For	cache	dictionaries,	the	percentage	of	uses	for	which	the	value	was	in	the	cache.

element_count	UInt64 	—	The	number	of	items	stored	in	the	dictionary.

load_factor	Float64 	—	The	percentage	full	of	the	dictionary	(for	a	hashed	dictionary,	the	percentage	filled	in	the

hash	table).

creation_time	DateTime 	—	The	time	when	the	dictionary	was	created	or	last	successfully	reloaded.

last_exception	String 	—	Text	of	the	error	that	occurs	when	creating	or	reloading	the	dictionary	if	the	dictionary

couldn't	be	created.

source	String 	—	Text	describing	the	data	source	for	the	dictionary.

Note	that	the	amount	of	memory	used	by	the	dictionary	is	not	proportional	to	the	number	of	items	stored	in	it.	So	for	flat

and	cached	dictionaries,	all	the	memory	cells	are	pre-assigned,	regardless	of	how	full	the	dictionary	actually	is.	[]

system.events

Contains	information	about	the	number	of	events	that	have	occurred	in	the	system.	This	is	used	for	profiling	and

monitoring	purposes.	Example:	The	number	of	processed	SELECT	queries.	Columns:	'event	String'	–	the	event	name,	and

'value	UInt64'	–	the	quantity.

system.functions

Contains	information	about	normal	and	aggregate	functions.

Columns:

name ( String )	–	The	name	of	the	function.

database String — The name of the database the table is in.
table String – Table name.
name String — Column name.
type String — Column type.
default_type String — Expression type (DEFAULT, MATERIALIZED, ALIAS) for the default value, or an empty 
string if it is not defined.
default_expression String — Expression for the default value, or an empty string if it is not defined.



is_aggregate ( UInt8 )	—	Whether	the	function	is	aggregate.

system.merges

Contains	information	about	merges	currently	in	process	for	tables	in	the	MergeTree	family.

Columns:

database	String 	—	The	name	of	the	database	the	table	is	in.

table	String 	—	Table	name.

elapsed	Float64 	—	The	time	elapsed	(in	seconds)	since	the	merge	started.

progress	Float64 	—	The	percentage	of	completed	work	from	0	to	1.

num_parts	UInt64 	—	The	number	of	pieces	to	be	merged.

result_part_name	String 	—	The	name	of	the	part	that	will	be	formed	as	the	result	of	merging.

total_size_bytes_compressed	UInt64 	—	The	total	size	of	the	compressed	data	in	the	merged	chunks.

total_size_marks	UInt64 	—	The	total	number	of	marks	in	the	merged	partss.

bytes_read_uncompressed	UInt64 	—	Number	of	bytes	read,	uncompressed.

rows_read	UInt64 	—	Number	of	rows	read.

bytes_written_uncompressed	UInt64 	—	Number	of	bytes	written,	uncompressed.

rows_written	UInt64 	—	Number	of	lines	rows	written.	[]

system.metrics

system.numbers

This	table	contains	a	single	UInt64	column	named	'number'	that	contains	almost	all	the	natural	numbers	starting	from	zero.

You	can	use	this	table	for	tests,	or	if	you	need	to	do	a	brute	force	search.	Reads	from	this	table	are	not	parallelized.

system.numbers_mt

The	same	as	'system.numbers'	but	reads	are	parallelized.	The	numbers	can	be	returned	in	any	order.	Used	for	tests.

system.one

This	table	contains	a	single	row	with	a	single	'dummy'	UInt8	column	containing	the	value	0.	This	table	is	used	if	a	SELECT

query	doesn't	specify	the	FROM	clause.	This	is	similar	to	the	DUAL	table	found	in	other	DBMSs.

system.parts

Contains	information	about	parts	of	MergeTree	[#table_engines-mergetree]	tables.

Each	row	describes	one	part	of	the	data.

Columns:

partition	(String)	–	The	partition	name.	To	learn	what	a	partition	is,	see	the	description	of	the	ALTER

[#query_language_queries_alter]	query.

Formats:	-	 YYYYMM 	for	automatic	partitioning	by	month.	-	 any_string 	when	partitioning	manually.

name	(String)	–	Name	of	the	data	part.



active	(UInt8)	–	Indicates	whether	the	part	is	active.	If	a	part	is	active,	it	is	used	in	a	table;	otherwise,	it	will	be	deleted.

Inactive	data	parts	remain	after	merging.

marks	(UInt64)	–	The	number	of	marks.	To	get	the	approximate	number	of	rows	in	a	data	part,	multiply	marks 	by	the

index	granularity	(usually	8192).

marks_size	(UInt64)	–	The	size	of	the	file	with	marks.

rows	(UInt64)	–	The	number	of	rows.

bytes	(UInt64)	–	The	number	of	bytes	when	compressed.

modification_time	(DateTime)	–	The	modification	time	of	the	directory	with	the	data	part.	This	usually	corresponds	to

the	time	of	data	part	creation.|

remove_time	(DateTime)	–	The	time	when	the	data	part	became	inactive.

refcount	(UInt32)	–	The	number	of	places	where	the	data	part	is	used.	A	value	greater	than	2	indicates	that	the	data

part	is	used	in	queries	or	merges.

min_date	(Date)	–	The	minimum	value	of	the	date	key	in	the	data	part.

max_date	(Date)	–	The	maximum	value	of	the	date	key	in	the	data	part.

min_block_number	(UInt64)	–	The	minimum	number	of	data	parts	that	make	up	the	current	part	after	merging.

max_block_number	(UInt64)	–	The	maximum	number	of	data	parts	that	make	up	the	current	part	after	merging.

level	(UInt32)	–	Depth	of	the	merge	tree.	If	a	merge	was	not	performed,	level=0 .

primary_key_bytes_in_memory	(UInt64)	–	The	amount	of	memory	(in	bytes)	used	by	primary	key	values.

primary_key_bytes_in_memory_allocated	(UInt64)	–	The	amount	of	memory	(in	bytes)	reserved	for	primary	key	values.

database	(String)	–	Name	of	the	database.

table	(String)	–	Name	of	the	table.

engine	(String)	–	Name	of	the	table	engine	without	parameters.

system.processes

This	system	table	is	used	for	implementing	the	 SHOW	PROCESSLIST 	query.	Columns:

system.replicas

user String              – Name of the user who made the request. For distributed query processing, this is 
the user who helped the requestor server send the query to this server, not the user who made the distributed 
request on the requestor server.

address String           - The IP address the request was made from. The same for distributed processing.

elapsed Float64          - The time in seconds since request execution started.

rows_read UInt64         - The number of rows read from the table. For distributed processing, on the 
requestor server, this is the total for all remote servers.

bytes_read UInt64        - The number of uncompressed bytes read from the table. For distributed processing, 
on the requestor server, this is the total for all remote servers.

total_rows_approx UInt64 - The approximation of the total number of rows that should be read. For distributed 
processing, on the requestor server, this is the total for all remote servers. It can be updated during 
request processing, when new sources to process become known.

memory_usage UInt64      - How much memory the request uses. It might not include some types of dedicated 
memory.

query String             - The query text. For INSERT, it doesn't include the data to insert.

query_id String          - Query ID, if defined.



Contains	information	and	status	for	replicated	tables	residing	on	the	local	server.	This	table	can	be	used	for	monitoring.

The	table	contains	a	row	for	every	Replicated*	table.

Example:

Columns:

SELECT *
FROM system.replicas
WHERE table = 'visits'
FORMAT Vertical

Row 1:
──────
database:           merge
table:              visits
engine:             ReplicatedCollapsingMergeTree
is_leader:          1
is_readonly:        0
is_session_expired: 0
future_parts:       1
parts_to_check:     0
zookeeper_path:     /clickhouse/tables/01-06/visits
replica_name:       example01-06-1.yandex.ru
replica_path:       /clickhouse/tables/01-06/visits/replicas/example01-06-1.yandex.ru
columns_version:    9
queue_size:         1
inserts_in_queue:   0
merges_in_queue:    1
log_max_index:      596273
log_pointer:        596274
total_replicas:     2
active_replicas:    2



If	you	request	all	the	columns,	the	table	may	work	a	bit	slowly,	since	several	reads	from	ZooKeeper	are	made	for	each	row.

If	you	don't	request	the	last	4	columns	(log_max_index,	log_pointer,	total_replicas,	active_replicas),	the	table	works	quickly.

For	example,	you	can	check	that	everything	is	working	correctly	like	this:

database:          Database name
table:              Table name
engine:            Table engine name

is_leader:          Whether the replica is the leader.

Only one replica at a time can be the leader. The leader is responsible for selecting background merges to 
perform.
Note that writes can be performed to any replica that is available and has a session in ZK, regardless of 
whether it is a leader.

is_readonly:        Whether the replica is in read-only mode.
This mode is turned on if the config doesn't have sections with ZooKeeper, if an unknown error occurred when 
reinitializing sessions in ZooKeeper, and during session reinitialization in ZooKeeper.

is_session_expired: Whether the session with ZooKeeper has expired.
Basically the same as 'is_readonly'.

future_parts:       The number of data parts that will appear as the result of INSERTs or merges that haven't 
been done yet.

parts_to_check:    The number of data parts in the queue for verification.
A part is put in the verification queue if there is suspicion that it might be damaged.

zookeeper_path:     Path to table data in ZooKeeper.
replica_name:       Replica name in ZooKeeper. Different replicas of the same table have different names.
replica_path:      Path to replica data in ZooKeeper. The same as concatenating 
'zookeeper_path/replicas/replica_path'.

columns_version:    Version number of the table structure.
Indicates how many times ALTER was performed. If replicas have different versions, it means some replicas 
haven't made all of the ALTERs yet.

queue_size:         Size of the queue for operations waiting to be performed.
Operations include inserting blocks of data, merges, and certain other actions.
It usually coincides with 'future_parts'.

inserts_in_queue:   Number of inserts of blocks of data that need to be made.
Insertions are usually replicated fairly quickly. If this number is large, it means something is wrong.

merges_in_queue:    The number of merges waiting to be made.
Sometimes merges are lengthy, so this value may be greater than zero for a long time.

The next 4 columns have a non-zero value only where there is an active session with ZK.

log_max_index:      Maximum entry number in the log of general activity.
log_pointer:        Maximum entry number in the log of general activity that the replica copied to its 
execution queue, plus one.
If log_pointer is much smaller than log_max_index, something is wrong.

total_replicas:     The total number of known replicas of this table.
active_replicas:    The number of replicas of this table that have a session in ZooKeeper (i.e., the number 
of functioning replicas).



If	this	query	doesn't	return	anything,	it	means	that	everything	is	fine.

system.settings

Contains	information	about	settings	that	are	currently	in	use.	I.e.	used	for	executing	the	query	you	are	using	to	read	from

the	system.settings	table.

Columns:

Example:

system.tables

This	table	contains	the	String	columns	'database',	'name',	and	'engine'.	The	table	also	contains	three	virtual	columns:

metadata_modification_time	(DateTime	type),	create_table_query,	and	engine_full	(String	type).	Each	table	that	the	server

knows	about	is	entered	in	the	'system.tables'	table.	This	system	table	is	used	for	implementing	SHOW	TABLES	queries.

system.zookeeper

The	table	does	not	exist	if	ZooKeeper	is	not	configured.	Allows	reading	data	from	the	ZooKeeper	cluster	defined	in	the

SELECT
    database,
    table,
    is_leader,
    is_readonly,
    is_session_expired,
    future_parts,
    parts_to_check,
    columns_version,
    queue_size,
    inserts_in_queue,
    merges_in_queue,
    log_max_index,
    log_pointer,
    total_replicas,
    active_replicas
FROM system.replicas
WHERE
       is_readonly
    OR is_session_expired
    OR future_parts > 20
    OR parts_to_check > 10
    OR queue_size > 20
    OR inserts_in_queue > 10
    OR log_max_index - log_pointer > 10
    OR total_replicas < 2
    OR active_replicas < total_replicas

name String  — Setting name.
value String  — Setting value.
changed UInt8 — Whether the setting was explicitly defined in the config or explicitly changed.

SELECT *
FROM system.settings
WHERE changed

┌─name───────────────────┬─value───────┬─changed─┐
│ max_threads            │ 8           │       1 │
│ use_uncompressed_cache │ 0           │       1 │
│ load_balancing         │ random      │       1 │
│ max_memory_usage       │ 10000000000 │       1 │
└────────────────────────┴─────────────┴─────────┘



config.	The	query	must	have	a	'path'	equality	condition	in	the	WHERE	clause.	This	is	the	path	in	ZooKeeper	for	the	children

that	you	want	to	get	data	for.

The	query	 SELECT	*	FROM	system.zookeeper	WHERE	path	=	'/clickhouse' 	outputs	data	for	all	children	on	the	

/clickhouse 	node.	To	output	data	for	all	root	nodes,	write	path	=	'/'.	If	the	path	specified	in	'path'	doesn't	exist,	an

exception	will	be	thrown.

Columns:

name	String 	—	The	name	of	the	node.

path	String 	—	The	path	to	the	node.

value	String 	—	Node	value.

dataLength	Int32 	—	Size	of	the	value.

numChildren	Int32 	—	Number	of	descendants.

czxid	Int64 	—	ID	of	the	transaction	that	created	the	node.

mzxid	Int64 	—	ID	of	the	transaction	that	last	changed	the	node.

pzxid	Int64 	—	ID	of	the	transaction	that	last	deleted	or	added	descendants.

ctime	DateTime 	—	Time	of	node	creation.

mtime	DateTime 	—	Time	of	the	last	modification	of	the	node.

version	Int32 	—	Node	version:	the	number	of	times	the	node	was	changed.

cversion	Int32 	—	Number	of	added	or	removed	descendants.

aversion	Int32 	—	Number	of	changes	to	the	ACL.

ephemeralOwner	Int64 	—	For	ephemeral	nodes,	the	ID	of	hte	session	that	owns	this	node.

Example:

SELECT *
FROM system.zookeeper
WHERE path = '/clickhouse/tables/01-08/visits/replicas'
FORMAT Vertical



Usage	Recommendations

CPU

The	SSE	4.2	instruction	set	must	be	supported.	Modern	processors	(since	2008)	support	it.

When	choosing	a	processor,	prefer	a	large	number	of	cores	and	slightly	slower	clock	rate	over	fewer	cores	and	a	higher

clock	rate.	For	example,	16	cores	with	2600	MHz	is	better	than	8	cores	with	3600	MHz.

Hyper-threading

Don't	disable	hyper-threading.	It	helps	for	some	queries,	but	not	for	others.

Turbo	Boost

Turbo	Boost	is	highly	recommended.	It	significantly	improves	performance	with	a	typical	load.	You	can	use	 turbostat 	to

view	the	CPU's	actual	clock	rate	under	a	load.

CPU	Scaling	Governor

Always	use	the	 performance 	scaling	governor.	The	 on-demand 	scaling	governor	works	much	worse	with	constantly	high

demand.

CPU	Limitations

Row 1:
──────
name:           example01-08-1.yandex.ru
value:
czxid:          932998691229
mzxid:          932998691229
ctime:          2015-03-27 16:49:51
mtime:          2015-03-27 16:49:51
version:        0
cversion:       47
aversion:       0
ephemeralOwner: 0
dataLength:     0
numChildren:    7
pzxid:          987021031383
path:           /clickhouse/tables/01-08/visits/replicas

Row 2:
──────
name:           example01-08-2.yandex.ru
value:
czxid:          933002738135
mzxid:          933002738135
ctime:          2015-03-27 16:57:01
mtime:          2015-03-27 16:57:01
version:        0
cversion:       37
aversion:       0
ephemeralOwner: 0
dataLength:     0
numChildren:    7
pzxid:          987021252247
path:           /clickhouse/tables/01-08/visits/replicas

sudo echo 'performance' | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor



Processors	can	overheat.	Use	 dmesg 	to	see	if	the	CPU's	clock	rate	was	limited	due	to	overheating.	The	restriction	can	also

be	set	externally	at	the	datacenter	level.	You	can	use	 turbostat 	to	monitor	it	under	a	load.

RAM

For	small	amounts	of	data	(up	to	\~200	GB	compressed),	it	is	best	to	use	as	much	memory	as	the	volume	of	data.	For	large

amounts	of	data	and	when	processing	interactive	(online)	queries,	you	should	use	a	reasonable	amount	of	RAM	(128	GB	or

more)	so	the	hot	data	subset	will	fit	in	the	cache	of	pages.	Even	for	data	volumes	of	\~50	TB	per	server,	using	128	GB	of

RAM	significantly	improves	query	performance	compared	to	64	GB.

Do	not	disable	overcommit.	The	value	 cat	/proc/sys/vm/overcommit_memory 	should	be	0	or	1.	Run

Swap	File

Always	disable	the	swap	file.	The	only	reason	for	not	doing	this	is	if	you	are	using	ClickHouse	on	your	personal	laptop.

Huge	Pages

Always	disable	transparent	huge	pages.	It	interferes	with	memory	allocators,	which	leads	to	significant	performance

degradation.

Use	 perf	top 	to	watch	the	time	spent	in	the	kernel	for	memory	management.	Permanent	huge	pages	also	do	not	need	to

be	allocated.

Storage	Subsystem

If	your	budget	allows	you	to	use	SSD,	use	SSD.	If	not,	use	HDD.	SATA	HDDs	7200	RPM	will	do.

Give	preference	to	a	lot	of	servers	with	local	hard	drives	over	a	smaller	number	of	servers	with	attached	disk	shelves.	But

for	storing	archives	with	rare	queries,	shelves	will	work.

RAID

When	using	HDD,	you	can	combine	their	RAID-10,	RAID-5,	RAID-6	or	RAID-50.	For	Linux,	software	RAID	is	better	(with	

mdadm ).	We	don't	recommend	using	LVM.	When	creating	RAID-10,	select	the	 far 	layout.	If	your	budget	allows,	choose

RAID-10.

If	you	have	more	than	4	disks,	use	RAID-6	(preferred)	or	RAID-50,	instead	of	RAID-5.	When	using	RAID-5,	RAID-6	or	RAID-

50,	always	increase	stripe_cache_size,	since	the	default	value	is	usually	not	the	best	choice.

Calculate	the	exact	number	from	the	number	of	devices	and	the	block	size,	using	the	formula:	2	*	num_devices	*	

chunk_size_in_bytes	/	4096 .

A	block	size	of	1024	KB	is	sufficient	for	all	RAID	configurations.	Never	set	the	block	size	too	small	or	too	large.

You	can	use	RAID-0	on	SSD.	Regardless	of	RAID	use,	always	use	replication	for	data	security.

Enable	NCQ	with	a	long	queue.	For	HDD,	choose	the	CFQ	scheduler,	and	for	SSD,	choose	noop.	Don't	reduce	the

'readahead'	setting.	For	HDD,	enable	the	write	cache.

echo 0 | sudo tee /proc/sys/vm/overcommit_memory

echo 'never' | sudo tee /sys/kernel/mm/transparent_hugepage/enabled

echo 4096 | sudo tee /sys/block/md2/md/stripe_cache_size



File	System

Ext4	is	the	most	reliable	option.	Set	the	mount	options	 noatime,	nobarrier .	XFS	is	also	suitable,	but	it	hasn't	been	as

thoroughly	tested	with	ClickHouse.	Most	other	file	systems	should	also	work	fine.	File	systems	with	delayed	allocation

work	better.

Linux	Kernel

Don't	use	an	outdated	Linux	kernel.

Network

If	you	are	using	IPv6,	increase	the	size	of	the	route	cache.	The	Linux	kernel	prior	to	3.2	had	a	multitude	of	problems	with

IPv6	implementation.

Use	at	least	a	10	GB	network,	if	possible.	1	Gb	will	also	work,	but	it	will	be	much	worse	for	patching	replicas	with	tens	of

terabytes	of	data,	or	for	processing	distributed	queries	with	a	large	amount	of	intermediate	data.

ZooKeeper

You	are	probably	already	using	ZooKeeper	for	other	purposes.	You	can	use	the	same	installation	of	ZooKeeper,	if	it	isn't

already	overloaded.

It's	best	to	use	a	fresh	version	of	ZooKeeper	–	3.4.9	or	later.	The	version	in	stable	Linux	distributions	may	be	outdated.

You	should	never	use	manually	written	scripts	to	transfer	data	between	different	ZooKeeper	clusters,	because	the	result

will	be	incorrect	for	sequential	nodes.	Never	use	the	"zkcopy"	utility	for	the	same	reason:

https://github.com/ksprojects/zkcopy/issues/15

If	you	want	to	divide	an	existing	ZooKeeper	cluster	into	two,	the	correct	way	is	to	increase	the	number	of	its	replicas	and

then	reconfigure	it	as	two	independent	clusters.

Do	not	run	ZooKeeper	on	the	same	servers	as	ClickHouse.	Because	ZooKeeper	is	very	sensitive	for	latency	and	ClickHouse

may	utilize	all	available	system	resources.

With	the	default	settings,	ZooKeeper	is	a	time	bomb:

The	ZooKeeper	server	won't	delete	files	from	old	snapshots	and	logs	when	using	the	default	configuration	(see

autopurge),	and	this	is	the	responsibility	of	the	operator.

This	bomb	must	be	defused.

The	ZooKeeper	(3.5.1)	configuration	below	is	used	in	the	Yandex.Metrica	production	environment	as	of	May	20,	2017:

zoo.cfg:



Java	version:

JVM	parameters:

## http://hadoop.apache.org/zookeeper/docs/current/zookeeperAdmin.html

## The number of milliseconds of each tick
tickTime=2000
## The number of ticks that the initial
## synchronization phase can take
initLimit=30000
## The number of ticks that can pass between
## sending a request and getting an acknowledgement
syncLimit=10

maxClientCnxns=2000

maxSessionTimeout=60000000
## the directory where the snapshot is stored.
dataDir=/opt/zookeeper/{{ cluster['name'] }}/data
## Place the dataLogDir to a separate physical disc for better performance
dataLogDir=/opt/zookeeper/{{ cluster['name'] }}/logs

autopurge.snapRetainCount=10
autopurge.purgeInterval=1

## To avoid seeks ZooKeeper allocates space in the transaction log file in
## blocks of preAllocSize kilobytes. The default block size is 64M. One reason
## for changing the size of the blocks is to reduce the block size if snapshots
## are taken more often. (Also, see snapCount).
preAllocSize=131072

## Clients can submit requests faster than ZooKeeper can process them,
## especially if there are a lot of clients. To prevent ZooKeeper from running
## out of memory due to queued requests, ZooKeeper will throttle clients so that
## there is no more than globalOutstandingLimit outstanding requests in the
## system. The default limit is 1,000.ZooKeeper logs transactions to a
## transaction log. After snapCount transactions are written to a log file a
## snapshot is started and a new transaction log file is started. The default
## snapCount is 10,000.
snapCount=3000000

## If this option is defined, requests will be will logged to a trace file named
## traceFile.year.month.day.
##traceFile=

## Leader accepts client connections. Default value is "yes". The leader machine
## coordinates updates. For higher update throughput at thes slight expense of
## read throughput the leader can be configured to not accept clients and focus
## on coordination.
leaderServes=yes

standaloneEnabled=false
dynamicConfigFile=/etc/zookeeper-{{ cluster['name'] }}/conf/zoo.cfg.dynamic

Java(TM) SE Runtime Environment (build 1.8.0_25-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.25-b02, mixed mode)



Salt	init:

NAME=zookeeper-{{ cluster['name'] }}
ZOOCFGDIR=/etc/$NAME/conf

## TODO this is really ugly
## How to find out, which jars are needed?
## seems, that log4j requires the log4j.properties file to be in the classpath
CLASSPATH="$ZOOCFGDIR:/usr/build/classes:/usr/build/lib/*.jar:/usr/share/zookeeper/zookeeper-3.5.1-
metrika.jar:/usr/share/zookeeper/slf4j-log4j12-1.7.5.jar:/usr/share/zookeeper/slf4j-api-
1.7.5.jar:/usr/share/zookeeper/servlet-api-2.5-20081211.jar:/usr/share/zookeeper/netty-
3.7.0.Final.jar:/usr/share/zookeeper/log4j-1.2.16.jar:/usr/share/zookeeper/jline-
2.11.jar:/usr/share/zookeeper/jetty-util-6.1.26.jar:/usr/share/zookeeper/jetty-
6.1.26.jar:/usr/share/zookeeper/javacc.jar:/usr/share/zookeeper/jackson-mapper-asl-
1.9.11.jar:/usr/share/zookeeper/jackson-core-asl-1.9.11.jar:/usr/share/zookeeper/commons-cli-
1.2.jar:/usr/src/java/lib/*.jar:/usr/etc/zookeeper"

ZOOCFG="$ZOOCFGDIR/zoo.cfg"
ZOO_LOG_DIR=/var/log/$NAME
USER=zookeeper
GROUP=zookeeper
PIDDIR=/var/run/$NAME
PIDFILE=$PIDDIR/$NAME.pid
SCRIPTNAME=/etc/init.d/$NAME
JAVA=/usr/bin/java
ZOOMAIN="org.apache.zookeeper.server.quorum.QuorumPeerMain"
ZOO_LOG4J_PROP="INFO,ROLLINGFILE"
JMXLOCALONLY=false
JAVA_OPTS="-Xms{{ cluster.get('xms','128M') }} \
    -Xmx{{ cluster.get('xmx','1G') }} \
    -Xloggc:/var/log/$NAME/zookeeper-gc.log \
    -XX:+UseGCLogFileRotation \
    -XX:NumberOfGCLogFiles=16 \
    -XX:GCLogFileSize=16M \
    -verbose:gc \
    -XX:+PrintGCTimeStamps \
    -XX:+PrintGCDateStamps \
    -XX:+PrintGCDetails
    -XX:+PrintTenuringDistribution \
    -XX:+PrintGCApplicationStoppedTime \
    -XX:+PrintGCApplicationConcurrentTime \
    -XX:+PrintSafepointStatistics \
    -XX:+UseParNewGC \
    -XX:+UseConcMarkSweepGC \
-XX:+CMSParallelRemarkEnabled"



[]

Server	configuration	parameters

This	section	contains	descriptions	of	server	settings	that	cannot	be	changed	at	the	session	or	query	level.

These	settings	are	stored	in	the	 config.xml 	file	on	the	ClickHouse	server.

Other	settings	are	described	in	the	"Settings	[#settings]"	section.

Before	studying	the	settings,	read	the	Configuration	files	[#configuration_files]	section	and	note	the	use	of	substitutions

(the	 incl 	and	 optional 	attributes).

Server	settings

[]

builtin_dictionaries_reload_interval

The	interval	in	seconds	before	reloading	built-in	dictionaries.

ClickHouse	reloads	built-in	dictionaries	every	x	seconds.	This	makes	it	possible	to	edit	dictionaries	"on	the	fly"	without

restarting	the	server.

Default	value:	3600.

Example

[]

compression

description "zookeeper-{{ cluster['name'] }} centralized coordination service"

start on runlevel [2345]
stop on runlevel [!2345]

respawn

limit nofile 8192 8192

pre-start script
    [ -r "/etc/zookeeper-{{ cluster['name'] }}/conf/environment" ] || exit 0
    . /etc/zookeeper-{{ cluster['name'] }}/conf/environment
    [ -d $ZOO_LOG_DIR ] || mkdir -p $ZOO_LOG_DIR
    chown $USER:$GROUP $ZOO_LOG_DIR
end script

script
    . /etc/zookeeper-{{ cluster['name'] }}/conf/environment
    [ -r /etc/default/zookeeper ] && . /etc/default/zookeeper
    if [ -z "$JMXDISABLE" ]; then
        JAVA_OPTS="$JAVA_OPTS -Dcom.sun.management.jmxremote -
Dcom.sun.management.jmxremote.local.only=$JMXLOCALONLY"
    fi
    exec start-stop-daemon --start -c $USER --exec $JAVA --name zookeeper-{{ cluster['name'] }} \
        -- -cp $CLASSPATH $JAVA_OPTS -Dzookeeper.log.dir=${ZOO_LOG_DIR} \
        -Dzookeeper.root.logger=${ZOO_LOG4J_PROP} $ZOOMAIN $ZOOCFG
end script

<builtin_dictionaries_reload_interval>3600</builtin_dictionaries_reload_interval>



Data	compression	settings.

The	configuration	looks	like	this:

You	can	configure	multiple	sections	 <case> .

Block	field	 <case> :

min_part_size 	–	The	minimum	size	of	a	table	part.

min_part_size_ratio 	–	The	ratio	of	the	minimum	size	of	a	table	part	to	the	full	size	of	the	table.

method 	–	Compression	method.	Acceptable	values	:	 lz4 	or	 zstd (experimental).

ClickHouse	checks	 min_part_size 	and	 min_part_size_ratio 	and	processes	the	 case 	blocks	that	match	these

conditions.	If	none	of	the	 <case> 	matches,	ClickHouse	applies	the	 lz4 	compression	algorithm.

Example

[]

default_database

The	default	database.

To	get	a	list	of	databases,	use	the	SHOW	DATABASES	[#query_language_queries_show_databases]	query.

Example

[]

default_profile

Default	settings	profile.

Settings	profiles	are	located	in	the	file	specified	in	the	parameter	user_config	[#server_settings-users_config].

Example

Warning

Don't	use	it	if	you	have	just	started	using	ClickHouse.



<compression>
    <case>
      <parameters/>
    </case>
    ...
</compression>

<compression incl="clickhouse_compression">
    <case>
        <min_part_size>10000000000</min_part_size>
        <min_part_size_ratio>0.01</min_part_size_ratio>
        <method>zstd</method>
    </case>
</compression>

<default_database>default</default_database>



[]

dictionaries_config

The	path	to	the	config	file	for	external	dictionaries.

Path:

Specify	the	absolute	path	or	the	path	relative	to	the	server	config	file.

The	path	can	contain	wildcards	*	and	?.

See	also	"External	dictionaries	[#dicts-external_dicts]".

Example

[]

dictionaries_lazy_load

Lazy	loading	of	dictionaries.

If	 true ,	then	each	dictionary	is	created	on	first	use.	If	dictionary	creation	failed,	the	function	that	was	using	the	dictionary

throws	an	exception.

If	 false ,	all	dictionaries	are	created	when	the	server	starts,	and	if	there	is	an	error,	the	server	shuts	down.

The	default	is	 true .

Example

[]

format_schema_path

The	path	to	the	directory	with	the	schemes	for	the	input	data,	such	as	schemas	for	the	CapnProto	[#format_capnproto]

format.

Example

[]

graphite

Sending	data	to	Graphite	[https://github.com/graphite-project].

Settings:

host	–	The	Graphite	server.

<default_profile>default</default_profile>

<dictionaries_config>*_dictionary.xml</dictionaries_config>

<dictionaries_lazy_load>true</dictionaries_lazy_load>

  <!-- Directory containing schema files for various input formats. -->
  <format_schema_path>format_schemas/</format_schema_path>

https://github.com/graphite-project


port	–	The	port	on	the	Graphite	server.

interval	–	The	interval	for	sending,	in	seconds.

timeout	–	The	timeout	for	sending	data,	in	seconds.

root_path	–	Prefix	for	keys.

metrics	–	Sending	data	from	a	:ref: system_tables-system.metrics 	table.

events	–	Sending	data	from	a	:ref: system_tables-system.events 	table.

asynchronous_metrics	–	Sending	data	from	a	:ref: system_tables-system.asynchronous_metrics 	table.

You	can	configure	multiple	 <graphite> 	clauses.	For	instance,	you	can	use	this	for	sending	different	data	at	different

intervals.

Example

[]

graphite_rollup

Settings	for	thinning	data	for	Graphite.

For	more	details,	see	GraphiteMergeTree	[#table_engines-graphitemergetree].

Example

[]

http_port/https_port

The	port	for	connecting	to	the	server	over	HTTP(s).

If	 https_port 	is	specified,	openSSL	[#server_settings-openSSL]	must	be	configured.

<graphite>
    <host>localhost</host>
    <port>42000</port>
    <timeout>0.1</timeout>
    <interval>60</interval>
    <root_path>one_min</root_path>
    <metrics>true</metrics>
    <events>true</events>
    <asynchronous_metrics>true</asynchronous_metrics>
</graphite>

<graphite_rollup_example>
    <default>
        <function>max</function>
        <retention>
            <age>0</age>
            <precision>60</precision>
        </retention>
        <retention>
            <age>3600</age>
            <precision>300</precision>
        </retention>
        <retention>
            <age>86400</age>
            <precision>3600</precision>
        </retention>
    </default>
</graphite_rollup_example>



If	 http_port 	is	specified,	the	openSSL	configuration	is	ignored	even	if	it	is	set.

Example

[]

http_server_default_response

The	page	that	is	shown	by	default	when	you	access	the	ClickHouse	HTTP(s)	server.

Example

Opens	 https://tabix.io/ 	when	accessing	 http://localhost:	http_port .

[]

include_from

The	path	to	the	file	with	substitutions.

For	more	information,	see	the	section	"Configuration	files	[#configuration_files]".

Example

[]

interserver_http_port

Port	for	exchanging	data	between	ClickHouse	servers.

Example

[]

interserver_http_host

The	host	name	that	can	be	used	by	other	servers	to	access	this	server.

If	omitted,	it	is	defined	in	the	same	way	as	the	hostname-f 	command.

Useful	for	breaking	away	from	a	specific	network	interface.

Example

[]

<https>0000</https>

<http_server_default_response>
  <![CDATA[<html ng-app="SMI2"><head><base href="http://ui.tabix.io/"></head><body><div ui-view="" 
class="content-ui"></div><script src="http://loader.tabix.io/master.js"></script></body></html>]]>
</http_server_default_response>

<include_from>/etc/metrica.xml</include_from>

<interserver_http_port>9009</interserver_http_port>

<interserver_http_host>example.yandex.ru</interserver_http_host>



keep_alive_timeout

The	number	of	seconds	that	ClickHouse	waits	for	incoming	requests	before	closing	the	connection.	Defaults	to	10	seconds

Example

[]

listen_host

Restriction	on	hosts	that	requests	can	come	from.	If	you	want	the	server	to	answer	all	of	them,	specify	:: .

Examples:

[]

logger

Logging	settings.

Keys:

level	–	Logging	level.	Acceptable	values:	 trace ,	 debug ,	 information ,	 warning ,	 error .

log	–	The	log	file.	Contains	all	the	entries	according	to	level .

errorlog	–	Error	log	file.

size	–	Size	of	the	file.	Applies	to	log and errorlog .	Once	the	file	reaches	size ,	ClickHouse	archives	and	renames	it,

and	creates	a	new	log	file	in	its	place.

count	–	The	number	of	archived	log	files	that	ClickHouse	stores.

Example

Writing	to	the	syslog	is	also	supported.	Config	example:

Keys:

<keep_alive_timeout>10</keep_alive_timeout>

<listen_host>::1</listen_host>
<listen_host>127.0.0.1</listen_host>

<logger>
    <level>trace</level>
    <log>/var/log/clickhouse-server/clickhouse-server.log</log>
    <errorlog>/var/log/clickhouse-server/clickhouse-server.err.log</errorlog>
    <size>1000M</size>
    <count>10</count>
</logger>

<logger>
    <use_syslog>1</use_syslog>
    <syslog>
        <address>syslog.remote:10514</address>
        <hostname>myhost.local</hostname>
        <facility>LOG_LOCAL6</facility>
        <format>syslog</format>
    </syslog>
</logger>



user_syslog	—	Required	setting	if	you	want	to	write	to	the	syslog.

address	—	The	host[:порт]	of	syslogd.	If	omitted,	the	local	daemon	is	used.

hostname	—	Optional.	The	name	of	the	host	that	logs	are	sent	from.

facility	—	The	syslog	facility	keyword	[https://en.wikipedia.org/wiki/Syslog#Facility]	in	uppercase	letters	with	the

"LOG_"	prefix:	( LOG_USER ,	 LOG_DAEMON ,	 LOG_LOCAL3 ,	and	so	on).	Default	value:	 LOG_USER 	if	 address 	is	specified,	

LOG_DAEMON	otherwise.

format	–	Message	format.	Possible	values:	 bsd 	and	 syslog.

[]

macros

Parameter	substitutions	for	replicated	tables.

Can	be	omitted	if	replicated	tables	are	not	used.

For	more	information,	see	the	section	"Creating	replicated	tables	[#table_engines-replication-creation_of_rep_tables]".

Example

[]

mark_cache_size

Approximate	size	(in	bytes)	of	the	cache	of	"marks"	used	by	MergeTree	[#table_engines-mergetree].

The	cache	is	shared	for	the	server	and	memory	is	allocated	as	needed.	The	cache	size	must	be	at	least	5368709120.

Example

[]

max_concurrent_queries

The	maximum	number	of	simultaneously	processed	requests.

Example

[]

max_connections

The	maximum	number	of	inbound	connections.

Example

[]

<macros incl="macros" optional="true" />

<mark_cache_size>5368709120</mark_cache_size>

<max_concurrent_queries>100</max_concurrent_queries>

<max_connections>4096</max_connections>

https://en.wikipedia.org/wiki/Syslog#Facility


max_open_files

The	maximum	number	of	open	files.

By	default:	 maximum .

We	recommend	using	this	option	in	Mac	OS	X,	since	the	 getrlimit() 	function	returns	an	incorrect	value.

Example

[]

max_table_size_to_drop

Restriction	on	deleting	tables.

If	the	size	of	a	MergeTree	[#table_engines-mergetree]	table	exceeds	 max_table_size_to_drop 	(in	bytes),	you	can't	delete

it	using	a	DROP	query.

If	you	still	need	to	delete	the	table	without	restarting	the	ClickHouse	server,	create	the	<clickhouse-

path>/flags/force_drop_table 	file	and	run	the	DROP	query.

Default	value:	50	GB.

The	value	0	means	that	you	can	delete	all	tables	without	any	restrictions.

Example

[]

merge_tree

Fine	tuning	for	tables	in	the	MergeTree	[#table_engines-mergetree].

For	more	information,	see	the	MergeTreeSettings.h	header	file.

Example

[]

openSSL

SSL	client/server	configuration.

Support	for	SSL	is	provided	by	the	 libpoco 	library.	The	interface	is	described	in	the	file	SSLManager.h

[https://github.com/ClickHouse-Extras/poco/blob/master/NetSSL_OpenSSL/include/Poco/Net/SSLManager.h]

Keys	for	server/client	settings:

privateKeyFile	–	The	path	to	the	file	with	the	secret	key	of	the	PEM	certificate.	The	file	may	contain	a	key	and	certificate

<max_open_files>262144</max_open_files>

<max_table_size_to_drop>0</max_table_size_to_drop>

<merge_tree>
    <max_suspicious_broken_parts>5</max_suspicious_broken_parts>
</merge_tree>

https://github.com/ClickHouse-Extras/poco/blob/master/NetSSL_OpenSSL/include/Poco/Net/SSLManager.h


at	the	same	time.

certificateFile	–	The	path	to	the	client/server	certificate	file	in	PEM	format.	You	can	omit	it	if	privateKeyFile 	contains

the	certificate.

caConfig	–	The	path	to	the	file	or	directory	that	contains	trusted	root	certificates.

verificationMode	–	The	method	for	checking	the	node's	certificates.	Details	are	in	the	description	of	the	Context

[https://github.com/ClickHouse-Extras/poco/blob/master/NetSSL_OpenSSL/include/Poco/Net/Context.h]	class.

Possible	values:	 none ,	 relaxed ,	 strict ,	 once .

verificationDepth	–	The	maximum	length	of	the	verification	chain.	Verification	will	fail	if	the	certificate	chain	length

exceeds	the	set	value.

loadDefaultCAFile	–	Indicates	that	built-in	CA	certificates	for	OpenSSL	will	be	used.	Acceptable	values:	true ,	 false .	|

cipherList	–	Supported	OpenSSL	encryptions.	For	example:	 ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH .

cacheSessions	–	Enables	or	disables	caching	sessions.	Must	be	used	in	combination	with	sessionIdContext .

Acceptable	values:	 true ,	 false .

sessionIdContext	–	A	unique	set	of	random	characters	that	the	server	appends	to	each	generated	identifier.	The

length	of	the	string	must	not	exceed	 SSL_MAX_SSL_SESSION_ID_LENGTH .	This	parameter	is	always	recommended,

since	it	helps	avoid	problems	both	if	the	server	caches	the	session	and	if	the	client	requested	caching.	Default	value:	

${application.name} .

sessionCacheSize	–	The	maximum	number	of	sessions	that	the	server	caches.	Default	value:	1024*20.	0	–	Unlimited

sessions.

sessionTimeout	–	Time	for	caching	the	session	on	the	server.

extendedVerification	–	Automatically	extended	verification	of	certificates	after	the	session	ends.	Acceptable	values:	

true ,	 false .

requireTLSv1	–	Require	a	TLSv1	connection.	Acceptable	values:	 true ,	 false .

requireTLSv1_1	–	Require	a	TLSv1.1	connection.	Acceptable	values:	true ,	 false .

requireTLSv1	–	Require	a	TLSv1.2	connection.	Acceptable	values:	 true ,	 false .

fips	–	Activates	OpenSSL	FIPS	mode.	Supported	if	the	library's	OpenSSL	version	supports	FIPS.

privateKeyPassphraseHandler	–	Class	(PrivateKeyPassphraseHandler	subclass)	that	requests	the	passphrase	for

accessing	the	private	key.	For	example:	 <privateKeyPassphraseHandler> ,	 <name>KeyFileHandler</name> ,	

<options><password>test</password></options> ,	 </privateKeyPassphraseHandler> .

invalidCertificateHandler	–	Class	(subclass	of	CertificateHandler)	for	verifying	invalid	certificates.	For	example:	

<invalidCertificateHandler>	<name>ConsoleCertificateHandler</name>		</invalidCertificateHandler> 	.

disableProtocols	–	Protocols	that	are	not	allowed	to	use.

preferServerCiphers	–	Preferred	server	ciphers	on	the	client.

Example	of	settings:

https://github.com/ClickHouse-Extras/poco/blob/master/NetSSL_OpenSSL/include/Poco/Net/Context.h


[]

part_log

Logging	events	that	are	associated	with	MergeTree	[#table_engines-mergetree].	For	instance,	adding	or	merging	data.

You	can	use	the	log	to	simulate	merge	algorithms	and	compare	their	characteristics.	You	can	visualize	the	merge	process.

Queries	are	logged	in	the	ClickHouse	table,	not	in	a	separate	file.

Columns	in	the	log:

event_time	–	Date	of	the	event.

duration_ms	–	Duration	of	the	event.

event_type	–	Type	of	event.	1	–	new	data	part;	2	–	merge	result;	3	–	data	part	downloaded	from	replica;	4	–	data	part

deleted.

database_name	–	The	name	of	the	database.

table_name	–	Name	of	the	table.

part_name	–	Name	of	the	data	part.

partition_id	–	The	identifier	of	the	partition.

size_in_bytes	–	Size	of	the	data	part	in	bytes.

merged_from	–	An	array	of	names	of	data	parts	that	make	up	the	merge	(also	used	when	downloading	a	merged	part).

merge_time_ms	–	Time	spent	on	the	merge.

Use	the	following	parameters	to	configure	logging:

database	–	Name	of	the	database.

table	–	Name	of	the	table.

partition_by	–	Sets	a	custom	partitioning	key	[#custom-partitioning-key].

flush_interval_milliseconds	–	Interval	for	flushing	data	from	the	buffer	in	memory	to	the	table.

Example

<openSSL>
    <server>
        <!-- openssl req -subj "/CN=localhost" -new -newkey rsa:2048 -days 365 -nodes -x509 -keyout 
/etc/clickhouse-server/server.key -out /etc/clickhouse-server/server.crt -->
        <certificateFile>/etc/clickhouse-server/server.crt</certificateFile>
        <privateKeyFile>/etc/clickhouse-server/server.key</privateKeyFile>
        <!-- openssl dhparam -out /etc/clickhouse-server/dhparam.pem 4096 -->
        <dhParamsFile>/etc/clickhouse-server/dhparam.pem</dhParamsFile>
        <verificationMode>none</verificationMode>
        <loadDefaultCAFile>true</loadDefaultCAFile>
        <cacheSessions>true</cacheSessions>
        <disableProtocols>sslv2,sslv3</disableProtocols>
        <preferServerCiphers>true</preferServerCiphers>
    </server>
    <client>
        <loadDefaultCAFile>true</loadDefaultCAFile>
        <cacheSessions>true</cacheSessions>
        <disableProtocols>sslv2,sslv3</disableProtocols>
        <preferServerCiphers>true</preferServerCiphers>
        <!-- Use for self-signed: <verificationMode>none</verificationMode> -->
        <invalidCertificateHandler>
            <!-- Use for self-signed: <name>AcceptCertificateHandler</name> -->
            <name>RejectCertificateHandler</name>
        </invalidCertificateHandler>
    </client>
</openSSL>



[]

path

The	path	to	the	directory	containing	data.

Example

[]

query_log

Setting	for	logging	queries	received	with	the	log_queries=1	[#settings_settings-log_queries]	setting.

Queries	are	logged	in	the	ClickHouse	table,	not	in	a	separate	file.

Use	the	following	parameters	to	configure	logging:

database	–	Name	of	the	database.

table	–	Name	of	the	table.

partition_by	–	Sets	a	custom	partitioning	key	[#custom-partitioning-key].

flush_interval_milliseconds	–	Interval	for	flushing	data	from	the	buffer	in	memory	to	the	table.

If	the	table	doesn't	exist,	ClickHouse	will	create	it.	If	the	structure	of	the	query	log	changed	when	the	ClickHouse	server	was

updated,	the	table	with	the	old	structure	is	renamed,	and	a	new	table	is	created	automatically.

Example

[]

remote_servers

Configuration	of	clusters	used	by	the	Distributed	table	engine.

For	more	information,	see	the	section	"Table	engines/Distributed	[#table_engines-distributed]".

Example

<part_log>
    <database>system</database>
    <table>part_log</table>
    <partition_by>toMonday(event_date)</partition_by>
    <flush_interval_milliseconds>7500</flush_interval_milliseconds>
</part_log>

Note

The	trailing	slash	is	mandatory.



<path>/var/lib/clickhouse/</path>

<query_log>
    <database>system</database>
    <table>query_log</table>
    <partition_by>toMonday(event_date)</partition_by>
    <flush_interval_milliseconds>7500</flush_interval_milliseconds>
</query_log>



For	the	value	of	the	incl 	attribute,	see	the	section	"Configuration	files	[#configuration_files]".

[]

timezone

The	server's	time	zone.

Specified	as	an	IANA	identifier	for	the	UTC	time	zone	or	geographic	location	(for	example,	Africa/Abidjan).

The	time	zone	is	necessary	for	conversions	between	String	and	DateTime	formats	when	DateTime	fields	are	output	to	text

format	(printed	on	the	screen	or	in	a	file),	and	when	getting	DateTime	from	a	string.	In	addition,	the	time	zone	is	used	in

functions	that	work	with	the	time	and	date	if	they	didn't	receive	the	time	zone	in	the	input	parameters.

Example

[]

tcp_port

Port	for	communicating	with	clients	over	the	TCP	protocol.

Example

[]

tmp_path

Path	to	temporary	data	for	processing	large	queries.

Example

[]

uncompressed_cache_size

Cache	size	(in	bytes)	for	uncompressed	data	used	by	table	engines	from	the	MergeTree	[#table_engines-mergetree].

There	is	one	shared	cache	for	the	server.	Memory	is	allocated	on	demand.	The	cache	is	used	if	the	option

use_uncompressed_cache	[#settings-use_uncompressed_cache]	is	enabled.

The	uncompressed	cache	is	advantageous	for	very	short	queries	in	individual	cases.

Example

<remote_servers incl="clickhouse_remote_servers" />

<timezone>Europe/Moscow</timezone>

<tcp_port>9000</tcp_port>

Note

The	trailing	slash	is	mandatory.



<tmp_path>/var/lib/clickhouse/tmp/</tmp_path>



user_files_path

The	directory	with	user	files.	Used	in	the	table	function	file()	[#table_functions-file].

Example

[]

users_config

Path	to	the	file	that	contains:

User	configurations.

Access	rights.

Settings	profiles.

Quota	settings.

Example

[]

zookeeper

Configuration	of	ZooKeeper	servers.

ClickHouse	uses	ZooKeeper	for	storing	replica	metadata	when	using	replicated	tables.

This	parameter	can	be	omitted	if	replicated	tables	are	not	used.

For	more	information,	see	the	section	"Replication	[#table_engines-replication]".

Example

[]

Settings

There	are	multiple	ways	to	make	all	the	settings	described	below.	Settings	are	configured	in	layers,	so	each	subsequent

layer	redefines	the	previous	settings.

Ways	to	configure	settings,	in	order	of	priority:

Settings	in	the	 users.xml 	server	configuration	file.

Set	in	the	element	 <profiles> .

Session	settings.

<uncompressed_cache_size>8589934592</uncompressed_cache_size>

<user_files_path>/var/lib/clickhouse/user_files/</user_files_path>

<users_config>users.xml</users_config>

<zookeeper incl="zookeeper-servers" optional="true" />



Send	 SET	setting=value 	from	the	ClickHouse	console	client	in	interactive	mode.	Similarly,	you	can	use	ClickHouse

sessions	in	the	HTTP	protocol.	To	do	this,	you	need	to	specify	the	 session_id 	HTTP	parameter.

Query	settings.

When	starting	the	ClickHouse	console	client	in	non-interactive	mode,	set	the	startup	parameter	--setting=value .

When	using	the	HTTP	API,	pass	CGI	parameters	( URL?setting_1=value&setting_2=value... ).

Settings	that	can	only	be	made	in	the	server	config	file	are	not	covered	in	this	section.

[]

Permissions	for	queries

Queries	in	ClickHouse	can	be	divided	into	several	groups:

1.	 Read	data	queries:	 SELECT ,	 SHOW ,	 DESCRIBE ,	 EXISTS .

2.	 Write	data	queries:	 INSERT ,	 OPTIMIZE .

3.	 Change	settings	queries:	 SET ,	 USE .

4.	 DDL	[https://en.wikipedia.org/wiki/Data_definition_language]	queries:	 CREATE ,	 ALTER ,	 RENAME ,	 ATTACH ,	 DETACH ,	

DROP 	 TRUNCATE .

5.	 Particular	queries:	 KILL	QUERY .

The	following	settings	regulate	user	permissions	for	the	groups	of	queries:

readonly	[#settings_readonly]	—	Restricts	permissions	for	all	groups	of	queries	excepting	DDL.

allow_ddl	[#settings_allow_ddl]	—	Restricts	permissions	for	DDL	queries.

KILL	QUERY 	performs	with	any	settings.

[]

readonly

Restricts	permissions	for	read	data,	write	data	and	change	settings	queries.

See	above	[#permissions_for_queries]	for	the	division	of	queries	into	groups.

Possible	values

0	—	All	queries	are	allowed.	Default	value.

1	—	Read	data	queries	only	are	allowed.

2	—	Read	data	and	change	settings	queries	are	allowed.

After	setting	 readonly	=	1 ,	a	user	can't	change	 readonly 	and	 allow_ddl 	settings	in	the	current	session.

When	using	the	 GET 	method	in	the	HTTP	interface	[#http_interface],	 readonly	=	1 	is	set	automatically.	To	modify	data

use	the	 POST 	method.

[]

allow_ddl

Allows/denies	DDL	[https://en.wikipedia.org/wiki/Data_definition_language]	queries.

See	above	[#permissions_for_queries]	for	the	division	of	queries	into	groups.

https://en.wikipedia.org/wiki/Data_definition_language
https://en.wikipedia.org/wiki/Data_definition_language


Possible	values

0	—	DDL	queries	are	not	allowed.

1	—	DDL	queries	are	allowed.	Default	value.

You	can	not	execute	 SET	allow_ddl	=	1 	if	 allow_ddl	=	0 	for	current	session.

Restrictions	on	query	complexity

Restrictions	on	query	complexity	are	part	of	the	settings.	They	are	used	in	order	to	provide	safer	execution	from	the	user

interface.	Almost	all	the	restrictions	only	apply	to	 SELECT .	For	distributed	query	processing,	restrictions	are	applied	on

each	server	separately.

ClickHouse	checks	the	restrictions	for	data	parts,	not	for	each	row.	It	means	that	you	can	exceed	the	value	of	restriction

with	a	size	of	the	data	part.

Restrictions	on	the	"maximum	amount	of	something"	can	take	the	value	0,	which	means	"unrestricted".	Most	restrictions

also	have	an	'overflow_mode'	setting,	meaning	what	to	do	when	the	limit	is	exceeded.	It	can	take	one	of	two	values:	 throw

or	 break .	Restrictions	on	aggregation	(group_by_overflow_mode)	also	have	the	value	 any .

throw 	–	Throw	an	exception	(default).

break 	–	Stop	executing	the	query	and	return	the	partial	result,	as	if	the	source	data	ran	out.

any	(only	for	group_by_overflow_mode) 	–	Continuing	aggregation	for	the	keys	that	got	into	the	set,	but	don't	add	new

keys	to	the	set.

[]

max_memory_usage

The	maximum	amount	of	RAM	to	use	for	running	a	query	on	a	single	server.

In	the	default	configuration	file,	the	maximum	is	10	GB.

The	setting	doesn't	consider	the	volume	of	available	memory	or	the	total	volume	of	memory	on	the	machine.	The

restriction	applies	to	a	single	query	within	a	single	server.	You	can	use	 SHOW	PROCESSLIST 	to	see	the	current	memory

consumption	for	each	query.	In	addition,	the	peak	memory	consumption	is	tracked	for	each	query	and	written	to	the	log.

Memory	usage	is	not	monitored	for	the	states	of	certain	aggregate	functions.

Memory	usage	is	not	fully	tracked	for	states	of	the	aggregate	functions	min ,	 max ,	 any ,	 anyLast ,	 argMin ,	 argMax 	from	

String 	and	 Array 	arguments.

Memory	consumption	is	also	restricted	by	the	parameters	 max_memory_usage_for_user 	and	

max_memory_usage_for_all_queries .

max_memory_usage_for_user

The	maximum	amount	of	RAM	to	use	for	running	a	user's	queries	on	a	single	server.

Default	values	are	defined	in	Settings.h

[https://github.com/yandex/ClickHouse/blob/master/dbms/src/Interpreters/Settings.h#L244].	By	default,	the	amount	is

not	restricted	( max_memory_usage_for_user	=	0 ).

See	also	the	description	of	max_memory_usage	[#settings_max_memory_usage].

https://github.com/yandex/ClickHouse/blob/master/dbms/src/Interpreters/Settings.h#L244


max_memory_usage_for_all_queries

The	maximum	amount	of	RAM	to	use	for	running	all	queries	on	a	single	server.

Default	values	are	defined	in	Settings.h

[https://github.com/yandex/ClickHouse/blob/master/dbms/src/Interpreters/Settings.h#L245].	By	default,	the	amount	is

not	restricted	( max_memory_usage_for_all_queries	=	0 ).

See	also	the	description	of	max_memory_usage	[#settings_max_memory_usage].

max_rows_to_read

The	following	restrictions	can	be	checked	on	each	block	(instead	of	on	each	row).	That	is,	the	restrictions	can	be	broken	a

little.	When	running	a	query	in	multiple	threads,	the	following	restrictions	apply	to	each	thread	separately.

Maximum	number	of	rows	that	can	be	read	from	a	table	when	running	a	query.

max_bytes_to_read

Maximum	number	of	bytes	(uncompressed	data)	that	can	be	read	from	a	table	when	running	a	query.

read_overflow_mode

What	to	do	when	the	volume	of	data	read	exceeds	one	of	the	limits:	'throw'	or	'break'.	By	default,	throw.

max_rows_to_group_by

Maximum	number	of	unique	keys	received	from	aggregation.	This	setting	lets	you	limit	memory	consumption	when

aggregating.

group_by_overflow_mode

What	to	do	when	the	number	of	unique	keys	for	aggregation	exceeds	the	limit:	'throw',	'break',	or	'any'.	By	default,	throw.

Using	the	'any'	value	lets	you	run	an	approximation	of	GROUP	BY.	The	quality	of	this	approximation	depends	on	the

statistical	nature	of	the	data.

max_rows_to_sort

Maximum	number	of	rows	before	sorting.	This	allows	you	to	limit	memory	consumption	when	sorting.

max_bytes_to_sort

Maximum	number	of	bytes	before	sorting.

sort_overflow_mode

What	to	do	if	the	number	of	rows	received	before	sorting	exceeds	one	of	the	limits:	'throw'	or	'break'.	By	default,	throw.

max_result_rows

Limit	on	the	number	of	rows	in	the	result.	Also	checked	for	subqueries,	and	on	remote	servers	when	running	parts	of	a

distributed	query.

https://github.com/yandex/ClickHouse/blob/master/dbms/src/Interpreters/Settings.h#L245


max_result_bytes

Limit	on	the	number	of	bytes	in	the	result.	The	same	as	the	previous	setting.

result_overflow_mode

What	to	do	if	the	volume	of	the	result	exceeds	one	of	the	limits:	'throw'	or	'break'.	By	default,	throw.	Using	'break'	is	similar

to	using	LIMIT.

max_execution_time

Maximum	query	execution	time	in	seconds.	At	this	time,	it	is	not	checked	for	one	of	the	sorting	stages,	or	when	merging

and	finalizing	aggregate	functions.

timeout_overflow_mode

What	to	do	if	the	query	is	run	longer	than	'max_execution_time':	'throw'	or	'break'.	By	default,	throw.

min_execution_speed

Minimal	execution	speed	in	rows	per	second.	Checked	on	every	data	block	when

'timeout_before_checking_execution_speed'	expires.	If	the	execution	speed	is	lower,	an	exception	is	thrown.

timeout_before_checking_execution_speed

Checks	that	execution	speed	is	not	too	slow	(no	less	than	'min_execution_speed'),	after	the	specified	time	in	seconds	has

expired.

max_columns_to_read

Maximum	number	of	columns	that	can	be	read	from	a	table	in	a	single	query.	If	a	query	requires	reading	a	greater	number

of	columns,	it	throws	an	exception.

max_temporary_columns

Maximum	number	of	temporary	columns	that	must	be	kept	in	RAM	at	the	same	time	when	running	a	query,	including

constant	columns.	If	there	are	more	temporary	columns	than	this,	it	throws	an	exception.

max_temporary_non_const_columns

The	same	thing	as	'max_temporary_columns',	but	without	counting	constant	columns.	Note	that	constant	columns	are

formed	fairly	often	when	running	a	query,	but	they	require	approximately	zero	computing	resources.

max_subquery_depth

Maximum	nesting	depth	of	subqueries.	If	subqueries	are	deeper,	an	exception	is	thrown.	By	default,	100.

max_pipeline_depth

Maximum	pipeline	depth.	Corresponds	to	the	number	of	transformations	that	each	data	block	goes	through	during	query

processing.	Counted	within	the	limits	of	a	single	server.	If	the	pipeline	depth	is	greater,	an	exception	is	thrown.	By	default,

1000.



max_ast_depth

Maximum	nesting	depth	of	a	query	syntactic	tree.	If	exceeded,	an	exception	is	thrown.	At	this	time,	it	isn't	checked	during

parsing,	but	only	after	parsing	the	query.	That	is,	a	syntactic	tree	that	is	too	deep	can	be	created	during	parsing,	but	the

query	will	fail.	By	default,	1000.

max_ast_elements

Maximum	number	of	elements	in	a	query	syntactic	tree.	If	exceeded,	an	exception	is	thrown.	In	the	same	way	as	the

previous	setting,	it	is	checked	only	after	parsing	the	query.	By	default,	10,000.

max_rows_in_set

Maximum	number	of	rows	for	a	data	set	in	the	IN	clause	created	from	a	subquery.

max_bytes_in_set

Maximum	number	of	bytes	(uncompressed	data)	used	by	a	set	in	the	IN	clause	created	from	a	subquery.

set_overflow_mode

What	to	do	when	the	amount	of	data	exceeds	one	of	the	limits:	'throw'	or	'break'.	By	default,	throw.

max_rows_in_distinct

Maximum	number	of	different	rows	when	using	DISTINCT.

max_bytes_in_distinct

Maximum	number	of	bytes	used	by	a	hash	table	when	using	DISTINCT.

distinct_overflow_mode

What	to	do	when	the	amount	of	data	exceeds	one	of	the	limits:	'throw'	or	'break'.	By	default,	throw.

max_rows_to_transfer

Maximum	number	of	rows	that	can	be	passed	to	a	remote	server	or	saved	in	a	temporary	table	when	using	GLOBAL	IN.

max_bytes_to_transfer

Maximum	number	of	bytes	(uncompressed	data)	that	can	be	passed	to	a	remote	server	or	saved	in	a	temporary	table	when

using	GLOBAL	IN.

transfer_overflow_mode

What	to	do	when	the	amount	of	data	exceeds	one	of	the	limits:	'throw'	or	'break'.	By	default,	throw.

Settings

[]



distributed_product_mode

Changes	the	behavior	of	distributed	subqueries	[#queries-distributed-subrequests].

ClickHouse	applies	this	setting	when	the	query	contains	the	product	of	distributed	tables,	i.e.	when	the	query	for	a

distributed	table	contains	a	non-GLOBAL	subquery	for	the	distributed	table.

Restrictions:

Only	applied	for	IN	and	JOIN	subqueries.

Only	if	the	FROM	section	uses	a	distributed	table	containing	more	than	one	shard.

If	the	subquery	concerns	a	distributed	table	containing	more	than	one	shard,

Not	used	for	a	table-valued	remote	[#table_functions-remote]	function.

The	possible	values	are:

deny 	—	Default	value.	Prohibits	using	these	types	of	subqueries	(returns	the	"Double-distributed	in/JOIN	subqueries

is	denied"	exception).

local 	—	Replaces	the	database	and	table	in	the	subquery	with	local	ones	for	the	destination	server	(shard),	leaving

the	normal	 IN 	/	 JOIN.

global 	—	Replaces	the	 IN 	/	 JOIN 	query	with	 GLOBAL	IN 	/	 GLOBAL	JOIN.

allow 	—	Allows	the	use	of	these	types	of	subqueries.

[]

fallback_to_stale_replicas_for_distributed_queries

Forces	a	query	to	an	out-of-date	replica	if	updated	data	is	not	available.	See	"Replication	[#table_engines-replication]".

ClickHouse	selects	the	most	relevant	from	the	outdated	replicas	of	the	table.

Used	when	performing	 SELECT 	from	a	distributed	table	that	points	to	replicated	tables.

By	default,	1	(enabled).

[]

force_index_by_date

Disables	query	execution	if	the	index	can't	be	used	by	date.

Works	with	tables	in	the	MergeTree	family.

If	 force_index_by_date=1 ,	ClickHouse	checks	whether	the	query	has	a	date	key	condition	that	can	be	used	for	restricting

data	ranges.	If	there	is	no	suitable	condition,	it	throws	an	exception.	However,	it	does	not	check	whether	the	condition

actually	reduces	the	amount	of	data	to	read.	For	example,	the	condition	 Date	!=	'	2000-01-01	' 	is	acceptable	even

when	it	matches	all	the	data	in	the	table	(i.e.,	running	the	query	requires	a	full	scan).	For	more	information	about	ranges	of

data	in	MergeTree	tables,	see	"MergeTree	[#table_engines-mergetree]".

[]

force_primary_key

Disables	query	execution	if	indexing	by	the	primary	key	is	not	possible.

Works	with	tables	in	the	MergeTree	family.



If	 force_primary_key=1 ,	ClickHouse	checks	to	see	if	the	query	has	a	primary	key	condition	that	can	be	used	for	restricting

data	ranges.	If	there	is	no	suitable	condition,	it	throws	an	exception.	However,	it	does	not	check	whether	the	condition

actually	reduces	the	amount	of	data	to	read.	For	more	information	about	data	ranges	in	MergeTree	tables,	see	"MergeTree

[#table_engines-mergetree]".

[]

fsync_metadata

Enable	or	disable	fsync	when	writing	.sql	files.	Enabled	by	default.

It	makes	sense	to	disable	it	if	the	server	has	millions	of	tiny	table	chunks	that	are	constantly	being	created	and	destroyed.

input_format_allow_errors_num

Sets	the	maximum	number	of	acceptable	errors	when	reading	from	text	formats	(CSV,	TSV,	etc.).

The	default	value	is	0.

Always	pair	it	with	 input_format_allow_errors_ratio .	To	skip	errors,	both	settings	must	be	greater	than	0.

If	an	error	occurred	while	reading	rows	but	the	error	counter	is	still	less	than	input_format_allow_errors_num ,

ClickHouse	ignores	the	row	and	moves	on	to	the	next	one.

If	 input_format_allow_errors_num is	exceeded,	ClickHouse	throws	an	exception.

input_format_allow_errors_ratio

Sets	the	maximum	percentage	of	errors	allowed	when	reading	from	text	formats	(CSV,	TSV,	etc.).	The	percentage	of	errors

is	set	as	a	floating-point	number	between	0	and	1.

The	default	value	is	0.

Always	pair	it	with	 input_format_allow_errors_num .	To	skip	errors,	both	settings	must	be	greater	than	0.

If	an	error	occurred	while	reading	rows	but	the	error	counter	is	still	less	than	input_format_allow_errors_ratio ,

ClickHouse	ignores	the	row	and	moves	on	to	the	next	one.

If	 input_format_allow_errors_ratio 	is	exceeded,	ClickHouse	throws	an	exception.

max_block_size

In	ClickHouse,	data	is	processed	by	blocks	(sets	of	column	parts).	The	internal	processing	cycles	for	a	single	block	are

efficient	enough,	but	there	are	noticeable	expenditures	on	each	block.	 max_block_size 	is	a	recommendation	for	what	size

of	block	(in	number	of	rows)	to	load	from	tables.	The	block	size	shouldn't	be	too	small,	so	that	the	expenditures	on	each

block	are	still	noticeable,	but	not	too	large,	so	that	the	query	with	LIMIT	that	is	completed	after	the	first	block	is	processed

quickly,	so	that	too	much	memory	isn't	consumed	when	extracting	a	large	number	of	columns	in	multiple	threads,	and	so

that	at	least	some	cache	locality	is	preserved.

By	default,	65,536.

Blocks	the	size	of	 max_block_size 	are	not	always	loaded	from	the	table.	If	it	is	obvious	that	less	data	needs	to	be

retrieved,	a	smaller	block	is	processed.

preferred_block_size_bytes



Used	for	the	same	purpose	as	max_block_size ,	but	it	sets	the	recommended	block	size	in	bytes	by	adapting	it	to	the

number	of	rows	in	the	block.	However,	the	block	size	cannot	be	more	than	 max_block_size 	rows.	Disabled	by	default	(set

to	0).	It	only	works	when	reading	from	MergeTree	engines.

[]

log_queries

Setting	up	query	logging.

Queries	sent	to	ClickHouse	with	this	setup	are	logged	according	to	the	rules	in	the	query_log	[#server_settings-query_log]

server	configuration	parameter.

Example:

[]

max_insert_block_size

The	size	of	blocks	to	form	for	insertion	into	a	table.	This	setting	only	applies	in	cases	when	the	server	forms	the	blocks.	For

example,	for	an	INSERT	via	the	HTTP	interface,	the	server	parses	the	data	format	and	forms	blocks	of	the	specified	size.

But	when	using	clickhouse-client,	the	client	parses	the	data	itself,	and	the	'max_insert_block_size'	setting	on	the	server

doesn't	affect	the	size	of	the	inserted	blocks.	The	setting	also	doesn't	have	a	purpose	when	using	INSERT	SELECT,	since

data	is	inserted	using	the	same	blocks	that	are	formed	after	SELECT.

By	default,	it	is	1,048,576.

This	is	slightly	more	than	 max_block_size .	The	reason	for	this	is	because	certain	table	engines	( *MergeTree )	form	a	data

part	on	the	disk	for	each	inserted	block,	which	is	a	fairly	large	entity.	Similarly,	 *MergeTree 	tables	sort	data	during

insertion,	and	a	large	enough	block	size	allows	sorting	more	data	in	RAM.

[]

max_replica_delay_for_distributed_queries

Disables	lagging	replicas	for	distributed	queries.	See	"Replication	[#table_engines-replication]".

Sets	the	time	in	seconds.	If	a	replica	lags	more	than	the	set	value,	this	replica	is	not	used.

Default	value:	0	(off).

Used	when	performing	 SELECT 	from	a	distributed	table	that	points	to	replicated	tables.

max_threads

The	maximum	number	of	query	processing	threads

excluding	threads	for	retrieving	data	from	remote	servers	(see	the	'max_distributed_connections'	parameter).

This	parameter	applies	to	threads	that	perform	the	same	stages	of	the	query	processing	pipeline	in	parallel.	For	example,	if

reading	from	a	table,	evaluating	expressions	with	functions,	filtering	with	WHERE	and	pre-aggregating	for	GROUP	BY	can

all	be	done	in	parallel	using	at	least	'max_threads'	number	of	threads,	then	'max_threads'	are	used.

By	default,	8.

log_queries=1



If	less	than	one	SELECT	query	is	normally	run	on	a	server	at	a	time,	set	this	parameter	to	a	value	slightly	less	than	the	actual

number	of	processor	cores.

For	queries	that	are	completed	quickly	because	of	a	LIMIT,	you	can	set	a	lower	'max_threads'.	For	example,	if	the	necessary

number	of	entries	are	located	in	every	block	and	max_threads	=	8,	8	blocks	are	retrieved,	although	it	would	have	been

enough	to	read	just	one.

The	smaller	the	 max_threads 	value,	the	less	memory	is	consumed.

max_compress_block_size

The	maximum	size	of	blocks	of	uncompressed	data	before	compressing	for	writing	to	a	table.	By	default,	1,048,576	(1

MiB).	If	the	size	is	reduced,	the	compression	rate	is	significantly	reduced,	the	compression	and	decompression	speed

increases	slightly	due	to	cache	locality,	and	memory	consumption	is	reduced.	There	usually	isn't	any	reason	to	change	this

setting.

Don't	confuse	blocks	for	compression	(a	chunk	of	memory	consisting	of	bytes)	and	blocks	for	query	processing	(a	set	of

rows	from	a	table).

min_compress_block_size

For	MergeTree	[#table_engines-mergetree]"	tables.	In	order	to	reduce	latency	when	processing	queries,	a	block	is

compressed	when	writing	the	next	mark	if	its	size	is	at	least	'min_compress_block_size'.	By	default,	65,536.

The	actual	size	of	the	block,	if	the	uncompressed	data	is	less	than	'max_compress_block_size',	is	no	less	than	this	value	and

no	less	than	the	volume	of	data	for	one	mark.

Let's	look	at	an	example.	Assume	that	'index_granularity'	was	set	to	8192	during	table	creation.

We	are	writing	a	UInt32-type	column	(4	bytes	per	value).	When	writing	8192	rows,	the	total	will	be	32	KB	of	data.	Since

min_compress_block_size	=	65,536,	a	compressed	block	will	be	formed	for	every	two	marks.

We	are	writing	a	URL	column	with	the	String	type	(average	size	of	60	bytes	per	value).	When	writing	8192	rows,	the	average

will	be	slightly	less	than	500	KB	of	data.	Since	this	is	more	than	65,536,	a	compressed	block	will	be	formed	for	each	mark.	In

this	case,	when	reading	data	from	the	disk	in	the	range	of	a	single	mark,	extra	data	won't	be	decompressed.

There	usually	isn't	any	reason	to	change	this	setting.

max_query_size

The	maximum	part	of	a	query	that	can	be	taken	to	RAM	for	parsing	with	the	SQL	parser.	The	INSERT	query	also	contains

data	for	INSERT	that	is	processed	by	a	separate	stream	parser	(that	consumes	O(1)	RAM),	which	is	not	included	in	this

restriction.

The	default	is	256	KiB.

interactive_delay

The	interval	in	microseconds	for	checking	whether	request	execution	has	been	canceled	and	sending	the	progress.

By	default,	100,000	(check	for	canceling	and	send	progress	ten	times	per	second).

connect_timeout

receive_timeout



send_timeout

Timeouts	in	seconds	on	the	socket	used	for	communicating	with	the	client.

By	default,	10,	300,	300.

poll_interval

Lock	in	a	wait	loop	for	the	specified	number	of	seconds.

By	default,	10.

max_distributed_connections

The	maximum	number	of	simultaneous	connections	with	remote	servers	for	distributed	processing	of	a	single	query	to	a

single	Distributed	table.	We	recommend	setting	a	value	no	less	than	the	number	of	servers	in	the	cluster.

By	default,	100.

The	following	parameters	are	only	used	when	creating	Distributed	tables	(and	when	launching	a	server),	so	there	is	no

reason	to	change	them	at	runtime.

distributed_connections_pool_size

The	maximum	number	of	simultaneous	connections	with	remote	servers	for	distributed	processing	of	all	queries	to	a

single	Distributed	table.	We	recommend	setting	a	value	no	less	than	the	number	of	servers	in	the	cluster.

By	default,	128.

connect_timeout_with_failover_ms

The	timeout	in	milliseconds	for	connecting	to	a	remote	server	for	a	Distributed	table	engine,	if	the	'shard'	and	'replica'

sections	are	used	in	the	cluster	definition.	If	unsuccessful,	several	attempts	are	made	to	connect	to	various	replicas.

By	default,	50.

connections_with_failover_max_tries

The	maximum	number	of	connection	attempts	with	each	replica,	for	the	Distributed	table	engine.

By	default,	3.

extremes

Whether	to	count	extreme	values	(the	minimums	and	maximums	in	columns	of	a	query	result).	Accepts	0	or	1.	By	default,	0

(disabled).	For	more	information,	see	the	section	"Extreme	values".

[]

use_uncompressed_cache

Whether	to	use	a	cache	of	uncompressed	blocks.	Accepts	0	or	1.	By	default,	0	(disabled).	The	uncompressed	cache	(only	for

tables	in	the	MergeTree	family)	allows	significantly	reducing	latency	and	increasing	throughput	when	working	with	a	large

number	of	short	queries.	Enable	this	setting	for	users	who	send	frequent	short	requests.	Also	pay	attention	to	the

'uncompressed_cache_size'	configuration	parameter	(only	set	in	the	config	file)	–	the	size	of	uncompressed	cache	blocks.



By	default,	it	is	8	GiB.	The	uncompressed	cache	is	filled	in	as	needed;	the	least-used	data	is	automatically	deleted.

For	queries	that	read	at	least	a	somewhat	large	volume	of	data	(one	million	rows	or	more),	the	uncompressed	cache	is

disabled	automatically	in	order	to	save	space	for	truly	small	queries.	So	you	can	keep	the	'use_uncompressed_cache'

setting	always	set	to	1.

replace_running_query

When	using	the	HTTP	interface,	the	'query_id'	parameter	can	be	passed.	This	is	any	string	that	serves	as	the	query

identifier.	If	a	query	from	the	same	user	with	the	same	'query_id'	already	exists	at	this	time,	the	behavior	depends	on	the

'replace_running_query'	parameter.

0 	(default)	–	Throw	an	exception	(don't	allow	the	query	to	run	if	a	query	with	the	same	'query_id'	is	already	running).

1 	–	Cancel	the	old	query	and	start	running	the	new	one.

Yandex.Metrica	uses	this	parameter	set	to	1	for	implementing	suggestions	for	segmentation	conditions.	After	entering

the	next	character,	if	the	old	query	hasn't	finished	yet,	it	should	be	canceled.

schema

This	parameter	is	useful	when	you	are	using	formats	that	require	a	schema	definition,	such	as	Cap'n	Proto

[https://capnproto.org/].	The	value	depends	on	the	format.

[]

stream_flush_interval_ms

Works	for	tables	with	streaming	in	the	case	of	a	timeout,	or	when	a	thread	generatesmax_insert_block_size	[#settings-

settings-max_insert_block_size]	rows.

The	default	value	is	7500.

The	smaller	the	value,	the	more	often	data	is	flushed	into	the	table.	Setting	the	value	too	low	leads	to	poor	performance.

[]

load_balancing

Which	replicas	(among	healthy	replicas)	to	preferably	send	a	query	to	(on	the	first	attempt)	for	distributed	processing.

random	(default)

The	number	of	errors	is	counted	for	each	replica.	The	query	is	sent	to	the	replica	with	the	fewest	errors,	and	if	there	are

several	of	these,	to	any	one	of	them.	Disadvantages:	Server	proximity	is	not	accounted	for;	if	the	replicas	have	different

data,	you	will	also	get	different	data.

nearest_hostname

The	number	of	errors	is	counted	for	each	replica.	Every	5	minutes,	the	number	of	errors	is	integrally	divided	by	2.	Thus,	the

number	of	errors	is	calculated	for	a	recent	time	with	exponential	smoothing.	If	there	is	one	replica	with	a	minimal	number

of	errors	(i.e.	errors	occurred	recently	on	the	other	replicas),	the	query	is	sent	to	it.	If	there	are	multiple	replicas	with	the

same	minimal	number	of	errors,	the	query	is	sent	to	the	replica	with	a	host	name	that	is	most	similar	to	the	server's	host

name	in	the	config	file	(for	the	number	of	different	characters	in	identical	positions,	up	to	the	minimum	length	of	both	host

names).

For	instance,	example01-01-1	and	example01-01-2.yandex.ru	are	different	in	one	position,	while	example01-01-1	and

https://capnproto.org/


example01-02-2	differ	in	two	places.	This	method	might	seem	a	little	stupid,	but	it	doesn't	use	external	data	about

network	topology,	and	it	doesn't	compare	IP	addresses,	which	would	be	complicated	for	our	IPv6	addresses.

Thus,	if	there	are	equivalent	replicas,	the	closest	one	by	name	is	preferred.	We	can	also	assume	that	when	sending	a	query

to	the	same	server,	in	the	absence	of	failures,	a	distributed	query	will	also	go	to	the	same	servers.	So	even	if	different	data

is	placed	on	the	replicas,	the	query	will	return	mostly	the	same	results.

in_order

Replicas	are	accessed	in	the	same	order	as	they	are	specified.	The	number	of	errors	does	not	matter.	This	method	is

appropriate	when	you	know	exactly	which	replica	is	preferable.

totals_mode

How	to	calculate	TOTALS	when	HAVING	is	present,	as	well	as	when	max_rows_to_group_by	and	group_by_overflow_mode

=	'any'	are	present.	See	the	section	"WITH	TOTALS	modifier".

totals_auto_threshold

The	threshold	for	 totals_mode	=	'auto' .	See	the	section	"WITH	TOTALS	modifier".

default_sample

Floating-point	number	from	0	to	1.	By	default,	1.	Allows	you	to	set	the	default	sampling	ratio	for	all	SELECT	queries.	(For

tables	that	do	not	support	sampling,	it	throws	an	exception.)	If	set	to	1,	sampling	is	not	performed	by	default.

max_parallel_replicas

The	maximum	number	of	replicas	for	each	shard	when	executing	a	query.	For	consistency	(to	get	different	parts	of	the

same	data	split),	this	option	only	works	when	the	sampling	key	is	set.	Replica	lag	is	not	controlled.

compile

Enable	compilation	of	queries.	By	default,	0	(disabled).

Compilation	is	only	used	for	part	of	the	query-processing	pipeline:	for	the	first	stage	of	aggregation	(GROUP	BY).	If	this

portion	of	the	pipeline	was	compiled,	the	query	may	run	faster	due	to	deployment	of	short	cycles	and	inlining	aggregate

function	calls.	The	maximum	performance	improvement	(up	to	four	times	faster	in	rare	cases)	is	seen	for	queries	with

multiple	simple	aggregate	functions.	Typically,	the	performance	gain	is	insignificant.	In	very	rare	cases,	it	may	slow	down

query	execution.

min_count_to_compile

How	many	times	to	potentially	use	a	compiled	chunk	of	code	before	running	compilation.	By	default,	3.	If	the	value	is	zero,

then	compilation	runs	synchronously	and	the	query	waits	for	the	end	of	the	compilation	process	before	continuing

execution.	This	can	be	used	for	testing;	otherwise,	use	values	starting	with	1.	Compilation	normally	takes	about	5-10

seconds.	If	the	value	is	1	or	more,	compilation	occurs	asynchronously	in	a	separate	thread.	The	result	will	be	used	as	soon

as	it	is	ready,	including	by	queries	that	are	currently	running.

Compiled	code	is	required	for	each	different	combination	of	aggregate	functions	used	in	the	query	and	the	type	of	keys	in

the	GROUP	BY	clause.	The	results	of	compilation	are	saved	in	the	build	directory	in	the	form	of	.so	files.	There	is	no

restriction	on	the	number	of	compilation	results,	since	they	don't	use	very	much	space.	Old	results	will	be	used	after	server

restarts,	except	in	the	case	of	a	server	upgrade	–	in	this	case,	the	old	results	are	deleted.



input_format_skip_unknown_fields

If	the	value	is	true,	running	INSERT	skips	input	data	from	columns	with	unknown	names.	Otherwise,	this	situation	will

generate	an	exception.	It	works	for	JSONEachRow	and	TSKV	formats.

output_format_json_quote_64bit_integers

If	the	value	is	true,	integers	appear	in	quotes	when	using	JSON*	Int64	and	UInt64	formats	(for	compatibility	with	most

JavaScript	implementations);	otherwise,	integers	are	output	without	the	quotes.

[]

format_csv_delimiter

The	character	interpreted	as	a	delimiter	in	the	CSV	data.	By	default,	the	delimiter	is	, .

[]

join_use_nulls

Affects	the	behavior	of	JOIN	[#query_language-join].

With	 join_use_nulls=1, 	 JOIN 	behaves	like	in	standard	SQL,	i.e.	if	empty	cells	appear	when	merging,	the	type	of	the

corresponding	field	is	converted	to	Nullable	[#data_type-nullable],	and	empty	cells	are	filled	with	NULL	[#null-literal].

[]

insert_quorum

Enables	quorum	writes.

If	 insert_quorum	<	2 ,	the	quorum	writes	are	disabled.

If	 insert_quorum	>=	2 ,	the	quorum	writes	are	enabled.

The	default	value	is	0.

Quorum	writes

INSERT 	succeeds	only	when	ClickHouse	manages	to	correctly	write	data	to	the	 insert_quorum 	of	replicas	during	the	

insert_quorum_timeout .	If	for	any	reason	the	number	of	replicas	with	successful	writes	does	not	reach	the	

insert_quorum ,	the	write	is	considered	failed	and	ClickHouse	will	delete	the	inserted	block	from	all	the	replicas	where	data

has	already	been	written.

All	the	replicas	in	the	quorum	are	consistent,	i.e.,	they	contain	data	from	all	previous	INSERT 	queries.	The	 INSERT

sequence	is	linearized.

When	reading	the	data	written	from	the	 insert_quorum ,	you	can	use	theselect_sequential_consistency	[#setting-

select_sequential_consistency]	option.

ClickHouse	generates	an	exception

If	the	number	of	available	replicas	at	the	time	of	the	query	is	less	than	the	insert_quorum .

At	an	attempt	to	write	data	when	the	previous	block	has	not	yet	been	inserted	in	the	insert_quorum 	of	replicas.	This

situation	may	occur	if	the	user	tries	to	perform	an	 INSERT 	before	the	previous	one	with	the	 insert_quorum 	is

completed.

See	also	the	following	parameters:



insert_quorum_timeout	[#setting-insert_quorum_timeout]

select_sequential_consistency	[#setting-select_sequential_consistency]

[]

insert_quorum_timeout

Quorum	write	timeout	in	seconds.	If	the	timeout	has	passed	and	no	write	has	taken	place	yet,	ClickHouse	will	generate	an

exception	and	the	client	must	repeat	the	query	to	write	the	same	block	to	the	same	or	any	other	replica.

By	default,	60	seconds.

See	also	the	following	parameters:

insert_quorum	[#setting-insert_quorum]

select_sequential_consistency	[#setting-select_sequential_consistency]

[]

select_sequential_consistency

Enables/disables	sequential	consistency	for	 SELECT 	queries:

0	—	disabled.	The	default	value	is	0.

1	—	enabled.

When	sequential	consistency	is	enabled,	ClickHouse	allows	the	client	to	execute	the	SELECT 	query	only	for	those	replicas

that	contain	data	from	all	previous	 INSERT 	queries	executed	with	 insert_quorum .	If	the	client	refers	to	a	partial	replica,

ClickHouse	will	generate	an	exception.	The	SELECT	query	will	not	include	data	that	has	not	yet	been	written	to	the	quorum

of	replicas.

See	also	the	following	parameters:

insert_quorum	[#setting-insert_quorum]

insert_quorum_timeout	[#setting-insert_quorum_timeout]

[]

Settings	profiles

A	settings	profile	is	a	collection	of	settings	grouped	under	the	same	name.	Each	ClickHouse	user	has	a	profile.	To	apply	all

the	settings	in	a	profile,	set	the	 profile 	setting.

Example:

Install	the	 web 	profile.

Settings	profiles	are	declared	in	the	user	config	file.	This	is	usually	users.xml .

Example:

SET profile = 'web'



The	example	specifies	two	profiles:	 default 	and	 web .	The	 default 	profile	has	a	special	purpose:	it	must	always	be

present	and	is	applied	when	starting	the	server.	In	other	words,	the	 default 	profile	contains	default	settings.	The	 web

profile	is	a	regular	profile	that	can	be	set	using	the	 SET 	query	or	using	a	URL	parameter	in	an	HTTP	query.

Settings	profiles	can	inherit	from	each	other.	To	use	inheritance,	indicate	the	 profile 	setting	before	the	other	settings

that	are	listed	in	the	profile.

ClickHouse	Utility

clickhouse-local	[#utils-clickhouse-local]	—	Allows	running	SQL	queries	on	data	without	stopping	the	ClickHouse

server,	similar	to	how	 awk 	does	this.

clickhouse-copier	[#utils-clickhouse-copier]	—	Copies	(and	reshards)	data	from	one	cluster	to	another	cluster.

[]

clickhouse-copier

Copies	data	from	the	tables	in	one	cluster	to	tables	in	another	(or	the	same)	cluster.

You	can	run	multiple	 clickhouse-copier 	instances	on	different	servers	to	perform	the	same	job.	ZooKeeper	is	used	for

syncing	the	processes.

After	starting,	 clickhouse-copier :

<!-- Settings profiles -->
<profiles>
    <!-- Default settings -->
    <default>
        <!-- The maximum number of threads when running a single query. -->
        <max_threads>8</max_threads>
    </default>

    <!-- Settings for quries from the user interface -->
    <web>
        <max_rows_to_read>1000000000</max_rows_to_read>
        <max_bytes_to_read>100000000000</max_bytes_to_read>

        <max_rows_to_group_by>1000000</max_rows_to_group_by>
        <group_by_overflow_mode>any</group_by_overflow_mode>

        <max_rows_to_sort>1000000</max_rows_to_sort>
        <max_bytes_to_sort>1000000000</max_bytes_to_sort>

        <max_result_rows>100000</max_result_rows>
        <max_result_bytes>100000000</max_result_bytes>
        <result_overflow_mode>break</result_overflow_mode>

        <max_execution_time>600</max_execution_time>
        <min_execution_speed>1000000</min_execution_speed>
        <timeout_before_checking_execution_speed>15</timeout_before_checking_execution_speed>

        <max_columns_to_read>25</max_columns_to_read>
        <max_temporary_columns>100</max_temporary_columns>
        <max_temporary_non_const_columns>50</max_temporary_non_const_columns>

        <max_subquery_depth>2</max_subquery_depth>
        <max_pipeline_depth>25</max_pipeline_depth>
        <max_ast_depth>50</max_ast_depth>
        <max_ast_elements>100</max_ast_elements>

        <readonly>1</readonly>
    </web>
</profiles>



Connects	to	ZooKeeper	and	receives:

Copying	jobs.

The	state	of	the	copying	jobs.

It	performs	the	jobs.

Each	running	process	chooses	the	"closest"	shard	of	the	source	cluster	and	copies	the	data	into	the	destination

cluster,	resharding	the	data	if	necessary.

clickhouse-copier 	tracks	the	changes	in	ZooKeeper	and	applies	them	on	the	fly.

To	reduce	network	traffic,	we	recommend	running	 clickhouse-copier 	on	the	same	server	where	the	source	data	is

located.

Running	clickhouse-copier

The	utility	should	be	run	manually:

Parameters:

daemon 	—	Starts	 clickhouse-copier 	in	daemon	mode.

config 	—	The	path	to	the	 zookeeper.xml 	file	with	the	parameters	for	the	connection	to	ZooKeeper.

task-path 	—	The	path	to	the	ZooKeeper	node.	This	node	is	used	for	syncing	clickhouse-copier 	processes	and

storing	tasks.	Tasks	are	stored	in	 $task-path/description .

base-dir 	—	The	path	to	logs	and	auxiliary	files.	When	it	starts,	clickhouse-copier 	creates	 clickhouse-

copier_YYYYMMHHSS_<PID> 	subdirectories	in	 $base-dir .	If	this	parameter	is	omitted,	the	directories	are	created	in	the

directory	where	 clickhouse-copier 	was	launched.

Format	of	zookeeper.xml

Configuration	of	copying	tasks

clickhouse-copier copier --daemon --config zookeeper.xml --task-path /task/path --base-dir /path/to/dir

<yandex>
    <zookeeper>
        <node index="1">
            <host>127.0.0.1</host>
            <port>2181</port>
        </node>
    </zookeeper>
</yandex>

<yandex>
    <!-- Configuration of clusters as in an ordinary server config -->
    <remote_servers>
        <source_cluster>
            <shard>
                <internal_replication>false</internal_replication>
                    <replica>
                        <host>127.0.0.1</host>
                        <port>9000</port>
                    </replica>
            </shard>
            ...
        </source_cluster>

        <destination_cluster>
        ...
        </destination_cluster>



    </remote_servers>

    <!-- How many simultaneously active workers are possible. If you run more workers superfluous workers will 
sleep. -->
    <max_workers>2</max_workers>

    <!-- Setting used to fetch (pull) data from source cluster tables -->
    <settings_pull>
        <readonly>1</readonly>
    </settings_pull>

    <!-- Setting used to insert (push) data to destination cluster tables -->
    <settings_push>
        <readonly>0</readonly>
    </settings_push>

    <!-- Common setting for fetch (pull) and insert (push) operations. Also, copier process context uses it.
         They are overlaid by <settings_pull/> and <settings_push/> respectively. -->
    <settings>
        <connect_timeout>3</connect_timeout>
        <!-- Sync insert is set forcibly, leave it here just in case. -->
        <insert_distributed_sync>1</insert_distributed_sync>
    </settings>

    <!-- Copying tasks description.
         You could specify several table task in the same task description (in the same ZooKeeper node), they 
will be performed
         sequentially.
    -->
    <tables>
        <!-- A table task, copies one table. -->
        <table_hits>
            <!-- Source cluster name (from <remote_servers/> section) and tables in it that should be copied 
-->
            <cluster_pull>source_cluster</cluster_pull>
            <database_pull>test</database_pull>
            <table_pull>hits</table_pull>

            <!-- Destination cluster name and tables in which the data should be inserted -->
            <cluster_push>destination_cluster</cluster_push>
            <database_push>test</database_push>
            <table_push>hits2</table_push>

            <!-- Engine of destination tables.
                 If destination tables have not be created, workers create them using columns definition from 
source tables and engine
                 definition from here.

                 NOTE: If the first worker starts insert data and detects that destination partition is not 
empty then the partition will
                 be dropped and refilled, take it into account if you already have some data in destination 
tables. You could directly
                 specify partitions that should be copied in <enabled_partitions/>, they should be in quoted 
format like partition column of
                 system.parts table.
            -->
            <engine>
            ENGINE=ReplicatedMergeTree('/clickhouse/tables/{cluster}/{shard}/hits2', '{replica}')
            PARTITION BY toMonday(date)
            ORDER BY (CounterID, EventDate)
            </engine>

            <!-- Sharding key used to insert data to destination cluster -->
            <sharding_key>jumpConsistentHash(intHash64(UserID), 2)</sharding_key>

            <!-- Optional expression that filter data while pull them from source servers -->
            <where_condition>CounterID != 0</where_condition>

            <!-- This section specifies partitions that should be copied, other partition will be ignored.
                 Partition names should have the same format as
                 partition column of system.parts table (i.e. a quoted text).
                 Since partition key of source and destination cluster could be different,
                 these partition names specify destination partitions.



clickhouse-copier 	tracks	the	changes	in	/task/path/description 	and	applies	them	on	the	fly.	For	instance,	if	you

change	the	value	of	 max_workers ,	the	number	of	processes	running	tasks	will	also	change.

[]

clickhouse-local

The	 clickhouse-local 	program	enables	you	to	perform	fast	processing	on	local	files,	without	having	to	deploy	and

configure	the	ClickHouse	server.

Accepts	data	that	represent	tables	and	queries	them	using	ClickHouse	SQL	dialect	[#queries].

clickhouse-local 	uses	the	same	core	as	ClickHouse	server,	so	it	supports	most	of	the	features	and	the	same	set	of

formats	and	table	engines.

By	default	 clickhouse-local 	does	not	have	access	to	data	on	the	same	host,	but	it	supports	loading	server	configuration

using	 --config-file 	argument.

Usage

Basic	usage:

Arguments:

-S ,	 --structure 	—	table	structure	for	input	data.

-if ,	 --input-format 	—	input	format,	 TSV 	by	default.

-f ,	 --file 	—	path	to	data,	 stdin 	by	default.

-q 	 --query 	—	queries	to	execute	with	 ; 	as	delimeter.

-N ,	 --table 	—	table	name	where	to	put	output	data,	 table 	by	default.

-of ,	 --format ,	 --output-format 	—	output	format,	 TSV 	by	default.

                 NOTE: In spite of this section is optional (if it is not specified, all partitions will be 
copied),
                 it is strictly recommended to specify them explicitly.
                 If you already have some ready paritions on destination cluster they
                 will be removed at the start of the copying since they will be interpeted
                 as unfinished data from the previous copying!!!
            -->
            <enabled_partitions>
                <partition>'2018-02-26'</partition>
                <partition>'2018-03-05'</partition>
                ...
            </enabled_partitions>
        </table_hits>

        <!-- Next table to copy. It is not copied until previous table is copying. -->
        </table_visits>
        ...
        </table_visits>
        ...
    </tables>
</yandex>

Warning

It	is	not	recommended	to	load	production	server	configuration	into	 clickhouse-local 	because	data	can	be	damaged	in	case	of	human	error.



clickhouse-local --structure "table_structure" --input-format "format_of_incoming_data" -q "query"



--stacktrace 	—	whether	to	dump	debug	output	in	case	of	exception.

--verbose 	—	more	details	on	query	execution.

-s 	—	disables	 stderr 	logging.

--config-file 	—	path	to	configuration	file	in	same	format	as	for	ClickHouse	server,	by	default	the	configuration

empty.

--help 	—	arguments	references	for	 clickhouse-local .

Also	there	are	arguments	for	each	ClickHouse	configuration	variable	which	are	more	commonly	used	instead	of	--config-

file .

Examples

Previous	example	is	the	same	as:

Now	let's	output	memory	user	for	each	Unix	user:

常⻅问题

为什么不使⽤MapReduce之类的产品呢?

我们可以将MapReduce这类的系统称为分布式计算系统，其reduce操作基于分布式排序。其中最常⻅的开源解决⽅案

是Apache	Hadoop	[http://hadoop.apache.org]。	Yandex使⽤他们的内部解决⽅案YT。

这些系统不适合在线查询，因为它们的延迟⾼。换句话说，它们不能⽤作Web接⼝的后端服务。这些系统对于实时数据更新是

没有⽤的。如果操作的结果和所有中间结果（如果有的话）位于单个服务器的内存中，则分布式排序不是执⾏reduce操作的最

佳⽅式，但这通常是在线查询的情况。在这种情况下，哈希表是执⾏reduce操作的最佳⽅式。优化map-reduce任务的常⽤⽅

法是使⽤内存中的哈希表进⾏预聚合（部分reduce），⽤户⼿动执⾏此优化操作。分布式排序是运⾏简单map-reduce任务时

性能降低的主要原因之⼀。

⼤多数MapReduce系统允许您在集群上执⾏任意代码。但是，声明性查询语⾔更适合OLAP，以便快速运⾏实验。例

如，Hadoop包含Hive和Pig，Cloudera	Impala或Shark（过时）for	Spark，以及Spark	SQL、Presto和Apache	Drill。与专业

系统相⽐，运⾏此类任务时的性能⾮常不理想，所以将这些系统⽤作Web接⼝的后端服务是不现实的，因为延迟相对较⾼。

echo -e "1,2\n3,4" | clickhouse-local -S "a Int64, b Int64" -if "CSV" -q "SELECT * FROM table"
Read 2 rows, 32.00 B in 0.000 sec., 5182 rows/sec., 80.97 KiB/sec.
1   2
3   4

$ echo -e "1,2\n3,4" | clickhouse-local -q "CREATE TABLE table (a Int64, b Int64) ENGINE = File(CSV, stdin); 
SELECT a, b FROM table; DROP TABLE table"
Read 2 rows, 32.00 B in 0.000 sec., 4987 rows/sec., 77.93 KiB/sec.
1   2
3   4

$ ps aux | tail -n +2 | awk '{ printf("%s\t%s\n", $1, $4) }' | clickhouse-local -S "user String, mem Float64" 
-q "SELECT user, round(sum(mem), 2) as memTotal FROM table GROUP BY user ORDER BY memTotal DESC FORMAT Pretty"
Read 186 rows, 4.15 KiB in 0.035 sec., 5302 rows/sec., 118.34 KiB/sec.
┏━━━━━━━━━━┳━━━━━━━━━━┓
┃ user     ┃ memTotal ┃
┡━━━━━━━━━━╇━━━━━━━━━━┩
│ bayonet  │    113.5 │
├──────────┼──────────┤
│ root     │      8.8 │
├──────────┼──────────┤
...

http://hadoop.apache.org


ClickHouse	Development

Overview	of	ClickHouse	Architecture

ClickHouse	is	a	true	column-oriented	DBMS.	Data	is	stored	by	columns,	and	during	the	execution	of	arrays	(vectors	or

chunks	of	columns).	Whenever	possible,	operations	are	dispatched	on	arrays,	rather	than	on	individual	values.	This	is

called	"vectorized	query	execution,"	and	it	helps	lower	the	cost	of	actual	data	processing.

This	idea	is	nothing	new.	It	dates	back	to	the	APL 	programming	language	and	its	descendants:	 A	+ ,	 J ,	 K ,	and	 Q .	Array

programming	is	used	in	scientific	data	processing.	Neither	is	this	idea	something	new	in	relational	databases:	for

example,	it	is	used	in	the	 Vectorwise 	system.

There	are	two	different	approaches	for	speeding	up	the	query	processing:	vectorized	query	execution	and	runtime	code

generation.	In	the	latter,	the	code	is	generated	for	every	kind	of	query	on	the	fly,	removing	all	indirection	and	dynamic

dispatch.	Neither	of	these	approaches	is	strictly	better	than	the	other.	Runtime	code	generation	can	be	better	when	it's

fuses	many	operations	together,	thus	fully	utilizing	CPU	execution	units	and	the	pipeline.	Vectorized	query	execution	can

be	less	practical,	because	it	involves	the	temporary	vectors	that	must	be	written	to	the	cache	and	read	back.	If	the

temporary	data	does	not	fit	in	the	L2	cache,	this	becomes	an	issue.	But	vectorized	query	execution	more	easily	utilizes	the

SIMD	capabilities	of	the	CPU.	A	research	paper	[http://15721.courses.cs.cmu.edu/spring2016/papers/p5-sompolski.pdf]

written	by	our	friends	shows	that	it	is	better	to	combine	both	approaches.	ClickHouse	uses	vectorized	query	execution	and

has	limited	initial	support	for	runtime	code.

Columns

To	represent	columns	in	memory	(actually,	chunks	of	columns),	the	 IColumn 	interface	is	used.	This	interface	provides

helper	methods	for	implementation	of	various	relational	operators.	Almost	all	operations	are	immutable:	they	do	not

modify	the	original	column,	but	create	a	new	modified	one.	For	example,	the	 IColumn	::	filter 	method	accepts	a	filter

byte	mask.	It	is	used	for	the	 WHERE 	and	 HAVING 	relational	operators.	Additional	examples:	the	 IColumn	::	permute

method	to	support	 ORDER	BY ,	the	 IColumn	::	cut 	method	to	support	 LIMIT ,	and	so	on.

Various	 IColumn 	implementations	( ColumnUInt8 ,	 ColumnString 	and	so	on)	are	responsible	for	the	memory	layout	of

columns.	Memory	layout	is	usually	a	contiguous	array.	For	the	integer	type	of	columns	it	is	just	one	contiguous	array,	like	

std	::	vector .	For	 String 	and	 Array 	columns,	it	is	two	vectors:	one	for	all	array	elements,	placed	contiguously,	and	a

second	one	for	offsets	to	the	beginning	of	each	array.	There	is	also	 ColumnConst 	that	stores	just	one	value	in	memory,	but

looks	like	a	column.

Field

Nevertheless,	it	is	possible	to	work	with	individual	values	as	well.	To	represent	an	individual	value,	the	Field 	is	used.	

Field 	is	just	a	discriminated	union	of	 UInt64 ,	 Int64 ,	 Float64 ,	 String 	and	 Array .	 IColumn 	has	the	 operator[]

method	to	get	the	n-th	value	as	a	 Field ,	and	the	 insert 	method	to	append	a	 Field 	to	the	end	of	a	column.	These

methods	are	not	very	efficient,	because	they	require	dealing	with	temporary	 Field 	objects	representing	an	individual

value.	There	are	more	efficient	methods,	such	as	 insertFrom ,	 insertRangeFrom ,	and	so	on.

Field 	doesn't	have	enough	information	about	a	specific	data	type	for	a	table.	For	example,	UInt8 ,	 UInt16 ,	 UInt32 ,	and	

UInt64 	are	all	represented	as	UInt64 	in	a	 Field .

Leaky	Abstractions

IColumn 	has	methods	for	common	relational	transformations	of	data,	but	they	don't	meet	all	needs.	For	example,	

ColumnUInt64 	doesn't	have	a	method	to	calculate	the	sum	of	two	columns,	and	ColumnString 	doesn't	have	a	method	to

run	a	substring	search.	These	countless	routines	are	implemented	outside	of	 IColumn .

http://15721.courses.cs.cmu.edu/spring2016/papers/p5-sompolski.pdf


Various	functions	on	columns	can	be	implemented	in	a	generic,	non-efficient	way	using	IColumn 	methods	to	extract	

Field 	values,	or	in	a	specialized	way	using	knowledge	of	inner	memory	layout	of	data	in	a	specific	IColumn

implementation.	To	do	this,	functions	are	cast	to	a	specific	 IColumn 	type	and	deal	with	internal	representation	directly.

For	example,	 ColumnUInt64 	has	the	 getData 	method	that	returns	a	reference	to	an	internal	array,	then	a	separate	routine

reads	or	fills	that	array	directly.	In	fact,	we	have	"leaky	abstractions"	to	allow	efficient	specializations	of	various	routines.

Data	Types

IDataType 	is	responsible	for	serialization	and	deserialization:	for	reading	and	writing	chunks	of	columns	or	individual

values	in	binary	or	text	form.	 IDataType 	directly	corresponds	to	data	types	in	tables.	For	example,	there	are	

DataTypeUInt32 ,	 DataTypeDateTime ,	 DataTypeString 	and	so	on.

IDataType 	and	 IColumn 	are	only	loosely	related	to	each	other.	Different	data	types	can	be	represented	in	memory	by	the

same	 IColumn 	implementations.	For	example,	 DataTypeUInt32 	and	 DataTypeDateTime 	are	both	represented	by	

ColumnUInt32 	or	 ColumnConstUInt32 .	In	addition,	the	same	data	type	can	be	represented	by	different	 IColumn

implementations.	For	example,	 DataTypeUInt8 	can	be	represented	by	 ColumnUInt8 	or	 ColumnConstUInt8 .

IDataType 	only	stores	metadata.	For	instance,	 DataTypeUInt8 	doesn't	store	anything	at	all	(except	vptr)	and	

DataTypeFixedString 	stores	just	 N 	(the	size	of	fixed-size	strings).

IDataType 	has	helper	methods	for	various	data	formats.	Examples	are	methods	to	serialize	a	value	with	possible	quoting,

to	serialize	a	value	for	JSON,	and	to	serialize	a	value	as	part	of	XML	format.	There	is	no	direct	correspondence	to	data

formats.	For	example,	the	different	data	formats	 Pretty 	and	 TabSeparated 	can	use	the	same	 serializeTextEscaped

helper	method	from	the	 IDataType 	interface.

Block

A	 Block 	is	a	container	that	represents	a	subset	(chunk)	of	a	table	in	memory.	It	is	just	a	set	of	triples:	(IColumn,	

IDataType,	column	name) .	During	query	execution,	data	is	processed	by	 Block s.	If	we	have	a	 Block ,	we	have	data	(in

the	 IColumn 	object),	we	have	information	about	its	type	(in	 IDataType )	that	tells	us	how	to	deal	with	that	column,	and	we

have	the	column	name	(either	the	original	column	name	from	the	table,	or	some	artificial	name	assigned	for	getting

temporary	results	of	calculations).

When	we	calculate	some	function	over	columns	in	a	block,	we	add	another	column	with	its	result	to	the	block,	and	we	don't

touch	columns	for	arguments	of	the	function	because	operations	are	immutable.	Later,	unneeded	columns	can	be

removed	from	the	block,	but	not	modified.	This	is	convenient	for	elimination	of	common	subexpressions.

Blocks	are	created	for	every	processed	chunk	of	data.	Note	that	for	the	same	type	of	calculation,	the	column	names	and

types	remain	the	same	for	different	blocks,	and	only	column	data	changes.	It	is	better	to	split	block	data	from	the	block

header,	because	small	block	sizes	will	have	a	high	overhead	of	temporary	strings	for	copying	shared_ptrs	and	column

names.

Block	Streams

Block	streams	are	for	processing	data.	We	use	streams	of	blocks	to	read	data	from	somewhere,	perform	data

transformations,	or	write	data	to	somewhere.	 IBlockInputStream 	has	the	 read 	method	to	fetch	the	next	block	while

available.	 IBlockOutputStream 	has	the	 write 	method	to	push	the	block	somewhere.

Streams	are	responsible	for:

1.	 Reading	or	writing	to	a	table.	The	table	just	returns	a	stream	for	reading	or	writing	blocks.

2.	 Implementing	data	formats.	For	example,	if	you	want	to	output	data	to	a	terminal	in	Pretty 	format,	you	create	a	block

output	stream	where	you	push	blocks,	and	it	formats	them.

3.	 Performing	data	transformations.	Let's	say	you	have	 IBlockInputStream 	and	want	to	create	a	filtered	stream.	You



create	 FilterBlockInputStream 	and	initialize	it	with	your	stream.	Then	when	you	pull	a	block	from	

FilterBlockInputStream ,	it	pulls	a	block	from	your	stream,	filters	it,	and	returns	the	filtered	block	to	you.	Query

execution	pipelines	are	represented	this	way.

There	are	more	sophisticated	transformations.	For	example,	when	you	pull	from	 AggregatingBlockInputStream ,	it	reads

all	data	from	its	source,	aggregates	it,	and	then	returns	a	stream	of	aggregated	data	for	you.	Another	example:	

UnionBlockInputStream 	accepts	many	input	sources	in	the	constructor	and	also	a	number	of	threads.	It	launches

multiple	threads	and	reads	from	multiple	sources	in	parallel.

Block	streams	use	the	"pull"	approach	to	control	flow:	when	you	pull	a	block	from	the	first	stream,	it	consequently	pulls

the	required	blocks	from	nested	streams,	and	the	entire	execution	pipeline	will	work.	Neither	"pull"	nor	"push"	is	the	best

solution,	because	control	flow	is	implicit,	and	that	limits	implementation	of	various	features	like	simultaneous	execution

of	multiple	queries	(merging	many	pipelines	together).	This	limitation	could	be	overcome	with	coroutines	or	just	running

extra	threads	that	wait	for	each	other.	We	may	have	more	possibilities	if	we	make	control	flow	explicit:	if	we	locate	the

logic	for	passing	data	from	one	calculation	unit	to	another	outside	of	those	calculation	units.	Read	this	article

[http://journal.stuffwithstuff.com/2013/01/13/iteration-inside-and-out/]	for	more	thoughts.

We	should	note	that	the	query	execution	pipeline	creates	temporary	data	at	each	step.	We	try	to	keep	block	size	small

enough	so	that	temporary	data	fits	in	the	CPU	cache.	With	that	assumption,	writing	and	reading	temporary	data	is	almost

free	in	comparison	with	other	calculations.	We	could	consider	an	alternative,	which	is	to	fuse	many	operations	in	the

pipeline	together,	to	make	the	pipeline	as	short	as	possible	and	remove	much	of	the	temporary	data.	This	could	be	an

advantage,	but	it	also	has	drawbacks.	For	example,	a	split	pipeline	makes	it	easy	to	implement	caching	intermediate	data,

stealing	intermediate	data	from	similar	queries	running	at	the	same	time,	and	merging	pipelines	for	similar	queries.

Formats

Data	formats	are	implemented	with	block	streams.	There	are	"presentational"	formats	only	suitable	for	output	of	data	to

the	client,	such	as	 Pretty 	format,	which	provides	only	 IBlockOutputStream .	And	there	are	input/output	formats,	such	as	

TabSeparated 	or	 JSONEachRow .

There	are	also	row	streams:	 IRowInputStream 	and	 IRowOutputStream .	They	allow	you	to	pull/push	data	by	individual

rows,	not	by	blocks.	And	they	are	only	needed	to	simplify	implementation	of	row-oriented	formats.	The	wrappers	

BlockInputStreamFromRowInputStream 	and	 BlockOutputStreamFromRowOutputStream 	allow	you	to	convert	row-

oriented	streams	to	regular	block-oriented	streams.

I/O

For	byte-oriented	input/output,	there	are	 ReadBuffer 	and	 WriteBuffer 	abstract	classes.	They	are	used	instead	of	C++	

iostream 's.	Don't	worry:	every	mature	C++	project	is	using	something	other	than	iostream 's	for	good	reasons.

ReadBuffer 	and	 WriteBuffer 	are	just	a	contiguous	buffer	and	a	cursor	pointing	to	the	position	in	that	buffer.

Implementations	may	own	or	not	own	the	memory	for	the	buffer.	There	is	a	virtual	method	to	fill	the	buffer	with	the

following	data	(for	 ReadBuffer )	or	to	flush	the	buffer	somewhere	(for	 WriteBuffer ).	The	virtual	methods	are	rarely

called.

Implementations	of	 ReadBuffer / WriteBuffer 	are	used	for	working	with	files	and	file	descriptors	and	network	sockets,

for	implementing	compression	( CompressedWriteBuffer 	is	initialized	with	another	WriteBuffer	and	performs

compression	before	writing	data	to	it),	and	for	other	purposes	–	the	names	 ConcatReadBuffer ,	 LimitReadBuffer ,	and	

HashingWriteBuffer 	speak	for	themselves.

Read/WriteBuffers	only	deal	with	bytes.	To	help	with	formatted	input/output	(for	instance,	to	write	a	number	in	decimal

format),	there	are	functions	from	 ReadHelpers 	and	 WriteHelpers 	header	files.

Let's	look	at	what	happens	when	you	want	to	write	a	result	set	in	 JSON 	format	to	stdout.	You	have	a	result	set	ready	to	be

fetched	from	 IBlockInputStream .	You	create	 WriteBufferFromFileDescriptor(STDOUT_FILENO) 	to	write	bytes	to

stdout.	You	create	 JSONRowOutputStream ,	initialized	with	that	 WriteBuffer ,	to	write	rows	in	JSON 	to	stdout.	You	create	

http://journal.stuffwithstuff.com/2013/01/13/iteration-inside-and-out/


BlockOutputStreamFromRowOutputStream 	on	top	of	it,	to	represent	it	as	IBlockOutputStream .	Then	you	call	 copyData 	to

transfer	data	from	 IBlockInputStream 	to	 IBlockOutputStream ,	and	everything	works.	Internally,	 JSONRowOutputStream

will	write	various	JSON	delimiters	and	call	the	 IDataType::serializeTextJSON 	method	with	a	reference	to	 IColumn 	and

the	row	number	as	arguments.	Consequently,	 IDataType::serializeTextJSON 	will	call	a	method	from	 WriteHelpers.h :

for	example,	 writeText 	for	numeric	types	and	 writeJSONString 	for	 DataTypeString .

Tables

Tables	are	represented	by	the	 IStorage 	interface.	Different	implementations	of	that	interface	are	different	table	engines.

Examples	are	 StorageMergeTree ,	 StorageMemory ,	and	so	on.	Instances	of	these	classes	are	just	tables.

The	most	important	 IStorage 	methods	are	 read 	and	 write .	There	are	also	 alter ,	 rename ,	 drop ,	and	so	on.	The	 read

method	accepts	the	following	arguments:	the	set	of	columns	to	read	from	a	table,	the	 AST 	query	to	consider,	and	the

desired	number	of	streams	to	return.	It	returns	one	or	multiple	 IBlockInputStream 	objects	and	information	about	the

stage	of	data	processing	that	was	completed	inside	a	table	engine	during	query	execution.

In	most	cases,	the	read	method	is	only	responsible	for	reading	the	specified	columns	from	a	table,	not	for	any	further	data

processing.	All	further	data	processing	is	done	by	the	query	interpreter	and	is	outside	the	responsibility	of	 IStorage .

But	there	are	notable	exceptions:

The	AST	query	is	passed	to	the	read 	method	and	the	table	engine	can	use	it	to	derive	index	usage	and	to	read	less

data	from	a	table.

Sometimes	the	table	engine	can	process	data	itself	to	a	specific	stage.	For	example,	StorageDistributed 	can	send	a

query	to	remote	servers,	ask	them	to	process	data	to	a	stage	where	data	from	different	remote	servers	can	be

merged,	and	return	that	preprocessed	data.	The	query	interpreter	then	finishes	processing	the	data.

The	table's	 read 	method	can	return	multiple	 IBlockInputStream 	objects	to	allow	parallel	data	processing.	These

multiple	block	input	streams	can	read	from	a	table	in	parallel.	Then	you	can	wrap	these	streams	with	various

transformations	(such	as	expression	evaluation	or	filtering)	that	can	be	calculated	independently	and	create	a	

UnionBlockInputStream 	on	top	of	them,	to	read	from	multiple	streams	in	parallel.

There	are	also	 TableFunction s.	These	are	functions	that	return	a	temporary	 IStorage 	object	to	use	in	the	 FROM 	clause	of

a	query.

To	get	a	quick	idea	of	how	to	implement	your	own	table	engine,	look	at	something	simple,	like	StorageMemory 	or	

StorageTinyLog .

As	the	result	of	the	 read 	method,	 IStorage 	returns	 QueryProcessingStage 	–	information	about	what	parts	of	the

query	were	already	calculated	inside	storage.	Currently	we	have	only	very	coarse	granularity	for	that	information.	There

is	no	way	for	the	storage	to	say	"I	have	already	processed	this	part	of	the	expression	in	WHERE,	for	this	range	of	data".

We	need	to	work	on	that.

Parsers

A	query	is	parsed	by	a	hand-written	recursive	descent	parser.	For	example,	ParserSelectQuery 	just	recursively	calls	the

underlying	parsers	for	various	parts	of	the	query.	Parsers	create	an	 AST .	The	 AST 	is	represented	by	nodes,	which	are

instances	of	 IAST .

Parser	generators	are	not	used	for	historical	reasons.

Interpreters

Interpreters	are	responsible	for	creating	the	query	execution	pipeline	from	an	 AST .	There	are	simple	interpreters,	such	as	

InterpreterExistsQuery and	 InterpreterDropQuery ,	or	the	more	sophisticated	 InterpreterSelectQuery .	The	query

execution	pipeline	is	a	combination	of	block	input	or	output	streams.	For	example,	the	result	of	interpreting	the	 SELECT



query	is	the	 IBlockInputStream 	to	read	the	result	set	from;	the	result	of	the	INSERT	query	is	the	 IBlockOutputStream 	to

write	data	for	insertion	to;	and	the	result	of	interpreting	the	 INSERT	SELECT 	query	is	the	 IBlockInputStream 	that	returns

an	empty	result	set	on	the	first	read,	but	that	copies	data	from	 SELECT 	to	 INSERT 	at	the	same	time.

InterpreterSelectQuery 	uses	 ExpressionAnalyzer 	and	 ExpressionActions 	machinery	for	query	analysis	and

transformations.	This	is	where	most	rule-based	query	optimizations	are	done.	 ExpressionAnalyzer 	is	quite	messy	and

should	be	rewritten:	various	query	transformations	and	optimizations	should	be	extracted	to	separate	classes	to	allow

modular	transformations	or	query.

Functions

There	are	ordinary	functions	and	aggregate	functions.	For	aggregate	functions,	see	the	next	section.

Ordinary	functions	don't	change	the	number	of	rows	–	they	work	as	if	they	are	processing	each	row	independently.	In	fact,

functions	are	not	called	for	individual	rows,	but	for	 Block 's	of	data	to	implement	vectorized	query	execution.

There	are	some	miscellaneous	functions,	like	 blockSize ,	 rowNumberInBlock ,	and	 runningAccumulate ,	that	exploit	block

processing	and	violate	the	independence	of	rows.

ClickHouse	has	strong	typing,	so	implicit	type	conversion	doesn't	occur.	If	a	function	doesn't	support	a	specific

combination	of	types,	an	exception	will	be	thrown.	But	functions	can	work	(be	overloaded)	for	many	different

combinations	of	types.	For	example,	the	 plus 	function	(to	implement	the	 + 	operator)	works	for	any	combination	of

numeric	types:	 UInt8 	+	 Float32 ,	 UInt16 	+	 Int8 ,	and	so	on.	Also,	some	variadic	functions	can	accept	any	number	of

arguments,	such	as	the	 concat 	function.

Implementing	a	function	may	be	slightly	inconvenient	because	a	function	explicitly	dispatches	supported	data	types	and

supported	 IColumns .	For	example,	the	 plus 	function	has	code	generated	by	instantiation	of	a	C++	template	for	each

combination	of	numeric	types,	and	for	constant	or	non-constant	left	and	right	arguments.

This	is	a	nice	place	to	implement	runtime	code	generation	to	avoid	template	code	bloat.	Also,	it	will	make	it	possible	to

add	fused	functions	like	fused	multiply-add,	or	to	make	multiple	comparisons	in	one	loop	iteration.

Due	to	vectorized	query	execution,	functions	are	not	short-circuit.	For	example,	if	you	write	WHERE	f(x)	AND	g(y) ,	both

sides	will	be	calculated,	even	for	rows,	when	 f(x) 	is	zero	(except	when	 f(x) 	is	a	zero	constant	expression).	But	if

selectivity	of	the	 f(x) 	condition	is	high,	and	calculation	of	 f(x) 	is	much	cheaper	than	 g(y) ,	it's	better	to	implement

multi-pass	calculation:	first	calculate	 f(x) ,	then	filter	columns	by	the	result,	and	then	calculate	 g(y) 	only	for	smaller,

filtered	chunks	of	data.

Aggregate	Functions

Aggregate	functions	are	stateful	functions.	They	accumulate	passed	values	into	some	state,	and	allow	you	to	get	results

from	that	state.	They	are	managed	with	the	 IAggregateFunction 	interface.	States	can	be	rather	simple	(the	state	for	

AggregateFunctionCount 	is	just	a	single	 UInt64 	value)	or	quite	complex	(the	state	of	 AggregateFunctionUniqCombined

is	a	combination	of	a	linear	array,	a	hash	table	and	a	 HyperLogLog 	probabilistic	data	structure).

To	deal	with	multiple	states	while	executing	a	high-cardinality	 GROUP	BY 	query,	states	are	allocated	in	 Arena 	(a	memory

pool),	or	they	could	be	allocated	in	any	suitable	piece	of	memory.	States	can	have	a	non-trivial	constructor	and	destructor:

for	example,	complex	aggregation	states	can	allocate	additional	memory	themselves.	This	requires	some	attention	to

creating	and	destroying	states	and	properly	passing	their	ownership,	to	keep	track	of	who	and	when	will	destroy	states.

Aggregation	states	can	be	serialized	and	deserialized	to	pass	over	the	network	during	distributed	query	execution	or	to

write	them	on	disk	where	there	is	not	enough	RAM.	They	can	even	be	stored	in	a	table	with	the	

DataTypeAggregateFunction 	to	allow	incremental	aggregation	of	data.

The	serialized	data	format	for	aggregate	function	states	is	not	versioned	right	now.	This	is	ok	if	aggregate	states	are	only

stored	temporarily.	But	we	have	the	 AggregatingMergeTree 	table	engine	for	incremental	aggregation,	and	people	are

already	using	it	in	production.	This	is	why	we	should	add	support	for	backward	compatibility	when	changing	the



serialized	format	for	any	aggregate	function	in	the	future.

Server

The	server	implements	several	different	interfaces:

An	HTTP	interface	for	any	foreign	clients.

A	TCP	interface	for	the	native	ClickHouse	client	and	for	cross-server	communication	during	distributed	query

execution.

An	interface	for	transferring	data	for	replication.

Internally,	it	is	just	a	basic	multithreaded	server	without	coroutines,	fibers,	etc.	Since	the	server	is	not	designed	to	process

a	high	rate	of	simple	queries	but	is	intended	to	process	a	relatively	low	rate	of	complex	queries,	each	of	them	can	process	a

vast	amount	of	data	for	analytics.

The	server	initializes	the	 Context 	class	with	the	necessary	environment	for	query	execution:	the	list	of	available

databases,	users	and	access	rights,	settings,	clusters,	the	process	list,	the	query	log,	and	so	on.	This	environment	is	used

by	interpreters.

We	maintain	full	backward	and	forward	compatibility	for	the	server	TCP	protocol:	old	clients	can	talk	to	new	servers	and

new	clients	can	talk	to	old	servers.	But	we	don't	want	to	maintain	it	eternally,	and	we	are	removing	support	for	old	versions

after	about	one	year.

For	all	external	applications,	we	recommend	using	the	HTTP	interface	because	it	is	simple	and	easy	to	use.	The	TCP

protocol	is	more	tightly	linked	to	internal	data	structures:	it	uses	an	internal	format	for	passing	blocks	of	data	and	it	uses

custom	framing	for	compressed	data.	We	haven't	released	a	C	library	for	that	protocol	because	it	requires	linking	most

of	the	ClickHouse	codebase,	which	is	not	practical.

Distributed	Query	Execution

Servers	in	a	cluster	setup	are	mostly	independent.	You	can	create	a	 Distributed 	table	on	one	or	all	servers	in	a	cluster.

The	 Distributed 	table	does	not	store	data	itself	–	it	only	provides	a	"view"	to	all	local	tables	on	multiple	nodes	of	a

cluster.	When	you	SELECT	from	a	 Distributed 	table,	it	rewrites	that	query,	chooses	remote	nodes	according	to	load

balancing	settings,	and	sends	the	query	to	them.	The	 Distributed 	table	requests	remote	servers	to	process	a	query	just

up	to	a	stage	where	intermediate	results	from	different	servers	can	be	merged.	Then	it	receives	the	intermediate	results

and	merges	them.	The	distributed	table	tries	to	distribute	as	much	work	as	possible	to	remote	servers,	and	does	not	send

much	intermediate	data	over	the	network.

Things	become	more	complicated	when	you	have	subqueries	in	IN	or	JOIN	clauses	and	each	of	them	uses	a	

Distributed 	table.	We	have	different	strategies	for	execution	of	these	queries.

There	is	no	global	query	plan	for	distributed	query	execution.	Each	node	has	its	own	local	query	plan	for	its	part	of	the	job.

We	only	have	simple	one-pass	distributed	query	execution:	we	send	queries	for	remote	nodes	and	then	merge	the	results.

But	this	is	not	feasible	for	difficult	queries	with	high	cardinality	GROUP	BYs	or	with	a	large	amount	of	temporary	data	for

JOIN:	in	such	cases,	we	need	to	"reshuffle"	data	between	servers,	which	requires	additional	coordination.	ClickHouse	does

not	support	that	kind	of	query	execution,	and	we	need	to	work	on	it.

Merge	Tree

MergeTree 	is	a	family	of	storage	engines	that	supports	indexing	by	primary	key.	The	primary	key	can	be	an	arbitary	tuple

of	columns	or	expressions.	Data	in	a	 MergeTree 	table	is	stored	in	"parts".	Each	part	stores	data	in	the	primary	key	order

(data	is	ordered	lexicographically	by	the	primary	key	tuple).	All	the	table	columns	are	stored	in	separate	 column.bin 	files	in

these	parts.	The	files	consist	of	compressed	blocks.	Each	block	is	usually	from	64	KB	to	1	MB	of	uncompressed	data,

depending	on	the	average	value	size.	The	blocks	consist	of	column	values	placed	contiguously	one	after	the	other.	Column



values	are	in	the	same	order	for	each	column	(the	order	is	defined	by	the	primary	key),	so	when	you	iterate	by	many

columns,	you	get	values	for	the	corresponding	rows.

The	primary	key	itself	is	"sparse".	It	doesn't	address	each	single	row,	but	only	some	ranges	of	data.	A	separate	

primary.idx 	file	has	the	value	of	the	primary	key	for	each	N-th	row,	where	N	is	called	index_granularity 	(usually,	N	=

8192).	Also,	for	each	column,	we	have	 column.mrk 	files	with	"marks,"	which	are	offsets	to	each	N-th	row	in	the	data	file.

Each	mark	is	a	pair:	the	offset	in	the	file	to	the	beginning	of	the	compressed	block,	and	the	offset	in	the	decompressed

block	to	the	beginning	of	data.	Usually	compressed	blocks	are	aligned	by	marks,	and	the	offset	in	the	decompressed	block

is	zero.	Data	for	 primary.idx 	always	resides	in	memory	and	data	for	 column.mrk 	files	is	cached.

When	we	are	going	to	read	something	from	a	part	in	MergeTree ,	we	look	at	 primary.idx 	data	and	locate	ranges	that

could	possibly	contain	requested	data,	then	look	at	 column.mrk 	data	and	calculate	offsets	for	where	to	start	reading

those	ranges.	Because	of	sparseness,	excess	data	may	be	read.	ClickHouse	is	not	suitable	for	a	high	load	of	simple	point

queries,	because	the	entire	range	with	 index_granularity 	rows	must	be	read	for	each	key,	and	the	entire	compressed

block	must	be	decompressed	for	each	column.	We	made	the	index	sparse	because	we	must	be	able	to	maintain	trillions	of

rows	per	single	server	without	noticeable	memory	consumption	for	the	index.	Also,	because	the	primary	key	is	sparse,	it	is

not	unique:	it	cannot	check	the	existence	of	the	key	in	the	table	at	INSERT	time.	You	could	have	many	rows	with	the	same

key	in	a	table.

When	you	 INSERT 	a	bunch	of	data	into	 MergeTree ,	that	bunch	is	sorted	by	primary	key	order	and	forms	a	new	part.	To

keep	the	number	of	parts	relatively	low,	there	are	background	threads	that	periodically	select	some	parts	and	merge	them

to	a	single	sorted	part.	That's	why	it	is	called	 MergeTree .	Of	course,	merging	leads	to	"write	amplification".	All	parts	are

immutable:	they	are	only	created	and	deleted,	but	not	modified.	When	SELECT	is	run,	it	holds	a	snapshot	of	the	table	(a	set

of	parts).	After	merging,	we	also	keep	old	parts	for	some	time	to	make	recovery	after	failure	easier,	so	if	we	see	that	some

merged	part	is	probably	broken,	we	can	replace	it	with	its	source	parts.

MergeTree 	is	not	an	LSM	tree	because	it	doesn't	contain	"memtable"	and	"log":	inserted	data	is	written	directly	to	the

filesystem.	This	makes	it	suitable	only	to	INSERT	data	in	batches,	not	by	individual	row	and	not	very	frequently	–	about

once	per	second	is	ok,	but	a	thousand	times	a	second	is	not.	We	did	it	this	way	for	simplicity's	sake,	and	because	we	are

already	inserting	data	in	batches	in	our	applications.

MergeTree	tables	can	only	have	one	(primary)	index:	there	aren't	any	secondary	indices.	It	would	be	nice	to	allow

multiple	physical	representations	under	one	logical	table,	for	example,	to	store	data	in	more	than	one	physical	order	or

even	to	allow	representations	with	pre-aggregated	data	along	with	original	data.

There	are	MergeTree	engines	that	are	doing	additional	work	during	background	merges.	Examples	are	

CollapsingMergeTree 	and	 AggregatingMergeTree .	This	could	be	treated	as	special	support	for	updates.	Keep	in	mind

that	these	are	not	real	updates	because	users	usually	have	no	control	over	the	time	when	background	merges	will	be

executed,	and	data	in	a	 MergeTree 	table	is	almost	always	stored	in	more	than	one	part,	not	in	completely	merged	form.

Replication

Replication	in	ClickHouse	is	implemented	on	a	per-table	basis.	You	could	have	some	replicated	and	some	non-replicated

tables	on	the	same	server.	You	could	also	have	tables	replicated	in	different	ways,	such	as	one	table	with	two-factor

replication	and	another	with	three-factor.

Replication	is	implemented	in	the	 ReplicatedMergeTree 	storage	engine.	The	path	in	 ZooKeeper 	is	specified	as	a

parameter	for	the	storage	engine.	All	tables	with	the	same	path	in	 ZooKeeper 	become	replicas	of	each	other:	they

synchronize	their	data	and	maintain	consistency.	Replicas	can	be	added	and	removed	dynamically	simply	by	creating	or

dropping	a	table.

Replication	uses	an	asynchronous	multi-master	scheme.	You	can	insert	data	into	any	replica	that	has	a	session	with	

ZooKeeper ,	and	data	is	replicated	to	all	other	replicas	asynchronously.	Because	ClickHouse	doesn't	support	UPDATEs,

replication	is	conflict-free.	As	there	is	no	quorum	acknowledgment	of	inserts,	just-inserted	data	might	be	lost	if	one	node

fails.



Metadata	for	replication	is	stored	in	ZooKeeper.	There	is	a	replication	log	that	lists	what	actions	to	do.	Actions	are:	get	part;

merge	parts;	drop	partition,	etc.	Each	replica	copies	the	replication	log	to	its	queue	and	then	executes	the	actions	from	the

queue.	For	example,	on	insertion,	the	"get	part"	action	is	created	in	the	log,	and	every	replica	downloads	that	part.	Merges

are	coordinated	between	replicas	to	get	byte-identical	results.	All	parts	are	merged	in	the	same	way	on	all	replicas.	To

achieve	this,	one	replica	is	elected	as	the	leader,	and	that	replica	initiates	merges	and	writes	"merge	parts"	actions	to	the

log.

Replication	is	physical:	only	compressed	parts	are	transferred	between	nodes,	not	queries.	To	lower	the	network	cost	(to

avoid	network	amplification),	merges	are	processed	on	each	replica	independently	in	most	cases.	Large	merged	parts	are

sent	over	the	network	only	in	cases	of	significant	replication	lag.

In	addition,	each	replica	stores	its	state	in	ZooKeeper	as	the	set	of	parts	and	its	checksums.	When	the	state	on	the	local

filesystem	diverges	from	the	reference	state	in	ZooKeeper,	the	replica	restores	its	consistency	by	downloading	missing

and	broken	parts	from	other	replicas.	When	there	is	some	unexpected	or	broken	data	in	the	local	filesystem,	ClickHouse

does	not	remove	it,	but	moves	it	to	a	separate	directory	and	forgets	it.

The	ClickHouse	cluster	consists	of	independent	shards,	and	each	shard	consists	of	replicas.	The	cluster	is	not	elastic,	so

after	adding	a	new	shard,	data	is	not	rebalanced	between	shards	automatically.	Instead,	the	cluster	load	will	be	uneven.

This	implementation	gives	you	more	control,	and	it	is	fine	for	relatively	small	clusters	such	as	tens	of	nodes.	But	for

clusters	with	hundreds	of	nodes	that	we	are	using	in	production,	this	approach	becomes	a	significant	drawback.	We

should	implement	a	table	engine	that	will	span	its	data	across	the	cluster	with	dynamically	replicated	regions	that	could

be	split	and	balanced	between	clusters	automatically.

How	to	Build	ClickHouse	Release	Package

Install	Git	and	Pbuilder

Checkout	ClickHouse	Sources

Run	Release	Script

How	to	Build	ClickHouse	for	Development

Build	should	work	on	Ubuntu	Linux.	With	appropriate	changes,	it	should	also	work	on	any	other	Linux	distribution.	The

build	process	is	not	intended	to	work	on	Mac	OS	X.	Only	x86_64	with	SSE	4.2	is	supported.	Support	for	AArch64	is

experimental.

To	test	for	SSE	4.2,	do

Install	Git	and	CMake

sudo apt-get update
sudo apt-get install git pbuilder debhelper lsb-release fakeroot sudo debian-archive-keyring debian-keyring

git clone --recursive --branch stable https://github.com/yandex/ClickHouse.git
cd ClickHouse

./release

grep -q sse4_2 /proc/cpuinfo && echo "SSE 4.2 supported" || echo "SSE 4.2 not supported"



Or	cmake3	instead	of	cmake	on	older	systems.

Install	GCC	7

There	are	several	ways	to	do	this.

Install	from	a	PPA	Package

Install	from	Sources

Look	at	ci/build-gcc-from-sources.sh	[https://github.com/yandex/ClickHouse/blob/master/ci/build-gcc-from-sources.sh]

Use	GCC	7	for	Builds

Install	Required	Libraries	from	Packages

Checkout	ClickHouse	Sources

For	the	latest	stable	version,	switch	to	the	stable 	branch.

Build	ClickHouse

To	create	an	executable,	run	 ninja	clickhouse .	This	will	create	the	 dbms/programs/clickhouse 	executable,	which	can

be	used	with	 client 	or	 server 	arguments.

How	to	Build	ClickHouse	on	Mac	OS	X

Build	should	work	on	Mac	OS	X	10.12.	If	you're	using	earlier	version,	you	can	try	to	build	ClickHouse	using	Gentoo	Prefix

and	clang	sl	in	this	instruction.	With	appropriate	changes,	it	should	also	work	on	any	other	Linux	distribution.

Install	Homebrew

sudo apt-get install git cmake ninja-build

sudo apt-get install software-properties-common
sudo apt-add-repository ppa:ubuntu-toolchain-r/test
sudo apt-get update
sudo apt-get install gcc-7 g++-7

export CC=gcc-7
export CXX=g++-7

sudo apt-get install libicu-dev libreadline-dev

git clone --recursive git@github.com:yandex/ClickHouse.git
## or: git clone --recursive https://github.com/yandex/ClickHouse.git

cd ClickHouse

mkdir build
cd build
cmake ..
ninja
cd ..

https://github.com/yandex/ClickHouse/blob/master/ci/build-gcc-from-sources.sh


Install	Required	Compilers,	Tools,	and	Libraries

Checkout	ClickHouse	Sources

For	the	latest	stable	version,	switch	to	the	stable 	branch.

Build	ClickHouse

Caveats

If	you	intend	to	run	clickhouse-server,	make	sure	to	increase	the	system's	maxfiles	variable.

To	do	so,	create	the	following	file:

/Library/LaunchDaemons/limit.maxfiles.plist:

Execute	the	following	command:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

brew install cmake ninja gcc icu4c mariadb-connector-c openssl libtool gettext readline

git clone --recursive git@github.com:yandex/ClickHouse.git
## or: git clone --recursive https://github.com/yandex/ClickHouse.git

cd ClickHouse

mkdir build
cd build
cmake .. -DCMAKE_CXX_COMPILER=`which g++-8` -DCMAKE_C_COMPILER=`which gcc-8`
ninja
cd ..

Note

You'll	need	to	use	sudo.



<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
        "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
  <dict>
    <key>Label</key>
    <string>limit.maxfiles</string>
    <key>ProgramArguments</key>
    <array>
      <string>launchctl</string>
      <string>limit</string>
      <string>maxfiles</string>
      <string>524288</string>
      <string>524288</string>
    </array>
    <key>RunAtLoad</key>
    <true/>
    <key>ServiceIPC</key>
    <false/>
  </dict>
</plist>



Reboot.

To	check	if	it's	working,	you	can	use	 ulimit	-n 	command.

How	to	Write	C++	Code

General	Recommendations

1.	The	following	are	recommendations,	not	requirements.

2.	If	you	are	editing	code,	it	makes	sense	to	follow	the	formatting	of	the	existing	code.

3.	Code	style	is	needed	for	consistency.	Consistency	makes	it	easier	to	read	the	code,	and	it	also	makes	it	easier	to	search
the	code.

4.	Many	of	the	rules	do	not	have	logical	reasons;	they	are	dictated	by	established	practices.

Formatting

1.	Most	of	the	formatting	will	be	done	automatically	by	clang-format .

2.	Indents	are	4	spaces.	Configure	your	development	environment	so	that	a	tab	adds	four	spaces.

3.	Opening	and	closing	curly	brackets	must	be	on	a	separate	line.

4.	If	the	entire	function	body	is	a	single	statement ,	it	can	be	placed	on	a	single	line.	Place	spaces	around	curly	braces
(besides	the	space	at	the	end	of	the	line).

5.	For	functions.	Don't	put	spaces	around	brackets.

6.	In	 if ,	 for ,	 while 	and	other	expressions,	a	space	is	inserted	in	front	of	the	opening	bracket	(as	opposed	to	function
calls).

7.	Add	spaces	around	binary	operators	( + ,	 - ,	 * ,	 / ,	 % ,	...)	and	the	ternary	operator	 ?: .

8.	If	a	line	feed	is	entered,	put	the	operator	on	a	new	line	and	increase	the	indent	before	it.

$ sudo chown root:wheel /Library/LaunchDaemons/limit.maxfiles.plist

inline void readBoolText(bool & x, ReadBuffer & buf)
{
    char tmp = '0';
    readChar(tmp, buf);
    x = tmp != '0';
}

inline size_t mask() const                { return buf_size() - 1; }
inline size_t place(HashValue x) const    { return x & mask(); }

void reinsert(const Value & x)

memcpy(&buf[place_value], &x, sizeof(x));

for (size_t i = 0; i < rows; i += storage.index_granularity)

UInt16 year = (s[0] - '0') * 1000 + (s[1] - '0') * 100 + (s[2] - '0') * 10 + (s[3] - '0');
UInt8 month = (s[5] - '0') * 10 + (s[6] - '0');
UInt8 day = (s[8] - '0') * 10 + (s[9] - '0');



9.	You	can	use	spaces	for	alignment	within	a	line,	if	desired.

10.	Don't	use	spaces	around	the	operators	 . ,	 -> .

If	necessary,	the	operator	can	be	wrapped	to	the	next	line.	In	this	case,	the	offset	in	front	of	it	is	increased.

11.	Do	not	use	a	space	to	separate	unary	operators	( -- ,	 ++ ,	 * ,	 & ,	...)	from	the	argument.

12.	Put	a	space	after	a	comma,	but	not	before	it.	The	same	rule	goes	for	a	semicolon	inside	a	for 	expression.

13.	Do	not	use	spaces	to	separate	the	 [] 	operator.

14.	In	a	 template	<...> 	expression,	use	a	space	between	 template 	and	 < ;	no	spaces	after	 < 	or	before	 > .

15.	In	classes	and	structures,	write	 public ,	 private ,	and	 protected 	on	the	same	level	as	 class/struct ,	and	indent	the
rest	of	the	code.

16.	If	the	same	 namespace 	is	used	for	the	entire	file,	and	there	isn't	anything	else	significant,	an	offset	is	not	necessary
inside	 namespace .

17.	If	the	block	for	an	if ,	 for ,	 while ,	or	other	expression	consists	of	a	single	statement ,	the	curly	brackets	are	optional.
Place	the	 statement 	on	a	separate	line,	instead.	This	rule	is	also	valid	for	nested	if ,	 for ,	 while ,	...

But	if	the	inner	 statement 	contains	curly	brackets	or	 else ,	the	external	block	should	be	written	in	curly	brackets.

18.	There	shouldn't	be	any	spaces	at	the	ends	of	lines.

19.	Source	files	are	UTF-8	encoded.

20.	Non-ASCII	characters	can	be	used	in	string	literals.

21	Do	not	write	multiple	expressions	in	a	single	line.

if (elapsed_ns)
    message << " ("
        << rows_read_on_server * 1000000000 / elapsed_ns << " rows/s., "
        << bytes_read_on_server * 1000.0 / elapsed_ns << " MB/s.) ";

dst.ClickLogID         = click.LogID;
dst.ClickEventID       = click.EventID;
dst.ClickGoodEvent     = click.GoodEvent;

template <typename TKey, typename TValue>
struct AggregatedStatElement
{}

template <typename T>
class MultiVersion
{
public:
    /// Version of object for usage. shared_ptr manage lifetime of version.
    using Version = std::shared_ptr<const T>;
    ...
}

/// Finish write.
for (auto & stream : streams)
    stream.second->finalize();

<< ", " << (timer.elapsed() / chunks_stats.hits) << " μsec/hit.";



22.	Group	sections	of	code	inside	functions	and	separate	them	with	no	more	than	one	empty	line.

23.	Separate	functions,	classes,	and	so	on	with	one	or	two	empty	lines.

24.	 A	const 	(related	to	a	value)	must	be	written	before	the	type	name.

25.	When	declaring	a	pointer	or	reference,	the	* 	and	 & 	symbols	should	be	separated	by	spaces	on	both	sides.

26.	When	using	template	types,	alias	them	with	the	using 	keyword	(except	in	the	simplest	cases).

In	other	words,	the	template	parameters	are	specified	only	in	using 	and	aren't	repeated	in	the	code.

using 	can	be	declared	locally,	such	as	inside	a	function.

27.	Do	not	declare	several	variables	of	different	types	in	one	statement.

28.	Do	not	use	C-style	casts.

29.	In	classes	and	structs,	group	members	and	functions	separately	inside	each	visibility	scope.

30.	For	small	classes	and	structs,	it	is	not	necessary	to	separate	the	method	declaration	from	the	implementation.

The	same	is	true	for	small	methods	in	any	classes	or	structs.

For	templated	classes	and	structs,	don't	separate	the	method	declarations	from	the	implementation	(because	otherwise

they	must	be	defined	in	the	same	translation	unit).

31.	You	can	wrap	lines	at	140	characters,	instead	of	80.

32.	Always	use	the	prefix	increment/decrement	operators	if	postfix	is	not	required.

Comments

1.	Be	sure	to	add	comments	for	all	non-trivial	parts	of	code.

//correct
const char * pos
const std::string & s
//incorrect
char const * pos

//correct
const char * pos
//incorrect
const char* pos
const char *pos

//correct
using FileStreams = std::map<std::string, std::shared_ptr<Stream>>;
FileStreams streams;
//incorrect
std::map<std::string, std::shared_ptr<Stream>> streams;

//incorrect
int x, *y;

//incorrect
std::cerr << (int)c <<; std::endl;
//correct
std::cerr << static_cast<int>(c) << std::endl;

for (Names::const_iterator it = column_names.begin(); it != column_names.end(); ++it)



This	is	very	important.	Writing	the	comment	might	help	you	realize	that	the	code	isn't	necessary,	or	that	it	is	designed

wrong.

2.	Comments	can	be	as	detailed	as	necessary.

3.	Place	comments	before	the	code	they	describe.	In	rare	cases,	comments	can	come	after	the	code,	on	the	same	line.

4.	Comments	should	be	written	in	English	only.

5.	If	you	are	writing	a	library,	include	detailed	comments	explaining	it	in	the	main	header	file.

6.	Do	not	add	comments	that	do	not	provide	additional	information.	In	particular,	do	not	leave	empty	comments	like	this:

The	example	is	borrowed	from	the	resource	http://home.tamk.fi/~jaalto/course/coding-style/doc/unmaintainable-code/

[http://home.tamk.fi/~jaalto/course/coding-style/doc/unmaintainable-code/].

7.	Do	not	write	garbage	comments	(author,	creation	date	..)	at	the	beginning	of	each	file.

8.	Single-line	comments	begin	with	three	slashes:	 /// 	and	multi-line	comments	begin	with	 /** .	These	comments	are
considered	"documentation".

Note:	You	can	use	Doxygen	to	generate	documentation	from	these	comments.	But	Doxygen	is	not	generally	used	because

it	is	more	convenient	to	navigate	the	code	in	the	IDE.

9.	Multi-line	comments	must	not	have	empty	lines	at	the	beginning	and	end	(except	the	line	that	closes	a	multi-line
comment).

/** Part of piece of memory, that can be used.
  * For example, if internal_buffer is 1MB, and there was only 10 bytes loaded to buffer from file for 
reading,
  * then working_buffer will have size of only 10 bytes
  * (working_buffer.end() will point to position right after those 10 bytes available for read).
  */

/** Parses and executes the query.
*/
void executeQuery(
    ReadBuffer & istr, /// Where to read the query from (and data for INSERT, if applicable)
    WriteBuffer & ostr, /// Where to write the result
    Context & context, /// DB, tables, data types, engines, functions, aggregate functions...
    BlockInputStreamPtr & query_plan, /// Here could be written the description on how query was executed
    QueryProcessingStage::Enum stage = QueryProcessingStage::Complete /// Up to which stage process the 
SELECT query
    )

/*
* Procedure Name:
* Original procedure name:
* Author:
* Date of creation:
* Dates of modification:
* Modification authors:
* Original file name:
* Purpose:
* Intent:
* Designation:
* Classes used:
* Constants:
* Local variables:
* Parameters:
* Date of creation:
* Purpose:
*/

http://home.tamk.fi/~jaalto/course/coding-style/doc/unmaintainable-code/


10.	For	commenting	out	code,	use	basic	comments,	not	“documenting”	comments.

11.	Delete	the	commented	out	parts	of	the	code	before	committing.

12.	Do	not	use	profanity	in	comments	or	code.

13.	Do	not	use	uppercase	letters.	Do	not	use	excessive	punctuation.

14.	Do	not	use	comments	to	make	delimeters.

15.	Do	not	start	discussions	in	comments.

16.	There's	no	need	to	write	a	comment	at	the	end	of	a	block	describing	what	it	was	about.

Names

1.	Use	lowercase	letters	with	underscores	in	the	names	of	variables	and	class	members.

2.	For	the	names	of	functions	(methods),	use	camelCase	beginning	with	a	lowercase	letter.

3.	For	the	names	of	classes	(structs),	use	CamelCase	beginning	with	an	uppercase	letter.	Prefixes	other	than	I	are	not	used
for	interfaces.

4.	 using 	are	named	the	same	way	as	classes,	or	with	 _t 	on	the	end.

5.	Names	of	template	type	arguments:	in	simple	cases,	use	T ;	 T ,	 U ;	 T1 ,	 T2 .

For	more	complex	cases,	either	follow	the	rules	for	class	names,	or	add	the	prefix	T .

6.	Names	of	template	constant	arguments:	either	follow	the	rules	for	variable	names,	or	use	N 	in	simple	cases.

7.	For	abstract	classes	(interfaces)	you	can	add	the	 I 	prefix.

/// WHAT THE FAIL???

///******************************************************

/// Why did you do this stuff?

/// for

size_t max_block_size;

```cpp
std::string getName() const override { return "Memory"; }
```

```cpp
class StorageMemory : public IStorage
```

template <typename TKey, typename TValue>
struct AggregatedStatElement

template <bool without_www>
struct ExtractDomain

class IBlockInputStream



8.	If	you	use	a	variable	locally,	you	can	use	the	short	name.

In	all	other	cases,	use	a	name	that	describes	the	meaning.

9.	Names	of	 define s	and	global	constants	use	ALL_CAPS	with	underscores.

10.	File	names	should	use	the	same	style	as	their	contents.

If	a	file	contains	a	single	class,	name	the	file	the	same	way	as	the	class	(CamelCase).

If	the	file	contains	a	single	function,	name	the	file	the	same	way	as	the	function	(camelCase).

11.	If	the	name	contains	an	abbreviation,	then:

For	variable	names,	the	abbreviation	should	use	lowercase	letters	 mysql_connection 	(not	 mySQL_connection ).

For	names	of	classes	and	functions,	keep	the	uppercase	letters	in	the	abbreviationMySQLConnection 	(not	

MySqlConnection ).

12.	Constructor	arguments	that	are	used	just	to	initialize	the	class	members	should	be	named	the	same	way	as	the	class
members,	but	with	an	underscore	at	the	end.

The	underscore	suffix	can	be	omitted	if	the	argument	is	not	used	in	the	constructor	body.

13.	There	is	no	difference	in	the	names	of	local	variables	and	class	members	(no	prefixes	required).

14.	For	the	constants	in	an	 enum ,	use	CamelCase	with	a	capital	letter.	ALL_CAPS	is	also	acceptable.	If	the	enum 	is	non-
local,	use	an	 enum	class .

15.	All	names	must	be	in	English.	Transliteration	of	Russian	words	is	not	allowed.

16.	Abbreviations	are	acceptable	if	they	are	well	known	(when	you	can	easily	find	the	meaning	of	the	abbreviation	in
Wikipedia	or	in	a	search	engine).

bool info_successfully_loaded = false;

##define MAX_SRC_TABLE_NAMES_TO_STORE 1000

FileQueueProcessor(
    const std::string & path_,
    const std::string & prefix_,
    std::shared_ptr<FileHandler> handler_)
    : path(path_),
    prefix(prefix_),
    handler(handler_),
    log(&Logger::get("FileQueueProcessor"))
{
}

timer (not m_timer)

enum class CompressionMethod
{
    QuickLZ = 0,
    LZ4     = 1,
};

not Stroka



Incomplete	words	are	acceptable	if	the	shortened	version	is	common	use.

You	can	also	use	an	abbreviation	if	the	full	name	is	included	next	to	it	in	the	comments.

17.	File	names	with	C++	source	code	must	have	the	 .cpp 	extension.	Header	files	must	have	the	 .h 	extension.

How	to	Write	Code

1.	Memory	management.

Manual	memory	deallocation	( delete )	can	only	be	used	in	library	code.

In	library	code,	the	 delete 	operator	can	only	be	used	in	destructors.

In	application	code,	memory	must	be	freed	by	the	object	that	owns	it.

Examples:

The	easiest	way	is	to	place	an	object	on	the	stack,	or	make	it	a	member	of	another	class.

For	a	large	number	of	small	objects,	use	containers.

For	automatic	deallocation	of	a	small	number	of	objects	that	reside	in	the	heap,	use	shared_ptr/unique_ptr .

2.	Resource	management.

Use	 RAII 	and	see	above.

3.	Error	handling.

Use	exceptions.	In	most	cases,	you	only	need	to	throw	an	exception,	and	don't	need	to	catch	it	(because	of	 RAII ).

In	offline	data	processing	applications,	it's	often	acceptable	to	not	catch	exceptions.

In	servers	that	handle	user	requests,	it's	usually	enough	to	catch	exceptions	at	the	top	level	of	the	connection	handler.

In	thread	functions,	you	should	catch	and	keep	all	exceptions	to	rethrow	them	in	the	main	thread	after	join .

Never	hide	exceptions	without	handling.	Never	just	blindly	put	all	exceptions	to	log.

If	you	need	to	ignore	some	exceptions,	do	so	only	for	specific	ones	and	rethrow	the	rest.

`AST`, `SQL`.

Not `NVDH` (some random letters)

/// If there weren't any calculations yet, calculate the first block synchronously
if (!started)
{
    calculate();
    started = true;
}
else /// If calculations are already in progress, wait for the result
    pool.wait();

if (exception)
    exception->rethrow();

//Not correct
catch (...) {}



When	using	functions	with	response	codes	or	 errno ,	always	check	the	result	and	throw	an	exception	in	case	of	error.

Do	not	use	assert .

4.	Exception	types.

There	is	no	need	to	use	complex	exception	hierarchy	in	application	code.	The	exception	text	should	be	understandable	to	a

system	administrator.

5.	Throwing	exceptions	from	destructors.

This	is	not	recommended,	but	it	is	allowed.

Use	the	following	options:

Create	a	function	( done() 	or	 finalize() )	that	will	do	all	the	work	in	advance	that	might	lead	to	an	exception.	If	that

function	was	called,	there	should	be	no	exceptions	in	the	destructor	later.

Tasks	that	are	too	complex	(such	as	sending	messages	over	the	network)	can	be	put	in	separate	method	that	the	class

user	will	have	to	call	before	destruction.

If	there	is	an	exception	in	the	destructor,	it’s	better	to	log	it	than	to	hide	it	(if	the	logger	is	available).

In	simple	applications,	it	is	acceptable	to	rely	on	 std::terminate 	(for	cases	of	 noexcept 	by	default	in	C++11)	to

handle	exceptions.

6.	Anonymous	code	blocks.

You	can	create	a	separate	code	block	inside	a	single	function	in	order	to	make	certain	variables	local,	so	that	the

destructors	are	called	when	exiting	the	block.

7.	Multithreading.

In	offline	data	processing	programs:

Try	to	get	the	best	possible	performance	on	a	single	CPU	core.	You	can	then	parallelize	your	code	if	necessary.

In	server	applications:

Use	the	thread	pool	to	process	requests.	At	this	point,	we	haven't	had	any	tasks	that	required	userspace	context

switching.

Fork	is	not	used	for	parallelization.

catch (const DB::Exception & e)
{
    if (e.code() == ErrorCodes::UNKNOWN_AGGREGATE_FUNCTION)
        return nullptr;
    else
        throw;
}

if (0 != close(fd))
    throwFromErrno("Cannot close file " + file_name, ErrorCodes::CANNOT_CLOSE_FILE);

Block block = data.in->read();

{
    std::lock_guard<std::mutex> lock(mutex);
    data.ready = true;
    data.block = block;
}

ready_any.set();



8.	Syncing	threads.

Often	it	is	possible	to	make	different	threads	use	different	memory	cells	(even	better:	different	cache	lines,)	and	to	not	use

any	thread	synchronization	(except	 joinAll ).

If	synchronization	is	required,	in	most	cases,	it	is	sufficient	to	use	mutex	under	 lock_guard .

In	other	cases	use	system	synchronization	primitives.	Do	not	use	busy	wait.

Atomic	operations	should	be	used	only	in	the	simplest	cases.

Do	not	try	to	implement	lock-free	data	structures	unless	it	is	your	primary	area	of	expertise.

9.	Pointers	vs	references.

In	most	cases,	prefer	references.

10.	const.

Use	constant	references,	pointers	to	constants,	 const_iterator ,	and	const	methods.

Consider	 const 	to	be	default	and	use	non- const 	only	when	necessary.

When	passing	variables	by	value,	using	 const 	usually	does	not	make	sense.

11.	unsigned.

Use	 unsigned 	if	necessary.

12.	Numeric	types.

Use	the	types	 UInt8 ,	 UInt16 ,	 UInt32 ,	 UInt64 ,	 Int8 ,	 Int16 ,	 Int32 ,	and	 Int64 ,	as	well	as	 size_t ,	 ssize_t ,	and	

ptrdiff_t .

Don't	use	these	types	for	numbers:	 signed/unsigned	long ,	 long	long ,	 short ,	 signed/unsigned	char ,	 char .

13.	Passing	arguments.

Pass	complex	values	by	reference	(including	 std::string ).

If	a	function	captures	ownership	of	an	object	created	in	the	heap,	make	the	argument	type	shared_ptr 	or	 unique_ptr .

14.	Return	values.

In	most	cases,	just	use	 return .	Do	not	write	 [return	std::move(res)]{.strike} .

If	the	function	allocates	an	object	on	heap	and	returns	it,	use	shared_ptr 	or	 unique_ptr .

In	rare	cases	you	might	need	to	return	the	value	via	an	argument.	In	this	case,	the	argument	should	be	a	reference.

15.	namespace.

There	is	no	need	to	use	a	separate	 namespace 	for	application	code.

Small	libraries	don't	need	this,	either.

using AggregateFunctionPtr = std::shared_ptr<IAggregateFunction>;

/** Allows creating an aggregate function by its name.
  */
class AggregateFunctionFactory
{
public:
    AggregateFunctionFactory();
    AggregateFunctionPtr get(const String & name, const DataTypes & argument_types) const;



For	medium	to	large	libraries,	put	everything	in	a	namespace .

In	the	library's	 .h 	file,	you	can	use	 namespace	detail 	to	hide	implementation	details	not	needed	for	the	application

code.

In	a	 .cpp 	file,	you	can	use	a	 static 	or	anonymous	namespace	to	hide	symbols.

Also,	a	 namespace 	can	be	used	for	an	 enum 	to	prevent	the	corresponding	names	from	falling	into	an	external	 namespace

(but	it's	better	to	use	an	 enum	class ).

16.	Deferred	initialization.

If	arguments	are	required	for	initialization,	then	you	normally	shouldn't	write	a	default	constructor.

If	later	you’ll	need	to	delay	initialization,	you	can	add	a	default	constructor	that	will	create	an	invalid	object.	Or,	for	a	small

number	of	objects,	you	can	use	 shared_ptr/unique_ptr .

17.	Virtual	functions.

If	the	class	is	not	intended	for	polymorphic	use,	you	do	not	need	to	make	functions	virtual.	This	also	applies	to	the

destructor.

18.	Encodings.

Use	UTF-8	everywhere.	Use	 std::string and char	* .	Do	not	use	 std::wstring and wchar_t .

19.	Logging.

See	the	examples	everywhere	in	the	code.

Before	committing,	delete	all	meaningless	and	debug	logging,	and	any	other	types	of	debug	output.

Logging	in	cycles	should	be	avoided,	even	on	the	Trace	level.

Logs	must	be	readable	at	any	logging	level.

Logging	should	only	be	used	in	application	code,	for	the	most	part.

Log	messages	must	be	written	in	English.

The	log	should	preferably	be	understandable	for	the	system	administrator.

Do	not	use	profanity	in	the	log.

Use	UTF-8	encoding	in	the	log.	In	rare	cases	you	can	use	non-ASCII	characters	in	the	log.

20.	Input-output.

Don't	use	 iostreams 	in	internal	cycles	that	are	critical	for	application	performance	(and	never	use	stringstream ).

Use	the	 DB/IO 	library	instead.

21.	Date	and	time.

See	the	 DateLUT 	library.

22.	include.

Loader(DB::Connection * connection_, const std::string & query, size_t max_block_size_);

/// For deferred initialization
Loader() {}



Always	use	 #pragma	once 	instead	of	include	guards.

23.	using.

using	namespace 	is	not	used.	You	can	use	 using 	with	something	specific.	But	make	it	local	inside	a	class	or	function.

24.	Do	not	use	 trailing	return	type 	for	functions	unless	necessary.

25.	Declaration	and	initialization	of	variables.

26.	For	virtual	functions,	write	 virtual 	in	the	base	class,	but	write	 override 	instead	of	 virtual 	in	descendent	classes.

Unused	Features	of	C++

1.	Virtual	inheritance	is	not	used.

2.	Exception	specifiers	from	C++03	are	not	used.

Platform

1.	We	write	code	for	a	specific	platform.

But	other	things	being	equal,	cross-platform	or	portable	code	is	preferred.

2.	Language:	C++17.

3.	Compiler:	 gcc .	At	this	time	(December	2017),	the	code	is	compiled	using	version	7.2.	(It	can	also	be	compiled	using	
clang	4 .)

The	standard	library	is	used	( libstdc++ 	or	 libc++ ).

4.OS:	Linux	Ubuntu,	not	older	than	Precise.

5.Code	is	written	for	x86_64	CPU	architecture.

The	CPU	instruction	set	is	the	minimum	supported	set	among	our	servers.	Currently,	it	is	SSE	4.2.

6.	Use	 -Wall	-Wextra	-Werror 	compilation	flags.

7.	Use	static	linking	with	all	libraries	except	those	that	are	difficult	to	connect	to	statically	(see	the	output	of	the	ldd
command).

8.	Code	is	developed	and	debugged	with	release	settings.

Tools

1.	KDevelop	is	a	good	IDE.

2.	For	debugging,	use	 gdb ,	 valgrind 	( memcheck ),	 strace ,	 -fsanitize=... ,	or	 tcmalloc_minimal_debug .

3.	For	profiling,	use	 Linux	Perf ,	 valgrind 	( callgrind ),	or	 strace	-cf .

[auto f() -&gt; void;]{.strike}

//right way
std::string s = "Hello";
std::string s{"Hello"};

//wrong way
auto s = std::string{"Hello"};



4.	Sources	are	in	Git.

5.	Assembly	uses	 CMake .

6.	Programs	are	released	using	 deb 	packages.

7.	Commits	to	master	must	not	break	the	build.

Though	only	selected	revisions	are	considered	workable.

8.	Make	commits	as	often	as	possible,	even	if	the	code	is	only	partially	ready.

Use	branches	for	this	purpose.

If	your	code	in	the	 master 	branch	is	not	buildable	yet,	exclude	it	from	the	build	before	the	push .	You'll	need	to	finish	it	or

remove	it	within	a	few	days.

9.	For	non-trivial	changes,	use	branches	and	publish	them	on	the	server.

10.	Unused	code	is	removed	from	the	repository.

Libraries

1.	The	C++14	standard	library	is	used	(experimental	extensions	are	allowed),	as	well	as	boost 	and	 Poco 	frameworks.

2.	If	necessary,	you	can	use	any	well-known	libraries	available	in	the	OS	package.

If	there	is	a	good	solution	already	available,	then	use	it,	even	if	it	means	you	have	to	install	another	library.

(But	be	prepared	to	remove	bad	libraries	from	code.)

3.	You	can	install	a	library	that	isn't	in	the	packages,	if	the	packages	don't	have	what	you	need	or	have	an	outdated	version
or	the	wrong	type	of	compilation.

4.	If	the	library	is	small	and	doesn't	have	its	own	complex	build	system,	put	the	source	files	in	the	contrib 	folder.

5.	Preference	is	always	given	to	libraries	that	are	already	in	use.

General	Recommendations

1.	Write	as	little	code	as	possible.

2.	Try	the	simplest	solution.

3.	Don't	write	code	until	you	know	how	it's	going	to	work	and	how	the	inner	loop	will	function.

4.	In	the	simplest	cases,	use	 using 	instead	of	classes	or	structs.

5.	If	possible,	do	not	write	copy	constructors,	assignment	operators,	destructors	(other	than	a	virtual	one,	if	the	class
contains	at	least	one	virtual	function),	move	constructors	or	move	assignment	operators.	In	other	words,	the	compiler-

generated	functions	must	work	correctly.	You	can	use	 default .

6.	Code	simplification	is	encouraged.	Reduce	the	size	of	your	code	where	possible.

Additional	Recommendations

1.	Explicitly	specifying	 std:: 	for	types	from	 stddef.h

is	not	recommended.	In	other	words,	we	recommend	writing	 size_t 	instead	 std::size_t ,	because	it's	shorter.

It	is	acceptable	to	add	 std:: .



2.	Explicitly	specifying	 std:: 	for	functions	from	the	standard	C	library

is	not	recommended.	In	other	words,	write	 memcpy 	instead	of	 std::memcpy .

The	reason	is	that	there	are	similar	non-standard	functions,	such	as	 memmem .	We	do	use	these	functions	on	occasion.	These

functions	do	not	exist	in	 namespace	std .

If	you	write	 std::memcpy 	instead	of	 memcpy 	everywhere,	then	 memmem 	without	 std:: 	will	look	strange.

Nevertheless,	you	can	still	use	 std:: 	if	you	prefer	it.

3.	Using	functions	from	C	when	the	same	ones	are	available	in	the	standard	C++	library.

This	is	acceptable	if	it	is	more	efficient.

For	example,	use	 memcpy 	instead	of	 std::copy 	for	copying	large	chunks	of	memory.

4.	Multiline	function	arguments.

Any	of	the	following	wrapping	styles	are	allowed:

ClickHouse	Testing

Functional	Tests

Functional	tests	are	the	most	simple	and	convenient	to	use.	Most	of	ClickHouse	features	can	be	tested	with	functional

tests	and	they	are	mandatory	to	use	for	every	change	in	ClickHouse	code	that	can	be	tested	that	way.

Each	functional	test	sends	one	or	multiple	queries	to	the	running	ClickHouse	server	and	compares	the	result	with

reference.

Tests	are	located	in	 dbms/src/tests/queries 	directory.	There	are	two	subdirectories:	 stateless 	and	 stateful .

Stateless	tests	run	queries	without	any	preloaded	test	data	-	they	often	create	small	synthetic	datasets	on	the	fly,	within

the	test	itself.	Stateful	tests	require	preloaded	test	data	from	Yandex.Metrica	and	not	available	to	general	public.	We	tend

to	use	only	 stateless 	tests	and	avoid	adding	new	 stateful 	tests.

function(
  T1 x1,
  T2 x2)

function(
  size_t left, size_t right,
  const & RangesInDataParts ranges,
  size_t limit)

function(size_t left, size_t right,
  const & RangesInDataParts ranges,
  size_t limit)

function(size_t left, size_t right,
      const & RangesInDataParts ranges,
      size_t limit)

function(
      size_t left,
      size_t right,
      const & RangesInDataParts ranges,
      size_t limit)



Each	test	can	be	one	of	two	types:	.sql 	and	 .sh .	 .sql 	test	is	the	simple	SQL	script	that	is	piped	to	clickhouse-client	

--multiquery .	 .sh 	test	is	a	script	that	is	run	by	itself.

To	run	all	tests,	use	 dbms/tests/clickhouse-test 	tool.	Look	 --help 	for	the	list	of	possible	options.	You	can	simply	run

all	tests	or	run	subset	of	tests	filtered	by	substring	in	test	name:	 ./clickhouse-test	substring .

The	most	simple	way	to	invoke	functional	tests	is	to	copy	clickhouse-client 	to	 /usr/bin/ ,	run	 clickhouse-server

and	then	run	 ./clickhouse-test 	from	its	own	directory.

To	add	new	test,	create	a	 .sql 	or	 .sh 	file	in	 dbms/src/tests/queries/0_stateless 	directory,	check	it	manually	and

then	generate	 .reference 	file	in	the	following	way:	 clickhouse-client	-n	<	00000_test.sql	>	

00000_test.reference 	or	 ./00000_test.sh	>	./00000_test.reference .

Tests	should	use	(create,	drop,	etc)	only	tables	in	 test 	database	that	is	assumed	to	be	created	beforehand;	also	tests	can

use	temporary	tables.

If	you	want	to	use	distributed	queries	in	functional	tests,	you	can	leverage	remote 	table	function	with	 127.0.0.{1..2}

addresses	for	the	server	to	query	itself;	or	you	can	use	predefined	test	clusters	in	server	configuration	file	like	

test_shard_localhost .

Some	tests	are	marked	with	 zookeeper ,	 shard 	or	 long 	in	their	names.	 zookeeper 	is	for	tests	that	are	using	ZooKeeper;	

shard 	is	for	tests	that	requires	server	to	listen	 127.0.0.* ;	 long 	is	for	tests	that	run	slightly	longer	that	one	second.

Integration	Tests

Integration	tests	allow	to	test	ClickHouse	in	clustered	configuration	and	ClickHouse	interaction	with	other	servers	like

MySQL,	Postgres,	MongoDB.	They	are	useful	to	emulate	network	splits,	packet	drops,	etc.	These	tests	are	run	under

Docker	and	create	multiple	containers	with	various	software.

See	 dbms/tests/integration/README.md 	on	how	to	run	these	tests.

Note	that	integration	of	ClickHouse	with	third-party	drivers	is	not	tested.	Also	we	currently	don't	have	integration	tests

with	our	JDBC	and	ODBC	drivers.

Unit	Tests

Unit	tests	are	useful	when	you	want	to	test	not	the	ClickHouse	as	a	whole,	but	a	single	isolated	library	or	class.	You	can

enable	or	disable	build	of	tests	with	 ENABLE_TESTS 	CMake	option.	Unit	tests	(and	other	test	programs)	are	located	in	

tests 	subdirectories	across	the	code.	To	run	unit	tests,	type	 ninja	test .	Some	tests	use	 gtest ,	but	some	are	just

programs	that	return	non-zero	exit	code	on	test	failure.

It's	not	necessarily	to	have	unit	tests	if	the	code	is	already	covered	by	functional	tests	(and	functional	tests	are	usually

much	more	simple	to	use).

Performance	Tests

Performance	tests	allow	to	measure	and	compare	performance	of	some	isolated	part	of	ClickHouse	on	synthetic	queries.

Tests	are	located	at	 dbms/tests/performance .	Each	test	is	represented	by	 .xml 	file	with	description	of	test	case.	Tests

are	run	with	 clickhouse	performance-test 	tool	(that	is	embedded	in	 clickhouse 	binary).	See	 --help 	for	invocation.

Each	test	run	one	or	miltiple	queries	(possibly	with	combinations	of	parameters)	in	a	loop	with	some	conditions	for	stop

(like	"maximum	execution	speed	is	not	changing	in	three	seconds")	and	measure	some	metrics	about	query	performance

(like	"maximum	execution	speed").	Some	tests	can	contain	preconditions	on	preloaded	test	dataset.

If	you	want	to	improve	performance	of	ClickHouse	in	some	scenario,	and	if	improvements	can	be	observed	on	simple

queries,	it	is	highly	recommended	to	write	a	performance	test.	It	always	makes	sense	to	use	 perf	top 	or	other	perf	tools

during	your	tests.



Performance	tests	are	not	run	on	per-commit	basis.	Results	of	performance	tests	are	not	collected	and	we	compare	them

manually.

Test	Tools	And	Scripts

Some	programs	in	 tests 	directory	are	not	prepared	tests,	but	are	test	tools.	For	example,	for	 Lexer 	there	is	a	tool	

dbms/src/Parsers/tests/lexer 	that	just	do	tokenization	of	stdin	and	writes	colorized	result	to	stdout.	You	can	use	these

kind	of	tools	as	a	code	examples	and	for	exploration	and	manual	testing.

You	can	also	place	pair	of	files	.sh 	and	 .reference 	along	with	the	tool	to	run	it	on	some	predefined	input	-	then	script

result	can	be	compared	to	 .reference 	file.	There	kind	of	tests	are	not	automated.

Miscellanous	Tests

There	are	tests	for	external	dictionaries	located	at	 dbms/tests/external_dictionaries 	and	for	machine	learned	models

in	 dbms/tests/external_models .	These	tests	are	not	updated	and	must	be	transferred	to	integration	tests.

There	is	separate	test	for	quorum	inserts.	This	test	run	ClickHouse	cluster	on	separate	servers	and	emulate	various	failure

cases:	network	split,	packet	drop	(between	ClickHouse	nodes,	between	ClickHouse	and	ZooKeeper,	between	ClickHouse

server	and	client,	etc.),	 kill	-9 ,	 kill	-STOP 	and	 kill	-CONT 	,	like	Jepsen	[https://aphyr.com/tags/Jepsen].	Then	the

test	checks	that	all	acknowledged	inserts	was	written	and	all	rejected	inserts	was	not.

Quorum	test	was	written	by	separate	team	before	ClickHouse	was	open-sourced.	This	team	no	longer	work	with

ClickHouse.	Test	was	accidentially	written	in	Java.	For	these	reasons,	quorum	test	must	be	rewritten	and	moved	to

integration	tests.

Manual	Testing

When	you	develop	a	new	feature,	it	is	reasonable	to	also	test	it	manually.	You	can	do	it	with	the	following	steps:

Build	ClickHouse.	Run	ClickHouse	from	the	terminal:	change	directory	to	 dbms/src/programs/clickhouse-server 	and

run	it	with	 ./clickhouse-server .	It	will	use	configuration	( config.xml ,	 users.xml 	and	files	within	 config.d 	and	

users.d 	directories)	from	the	current	directory	by	default.	To	connect	to	ClickHouse	server,	run	

dbms/src/programs/clickhouse-client/clickhouse-client .

Note	that	all	clickhouse	tools	(server,	client,	etc)	are	just	symlinks	to	a	single	binary	named	clickhouse .	You	can	find	this

binary	at	 dbms/src/programs/clickhouse .	All	tools	can	also	be	invoked	as	clickhouse	tool 	instead	of	 clickhouse-

tool .

Alternatively	you	can	install	ClickHouse	package:	either	stable	release	from	Yandex	repository	or	you	can	build	package	for

yourself	with	 ./release 	in	ClickHouse	sources	root.	Then	start	the	server	with	 sudo	service	clickhouse-server	start

(or	stop	to	stop	the	server).	Look	for	logs	at	 /etc/clickhouse-server/clickhouse-server.log .

When	ClickHouse	is	already	installed	on	your	system,	you	can	build	a	new	clickhouse 	binary	and	replace	the	existing

binary:

Also	you	can	stop	system	clickhouse-server	and	run	your	own	with	the	same	configuration	but	with	logging	to	terminal:

Example	with	gdb:

sudo service clickhouse-server stop
sudo cp ./clickhouse /usr/bin/
sudo service clickhouse-server start

sudo service clickhouse-server stop
sudo -u clickhouse /usr/bin/clickhouse server --config-file /etc/clickhouse-server/config.xml

https://aphyr.com/tags/Jepsen


If	the	system	clickhouse-server	is	already	running	and	you	don't	want	to	stop	it,	you	can	change	port	numbers	in	your	

config.xml 	(or	override	them	in	a	file	in	config.d 	directory),	provide	appropriate	data	path,	and	run	it.

clickhouse 	binary	has	almost	no	dependencies	and	works	across	wide	range	of	Linux	distributions.	To	quick	and	dirty

test	your	changes	on	a	server,	you	can	simply	 scp 	your	fresh	built	 clickhouse 	binary	to	your	server	and	then	run	it	as	in

examples	above.

Testing	Environment

Before	publishing	release	as	stable	we	deploy	it	on	testing	environment.	Testing	environment	is	a	cluster	that	process	1/39

part	of	Yandex.Metrica	[https://metrica.yandex.com/]	data.	We	share	our	testing	environment	with	Yandex.Metrica	team.

ClickHouse	is	upgraded	without	downtime	on	top	of	existing	data.	We	look	at	first	that	data	is	processed	successfully

without	lagging	from	realtime,	the	replication	continue	to	work	and	there	is	no	issues	visible	to	Yandex.Metrica	team.	First

check	can	be	done	in	the	following	way:

In	some	cases	we	also	deploy	to	testing	environment	of	our	friend	teams	in	Yandex:	Market,	Cloud,	etc.	Also	we	have	some

hardware	servers	that	are	used	for	development	purposes.

Load	Testing

After	deploying	to	testing	environment	we	run	load	testing	with	queries	from	production	cluster.	This	is	done	manually.

Make	sure	you	have	enabled	 query_log 	on	your	production	cluster.

Collect	query	log	for	a	day	or	more:

This	is	a	way	complicated	example.	 type	=	2 	will	filter	queries	that	are	executed	successfully.	 query	LIKE	'%ym:%' 	is	to

select	relevant	queries	from	Yandex.Metrica.	 is_initial_query 	is	to	select	only	queries	that	are	initiated	by	client,	not	by

ClickHouse	itself	(as	parts	of	distributed	query	processing).

scp 	this	log	to	your	testing	cluster	and	run	it	as	following:

(probably	you	also	want	to	specify	a	--user )

Then	leave	it	for	a	night	or	weekend	and	go	take	a	rest.

You	should	check	that	 clickhouse-server 	doesn't	crash,	memory	footprint	is	bounded	and	performance	not	degrading

over	time.

Precise	query	execution	timings	are	not	recorded	and	not	compared	due	to	high	variability	of	queries	and	environment.

Build	Tests

Build	tests	allow	to	check	that	build	is	not	broken	on	various	alternative	configurations	and	on	some	foreign	systems.

Tests	are	located	at	 ci 	directory.	They	run	build	from	source	inside	Docker,	Vagrant,	and	sometimes	with	 qemu-user-

static 	inside	Docker.	These	tests	are	under	development	and	test	runs	are	not	automated.

sudo -u clickhouse gdb --args /usr/bin/clickhouse server --config-file /etc/clickhouse-server/config.xml

SELECT hostName() AS h, any(version()), any(uptime()), max(UTCEventTime), count() FROM remote('example01-01-
{1..3}t', merge, hits) WHERE EventDate >= today() - 2 GROUP BY h ORDER BY h;

clickhouse-client --query="SELECT DISTINCT query FROM system.query_log WHERE event_date = today() AND query 
LIKE '%ym:%' AND query NOT LIKE '%system.query_log%' AND type = 2 AND is_initial_query" > queries.tsv

clickhouse benchmark --concurrency 16 < queries.tsv

https://metrica.yandex.com/


Motivation:

Normally	we	release	and	run	all	tests	on	a	single	variant	of	ClickHouse	build.	But	there	are	alternative	build	variants	that	are

not	thoroughly	tested.	Examples:

build	on	FreeBSD;

build	on	Debian	with	libraries	from	system	packages;

build	with	shared	linking	of	libraries;

build	on	AArch64	platform.

For	example,	build	with	system	packages	is	bad	practice,	because	we	cannot	guarantee	what	exact	version	of	packages	a

system	will	have.	But	this	is	really	needed	by	Debian	maintainers.	For	this	reason	we	at	least	have	to	support	this	variant	of

build.	Another	example:	shared	linking	is	a	common	source	of	trouble,	but	it	is	needed	for	some	enthusiasts.

Though	we	cannot	run	all	tests	on	all	variant	of	builds,	we	want	to	check	at	least	that	various	build	variants	are	not	broken.

For	this	purpose	we	use	build	tests.

Testing	For	Protocol	Compatibility

When	we	extend	ClickHouse	network	protocol,	we	test	manually	that	old	clickhouse-client	works	with	new	clickhouse-

server	and	new	clickhouse-client	works	with	old	clickhouse-server	(simply	by	running	binaries	from	corresponding

packages).

Help	From	The	Compiler

Main	ClickHouse	code	(that	is	located	in	 dbms 	directory)	is	built	with	 -Wall	-Wextra	-Werror 	and	with	some	additional

enabled	warnings.	Although	these	options	are	not	enabled	for	third-party	libraries.

Clang	has	even	more	useful	warnings	-	you	can	look	for	them	with	 -Weverything 	and	pick	something	to	default	build.

For	production	builds,	gcc	is	used	(it	still	generates	slightly	more	efficient	code	than	clang).	For	development,	clang	is

usually	more	convenient	to	use.	You	can	build	on	your	own	machine	with	debug	mode	(to	save	battery	of	your	laptop),	but

please	note	that	compiler	is	able	to	generate	more	warnings	with	 -O3 	due	to	better	control	flow	and	inter-procedure

analysis.	When	building	with	clang,	 libc++ 	is	used	instead	of	 libstdc++ 	and	when	building	with	debug	mode,	debug

version	of	 libc++ 	is	used	that	allows	to	catch	more	errors	at	runtime.

Sanitizers

Address	sanitizer.	We	run	functional	tests	under	ASan	on	per-commit	basis.

Valgrind	(Memcheck).	We	run	functional	tests	under	Valgrind	overnight.	It	takes	multiple	hours.	Currently	there	is	one

known	false	positive	in	 re2 	library,	see	this	article	[https://research.swtch.com/sparse].

Thread	sanitizer.	We	run	functional	tests	under	TSan.	ClickHouse	must	pass	all	tests.	Run	under	TSan	is	not	automated

and	performed	only	occasionally.

Memory	sanitizer.	Currently	we	still	don't	use	MSan.

Undefined	behaviour	sanitizer.	We	still	don't	use	UBSan.	The	only	thing	to	fix	is	unaligned	placement	of	structs	in	Arena

during	aggregation.	This	is	totally	fine,	we	only	have	to	force	alignment	under	UBSan.

Debug	allocator.	You	can	enable	debug	version	of	 tcmalloc 	with	 DEBUG_TCMALLOC 	CMake	option.	We	run	tests	with

debug	allocator	on	per-commit	basis.

You	will	find	some	additional	details	in	 dbms/tests/instructions/sanitizers.txt .

https://research.swtch.com/sparse


Fuzzing

As	of	July	2018	we	don't	use	fuzzing.

Security	Audit

People	from	Yandex	Cloud	department	do	some	basic	overview	of	ClickHouse	capabilities	from	the	security	standpoint.

Static	Analyzers

We	use	static	analyzers	only	occasionally.	We	have	evaluated	 clang-tidy ,	 Coverity ,	 cppcheck ,	 PVS-Studio ,	

tscancode .	You	will	find	instructions	for	usage	in	 dbms/tests/instructions/ 	directory.	Also	you	can	read	the	article	in

russian	[https://habr.com/company/yandex/blog/342018/].

If	you	use	 CLion 	as	an	IDE,	you	can	leverage	some	 clang-tidy 	checks	out	of	the	box.

Hardening

FORTIFY_SOURCE 	is	used	by	default.	It	is	almost	useless,	but	still	makes	sense	in	rare	cases	and	we	don't	disable	it.

Code	Style

Code	style	rules	are	described	here	[https://clickhouse.yandex/docs/en/development/style/].

To	check	for	some	common	style	violations,	you	can	use	 utils/check-style 	script.

To	force	proper	style	of	your	code,	you	can	use	 clang-format .	File	 .clang-format 	is	located	at	the	sources	root.	It	mostly

corresponding	with	our	actual	code	style.	But	it's	not	recommended	to	apply	 clang-format 	to	existing	files	because	it

makes	formatting	worse.	You	can	use	 clang-format-diff 	tool	that	you	can	find	in	clang	source	repository.

Alternatively	you	can	try	 uncrustify 	tool	to	reformat	your	code.	Configuration	is	in	 uncrustify.cfg 	in	the	sources	root.

It	is	less	tested	than	 clang-format .

CLion 	has	its	own	code	formatter	that	has	to	be	tuned	for	our	code	style.

Metrica	B2B	Tests

Each	ClickHouse	release	is	tested	with	Yandex	Metrica	and	AppMetrica	engines.	Testing	and	stable	versions	of	ClickHouse

are	deployed	on	VMs	and	run	with	a	small	copy	of	Metrica	engine	that	is	processing	fixed	sample	of	input	data.	Then

results	of	two	instances	of	Metrica	engine	are	compared	together.

These	tests	are	automated	by	separate	team.	Due	to	high	number	of	moving	parts,	tests	are	fail	most	of	the	time	by

completely	unrelated	reasons,	that	are	very	difficult	to	figure	out.	Most	likely	these	tests	have	negative	value	for	us.

Nevertheless	these	tests	was	proved	to	be	useful	in	about	one	or	two	times	out	of	hundreds.

Test	Coverage

As	of	July	2018	we	don't	track	test	coverage.

Test	Automation

We	run	tests	with	Travis	CI	(available	for	general	public)	and	Jenkins	(available	inside	Yandex).

In	Travis	CI	due	to	limit	on	time	and	computational	power	we	can	afford	only	subset	of	functional	tests	that	are	run	with

limited	build	of	ClickHouse	(debug	version	with	cut	off	most	of	libraries).	In	about	half	of	runs	it	still	fails	to	finish	in	50

https://habr.com/company/yandex/blog/342018/
https://clickhouse.yandex/docs/en/development/style/


minutes	timeout.	The	only	advantage	-	test	results	are	visible	for	all	external	contributors.

In	Jenkins	we	run	functional	tests	for	each	commit	and	for	each	pull	request	from	trusted	users;	the	same	under	ASan;	we

also	run	quorum	tests,	dictionary	tests,	Metrica	B2B	tests.	We	use	Jenkins	to	prepare	and	publish	releases.	Worth	to	note

that	we	are	not	happy	with	Jenkins	at	all.

One	of	our	goals	is	to	provide	reliable	testing	infrastructure	that	will	be	available	to	community.

Roadmap

Q4	2018

JOIN	syntax	compatible	with	SQL	standard:

Mutliple	 JOIN s	in	single	 SELECT

Protobuf	and	Parquet	input	and	output	formats

Q1	2019

Import/export	from	HDFS	and	S3

Lower	metadata	size	in	ZooKeeper

Adaptive	index	granularity	for	MergeTree	engine	family

Q2	2019

JOIN	execution	improvements:

Distributed	join	not	limited	by	memory

Resource	pools	for	more	precise	distribution	of	cluster	capacity	between	users

Q3	2019

Fine-grained	authorization

Integration	with	external	authentication	services

ClickHouse	release	18.14.15,	2018-11-21

Bug	fixes:

The	size	of	memory	chunk	was	overestimated	while	deserializing	the	column	of	type	Array(String) 	that	leads	to

"Memory	limit	exceeded"	errors.	The	issue	appeared	in	version	18.12.13.	#3589

[https://github.com/yandex/ClickHouse/issues/3589]

ClickHouse	release	18.14.14,	2018-11-20

Bug	fixes:

Fixed	 ON	CLUSTER 	queries	when	cluster	configured	as	secure	(flag	 <secure> ).	#3599

[https://github.com/yandex/ClickHouse/pull/3599]

Build	changes:

Fixed	problems	(llvm-7	from	system,	macos)	#3582	[https://github.com/yandex/ClickHouse/pull/3582]

https://github.com/yandex/ClickHouse/issues/3589
https://github.com/yandex/ClickHouse/pull/3599
https://github.com/yandex/ClickHouse/pull/3582


ClickHouse	release	18.14.11,	2018-10-29

Bug	fixes:

Fixed	the	error	 Block	structure	mismatch	in	UNION	stream:	different	number	of	columns 	in	LIMIT	queries.

#2156	[https://github.com/yandex/ClickHouse/issues/2156]

Fixed	errors	when	merging	data	in	tables	containing	arrays	inside	Nested	structures.	#3397

[https://github.com/yandex/ClickHouse/pull/3397]

Fixed	incorrect	query	results	if	the	 merge_tree_uniform_read_distribution 	setting	is	disabled	(it	is	enabled	by

default).	#3429	[https://github.com/yandex/ClickHouse/pull/3429]

Fixed	an	error	on	inserts	to	a	Distributed	table	in	Native	format.	#3411

[https://github.com/yandex/ClickHouse/issues/3411]

ClickHouse	release	18.14.10,	2018-10-23

The	 compile_expressions 	setting	(JIT	compilation	of	expressions)	is	disabled	by	default.	#3410

[https://github.com/yandex/ClickHouse/pull/3410]

The	 enable_optimize_predicate_expression 	setting	is	disabled	by	default.

ClickHouse	release	18.14.9,	2018-10-16

New	features:

The	 WITH	CUBE 	modifier	for	 GROUP	BY 	(the	alternative	syntax	 GROUP	BY	CUBE(...) 	is	also	available).	#3172

[https://github.com/yandex/ClickHouse/pull/3172]

Added	the	 formatDateTime 	function.	Alexandr	Krasheninnikov	[https://github.com/yandex/ClickHouse/pull/2770]

Added	the	 JDBC 	table	engine	and	 jdbc 	table	function	(requires	installing	clickhouse-jdbc-bridge).	Alexandr

Krasheninnikov	[https://github.com/yandex/ClickHouse/pull/3210]

Added	functions	for	working	with	the	ISO	week	number:	 toISOWeek ,	 toISOYear ,	 toStartOfISOYear ,	and	

toDayOfYear .	#3146	[https://github.com/yandex/ClickHouse/pull/3146]

Now	you	can	use	 Nullable 	columns	for	 MySQL 	and	 ODBC 	tables.	#3362

[https://github.com/yandex/ClickHouse/pull/3362]

Nested	data	structures	can	be	read	as	nested	objects	in	 JSONEachRow 	format.	Added	the	

input_format_import_nested_json 	setting.	Veloman	Yunkan	[https://github.com/yandex/ClickHouse/pull/3144]

Parallel	processing	is	available	for	many	 MATERIALIZED	VIEW s	when	inserting	data.	See	the	

parallel_view_processing 	setting.	Marek	Vavruša	[https://github.com/yandex/ClickHouse/pull/3208]

Added	the	 SYSTEM	FLUSH	LOGS 	query	(forced	log	flushes	to	system	tables	such	as	query_log )	#3321

[https://github.com/yandex/ClickHouse/pull/3321]

Now	you	can	use	pre-defined	 database 	and	 table 	macros	when	declaring	 Replicated 	tables.	#3251

[https://github.com/yandex/ClickHouse/pull/3251]

Added	the	ability	to	read	 Decimal 	type	values	in	engineering	notation	(indicating	powers	of	ten).	#3153

[https://github.com/yandex/ClickHouse/pull/3153]

Experimental	features:

Optimization	of	the	GROUP	BY	clause	for	 LowCardinality	data	types. 	#3138

[https://github.com/yandex/ClickHouse/pull/3138]

Optimized	calculation	of	expressions	for	LowCardinality	data	types. 	#3200

[https://github.com/yandex/ClickHouse/pull/3200]

https://github.com/yandex/ClickHouse/issues/2156
https://github.com/yandex/ClickHouse/pull/3397
https://github.com/yandex/ClickHouse/pull/3429
https://github.com/yandex/ClickHouse/issues/3411
https://github.com/yandex/ClickHouse/pull/3410
https://github.com/yandex/ClickHouse/pull/3172
https://github.com/yandex/ClickHouse/pull/2770
https://github.com/yandex/ClickHouse/pull/3210
https://github.com/yandex/ClickHouse/pull/3146
https://github.com/yandex/ClickHouse/pull/3362
https://github.com/yandex/ClickHouse/pull/3144
https://github.com/yandex/ClickHouse/pull/3208
https://github.com/yandex/ClickHouse/pull/3321
https://github.com/yandex/ClickHouse/pull/3251
https://github.com/yandex/ClickHouse/pull/3153
https://github.com/yandex/ClickHouse/pull/3138
https://github.com/yandex/ClickHouse/pull/3200


Improvements:

Significantly	reduced	memory	consumption	for	requests	with	 ORDER	BY 	and	 LIMIT .	See	the	

max_bytes_before_remerge_sort 	setting.	#3205	[https://github.com/yandex/ClickHouse/pull/3205]

In	the	absence	of	 JOIN 	( LEFT ,	 INNER ,	...),	 INNER	JOIN 	is	assumed.	#3147

[https://github.com/yandex/ClickHouse/pull/3147]

Qualified	asterisks	work	correctly	in	queries	with	 JOIN .	Winter	Zhang

[https://github.com/yandex/ClickHouse/pull/3202]

The	 ODBC 	table	engine	correctly	chooses	the	method	for	quoting	identifiers	in	the	SQL	dialect	of	a	remote	database.

Alexandr	Krasheninnikov	[https://github.com/yandex/ClickHouse/pull/3210]

The	 compile_expressions 	setting	(JIT	compilation	of	expressions)	is	enabled	by	default.

Fixed	behavior	for	simultaneous	DROP	DATABASE/TABLE	IF	EXISTS	and	CREATE	DATABASE/TABLE	IF	NOT	EXISTS.

Previously,	a	 CREATE	DATABASE	...	IF	NOT	EXISTS 	query	could	return	the	error	message	"File	...	already	exists",	and

the	 CREATE	TABLE	...	IF	NOT	EXISTS 	and	 DROP	TABLE	IF	EXISTS 	queries	could	return	 Table	...	is	creating	

or	attaching	right	now .	#3101	[https://github.com/yandex/ClickHouse/pull/3101]

LIKE	and	IN	expressions	with	a	constant	right	half	are	passed	to	the	remote	server	when	querying	from	MySQL	or

ODBC	tables.	#3182	[https://github.com/yandex/ClickHouse/pull/3182]

Comparisons	with	constant	expressions	in	a	WHERE	clause	are	passed	to	the	remote	server	when	querying	from

MySQL	and	ODBC	tables.	Previously,	only	comparisons	with	constants	were	passed.	#3182

[https://github.com/yandex/ClickHouse/pull/3182]

Correct	calculation	of	row	width	in	the	terminal	for	Pretty 	formats,	including	strings	with	hieroglyphs.	Amos	Bird

[https://github.com/yandex/ClickHouse/pull/3257].

ON	CLUSTER 	can	be	specified	for	ALTER	UPDATE 	queries.

Improved	performance	for	reading	data	in	 JSONEachRow 	format.	#3332

[https://github.com/yandex/ClickHouse/pull/3332]

Added	synonyms	for	the	 LENGTH 	and	 CHARACTER_LENGTH 	functions	for	compatibility.	The	CONCAT 	function	is	no

longer	case-sensitive.	#3306	[https://github.com/yandex/ClickHouse/pull/3306]

Added	the	 TIMESTAMP 	synonym	for	the	 DateTime 	type.	#3390	[https://github.com/yandex/ClickHouse/pull/3390]

There	is	always	space	reserved	for	query_id	in	the	server	logs,	even	if	the	log	line	is	not	related	to	a	query.	This	makes	it

easier	to	parse	server	text	logs	with	third-party	tools.

Memory	consumption	by	a	query	is	logged	when	it	exceeds	the	next	level	of	an	integer	number	of	gigabytes.	#3205

[https://github.com/yandex/ClickHouse/pull/3205]

Added	compatibility	mode	for	the	case	when	the	client	library	that	uses	the	Native	protocol	sends	fewer	columns	by

mistake	than	the	server	expects	for	the	INSERT	query.	This	scenario	was	possible	when	using	the	clickhouse-cpp

library.	Previously,	this	scenario	caused	the	server	to	crash.	#3171	[https://github.com/yandex/ClickHouse/pull/3171]

In	a	user-defined	WHERE	expression	in	clickhouse-copier ,	you	can	now	use	a	 partition_key 	alias	(for	additional

filtering	by	source	table	partition).	This	is	useful	if	the	partitioning	scheme	changes	during	copying,	but	only	changes

slightly.	#3166	[https://github.com/yandex/ClickHouse/pull/3166]

The	workflow	of	the	Kafka 	engine	has	been	moved	to	a	background	thread	pool	in	order	to	automatically	reduce	the

speed	of	data	reading	at	high	loads.	Marek	Vavruša	[https://github.com/yandex/ClickHouse/pull/3215].

Support	for	reading	 Tuple 	and	 Nested 	values	of	structures	like	 struct 	in	the	 Cap'n'Proto	format .	Marek	Vavruša

[https://github.com/yandex/ClickHouse/pull/3216]

The	list	of	top-level	domains	for	the	firstSignificantSubdomain 	function	now	includes	the	domain	biz .	decaseal

[https://github.com/yandex/ClickHouse/pull/3219]

In	the	configuration	of	external	dictionaries,	 null_value 	is	interpreted	as	the	value	of	the	default	data	type.	#3330

[https://github.com/yandex/ClickHouse/pull/3330]

Support	for	the	 intDiv 	and	 intDivOrZero 	functions	for	 Decimal .	b48402e8

https://github.com/yandex/ClickHouse/pull/3205
https://github.com/yandex/ClickHouse/pull/3147
https://github.com/yandex/ClickHouse/pull/3202
https://github.com/yandex/ClickHouse/pull/3210
https://github.com/yandex/ClickHouse/pull/3101
https://github.com/yandex/ClickHouse/pull/3182
https://github.com/yandex/ClickHouse/pull/3182
https://github.com/yandex/ClickHouse/pull/3257
https://github.com/yandex/ClickHouse/pull/3332
https://github.com/yandex/ClickHouse/pull/3306
https://github.com/yandex/ClickHouse/pull/3390
https://github.com/yandex/ClickHouse/pull/3205
https://github.com/yandex/ClickHouse/pull/3171
https://github.com/yandex/ClickHouse/pull/3166
https://github.com/yandex/ClickHouse/pull/3215
https://github.com/yandex/ClickHouse/pull/3216
https://github.com/yandex/ClickHouse/pull/3219
https://github.com/yandex/ClickHouse/pull/3330
https://github.com/yandex/ClickHouse/commit/b48402e8712e2b9b151e0eef8193811d433a1264


[https://github.com/yandex/ClickHouse/commit/b48402e8712e2b9b151e0eef8193811d433a1264]

Support	for	the	 Date ,	 DateTime ,	 UUID ,	and	 Decimal 	types	as	a	key	for	the	sumMap 	aggregate	function.	#3281

[https://github.com/yandex/ClickHouse/pull/3281]

Support	for	the	 Decimal 	data	type	in	external	dictionaries.	#3324	[https://github.com/yandex/ClickHouse/pull/3324]

Support	for	the	 Decimal 	data	type	in	 SummingMergeTree 	tables.	#3348

[https://github.com/yandex/ClickHouse/pull/3348]

Added	specializations	for	 UUID 	in	 if .	#3366	[https://github.com/yandex/ClickHouse/pull/3366]

Reduced	the	number	of	 open 	and	 close 	system	calls	when	reading	from	a	 MergeTree	table .	#3283

[https://github.com/yandex/ClickHouse/pull/3283]

A	 TRUNCATE	TABLE 	query	can	be	executed	on	any	replica	(the	query	is	passed	to	the	leader	replica).	Kirill	Shvakov

[https://github.com/yandex/ClickHouse/pull/3375]

Bug	fixes:

Fixed	an	issue	with	 Dictionary 	tables	for	 range_hashed 	dictionaries.	This	error	occurred	in	version	18.12.17.	#1702

[https://github.com/yandex/ClickHouse/pull/1702]

Fixed	an	error	when	loading	 range_hashed 	dictionaries	(the	message	 Unsupported	type	Nullable	(...) ).	This

error	occurred	in	version	18.12.17.	#3362	[https://github.com/yandex/ClickHouse/pull/3362]

Fixed	errors	in	the	 pointInPolygon 	function	due	to	the	accumulation	of	inaccurate	calculations	for	polygons	with	a

large	number	of	vertices	located	close	to	each	other.	#3331	[https://github.com/yandex/ClickHouse/pull/3331]

#3341	[https://github.com/yandex/ClickHouse/pull/3341]

If	after	merging	data	parts,	the	checksum	for	the	resulting	part	differs	from	the	result	of	the	same	merge	in	another

replica,	the	result	of	the	merge	is	deleted	and	the	data	part	is	downloaded	from	the	other	replica	(this	is	the	correct

behavior).	But	after	downloading	the	data	part,	it	couldn't	be	added	to	the	working	set	because	of	an	error	that	the

part	already	exists	(because	the	data	part	was	deleted	with	some	delay	after	the	merge).	This	led	to	cyclical	attempts

to	download	the	same	data.	#3194	[https://github.com/yandex/ClickHouse/pull/3194]

Fixed	incorrect	calculation	of	total	memory	consumption	by	queries	(because	of	incorrect	calculation,	the	

max_memory_usage_for_all_queries 	setting	worked	incorrectly	and	the	 MemoryTracking 	metric	had	an	incorrect

value).	This	error	occurred	in	version	18.12.13.	Marek	Vavruša	[https://github.com/yandex/ClickHouse/pull/3344]

Fixed	the	functionality	of	 CREATE	TABLE	...	ON	CLUSTER	...	AS	SELECT	... 	This	error	occurred	in	version	18.12.13.

#3247	[https://github.com/yandex/ClickHouse/pull/3247]

Fixed	unnecessary	preparation	of	data	structures	for	 JOIN s	on	the	server	that	initiates	the	request	if	the	JOIN 	is	only

performed	on	remote	servers.	#3340	[https://github.com/yandex/ClickHouse/pull/3340]

Fixed	bugs	in	the	Kafka 	engine:	deadlocks	after	exceptions	when	starting	to	read	data,	and	locks	upon	completion

Marek	Vavruša	[https://github.com/yandex/ClickHouse/pull/3215].

For	 Kafka 	tables,	the	optional	 schema 	parameter	was	not	passed	(the	schema	of	the	 Cap'n'Proto 	format).	Vojtech

Splichal	[https://github.com/yandex/ClickHouse/pull/3150]

If	the	ensemble	of	ZooKeeper	servers	has	servers	that	accept	the	connection	but	then	immediately	close	it	instead	of

responding	to	the	handshake,	ClickHouse	chooses	to	connect	another	server.	Previously,	this	produced	the	error	

Cannot	read	all	data.	Bytes	read:	0.	Bytes	expected:	4. 	and	the	server	couldn't	start.	8218cf3a

[https://github.com/yandex/ClickHouse/commit/8218cf3a5f39a43401953769d6d12a0bb8d29da9]

If	the	ensemble	of	ZooKeeper	servers	contains	servers	for	which	the	DNS	query	returns	an	error,	these	servers	are

ignored.	17b8e209	[https://github.com/yandex/ClickHouse/commit/17b8e209221061325ad7ba0539f03c6e65f87f29]

Fixed	type	conversion	between	 Date 	and	 DateTime 	when	inserting	data	in	the	 VALUES 	format	(if	

input_format_values_interpret_expressions	=	1 ).	Previously,	the	conversion	was	performed	between	the

numerical	value	of	the	number	of	days	in	Unix	Epoch	time	and	the	Unix	timestamp,	which	led	to	unexpected	results.

#3229	[https://github.com/yandex/ClickHouse/pull/3229]

Corrected	type	conversion	between	 Decimal 	and	integer	numbers.	#3211

https://github.com/yandex/ClickHouse/pull/3281
https://github.com/yandex/ClickHouse/pull/3324
https://github.com/yandex/ClickHouse/pull/3348
https://github.com/yandex/ClickHouse/pull/3366
https://github.com/yandex/ClickHouse/pull/3283
https://github.com/yandex/ClickHouse/pull/3375
https://github.com/yandex/ClickHouse/pull/1702
https://github.com/yandex/ClickHouse/pull/3362
https://github.com/yandex/ClickHouse/pull/3331
https://github.com/yandex/ClickHouse/pull/3341
https://github.com/yandex/ClickHouse/pull/3194
https://github.com/yandex/ClickHouse/pull/3344
https://github.com/yandex/ClickHouse/pull/3247
https://github.com/yandex/ClickHouse/pull/3340
https://github.com/yandex/ClickHouse/pull/3215
https://github.com/yandex/ClickHouse/pull/3150
https://github.com/yandex/ClickHouse/commit/8218cf3a5f39a43401953769d6d12a0bb8d29da9
https://github.com/yandex/ClickHouse/commit/17b8e209221061325ad7ba0539f03c6e65f87f29
https://github.com/yandex/ClickHouse/pull/3229
https://github.com/yandex/ClickHouse/pull/3211


[https://github.com/yandex/ClickHouse/pull/3211]

Fixed	errors	in	the	 enable_optimize_predicate_expression 	setting.	Winter	Zhang

[https://github.com/yandex/ClickHouse/pull/3231]

Fixed	a	parsing	error	in	CSV	format	with	floating-point	numbers	if	a	non-default	CSV	separator	is	used,	such	as	;

#3155	[https://github.com/yandex/ClickHouse/pull/3155]

Fixed	the	 arrayCumSumNonNegative 	function	(it	does	not	accumulate	negative	values	if	the	accumulator	is	less	than

zero).	Aleksey	Studnev	[https://github.com/yandex/ClickHouse/pull/3163]

Fixed	how	 Merge 	tables	work	on	top	of	 Distributed 	tables	when	using	 PREWHERE .	#3165

[https://github.com/yandex/ClickHouse/pull/3165]

Bug	fixes	in	the	 ALTER	UPDATE 	query.

Fixed	bugs	in	the	odbc 	table	function	that	appeared	in	version	18.12.	#3197

[https://github.com/yandex/ClickHouse/pull/3197]

Fixed	the	operation	of	aggregate	functions	with	 StateArray 	combinators.	#3188

[https://github.com/yandex/ClickHouse/pull/3188]

Fixed	a	crash	when	dividing	a	Decimal 	value	by	zero.	69dd6609

[https://github.com/yandex/ClickHouse/commit/69dd6609193beb4e7acd3e6ad216eca0ccfb8179]

Fixed	output	of	types	for	operations	using	 Decimal 	and	integer	arguments.	#3224

[https://github.com/yandex/ClickHouse/pull/3224]

Fixed	the	segfault	during	 GROUP	BY 	on	 Decimal128 .	3359ba06

[https://github.com/yandex/ClickHouse/commit/3359ba06c39fcd05bfdb87d6c64154819621e13a]

The	 log_query_threads 	setting	(logging	information	about	each	thread	of	query	execution)	now	takes	effect	only	if

the	 log_queries 	option	(logging	information	about	queries)	is	set	to	1.	Since	the	 log_query_threads 	option	is

enabled	by	default,	information	about	threads	was	previously	logged	even	if	query	logging	was	disabled.	#3241

[https://github.com/yandex/ClickHouse/pull/3241]

Fixed	an	error	in	the	distributed	operation	of	the	quantiles	aggregate	function	(the	error	message	Not	found	column	

quantile... ).	292a8855

[https://github.com/yandex/ClickHouse/commit/292a885533b8e3b41ce8993867069d14cbd5a664]

Fixed	the	compatibility	problem	when	working	on	a	cluster	of	version	18.12.17	servers	and	older	servers	at	the	same

time.	For	distributed	queries	with	GROUP	BY	keys	of	both	fixed	and	non-fixed	length,	if	there	was	a	large	amount	of

data	to	aggregate,	the	returned	data	was	not	always	fully	aggregated	(two	different	rows	contained	the	same

aggregation	keys).	#3254	[https://github.com/yandex/ClickHouse/pull/3254]

Fixed	handling	of	substitutions	in	clickhouse-performance-test ,	if	the	query	contains	only	part	of	the	substitutions

declared	in	the	test.	#3263	[https://github.com/yandex/ClickHouse/pull/3263]

Fixed	an	error	when	using	 FINAL 	with	 PREWHERE .	#3298	[https://github.com/yandex/ClickHouse/pull/3298]

Fixed	an	error	when	using	 PREWHERE 	over	columns	that	were	added	during	 ALTER .	#3298

[https://github.com/yandex/ClickHouse/pull/3298]

Added	a	check	for	the	absence	of	arrayJoin 	for	 DEFAULT 	and	 MATERIALIZED 	expressions.	Previously,	 arrayJoin

led	to	an	error	when	inserting	data.	#3337	[https://github.com/yandex/ClickHouse/pull/3337]

Added	a	check	for	the	absence	of	arrayJoin 	in	a	 PREWHERE 	clause.	Previously,	this	led	to	messages	like	Size	...	

doesn't	match 	or	 Unknown	compression	method 	when	executing	queries.	#3357

[https://github.com/yandex/ClickHouse/pull/3357]

Fixed	segfault	that	could	occur	in	rare	cases	after	optimization	that	replaced	AND	chains	from	equality	evaluations

with	the	corresponding	IN	expression.	liuyimin-bytedance	[https://github.com/yandex/ClickHouse/pull/3339]

Minor	corrections	to	 clickhouse-benchmark :	previously,	client	information	was	not	sent	to	the	server;	now	the

number	of	queries	executed	is	calculated	more	accurately	when	shutting	down	and	for	limiting	the	number	of

iterations.	#3351	[https://github.com/yandex/ClickHouse/pull/3351]	#3352

[https://github.com/yandex/ClickHouse/pull/3352]

https://github.com/yandex/ClickHouse/pull/3231
https://github.com/yandex/ClickHouse/pull/3155
https://github.com/yandex/ClickHouse/pull/3163
https://github.com/yandex/ClickHouse/pull/3165
https://github.com/yandex/ClickHouse/pull/3197
https://github.com/yandex/ClickHouse/pull/3188
https://github.com/yandex/ClickHouse/commit/69dd6609193beb4e7acd3e6ad216eca0ccfb8179
https://github.com/yandex/ClickHouse/pull/3224
https://github.com/yandex/ClickHouse/commit/3359ba06c39fcd05bfdb87d6c64154819621e13a
https://github.com/yandex/ClickHouse/pull/3241
https://github.com/yandex/ClickHouse/commit/292a885533b8e3b41ce8993867069d14cbd5a664
https://github.com/yandex/ClickHouse/pull/3254
https://github.com/yandex/ClickHouse/pull/3263
https://github.com/yandex/ClickHouse/pull/3298
https://github.com/yandex/ClickHouse/pull/3298
https://github.com/yandex/ClickHouse/pull/3337
https://github.com/yandex/ClickHouse/pull/3357
https://github.com/yandex/ClickHouse/pull/3339
https://github.com/yandex/ClickHouse/pull/3351
https://github.com/yandex/ClickHouse/pull/3352


Backward	incompatible	changes:

Removed	the	 allow_experimental_decimal_type 	option.	The	 Decimal 	data	type	is	available	for	default	use.	#3329

[https://github.com/yandex/ClickHouse/pull/3329]

ClickHouse	release	18.12.17,	2018-09-16

New	features:

invalidate_query 	(the	ability	to	specify	a	query	to	check	whether	an	external	dictionary	needs	to	be	updated)	is

implemented	for	the	 clickhouse 	source.	#3126	[https://github.com/yandex/ClickHouse/pull/3126]

Added	the	ability	to	use	 UInt* ,	 Int* ,	and	 DateTime 	data	types	(along	with	the	 Date 	type)	as	a	range_hashed

external	dictionary	key	that	defines	the	boundaries	of	ranges.	Now	 NULL 	can	be	used	to	designate	an	open	range.

Vasily	Nemkov	[https://github.com/yandex/ClickHouse/pull/3123]

The	 Decimal 	type	now	supports	 var* 	and	 stddev* 	aggregate	functions.	#3129

[https://github.com/yandex/ClickHouse/pull/3129]

The	 Decimal 	type	now	supports	mathematical	functions	( exp ,	 sin 	and	so	on.)	#3129

[https://github.com/yandex/ClickHouse/pull/3129]

The	 system.part_log 	table	now	has	the	 partition_id 	column.	#3089

[https://github.com/yandex/ClickHouse/pull/3089]

Bug	fixes:

Merge 	now	works	correctly	on	 Distributed 	tables.	Winter	Zhang	[https://github.com/yandex/ClickHouse/pull/3159]

Fixed	incompatibility	(unnecessary	dependency	on	the	 glibc 	version)	that	made	it	impossible	to	run	ClickHouse	on	

Ubuntu	Precise 	and	older	versions.	The	incompatibility	arose	in	version	18.12.13.	#3130

[https://github.com/yandex/ClickHouse/pull/3130]

Fixed	errors	in	the	 enable_optimize_predicate_expression 	setting.	Winter	Zhang

[https://github.com/yandex/ClickHouse/pull/3107]

Fixed	a	minor	issue	with	backwards	compatibility	that	appeared	when	working	with	a	cluster	of	replicas	on	versions

earlier	than	18.12.13	and	simultaneously	creating	a	new	replica	of	a	table	on	a	server	with	a	newer	version	(shown	in

the	message	 Can	not	clone	replica,	because	the	...	updated	to	new	ClickHouse	version ,	which	is	logical,

but	shouldn't	happen).	#3122	[https://github.com/yandex/ClickHouse/pull/3122]

Backward	incompatible	changes:

The	 enable_optimize_predicate_expression 	option	is	enabled	by	default	(which	is	rather	optimistic).	If	query

analysis	errors	occur	that	are	related	to	searching	for	the	column	names,	set	

enable_optimize_predicate_expression 	to	0.	Winter	Zhang	[https://github.com/yandex/ClickHouse/pull/3107]

ClickHouse	release	18.12.14,	2018-09-13

New	features:

Added	support	for	 ALTER	UPDATE 	queries.	#3035	[https://github.com/yandex/ClickHouse/pull/3035]

Added	the	 allow_ddl 	option,	which	restricts	the	user's	access	to	DDL	queries.	#3104

[https://github.com/yandex/ClickHouse/pull/3104]

Added	the	 min_merge_bytes_to_use_direct_io 	option	for	 MergeTree 	engines,	which	allows	you	to	set	a	threshold

for	the	total	size	of	the	merge	(when	above	the	threshold,	data	part	files	will	be	handled	using	O_DIRECT).	#3117

[https://github.com/yandex/ClickHouse/pull/3117]

The	 system.merges 	system	table	now	contains	the	 partition_id 	column.	#3099

[https://github.com/yandex/ClickHouse/pull/3099]

https://github.com/yandex/ClickHouse/pull/3329
https://github.com/yandex/ClickHouse/pull/3126
https://github.com/yandex/ClickHouse/pull/3123
https://github.com/yandex/ClickHouse/pull/3129
https://github.com/yandex/ClickHouse/pull/3129
https://github.com/yandex/ClickHouse/pull/3089
https://github.com/yandex/ClickHouse/pull/3159
https://github.com/yandex/ClickHouse/pull/3130
https://github.com/yandex/ClickHouse/pull/3107
https://github.com/yandex/ClickHouse/pull/3122
https://github.com/yandex/ClickHouse/pull/3107
https://github.com/yandex/ClickHouse/pull/3035
https://github.com/yandex/ClickHouse/pull/3104
https://github.com/yandex/ClickHouse/pull/3117
https://github.com/yandex/ClickHouse/pull/3099


Improvements

If	a	data	part	remains	unchanged	during	mutation,	it	isn't	downloaded	by	replicas.	#3103

[https://github.com/yandex/ClickHouse/pull/3103]

Autocomplete	is	available	for	names	of	settings	when	working	with	 clickhouse-client .	#3106

[https://github.com/yandex/ClickHouse/pull/3106]

Bug	fixes:

Added	a	check	for	the	sizes	of	arrays	that	are	elements	of	Nested 	type	fields	when	inserting.	#3118

[https://github.com/yandex/ClickHouse/pull/3118]

Fixed	an	error	updating	external	dictionaries	with	the	 ODBC 	source	and	 hashed 	storage.	This	error	occurred	in	version

18.12.13.

Fixed	a	crash	when	creating	a	temporary	table	from	a	query	with	an	IN 	condition.	Winter	Zhang

[https://github.com/yandex/ClickHouse/pull/3098]

Fixed	an	error	in	aggregate	functions	for	arrays	that	can	have	 NULL 	elements.	Winter	Zhang

[https://github.com/yandex/ClickHouse/pull/3097]

ClickHouse	release	18.12.13,	2018-09-10

New	features:

Added	the	 DECIMAL(digits,	scale) 	data	type	( Decimal32(scale) ,	 Decimal64(scale) ,	 Decimal128(scale) ).	To

enable	it,	use	the	setting	 allow_experimental_decimal_type .	#2846

[https://github.com/yandex/ClickHouse/pull/2846]	#2970	[https://github.com/yandex/ClickHouse/pull/2970]	#3008

[https://github.com/yandex/ClickHouse/pull/3008]	#3047	[https://github.com/yandex/ClickHouse/pull/3047]

New	 WITH	ROLLUP 	modifier	for	 GROUP	BY 	(alternative	syntax:	 GROUP	BY	ROLLUP(...) ).	#2948

[https://github.com/yandex/ClickHouse/pull/2948]

In	requests	with	JOIN,	the	star	character	expands	to	a	list	of	columns	in	all	tables,	in	compliance	with	the	SQL	standard.

You	can	restore	the	old	behavior	by	setting	 asterisk_left_columns_only 	to	1	on	the	user	configuration	level.	Winter

Zhang	[https://github.com/yandex/ClickHouse/pull/2787]

Added	support	for	JOIN	with	table	functions.	Winter	Zhang	[https://github.com/yandex/ClickHouse/pull/2907]

Autocomplete	by	pressing	Tab	in	clickhouse-client.	Sergey	Shcherbin

[https://github.com/yandex/ClickHouse/pull/2447]

Ctrl+C	in	clickhouse-client	clears	a	query	that	was	entered.	#2877	[https://github.com/yandex/ClickHouse/pull/2877]

Added	the	 join_default_strictness 	setting	(values:	 " ,	 'any' ,	 'all' ).	This	allows	you	to	not	specify	 ANY 	or	 ALL

for	 JOIN .	#2982	[https://github.com/yandex/ClickHouse/pull/2982]

Each	line	of	the	server	log	related	to	query	processing	shows	the	query	ID.	#2482

[https://github.com/yandex/ClickHouse/pull/2482]

Now	you	can	get	query	execution	logs	in	clickhouse-client	(use	the	 send_logs_level 	setting).	With	distributed	query

processing,	logs	are	cascaded	from	all	the	servers.	#2482	[https://github.com/yandex/ClickHouse/pull/2482]

The	 system.query_log 	and	 system.processes 	( SHOW	PROCESSLIST )	tables	now	have	information	about	all	changed

settings	when	you	run	a	query	(the	nested	structure	of	the	 Settings 	data).	Added	the	 log_query_settings 	setting.

#2482	[https://github.com/yandex/ClickHouse/pull/2482]

The	 system.query_log 	and	 system.processes 	tables	now	show	information	about	the	number	of	threads	that	are

participating	in	query	execution	(see	the	 thread_numbers 	column).	#2482

[https://github.com/yandex/ClickHouse/pull/2482]

Added	 ProfileEvents 	counters	that	measure	the	time	spent	on	reading	and	writing	over	the	network	and	reading

and	writing	to	disk,	the	number	of	network	errors,	and	the	time	spent	waiting	when	network	bandwidth	is	limited.

https://github.com/yandex/ClickHouse/pull/3103
https://github.com/yandex/ClickHouse/pull/3106
https://github.com/yandex/ClickHouse/pull/3118
https://github.com/yandex/ClickHouse/pull/3098
https://github.com/yandex/ClickHouse/pull/3097
https://github.com/yandex/ClickHouse/pull/2846
https://github.com/yandex/ClickHouse/pull/2970
https://github.com/yandex/ClickHouse/pull/3008
https://github.com/yandex/ClickHouse/pull/3047
https://github.com/yandex/ClickHouse/pull/2948
https://github.com/yandex/ClickHouse/pull/2787
https://github.com/yandex/ClickHouse/pull/2907
https://github.com/yandex/ClickHouse/pull/2447
https://github.com/yandex/ClickHouse/pull/2877
https://github.com/yandex/ClickHouse/pull/2982
https://github.com/yandex/ClickHouse/pull/2482
https://github.com/yandex/ClickHouse/pull/2482
https://github.com/yandex/ClickHouse/pull/2482
https://github.com/yandex/ClickHouse/pull/2482


#2482	[https://github.com/yandex/ClickHouse/pull/2482]

Added	 ProfileEvents counters	that	contain	the	system	metrics	from	rusage	(you	can	use	them	to	get	information

about	CPU	usage	in	userspace	and	the	kernel,	page	faults,	and	context	switches),	as	well	as	taskstats	metrics	(use

these	to	obtain	information	about	I/O	wait	time,	CPU	wait	time,	and	the	amount	of	data	read	and	recorded,	both	with

and	without	page	cache).	#2482	[https://github.com/yandex/ClickHouse/pull/2482]

The	 ProfileEvents 	counters	are	applied	globally	and	for	each	query,	as	well	as	for	each	query	execution	thread,	which

allows	you	to	profile	resource	consumption	by	query	in	detail.	#2482

[https://github.com/yandex/ClickHouse/pull/2482]

Added	the	 system.query_thread_log 	table,	which	contains	information	about	each	query	execution	thread.	Added

the	 log_query_threads 	setting.	#2482	[https://github.com/yandex/ClickHouse/pull/2482]

The	 system.metrics 	and	 system.events 	tables	now	have	built-in	documentation.	#3016

[https://github.com/yandex/ClickHouse/pull/3016]

Added	the	 arrayEnumerateDense 	function.	Amos	Bird	[https://github.com/yandex/ClickHouse/pull/2975]

Added	the	 arrayCumSumNonNegative 	and	 arrayDifference 	functions.	Aleksey	Studnev

[https://github.com/yandex/ClickHouse/pull/2942]

Added	the	 retention 	aggregate	function.	Sundy	Li	[https://github.com/yandex/ClickHouse/pull/2887]

Now	you	can	add	(merge)	states	of	aggregate	functions	by	using	the	plus	operator,	and	multiply	the	states	of

aggregate	functions	by	a	nonnegative	constant.	#3062	[https://github.com/yandex/ClickHouse/pull/3062]	#3034

[https://github.com/yandex/ClickHouse/pull/3034]

Tables	in	the	MergeTree	family	now	have	the	virtual	column	 _partition_id .	#3089

[https://github.com/yandex/ClickHouse/pull/3089]

Experimental	features:

Added	the	 LowCardinality(T) 	data	type.	This	data	type	automatically	creates	a	local	dictionary	of	values	and	allows

data	processing	without	unpacking	the	dictionary.	#2830	[https://github.com/yandex/ClickHouse/pull/2830]

Added	a	cache	of	JIT-compiled	functions	and	a	counter	for	the	number	of	uses	before	compiling.	To	JIT	compile

expressions,	enable	the	 compile_expressions 	setting.	#2990	[https://github.com/yandex/ClickHouse/pull/2990]

#3077	[https://github.com/yandex/ClickHouse/pull/3077]

Improvements:

Fixed	the	problem	with	unlimited	accumulation	of	the	replication	log	when	there	are	abandoned	replicas.	Added	an

effective	recovery	mode	for	replicas	with	a	long	lag.

Improved	performance	of	 GROUP	BY 	with	multiple	aggregation	fields	when	one	of	them	is	string	and	the	others	are

fixed	length.

Improved	performance	when	using	 PREWHERE 	and	with	implicit	transfer	of	expressions	in	PREWHERE .

Improved	parsing	performance	for	text	formats	( CSV ,	 TSV ).	Amos	Bird

[https://github.com/yandex/ClickHouse/pull/2977]	#2980	[https://github.com/yandex/ClickHouse/pull/2980]

Improved	performance	of	reading	strings	and	arrays	in	binary	formats.	Amos	Bird

[https://github.com/yandex/ClickHouse/pull/2955]

Increased	performance	and	reduced	memory	consumption	for	queries	to	system.tables 	and	 system.columns 	when

there	is	a	very	large	number	of	tables	on	a	single	server.	#2953	[https://github.com/yandex/ClickHouse/pull/2953]

Fixed	a	performance	problem	in	the	case	of	a	large	stream	of	queries	that	result	in	an	error	(the	_dl_addr 	function	is

visible	in	 perf	top ,	but	the	server	isn't	using	much	CPU).	#2938	[https://github.com/yandex/ClickHouse/pull/2938]

Conditions	are	cast	into	the	View	(when	enable_optimize_predicate_expression 	is	enabled).	Winter	Zhang

[https://github.com/yandex/ClickHouse/pull/2907]

Improvements	to	the	functionality	for	the	 UUID 	data	type.	#3074	[https://github.com/yandex/ClickHouse/pull/3074]

#2985	[https://github.com/yandex/ClickHouse/pull/2985]

https://github.com/yandex/ClickHouse/pull/2482
https://github.com/yandex/ClickHouse/pull/2482
https://github.com/yandex/ClickHouse/pull/2482
https://github.com/yandex/ClickHouse/pull/2482
https://github.com/yandex/ClickHouse/pull/3016
https://github.com/yandex/ClickHouse/pull/2975
https://github.com/yandex/ClickHouse/pull/2942
https://github.com/yandex/ClickHouse/pull/2887
https://github.com/yandex/ClickHouse/pull/3062
https://github.com/yandex/ClickHouse/pull/3034
https://github.com/yandex/ClickHouse/pull/3089
https://github.com/yandex/ClickHouse/pull/2830
https://github.com/yandex/ClickHouse/pull/2990
https://github.com/yandex/ClickHouse/pull/3077
https://github.com/yandex/ClickHouse/pull/2977
https://github.com/yandex/ClickHouse/pull/2980
https://github.com/yandex/ClickHouse/pull/2955
https://github.com/yandex/ClickHouse/pull/2953
https://github.com/yandex/ClickHouse/pull/2938
https://github.com/yandex/ClickHouse/pull/2907
https://github.com/yandex/ClickHouse/pull/3074
https://github.com/yandex/ClickHouse/pull/2985


The	 UUID 	data	type	is	supported	in	The-Alchemist	dictionaries.	#2822

[https://github.com/yandex/ClickHouse/pull/2822]

The	 visitParamExtractRaw 	function	works	correctly	with	nested	structures.	Winter	Zhang

[https://github.com/yandex/ClickHouse/pull/2974]

When	the	 input_format_skip_unknown_fields 	setting	is	enabled,	object	fields	in	 JSONEachRow 	format	are	skipped

correctly.	BlahGeek	[https://github.com/yandex/ClickHouse/pull/2958]

For	a	 CASE 	expression	with	conditions,	you	can	now	omit	 ELSE ,	which	is	equivalent	to	 ELSE	NULL .	#2920

[https://github.com/yandex/ClickHouse/pull/2920]

The	operation	timeout	can	now	be	configured	when	working	with	ZooKeeper.	urykhy

[https://github.com/yandex/ClickHouse/pull/2971]

You	can	specify	an	offset	for	 LIMIT	n,	m 	as	 LIMIT	n	OFFSET	m .	#2840

[https://github.com/yandex/ClickHouse/pull/2840]

You	can	use	the	 SELECT	TOP	n 	syntax	as	an	alternative	for	 LIMIT .	#2840

[https://github.com/yandex/ClickHouse/pull/2840]

Increased	the	size	of	the	queue	to	write	to	system	tables,	so	the	SystemLog	parameter	queue	is	full 	error	doesn't

happen	as	often.

The	 windowFunnel 	aggregate	function	now	supports	events	that	meet	multiple	conditions.	Amos	Bird

[https://github.com/yandex/ClickHouse/pull/2801]

Duplicate	columns	can	be	used	in	a	 USING 	clause	for	 JOIN .	#3006	[https://github.com/yandex/ClickHouse/pull/3006]

Pretty 	formats	now	have	a	limit	on	column	alignment	by	width.	Use	the	

output_format_pretty_max_column_pad_width 	setting.	If	a	value	is	wider,	it	will	still	be	displayed	in	its	entirety,	but

the	other	cells	in	the	table	will	not	be	too	wide.	#3003	[https://github.com/yandex/ClickHouse/pull/3003]

The	 odbc 	table	function	now	allows	you	to	specify	the	database/schema	name.	Amos	Bird

[https://github.com/yandex/ClickHouse/pull/2885]

Added	the	ability	to	use	a	username	specified	in	the	clickhouse-client 	config	file.	Vladimir	Kozbin

[https://github.com/yandex/ClickHouse/pull/2909]

The	 ZooKeeperExceptions 	counter	has	been	split	into	three	counters:	 ZooKeeperUserExceptions ,	

ZooKeeperHardwareExceptions ,	and	 ZooKeeperOtherExceptions .

ALTER	DELETE 	queries	work	for	materialized	views.

Added	randomization	when	running	the	cleanup	thread	periodically	for	ReplicatedMergeTree 	tables	in	order	to	avoid

periodic	load	spikes	when	there	are	a	very	large	number	of	 ReplicatedMergeTree 	tables.

Support	for	 ATTACH	TABLE	...	ON	CLUSTER 	queries.	#3025	[https://github.com/yandex/ClickHouse/pull/3025]

Bug	fixes:

Fixed	an	issue	with	 Dictionary 	tables	(throws	the	 Size	of	offsets	doesn't	match	size	of	column 	or	 Unknown	

compression	method 	exception).	This	bug	appeared	in	version	18.10.3.	#2913

[https://github.com/yandex/ClickHouse/issues/2913]

Fixed	a	bug	when	merging	 CollapsingMergeTree 	tables	if	one	of	the	data	parts	is	empty	(these	parts	are	formed

during	merge	or	 ALTER	DELETE 	if	all	data	was	deleted),	and	the	 vertical 	algorithm	was	used	for	the	merge.	#3049

[https://github.com/yandex/ClickHouse/pull/3049]

Fixed	a	race	condition	during	 DROP 	or	 TRUNCATE 	for	 Memory 	tables	with	a	simultaneous	 SELECT ,	which	could	lead	to

server	crashes.	This	bug	appeared	in	version	1.1.54388.	#3038	[https://github.com/yandex/ClickHouse/pull/3038]

Fixed	the	possibility	of	data	loss	when	inserting	in	Replicated 	tables	if	the	 Session	is	expired 	error	is	returned

(data	loss	can	be	detected	by	the	 ReplicatedDataLoss 	metric).	This	error	occurred	in	version	1.1.54378.	#2939

[https://github.com/yandex/ClickHouse/pull/2939]	#2949	[https://github.com/yandex/ClickHouse/pull/2949]	#2964

[https://github.com/yandex/ClickHouse/pull/2964]

https://github.com/yandex/ClickHouse/pull/2822
https://github.com/yandex/ClickHouse/pull/2974
https://github.com/yandex/ClickHouse/pull/2958
https://github.com/yandex/ClickHouse/pull/2920
https://github.com/yandex/ClickHouse/pull/2971
https://github.com/yandex/ClickHouse/pull/2840
https://github.com/yandex/ClickHouse/pull/2840
https://github.com/yandex/ClickHouse/pull/2801
https://github.com/yandex/ClickHouse/pull/3006
https://github.com/yandex/ClickHouse/pull/3003
https://github.com/yandex/ClickHouse/pull/2885
https://github.com/yandex/ClickHouse/pull/2909
https://github.com/yandex/ClickHouse/pull/3025
https://github.com/yandex/ClickHouse/issues/2913
https://github.com/yandex/ClickHouse/pull/3049
https://github.com/yandex/ClickHouse/pull/3038
https://github.com/yandex/ClickHouse/pull/2939
https://github.com/yandex/ClickHouse/pull/2949
https://github.com/yandex/ClickHouse/pull/2964


Fixed	a	segfault	during	 JOIN	...	ON .	#3000	[https://github.com/yandex/ClickHouse/pull/3000]

Fixed	the	error	searching	column	names	when	the	 WHERE 	expression	consists	entirely	of	a	qualified	column	name,

such	as	 WHERE	table.column .	#2994	[https://github.com/yandex/ClickHouse/pull/2994]

Fixed	the	"Not	found	column"	error	that	occurred	when	executing	distributed	queries	if	a	single	column	consisting	of

an	IN	expression	with	a	subquery	is	requested	from	a	remote	server.	#3087

[https://github.com/yandex/ClickHouse/pull/3087]

Fixed	the	 Block	structure	mismatch	in	UNION	stream:	different	number	of	columns 	error	that	occurred	for

distributed	queries	if	one	of	the	shards	is	local	and	the	other	is	not,	and	optimization	of	the	move	to	 PREWHERE 	is

triggered.	#2226	[https://github.com/yandex/ClickHouse/pull/2226]	#3037

[https://github.com/yandex/ClickHouse/pull/3037]	#3055	[https://github.com/yandex/ClickHouse/pull/3055]	#3065

[https://github.com/yandex/ClickHouse/pull/3065]	#3073	[https://github.com/yandex/ClickHouse/pull/3073]	#3090

[https://github.com/yandex/ClickHouse/pull/3090]	#3093	[https://github.com/yandex/ClickHouse/pull/3093]

Fixed	the	 pointInPolygon 	function	for	certain	cases	of	non-convex	polygons.	#2910

[https://github.com/yandex/ClickHouse/pull/2910]

Fixed	the	incorrect	result	when	comparing	 nan 	with	integers.	#3024

[https://github.com/yandex/ClickHouse/pull/3024]

Fixed	an	error	in	the	 zlib-ng 	library	that	could	lead	to	segfault	in	rare	cases.	#2854

[https://github.com/yandex/ClickHouse/pull/2854]

Fixed	a	memory	leak	when	inserting	into	a	table	with	 AggregateFunction 	columns,	if	the	state	of	the	aggregate

function	is	not	simple	(allocates	memory	separately),	and	if	a	single	insertion	request	results	in	multiple	small	blocks.

#3084	[https://github.com/yandex/ClickHouse/pull/3084]

Fixed	a	race	condition	when	creating	and	deleting	the	same	 Buffer 	or	 MergeTree 	table	simultaneously.

Fixed	the	possibility	of	a	segfault	when	comparing	tuples	made	up	of	certain	non-trivial	types,	such	as	tuples.	#2989

[https://github.com/yandex/ClickHouse/pull/2989]

Fixed	the	possibility	of	a	segfault	when	running	certain	ON	CLUSTER 	queries.	Winter	Zhang

[https://github.com/yandex/ClickHouse/pull/2960]

Fixed	an	error	in	the	 arrayDistinct 	function	for	 Nullable 	array	elements.	#2845

[https://github.com/yandex/ClickHouse/pull/2845]	#2937	[https://github.com/yandex/ClickHouse/pull/2937]

The	 enable_optimize_predicate_expression 	option	now	correctly	supports	cases	with	 SELECT	* .	Winter	Zhang

[https://github.com/yandex/ClickHouse/pull/2929]

Fixed	the	segfault	when	re-initializing	the	ZooKeeper	session.	#2917

[https://github.com/yandex/ClickHouse/pull/2917]

Fixed	potential	blocking	when	working	with	ZooKeeper.

Fixed	incorrect	code	for	adding	nested	data	structures	in	a	SummingMergeTree .

When	allocating	memory	for	states	of	aggregate	functions,	alignment	is	correctly	taken	into	account,	which	makes	it

possible	to	use	operations	that	require	alignment	when	implementing	states	of	aggregate	functions.	chenxing-xc

[https://github.com/yandex/ClickHouse/pull/2808]

Security	fix:

Safe	use	of	ODBC	data	sources.	Interaction	with	ODBC	drivers	uses	a	separate	clickhouse-odbc-bridge 	process.

Errors	in	third-party	ODBC	drivers	no	longer	cause	problems	with	server	stability	or	vulnerabilities.	#2828

[https://github.com/yandex/ClickHouse/pull/2828]	#2879	[https://github.com/yandex/ClickHouse/pull/2879]	#2886

[https://github.com/yandex/ClickHouse/pull/2886]	#2893	[https://github.com/yandex/ClickHouse/pull/2893]	#2921

[https://github.com/yandex/ClickHouse/pull/2921]

Fixed	incorrect	validation	of	the	file	path	in	the	catBoostPool 	table	function.	#2894

[https://github.com/yandex/ClickHouse/pull/2894]

The	contents	of	system	tables	( tables ,	 databases ,	 parts ,	 columns ,	 parts_columns ,	 merges ,	 mutations ,	

https://github.com/yandex/ClickHouse/pull/3000
https://github.com/yandex/ClickHouse/pull/2994
https://github.com/yandex/ClickHouse/pull/3087
https://github.com/yandex/ClickHouse/pull/2226
https://github.com/yandex/ClickHouse/pull/3037
https://github.com/yandex/ClickHouse/pull/3055
https://github.com/yandex/ClickHouse/pull/3065
https://github.com/yandex/ClickHouse/pull/3073
https://github.com/yandex/ClickHouse/pull/3090
https://github.com/yandex/ClickHouse/pull/3093
https://github.com/yandex/ClickHouse/pull/2910
https://github.com/yandex/ClickHouse/pull/3024
https://github.com/yandex/ClickHouse/pull/2854
https://github.com/yandex/ClickHouse/pull/3084
https://github.com/yandex/ClickHouse/pull/2989
https://github.com/yandex/ClickHouse/pull/2960
https://github.com/yandex/ClickHouse/pull/2845
https://github.com/yandex/ClickHouse/pull/2937
https://github.com/yandex/ClickHouse/pull/2929
https://github.com/yandex/ClickHouse/pull/2917
https://github.com/yandex/ClickHouse/pull/2808
https://github.com/yandex/ClickHouse/pull/2828
https://github.com/yandex/ClickHouse/pull/2879
https://github.com/yandex/ClickHouse/pull/2886
https://github.com/yandex/ClickHouse/pull/2893
https://github.com/yandex/ClickHouse/pull/2921
https://github.com/yandex/ClickHouse/pull/2894


replicas ,	and	 replication_queue )	are	filtered	according	to	the	user's	configured	access	to	databases

( allow_databases ).	Winter	Zhang	[https://github.com/yandex/ClickHouse/pull/2856]

Backward	incompatible	changes:

In	requests	with	JOIN,	the	star	character	expands	to	a	list	of	columns	in	all	tables,	in	compliance	with	the	SQL	standard.

You	can	restore	the	old	behavior	by	setting	 asterisk_left_columns_only 	to	1	on	the	user	configuration	level.

Build	changes:

Most	integration	tests	can	now	be	run	by	commit.

Code	style	checks	can	also	be	run	by	commit.

The	 memcpy 	implementation	is	chosen	correctly	when	building	on	CentOS7/Fedora.	Etienne	Champetier

[https://github.com/yandex/ClickHouse/pull/2912]

When	using	clang	to	build,	some	warnings	from	 -Weverything 	have	been	added,	in	addition	to	the	regular	 -Wall-

Wextra	-Werror .	#2957	[https://github.com/yandex/ClickHouse/pull/2957]

Debugging	the	build	uses	the	 jemalloc 	debug	option.

The	interface	of	the	library	for	interacting	with	ZooKeeper	is	declared	abstract.	#2950

[https://github.com/yandex/ClickHouse/pull/2950]

ClickHouse	release	18.10.3,	2018-08-13

New	features:

HTTPS	can	be	used	for	replication.	#2760	[https://github.com/yandex/ClickHouse/pull/2760]

Added	the	functions	 murmurHash2_64 ,	 murmurHash3_32 ,	 murmurHash3_64 ,	and	 murmurHash3_128 	in	addition	to	the

existing	 murmurHash2_32 .	#2791	[https://github.com/yandex/ClickHouse/pull/2791]

Support	for	Nullable	types	in	the	ClickHouse	ODBC	driver	( ODBCDriver2 	output	format).	#2834

[https://github.com/yandex/ClickHouse/pull/2834]

Support	for	 UUID 	in	the	key	columns.

Improvements:

Clusters	can	be	removed	without	restarting	the	server	when	they	are	deleted	from	the	config	files.	#2777

[https://github.com/yandex/ClickHouse/pull/2777]

External	dictionaries	can	be	removed	without	restarting	the	server	when	they	are	removed	from	config	files.	#2779

[https://github.com/yandex/ClickHouse/pull/2779]

Added	 SETTINGS 	support	for	the	 Kafka 	table	engine.	Alexander	Marshalov

[https://github.com/yandex/ClickHouse/pull/2781]

Improvements	for	the	 UUID 	data	type	(not	yet	complete).	#2618	[https://github.com/yandex/ClickHouse/pull/2618]

Support	for	empty	parts	after	merges	in	the	SummingMergeTree ,	 CollapsingMergeTree 	and	

VersionedCollapsingMergeTree 	engines.	#2815	[https://github.com/yandex/ClickHouse/pull/2815]

Old	records	of	completed	mutations	are	deleted	(ALTER	DELETE ).	#2784

[https://github.com/yandex/ClickHouse/pull/2784]

Added	the	 system.merge_tree_settings 	table.	Kirill	Shvakov	[https://github.com/yandex/ClickHouse/pull/2841]

The	 system.tables 	table	now	has	dependency	columns:	 dependencies_database 	and	 dependencies_table .	Winter

Zhang	[https://github.com/yandex/ClickHouse/pull/2851]

Added	the	 max_partition_size_to_drop 	config	option.	#2782	[https://github.com/yandex/ClickHouse/pull/2782]

Added	the	 output_format_json_escape_forward_slashes 	option.	Alexander	Bocharov

[https://github.com/yandex/ClickHouse/pull/2812]

https://github.com/yandex/ClickHouse/pull/2856
https://github.com/yandex/ClickHouse/pull/2912
https://github.com/yandex/ClickHouse/pull/2957
https://github.com/yandex/ClickHouse/pull/2950
https://github.com/yandex/ClickHouse/pull/2760
https://github.com/yandex/ClickHouse/pull/2791
https://github.com/yandex/ClickHouse/pull/2834
https://github.com/yandex/ClickHouse/pull/2777
https://github.com/yandex/ClickHouse/pull/2779
https://github.com/yandex/ClickHouse/pull/2781
https://github.com/yandex/ClickHouse/pull/2618
https://github.com/yandex/ClickHouse/pull/2815
https://github.com/yandex/ClickHouse/pull/2784
https://github.com/yandex/ClickHouse/pull/2841
https://github.com/yandex/ClickHouse/pull/2851
https://github.com/yandex/ClickHouse/pull/2782
https://github.com/yandex/ClickHouse/pull/2812


Added	the	 max_fetch_partition_retries_count 	setting.	#2831	[https://github.com/yandex/ClickHouse/pull/2831]

Added	the	 prefer_localhost_replica 	setting	for	disabling	the	preference	for	a	local	replica	and	going	to	a	local

replica	without	inter-process	interaction.	#2832	[https://github.com/yandex/ClickHouse/pull/2832]

The	 quantileExact 	aggregate	function	returns	 nan 	in	the	case	of	aggregation	on	an	empty	 Float32 	or	 Float64 	set.

Sundy	Li	[https://github.com/yandex/ClickHouse/pull/2855]

Bug	fixes:

Removed	unnecessary	escaping	of	the	connection	string	parameters	for	ODBC,	which	made	it	impossible	to	establish

a	connection.	This	error	occurred	in	version	18.6.0.

Fixed	the	logic	for	processing	 REPLACE	PARTITION 	commands	in	the	replication	queue.	If	there	are	two	 REPLACE

commands	for	the	same	partition,	the	incorrect	logic	could	cause	one	of	them	to	remain	in	the	replication	queue	and

not	be	executed.	#2814	[https://github.com/yandex/ClickHouse/pull/2814]

Fixed	a	merge	bug	when	all	data	parts	were	empty	(parts	that	were	formed	from	a	merge	or	from	ALTER	DELETE 	if	all

data	was	deleted).	This	bug	appeared	in	version	18.1.0.	#2930	[https://github.com/yandex/ClickHouse/pull/2930]

Fixed	an	error	for	concurrent	 Set 	or	 Join .	Amos	Bird	[https://github.com/yandex/ClickHouse/pull/2823]

Fixed	the	 Block	structure	mismatch	in	UNION	stream:	different	number	of	columns 	error	that	occurred	for	

UNION	ALL 	queries	inside	a	sub-query	if	one	of	the	SELECT 	queries	contains	duplicate	column	names.	Winter	Zhang

[https://github.com/yandex/ClickHouse/pull/2094]

Fixed	a	memory	leak	if	an	exception	occurred	when	connecting	to	a	MySQL	server.

Fixed	incorrect	clickhouse-client	response	code	in	case	of	a	request	error.

Fixed	incorrect	behavior	of	materialized	views	containing	DISTINCT.	#2795

[https://github.com/yandex/ClickHouse/issues/2795]

Backward	incompatible	changes

Removed	support	for	CHECK	TABLE	queries	for	Distributed	tables.

Build	changes:

The	allocator	has	been	replaced:	 jemalloc 	is	now	used	instead	of	 tcmalloc .	In	some	scenarios,	this	increases	speed

up	to	20%.	However,	there	are	queries	that	have	slowed	by	up	to	20%.	Memory	consumption	has	been	reduced	by

approximately	10%	in	some	scenarios,	with	improved	stability.	With	highly	competitive	loads,	CPU	usage	in	userspace

and	in	system	shows	just	a	slight	increase.	#2773	[https://github.com/yandex/ClickHouse/pull/2773]

Use	of	libressl	from	a	submodule.	#1983	[https://github.com/yandex/ClickHouse/pull/1983]	#2807

[https://github.com/yandex/ClickHouse/pull/2807]

Use	of	unixodbc	from	a	submodule.	#2789	[https://github.com/yandex/ClickHouse/pull/2789]

Use	of	mariadb-connector-c	from	a	submodule.	#2785	[https://github.com/yandex/ClickHouse/pull/2785]

Added	functional	test	files	to	the	repository	that	depend	on	the	availability	of	test	data	(for	the	time	being,	without	the

test	data	itself).

ClickHouse	release	18.6.0,	2018-08-02

New	features:

Added	support	for	ON	expressions	for	the	JOIN	ON	syntax:	 JOIN	ON	Expr([table.]column	...)	=	

Expr([table.]column,	...)	[AND	Expr([table.]column,	...)	=	Expr([table.]column,	...)	...] 	The

expression	must	be	a	chain	of	equalities	joined	by	the	AND	operator.	Each	side	of	the	equality	can	be	an	arbitrary

expression	over	the	columns	of	one	of	the	tables.	The	use	of	fully	qualified	column	names	is	supported	( table.name ,	

database.table.name ,	 table_alias.name ,	 subquery_alias.name )	for	the	right	table.	#2742

[https://github.com/yandex/ClickHouse/pull/2742]

https://github.com/yandex/ClickHouse/pull/2831
https://github.com/yandex/ClickHouse/pull/2832
https://github.com/yandex/ClickHouse/pull/2855
https://github.com/yandex/ClickHouse/pull/2814
https://github.com/yandex/ClickHouse/pull/2930
https://github.com/yandex/ClickHouse/pull/2823
https://github.com/yandex/ClickHouse/pull/2094
https://github.com/yandex/ClickHouse/issues/2795
https://github.com/yandex/ClickHouse/pull/2773
https://github.com/yandex/ClickHouse/pull/1983
https://github.com/yandex/ClickHouse/pull/2807
https://github.com/yandex/ClickHouse/pull/2789
https://github.com/yandex/ClickHouse/pull/2785
https://github.com/yandex/ClickHouse/pull/2742


HTTPS	can	be	enabled	for	replication.	#2760	[https://github.com/yandex/ClickHouse/pull/2760]

Improvements:

The	server	passes	the	patch	component	of	its	version	to	the	client.	Data	about	the	patch	version	component	is	in	

system.processes 	and	 query_log .	#2646	[https://github.com/yandex/ClickHouse/pull/2646]

ClickHouse	release	18.5.1,	2018-07-31

New	features:

Added	the	hash	function	 murmurHash2_32 	#2756	[https://github.com/yandex/ClickHouse/pull/2756].

Improvements:

Now	you	can	use	the	 from_env 	#2741	[https://github.com/yandex/ClickHouse/pull/2741]	attribute	to	set	values	in

config	files	from	environment	variables.

Added	case-insensitive	versions	of	the	 coalesce ,	 ifNull ,	and	 nullIf	functions 	#2752

[https://github.com/yandex/ClickHouse/pull/2752].

Bug	fixes:

Fixed	a	possible	bug	when	starting	a	replica	#2759	[https://github.com/yandex/ClickHouse/pull/2759].

ClickHouse	release	18.4.0,	2018-07-28

New	features:

Added	system	tables:	 formats ,	 data_type_families ,	 aggregate_function_combinators ,	 table_functions ,	

table_engines ,	 collations 	#2721	[https://github.com/yandex/ClickHouse/pull/2721].

Added	the	ability	to	use	a	table	function	instead	of	a	table	as	an	argument	of	a	remote 	or	 cluster	table	function

#2708	[https://github.com/yandex/ClickHouse/pull/2708].

Support	for	 HTTP	Basic 	authentication	in	the	replication	protocol	#2727

[https://github.com/yandex/ClickHouse/pull/2727].

The	 has 	function	now	allows	searching	for	a	numeric	value	in	an	array	of	Enum 	values	Maxim	Khrisanfov

[https://github.com/yandex/ClickHouse/pull/2699].

Support	for	adding	arbitrary	message	separators	when	reading	from	 Kafka 	Amos	Bird

[https://github.com/yandex/ClickHouse/pull/2701].

Improvements:

The	 ALTER	TABLE	t	DELETE	WHERE 	query	does	not	rewrite	data	parts	that	were	not	affected	by	the	WHERE	condition

#2694	[https://github.com/yandex/ClickHouse/pull/2694].

The	 use_minimalistic_checksums_in_zookeeper 	option	for	 ReplicatedMergeTree 	tables	is	enabled	by	default.	This

setting	was	added	in	version	1.1.54378,	2018-04-16.	Versions	that	are	older	than	1.1.54378	can	no	longer	be	installed.

Support	for	running	 KILL 	and	 OPTIMIZE 	queries	that	specify	 ON	CLUSTER 	Winter	Zhang

[https://github.com/yandex/ClickHouse/pull/2689].

Bug	fixes:

Fixed	the	error	 Column	...	is	not	under	an	aggregate	function	and	not	in	GROUP	BY 	for	aggregation	with	an

IN	expression.	This	bug	appeared	in	version	18.1.0.	(bbdd780b

[https://github.com/yandex/ClickHouse/commit/bbdd780be0be06a0f336775941cdd536878dd2c2])

Fixed	a	bug	in	the	 windowFunnel	aggregate	function 	Winter	Zhang

[https://github.com/yandex/ClickHouse/pull/2735].

https://github.com/yandex/ClickHouse/pull/2760
https://github.com/yandex/ClickHouse/pull/2646
https://github.com/yandex/ClickHouse/pull/2756
https://github.com/yandex/ClickHouse/pull/2741
https://github.com/yandex/ClickHouse/pull/2752
https://github.com/yandex/ClickHouse/pull/2759
https://github.com/yandex/ClickHouse/pull/2721
https://github.com/yandex/ClickHouse/pull/2708
https://github.com/yandex/ClickHouse/pull/2727
https://github.com/yandex/ClickHouse/pull/2699
https://github.com/yandex/ClickHouse/pull/2701
https://github.com/yandex/ClickHouse/pull/2694
https://github.com/yandex/ClickHouse/pull/2689
https://github.com/yandex/ClickHouse/commit/bbdd780be0be06a0f336775941cdd536878dd2c2
https://github.com/yandex/ClickHouse/pull/2735


Fixed	a	bug	in	the	 anyHeavy 	aggregate	function	(a2101df2

[https://github.com/yandex/ClickHouse/commit/a2101df25a6a0fba99aa71f8793d762af2b801ee])

Fixed	server	crash	when	using	the	 countArray() 	aggregate	function.

Backward	incompatible	changes:

Parameters	for	 Kafka 	engine	was	changed	from	 Kafka(kafka_broker_list,	kafka_topic_list,	

kafka_group_name,	kafka_format[,	kafka_schema,	kafka_num_consumers]) 	to	 Kafka(kafka_broker_list,	

kafka_topic_list,	kafka_group_name,	kafka_format[,	kafka_row_delimiter,	kafka_schema,	

kafka_num_consumers]) .	If	your	tables	use	 kafka_schema 	or	 kafka_num_consumers 	parameters,	you	have	to

manually	edit	the	metadata	files	 path/metadata/database/table.sql 	and	add	 kafka_row_delimiter 	parameter

with	 '' 	value.

ClickHouse	release	18.1.0,	2018-07-23

New	features:

Support	for	the	 ALTER	TABLE	t	DELETE	WHERE 	query	for	non-replicated	MergeTree	tables	(#2634

[https://github.com/yandex/ClickHouse/pull/2634]).

Support	for	arbitrary	types	for	the	 uniq* 	family	of	aggregate	functions	(#2010

[https://github.com/yandex/ClickHouse/issues/2010]).

Support	for	arbitrary	types	in	comparison	operators	(#2026	[https://github.com/yandex/ClickHouse/issues/2026]).

The	 users.xml 	file	allows	setting	a	subnet	mask	in	the	format	10.0.0.1/255.255.255.0 .	This	is	necessary	for	using

masks	for	IPv6	networks	with	zeros	in	the	middle	(#2637	[https://github.com/yandex/ClickHouse/pull/2637]).

Added	the	 arrayDistinct 	function	(#2670	[https://github.com/yandex/ClickHouse/pull/2670]).

The	SummingMergeTree	engine	can	now	work	with	AggregateFunction	type	columns	(Constantin	S.	Pan

[https://github.com/yandex/ClickHouse/pull/2566]).

Improvements:

Changed	the	numbering	scheme	for	release	versions.	Now	the	first	part	contains	the	year	of	release	(A.D.,	Moscow

timezone,	minus	2000),	the	second	part	contains	the	number	for	major	changes	(increases	for	most	releases),	and	the

third	part	is	the	patch	version.	Releases	are	still	backwards	compatible,	unless	otherwise	stated	in	the	changelog.

Faster	conversions	of	floating-point	numbers	to	a	string	(Amos	Bird

[https://github.com/yandex/ClickHouse/pull/2664]).

If	some	rows	were	skipped	during	an	insert	due	to	parsing	errors	(this	is	possible	with	the	 input_allow_errors_num

and	 input_allow_errors_ratio 	settings	enabled),	the	number	of	skipped	rows	is	now	written	to	the	server	log

(Leonardo	Cecchi	[https://github.com/yandex/ClickHouse/pull/2669]).

Bug	fixes:

Fixed	the	TRUNCATE	command	for	temporary	tables	(Amos	Bird	[https://github.com/yandex/ClickHouse/pull/2624]).

Fixed	a	rare	deadlock	in	the	ZooKeeper	client	library	that	occurred	when	there	was	a	network	error	while	reading	the

response	(c315200

[https://github.com/yandex/ClickHouse/commit/c315200e64b87e44bdf740707fc857d1fdf7e947]).

Fixed	an	error	during	a	CAST	to	Nullable	types	(#1322	[https://github.com/yandex/ClickHouse/issues/1322]).

Fixed	the	incorrect	result	of	the	 maxIntersection() 	function	when	the	boundaries	of	intervals	coincided	(Michael

Furmur	[https://github.com/yandex/ClickHouse/pull/2657]).

Fixed	incorrect	transformation	of	the	OR	expression	chain	in	a	function	argument	(chenxing-xc

[https://github.com/yandex/ClickHouse/pull/2663]).

Fixed	performance	degradation	for	queries	containing	IN	(subquery) 	expressions	inside	another	subquery	(#2571

https://github.com/yandex/ClickHouse/commit/a2101df25a6a0fba99aa71f8793d762af2b801ee
https://github.com/yandex/ClickHouse/pull/2634
https://github.com/yandex/ClickHouse/issues/2010
https://github.com/yandex/ClickHouse/issues/2026
https://github.com/yandex/ClickHouse/pull/2637
https://github.com/yandex/ClickHouse/pull/2670
https://github.com/yandex/ClickHouse/pull/2566
https://github.com/yandex/ClickHouse/pull/2664
https://github.com/yandex/ClickHouse/pull/2669
https://github.com/yandex/ClickHouse/pull/2624
https://github.com/yandex/ClickHouse/commit/c315200e64b87e44bdf740707fc857d1fdf7e947
https://github.com/yandex/ClickHouse/issues/1322
https://github.com/yandex/ClickHouse/pull/2657
https://github.com/yandex/ClickHouse/pull/2663
https://github.com/yandex/ClickHouse/issues/2571


[https://github.com/yandex/ClickHouse/issues/2571]).

Fixed	incompatibility	between	servers	with	different	versions	in	distributed	queries	that	use	a	 CAST 	function	that	isn't

in	uppercase	letters	(fe8c4d6

[https://github.com/yandex/ClickHouse/commit/fe8c4d64e434cacd4ceef34faa9005129f2190a5]).

Added	missing	quoting	of	identifiers	for	queries	to	an	external	DBMS	(#2635

[https://github.com/yandex/ClickHouse/issues/2635]).

Backward	incompatible	changes:

Converting	a	string	containing	the	number	zero	to	DateTime	does	not	work.	Example:	SELECT	toDateTime('0') .	This

is	also	the	reason	that	 DateTime	DEFAULT	'0' 	does	not	work	in	tables,	as	well	as	 <null_value>0</null_value> 	in

dictionaries.	Solution:	replace	 0 	with	 0000-00-00	00:00:00 .

ClickHouse	release	1.1.54394,	2018-07-12

New	features:

Added	the	 histogram 	aggregate	function	(Mikhail	Surin	[https://github.com/yandex/ClickHouse/pull/2521]).

Now	 OPTIMIZE	TABLE	...	FINAL 	can	be	used	without	specifying	partitions	for	 ReplicatedMergeTree 	(Amos	Bird

[https://github.com/yandex/ClickHouse/pull/2600]).

Bug	fixes:

Fixed	a	problem	with	a	very	small	timeout	for	sockets	(one	second)	for	reading	and	writing	when	sending	and

downloading	replicated	data,	which	made	it	impossible	to	download	larger	parts	if	there	is	a	load	on	the	network	or

disk	(it	resulted	in	cyclical	attempts	to	download	parts).	This	error	occurred	in	version	1.1.54388.

Fixed	issues	when	using	chroot	in	ZooKeeper	if	you	inserted	duplicate	data	blocks	in	the	table.

The	 has 	function	now	works	correctly	for	an	array	with	Nullable	elements	(#2115

[https://github.com/yandex/ClickHouse/issues/2115]).

The	 system.tables 	table	now	works	correctly	when	used	in	distributed	queries.	The	 metadata_modification_time

and	 engine_full 	columns	are	now	non-virtual.	Fixed	an	error	that	occurred	if	only	these	columns	were	requested

from	the	table.

Fixed	how	an	empty	 TinyLog 	table	works	after	inserting	an	empty	data	block	(#2563

[https://github.com/yandex/ClickHouse/issues/2563]).

The	 system.zookeeper 	table	works	if	the	value	of	the	node	in	ZooKeeper	is	NULL.

ClickHouse	release	1.1.54390,	2018-07-06

New	features:

Queries	can	be	sent	in	 multipart/form-data 	format	(in	the	 query 	field),	which	is	useful	if	external	data	is	also	sent

for	query	processing	(Olga	Hvostikova	[https://github.com/yandex/ClickHouse/pull/2490]).

Added	the	ability	to	enable	or	disable	processing	single	or	double	quotes	when	reading	data	in	CSV	format.	You	can

configure	this	in	the	 format_csv_allow_single_quotes 	and	 format_csv_allow_double_quotes 	settings	(Amos	Bird

[https://github.com/yandex/ClickHouse/pull/2574]).

Now	 OPTIMIZE	TABLE	...	FINAL 	can	be	used	without	specifying	the	partition	for	non-replicated	variants	of	

MergeTree 	(Amos	Bird	[https://github.com/yandex/ClickHouse/pull/2599]).

Improvements:

Improved	performance,	reduced	memory	consumption,	and	correct	memory	consumption	tracking	with	use	of	the	IN

operator	when	a	table	index	could	be	used	(#2584	[https://github.com/yandex/ClickHouse/pull/2584]).

https://github.com/yandex/ClickHouse/commit/fe8c4d64e434cacd4ceef34faa9005129f2190a5
https://github.com/yandex/ClickHouse/issues/2635
https://github.com/yandex/ClickHouse/pull/2521
https://github.com/yandex/ClickHouse/pull/2600
https://github.com/yandex/ClickHouse/issues/2115
https://github.com/yandex/ClickHouse/issues/2563
https://github.com/yandex/ClickHouse/pull/2490
https://github.com/yandex/ClickHouse/pull/2574
https://github.com/yandex/ClickHouse/pull/2599
https://github.com/yandex/ClickHouse/pull/2584


Removed	redundant	checking	of	checksums	when	adding	a	data	part.	This	is	important	when	there	are	a	large	number

of	replicas,	because	in	these	cases	the	total	number	of	checks	was	equal	to	N^2.

Added	support	for	 Array(Tuple(...)) 	arguments	for	the	 arrayEnumerateUniq 	function	(#2573

[https://github.com/yandex/ClickHouse/pull/2573]).

Added	 Nullable 	support	for	the	 runningDifference 	function	(#2594

[https://github.com/yandex/ClickHouse/pull/2594]).

Improved	query	analysis	performance	when	there	is	a	very	large	number	of	expressions	(#2572

[https://github.com/yandex/ClickHouse/pull/2572]).

Faster	selection	of	data	parts	for	merging	in	 ReplicatedMergeTree 	tables.	Faster	recovery	of	the	ZooKeeper	session

(#2597	[https://github.com/yandex/ClickHouse/pull/2597]).

The	 format_version.txt 	file	for	 MergeTree 	tables	is	re-created	if	it	is	missing,	which	makes	sense	if	ClickHouse	is

launched	after	copying	the	directory	structure	without	files	(Ciprian	Hacman

[https://github.com/yandex/ClickHouse/pull/2593]).

Bug	fixes:

Fixed	a	bug	when	working	with	ZooKeeper	that	could	make	it	impossible	to	recover	the	session	and	readonly	states	of

tables	before	restarting	the	server.

Fixed	a	bug	when	working	with	ZooKeeper	that	could	result	in	old	nodes	not	being	deleted	if	the	session	is	interrupted.

Fixed	an	error	in	the	 quantileTDigest 	function	for	Float	arguments	(this	bug	was	introduced	in	version	1.1.54388)

(Mikhail	Surin	[https://github.com/yandex/ClickHouse/pull/2553]).

Fixed	a	bug	in	the	index	for	MergeTree	tables	if	the	primary	key	column	is	located	inside	the	function	for	converting

types	between	signed	and	unsigned	integers	of	the	same	size	(#2603

[https://github.com/yandex/ClickHouse/pull/2603]).

Fixed	segfault	if	 macros 	are	used	but	they	aren't	in	the	config	file	(#2570

[https://github.com/yandex/ClickHouse/pull/2570]).

Fixed	switching	to	the	default	database	when	reconnecting	the	client	(#2583

[https://github.com/yandex/ClickHouse/pull/2583]).

Fixed	a	bug	that	occurred	when	the	use_index_for_in_with_subqueries 	setting	was	disabled.

Security	fix:

Sending	files	is	no	longer	possible	when	connected	to	MySQL	( LOAD	DATA	LOCAL	INFILE ).

ClickHouse	release	1.1.54388,	2018-06-28

New	features:

Support	for	the	 ALTER	TABLE	t	DELETE	WHERE 	query	for	replicated	tables.	Added	the	 system.mutations 	table	to

track	progress	of	this	type	of	queries.

Support	for	the	 ALTER	TABLE	t	[REPLACE|ATTACH]	PARTITION 	query	for	*MergeTree	tables.

Support	for	the	 TRUNCATE	TABLE 	query	(Winter	Zhang	[https://github.com/yandex/ClickHouse/pull/2260])

Several	new	 SYSTEM 	queries	for	replicated	tables	( RESTART	REPLICAS ,	 SYNC	REPLICA ,	 [STOP|START]	

[MERGES|FETCHES|SENDS	REPLICATED|REPLICATION	QUEUES] ).

Added	the	ability	to	write	to	a	table	with	the	MySQL	engine	and	the	corresponding	table	function	(sundy-li

[https://github.com/yandex/ClickHouse/pull/2294]).

Added	the	 url() 	table	function	and	the	 URL 	table	engine	(Alexander	Sapin

[https://github.com/yandex/ClickHouse/pull/2501]).

Added	the	 windowFunnel 	aggregate	function	(sundy-li	[https://github.com/yandex/ClickHouse/pull/2352]).

https://github.com/yandex/ClickHouse/pull/2573
https://github.com/yandex/ClickHouse/pull/2594
https://github.com/yandex/ClickHouse/pull/2572
https://github.com/yandex/ClickHouse/pull/2597
https://github.com/yandex/ClickHouse/pull/2593
https://github.com/yandex/ClickHouse/pull/2553
https://github.com/yandex/ClickHouse/pull/2603
https://github.com/yandex/ClickHouse/pull/2570
https://github.com/yandex/ClickHouse/pull/2583
https://github.com/yandex/ClickHouse/pull/2260
https://github.com/yandex/ClickHouse/pull/2294
https://github.com/yandex/ClickHouse/pull/2501
https://github.com/yandex/ClickHouse/pull/2352


New	 startsWith 	and	 endsWith 	functions	for	strings	(Vadim	Plakhtinsky

[https://github.com/yandex/ClickHouse/pull/2429]).

The	 numbers() 	table	function	now	allows	you	to	specify	the	offset	(Winter	Zhang

[https://github.com/yandex/ClickHouse/pull/2535]).

The	password	to	 clickhouse-client 	can	be	entered	interactively.

Server	logs	can	now	be	sent	to	syslog	(Alexander	Krasheninnikov	[https://github.com/yandex/ClickHouse/pull/2459]).

Support	for	logging	in	dictionaries	with	a	shared	library	source	(Alexander	Sapin

[https://github.com/yandex/ClickHouse/pull/2472]).

Support	for	custom	CSV	delimiters	(Ivan	Zhukov	[https://github.com/yandex/ClickHouse/pull/2263])

Added	the	 date_time_input_format 	setting.	If	you	switch	this	setting	to	'best_effort' ,	DateTime	values	will	be

read	in	a	wide	range	of	formats.

Added	the	 clickhouse-obfuscator 	utility	for	data	obfuscation.	Usage	example:	publishing	data	used	in	performance

tests.

Experimental	features:

Added	the	ability	to	calculate	 and 	arguments	only	where	they	are	needed	(Anastasia	Tsarkova

[https://github.com/yandex/ClickHouse/pull/2272])

JIT	compilation	to	native	code	is	now	available	for	some	expressions	(pyos

[https://github.com/yandex/ClickHouse/pull/2277]).

Bug	fixes:

Duplicates	no	longer	appear	for	a	query	with	 DISTINCT 	and	 ORDER	BY .

Queries	with	 ARRAY	JOIN 	and	 arrayFilter 	no	longer	return	an	incorrect	result.

Fixed	an	error	when	reading	an	array	column	from	a	Nested	structure	(#2066

[https://github.com/yandex/ClickHouse/issues/2066]).

Fixed	an	error	when	analyzing	queries	with	a	HAVING	clause	like	 HAVING	tuple	IN	(...) .

Fixed	an	error	when	analyzing	queries	with	recursive	aliases.

Fixed	an	error	when	reading	from	ReplacingMergeTree	with	a	condition	in	PREWHERE	that	filters	all	rows	(#2525

[https://github.com/yandex/ClickHouse/issues/2525]).

User	profile	settings	were	not	applied	when	using	sessions	in	the	HTTP	interface.

Fixed	how	settings	are	applied	from	the	command	line	parameters	in	clickhouse-local.

The	ZooKeeper	client	library	now	uses	the	session	timeout	received	from	the	server.

Fixed	a	bug	in	the	ZooKeeper	client	library	when	the	client	waited	for	the	server	response	longer	than	the	timeout.

Fixed	pruning	of	parts	for	queries	with	conditions	on	partition	key	columns	(#2342

[https://github.com/yandex/ClickHouse/issues/2342]).

Merges	are	now	possible	after	 CLEAR	COLUMN	IN	PARTITION 	(#2315

[https://github.com/yandex/ClickHouse/issues/2315]).

Type	mapping	in	the	ODBC	table	function	has	been	fixed	(sundy-li

[https://github.com/yandex/ClickHouse/pull/2268]).

Type	comparisons	have	been	fixed	for	 DateTime 	with	and	without	the	time	zone	(Alexander	Bocharov

[https://github.com/yandex/ClickHouse/pull/2400]).

Fixed	syntactic	parsing	and	formatting	of	the	 CAST 	operator.

Fixed	insertion	into	a	materialized	view	for	the	Distributed	table	engine	(Babacar	Diassé

[https://github.com/yandex/ClickHouse/pull/2411]).

Fixed	a	race	condition	when	writing	data	from	the	 Kafka 	engine	to	materialized	views	(Yangkuan	Liu

https://github.com/yandex/ClickHouse/pull/2429
https://github.com/yandex/ClickHouse/pull/2535
https://github.com/yandex/ClickHouse/pull/2459
https://github.com/yandex/ClickHouse/pull/2472
https://github.com/yandex/ClickHouse/pull/2263
https://github.com/yandex/ClickHouse/pull/2272
https://github.com/yandex/ClickHouse/pull/2277
https://github.com/yandex/ClickHouse/issues/2066
https://github.com/yandex/ClickHouse/issues/2525
https://github.com/yandex/ClickHouse/issues/2342
https://github.com/yandex/ClickHouse/issues/2315
https://github.com/yandex/ClickHouse/pull/2268
https://github.com/yandex/ClickHouse/pull/2400
https://github.com/yandex/ClickHouse/pull/2411
https://github.com/yandex/ClickHouse/pull/2448


[https://github.com/yandex/ClickHouse/pull/2448]).

Fixed	SSRF	in	the	remote()	table	function.

Fixed	exit	behavior	of	 clickhouse-client 	in	multiline	mode	(#2510

[https://github.com/yandex/ClickHouse/issues/2510]).

Improvements:

Background	tasks	in	replicated	tables	are	now	performed	in	a	thread	pool	instead	of	in	separate	threads	(Silviu

Caragea	[https://github.com/yandex/ClickHouse/pull/1722]).

Improved	LZ4	compression	performance.

Faster	analysis	for	queries	with	a	large	number	of	JOINs	and	sub-queries.

The	DNS	cache	is	now	updated	automatically	when	there	are	too	many	network	errors.

Table	inserts	no	longer	occur	if	the	insert	into	one	of	the	materialized	views	is	not	possible	because	it	has	too	many

parts.

Corrected	the	discrepancy	in	the	event	counters	 Query ,	 SelectQuery ,	and	 InsertQuery .

Expressions	like	 tuple	IN	(SELECT	tuple) 	are	allowed	if	the	tuple	types	match.

A	server	with	replicated	tables	can	start	even	if	you	haven't	configured	ZooKeeper.

When	calculating	the	number	of	available	CPU	cores,	limits	on	cgroups	are	now	taken	into	account	(Atri	Sharma

[https://github.com/yandex/ClickHouse/pull/2325]).

Added	chown	for	config	directories	in	the	systemd	config	file	(Mikhail	Shiryaev

[https://github.com/yandex/ClickHouse/pull/2421]).

Build	changes:

The	gcc8	compiler	can	be	used	for	builds.

Added	the	ability	to	build	llvm	from	submodule.

The	version	of	the	librdkafka	library	has	been	updated	to	v0.11.4.

Added	the	ability	to	use	the	system	libcpuid	library.	The	library	version	has	been	updated	to	0.4.0.

Fixed	the	build	using	the	vectorclass	library	(Babacar	Diassé	[https://github.com/yandex/ClickHouse/pull/2274]).

Cmake	now	generates	files	for	ninja	by	default	(like	when	using	-G	Ninja ).

Added	the	ability	to	use	the	libtinfo	library	instead	of	libtermcap	(Georgy	Kondratiev

[https://github.com/yandex/ClickHouse/pull/2519]).

Fixed	a	header	file	conflict	in	Fedora	Rawhide	(#2520	[https://github.com/yandex/ClickHouse/issues/2520]).

Backward	incompatible	changes:

Removed	escaping	in	 Vertical 	and	 Pretty* 	formats	and	deleted	the	 VerticalRaw 	format.

If	servers	with	version	1.1.54388	(or	newer)	and	servers	with	an	older	version	are	used	simultaneously	in	a	distributed

query	and	the	query	has	the	 cast(x,	'Type') 	expression	without	the	 AS 	keyword	and	doesn't	have	the	word	 cast

in	uppercase,	an	exception	will	be	thrown	with	a	message	like	 Not	found	column	cast(0,	'UInt8')	in	block .

Solution:	Update	the	server	on	the	entire	cluster.

ClickHouse	release	1.1.54385,	2018-06-01

Bug	fixes:

Fixed	an	error	that	in	some	cases	caused	ZooKeeper	operations	to	block.

ClickHouse	release	1.1.54383,	2018-05-22

https://github.com/yandex/ClickHouse/issues/2510
https://github.com/yandex/ClickHouse/pull/1722
https://github.com/yandex/ClickHouse/pull/2325
https://github.com/yandex/ClickHouse/pull/2421
https://github.com/yandex/ClickHouse/pull/2274
https://github.com/yandex/ClickHouse/pull/2519
https://github.com/yandex/ClickHouse/issues/2520


Bug	fixes:

Fixed	a	slowdown	of	replication	queue	if	a	table	has	many	replicas.

ClickHouse	release	1.1.54381,	2018-05-14

Bug	fixes:

Fixed	a	nodes	leak	in	ZooKeeper	when	ClickHouse	loses	connection	to	ZooKeeper	server.

ClickHouse	release	1.1.54380,	2018-04-21

New	features:

Added	the	table	function	 file(path,	format,	structure) .	An	example	reading	bytes	from	 /dev/urandom :	 ln	-s	

/dev/urandom	/var/lib/clickhouse/user_files/random``clickhouse-client	-q	"SELECT	*	FROM	

file('random',	'RowBinary',	'd	UInt8')	LIMIT	10" .

Improvements:

Subqueries	can	be	wrapped	in	 () 	brackets	to	enhance	query	readability.	For	example:	 (SELECT	1)	UNION	ALL	

(SELECT	1) .

Simple	 SELECT 	queries	from	the	 system.processes 	table	are	not	included	in	the	 max_concurrent_queries 	limit.

Bug	fixes:

Fixed	incorrect	behavior	of	the	IN 	operator	when	select	from	 MATERIALIZED	VIEW .

Fixed	incorrect	filtering	by	partition	index	in	expressions	like	 partition_key_column	IN	(...) .

Fixed	inability	to	execute	OPTIMIZE 	query	on	non-leader	replica	if	 REANAME 	was	performed	on	the	table.

Fixed	the	authorization	error	when	executing	 OPTIMIZE 	or	 ALTER 	queries	on	a	non-leader	replica.

Fixed	freezing	of	 KILL	QUERY .

Fixed	an	error	in	ZooKeeper	client	library	which	led	to	loss	of	watches,	freezing	of	distributed	DDL	queue,	and

slowdowns	in	the	replication	queue	if	a	non-empty	 chroot 	prefix	is	used	in	the	ZooKeeper	configuration.

Backward	incompatible	changes:

Removed	support	for	expressions	like	 (a,	b)	IN	(SELECT	(a,	b)) 	(you	can	use	the	equivalent	expression	 (a,	b)	

IN	(SELECT	a,	b) ).	In	previous	releases,	these	expressions	led	to	undetermined	 WHERE 	filtering	or	caused	errors.

ClickHouse	release	1.1.54378,	2018-04-16

New	features:

Logging	level	can	be	changed	without	restarting	the	server.

Added	the	 SHOW	CREATE	DATABASE 	query.

The	 query_id 	can	be	passed	to	clickhouse-client 	(elBroom).

New	setting:	 max_network_bandwidth_for_all_users .

Added	support	for	 ALTER	TABLE	...	PARTITION	... 	for	 MATERIALIZED	VIEW .

Added	information	about	the	size	of	data	parts	in	uncompressed	form	in	the	system	table.

Server-to-server	encryption	support	for	distributed	tables	( <secure>1</secure> 	in	the	replica	config	in	

<remote_servers> ).

Configuration	of	the	table	level	for	the	ReplicatedMergeTree 	family	in	order	to	minimize	the	amount	of	data	stored	in



Zookeeper:	:	 use_minimalistic_checksums_in_zookeeper	=	1

Configuration	of	the	 clickhouse-client 	prompt.	By	default,	server	names	are	now	output	to	the	prompt.	The

server's	display	name	can	be	changed.	It's	also	sent	in	the	 X-ClickHouse-Display-Name 	HTTP	header	(Kirill	Shvakov).

Multiple	comma-separated	 topics 	can	be	specified	for	the	Kafka 	engine	(Tobias	Adamson)

When	a	query	is	stopped	by	KILL	QUERY 	or	 replace_running_query ,	the	client	receives	the	 Query	was	cancelled

exception	instead	of	an	incomplete	result.

Improvements:

ALTER	TABLE	...	DROP/DETACH	PARTITION 	queries	are	run	at	the	front	of	the	replication	queue.

SELECT	...	FINAL 	and	 OPTIMIZE	...	FINAL 	can	be	used	even	when	the	table	has	a	single	data	part.

A	 query_log 	table	is	recreated	on	the	fly	if	it	was	deleted	manually	(Kirill	Shvakov).

The	 lengthUTF8 	function	runs	faster	(zhang2014).

Improved	performance	of	synchronous	inserts	in	 Distributed 	tables	( insert_distributed_sync	=	1 )	when	there	is

a	very	large	number	of	shards.

The	server	accepts	the	 send_timeout 	and	 receive_timeout 	settings	from	the	client	and	applies	them	when

connecting	to	the	client	(they	are	applied	in	reverse	order:	the	server	socket's	 send_timeout 	is	set	to	the	

receive_timeout 	value	received	from	the	client,	and	vice	versa).

More	robust	crash	recovery	for	asynchronous	insertion	into	Distributed 	tables.

The	return	type	of	the	countEqual 	function	changed	from	 UInt32 	to	 UInt64 	(谢磊).

Bug	fixes:

Fixed	an	error	with	 IN 	when	the	left	side	of	the	expression	is	Nullable .

Correct	results	are	now	returned	when	using	tuples	with	 IN 	when	some	of	the	tuple	components	are	in	the	table

index.

The	 max_execution_time 	limit	now	works	correctly	with	distributed	queries.

Fixed	errors	when	calculating	the	size	of	composite	columns	in	the	 system.columns 	table.

Fixed	an	error	when	creating	a	temporary	table	 CREATE	TEMPORARY	TABLE	IF	NOT	EXISTS.

Fixed	errors	in	 StorageKafka 	(##2075)

Fixed	server	crashes	from	invalid	arguments	of	certain	aggregate	functions.

Fixed	the	error	that	prevented	the	 DETACH	DATABASE 	query	from	stopping	background	tasks	for	

ReplicatedMergeTree 	tables.

Too	many	parts 	state	is	less	likely	to	happen	when	inserting	into	aggregated	materialized	views	(##2084).

Corrected	recursive	handling	of	substitutions	in	the	config	if	a	substitution	must	be	followed	by	another	substitution

on	the	same	level.

Corrected	the	syntax	in	the	metadata	file	when	creating	a	VIEW 	that	uses	a	query	with	 UNION	ALL .

SummingMergeTree 	now	works	correctly	for	summation	of	nested	data	structures	with	a	composite	key.

Fixed	the	possibility	of	a	race	condition	when	choosing	the	leader	for	ReplicatedMergeTree 	tables.

Build	changes:

The	build	supports	 ninja 	instead	of	 make 	and	uses	 ninja 	by	default	for	building	releases.

Renamed	packages:	 clickhouse-server-base 	in	 clickhouse-common-static ;	 clickhouse-server-common 	in	

clickhouse-server ;	 clickhouse-common-dbg 	in	 clickhouse-common-static-dbg .	To	install,	use	 clickhouse-

server	clickhouse-client .	Packages	with	the	old	names	will	still	load	in	the	repositories	for	backward	compatibility.

Backward	incompatible	changes:



Removed	the	special	interpretation	of	an	IN	expression	if	an	array	is	specified	on	the	left	side.	Previously,	the

expression	 arr	IN	(set) 	was	interpreted	as	"at	least	one	 arr 	element	belongs	to	the	 set ".	To	get	the	same

behavior	in	the	new	version,	write	 arrayExists(x	->	x	IN	(set),	arr) .

Disabled	the	incorrect	use	of	the	socket	option	 SO_REUSEPORT ,	which	was	incorrectly	enabled	by	default	in	the	Poco

library.	Note	that	on	Linux	there	is	no	longer	any	reason	to	simultaneously	specify	the	addresses	 :: 	and	 0.0.0.0 	for

listen	–	use	just	 :: ,	which	allows	listening	to	the	connection	both	over	IPv4	and	IPv6	(with	the	default	kernel	config

settings).	You	can	also	revert	to	the	behavior	from	previous	versions	by	specifying	

<listen_reuse_port>1</listen_reuse_port> 	in	the	config.

ClickHouse	release	1.1.54370,	2018-03-16

New	features:

Added	the	 system.macros 	table	and	auto	updating	of	macros	when	the	config	file	is	changed.

Added	the	 SYSTEM	RELOAD	CONFIG 	query.

Added	the	 maxIntersections(left_col,	right_col) 	aggregate	function,	which	returns	the	maximum	number	of

simultaneously	intersecting	intervals	 [left;	right] .	The	 maxIntersectionsPosition(left,	right) 	function

returns	the	beginning	of	the	"maximum"	interval.	(Michael	Furmur

[https://github.com/yandex/ClickHouse/pull/2012]).

Improvements:

When	inserting	data	in	a	 Replicated 	table,	fewer	requests	are	made	to	 ZooKeeper 	(and	most	of	the	user-level	errors

have	disappeared	from	the	 ZooKeeper 	log).

Added	the	ability	to	create	aliases	for	data	sets.	Example:	 WITH	(1,	2,	3)	AS	set	SELECT	number	IN	set	FROM	

system.numbers	LIMIT	10 .

Bug	fixes:

Fixed	the	 Illegal	PREWHERE 	error	when	reading	from	Merge	tables	for	 Distributed tables.

Added	fixes	that	allow	you	to	start	clickhouse-server	in	IPv4-only	Docker	containers.

Fixed	a	race	condition	when	reading	from	system	 system.parts_columns	tables.

Removed	double	buffering	during	a	synchronous	insert	to	a	 Distributed 	table,	which	could	have	caused	the

connection	to	timeout.

Fixed	a	bug	that	caused	excessively	long	waits	for	an	unavailable	replica	before	beginning	a	SELECT 	query.

Fixed	incorrect	dates	in	the	 system.parts 	table.

Fixed	a	bug	that	made	it	impossible	to	insert	data	in	a	Replicated 	table	if	 chroot 	was	non-empty	in	the	configuration

of	the	 ZooKeeper 	cluster.

Fixed	the	vertical	merging	algorithm	for	an	empty	ORDER	BY 	table.

Restored	the	ability	to	use	dictionaries	in	queries	to	remote	tables,	even	if	these	dictionaries	are	not	present	on	the

requestor	server.	This	functionality	was	lost	in	release	1.1.54362.

Restored	the	behavior	for	queries	like	 SELECT	*	FROM	remote('server2',	default.table)	WHERE	col	IN	(SELECT	

col2	FROM	default.table) 	when	the	right	side	of	the	 IN 	should	use	a	remote	 default.table 	instead	of	a	local	one.

This	behavior	was	broken	in	version	1.1.54358.

Removed	extraneous	error-level	logging	of	 Not	found	column	...	in	block .

Clickhouse	Release	1.1.54362,	2018-03-11

New	features:

https://github.com/yandex/ClickHouse/pull/2012


Aggregation	without	 GROUP	BY 	for	an	empty	set	(such	as	 SELECT	count(*)	FROM	table	WHERE	0 )	now	returns	a

result	with	one	row	with	null	values	for	aggregate	functions,	in	compliance	with	the	SQL	standard.	To	restore	the	old

behavior	(return	an	empty	result),	set	 empty_result_for_aggregation_by_empty_set 	to	1.

Added	type	conversion	for	 UNION	ALL .	Different	alias	names	are	allowed	in	SELECT 	positions	in	 UNION	ALL ,	in

compliance	with	the	SQL	standard.

Arbitrary	expressions	are	supported	in	 LIMIT	BY 	clauses.	Previously,	it	was	only	possible	to	use	columns	resulting

from	 SELECT .

An	index	of	 MergeTree 	tables	is	used	when	 IN 	is	applied	to	a	tuple	of	expressions	from	the	columns	of	the	primary

key.	Example:	 WHERE	(UserID,	EventDate)	IN	((123,	'2000-01-01'),	...) 	(Anastasiya	Tsarkova).

Added	the	 clickhouse-copier 	tool	for	copying	between	clusters	and	resharding	data	(beta).

Added	consistent	hashing	functions:	 yandexConsistentHash ,	 jumpConsistentHash ,	 sumburConsistentHash .	They

can	be	used	as	a	sharding	key	in	order	to	reduce	the	amount	of	network	traffic	during	subsequent	reshardings.

Added	functions:	 arrayAny ,	 arrayAll ,	 hasAny ,	 hasAll ,	 arrayIntersect ,	 arrayResize .

Added	the	 arrayCumSum 	function	(Javi	Santana).

Added	the	 parseDateTimeBestEffort ,	 parseDateTimeBestEffortOrZero ,	and	 parseDateTimeBestEffortOrNull

functions	to	read	the	DateTime	from	a	string	containing	text	in	a	wide	variety	of	possible	formats.

Data	can	be	partially	reloaded	from	external	dictionaries	during	updating	(load	just	the	records	in	which	the	value	of

the	specified	field	greater	than	in	the	previous	download)	(Arsen	Hakobyan).

Added	the	 cluster 	table	function.	Example:	 cluster(cluster_name,	db,	table) .	The	 remote 	table	function	can

accept	the	cluster	name	as	the	first	argument,	if	it	is	specified	as	an	identifier.

The	 remote 	and	 cluster 	table	functions	can	be	used	in	 INSERT 	requests.

Added	the	 create_table_query 	and	 engine_full 	virtual	columns	to	the	 system.tables table	.	The	

metadata_modification_time 	column	is	virtual.

Added	the	 data_path 	and	 metadata_path 	columns	to	 system.tables and system.databases 	tables,	and	added	the	

path 	column	to	the	 system.parts 	and	 system.parts_columns 	tables.

Added	additional	information	about	merges	in	the	 system.part_log 	table.

An	arbitrary	partitioning	key	can	be	used	for	the	 system.query_log 	table	(Kirill	Shvakov).

The	 SHOW	TABLES 	query	now	also	shows	temporary	tables.	Added	temporary	tables	and	the	 is_temporary 	column	to

system.tables 	(zhang2014).

Added	 DROP	TEMPORARY	TABLE 	and	 EXISTS	TEMPORARY	TABLE 	queries	(zhang2014).

Support	for	 SHOW	CREATE	TABLE 	for	temporary	tables	(zhang2014).

Added	the	 system_profile 	configuration	parameter	for	the	settings	used	by	internal	processes.

Support	for	loading	 object_id 	as	an	attribute	in	 MongoDB 	dictionaries	(Pavel	Litvinenko).

Reading	 null 	as	the	default	value	when	loading	data	for	an	external	dictionary	with	the	MongoDB 	source	(Pavel

Litvinenko).

Reading	 DateTime 	values	in	the	 Values 	format	from	a	Unix	timestamp	without	single	quotes.

Failover	is	supported	in	 remote 	table	functions	for	cases	when	some	of	the	replicas	are	missing	the	requested	table.

Configuration	settings	can	be	overridden	in	the	command	line	when	you	run	clickhouse-server .	Example:	

clickhouse-server	--	--logger.level=information .

Implemented	the	 empty 	function	from	a	 FixedString 	argument:	the	function	returns	1	if	the	string	consists	entirely

of	null	bytes	(zhang2014).

Added	the	 listen_try configuration	parameter	for	listening	to	at	least	one	of	the	listen	addresses	without	quitting,	if

some	of	the	addresses	can't	be	listened	to	(useful	for	systems	with	disabled	support	for	IPv4	or	IPv6).

Added	the	 VersionedCollapsingMergeTree 	table	engine.



Support	for	rows	and	arbitrary	numeric	types	for	the	 library 	dictionary	source.

MergeTree 	tables	can	be	used	without	a	primary	key	(you	need	to	specify	ORDER	BY	tuple() ).

A	 Nullable 	type	can	be	 CAST 	to	a	non- Nullable 	type	if	the	argument	is	not	 NULL .

RENAME	TABLE 	can	be	performed	for	 VIEW .

Added	the	 throwIf 	function.

Added	the	 odbc_default_field_size 	option,	which	allows	you	to	extend	the	maximum	size	of	the	value	loaded	from

an	ODBC	source	(by	default,	it	is	1024).

The	 system.processes 	table	and	 SHOW	PROCESSLIST 	now	have	the	 is_cancelled 	and	 peak_memory_usage

columns.

Improvements:

Limits	and	quotas	on	the	result	are	no	longer	applied	to	intermediate	data	for	 INSERT	SELECT 	queries	or	for	 SELECT

subqueries.

Fewer	false	triggers	of	 force_restore_data 	when	checking	the	status	of	 Replicated 	tables	when	the	server	starts.

Added	the	 allow_distributed_ddl 	option.

Nondeterministic	functions	are	not	allowed	in	expressions	for	MergeTree 	table	keys.

Files	with	substitutions	from	 config.d 	directories	are	loaded	in	alphabetical	order.

Improved	performance	of	the	arrayElement 	function	in	the	case	of	a	constant	multidimensional	array	with	an	empty

array	as	one	of	the	elements.	Example:	 [[1],	[]][x] .

The	server	starts	faster	now	when	using	configuration	files	with	very	large	substitutions	(for	instance,	very	large	lists

of	IP	networks).

When	running	a	query,	table	valued	functions	run	once.	Previously,	remote 	and	 mysql 	table	valued	functions

performed	the	same	query	twice	to	retrieve	the	table	structure	from	a	remote	server.

The	 MkDocs 	documentation	generator	is	used.

When	you	try	to	delete	a	table	column	that	DEFAULT / MATERIALIZED 	expressions	of	other	columns	depend	on,	an

exception	is	thrown	(zhang2014).

Added	the	ability	to	parse	an	empty	line	in	text	formats	as	the	number	0	for	Float 	data	types.	This	feature	was

previously	available	but	was	lost	in	release	1.1.54342.

Enum 	values	can	be	used	in	 min ,	 max ,	 sum 	and	some	other	functions.	In	these	cases,	it	uses	the	corresponding

numeric	values.	This	feature	was	previously	available	but	was	lost	in	the	release	1.1.54337.

Added	 max_expanded_ast_elements 	to	restrict	the	size	of	the	AST	after	recursively	expanding	aliases.

Bug	fixes:

Fixed	cases	when	unnecessary	columns	were	removed	from	subqueries	in	error,	or	not	removed	from	subqueries

containing	 UNION	ALL .

Fixed	a	bug	in	merges	for	ReplacingMergeTree 	tables.

Fixed	synchronous	insertions	in	 Distributed 	tables	( insert_distributed_sync	=	1 ).

Fixed	segfault	for	certain	uses	of	 FULL 	and	 RIGHT	JOIN 	with	duplicate	columns	in	subqueries.

Fixed	segfault	for	certain	uses	of	 replace_running_query 	and	 KILL	QUERY .

Fixed	the	order	of	the	 source 	and	 last_exception 	columns	in	the	 system.dictionaries 	table.

Fixed	a	bug	when	the	 DROP	DATABASE 	query	did	not	delete	the	file	with	metadata.

Fixed	the	 DROP	DATABASE 	query	for	 Dictionary 	databases.

Fixed	the	low	precision	of	 uniqHLL12 	and	 uniqCombined 	functions	for	cardinalities	greater	than	100	million	items

(Alex	Bocharov).



Fixed	the	calculation	of	implicit	default	values	when	necessary	to	simultaneously	calculate	default	explicit	expressions

in	 INSERT 	queries	(zhang2014).

Fixed	a	rare	case	when	a	query	to	a	MergeTree 	table	couldn't	finish	(chenxing-xc).

Fixed	a	crash	that	occurred	when	running	a	CHECK 	query	for	 Distributed 	tables	if	all	shards	are	local	(chenxing.xc).

Fixed	a	slight	performance	regression	with	functions	that	use	regular	expressions.

Fixed	a	performance	regression	when	creating	multidimensional	arrays	from	complex	expressions.

Fixed	a	bug	that	could	cause	an	extra	FORMAT 	section	to	appear	in	an	 .sql 	file	with	metadata.

Fixed	a	bug	that	caused	the	 max_table_size_to_drop 	limit	to	apply	when	trying	to	delete	a	MATERIALIZED	VIEW

looking	at	an	explicitly	specified	table.

Fixed	incompatibility	with	old	clients	(old	clients	were	sometimes	sent	data	with	the	 DateTime('timezone') 	type,

which	they	do	not	understand).

Fixed	a	bug	when	reading	 Nested 	column	elements	of	structures	that	were	added	using	 ALTER 	but	that	are	empty	for

the	old	partitions,	when	the	conditions	for	these	columns	moved	to	 PREWHERE .

Fixed	a	bug	when	filtering	tables	by	virtual	_table 	columns	in	queries	to	 Merge 	tables.

Fixed	a	bug	when	using	 ALIAS 	columns	in	 Distributed 	tables.

Fixed	a	bug	that	made	dynamic	compilation	impossible	for	queries	with	aggregate	functions	from	the	quantile

family.

Fixed	a	race	condition	in	the	query	execution	pipeline	that	occurred	in	very	rare	cases	when	using	Merge 	tables	with	a

large	number	of	tables,	and	when	using	 GLOBAL 	subqueries.

Fixed	a	crash	when	passing	arrays	of	different	sizes	to	an	arrayReduce 	function	when	using	aggregate	functions

from	multiple	arguments.

Prohibited	the	use	of	queries	with	 UNION	ALL 	in	a	 MATERIALIZED	VIEW .

Fixed	an	error	during	initialization	of	the	 part_log 	system	table	when	the	server	starts	(by	default,	 part_log 	is

disabled).

Backward	incompatible	changes:

Removed	the	 distributed_ddl_allow_replicated_alter 	option.	This	behavior	is	enabled	by	default.

Removed	the	 strict_insert_defaults 	setting.	If	you	were	using	this	functionality,	write	to	 clickhouse-

feedback@yandex-team.com .

Removed	the	 UnsortedMergeTree 	engine.

Clickhouse	Release	1.1.54343,	2018-02-05

Added	macros	support	for	defining	cluster	names	in	distributed	DDL	queries	and	constructors	of	Distributed	tables:	

CREATE	TABLE	distr	ON	CLUSTER	'{cluster}'	(...)	ENGINE	=	Distributed('{cluster}',	'db',	'table') .

Now	queries	like	 SELECT	...	FROM	table	WHERE	expr	IN	(subquery) 	are	processed	using	the	 table 	index.

Improved	processing	of	duplicates	when	inserting	to	Replicated	tables,	so	they	no	longer	slow	down	execution	of	the

replication	queue.

Clickhouse	Release	1.1.54342,	2018-01-22

This	release	contains	bug	fixes	for	the	previous	release	1.1.54337:

Fixed	a	regression	in	1.1.54337:	if	the	default	user	has	readonly	access,	then	the	server	refuses	to	start	up	with	the

message	 Cannot	create	database	in	readonly	mode .

Fixed	a	regression	in	1.1.54337:	on	systems	with	systemd,	logs	are	always	written	to	syslog	regardless	of	the

configuration;	the	watchdog	script	still	uses	init.d.



Fixed	a	regression	in	1.1.54337:	wrong	default	configuration	in	the	Docker	image.

Fixed	nondeterministic	behavior	of	GraphiteMergeTree	(you	can	see	it	in	log	messages	Data	after	merge	is	not	

byte-identical	to	the	data	on	another	replicas ).

Fixed	a	bug	that	may	lead	to	inconsistent	merges	after	OPTIMIZE	query	to	Replicated	tables	(you	may	see	it	in	log

messages	 Part	...	intersects	the	previous	part ).

Buffer	tables	now	work	correctly	when	MATERIALIZED	columns	are	present	in	the	destination	table	(by	zhang2014).

Fixed	a	bug	in	implementation	of	NULL.

Clickhouse	Release	1.1.54337,	2018-01-18

New	features:

Added	support	for	storage	of	multi-dimensional	arrays	and	tuples	( Tuple 	data	type)	in	tables.

Support	for	table	functions	for	 DESCRIBE 	and	 INSERT 	queries.	Added	support	for	subqueries	in	 DESCRIBE .	Examples:	

DESC	TABLE	remote('host',	default.hits) ;	 DESC	TABLE	(SELECT	1) ;	 INSERT	INTO	TABLE	FUNCTION	

remote('host',	default.hits) .	Support	for	 INSERT	INTO	TABLE 	in	addition	to	INSERT	INTO .

Improved	support	for	time	zones.	The	 DateTime 	data	type	can	be	annotated	with	the	timezone	that	is	used	for

parsing	and	formatting	in	text	formats.	Example:	 DateTime('Europe/Moscow') .	When	timezones	are	specified	in

functions	for	 DateTime 	arguments,	the	return	type	will	track	the	timezone,	and	the	value	will	be	displayed	as

expected.

Added	the	functions	 toTimeZone ,	 timeDiff ,	 toQuarter ,	 toRelativeQuarterNum .	The	

toRelativeHour / Minute / Second 	functions	can	take	a	value	of	type	 Date 	as	an	argument.	The	 now 	function	name

is	case-sensitive.

Added	the	 toStartOfFifteenMinutes 	function	(Kirill	Shvakov).

Added	the	 clickhouse	format 	tool	for	formatting	queries.

Added	the	 format_schema_path 	configuration	parameter	(Marek	Vavruşa).	It	is	used	for	specifying	a	schema	in	 Cap'n	

Proto 	format.	Schema	files	can	be	located	only	in	the	specified	directory.

Added	support	for	config	substitutions	( incl 	and	 conf.d )	for	configuration	of	external	dictionaries	and	models

(Pavel	Yakunin).

Added	a	column	with	documentation	for	the	 system.settings 	table	(Kirill	Shvakov).

Added	the	 system.parts_columns 	table	with	information	about	column	sizes	in	each	data	part	of	 MergeTree 	tables.

Added	the	 system.models 	table	with	information	about	loaded	 CatBoost 	machine	learning	models.

Added	the	 mysql 	and	 odbc 	table	function	and	corresponding	 MySQL 	and	 ODBC 	table	engines	for	accessing	remote

databases.	This	functionality	is	in	the	beta	stage.

Added	the	possibility	to	pass	an	argument	of	type	 AggregateFunction 	for	the	 groupArray 	aggregate	function	(so

you	can	create	an	array	of	states	of	some	aggregate	function).

Removed	restrictions	on	various	combinations	of	aggregate	function	combinators.	For	example,	you	can	use	

avgForEachIf 	as	well	as	 avgIfForEach 	aggregate	functions,	which	have	different	behaviors.

The	 -ForEach 	aggregate	function	combinator	is	extended	for	the	case	of	aggregate	functions	of	multiple	arguments.

Added	support	for	aggregate	functions	of	 Nullable 	arguments	even	for	cases	when	the	function	returns	a

non- Nullable 	result	(added	with	the	contribution	of	Silviu	Caragea).	Example:	 groupArray ,	 groupUniqArray ,	 topK .

Added	the	 max_client_network_bandwidth 	for	 clickhouse-client 	(Kirill	Shvakov).

Users	with	the	 readonly	=	2 	setting	are	allowed	to	work	with	TEMPORARY	tables	(CREATE,	DROP,	INSERT...)	(Kirill

Shvakov).

Added	support	for	using	multiple	consumers	with	the	 Kafka 	engine.	Extended	configuration	options	for	 Kafka

(Marek	Vavruša).



Added	the	 intExp3 	and	 intExp4 	functions.

Added	the	 sumKahan 	aggregate	function.

Added	the	to	*	Number	OrNull	functions,	where	*	Number	is	a	numeric	type.

Added	support	for	 WITH 	clauses	for	an	 INSERT	SELECT 	query	(author:	zhang2014).

Added	settings:	 http_connection_timeout ,	 http_send_timeout ,	 http_receive_timeout .	In	particular,	these

settings	are	used	for	downloading	data	parts	for	replication.	Changing	these	settings	allows	for	faster	failover	if	the

network	is	overloaded.

Added	support	for	 ALTER 	for	tables	of	type	 Null 	(Anastasiya	Tsarkova).

The	 reinterpretAsString 	function	is	extended	for	all	data	types	that	are	stored	contiguously	in	memory.

Added	the	 --silent 	option	for	the	 clickhouse-local 	tool.	It	suppresses	printing	query	execution	info	in	stderr.

Added	support	for	reading	values	of	type	 Date 	from	text	in	a	format	where	the	month	and/or	day	of	the	month	is

specified	using	a	single	digit	instead	of	two	digits	(Amos	Bird).

Performance	optimizations:

Improved	performance	of	aggregate	functions	min ,	 max ,	 any ,	 anyLast ,	 anyHeavy ,	 argMin ,	 argMax 	from	string

arguments.

Improved	performance	of	the	functions	isInfinite ,	 isFinite ,	 isNaN ,	 roundToExp2 .

Improved	performance	of	parsing	and	formatting	 Date 	and	 DateTime 	type	values	in	text	format.

Improved	performance	and	precision	of	parsing	floating	point	numbers.

Lowered	memory	usage	for	 JOIN 	in	the	case	when	the	left	and	right	parts	have	columns	with	identical	names	that	are

not	contained	in	 USING 	.

Improved	performance	of	aggregate	functions	varSamp ,	 varPop ,	 stddevSamp ,	 stddevPop ,	 covarSamp ,	 covarPop ,	

corr 	by	reducing	computational	stability.	The	old	functions	are	available	under	the	names	varSampStable ,	

varPopStable ,	 stddevSampStable ,	 stddevPopStable ,	 covarSampStable ,	 covarPopStable ,	 corrStable .

Bug	fixes:

Fixed	data	deduplication	after	running	a	 DROP 	or	 DETACH	PARTITION 	query.	In	the	previous	version,	dropping	a

partition	and	inserting	the	same	data	again	was	not	working	because	inserted	blocks	were	considered	duplicates.

Fixed	a	bug	that	could	lead	to	incorrect	interpretation	of	the	WHERE 	clause	for	 CREATE	MATERIALIZED	VIEW 	queries

with	 POPULATE 	.

Fixed	a	bug	in	using	the	 root_path 	parameter	in	the	 zookeeper_servers 	configuration.

Fixed	unexpected	results	of	passing	the	Date 	argument	to	 toStartOfDay 	.

Fixed	the	 addMonths 	and	 subtractMonths 	functions	and	the	arithmetic	for	 INTERVAL	n	MONTH 	in	cases	when	the

result	has	the	previous	year.

Added	missing	support	for	the	 UUID 	data	type	for	 DISTINCT 	,	 JOIN 	,	and	 uniq 	aggregate	functions	and	external

dictionaries	(Evgeniy	Ivanov).	Support	for	 UUID 	is	still	incomplete.

Fixed	 SummingMergeTree 	behavior	in	cases	when	the	rows	summed	to	zero.

Various	fixes	for	the	 Kafka 	engine	(Marek	Vavruša).

Fixed	incorrect	behavior	of	the	Join 	table	engine	(Amos	Bird).

Fixed	incorrect	allocator	behavior	under	FreeBSD	and	OS	X.

The	 extractAll 	function	now	supports	empty	matches.

Fixed	an	error	that	blocked	usage	of	 libressl 	instead	of	 openssl 	.

Fixed	the	 CREATE	TABLE	AS	SELECT 	query	from	temporary	tables.

Fixed	non-atomicity	of	updating	the	replication	queue.	This	could	lead	to	replicas	being	out	of	sync	until	the	server



restarts.

Fixed	possible	overflow	in	 gcd 	,	 lcm 	and	 modulo 	( % 	operator)	(Maks	Skorokhod).

-preprocessed 	files	are	now	created	after	changing	 umask 	( umask 	can	be	changed	in	the	config).

Fixed	a	bug	in	the	background	check	of	parts	(MergeTreePartChecker 	)	when	using	a	custom	partition	key.

Fixed	parsing	of	tuples	(values	of	the	Tuple 	data	type)	in	text	formats.

Improved	error	messages	about	incompatible	types	passed	to	multiIf 	,	 array 	and	some	other	functions.

Redesigned	support	for	 Nullable 	types.	Fixed	bugs	that	may	lead	to	a	server	crash.	Fixed	almost	all	other	bugs

related	to	 NULL 	support:	incorrect	type	conversions	in	INSERT	SELECT,	insufficient	support	for	Nullable	in	HAVING

and	PREWHERE,	 join_use_nulls 	mode,	Nullable	types	as	arguments	of	 OR 	operator,	etc.

Fixed	various	bugs	related	to	internal	semantics	of	data	types.	Examples:	unnecessary	summing	of	Enum 	type	fields	in

SummingMergeTree 	;	alignment	of	 Enum 	types	in	 Pretty 	formats,	etc.

Stricter	checks	for	allowed	combinations	of	composite	columns.

Fixed	the	overflow	when	specifying	a	very	large	parameter	for	the	FixedString 	data	type.

Fixed	a	bug	in	the	 topK 	aggregate	function	in	a	generic	case.

Added	the	missing	check	for	equality	of	array	sizes	in	arguments	of	n-ary	variants	of	aggregate	functions	with	an	-

Array 	combinator.

Fixed	a	bug	in	 --pager 	for	 clickhouse-client 	(author:	ks1322).

Fixed	the	precision	of	the	exp10 	function.

Fixed	the	behavior	of	the	visitParamExtract 	function	for	better	compliance	with	documentation.

Fixed	the	crash	when	incorrect	data	types	are	specified.

Fixed	the	behavior	of	DISTINCT 	in	the	case	when	all	columns	are	constants.

Fixed	query	formatting	in	the	case	of	using	the	tupleElement 	function	with	a	complex	constant	expression	as	the

tuple	element	index.

Fixed	a	bug	in	 Dictionary 	tables	for	 range_hashed 	dictionaries.

Fixed	a	bug	that	leads	to	excessive	rows	in	the	result	of	FULL 	and	 RIGHT	JOIN 	(Amos	Bird).

Fixed	a	server	crash	when	creating	and	removing	temporary	files	in	config.d 	directories	during	config	reload.

Fixed	the	 SYSTEM	DROP	DNS	CACHE 	query:	the	cache	was	flushed	but	addresses	of	cluster	nodes	were	not	updated.

Fixed	the	behavior	of	MATERIALIZED	VIEW 	after	executing	 DETACH	TABLE 	for	the	table	under	the	view	(Marek

Vavruša).

Build	improvements:

The	 pbuilder 	tool	is	used	for	builds.	The	build	process	is	almost	completely	independent	of	the	build	host

environment.

A	single	build	is	used	for	different	OS	versions.	Packages	and	binaries	have	been	made	compatible	with	a	wide	range

of	Linux	systems.

Added	the	 clickhouse-test 	package.	It	can	be	used	to	run	functional	tests.

The	source	tarball	can	now	be	published	to	the	repository.	It	can	be	used	to	reproduce	the	build	without	using	GitHub.

Added	limited	integration	with	Travis	CI.	Due	to	limits	on	build	time	in	Travis,	only	the	debug	build	is	tested	and	a

limited	subset	of	tests	are	run.

Added	support	for	 Cap'n'Proto 	in	the	default	build.

Changed	the	format	of	documentation	sources	from	 Restricted	Text 	to	 Markdown .

Added	support	for	 systemd 	(Vladimir	Smirnov).	It	is	disabled	by	default	due	to	incompatibility	with	some	OS	images

and	can	be	enabled	manually.



For	dynamic	code	generation,	 clang 	and	 lld 	are	embedded	into	the	 clickhouse 	binary.	They	can	also	be	invoked

as	 clickhouse	clang 	and	 clickhouse	lld 	.

Removed	usage	of	GNU	extensions	from	the	code.	Enabled	the	-Wextra 	option.	When	building	with	 clang 	the

default	is	 libc++ 	instead	of	 libstdc++ .

Extracted	 clickhouse_parsers 	and	 clickhouse_common_io 	libraries	to	speed	up	builds	of	various	tools.

Backward	incompatible	changes:

The	format	for	marks	in	 Log 	type	tables	that	contain	 Nullable 	columns	was	changed	in	a	backward	incompatible

way.	If	you	have	these	tables,	you	should	convert	them	to	the	 TinyLog 	type	before	starting	up	the	new	server	version.

To	do	this,	replace	 ENGINE	=	Log 	with	 ENGINE	=	TinyLog 	in	the	corresponding	 .sql 	file	in	the	 metadata 	directory.

If	your	table	doesn't	have	 Nullable 	columns	or	if	the	type	of	your	table	is	not	 Log ,	then	you	don't	need	to	do

anything.

Removed	the	 experimental_allow_extended_storage_definition_syntax 	setting.	Now	this	feature	is	enabled	by

default.

The	 runningIncome 	function	was	renamed	to	 runningDifferenceStartingWithFirstvalue 	to	avoid	confusion.

Removed	the	 FROM	ARRAY	JOIN	arr 	syntax	when	ARRAY	JOIN	is	specified	directly	after	FROM	with	no	table	(Amos

Bird).

Removed	the	 BlockTabSeparated 	format	that	was	used	solely	for	demonstration	purposes.

Changed	the	state	format	for	aggregate	functions	varSamp ,	 varPop ,	 stddevSamp ,	 stddevPop ,	 covarSamp ,	

covarPop ,	 corr .	If	you	have	stored	states	of	these	aggregate	functions	in	tables	(using	the	 AggregateFunction 	data

type	or	materialized	views	with	corresponding	states),	please	write	to	clickhouse-feedback@yandex-team.com.

In	previous	server	versions	there	was	an	undocumented	feature:	if	an	aggregate	function	depends	on	parameters,	you

can	still	specify	it	without	parameters	in	the	AggregateFunction	data	type.	Example:	 AggregateFunction(quantiles,	

UInt64) 	instead	of	 AggregateFunction(quantiles(0.5,	0.9),	UInt64) .	This	feature	was	lost.	Although	it	was

undocumented,	we	plan	to	support	it	again	in	future	releases.

Enum	data	types	cannot	be	used	in	min/max	aggregate	functions.	This	ability	will	be	returned	in	the	next	release.

Please	note	when	upgrading:

When	doing	a	rolling	update	on	a	cluster,	at	the	point	when	some	of	the	replicas	are	running	the	old	version	of

ClickHouse	and	some	are	running	the	new	version,	replication	is	temporarily	stopped	and	the	message	 unknown	

parameter	'shard' 	appears	in	the	log.	Replication	will	continue	after	all	replicas	of	the	cluster	are	updated.

If	different	versions	of	ClickHouse	are	running	on	the	cluster	servers,	it	is	possible	that	distributed	queries	using	the

following	functions	will	have	incorrect	results:	 varSamp ,	 varPop ,	 stddevSamp ,	 stddevPop ,	 covarSamp ,	 covarPop ,	

corr .	You	should	update	all	cluster	nodes.

ClickHouse	release	1.1.54327,	2017-12-21

This	release	contains	bug	fixes	for	the	previous	release	1.1.54318:

Fixed	bug	with	possible	race	condition	in	replication	that	could	lead	to	data	loss.	This	issue	affects	versions	1.1.54310

and	1.1.54318.	If	you	use	one	of	these	versions	with	Replicated	tables,	the	update	is	strongly	recommended.	This	issue

shows	in	logs	in	Warning	messages	like	 Part	...	from	own	log	doesn't	exist. 	The	issue	is	relevant	even	if	you

don't	see	these	messages	in	logs.

ClickHouse	release	1.1.54318,	2017-11-30

This	release	contains	bug	fixes	for	the	previous	release	1.1.54310:

Fixed	incorrect	row	deletions	during	merges	in	the	SummingMergeTree	engine



Fixed	a	memory	leak	in	unreplicated	MergeTree	engines

Fixed	performance	degradation	with	frequent	inserts	in	MergeTree	engines

Fixed	an	issue	that	was	causing	the	replication	queue	to	stop	running

Fixed	rotation	and	archiving	of	server	logs

ClickHouse	release	1.1.54310,	2017-11-01

New	features:

Custom	partitioning	key	for	the	MergeTree	family	of	table	engines.

Kafka	[https://clickhouse.yandex/docs/en/single/index.html#document-table_engines/kafka]	table	engine.

Added	support	for	loading	CatBoost	[https://catboost.yandex/]	models	and	applying	them	to	data	stored	in

ClickHouse.

Added	support	for	time	zones	with	non-integer	offsets	from	UTC.

Added	support	for	arithmetic	operations	with	time	intervals.

The	range	of	values	for	the	Date	and	DateTime	types	is	extended	to	the	year	2105.

Added	the	 CREATE	MATERIALIZED	VIEW	x	TO	y 	query	(specifies	an	existing	table	for	storing	the	data	of	a	materialized

view).

Added	the	 ATTACH	TABLE 	query	without	arguments.

The	processing	logic	for	Nested	columns	with	names	ending	in	-Map	in	a	SummingMergeTree	table	was	extracted	to

the	sumMap	aggregate	function.	You	can	now	specify	such	columns	explicitly.

Max	size	of	the	IP	trie	dictionary	is	increased	to	128M	entries.

Added	the	getSizeOfEnumType	function.

Added	the	sumWithOverflow	aggregate	function.

Added	support	for	the	Cap'n	Proto	input	format.

You	can	now	customize	compression	level	when	using	the	zstd	algorithm.

Backward	incompatible	changes:

Creation	of	temporary	tables	with	an	engine	other	than	Memory	is	not	allowed.

Explicit	creation	of	tables	with	the	View	or	MaterializedView	engine	is	not	allowed.

During	table	creation,	a	new	check	verifies	that	the	sampling	key	expression	is	included	in	the	primary	key.

Bug	fixes:

Fixed	hangups	when	synchronously	inserting	into	a	Distributed	table.

Fixed	nonatomic	adding	and	removing	of	parts	in	Replicated	tables.

Data	inserted	into	a	materialized	view	is	not	subjected	to	unnecessary	deduplication.

Executing	a	query	to	a	Distributed	table	for	which	the	local	replica	is	lagging	and	remote	replicas	are	unavailable	does

not	result	in	an	error	anymore.

Users	don't	need	access	permissions	to	the	 default 	database	to	create	temporary	tables	anymore.

Fixed	crashing	when	specifying	the	Array	type	without	arguments.

Fixed	hangups	when	the	disk	volume	containing	server	logs	is	full.

Fixed	an	overflow	in	the	toRelativeWeekNum	function	for	the	first	week	of	the	Unix	epoch.

Build	improvements:

https://clickhouse.yandex/docs/en/single/index.html#document-table_engines/kafka
https://catboost.yandex/


Several	third-party	libraries	(notably	Poco)	were	updated	and	converted	to	git	submodules.

ClickHouse	release	1.1.54304,	2017-10-19

New	features:

TLS	support	in	the	native	protocol	(to	enable,	set	 tcp_ssl_port 	in	 config.xml 	).

Bug	fixes:

ALTER 	for	replicated	tables	now	tries	to	start	running	as	soon	as	possible.

Fixed	crashing	when	reading	data	with	the	setting	 preferred_block_size_bytes=0.

Fixed	crashes	of	 clickhouse-client 	when	pressing	 Page	Down

Correct	interpretation	of	certain	complex	queries	with	GLOBAL	IN 	and	 UNION	ALL

FREEZE	PARTITION 	always	works	atomically	now.

Empty	POST	requests	now	return	a	response	with	code	411.

Fixed	interpretation	errors	for	expressions	like	 CAST(1	AS	Nullable(UInt8)).

Fixed	an	error	when	reading	 Array(Nullable(String)) 	columns	from	 MergeTree 	tables.

Fixed	crashing	when	parsing	queries	like	 SELECT	dummy	AS	dummy,	dummy	AS	b

Users	are	updated	correctly	with	invalid	 users.xml

Correct	handling	when	an	executable	dictionary	returns	a	non-zero	response	code.

ClickHouse	release	1.1.54292,	2017-09-20

New	features:

Added	the	 pointInPolygon 	function	for	working	with	coordinates	on	a	coordinate	plane.

Added	the	 sumMap 	aggregate	function	for	calculating	the	sum	of	arrays,	similar	to	 SummingMergeTree .

Added	the	 trunc 	function.	Improved	performance	of	the	rounding	functions	(round ,	 floor ,	 ceil ,	 roundToExp2 )

and	corrected	the	logic	of	how	they	work.	Changed	the	logic	of	the	 roundToExp2 	function	for	fractions	and	negative

numbers.

The	ClickHouse	executable	file	is	now	less	dependent	on	the	libc	version.	The	same	ClickHouse	executable	file	can	run

on	a	wide	variety	of	Linux	systems.	There	is	still	a	dependency	when	using	compiled	queries	(with	the	setting	 compile	

=	1 	,	which	is	not	used	by	default).

Reduced	the	time	needed	for	dynamic	compilation	of	queries.

Bug	fixes:

Fixed	an	error	that	sometimes	produced	 part	...	intersects	previous	part 	messages	and	weakened	replica

consistency.

Fixed	an	error	that	caused	the	server	to	lock	up	if	ZooKeeper	was	unavailable	during	shutdown.

Removed	excessive	logging	when	restoring	replicas.

Fixed	an	error	in	the	UNION	ALL	implementation.

Fixed	an	error	in	the	concat	function	that	occurred	if	the	first	column	in	a	block	has	the	Array	type.

Progress	is	now	displayed	correctly	in	the	system.merges	table.

ClickHouse	release	1.1.54289,	2017-09-13

New	features:



SYSTEM 	queries	for	server	administration:	 SYSTEM	RELOAD	DICTIONARY ,	 SYSTEM	RELOAD	DICTIONARIES ,	 SYSTEM	DROP	

DNS	CACHE ,	 SYSTEM	SHUTDOWN ,	 SYSTEM	KILL .

Added	functions	for	working	with	arrays:	 concat ,	 arraySlice ,	 arrayPushBack ,	 arrayPushFront ,	 arrayPopBack ,	

arrayPopFront .

Added	 root 	and	 identity 	parameters	for	the	ZooKeeper	configuration.	This	allows	you	to	isolate	individual	users	on

the	same	ZooKeeper	cluster.

Added	aggregate	functions	 groupBitAnd ,	 groupBitOr ,	and	 groupBitXor 	(for	compatibility,	they	are	also	available

under	the	names	 BIT_AND ,	 BIT_OR ,	and	 BIT_XOR ).

External	dictionaries	can	be	loaded	from	MySQL	by	specifying	a	socket	in	the	filesystem.

External	dictionaries	can	be	loaded	from	MySQL	over	SSL	( ssl_cert ,	 ssl_key ,	 ssl_ca 	parameters).

Added	the	 max_network_bandwidth_for_user 	setting	to	restrict	the	overall	bandwidth	use	for	queries	per	user.

Support	for	 DROP	TABLE 	for	temporary	tables.

Support	for	reading	 DateTime 	values	in	Unix	timestamp	format	from	the	 CSV 	and	 JSONEachRow 	formats.

Lagging	replicas	in	distributed	queries	are	now	excluded	by	default	(the	default	threshold	is	5	minutes).

FIFO	locking	is	used	during	ALTER:	an	ALTER	query	isn't	blocked	indefinitely	for	continuously	running	queries.

Option	to	set	 umask 	in	the	config	file.

Improved	performance	for	queries	with	 DISTINCT 	.

Bug	fixes:

Improved	the	process	for	deleting	old	nodes	in	ZooKeeper.	Previously,	old	nodes	sometimes	didn't	get	deleted	if	there

were	very	frequent	inserts,	which	caused	the	server	to	be	slow	to	shut	down,	among	other	things.

Fixed	randomization	when	choosing	hosts	for	the	connection	to	ZooKeeper.

Fixed	the	exclusion	of	lagging	replicas	in	distributed	queries	if	the	replica	is	localhost.

Fixed	an	error	where	a	data	part	in	a	ReplicatedMergeTree 	table	could	be	broken	after	running	 ALTER	MODIFY 	on	an

element	in	a	 Nested 	structure.

Fixed	an	error	that	could	cause	SELECT	queries	to	"hang".

Improvements	to	distributed	DDL	queries.

Fixed	the	query	 CREATE	TABLE	...	AS	<materialized	view> .

Resolved	the	deadlock	in	the	 ALTER	...	CLEAR	COLUMN	IN	PARTITION 	query	for	 Buffer 	tables.

Fixed	the	invalid	default	value	for	Enum 	s	(0	instead	of	the	minimum)	when	using	the	JSONEachRow 	and	 TSKV 	formats.

Resolved	the	appearance	of	zombie	processes	when	using	a	dictionary	with	an	 executable 	source.

Fixed	segfault	for	the	HEAD	query.

Improved	workflow	for	developing	and	assembling	ClickHouse:

You	can	use	 pbuilder 	to	build	ClickHouse.

You	can	use	 libc++ 	instead	of	 libstdc++ 	for	builds	on	Linux.

Added	instructions	for	using	static	code	analysis	tools:	 Coverage ,	 clang-tidy ,	 cppcheck .

Please	note	when	upgrading:

There	is	now	a	higher	default	value	for	the	MergeTree	setting	max_bytes_to_merge_at_max_space_in_pool 	(the

maximum	total	size	of	data	parts	to	merge,	in	bytes):	it	has	increased	from	100	GiB	to	150	GiB.	This	might	result	in

large	merges	running	after	the	server	upgrade,	which	could	cause	an	increased	load	on	the	disk	subsystem.	If	the	free

space	available	on	the	server	is	less	than	twice	the	total	amount	of	the	merges	that	are	running,	this	will	cause	all	other

merges	to	stop	running,	including	merges	of	small	data	parts.	As	a	result,	INSERT	requests	will	fail	with	the	message



"Merges	are	processing	significantly	slower	than	inserts."	Use	the	 SELECT	*	FROM	system.merges 	request	to	monitor

the	situation.	You	can	also	check	the	 DiskSpaceReservedForMerge 	metric	in	the	 system.metrics 	table,	or	in	Graphite.

You	don't	need	to	do	anything	to	fix	this,	since	the	issue	will	resolve	itself	once	the	large	merges	finish.	If	you	find	this

unacceptable,	you	can	restore	the	previous	value	for	the	 max_bytes_to_merge_at_max_space_in_pool 	setting.	To	do

this,	go	to	the	section	in	config.xml,	set	

<merge_tree>``<max_bytes_to_merge_at_max_space_in_pool>107374182400</max_bytes_to_merge_at_max_space_in_p

ool> 	and	restart	the	server.

ClickHouse	release	1.1.54284,	2017-08-29

This	is	a	bugfix	release	for	the	previous	1.1.54282	release.	It	fixes	leaks	in	the	parts	directory	in	ZooKeeper.

ClickHouse	release	1.1.54282,	2017-08-23

This	release	contains	bug	fixes	for	the	previous	release	1.1.54276:

Fixed	 DB::Exception:	Assertion	violation:	!_path.empty() 	when	inserting	into	a	Distributed	table.

Fixed	parsing	when	inserting	in	RowBinary	format	if	input	data	starts	with';'.

Errors	during	runtime	compilation	of	certain	aggregate	functions	(e.g.	groupArray() ).

Clickhouse	Release	1.1.54276,	2017-08-16

New	features:

Added	an	optional	WITH	section	for	a	SELECT	query.	Example	query:	WITH	1+1	AS	a	SELECT	a,	a*a

INSERT	can	be	performed	synchronously	in	a	Distributed	table:	OK	is	returned	only	after	all	the	data	is	saved	on	all	the

shards.	This	is	activated	by	the	setting	insert_distributed_sync=1.

Added	the	UUID	data	type	for	working	with	16-byte	identifiers.

Added	aliases	of	CHAR,	FLOAT	and	other	types	for	compatibility	with	the	Tableau.

Added	the	functions	toYYYYMM,	toYYYYMMDD,	and	toYYYYMMDDhhmmss	for	converting	time	into	numbers.

You	can	use	IP	addresses	(together	with	the	hostname)	to	identify	servers	for	clustered	DDL	queries.

Added	support	for	non-constant	arguments	and	negative	offsets	in	the	function	substring(str,	pos,	len).

Added	the	max_size	parameter	for	the	 groupArray(max_size)(column) 	aggregate	function,	and	optimized	its

performance.

Main	changes:

Security	improvements:	all	server	files	are	created	with	0640	permissions	(can	be	changed	via	config	parameter).

Improved	error	messages	for	queries	with	invalid	syntax.

Significantly	reduced	memory	consumption	and	improved	performance	when	merging	large	sections	of	MergeTree

data.

Significantly	increased	the	performance	of	data	merges	for	the	ReplacingMergeTree	engine.

Improved	performance	for	asynchronous	inserts	from	a	Distributed	table	by	combining	multiple	source	inserts.	To

enable	this	functionality,	use	the	setting	distributed_directory_monitor_batch_inserts=1.

Backward	incompatible	changes:

Changed	the	binary	format	of	aggregate	states	of	groupArray(array_column) 	functions	for	arrays.

Complete	list	of	changes:

Added	the	 output_format_json_quote_denormals 	setting,	which	enables	outputting	nan	and	inf	values	in	JSON



format.

Optimized	stream	allocation	when	reading	from	a	Distributed	table.

Settings	can	be	configured	in	readonly	mode	if	the	value	doesn't	change.

Added	the	ability	to	retrieve	non-integer	granules	of	the	MergeTree	engine	in	order	to	meet	restrictions	on	the	block

size	specified	in	the	preferred_block_size_bytes	setting.	The	purpose	is	to	reduce	the	consumption	of	RAM	and

increase	cache	locality	when	processing	queries	from	tables	with	large	columns.

Efficient	use	of	indexes	that	contain	expressions	like	toStartOfHour(x) 	for	conditions	like	 toStartOfHour(x)	op	

сonstexpr.

Added	new	settings	for	MergeTree	engines	(the	merge_tree	section	in	config.xml):

replicated_deduplication_window_seconds	sets	the	number	of	seconds	allowed	for	deduplicating	inserts	in	Replicated

tables.

cleanup_delay_period	sets	how	often	to	start	cleanup	to	remove	outdated	data.

replicated_can_become_leader	can	prevent	a	replica	from	becoming	the	leader	(and	assigning	merges).

Accelerated	cleanup	to	remove	outdated	data	from	ZooKeeper.

Multiple	improvements	and	fixes	for	clustered	DDL	queries.	Of	particular	interest	is	the	new	setting

distributed_ddl_task_timeout,	which	limits	the	time	to	wait	for	a	response	from	the	servers	in	the	cluster.

Improved	display	of	stack	traces	in	the	server	logs.

Added	the	"none"	value	for	the	compression	method.

You	can	use	multiple	dictionaries_config	sections	in	config.xml.

It	is	possible	to	connect	to	MySQL	through	a	socket	in	the	file	system.

The	system.parts	table	has	a	new	column	with	information	about	the	size	of	marks,	in	bytes.

Bug	fixes:

Distributed	tables	using	a	Merge	table	now	work	correctly	for	a	SELECT	query	with	a	condition	on	the	 _table 	field.

Fixed	a	rare	race	condition	in	ReplicatedMergeTree	when	checking	data	parts.

Fixed	possible	freezing	on	"leader	election"	when	starting	a	server.

The	max_replica_delay_for_distributed_queries	setting	was	ignored	when	using	a	local	replica	of	the	data	source.	This

has	been	fixed.

Fixed	incorrect	behavior	of	 ALTER	TABLE	CLEAR	COLUMN	IN	PARTITION 	when	attempting	to	clean	a	non-existing

column.

Fixed	an	exception	in	the	multiIf	function	when	using	empty	arrays	or	strings.

Fixed	excessive	memory	allocations	when	deserializing	Native	format.

Fixed	incorrect	auto-update	of	Trie	dictionaries.

Fixed	an	exception	when	running	queries	with	a	GROUP	BY	clause	from	a	Merge	table	when	using	SAMPLE.

Fixed	a	crash	of	GROUP	BY	when	using	distributed_aggregation_memory_efficient=1.

Now	you	can	specify	the	database.table	in	the	right	side	of	IN	and	JOIN.

Too	many	threads	were	used	for	parallel	aggregation.	This	has	been	fixed.

Fixed	how	the	"if"	function	works	with	FixedString	arguments.

SELECT	worked	incorrectly	from	a	Distributed	table	for	shards	with	a	weight	of	0.	This	has	been	fixed.

Running	 CREATE	VIEW	IF	EXISTS	no	longer	causes	crashes.

Fixed	incorrect	behavior	when	input_format_skip_unknown_fields=1	is	set	and	there	are	negative	numbers.

Fixed	an	infinite	loop	in	the	dictGetHierarchy() 	function	if	there	is	some	invalid	data	in	the	dictionary.



Fixed	 Syntax	error:	unexpected	(...) 	errors	when	running	distributed	queries	with	subqueries	in	an	IN	or	JOIN

clause	and	Merge	tables.

Fixed	an	incorrect	interpretation	of	a	SELECT	query	from	Dictionary	tables.

Fixed	the	"Cannot	mremap"	error	when	using	arrays	in	IN	and	JOIN	clauses	with	more	than	2	billion	elements.

Fixed	the	failover	for	dictionaries	with	MySQL	as	the	source.

Improved	workflow	for	developing	and	assembling	ClickHouse:

Builds	can	be	assembled	in	Arcadia.

You	can	use	gcc	7	to	compile	ClickHouse.

Parallel	builds	using	ccache+distcc	are	faster	now.

ClickHouse	release	1.1.54245,	2017-07-04

New	features:

Distributed	DDL	(for	example,	 CREATE	TABLE	ON	CLUSTER )

The	replicated	request	 ALTER	TABLE	CLEAR	COLUMN	IN	PARTITION.

The	engine	for	Dictionary	tables	(access	to	dictionary	data	in	the	form	of	a	table).

Dictionary	database	engine	(this	type	of	database	automatically	has	Dictionary	tables	available	for	all	the	connected

external	dictionaries).

You	can	check	for	updates	to	the	dictionary	by	sending	a	request	to	the	source.

Qualified	column	names

Quoting	identifiers	using	double	quotation	marks.

Sessions	in	the	HTTP	interface.

The	OPTIMIZE	query	for	a	Replicated	table	can	can	run	not	only	on	the	leader.

Backward	incompatible	changes:

Removed	SET	GLOBAL.

Minor	changes:

Now	after	an	alert	is	triggered,	the	log	prints	the	full	stack	trace.

Relaxed	the	verification	of	the	number	of	damaged/extra	data	parts	at	startup	(there	were	too	many	false	positives).

Bug	fixes:

Fixed	a	bad	connection	"sticking"	when	inserting	into	a	Distributed	table.

GLOBAL	IN	now	works	for	a	query	from	a	Merge	table	that	looks	at	a	Distributed	table.

The	incorrect	number	of	cores	was	detected	on	a	Google	Compute	Engine	virtual	machine.	This	has	been	fixed.

Changes	in	how	an	executable	source	of	cached	external	dictionaries	works.

Fixed	the	comparison	of	strings	containing	null	characters.

Fixed	the	comparison	of	Float32	primary	key	fields	with	constants.

Previously,	an	incorrect	estimate	of	the	size	of	a	field	could	lead	to	overly	large	allocations.

Fixed	a	crash	when	querying	a	Nullable	column	added	to	a	table	using	ALTER.

Fixed	a	crash	when	sorting	by	a	Nullable	column,	if	the	number	of	rows	is	less	than	LIMIT.

Fixed	an	ORDER	BY	subquery	consisting	of	only	constant	values.

Previously,	a	Replicated	table	could	remain	in	the	invalid	state	after	a	failed	DROP	TABLE.



Aliases	for	scalar	subqueries	with	empty	results	are	no	longer	lost.

Now	a	query	that	used	compilation	does	not	fail	with	an	error	if	the	.so	file	gets	damaged.

Fixed	in	ClickHouse	Release	1.1.54388,	2018-06-28

CVE-2018-14668

"remote"	table	function	allowed	arbitrary	symbols	in	"user",	"password"	and	"default_database"	fields	which	led	to	Cross

Protocol	Request	Forgery	Attacks.

Credits:	Andrey	Krasichkov	of	Yandex	Information	Security	Team

Fixed	in	ClickHouse	Release	1.1.54390,	2018-07-06

CVE-2018-14669

ClickHouse	MySQL	client	had	"LOAD	DATA	LOCAL	INFILE"	functionality	enabled	that	allowed	a	malicious	MySQL

database	read	arbitrary	files	from	the	connected	ClickHouse	server.

Credits:	Andrey	Krasichkov	and	Evgeny	Sidorov	of	Yandex	Information	Security	Team

Fixed	in	ClickHouse	Release	1.1.54131,	2017-01-10

CVE-2018-14670

Incorrect	configuration	in	deb	package	could	lead	to	unauthorized	use	of	the	database.

Credits:	the	UK's	National	Cyber	Security	Centre	(NCSC)

©2016–2018	Yandex	LLC


	什么是ClickHouse？
	OLAP场景的关键特征
	列式数据库更适合OLAP场景的原因
	Input/output
	CPU

	Distinctive Features of ClickHouse
	True Column-Oriented DBMS
	Data Compression
	Disk Storage of Data
	Parallel Processing on Multiple Cores
	Distributed Processing on Multiple Servers
	SQL Support
	Vector Engine
	Real-time Data Updates
	Index
	Suitable for Online Queries
	Support for Approximated Calculations
	Data replication and data integrity support

	ClickHouse可以考虑缺点的功能
	Performance
	Throughput for a Single Large Query
	Latency When Processing Short Queries
	Throughput When Processing a Large Quantity of Short Queries
	Performance When Inserting Data

	Yandex.Metrica Use Case
	Usage in Yandex.Metrica and Other Yandex Services
	Aggregated and Non-aggregated Data

	入门指南
	系统要求
	安装
	为Debian/Ubuntu安装
	使用源码安装
	其他的安装方法

	启动

	航班飞行数据
	纽约市出租车数据
	怎样导入原始数据
	单台服务器运行结果
	总结

	AMPLab 大数据基准测试
	维基访问数据
	Criteo TB级别点击日志
	Star Schema 基准测试
	客户端
	命令行客户端
	使用方式
	配置
	命令行参数
	配置文件


	原生客户端接口（TCP）
	HTTP 客户端
	响应缓冲

	输入输出格式
	TabSeparated
	数据解析方式

	TabSeparatedRaw
	TabSeparatedWithNames
	TabSeparatedWithNamesAndTypes
	TSKV
	CSV
	CSVWithNames
	JSON
	JSONCompact
	JSONEachRow
	Native
	Null
	Pretty
	PrettyCompact
	PrettyCompactMonoBlock
	PrettyNoEscapes
	PrettyCompactNoEscapes
	PrettySpaceNoEscapes

	PrettySpace
	RowBinary
	Values
	Vertical
	VerticalRaw
	XML
	CapnProto

	JDBC 驱动
	ODBC 驱动
	第三方开发的库
	第三方集成库
	第三方开发的可视化界面
	Tabix
	HouseOps

	数据类型
	UInt8, UInt16, UInt32, UInt64, Int8, Int16, Int32, Int64
	整型范围
	无符号整型范围

	Float32, Float64
	使用浮点数
	NaN and Inf

	Decimal(P, S), Decimal32(S), Decimal64(S), Decimal128(S)
	参数
	十进制值范围
	内部表示方式
	运算和结果类型
	溢出检查

	Boolean Values
	String
	编码

	FixedString(N)
	Date
	DateTime
	时区

	Enum8, Enum16
	用法示例
	规则及用法

	Array(T)
	创建数组
	使用数据类型

	AggregateFunction(name, types_of_arguments...)
	Tuple(T1, T2, ...)
	创建元组
	元组中的数据类型

	Nullable(TypeName)
	存储特性
	用法示例

	嵌套数据结构
	Nested(Name1 Type1, Name2 Type2, ...)
	Special Data Types
	Expression
	Set
	Nothing
	SQL Reference
	SELECT Queries Syntax
	FROM Clause
	SAMPLE Clause
	ARRAY JOIN Clause
	JOIN Clause
	WHERE Clause
	PREWHERE Clause
	GROUP BY Clause
	NULL PROCESSING
	WITH TOTALS MODIFIER
	GROUP BY IN EXTERNAL MEMORY

	LIMIT N BY Clause
	HAVING Clause
	ORDER BY Clause
	SELECT Clause
	DISTINCT Clause
	LIMIT Clause
	UNION ALL Clause
	INTO OUTFILE Clause
	FORMAT Clause
	IN Operators
	NULL PROCESSING
	DISTRIBUTED SUBQUERIES

	Extreme Values
	Notes
	INSERT
	Inserting The Results of SELECT
	Performance Considerations

	创建数据库
	创建表
	默认值
	临时表


	分布式 DDL 查询 (ON CLUSTER clause)
	CREATE VIEW
	ALTER
	Column Manipulations
	Manipulations With Partitions and Parts
	Backups and Replication
	Synchronicity of ALTER Queries
	Mutations


	Miscellaneous Queries
	ATTACH
	DROP
	DETACH
	RENAME
	SHOW DATABASES
	SHOW TABLES
	SHOW PROCESSLIST
	SHOW CREATE TABLE
	DESCRIBE TABLE
	EXISTS
	USE
	SET
	OPTIMIZE
	KILL QUERY

	Functions
	Strong typing
	Common subexpression elimination
	Types of results
	Constants
	NULL processing
	Constancy
	Error handling
	Evaluation of argument expressions
	Performing functions for distributed query processing

	Arithmetic functions
	plus(a, b), a + b operator
	minus(a, b), a - b operator
	multiply(a, b), a * b operator
	divide(a, b), a / b operator
	intDiv(a, b)
	intDivOrZero(a, b)
	modulo(a, b), a % b operator
	negate(a), -a operator
	abs(a)
	gcd(a, b)
	lcm(a, b)

	Comparison functions
	equals, a = b and a == b operator
	notEquals, a ! operator= b and a <> b
	less, < operator
	greater, > operator
	lessOrEquals, <= operator
	greaterOrEquals, >= operator

	Logical functions
	and, AND operator
	or, OR operator
	not, NOT operator
	xor

	Type conversion functions
	toUInt8, toUInt16, toUInt32, toUInt64
	toInt8, toInt16, toInt32, toInt64
	toFloat32, toFloat64
	toUInt8OrZero, toUInt16OrZero, toUInt32OrZero, toUInt64OrZero, toInt8OrZero, toInt16OrZero, toInt32OrZero, toInt64OrZero, toFloat32OrZero, toFloat64OrZero
	toDate, toDateTime
	toDecimal32(value, S), toDecimal64(value, S), toDecimal128(value, S)
	toString
	toFixedString(s, N)
	toStringCutToZero(s)
	reinterpretAsUInt8, reinterpretAsUInt16, reinterpretAsUInt32, reinterpretAsUInt64
	reinterpretAsInt8, reinterpretAsInt16, reinterpretAsInt32, reinterpretAsInt64
	reinterpretAsFloat32, reinterpretAsFloat64
	reinterpretAsDate, reinterpretAsDateTime
	reinterpretAsString
	CAST(x, t)

	Functions for working with dates and times
	toYear
	toMonth
	toDayOfMonth
	toDayOfWeek
	toHour
	toMinute
	toSecond
	toMonday
	toStartOfMonth
	toStartOfQuarter
	toStartOfYear
	toStartOfMinute
	toStartOfFiveMinute
	toStartOfFifteenMinutes
	toStartOfHour
	toStartOfDay
	toTime
	toRelativeYearNum
	toRelativeMonthNum
	toRelativeWeekNum
	toRelativeDayNum
	toRelativeHourNum
	toRelativeMinuteNum
	toRelativeSecondNum
	now
	today
	yesterday
	timeSlot
	timeSlots(StartTime, Duration)
	formatDateTime(Time, Format[, Timezone])

	Functions for working with strings
	empty
	notEmpty
	length
	lengthUTF8
	lower
	upper
	lowerUTF8
	upperUTF8
	reverse
	reverseUTF8
	concat(s1, s2, ...)
	substring(s, offset, length)
	substringUTF8(s, offset, length)
	appendTrailingCharIfAbsent(s, c)
	convertCharset(s, from, to)
	base64Encode(s)
	base64Decode(s)
	tryBase64Decode(s)

	Functions for searching strings
	position(haystack, needle)
	positionUTF8(haystack, needle)
	match(haystack, pattern)
	extract(haystack, pattern)
	extractAll(haystack, pattern)
	like(haystack, pattern), haystack LIKE pattern operator
	notLike(haystack, pattern), haystack NOT LIKE pattern operator

	Functions for searching and replacing in strings
	replaceOne(haystack, pattern, replacement)
	replaceAll(haystack, pattern, replacement)
	replaceRegexpOne(haystack, pattern, replacement)
	replaceRegexpAll(haystack, pattern, replacement)

	Conditional functions
	if(cond, then, else), cond ? operator then : else
	multiIf

	Mathematical functions
	e()
	pi()
	exp(x)
	log(x)
	exp2(x)
	log2(x)
	exp10(x)
	log10(x)
	sqrt(x)
	cbrt(x)
	erf(x)
	erfc(x)
	lgamma(x)
	tgamma(x)
	sin(x)
	cos(x)
	tan(x)
	asin(x)
	acos(x)
	atan(x)
	pow(x, y)

	Rounding functions
	floor(x[, N])
	ceil(x[, N])
	round(x[, N])
	roundToExp2(num)
	roundDuration(num)
	roundAge(num)

	Functions for working with arrays
	empty
	notEmpty
	length
	emptyArrayUInt8, emptyArrayUInt16, emptyArrayUInt32, emptyArrayUInt64
	emptyArrayInt8, emptyArrayInt16, emptyArrayInt32, emptyArrayInt64
	emptyArrayFloat32, emptyArrayFloat64
	emptyArrayDate, emptyArrayDateTime
	emptyArrayString
	emptyArrayToSingle
	range(N)
	array(x1, ...), operator [x1, ...]
	arrayConcat
	arrayElement(arr, n), operator arr[n]
	has(arr, elem)
	hasAll
	hasAny
	indexOf(arr, x)
	countEqual(arr, x)
	arrayEnumerate(arr)
	arrayEnumerateUniq(arr, ...)
	arrayPopBack
	arrayPopFront
	arrayPushBack
	arrayPushFront
	arrayResize
	arraySlice
	arrayUniq(arr, ...)
	arrayJoin(arr)

	Functions for splitting and merging strings and arrays
	splitByChar(separator, s)
	splitByString(separator, s)
	arrayStringConcat(arr[, separator])
	alphaTokens(s)

	Bit functions
	bitAnd(a, b)
	bitOr(a, b)
	bitXor(a, b)
	bitNot(a)
	bitShiftLeft(a, b)
	bitShiftRight(a, b)

	Hash functions
	halfMD5
	MD5
	sipHash64
	sipHash128
	cityHash64
	intHash32
	intHash64
	SHA1
	SHA224
	SHA256
	URLHash(url[, N])

	Functions for generating pseudo-random numbers
	rand
	rand64

	Encoding functions
	hex
	unhex(str)
	UUIDStringToNum(str)
	UUIDNumToString(str)
	bitmaskToList(num)
	bitmaskToArray(num)

	Functions for working with URLs
	Functions that extract part of a URL
	protocol
	domain
	domainWithoutWWW
	topLevelDomain
	firstSignificantSubdomain
	cutToFirstSignificantSubdomain
	path
	pathFull
	queryString
	fragment
	queryStringAndFragment
	extractURLParameter(URL, name)
	extractURLParameters(URL)
	extractURLParameterNames(URL)
	URLHierarchy(URL)
	URLPathHierarchy(URL)
	decodeURLComponent(URL)

	Functions that remove part of a URL.
	cutWWW
	cutQueryString
	cutFragment
	cutQueryStringAndFragment
	cutURLParameter(URL, name)


	Functions for working with IP addresses
	IPv4NumToString(num)
	IPv4StringToNum(s)
	IPv4NumToStringClassC(num)
	IPv6NumToString(x)

	IPv6StringToNum(s)

	Functions for working with JSON
	visitParamHas(params, name)
	visitParamExtractUInt(params, name)
	visitParamExtractInt(params, name)
	visitParamExtractFloat(params, name)
	visitParamExtractBool(params, name)
	visitParamExtractRaw(params, name)
	visitParamExtractString(params, name)

	Higher-order functions
	-> operator, lambda(params, expr) function
	arrayMap(func, arr1, ...)
	arrayFilter(func, arr1, ...)
	arrayCount([func,] arr1, ...)
	arrayExists([func,] arr1, ...)
	arrayAll([func,] arr1, ...)
	arraySum([func,] arr1, ...)
	arrayFirst(func, arr1, ...)
	arrayFirstIndex(func, arr1, ...)
	arrayCumSum([func,] arr1, ...)
	arraySort([func,] arr1, ...)
	arrayReverseSort([func,] arr1, ...)


	Functions for working with external dictionaries
	dictGetUInt8, dictGetUInt16, dictGetUInt32, dictGetUInt64
	dictGetInt8, dictGetInt16, dictGetInt32, dictGetInt64
	dictGetFloat32, dictGetFloat64
	dictGetDate, dictGetDateTime
	dictGetUUID
	dictGetString
	dictGetTOrDefault
	dictIsIn
	dictGetHierarchy
	dictHas

	Functions for working with Yandex.Metrica dictionaries
	Multiple geobases
	regionToCity(id[, geobase])
	regionToArea(id[, geobase])
	regionToDistrict(id[, geobase])
	regionToCountry(id[, geobase])
	regionToContinent(id[, geobase])
	regionToPopulation(id[, geobase])
	regionIn(lhs, rhs[, geobase])
	regionHierarchy(id[, geobase])
	regionToName(id[, lang])


	Functions for implementing the IN operator
	in, notIn, globalIn, globalNotIn
	tuple(x, y, ...), operator (x, y, ...)
	tupleElement(tuple, n), operator x.N

	arrayJoin function
	Functions for working with geographical coordinates
	greatCircleDistance
	pointInEllipses
	pointInPolygon

	Functions for working with Nullable aggregates
	isNull
	isNotNull
	coalesce
	ifNull
	nullIf
	assumeNotNull
	toNullable

	Other functions
	hostName()
	visibleWidth(x)
	toTypeName(x)
	blockSize()
	materialize(x)
	ignore(...)
	sleep(seconds)
	currentDatabase()
	isFinite(x)
	isInfinite(x)
	isNaN(x)
	hasColumnInTable(['hostname'[, 'username'[, 'password']],] 'database', 'table', 'column')
	bar
	transform
	formatReadableSize(x)
	least(a, b)
	greatest(a, b)
	uptime()
	version()
	rowNumberInAllBlocks()
	runningDifference(x)
	MACNumToString(num)
	MACStringToNum(s)
	MACStringToOUI(s)
	getSizeOfEnumType
	toColumnTypeName
	dumpColumnStructure
	defaultValueOfArgumentType
	indexHint
	replicate

	Aggregate functions
	NULL processing

	Function reference
	count()
	any(x)
	anyHeavy(x)
	anyLast(x)
	groupBitAnd
	groupBitOr
	groupBitXor
	min(x)
	max(x)
	argMin(arg, val)
	argMax(arg, val)
	sum(x)
	sumWithOverflow(x)
	sumMap(key, value)
	avg(x)
	uniq(x)
	uniqCombined(HLL_precision)(x)
	uniqHLL12(x)
	uniqExact(x)
	groupArray(x), groupArray(max_size)(x)
	groupArrayInsertAt(x)
	groupUniqArray(x)
	quantile(level)(x)
	quantileDeterministic(level)(x, determinator)
	quantileTiming(level)(x)
	quantileTimingWeighted(level)(x, weight)
	quantileExact(level)(x)
	quantileExactWeighted(level)(x, weight)
	quantileTDigest(level)(x)
	median(x)
	quantiles(level1, level2, ...)(x)
	varSamp(x)
	varPop(x)
	stddevSamp(x)
	stddevPop(x)
	topK(N)(column)
	covarSamp(x, y)
	covarPop(x, y)
	corr(x, y)

	Aggregate function combinators
	-If
	-Array
	-State
	-Merge
	-MergeState.
	-ForEach

	Parametric aggregate functions
	sequenceMatch(pattern)(time, cond1, cond2, ...)
	sequenceCount(pattern)(time, cond1, cond2, ...)
	windowFunnel(window)(timestamp, cond1, cond2, cond3, ...)
	retention(cond1, cond2, ...)
	uniqUpTo(N)(x)

	Table functions
	file
	merge
	numbers
	remote
	url
	jdbc
	Dictionaries
	External Dictionaries
	Configuring an External Dictionary
	Storing Dictionaries in Memory
	Ways to Store Dictionaries in Memory
	flat
	hashed
	complex_key_hashed
	range_hashed
	cache
	complex_key_cache
	ip_trie


	Dictionary Updates
	Sources of External Dictionaries
	Local File
	Executable File
	HTTP(s)
	ODBC
	Known vulnerability of the ODBC dictionary functionality
	Example of Connecting PostgreSQL
	Example of Connecting MS SQL Server

	DBMS
	MySQL
	ClickHouse
	MongoDB


	Dictionary Key and Fields
	Key
	Numeric Key
	Composite Key

	Attributes

	Internal dictionaries
	Operators
	Access Operators
	Numeric Negation Operator
	Multiplication and Division Operators
	Addition and Subtraction Operators
	Comparison Operators
	Operators for Working With Data Sets
	Logical Negation Operator
	Logical AND Operator
	Logical OR Operator
	Conditional Operator
	Conditional Expression
	Concatenation Operator
	Lambda Creation Operator
	Array Creation Operator
	Tuple Creation Operator
	Associativity
	Checking for NULL
	IS NULL
	IS NOT NULL


	Syntax
	Spaces
	Comments
	Keywords
	Identifiers
	Literals
	Numeric Literals
	String Literals
	Compound Literals
	NULL Literal

	Functions
	Operators
	Data Types and Database Table Engines
	Synonyms
	Asterisk
	Expressions

	Operations
	表引擎
	MergeTree
	Creating a Table
	Data Storage
	Primary Keys and Indexes in Queries
	Selecting the Primary Key
	Use of Indexes and Partitions in Queries

	Concurrent Data Access

	Data Replication
	Creating Replicated Tables
	Recovery After Failures
	Recovery After Complete Data Loss
	Converting from MergeTree to ReplicatedMergeTree
	Converting from ReplicatedMergeTree to MergeTree
	Recovery When Metadata in The ZooKeeper Cluster is Lost or Damaged

	Custom Partitioning Key
	ReplacingMergeTree
	Creating a Table

	SummingMergeTree
	Creating a Table
	Usage Example
	Data Processing
	Common rules for summation
	The Summation in the AggregateFunction Columns
	Nested Structures


	AggregatingMergeTree
	Creating a Table
	SELECT and INSERT
	Example of an Aggregated Materialized View

	CollapsingMergeTree
	Creating a Table
	Collapsing
	Data
	Algorithm

	Example of use

	GraphiteMergeTree
	Creating a Table
	Rollup configuration

	TinyLog
	Log
	Memory
	Buffer
	External Data for Query Processing
	Distributed
	Dictionary
	Merge
	Virtual Columns

	File(InputFormat)
	Usage in ClickHouse Server
	Usage in Clickhouse-local
	Details of Implementation

	Null
	Set
	Join
	URL(URL, Format)
	Using the engine in the ClickHouse server
	Details of Implementation

	View
	MaterializedView
	Kafka
	Configuration

	MySQL
	Access Rights
	Configuration Files
	Quotas
	System tables
	system.asynchronous_metrics
	system.clusters
	system.columns
	system.databases
	system.dictionaries
	system.events
	system.functions
	system.merges
	system.metrics
	system.numbers
	system.numbers_mt
	system.one
	system.parts
	system.processes
	system.replicas
	system.settings
	system.tables
	system.zookeeper

	Usage Recommendations
	CPU
	Hyper-threading
	Turbo Boost
	CPU Scaling Governor
	CPU Limitations
	RAM
	Swap File
	Huge Pages
	Storage Subsystem
	RAID
	File System
	Linux Kernel
	Network
	ZooKeeper

	Server configuration parameters
	Server settings
	builtin_dictionaries_reload_interval
	compression
	default_database
	default_profile
	dictionaries_config
	dictionaries_lazy_load
	format_schema_path
	graphite
	graphite_rollup
	http_port/https_port
	http_server_default_response
	include_from
	interserver_http_port
	interserver_http_host
	keep_alive_timeout
	listen_host
	logger
	macros
	mark_cache_size
	max_concurrent_queries
	max_connections
	max_open_files
	max_table_size_to_drop
	merge_tree
	openSSL
	part_log
	path
	query_log
	remote_servers
	timezone
	tcp_port
	tmp_path
	uncompressed_cache_size
	user_files_path
	users_config
	zookeeper

	Settings
	Permissions for queries
	readonly
	allow_ddl

	Restrictions on query complexity
	max_memory_usage
	max_memory_usage_for_user
	max_memory_usage_for_all_queries
	max_rows_to_read
	max_bytes_to_read
	read_overflow_mode
	max_rows_to_group_by
	group_by_overflow_mode
	max_rows_to_sort
	max_bytes_to_sort
	sort_overflow_mode
	max_result_rows
	max_result_bytes
	result_overflow_mode
	max_execution_time
	timeout_overflow_mode
	min_execution_speed
	timeout_before_checking_execution_speed
	max_columns_to_read
	max_temporary_columns
	max_temporary_non_const_columns
	max_subquery_depth
	max_pipeline_depth
	max_ast_depth
	max_ast_elements
	max_rows_in_set
	max_bytes_in_set
	set_overflow_mode
	max_rows_in_distinct
	max_bytes_in_distinct
	distinct_overflow_mode
	max_rows_to_transfer
	max_bytes_to_transfer
	transfer_overflow_mode

	Settings
	distributed_product_mode
	fallback_to_stale_replicas_for_distributed_queries
	force_index_by_date
	force_primary_key
	fsync_metadata
	input_format_allow_errors_num
	input_format_allow_errors_ratio
	max_block_size
	preferred_block_size_bytes
	log_queries
	max_insert_block_size
	max_replica_delay_for_distributed_queries
	max_threads
	max_compress_block_size
	min_compress_block_size
	max_query_size
	interactive_delay
	connect_timeout
	receive_timeout
	send_timeout
	poll_interval
	max_distributed_connections
	distributed_connections_pool_size
	connect_timeout_with_failover_ms
	connections_with_failover_max_tries
	extremes
	use_uncompressed_cache
	replace_running_query
	schema
	stream_flush_interval_ms
	load_balancing
	random (default)
	nearest_hostname
	in_order

	totals_mode
	totals_auto_threshold
	default_sample
	max_parallel_replicas
	compile
	min_count_to_compile
	input_format_skip_unknown_fields
	output_format_json_quote_64bit_integers
	format_csv_delimiter
	join_use_nulls
	insert_quorum
	insert_quorum_timeout
	select_sequential_consistency

	Settings profiles
	ClickHouse Utility
	clickhouse-copier
	Running clickhouse-copier
	Format of zookeeper.xml
	Configuration of copying tasks

	clickhouse-local
	Usage
	Examples

	常见问题
	为什么不使用MapReduce之类的产品呢?

	ClickHouse Development
	Overview of ClickHouse Architecture
	Columns
	Field
	Leaky Abstractions
	Data Types
	Block
	Block Streams
	Formats
	I/O
	Tables
	Parsers
	Interpreters
	Functions
	Aggregate Functions
	Server
	Distributed Query Execution
	Merge Tree
	Replication

	How to Build ClickHouse Release Package
	Install Git and Pbuilder
	Checkout ClickHouse Sources
	Run Release Script

	How to Build ClickHouse for Development
	Install Git and CMake
	Install GCC 7
	Install from a PPA Package
	Install from Sources

	Use GCC 7 for Builds
	Install Required Libraries from Packages
	Checkout ClickHouse Sources
	Build ClickHouse

	How to Build ClickHouse on Mac OS X
	Install Homebrew
	Install Required Compilers, Tools, and Libraries
	Checkout ClickHouse Sources
	Build ClickHouse
	Caveats

	How to Write C++ Code
	General Recommendations
	Formatting
	Comments
	Names
	How to Write Code
	Unused Features of C++
	Platform
	Tools
	Libraries
	General Recommendations
	Additional Recommendations

	ClickHouse Testing
	Functional Tests
	Integration Tests
	Unit Tests
	Performance Tests
	Test Tools And Scripts
	Miscellanous Tests
	Manual Testing
	Testing Environment
	Load Testing
	Build Tests
	Testing For Protocol Compatibility
	Help From The Compiler
	Sanitizers
	Fuzzing
	Security Audit
	Static Analyzers
	Hardening
	Code Style
	Metrica B2B Tests
	Test Coverage
	Test Automation

	Roadmap
	Q4 2018
	Q1 2019
	Q2 2019
	Q3 2019
	ClickHouse release 18.14.15, 2018-11-21
	Bug fixes:

	ClickHouse release 18.14.14, 2018-11-20
	Bug fixes:
	Build changes:

	ClickHouse release 18.14.11, 2018-10-29
	Bug fixes:

	ClickHouse release 18.14.10, 2018-10-23
	ClickHouse release 18.14.9, 2018-10-16
	New features:
	Experimental features:
	Improvements:
	Bug fixes:
	Backward incompatible changes:

	ClickHouse release 18.12.17, 2018-09-16
	New features:
	Bug fixes:
	Backward incompatible changes:

	ClickHouse release 18.12.14, 2018-09-13
	New features:
	Improvements
	Bug fixes:

	ClickHouse release 18.12.13, 2018-09-10
	New features:
	Experimental features:
	Improvements:
	Bug fixes:
	Security fix:
	Backward incompatible changes:
	Build changes:

	ClickHouse release 18.10.3, 2018-08-13
	New features:
	Improvements:
	Bug fixes:
	Backward incompatible changes
	Build changes:

	ClickHouse release 18.6.0, 2018-08-02
	New features:
	Improvements:

	ClickHouse release 18.5.1, 2018-07-31
	New features:
	Improvements:
	Bug fixes:

	ClickHouse release 18.4.0, 2018-07-28
	New features:
	Improvements:
	Bug fixes:
	Backward incompatible changes:

	ClickHouse release 18.1.0, 2018-07-23
	New features:
	Improvements:
	Bug fixes:
	Backward incompatible changes:

	ClickHouse release 1.1.54394, 2018-07-12
	New features:
	Bug fixes:

	ClickHouse release 1.1.54390, 2018-07-06
	New features:
	Improvements:
	Bug fixes:
	Security fix:

	ClickHouse release 1.1.54388, 2018-06-28
	New features:
	Experimental features:
	Bug fixes:
	Improvements:
	Build changes:
	Backward incompatible changes:

	ClickHouse release 1.1.54385, 2018-06-01
	Bug fixes:

	ClickHouse release 1.1.54383, 2018-05-22
	Bug fixes:

	ClickHouse release 1.1.54381, 2018-05-14
	Bug fixes:

	ClickHouse release 1.1.54380, 2018-04-21
	New features:
	Improvements:
	Bug fixes:
	Backward incompatible changes:

	ClickHouse release 1.1.54378, 2018-04-16
	New features:
	Improvements:
	Bug fixes:
	Build changes:
	Backward incompatible changes:

	ClickHouse release 1.1.54370, 2018-03-16
	New features:
	Improvements:
	Bug fixes:

	Clickhouse Release 1.1.54362, 2018-03-11
	New features:
	Improvements:
	Bug fixes:
	Backward incompatible changes:

	Clickhouse Release 1.1.54343, 2018-02-05
	Clickhouse Release 1.1.54342, 2018-01-22
	Clickhouse Release 1.1.54337, 2018-01-18
	New features:
	Performance optimizations:
	Bug fixes:
	Build improvements:
	Backward incompatible changes:
	Please note when upgrading:

	ClickHouse release 1.1.54327, 2017-12-21
	ClickHouse release 1.1.54318, 2017-11-30
	ClickHouse release 1.1.54310, 2017-11-01
	New features:
	Backward incompatible changes:
	Bug fixes:
	Build improvements:

	ClickHouse release 1.1.54304, 2017-10-19
	New features:
	Bug fixes:

	ClickHouse release 1.1.54292, 2017-09-20
	New features:
	Bug fixes:

	ClickHouse release 1.1.54289, 2017-09-13
	New features:
	Bug fixes:
	Improved workflow for developing and assembling ClickHouse:
	Please note when upgrading:

	ClickHouse release 1.1.54284, 2017-08-29
	ClickHouse release 1.1.54282, 2017-08-23
	Clickhouse Release 1.1.54276, 2017-08-16
	New features:
	Main changes:
	Backward incompatible changes:
	Complete list of changes:
	Bug fixes:
	Improved workflow for developing and assembling ClickHouse:

	ClickHouse release 1.1.54245, 2017-07-04
	New features:
	Backward incompatible changes:
	Minor changes:
	Bug fixes:

	Fixed in ClickHouse Release 1.1.54388, 2018-06-28
	CVE-2018-14668

	Fixed in ClickHouse Release 1.1.54390, 2018-07-06
	CVE-2018-14669

	Fixed in ClickHouse Release 1.1.54131, 2017-01-10
	CVE-2018-14670




